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The Dynamics of Inner Functions

Introduction and statement of results

Let D denote the open unit disc {z € C | |z| < 1} in the
complex plane, 8D its boundary, the unit circle, and A the Lebesgue
probability on the Borel o-algebra of D. A classical result of Fatou
states that a bounded holomorphic function f: D — C possesses a

radial limit f*(w) = lin}f(rw) at A-almost every w € 9D. An inner

funcetion is a holomorphic function f: D « such that f*(w) € 0D
for a.e. w € 0D. The map f*:9D « thus induced is called the
boundary map of f.

Our subject here is the dynamics of inner functions; more spe-
cifically, the ergodic theory of the boundary map of inner functions.
Actually, the dynamics of the inner function itself is quite simple
and fully explained by the following result due to Denjoy [De] and
Wolff [W] (to be proved in Section 2): Given a holomorphic map
f:D « that i3 not a Mdbius transformation, there exists a point
p € D (called the Denjoy- Wolff point of f ) such that nan;Qf"(z) =p
uniformly on compact sets. Obviously this implies that if a non-
Moébius inner function f: D « has a fixed point, then it is unique
and is the Denjoy-Wolff point of f, whereas if f has no fixed points,
its Denjoy-Wolff point belongs to the boundary dD.

On the other hand, the boundary map f*:8D « of an in-

ner function f: D « very frequently exhibits interesting non-trivial
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C. 1. Doering and R. Mané

forms of recurrence and ergodic phenomena. Since such boundary
maps can easily be highly discontinuous, their ergodic theory falls,
in general, far beyond the range of the theory of smooth maps
of the circle. But, due to its extremely special origin, boundary
maps of inner functions can be studied through the tools of classical
complex analysis and a satisfactory ergodic theory can be obtained
of them. Our first aim is to present an exposition of this theory,
through proofs often different from those in the original papers, and
afterwards to relate it to rational functions. Given a rational map
f:C «, where C = C U {co} is the Riemann sphere, an important
aspect of its dynamics are the fixed components U of the comple-
ment of the Julia set, i.e., such that f(U) = U. By virtue of the
uniformization theorem, f|U:U « lifts to an inner function whose
properties yield relevant information on the ergodic theory (in the
harmonic class) of f|OU.

In this introduction we present and comment on the results
whose proof is the objective of the following sections. We begin
with a brief review of the fundamental results of the classical theory

of inner functions.

The simplest examples of inner functions are the finite Blaschke

products

N
Z—an
f(z) = anl;Io T3
with a € D and a, € D for 0 < n < N. More generally, if {a,} is

a sequence in D such that Z(l — |lan]) < 0, it is easy to sce that
n>0



The Dynamics of Inner Functions

the (infinite) Blaschke product

@) B =m I Gl est

a 1—a z
an#0 n n

converges (m is the number of a, equal to zero). Moreover, B: D «
is holomorphic, B # 0 and (not trivially) B is an inner func-
tion. (For a proof, see [Du; Thm. 24] or [G; Thm. I1.2.2].)
Obviously not every inner function is a Blaschke product: simply
take a Mobius map T of D onto the half plane {z € C | Rez < 0}
and set f(z) = expT(z). Then f is an inner function without zeros,
hence not a Blaschke product. This example belongs to the class of

holomorphic functions defined by

) s =ew (- [ 2 auw),

where p is a finite measure on 8D. For the example above, take

the unit mass p concentrated at w = 1 and f(z) = S,(z) =

z+1
exp (ﬁ), observe that u is singular with respect to A, that

is, there exists a set of full Lebesgue measure and zero p measure.

Blaschke products and these functions S, with singular y are
the two conspicuous examples into which any inner function can
be factored: the general analytical expression of inner functions is
given by the following characterization theorem ([Du; Thm. 2.8},
[G; Thm. I11.5.5)): If f: D « is holomorphic, then its sequence of

zeros {an}, which may be empty, satisfies z(l —lan]) < 00 and f
n>0
can be writfen as

3) f(z) = aB(2)S,(2),

7



C. I. Doering and R. Maiié

where |a| < 1, B(z) is the Blaschke product (1) and S,(z) is given
by (2), with u a finite measure on 8D. Conversely, given a sequence

{an} in D satisfying E(l—[an[) < oo, la] <1 and a finite measure
n2>0

u on 0D, (3) defines a holomorphic function f: D «. This map
(8) is an inner function if and only if |a] = 1 and y is singular with

respect to Lebesgue measure.

But every inner function i3 conjugate to a Blaschke product.
More specifically, let Tp: D « denote the Mébius map T,(z) =
(z — a)/(1 — @z), with a € D; then, if f is an inner function, the
composition T, o f is a Blaschke product for all a € D, except
possibly for a set of zero logarithmic capacity (Frostman; [G; Thm.
11.6.4]). We shall not discuss the important concept of logarithmic
capacity here, but we recall that sets of logarithmic capacity zero
are extremely thin: they cannot contain connected sets with more
than one point and their Hausdorfl dimension is zero. Since Bo T,
is still a Blaschke product whenever B is one, it follows that if f is
an inner function, then T, o f o T, ! is a Blaschke product except

for a set of zero logarithmic capacity of values of a € D.

The boundary map of an inner function f: D « can be highly
discontinuous. In fact, the following radical dichotomy holds:
Given w € D, either f has a holomorphic eztension to D UV
for some open neighborhood V of w in C or else f* maps every
neighborhood W of w in 8D onto almost all of ID (in the sense of
Lebesgue measure) ({He]). In the second case, we say that w is a
singular point of f.  Going back to the example f(z) =
exp((z + 1)/(z — 1)), at its unique singular point w = 1 we have
f*(W) = 0D for every neighborhood W of w = 1 in 8D, a fact that
can be read off the expression f*(e’?) = exp(—icot £), 0 < 6 < 2,

8



The Dynamics of Inner Functions

of the boundary map. In general, the singular points of an inner
function given by (3) above, are the points in the closure of the
support of the measure y and the accumulation points of the zeros
of f ([G; Thms. I1.6.1,2]). Therefore it must be regarded as normal
that every point of 9D is a singular point of an inner function. Much
more pathological behaviors may arise in special cases; for instance,
there exist inner functions f such that f* maps sets of zero measure
onto sets of positive Lebesgue measure ([He]). These extremes of
pathology can be avoided under supplementary hypotheses. We say

that a holomorphic F: D — C is a Nevanlinna function if

sup / log™ | F(rw)| dMw) < oo;
0<r<1J4D

if F is a Nevanlinna function, the radial limit F*(w) = liIIiF(rw)

exists for A-a.e. w € 8D ([Du; Thm. 2.2]). When f:D « is an
inner function and f': D — C is Nevanlinna, f* maps zero measure
sets onto zero measure sets and D can be covered, except for a set
of measure zero, by a countable family A;, A, ... of disjoint Borel
sets such that, for each n, f*|4, is injective and maps Borel sets
onto Borel sets ([He]). Moreover, because f' is Nevanlinna, (f')*
exists and is a sort of derivative of f, in the following very weak
sense: There exist Borel sets S C 0D, with complement S¢ in 0D
having arbitrarily small Lebesgue measure, such that

o F@) =)

—w zZ—w

(f)(w)
forallw € S, if z — w in the set S.

For the study of the ergodic properties of the boundary map,

a key concept is that of harmonic measure. Given p € D, the

9



C. I. Doering and R. Maiié

harmonic measure ), associated to p is the probability on the Borel
o-algebra of 0D defined by

1-pf*
Ap(4) = FdM\(w).
Al —p|
Clearly A¢ = A is the Lebesgue probability. Moreover, if : D —
R is a continuous function and zZv:D — R denotes its harmonic

extension (i.e., ¥ is harmonic and for each w € 8D, lim 1/;(2) =
z—w

1(w)), then Poisson’s formula implies

[var,=iw.

It is not difficult to prove, using this property, that A, is invar-
iant under the boundary map of inner functions having p € D as
fixed point (see Corollary 1.5 of Section 1 below). More than this,
Ap has good ergodic properties, as the next results will show. Be-
fore stating them, let us recall some definitions of abstract ergodic
theory ([Ho]). Let (X, A, ) be a measure space and T: X « a
measurable map, i.e., A € A = T71(4) € A. We say that T is
ergodic if A € A and T~ A) = A imply u(4) = 0 or u(A°) = 0,
and that T is ezact if every A € ﬂ T~ "(A) satisfies u(A) = 0 or
n>0
u(A°) = 0; alternatively, we sometimes say that p is ergodic (or
exact) instead of T. Clearly exactness implies ergodicity, because
A€ Aand T7Y(A) = A imply T""(A) = A for all n > 0 and
then A € ﬂ T7"(A). The map T is said to be recurrent if for
n>0
every A € A and p-ae. z € A, there exist infinitely many va-
lues of n > 0 such that T"(z) € A. Finally, if u(T71(4)) = p(4)

10



The Dynamics of Inner Functions

for each A € A, we say that u is inveriant under T or that T
preserves p. When p is finite, i.e., p(X) < oo, T is recurent when-
ever T preserves p {Poincaré), but if (X) = oo, not even from T
being exact and measure preserving follows that T is recurrent. We
shall find examples of this antagonistic coexistence in the boundary
behavior of certain inner functions.

The harmonic measure is unique in the following sense.

THEOREM A. If f: D «> is an inner function, then f*:9D « has
an invariant probability u on the Borel o-algebra of 8D which is
absolutely continuous with respect to A if and only if f has a fixed

point p € D; in this case, u = A, and f* is exact.

This theorem follows from a stronger result to be stated below
(Theorem G).

When the inner function f: D « has a fixed point p € D a very
complete picture of the ergodic theory of f*: 8D « with respect to

Ap is given by the following results of Craizer.

THEOREM B. If f: D « is an inner fun‘ction with a fixed point
p € D, then

a) ([Cr2]) with respect to \,, f*:8D « is Bernoulll, i.e., its
natural extension is isomorphic, in the measure theoretical sense,
to a Bernoulli shift;

b) ([Cr1]) the entropy hy,(f*) of A, is finite if and only if f'

is Nevanlinna, in which case,
by, (57 = [ gl .
aD

We shall not give here the proof of these important (and diffi-
cult) results. Qur presentation will be mostly oriented toward the

other alternative, when the Denjoy-Wolff point belongs to dD.

11



C. I. Doering and R. Mané

Given p € D, we define a measure p,, on the Borel o-algebra

of 9D by
(W) = [ i)
a lw—pl|

Observe that y, is precisely the image of the Lebesgue measure on
R (multiplied by a scalar) under any Mobius map transforming the
upper half plane onto D and mapping oo to p. Clearly 11,(0D) = 0.

The interesting property of this measure is that, if p is the
Denjoy-Wolff point of an inner function f, then f* transforms p,
via multiplication by a fixed constant depending upon the behavior

of f near p.

THEOREM C. Let f: D + be an inner function with Denjoy- Wolff
point p € 8D. There exists 0 < ¢ < 1 such that

a) pp(f*"1(A)) = cup(A) for every Borel set A C OD;

b) nli_{léo(l —f*())™ =c for all z € D;

1 - 1f(2)]

- 2] = ¢, when z — p nontangentially.
— |z

¢) lim

For a proof of this theorem, see Section 4.

It is sometimes convenient to consider inner functions of the
upper half plane RZ = {z € C | Im 2z > 0} instead of inner
functions of the disc. An inner function of R% is a holomor-
phic function f:R% « such that the boundary map f*(z) =
}i_rf(l)f(x +1t), which is well defined for a.e. z € R, satisfies f*(z) € R

for a.e. ¢ € R with respect to Lebesgue measure A on R. Obviously
the class of inner functions of D coincides, up to conjugacy by
a conformal representation of D onto Ri, with the class of in-

ner functions of R%. Thus, formally, no advantage can be ex-

12
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The Dynamics of Inner Functions

pected from replacing the disc by the upper half plane. However,
there are interesting examples of inner functions of the upper half
plane that admit easy analytical expressions. For instance, the map
f(z) = 2z + tan z (whose ergodic properties will presently be discus-
sed) or the map f(z) = z — 271, that goes back to Boole who, in
1857, proved that its restriction to R preserves the Lebesgue mea-
sure ([Bo], [Ad-W]). The reader may check this by brute force,
i.e., verifying that 1 = |f'(z;)|™" 4 |f'(z2)| ™", where z; and z, are
the two roots of f(z) = ¢, for all ¢ € R. More subtlety is required
to answer the problem, posed by Pélya in 1931, of characterizing
all the rational maps f such that f(R) C R and f|R preserves the
Lebesgue measure. The answer (Polya [Pa], Szegb [Sz]; see also
Section 5) is that f has these properties if and only if f is of the

form
f(2)=5(2+ﬂ—22%>,
i=1 i

wheree=1lor=~1,feRanda; € R, y; >0foralll1 <i<n.
When ¢ = 1, this is an inner function of the upper half plane.
Observe that f'(z) > 1 for all x € R and, if to study f nearby oo
we consider g(z) = —(f(—271))7?, the Taylor series of g at z = 0
is

g(z) =2+ B2 = (i'yi)ze' + .
i=1

Using these properties, the standard theory of rational functions

shows that, for 8 = 0, RU{oo} is the Julia set of f and lim f*(z) =
n—oo

oo for all z ¢ R, whereas for 8 # 0, the Julia set of f is a Cantor

set A of RU {o0} (containing the parabolic fixed point co) and

lim f*(z) = oo for all z ¢ A. The ergodic properties of f|R with

n—oo

13



C. I. Doering and R. Maiié

B = 0 will be discussed below.
The general formula for inner functions of R is the following:

Every holomorphic function f:R2 « can be writien as

14 zw

w2z

(4) f(z)=az+ B+ / dp(w),

R
where a > 0, B € R and p 13 a finite measure on the Borel o-algebra
of R. Moreover, f i3 an inner function if and only if p is singular
with respect to the Lebesgue measure A on R ([T]). Theorem D
below is an upper half plane version of Theorem C, with o = ¢!

(to be proved in Section 5).

THEOREM D. If the inner function f of the upper half plane is
given by (4) with a > 0, then

MFHA) = TA(4)

for every Borel set A C R. Moreover, oo is the Denjoy-Wolff point
of f if and only if a > 1.

Let us now address the question of the recurrence of the
boundary map of an inner function. Recurrence is completely char-
acterized by the following results of Aaronson [Aa2] (to be proved

in Section 4).

THEOREM E. If f: D « is an inner function with Denjoy-Wolff
point p € 0D, then either f* is recurrent or lim f**(w) = p for
n—oo

a.e. w € 8D.

THEOREM F. If f: D « is an inner function with Denjoy-Wolff

point p € 0D, then the following conditions are equivalent:

14



The Dynamics of Inner Functions

a) f* is recurrent;
b) Z(l —|f*(2)|) = oo for all z € D;

n>0

c) There exists z € D with Z(l —1f*(2)]) = oo.

n>0

However, with or without recurrence, if the Denjoy-Wolff point

pisin 8D, it acts as an “attractor in the mean”; more specifically,
.1 . .5
(5) lim —#{0<j<n|f9(w)eW}=1
n—oo N

for every neighborhood W of p in D and a.e. w € 0D. This is
proved in Section 2, but also follows from a stronger result (Theorem
H) to be stated below.

As an example of application, let us prove that, restricted to R,
the inner function f(z) = z+tan z of the upper half plane preserves
the Lebesgue measure and is recurrent. The function f preserves

the imaginary axis because
. ] et _ ¢t
f“”:’(*—e-t—w);
if g(2) = —(f(~271))7!, the Taylor series of g(st), for small ¢, is
g(it) = i(t —t2+...).

Hence

't
o 01 _
t—0
thus proving that g preserves o and then that f preserves A.
Moreover, the above expression for g implies that g"(it) 2 L; it

follows that

> g (it)] = oo

n>0

15



C. I. Doering and R. Maiié

and therefore g and also f are recurrent.
Assume now that f is a Pdlya-Szegd map with ¢ = 1 and
B = 0 and let us see that f|R (which we already know is measure

preserving) is recurrent. Since the Taylor series of ¢(z) =
~(f(=z") latz2=0is

n

() =2 (7)o

i=1

standard methods concerning parabolic points imply that there
exists a sector S = {2z € C||z| < §, |Arg (—iz)| < €} such that
g(S) C S and, for all z € S, ¢"(z) — 0 with n — oo and more:
g(2) & e thus 3 Jg(2)] = co.
n>0

Now let us consider the question of the ergodicity and ezact-
ness of the boundary map of an inner function. The next result was
proved (with a somehow different statement) by Aaronson in
[Aa3], relying on his previous result [Aa2] and on a theorem of
Pommerenke [Pe]. For its statement, let dp(-,-) denote the Poin-

caré metric on D (or on R%).

THEOREM G. Let f:D « be an inner function. The following
conditions are equivalent:

a) f* is ergodic;

b) f* is exact;

c) nlix};odp(f”(x), f*(y)) =0 forall z,y € D;

d) There exist a,b € D such that f*(a) # f"(b) forn >0
and nli_l:lgodp(fn((l), fr(d) =0.

COROLLARY 1. Recurrence implies ergodicity.

16



The Dynamics of Inner Functions

COROLLARY 2. If f: D « is an inner function with Denjoy-Wolff

point p € 0D and f* ergodic, then f* preserves fip.

The proof of Theorem G is in Section 3; the proof of Corollaries
1 and 2 is straightforward (by Theorems F and C, respectively) and
can be found in Section 4.

Let us show here how Theorem A follows from ’fheorems G and
E. Suppose that the boundary map f*: 3D « of an inner function
f: D « admits a A-absolutely continuous and invariant probability
p. If f has a fixed point p € D, then A, is f*-invariant, f* is re-
current and, by Corollary 1, A, is ergodic. Hence pr << A, implies
it = A,. Let us assume that f has no fixed point (and seek for a
contradiction). Then the Denjoy-Wolff point p belongs to 8D and,
moreover, p-invariance implies that g-a.e. w € 3D is recurrent for
f*. Since g << A, this implies that the set of recurrent points
has positive Lebesgue measure. Theorem E now guarantees that
f* is recurrent and then p, is f*-invariant and ergodic by the two
corollaries above. Since i << fip, it follows that p = p,, contradic-
ting that p is a probability and showing that f has a fixed point in
D.

The main virtue of ergodicity of finite invariant measures,
however, thoroughly fails with i, as the following theorem (to be
proved in Section 4) shows: there is no equality between time and

space averages.

THEOREM H. Let f: D « be an inner function with Denjoy- Wolff
point p € OD and such that p, is f*-invariant. Then

1 n—1 .
lim =3 (f(w) =0
j=0

17



C. I. Doering and R. Mané

for every p,-integrable function ¢: 0D — R and a.e. w € dD.

From this theorem, property (5) follows as a corollary. In fact,
(5) is obvious when f* is not recurrent, since then ,}Lngof*"(uv) =p
for a.e. w € 9D by Theorem E. If f* is recurrent, then the two
corollaries above imply that p, is f*-invariant; applying Theo-
rem H to the characteristic function ¥ of the complement of a
neighborhood W of p in 0D, we get (5).

The weak nature of the ergodicity of f* when its Denjoy- Wolff
point is in 0D, is further enhanced by an example of Aaronson
[Aa3] of an inner function f: D « with Denjoy-Wolff point p € D

and such that f* is ergodic but nevertheless lim f**(w) = p for
a.e. w € OD. Let us roughly describe this example. Let {a,} be

an increasing sequence of positive real numbers with E a;? <
n>0
and consider the function

2z 1 1
f<2>=z‘2m=z+z("z_a,, —z+an)~
n>0

n>0 n

The series converges uniformly on compact sets of C — {a,}, defines
a meromorphic function and obviously maps R — {a,} onto R and
R? into R} (because every map z — —(z—a)™!, a € R, maps R}
into R%). Then f is an inner function. Moreover, f'(t) > 1 for all
t € R—{a,} and f maps every interval (—ay,41, —an),(—ag, ap) and
(@n,an+1) onto R. Hence, by standard techniques, it can be proved
that f is transitive, i.e., for a residual subset of R, its forward orbit

is dense in R. To show that oo is the Denjoy-Wolff point of f,

18



The Dynamics of Inner Functions

consider g(z) = —(f(—2"1))"!. Then

. . t
BT
1+Y ———
242
vt 1+ at
shows that ¢ leaves the imaginary axis invariant and Im g(it) < t,
implying that lim ¢™(it) = 0 and proving that oo is the Denjoy-
n—oo
Wolff point of f. To study the ergodic properties of f, we have to

specify the sequence {a,}. Set a, = n3Y with v > 1. Then it is not
hard to obtain

[

212 _z2
Z 2 75
w0 1+ n7t

for small ¢; it follows that 8 =3 — %’ satisfies

g(it) = i(t — tP).
This implies lim dp(g™(it),¢""1(it)) = 0 (and then that f is
ergodic), since dp(g™(it), g"*1(it)) is proportional to

g™t (it) — g"(it)|  lg"(it)”

= g™ (3 ﬁ—l'
e o) e

But the asymptotic expression for ¢ implies that

o= () T‘L‘

n

and therefore
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converges if (3—1)"! > 1, 1i.e., if ¥ < 2 and diverges if v > 2. Hence
f is recurrent for 4 > 2 but, when v < 2, lim f™"(w) = oo for a.e.

w € R.

Now we shall present some applications of these results to ra-
tional maps of the Riemann sphere C = C U {cc}. First we recall
([T]) the concepts of Dirichlet regularity and harmonic measures.
An open connected set U C C is said to be regular (in the sense of
Dirichlet) if every continuous function ¢: U — R has an harmo-
nic extension ¢:U — R, ie., ¢ is continuous, harmonic on U and
$|0U = . U C C is an open regular set and p € U, we define the
harmonic measure A, on the Borel o-algebra of OU as the unique

one such that
e, =0

for every continuous ¢: 90U — R with harmonic extension ¢. Har-
monic measures may be defined even when U is not regular via more
subtle methods but, for our purposes, this definition will suffice. It
is easy to see that A, is positive on open sets. Morcover, the har-
monic measures A, and A, are equivalent if p,¢ € U. Even more,

there exists & > 0 such that
d)
-1 < P <k
S R <k

for every w € QU. To check this, it is enough to show the existence
of k > 0 such that
1< V) k
" Vi~
for every strictly positive harmonic function V:U — R. But the

existence of such a constant is an immediate corollary of Harnack’s

20



The Dynamics of Inner Functions

inequality. The harmonic class of QU is the class of measures on the
Borel o-algebra of QU which are equivalent to a harmonic measure
Ap for some p € U.

Let : D — U be a uniformization mapping, i.e., a holomorphic
covering map of U; it always exists if U¢ contains at least three
points, as in our case, since U is regular. The regularity of U also
implies that the logarithmic capacity of U¢ is positive and then the
radial limit ¢*(w) = }eri ¥ (rw) exists for a.e. w € 8D and, since 7
is a covering map, ¥*(w) € dD for a.e. w € 8D (in fact, whenever
¥*(w) exists). Moreover ¢* transforms a harmonic measure A, on
AU in the harmonic measure A, on 8D, where g € ¥ ~}({p}). More

precisely,
(6) A((¥7)71(A)) = Ap(4)

for every Borel set A C 8U. To see this, take a continuous function
©:0U — R and let $:U — R be its harmonic extension. Then
lin}(@ o ¥)(rw) = p(p*(w)) for a.e. w € 8D and, by a theorem of

Fatou,

[t o vt = @onio =) = [ear, .
From this, (6) follows applying standard approximation methods.

Now let us consider a rational map f:C « and let J(f) be
its Julia set. It is easy to see that f maps connected components
of J(f)¢ onto connected components of J(f)°. A fundamental and
deep result of Sullivan [Su] states that if U is a connected com-
ponent of J(f)¢, then, for some N > 0, the connected component
fN(U) is periodic, that is, for some m > 0, f™(fN(U)) = fN(U);
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more than this, that there are finitely many periodic connected com-
ponents of J(f)¢. Sullivan also proved that if U is a fixed connected
component of J(f)¢, i.e., f(U) = U, then f|U belongs to one of the
following four classes:
a) U is a Siegel disc: U is a disc and f|U:U « is conjugate,
via a conformal representation, to an irrational rotation of
D,ie., z+ az with [a| =1 and o™ # 1 for all n.
b) U is a Herman ring: fJU:U « is conjugate, via confor-
mal representation, to an irrational rotation of an annulus
{ze C| r <]zl < R}.
¢) U is the immediate basin of a sink: there exists a sink
p€eU,ie, f(p) =p |f'(p)] <1 and nlin;of”(z) = p for
allz € U.
d) U is a parabolic basin: therc exists a parabolic fixed point
p € 0U of f,i.e., f'(p)is aroot of unity and "Iiingcf”(:) =p
forall z € U.

Inner functions and harmonic measures have interesting appli-
cations to the study of ergodic properties of f|{OU when U is in the
last two classes. In the first two cases, they yield, so far, no relevant
contributions.

Suppose first that U is the immediate basin of a sink p. We
shall show that A, s f-invariant and ezact. To prove the invariance
of Ap, take any continuous function ¢: U — R and let 6:U = R
be its harmonic extension. Recall that every component of J{f)¢
is regular; even more, its linear density of logarithmic capacity is
positive (Mafié, Rocha [M-R]). Then o f is the harmonic extension

of po f and
/ (g0 F)ddy = (3 0 F)(p) = B(F()) = $(p) = / pddy |
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proving the f-invariance of A,. To prove its exactness, consider a
uniformization ¥: D — U of U and a lifting fiD « of f by y:
P o f = fo1. Then f is an inner function with a fixed point
¢ € ¥~ Y({p}). By Theorem A, ), is an exact probability for
f*8D <. But since ¢* o f* = f o ¢*, it follows from (6) that
Ap on JU is also exact.

Many other interesting properties of A, are known; for instance,
its relation with the entropy maximizing measure of f|OU. It is
known (Freire, Lopes, Mané [F-L-M], Ljubich [Lj], Lopes [Lo] and
Maiié [M]) that the topological entropy of f|OU is logm, where m
is the degree of flU:U « and that there exists a unique invariant
probability u+ on OU such that h,+(f|0U) = logm and even more:
pt is exact. It is also known that the invariant probabilities A,
and pt are singular unless f~'({p}) N U = {p}, in which case
they coincide (Mafié, Rocha [M-R]). In [Pi], Przytycki presents a
very detailed analysis of the harmonic class on the boundary of an
immediate basin of a sink.

For parabolic basins, the ergodic theory of the harmonic class

is quite different. The following result will be proved in Section 6.

THEOREM 1. Let U be a fixed parabolic basin of a rational map
f:C «— with parabolic fixed point p € OU. Let ¢:D — U be a
uniformization and f: D « be a lifting (i.e., ¢ o f = fov). Then,

for all z € D and all « > %, the inequality

- 1
— > —
-l >
holds for sufficiently large n.

This implies that the boundary map F* is recurrent and that
f has no fixed points (otherwise f would have a fixed point in U).
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Using the boundary map ¢*: 9D — 9U and (6), we easily obtain

the following corollary.

COROLLARY. If U is a fixed parabolic basin of a rational map
f:C «, then f|OU:8U « is exact and recurrent with respect to

the harmonic class of U.

The following result (to be proved in Section 6) further charac-

terizes the ergodic theory of parabolic basins.

THEOREM J. Let U be a fixed parabolic basin of a rational map
f:C e Ifge U, p € L™(),) is positive and # 0, then

n—1

/(Z(‘P ° fi)d’) dAg

lim ——=2 = [ pd),

n—oo "1

_/(‘P ° fi)d’\q

i=0

for every ¢ € L}(X,).

In other words, with n — oo,

n—1 n—1
Seof /Y [worian -1
=0 =0

weakly in the dual of L!();). To this property, a.e. convergence
cannot be added because of the following result of Aaronson [Aal):
If T: X « is an ergodic and recurrent measure preserving map of a
o-finite non-atomic infinite measure space (X, A, u), then for every
positive p € L(X, A, u) and every sequence {a,} of positive real
numbers, one (or both) of the following properties holds for a.e.

ze X:

1 n—1 )
limsup— o T7)(z) = oo,
m sup— jgo(cp )z)
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n—1

1 )

e b j _

hyfr—l»lorlfan Z(go oT?)(z) =0.

j=0
Then, considering the map f(z) =z — 27!, for which U = R% is a
parabolic basin, and applying this result to f|0U, which preserves
Lebesgue measure and is ergodic and recurrent, it is clear that a.e.
convergence is impossible in Theorem J.
Theorem J has an interesting consequence for Pdlya-Szego

maps

k

fey===3 2,

=1
with a; € R and 4; > 0 for all 1 <7 < k, namely, that

n—oo

) 1 n—1 . B 9
(7 lim %;’A(f (AN B) = —Z=NANB),

k
where v = Z'yi, for all bounded Borel sets A, B C R.
i=1
To prove this, let ¥ 4,9 g stand for the characteristic functions
of A,B C R; then (¢4 o f/)¢p is the characteristic function of

f73(A) N B and therefore,

A(F(4)N B) = / (a0 ff)«z)gdij:dxz

for z € Ri. Since B is bounded, ¥p Y
z

€ L'().) and Theorem J

implies that

n—1

Y Af(A)NnB)

j=0

(8)s lim

n—oo =1

Y [ao s,

i=0

dx
= [¥ngi-dh = XB).
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On the other hand, the Taylor development of g(z) = —(f(—z"1))"!
at z=01s

g =z—v2+... .
Therefore every z € R?,_ approaches the Denjoy-Wolff point of ¢
(which is 0) satisfying

Him /nlg"(2)] =

which for f decodes to

T

tim 52 = v

From this limit we obtain, trivially

Im fi(z) _

and also, less obviously (but only using the expression of the

derivative d,/d); see Section 5 for details),

MA4) = lim = Imfi(z) Agi((A),
j—oo

and therefore,

AA) = jlir&w,/zy\/} Asi(o(A

But then
n—1 n-—1
D> A (4) D Apicn(4)
EET j=0 o J=0
=t e T e

may

which, together with (8), proves (7), since

Agi(a(4) = \(FI(4)) = / (a0 F7)dAs.
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§1 Nontangential limits and harmonic exten-
sions

In this section we gather some basic results on holomorphic
and harmonic functions, d.eﬁned in the open unit disc D, which
will be used in the forthcoming sections and also prove that the
harmonic measure associated to the fixed point of an inner function
is invariant under the boundary map.

Forw € 9D and 0 < a < &, let
So(w) = {z € D||Arg (%) | < a}

denote the inner sector with vertex w and inner angle 2a. Given
any function f: D — X, with X = C or R, we say that it has a
nontangential limit at w € 9D if

lim  f(z)

Z—=w

2€Sq(w)

exists for every 0 < a < J; it is easy to see that the limit is
independent of @. Its value is denoted by f*(w) and called the
nontangential limit of f at w.

The classical theorem of Fatou states that if f:D — C is
holomorphic and bounded then the nontangential limit of f exists
at a.e. point of 0D, with respect to the Lebesgue probability A of
the unit circle. (For a proof, see [T; Thm. IV.7].) (The same is
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true if instead of a bounded we have a Nevanlinna function, i.e.,
one for which

sup / log™ | f(rw)| dA(w) < oo,
o<r<1 Jap

and it also holds if C — f(D) has positive logarithmic capacity.) We
shall later have use for the following uniqueness theorem, due to F.
and M. Riesz ([T; Thm. IV.9]).

THEOREM 1.1. If f: D — C is a bounded holomorphic function
and f*(w) = 0 for each w in a set of positive Lebesgue measure,
then f =0.

Let us take a quick look at the behavior of harmonic functions
with respect to nontangential limits. Given a continuous function
¥: 0D — R, its harmonic extension is a harmonic function 1/;: D—
R such that 21_1_1};} $(z) = w for all w € dD. It is well known that
every continuous function in D has one and only one harmonic

extension. Moreover, introducing the Poisson kernel P: D x 9D —
R, defined by
o2
P(z,w) = l___]"l_z = Re (_w—+2) ,
Jw — z| w—z

the unique harmonic extension of ¥ is given by

(1) be) = /a _(0)P(z,w)dNw)

for each z € D. More generally, we define the harmonic extension
¢¥:D — Rof any ¢ € LY()\) by (1); one checks easily that P is
indeed harmonic.

The following results, due to Fatou and Schwarz, respectively,

contain the essential properties of harmonic extensions ({T; Thms.

1v.1,2)).
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THEOREM 1.2. Given ¢ € L1(}),

a) for a.e. w € OD the nontangential limit }*(w) exists and
$* =1 in L'(N);

b) if 4 is continuous at some wy € D, then lim $(z) =

z—wo

P(we); if J € 8D is an open set and Y is continuous on J, then
lim 9(z) = t(w) uniformly in w € J.

For bounded functions, we again have a uniqueness result, also
due to Fatou ([T; Thm. IV.0]).

THEOREM 1.3. If u: D — R is a bounded harmonic function, then
the nontangential limit u*(w) exists at a.e. w € 0D and u is the
harmonic extension of u*, i.e., w=u.In particular, for ) € L®(A),

v is the unique bounded harmonic function defined in D and such
that

lin} J)(rw) = tp(w)
for a.e. w € 8D.

Observe that this theorem is false for unbounded functions:
simply take the harmonic function u(z) = Re((z + 1)/(z — 1)),
z € D, for which limu(z) =0 at every w # 1 in 9D and therefore

T—w
u* =01in L*™(A).
Given z € D, we define the harmonic measure X, as the unique

probability on 8D satisfying
dA;
- (W) =Pz, 0)
for w € 8D. Thus, for every Borel set 4 C 8D,
A(4) = / Pz, w)dMw)
A
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and, for every ¢ € L1()),
[var. =i,

since [pd), = [$pLad = [¢(w)P(z,w)dA\(w) = ¢(2).

Let us now prove that A, is invariant under the boundary map
of an inner function having z as fixed point. In this and the next
sections we shall (drop the asterisk and) simply write f:9D «
for the boundary map of an inner function f: D «, since there is
hardly any risk involved. The essential property relating nontan-
gential limits and harmonc extensions is the following commutative
property.

THEOREM 1.4. If f: D « is an inner function and ¢ € L'()), then
Yo fe LY(N) and
Yof=dof.
COROLLARY 1.5. If f: D « is an inner function and z € D, then
the harmonic measure satisfies:
a) [(o fdX; = [pd)g) for every 1 € L'(N);
b) A:(F71(A4)) = Ap(y(4) for every Borel set A C 9D;

c) A; is f-invariant if and only if f(z) = =.

The corollary is an immediate consequence of the theorem:

J@o fldx: = 4o f(z) = (0 f)(z) = $(f(2)) = [ ¥dAss) proves
a); if ¢ is the characteristic function of 4 C 0D, then % o f is the

characteristic function of f~1(4) and a) implies

AT = [wonir. = [wdnse = A4,

which proves b); finally, c) follows from a) and b).

To prove the theorem we need two preliminary results.
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LEMMA 1. For+ € L*()\) and z € D, |4(z)] S 1+ { :

1#1l;-

PROOF: Given ¢ € L}()\) and z € D,

|z/;(z)l = /eﬁ(w)P(z,w)d/\(w) < /l¢(w)|P(z,zu)d)\(w)
< 19l maxueon P(sv0) < 1 Il

0

LEMMA 2. Suppose f: D « is an inner function and let ¢: 0D — R
be given.

a) If 4 is continuous then 4o f € L®(\) and o f = z/)?f.

b) Ify € LY(X) then ¢ o f € L}()\) and

1 1+1£(0)f

1-[f0)

PROOF: a) Given an inner function f: D «, we have lirrif (rw) =
r—

o fll; < 11l -

f(w) for a.e. w € 9D. Given a continuous ¥:3D — R, ¥ is
harmonic and lim 9(z) = 1(w) for each w € D by Theorem 1.2.b).
z—w

Therefore
lim() o f)(rw) = lim §(f(rw) = 6(f(w)) = (b 0 f)(w)

for a.e. w € 8D. But 1,!; o f is harmonic and bounded. Thus the
uniqueness property of Theorem 1.3 guarantees that Po f is the
harmonic extension w/o\f of ¢po f.

To prove b) it is sufficient to prove the inequality for continuous

1; the result then follows by density. For continuous ¢,
9o fl = [Wboslar= [0 PO, w)drw)

= [l 0 £(0) = [¥I(£(0)),
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where the last equality is secured by part a). Applying Lemma 1
we get

1+ 1£(0)]

Iy £l = BIGCO) < T 7G0

Il -

O

PROOF OF THEOREM 1.4: Given ¢ € L!()), take a sequence of
continuous ¥,: 8D — R converging to ¢ in L!(\). By Lemma 1,

sup |(¥n —9$)(2)| <

lzl<r

=¥l

for all 0 < r < 1. Hence ¢, — 1 uniformly on compact sets and
then also 1&,‘ of — 1/3 o f uniformly on compact sets. Now for every

n > 0, Lemma 2.a) yields

2) Ynof=dnof.
Moreover, (¢, — ) o f € L*()) and

1 1+1f(0)]

“(d)n —11))°f”1 — If(o)l

ll%n — i,

by Lemma 2.b). Therefore, for all 0 < r < 1, Lemma 1 gives

aup |6 o £ —# 0 F)(e)| < T

|z]<r

l/\

~I(¥n =) 0 £l

147 1 1+1£(0)]
ST—7 1-1f0)

”"J’n - d)”l :

Hence, d):; f— ¢/o\f uniformly on compact sets. Taking limits in
(2) we obtain ¢ o f = 1/)/o\f. O
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§2 The Denjoy-Wolff theorem

The dynamics of a holomorphic function of D into itself is
described by the following result due to Denjoy [De] and Wolff
(W].

THEOREM 2.1. Let f: D « be a holomorphic function that is not a
Mébius transformation. Then there exists a point p € D such that

lim f*(z) = p for all z € D, uniformly on compact sets. Moreover,
n—oo

if p€ D then |f'(p)] < 1.

The point p € D given by the theorem is obviously unique
and we shall call it the Denjoy- Wolff point of f. Thus, given any
holomorphic function f: D «, the sequence of its iterates f™: D «>
converges, uniformly on compact sets, to the constant p; the only
exception (besides the identity) is presented by Mobius transfor-
mations with elliptic fixed point in D, since clearly the other two
possibilities of Mébius transformations T: D « (parabolic or hyper-
bolic) also possess a unique Denjoy-Wolff point p € 9D.

In the proof of Theorem 2.1, as well as in subsequent sections,
we shall use the conformally invariant Poincaré metric dp on D
dp(z,y) is defined as the infimum of the hyperbolic lenghts of the
arcs in D joining = to y ([G; pg. 5]) and we have

‘ _ . ll'n'"ynl —
Jim dp(en,yn) =0 & lim o=t =

‘mn - ynl =

k]

& lim
n—ool — |mnl2
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for all sequences of points =,,y, € D.

PROOF: Let f: D « be a holomorphic function and let us assume
that f is not a Mdbius transformation.

Suppose first that there exist + € D and n; < ny < ... such
that f™(z) converges with j — oo to a point p € D. By virtue of

Pick’s invariant formulation of Schwarz’s lemma,

dP(f(T)v f(y)) < dp(l‘, y)
for all  # y in D. Therefore, for all n > 0,

dp(f**2(2), f**(2)) = dp(f(f"+(2)), f(f*(2)))
< dp(f"*(z), f"(2))

and it follows that the sequence dp(f"*!(2), f*(z)) converges with

n — co. Then
Jim dp(f"(2), f"(2)) = lim dp(f"F (), f" (2))
= dp(f(p).p)
and
Tim dp(f™(2), £(2)) = lim dp(f+(x), £+ (2))
=dp(f*(p), (1))

imply dp(f2(p), f(p)) = dp(f(p).p). This gives f(p) = p, because

otherwise

dp(f3(p), f(p)) = dp(f(f(p)), £(p)) < dp(f(p),P)-

To prove that lim f*(z) = p uniformly on compact subsets of D, we
n—oo

will assume that p = 0. (If not, we conjugate f with an appropriate
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Mébius transformation.) Then f(0) = 0 and Schwarz’s lemma gives
[7(0)] < 1and |f(z)] < |z]forall 0 < |z] < 1, since f is not Mobius.
As in the proof of Schwarz’s lemma, consider F: D — C defined by
F(z) = 1f(2) for z # 0 and F(0) = f'(0). Then |£i|I—I»11 |F(z)] <1

and, since F' cannot be constant because f is not a Mdébius map,

the maximum principle gives |F(z)| < 1 for z € D. Therefore

cp= ﬁiﬁ |F(z)| <1

and |f(z)] € ¢rlz] € crR < R for all |z| < R < 1; then we also

have
IF2(2)| = 1f(f(2)l S erlf(z) < cklzl < R

when {z] < R. We conclude that
1F"(2)] < ezl

for all n > 0 and |z| < R, proving that T}eréof"(z) = p uniformly on
compact subsets of D.

Now suppose that for all z € D, the sequence {f"(z)} has no
accumulation points in D. Then either there exists a point p € 8D
such that nliﬁr;of"(z) = p for all z € D or else there exist z,y € D,
p1 # pz in OD and sequences ny < nz < ... and m; < my < ...
such that jlin;o f"(z) = p; and ,11»0:0 f™i(y) = p2. Let us derive a
contradiction from this second possibility.

We start with the following: since for all z € D the sequence
{f™(2)} accumulates nowhere in D, we have '}lx}golf"(z)[ =1. We
claim that this convergence is uniform on compact subsets of D. If

it is not, we can choose a sequence {z;} in D, bounded away from
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0D, and integers ky < ky < ... such that lfki(zj)l < ¢ < 1. Since
the sequence of iterates of f is uniformly bounded, we may assume
that the sequence { fki} converges uniformly on compact sets to a
holomorphic function F: D — C. Without loss of generality, we

may also assume that z; converges with j — oo to some point
z € D. Then

lim f¥(z) = F(z) = jlim fY¥(z)eD
J—00 —00

shows that the sequence f"(z) has accumulation points in D, con-
trary to our hypothesis.

Assume now that z,y € D, p; # p2 in 0D and n; < ng < ...
and m; < mg < ... satisfy jl_i_’n;of"i (z) = p1 and jlin;ofmj(y) = po.

Take 0 < r < 1 sufficiently large to guarantee that z,y belong to
B={zeD||:| <r}

and f(B)N B # ¢; it follows that fAHYBYN f*(B) # ¢ for each
n > 0. Then, for every N > 0, U f*(B) is an open connected
n>N
set that accumulates on p; and p;. Moreover, given any € > 0,
the annulus A, = {z € C] 1 — ¢ < |z| < 1} contains U fT(B) for
n>N

sufficiently large N, by the uniform convergence of lim |f"(z)| =1,
n—o00
z € B. Hence, given any ¢;,q2 € 0D which separate p; and po,

U f"(B) intersects the interval S; = {tq:|1 — ¢ <t < 1} or the

a>N

interval S; = {tg2]1 — ¢ < t < 1}, for sufficiently large N. Since

this holds for all ¢ > 0, it follows that U f*(B) accumulates
n>N

radially on ¢; or ¢;. But ¢; and ¢, are arbitrary points separating
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p1 and p; and U f™(B) is connected. Thus there exists an interval
n>N

J = [p1,p2] in 8D all of whose points are radially accumulated by

U f™(B). Given any w € J such that the nontangential limit
n>N

f(w) exists, we choose points z; € B and integers ky < ko < ...
such that f*i(z;) converges radially to w with j — co. Without loss
of generality we may assume that z; converges to Z € D with j — co
and that f¥ converges uniformly on compact sets to a holomorphic

function F: D — C. Since lim |f"(z)| = 1for all z € D, we obtain
n—oo

F(D) C 0D and then F must be constant: F(z) = w for all z € D.
It follows that

flw) = Jim F(£5 () = lim 15+ (z,)
= lim f5(/(z))) = F(f(3) = v,

proving that the boundary map of f satisfies f(w) = w for a.e.
w € J. But J has positive Lebesgue measure; by Theorem 1.1,
necessarily f(z) = z for all z € D. Since we precluded this possi-
bility, we arrived at the contradiction we stroved for. Thus there
exists p € 0D such that nllrr;of"(z) = p for all z € D; since f" is
uniformly bounded, the convergence is uniform on compact subsets
of D. O
COROLLARY 2.2. Let f: D « be an inner function and let p € D
be its Denjoy-Wolff point.

a) Ifp € D, then the boundary map of f preserves the har-

monic measure Ap.
b) Ifp € 3D, then for every neighborhood W of p in 8D,

Jim S0 <5 <nlfi(w) € W) =1
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for a.e. w € dD.

PROOF: a) is part c) of Corollary 1.5. To prove b), let ¢ be
the characteristic function of W; since f/(w) € W if and only if
(¥ o f7)(w) = 1, we have

#0<5 < nlPw) € W) = 5o F)w)
=0

for a.e. w € 8D. Denoting z, = f*(0), Corollary 1.5 implies

Jworin= [wir, =ie).

But z, — p and therefore ¥(z,) — %(p) = 1, with n — oo, by

Theorem 1.2.b). Dominated convergence thence implies

n—1

[QmiSwem)in-pmlS fworm
j=0

= lim — Zd)(z]) = hm dv(zn) =(p) =1,

n—oon

n—1

proving that hm Z(m/; () =1 for a.e. w € 8D. |
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§3 Ergodicity of inner functions

Recall that a measurable map T: X « of a measure space
(X, A, p) is ergodic if p(A) =0 or (X — A) =0 for every 4 € A
such that T71(A) = A and is ezact if the same occurs for A €
ﬂ T~ ™(A). Exact maps are ergodic because T~1(A) = A implies

n>0

T '(4) = Afor all n > 0 and then A € ﬂ T"A). Ifpisa
n>0

probability and T preserves u then T is p-recurrent and exactness

also implies mixing,.

In this section we give necessary and sufficient conditions for
the ergodicity of the boundary map of an inner function and prove
that, for such maps, ergodicity and exactness are the same. These
results are due to Aaronson [Aa3] and Pommerenke [Pe]. Observe
that ergodicity does not imply that a.e. boundary point is recur-
rent; this is true if the Denjoy-Wolff point belongs to D, since then
the harmonic measure associated to it is invariant by Corollary 2.2
above, hence recurrent and, being equivalent to Lebesgue measure,
a.e. boundary point is recurrent. Necessary and sufficient condi-

tions for recurrence will be given in the next section.

THEOREM 3.1. The following conditions are equivalent for inner
functions f: D «.

a) The boundary map of f is exact.

b) The boundary map of f is ergodic.
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c) There exist a,b € D such that f*(a) # f™(b) forn > 0
and lim dp(f"(a), (b)) =0.
d) lLim dp(f"(z), f*(y)) =0 for all z,y € D.

COROLLARY 3.2. The boundary map is exact whenever the inner

function has a fixed point in D.

The corollary is obvious: recall that in the presence of a fixed
point p € D, p is the Denjoy-Wolff point and lim [f"(z) — f*(p)| =
0, hence lim dp(f"(z), f*(p)) = 0 for each z € D, implying condi-

n—o0
tion d).
PROOF: ¢) = d) We shall use the following simple fact: if a se-
quence of holomorphic functions ¢,D — C converges uniformly on
compact sets to g: D — C and satisfies g,,;,({0}) 2 g71({0}) for
all n > 0, then either g = 0 or ¢71({0}) = U g, ({o}).
n>0

To prove c¢) = d) we may, and will, assume that a = 0. For
each n > 0 choose a Mobius map Ty,: D « satisfying T, f*(0) = 0
and select ng < my < ... in such a way that the sequence g =
Tn, © f™: D « converges uniformly on compact sets to a map

g:D —. Then
g5 ({0}) = fFT™(T ({0]) = F™({£™(0)})

and it is easy to check that g,;:l({(]}) 2 ¢7'({0}) for k > 0.
Now the hypothesis f*(0) # f"(b) guarantees gp(b) # 0 for
each k, therefore b ¢ U g:1({0}). On the other hand, g(b) =

k>0
Jim gi(8) = 0, since dp(gu(b),0) = dp(Tn, f™ (b), Tu /™ (0)) =
dp(f™x(b), f**(0)) converges to 0 with k& — oo by the hypothesis
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lim dp(f™(0), f*(b)) = 0. Thus the above stated fact implies g = 0

and we obtain, for z € D:
0 =dp(g(2),0) = lim dp(gx(2),0)
= Bim dp(Ta, f™(2), Tu f™(0)) = lim dp(f™*(2), f™(0)):

Since the sequence dp(f"™(z), f*(0)) is decreasing, its limit exists
and it follows that lim dp(f"(z), f*(0)) = 0 for all z € D, which
clearly implies condition d).

d) = a) Let A denote the Borel o-algebra of 9D and suppose

Ae ﬂ Ff"(A); then we can write A = f~"(A,) with A, € A,
n>0

n > 0. To prove that A(A) = 0 or A(A) = 1, we consider the
characteristic functions ¥ and ¥, of A and A, respectively. Since
Ff"(A,) = A, wehave 0 f™ = ) and therefore zﬁof" = zbn/o\f" =
¥ by the commutative property of Theorem 1.4. Let z,y € D be

given; for every n > 0,

) P(@) = P(y) = dalf" (@) = PalF"())-

For each n > 0 we now choose a Mobius map Ty,: D « with T,,(0) =

f*(z); since z/)n/o\Tn = 1/3,, o Ty, it follows that
Pa(F(@)) = ol F*(Y)) = P 0 Ta(0) — tn 0 Tu(T7 F*(1))

= [ alTa0lt = P (), 0w,
But li_l:ﬂ T71f*(y) =0, since

dp(T; ' f™(y), 0) = dp(f"(y), Tu(0)) = dp(f"(y), f"(x))
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converges to 0 with n — oo by hypothesis. Therefore

lim [sup |1 — P(T; f*(y),w)|] =0,

|=
which implies
Lim [(f"(x)) =4 (f"(y)] = 0

and we obtain () = (y) from (1). This proves that ¢ is constant,
hence ¥ = * is constant a.e. by Theorem 1.2.a). Since 9 is the
characteristic function of A4, this means that A(4) =0 or AM(4) = 1.
a) = b) Immediate, as above.
b) = ¢) We shall prove that f is not ergodic when condition c)
does not hold. Assume, therefore, that '}Ln;odp(f"(x),f"(y)) >0

for all x,y € D satisfying f™(z) # f"(y) for each n > 0. Clearly
we may choose z € D with f"*1(z) #if"(z), n > 0; to simplify, we
take z = 0. For each n > 0 we choose a Mobius map Ty,: D « such
that

T.f*(0) =0 and T,f"*!(0)> 0.

Then
dp(TuT;11(0),0) = dp(TWT;11(0), T f7(0))
= dp(T,11(0), f*(0)) = dp(f"*'(0), f"(0))
implies that the moduli |T,,T,};(0)| are decreasing and, since
T, T}, (0) = T, f"1'(0) > 0,

the sequence {T,T;1(0)} converges to some ¢ > 0 with n — oco.

But our hypothesis gives
dp(c,0) = lim dp(T,T;},(0),0) = lim dp(f™*'(0), f(0)) >0
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and we have ¢ > 0. These facts guarantee that the sequence
Tn o T;}:D « of Mdbius maps converges to a Mobius map
T: D «; notice that T(0) = ¢ > 0.

Next we prove that the sequence g, = T, o f™ converges uni-

formly on compact sets. We have g,(0) = 0 and, for every z € D,

(2) l9n(2)] < |gn-1(2)]
because

dp(gn(2),0) = dp(Tn f"(2), Tn f(0))
= dp(f"(2), f"(0)) < dp(f*7'(2), F*71(0))
= dp(Tp-1 f"7H(2), Tom1f"71(0)) = dp(gn-1(0), 0).

Since the sequence {g,} is uniformly bounded, to prove its con-
vergence it is sufficient to show that any two convergent subse-
quences ¢g,, — ¢‘V and g, — ¢» have the same limit, i.e.,
g = ¢ But (2) implies that the sequence {|g,|} is conver-
gent; hence z&n;o [gne) = lg(l)l and klll.lo]o |gmil = |g(2)| coincide with
nli_z};oign]‘ Then lg(l)l = ‘g(z)l. This implies that ¢V = ag(® with

la| = 1; if we show that o = 1, we are done. Above we proved
O0<e= HT T,f"+1(0), therefore
n—-1+00

0<e= lim T.f"(f(0)) = g (£(0)) = ¢ (£(0)

implies & = 1 and completes the proof of the convergence of {g,}.

We define ¢ = lim g, and obtain
n—oo

gof=Tog,
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because
9(f(2)) = lim Tuf"(f(=)) = Tim T T Ty S"4(2)
=Tg(z).
Finally we claim that

T = lim TnofoT,;'1
n—od

uniformly on compact sets. Since the sequence T, o f o T;! is
uniformly bounded, it is sufficient to show that T =

klingo Th.,ofo T,,_k1 for every convergent subsequence Ty, o f o Tn‘kl.
Suppose § = k&r&Tnk ofo T.n‘_k1 for some choice n; < ny < ....
Since f™*(0) = T;}(0) and go f = T o g, we get
§(0) = Jim T, A(T5(0)) = fim Ty, f4(£(0)
= g(£(0)) = Tg(0) = T(0)
and
S(T(0)) = kl.i_.nc}oT"“ ofo T,,‘:(T(O))

= Jim T, 0 f 0 T3 0 Ty o T4 (0)

lim T, o fo T 1(0) = lim Ty, o fo f**(0)
k—o00 k k—o0
= kliTI;oTnk ° Tr::-l»l 0 Tpy41 0 f™+2(0)
= T( lim Ty, 41 0 f™+2(0))
k—o0

= T(kl_ifgoTnk+l ° Tn_kl-{-'z(o)) = T*(0).

Hence T7' 0 §: D « has two fixed points, 0 and T(0) = ¢ > 0;

Schwarz’s lemma now implies T = S and this concludes the proof
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of the claim. In particular, T has no fixed points, because otherwise
TnofoT,; ! would have a fixed point (for large n) and then its image
under 77! would be a fixed point of f. But this is impossible,
because if f has a fixed point then f™(0) convergs to it, by the
Denjoy-Wolff theorem, and therefore nlin;odp(f"“((]),f"(O) =0,
contradicting our hypothesis.

Thus we have constructed a holomorphic function ¢g: D « and
a Mobius map T of D onto D without fixed points satisfying go f =
T og. Let us see, to complete the proof of the theorem, that these
properties imply that f is not ergodic. Since it has no fixed points,
the M6bius map T:D « is either parabolic (one fixed point in
9D) or hyperbolic (two fixed points in D) and in both cases it
is not hard to find a Borel set A C 8D such that 0 < A(4) < 1
and T7}(A) = A. Then the characteristic function + of A satisfies
o T =+ and, writing h = b og, we get

hof=(hog)of=poTog=rpoTog=4og="h

by the commutative property of Theorem 1.4. Since k is bounded,
Theorem 1.3 gives h = 7* and the same commutative property
implies h* o f= h*o f = ho f = h; therefore, taking nontangential
limits, we obtain

h*o f=h*.

Thus h* is f-invariant; if we prove that it is not constant a.e.,
the non-ergodicity of f follows. Now T has no fixed points; since
go f=Tog, g is not constant and g(D) is a non-empty open set.
But 0 < A(A) < 1, therefore 1 is not constant a.e., which implies
that 1 and therefore |g(D) are not constant. Hence h = ¢ 0 g is

not constant; being bounded, it follows that h* is not constant. O
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§¢4 Recurrence of inner functions

A measurable map T: X « of a measure space (X, A4, ) is

recurrent if the set
A= UJrrw
N>0n>N

of all points ¢ € X such that T"(z) € A for infinitely many values
of n > 0 satisfies (A — A) = 0 for every A € A. Equivalentely, T is
recurrent if p(S—T71(S)) = 0 for every S € A such that T771(5) C
S. To see that recurrence implies this property it suffices to observe

that § = ﬂ T~™(S) and therefore u(S — T71(S)) < u(S - S)

n>0
whenever T~1(S) C S; the converse is obtained following the usual
proof of Poincaré’s recurrence theorem for measure preserving maps
of probability spaces.

Here we shall consider the question of the recurrence of the
boundary map of an inner function f: D «>. We will show that the

series

> -1

n>0
either converges for all z € D or else diverges for all z € D. In the
first case, the Denjoy-Wolff point p of f necessarily belongs to the
boundary (obviously, because lim |f"(z)— p| =0 and then p € D

would imply ir;f("(l —1f*(2)]) > 0) and
lim f7(w) = p
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for a.e. w € OD. In the second case, we shall prove that the
boundary map is recurrent and exact. Moreover, whenever the
Denjoy-Wolff point p of f belongs to 0D, then the infinite measure

Ip, given by its derivative

dyp _ 1
dA (w) = lw —-p]z’ we oD,

with respect to the Lebesgue probability A on 8D, is f-invariant

and, for every pp,-integrable function ¢: 0D — R we have

L1
lim —
n—oon

> () = 0

for a.e. w € 9D.

THEOREM 4.1. If f: D « is an inner function and there exists a

point z € D such that

> = (2)) < oo,

n2>0
then the Denjoy-Wolff point p of f belongs to 8D and lim f*(w) =
n-—oo
p for a.e. w € 8D.

PROOF: Assume z € D issuch that Z(l—[f"(z)l) < 00; obviously
n>0

this implies that the Denjoy-Wolff point p of f belongs to D. Given

a Borel set S C 9D, let

$=U N
N>0n>N

denote the set of all points w € dD for which there exists an N > 0
such that f*(w) € S for all n > N. It is enough to prove that
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MS8) = 1 for every open neighborhood § of p, because taking

a decreasing sequence of open neighborhoods S, of p such that

n Sm = {p}, we then obtain

m>0
A n Slm) =

m2>0
all that remains to do is to observe that w € ﬂ S, implies that for
m>0
each neighborhood S;,, of p there exists V,, > 0 such that f*(w) €

Sm for all n > Np,, which means that lim f"(w) = p. Since
A ﬂ Sm) = 1, this will prove the theorem.
m>0

To estimate /\(5’ ), we recall that the harmonic measure A, is
equivalent to the Lebesgue probability A and consider the charac-
teristic function ¢ of S¢. Then ¢’ o f" is the characteristic function
of f~™(S¢) and Corollary 1.5 gives

A (Fm(S5)) = / (o fr)A, = / B jncey = DUF()).

Since
= U s
N>0n>N
we obtain
1) A:(8) < jnd D H(F())-
n>N
We also have

$(() A
) = T o, OO

—(1+|f()!)/ —W A(w).
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Let us now assume that S is an open neighborhood of p. Then

lim f*(z) = p ¢ 5S¢ implies

(=) f !
lim ————te =2 | ———=dMw).
n—ool —|f*(z)] se |w—pl* )
Hence there exists C' > 0 such that $(f™(z)) < C(1 — |f"(z)]) for
large n > 0 and therefore

S ) <C S A -1

n>N n2>2N

for large N > 0. But our hypothesis is Z(l —[f™(z)]) < oo,
n>0

from which it follows that g}nzfo ;Vw/’(f (2)) = 0. By (1) we get

A:(8°) = 0, implying A($¢) = 0 and proving A(5) = 1. O

THEOREM 4.2. If f: D «> is an inner function and there exists a
point z € D such that

S -1f"=)) = o0,

n2>0
then the boundary map of f is recurrent.

PROOF: Assume z € D is such that Z(l —1f"z)]) = 0. We
n>0

shall prove that A(S — f~1(S)) = 0 for every Borel set S C 9D
such that f~1(S) C §; by our introductory remark, this ensures
recurrence. Given a Borel set § € 9D such that f~!{S) C S,
assume A C S — f71(9) is a Borel subset and # its characteristic

function; then, as in the above proof,
A(F7M(A) = (=)
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and
BUGE) _ o 1 .
Sy =D [ ),

Let p = lim f*(z) be the Denjoy-Wolff point of f; again p ¢ A

implies

0) .
@ gy = 0 [ i),

Now A C S — f~1(S) and f~1(S) C S; therefore
FANfA) =
for all 0 < j < ¢ and we have

3) 12X @) = NET@) = Yo dmE).

n>0 n>0 n>0

Suppose that A(4) > 0. Then from (2) it follows that
o BUTGE)
w0l — [fn(2)]

which guarantees the existence of C > 0 and N > 0 such that

D(f*(2)) = C(1 — |f*(2)]) for all n > N. But then, from (3) and

our hypothesis, we get

12 ) D) 2C ) (- If"(@)) =0

n>N n>N

>0,

This contradiction proves that A(A4) = 0 for every Borel set 4 C
S — f71(S) satisfying p ¢ A. Since S — f~Y(S) (as, in fact, every
subset of D) is a countable union of such sets A, plus (maybe) the
point p itself, it follows that A(S — f~1(S)) = 0, thus proving the

theorem. 0O
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COROLLARY 4.3. If the boundary map of an inner function is re-

current then it is exact.

PROOF: Let f: D « be an inner function with recurrent boundary
map and let us prove it is exact; by virtue of Theorem 3.1, it suffices
to prove ergodicity. Suppose A C 9D is a Borel set such that
F~1(A4) = A and let us consider its characteristic function . Then
9o f =1 and the commutative property gives Yof= z/)/o\f = 9.
Therefore, if g: D — C is any holomorphic function with Reg = 1{3,
then Re(go f) = (Reg) o f = o f =1 = Reg and we may choose
b € R such that go f = g + 1b. Let us first assume that b # 0.
Defining G: D — C by G = exp(—27 |b] "' g), we obtain

6 = exp (- T Re(2) ) = exp (- 3200 <1

and

2n

(G0 1)) = exp (=) = exp (~Frate) .2
= exp (- Frat)) = 6,

that is, G is bounded and f-invariant. It follows that Go f* = G
for all n > 0, which means that G — G(a) is zero at every f"(a),
for all n > 0 and every a € D. Given a € D, Blaschke’s theorem
([Du; Thm. 2.3]) ensures that either G — G(a) = 0 or else its

sequence of zeros ag,as,... satisfies Z(l = |an|) < oo. If the
n>0
latter were the case, we would obtain Z(l ~1f™(2)}) < o0 and
n>0
then, by Theorem 4.1, the Denjoy-Wolff point p of f would belong
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to D and lim f*(w) = p for a.e. w € 8D. Since our hypothesis
n—oo

is the recurrence of f, this cannot happen and we are left with
G—G(a) = 0. But this implies that G, and then g and Reg = P, are
all constant. Hence also ¢ = 3* is constant, proving that A\(A4) = 0
or M(A) = 1. The other case, b = 0, is proved applying the same
argument to G = exp(—g), which again is bounded and f-invariant.
O
Recall that, given p € 8D, we let p, denote the measure on
OD whose derivative with respect to the Lebesgue probability A is
du 1

-

Cw—p

w € aD.

Clearly pp(0D) = +o0.

THEOREM 4.4. Let f: D « be an inner function with Denjoy- Wolff
point p € D. There exists 0 < ¢ < 1 such that
a) pp(f7H(A)) = cpp(A) for every Borel set A C D;
b) Hm (1—|f"2))V/"* =c, forall z € D;
n—oo
c) (1=|f(2)})/(1 - |z]) converges to ¢ when z converges non-

tangentially to p and f(z) converges to p.
COROLLARY 4.5. pp is f-invariant if f is ergodic.

The corollary is obvious: by Theorem 3.1, ergodicity implies
lim dp(f"*(2), f*(z)) = 0 for all z € D, hence
n—o0

Lim w =0
1]

and then

S e i O]
TR

52



The Dynamics of Inner Functions

PROOF: Let f: D « be an inner function with Denjoy-Wolff point
p € 0D. We define

§ = liminf M.
z—p 1-— |Z|
f(2)—p

Observe that 0 < § < 1, because for z, = f™(0) we have
lim f(z,) = lim 2z, = lim f*(0) = p, implying
§ < limint i Gl gl =1l
L N S e P
We claim that
4) pp(f7H(A)) < pp(A)

for every Borel set A C D with p ¢ A. To prove this, let us take
any sequence {zp} in D with both z, and f(z,) converging to p.

Then lim |f(z,)] = linéo |zn] = |p| = 1 and we have

2
liminfl:—u'—(—fﬁ—)l—- = lim inflLf(Z'Ql <$é.

n—oo ] — Iznlz n—oo 1 — ‘Zn'

Given any Borel set A C 9D we also have

/ 1 iw)
F71(4) |w = za|

— 1- If(zn)lz 1 dMw
1— |zf* /Alw—f(zn)l2 )

(3)

because

— |zal? b i) = P(zn, w)dA(w
(1 Inl)/f_l(A)lw_znlz (w) /,-w( JdA(w)

= Xe, (F7HA) = Ay (4)

= zn),w)dAw = (1 = |f(zn 2 —1—2d)\ w),
[ PGt = 1) [ i)
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where we used Corollary 1.5 to ensure the middle step. Finally, if

p¢ A, lim f(zn) = p gives

. 1 _ 1 N
(6) ”IE&/A[w—f(zn)I?d/\(w)_/A]w—plzd/\(u) pp(A).

Since

ip(fH(A)) = j dA(w)

2
1) fw —pl

=/ lim ;zdz\(w) ,
f

“1(A) "0 w — 2]

Fatou’s lemma thence gives

pp(f71(A)) < liminf —1—2
n=o0 Ji-1(4) [w = 2]

dA(w)

DEETI 1—]f(5n)’2 1
= hnn_l,lo%f - Izn[2 o f(zn)fz dA\(w)
< 6 lim ——1———2-dA(w) = bup(A),

o0 Ja hw — f(zn)]

proving claim (4).
Now assume that {z,} is a sequence in D which converges

nontangentially to p and is such that f(z,) converges to p and

fim LGl

n—oo 1 — |z,
exists; we claim that
(7 pp(F1(A) = cpp(A)

for every Borel set A C D such that py(A) < co. This obviously

implies that ¢ is independent of the sequence {z,}, thus proving
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items a) and c) of the theorem. To prove (7), let A C 8D be a
Borel set such that p ¢ A4; by claim (4),

wu*m»=/ '

——dA(w) < oo.
14y w = pl

Since z, converges nontangentially to p, there exists X > 0 such

that
1 1

e
o —za> = Jw—p|

for all w € 9D and sufficiently large n; applying dominated conver-

gence, we get

o(F7(4)) = lim &

n= Jyo1(a) o — za|®

dA(w).

Hence, using (5) and (6),

2
LAY = tim L A
up(f7(A4)) = lim 1— |zal Alw“f(z")l )
:C:MT’(A)

The general case of claim (7) follows easily, because if A C 8D is

a Borel set with p,(A4) < oo, then we can write it as A = U A,
n>0
with 4¢ € A; € ... and each A, bounded away from p. Thus

(A = (U £7(A40) = Jim (£ (4n)

n>0

=c lim p1,(An) = cpp(A).
n—oo
In particular, jt,(f71(4)) < oo; iterating, we obtain

(8) pp(f77(A)) = " pp(4)
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for all n > 0 and every A C 9D with pp(A) < +oo.

To prove item b), we take z € D and set

at = limsup(1 — |f™(z)|)/",
n—>0C

o~ =liminf(1 - Fr(z))Y™.

Let A C 8D a Borel set such that p ¢ A and p,(A) > 0. For some
constant I{ = K(z) > 0 we have, for all n > 0,

Kup(F7(A) 2 A:(F77(A) = Apn9(4)

2 1
=(1-1f"(z ——d\w).
O R

But limsup(1 — |f™(2)]*)/* > a*; therefore, using (6) and (8) we

obtain
c= limsup(/t,,(f""(A)))l/" >at.

Now we take ¢ > 0 and choose m; < mq < ... such that
L= |+ (@)] < (a7 +e) (1~ ™ (2)]).

Proceeding as in the proof of claim (4) with the sequence z, = f™(z)

we get

1—|f(za)f

ey (4) = (7 (4) < (limin = =55

Jual4)
<(a™ +e)up(4),
proving ¢ < a” + ¢. Since € > 0 is arbitrary, we have

a~<at<e<a,
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completing the proof of item b).

To close the proof of the theorem, we observe that 0 < ¢;
otherwise we would have pi,(f~1(4)) = 0 for some Borel set A C 8D
with p ¢ 4 and y,(A) > 0. Then

0= pp(f7HA) = A(F7H(A) = Ap»y(4)

for z € D, implying A(A4) = 0 and then p,(A4) = 0. u|

THEOREM 4.6. Let f: D « be an inner function with Denjoy- Wolff
point p € 8D and such that y,, is f-invariant. For every ¢ € L*(1,),

n—oon 4

n-—1
lim = S (f () = 0
=0

for a.e. w € 8D.

PROOF: Lef f: D « be an inner function with Denjoy-Wolff point
p € 0D and g, invariant. It is enough to prove the theorem for
positive ¥ € L!(y,). If ¢ > 0 is zero in a neighborhood of p then

lim ¥(f™(0)) = 0 and, using Fatou's lemma, we get
n—oo

1n—1 ) 111—1 i
(L N < i L ;
0—/(n15&n§¢°f)dASIm*o%fnZ;/(Wf 2

n—1

= liminf= 3" B(79(0)) = 0,
j=0

hence

n—1

) Jim = 3" g(fi(w)) = 0
j=0
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for a.e. w € 8D . Given any positive ¥ € L'(y,), we choose a
neighborhood W of p in 0D and write ¢ = b +11, with ¥p(w) = 0

for w € W and ¢1(w) = 0 for w € W*. Since p, is f-invariant,
f(d)x o fM)dup = /d)]d#p;
therefore, Fatou’s lemma and (9) imply
1 n—1 ) 1 n—1 ]
/ (Jim, 2 w0 ) diey = / (Jim 2 3 s 0 47y
7=0 7=0
1 n—1 )
S > [t o fving = [duy = [ i
i=

Since ¢ is p,-integrable, the last expression can be made arbitrarily

small; thus

n—1

/ (,,1220% ;‘/’°fj)dﬂr =0

proving the theorem. O
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§6 Inner functions of the upper half plane

In this section we consider inner functions of the open upper
half plane R2 = {z € C | Im z > 0} and characterize the Pélya-
Szegd maps.

All the results of the previous sections translate into results
for inner functions of R3 via the Mobius map S: D — RZ given
by S(z) = (1 4 2)/(1 — z); an additional feature of the boundary
R U {oo} of R%, however, is the distinguished point at infinity
which, for inner functions of R%, is far more conspicuous than its
counterpart w = 1 is for inner functions of the unit disc. Thus, if
the inner function f: R2 « has no fixed point, we may, naturally,
choose oo as the Denjoy-Wolff point of f (conjugating by a Mdbius
map if necessary). In fact, the canonical representation ([T]) of

inner functions f: R3 «,

14z

w —

w
(1) S =az 48+ [ R duw),
R z
with @ > 0, 8 € R and p a singular finite measure on the Borel
o-algebra of R, already enhances this choice for the Denjoy-Wolff

point of f: «a is characterized by

lim f(it)

t—oo gt

=«

and we shall see that oo is the Denjoy-Wolff point of f if and only

if @ > 1. Before we prove this, let us comment on the upper half
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plane versions of the two measures which played a major role in
the unit disc scenario. The harmonic measure ), for z = a +ib €
R2+, a,b € R, now has, with respect to Lebesgue measurc A on R,

derivative
dh b1
N T r—ar b2

for z € R ([G; pg. 12]). Denoting, as before, the boundary map of
an inner function f: Ri « simply by f:R « again, Corollary 1.5
gives

A:(FTHA)) = Ap»(4)

for every Borel set A CR;if z € R?,_ is a fixed point of f then A,
is f-invariant. Now if f: R} « has no fixed point then, associated
to its Denjoy-Wolff point p € RU {oo}, we have an infinite measure

{tp Which satisfies
pp(f7H(A)) = epp(A)

for some 0 < ¢ < 1 and every Borel set 4 C R (Theorem 4.4). If
p = 00, we (normalize and) have for j¢, the Lebesgue measure on R:
A = fio. If 2 = 0o nontangentially, we have the following (compare

with the relation (2) of Section 4):
LEMMA 1. Let {z,} be any sequence in R% such that Im z, — oo

and %——:—"—l — 0 with n — oo. Then

MA) = lim 7 Im z, A, (4)

n—oo

for every Borel set A C R.

PROOF: Write 2, = an + ibn, bn > 0, an € R. Then |53%2| <

%ﬂl + 1%—"—[ — 0 with n — oo for each z € R. Given a Borel set
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A C R we have

1 bn
A:(4) = /Ad)\z,, == /A md/\(l)

and therefore

1
rbads (A) = /_4 e

Dominated convergence then gives

lim 7wbp A, (A) = / dA(z) = A(A).
n—00 A

LEMMA 2. If f:R% « is an inner function given by (1), then

a= IimM.

n—oco 1t

PROOF: For each t > 0 we have

f(n)~azt+ﬂ+/

1 t
il (I,u(w)
w—

14w
2
=ait+ 8+ (1t )/ 2+t2du(zn)+1t/ 2+t2(l;t(uw)

For t > 1 we certainly have (1 + w?)/(w? +t?) < 1 for all w € R,

and therefore dominated convergence gives

2
lim / Ltw du(w) = 0.

{00 R 11’2 + 2

From the above expression for f(it), we can thus read off

lim M

—~ = o, as soon as we prove the following
t—oo 3
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CLAIM: There exists C > 0 such that for all ¢ > 0

C
/ w"” +l 7 di(w) < .

Observe that

|l e e
5 dn(w) = > 2 di(w) +2 R ———du(w)
rR W+t -1 we+t +1

1 too
< ol w([=1,1]) + /1 T ——dp(w) .

The last term we integrate by parts, obtaining

+ o0 + o0 2
w F(1)
/1 s dp(w) = i /; F(w) —~———( T ) dw

F(l) +o0 w? ~ 2
F ——d
Ty’ (1)/1 (w? 222"

d + oo 2 _
< F(1) +F(1)/ st =1 ds = 2F(10):
1+1¢2 t e (s24+1)2 1+41¢2

where we wrote F(w) = u([w, +00)). O

THEOREM 5.1. If the inner function f:R2 « is given by (1) and
a > 0, then for every Borel set A C R,

A (A) = SA(A).

Moreover, a > 1 if and only if 0o is the Denjoy-Wolff point of f.

PRrROOF: Let f:R2 « be given by (1) with a > 0. Then Lemma 2
b .
gives blim f('z ) %Q —

—co b

= a > 0, implying a, Im f(ib) — oo
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[Re f(ib)]
Im f(ib)
Since A p(ipy(A) = Aip(f~1(A4)) for b > 0, Lemma 1 implies

— 0 with b - 00, b > 0. Let A C R be a Borel set.

AMA) = lim 7 Im f(ib) Asein(A)

= Jim T 571 ) = X ),

proving the first part of the theorem.

Now assume that a > 1 and let us prove that oo is the Denjoy-
Wolff point of f. Suppose that it isn’t. Let p # oo be the Denjoy-
Wolff point of f and let us write v for either the harmonic measure
Ap,ifp € Ri_, or the infinite measure iy, if p € R. From the results
of the previous sections, we can choose a constant 0 < ¢ < 1 such
that

W71 (4)) = ev(A)
for every Borel set A C R. Hence

dv

—dA
_‘I(A) dA

e[ “arn= cv{A) = v(f~1(4)) =/f

4 dA
1 dv
JACIOL

for every Borel set A C R, where in the last equality we used the

I

first part of the theorem, since o > 0. Then

@)
If ac < 1, (2) implies

lim 9(57()) =0,

n.~—00 (1
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and then
lim f"(z) = o0

n—00

for a.e. z € R, which means that oo is the Denjoy-Wolff point of f.

If @« > 1 we have

AF(A) = o A(4)

for every Borel set A C R with A(4) < co. This implies that for
a.e. © € A there exists N > 0 such that f*(z) ¢ Aif n > N and
then, since this holds for every 4 = [—a,a], that nli_l};gf"(ar) =0
for a.e. z € R; again oo is the Denjoy-Wolff point of f. Thus our
hypotheses o > 1 and oo is not the Denjoy-Wolff point of f imply
ac > 1 and o < 1. It follows that ¢ = 1 = a and then (2) implies
that f =identity, which is the contradiction we wanted.

Conversely, suppose that oo is the Denjoy-Wolff point of f and
let us prove that @ > 1. But oo being the Denjoy-Wolff point
of f implies that A = g and there exists 0 < ¢ < 1 such that
AFYH(A)) = cA(A) for every Borel set A C R. Suppose we prove
that a > 0; then, by the first part of the theorem, we will get

MA) = ad(fTHA)) = acr(4)

for every Borel set A C R, thence ac=1and a = % > 1. Therefore
all we need to prove is that o > 0. Suppose that o = 0. Let {b,}

be any sequence with b, > 0 and lim b, = co. Then

n—oo

1 2
f@ba)=p8+(1— 62)/ ————=dj(w) + ib, / —)—Qi_fub—z(l/t(w)a

2+12

where

sup
n>0

2 w ’
a-#) [ =4 )| < co
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by the claim in the proof of Lemma 2. Let us assume first that

1 2
lim b,,/ ——iw—dﬂ.(w) = 00.
R

n—oco w? + b2
Then Re f(ib,) is bounded and Im f(ib,) — oo with n — oo; since
also Im i(zbn) N

n

a = 0 with n — oo (by Lemma 2), Lemma 1

gives

)\(A) = lim 7 Im f(ib,,) /\](z‘b,,)(A)

= Jim PG b X (574
= XU i P B <o,

n

for every Borel set A C R, clearly an impossibility. Therefore we

are left with

1 2
sup bn/ —2—+1—v—2—d;t(w) < oo.
7>0 r W2+ D2

But then {f(ib,)} is bounded and we may suppose that it converges
to some z € C with Im z > 0. Assume that Im z > 0; since co is

the Denjoy-Wolff point of f, this implies, by Lemma 1,

cA(A) = MNfH4) = nl_i_lgoﬂbn/\ib,,(f—l(A))

= lm 7b, Ap(ip, ) (A) = A:(4) lim 7b,, = 0
n—oo n—00

for every Borel set A C R, again an impossibility. Finally assume

that Im z = 0. Then, as above,

MfTHA)) = lim wboAsein,(4)
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for every Borel set A C R, but since now

lim Im f(ib,)

n—o00 by

=0 = lim R,Cf(ibn)a

we get
Jim 7w Im f(2bn) Ascin,)(4) = p2(4)

whenever z ¢ A and A is bounded. Thus for such Borel scts with

0 < u,(A) < 00, we obtain

C)\(‘4) = /\(f_l(}l)) = nliﬂolo 7 Im f(lbn) ’\f(ib,,)(‘4) = 00,

b,
Im f(ib,)
which is again impossible. We have run out of possibilities, thence
a>0. a
Let us now turn to the problem, posed by Pélya (and answered
by Pélya [Pa] and Szego [Sz]), of characterizing the rational func-

tions of the Riemann sphere C = C U {co} which preserve the real

line and its Lebesgue measure.

THEOREM 5.2. Let f:C «= be a rational map. Then f(R) C R
and fIR preserves the Lebesgue measure if and only if there exist
e==21,eR,n>0,a; ¢ Rand~v; >0 for 1 <i < n such that,
for all z € C,

(3) f(z):e(:m—zzfa_).

ProOOF: If f:C « is given by (3) then clearly f(R) C R and

ef(z), z € R%, defines an inner function of the upper half plane,

with @ = 1 in (1). Then Theorem 5.1 above implies that X is

¢ f-invariant, hence also f-invariant.
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Let now f:C « be a rational map such that f(R) € R and
M fYA)) = MA) for every Borel set A C R. Since f preserves

the Lebesgue measure, we have

1
- 1
1
2 T
for all ¢ € R. Hence |f/(2)| > 1 for all z. In particular lirf fla) =
=100
400 or —oo. Multiplying f by —1 if necessary, we can assume

liz}} f(z) = +oo. This means that for some a > 0 and m € N,
T—T00

J) =0+ o)

where P,@Q are polynomials with no common root (in C) and
degree P < degree ). Let us prove that m = 1 and a = 1.

Since 1ir+n f(z) = 4+oo we have m > 1 and a > 0. Then,

for ¢ > 0 large, the real roots of f(z) = ¢ can be written as
p1(e) > pa(c) > -+ > pr(c), k independent of ¢ and ¢;(c) being

a C* function of ¢. Clearly, when ¢ — +o0, C_ljriloogol(c) =400,
and CETOOW(C) is, for 1 < 7 < k, a real root of Q(z). The same
property holds for 7 = k when m is odd and cEToo(pk(c) = —oo if
m is even. Then

@) 1=1f N+ I @)+ Y I (i)

1<i<k

When ¢ — +00, clearly

lim |f' (i)™ =0

c—+0o
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and also for ¢ = k if m is odd. Moreover,

If"(pa(eDl  _

e=+00 mapi(c)| "t

and

If' (ol _

lim T
e ¥o0 ma pa(c)]

when m is even. Hence, if m > 1,
. -1 . —
Jm 1 (@)™ = Jim I (erle)]™ =0,

contradicting (4). Then m = 1 and
im [fer(@) ™" = = ;
cStoo P1 = a y

taking the limit of (4) when ¢ — 400, we obtain @ = 1. From the
fact that @ = 1 and m = 1, it follows that there exists a connected
component V of f _I(Rﬁ_) such that V contains a set of the form
{z € C | |z| > p,Rez > 0}. We claim that V = R3. Take any
bounded interval J; C R and set J; = f~1(Jy) N R. Let ¢, be
the characteristic function of J;, ¢ = 0,1. Let 1[)1_.: R.z,_ — R be the

harmonic extension of ¢ j,. Then
M) =k L (i)
1) = lim oy (t).

Now consider the harmonic function zf) Jo o f:V — R. Observe that
VAR = RNV and (45, o /(RNIV) = ¢j,. Moreover, if
V # R2, 0V contains arcs contained in R?, and these arcs contain

arcs that are connected components of f~1(J). Hence 7, o f is
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equal to one on these arcs. On the other hand 0 < 4, (2) < 1 for
all z € R}, in particular on those arcs in @V where J;Jo o f is equal
to one. Therefore 9, |0V < (1/3_;0 o f)|0V and the inequality is strict

on those arcs. Hence ¢, |V < 47, o f and even more:

1. N P .
t-}}}gloo ?1/)]1 (It) < t&gloo ?(11[)10 o f)(lt)

IfG@)) 1

= Jim M o i)

But, sincem =1and a =1, [lim f(it)/t = 1. Then

Jim s, (i) = ACh)

and

) < dim PO e o 1)) = A0

1
R TIE
This contradicts the measure preserving property of f|R and
proves the claim. But V = Rﬁ_ obviously implies that f is an inner
function. Hence all its poles are real and simple, and, recalling that

m =1 and @ = 1, we can write

f(Z)—z+/3+Z

Z = a;

with # € R and a; € R, 1 < i < n. Moreover \; < 0 for all g,
because if some \; doesn’t satisfy this condition, f maps the half
disk {z € C||z — a;| < 1,Rez > 0} onto a set intersecting the lower
half plane. (n]
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§6 Inner functions and parabolic basins

Let f:C « be a rational map of the Riemann sphere C =
CU{oo} and let U C C be a fixed connected component of C—J(f),
where J(f) denotes the Julia set of f. In this section we suppose
that U is a parabolic basin. (Sec [Su] for the classification of the
components of C — J(f).) Let p € U be the fixed parabolic point
of f, that is, f'(p) is a root of unity and nll_l}QlQ f*(z) = p for all
z € U. If we choose a uniformization #: D — U and lift f:U « to
D, we obtain an inner function f: D « of the unit disc such that
Yo f = fo, with Denjoy-Wolff point p € &D. Moreover, since the
boundary map *: 9D — OU of v satisfies

A:((7)TH(A) = A:(4)

for each Borel set A C OU and every = € U, 9(%) = z, it is clear
that the ergodic properties in the harmonic class of f|OU are given
by the ergodic properties of the boundary map of f. Thus exactness
and recurrence of f|GU with respect to the harmonic class of QU

are consequences of

> =1 =0

n>0

being valid for some z € D, by Theorem 4.2 and Corollary 4.3.

More than this is granted by the following two theorems.
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THEOREM 6.1. Let U be a fixed parabolic basin of a rational map
f:C« andlet f:D « be a lifting of f:U « via a uniformization
:D > U:gof=foy. Then, for every z € D and all a > %, the

inequality
; 1
1-|f"(=) > —=
ez
holds for all sufficiently large n.

PROOF: We shall only prove that there exists a point z5 € D such
that, for all a > %,

M 1= 1"(0)l 2

holds for n sufficiently large. From this, the same relation holds
for all z € D because (1) implies the recurrence of f* (by Theorem
4.2) and then its ergodicity (by Corollary 4.3); now Theorem 3.1
guarantees that Jggodp(f"(:), f™(20)) = 0 and therefore

o F72) = G0 _
nmee 1—|f7(z)l
for all z € D. Hence, given z € D, we have that

1= |f"(2)] 2 1= 1f"(z0)l = 1f"(2) = F"(20)]
2 (1=e)(1 = 1f"(=0)])
holds for all ¢ > 0 and sufficiently large n. This implies that z also
satisfies (1), because (1) holds for all a > 1.

To prove (1), let p be the parabolic fixed point of f; then
p € AU C C, f'(p) is a root of unity and nlin;of"(z) = p for all
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z € U. Without loss of generality we can assume p =0, f'(p) =1
and that the Taylor series of f at z =0 is

(2) f(z)=z- PLINE E apz”

n>k
for some k > 2. The basic theory of parabolic fixed points (see, for
instance, Camacho [Ca]) implies that there exists an even 0 < m <
2(k — 1) with the following property: for each € > 0 there exists a
6 > 0 such that U contains the sector

Arg(z) —

S={z€C“z[<6,

Tm (1 —¢)
k—1‘< k-1 }

and, moreover, f*(S) C S for all large n, say n > N and
lim f*(z) = 0 and lim lArg(f"‘(:))—— ol =0forall z € S.
n—oo n—o0

Without loss of generality, we may assume that m = 0. From (2) it

easily follows that for each z € S there exists C' > 0 such that

3) @z e (%)"'L

for all n. Let ¢: D — U be the uniformization of U; write S for the
connected component of ¢ ~1(S) such that f "(S') C Sforn>N.

1/26 \which leaves the

Set § = =% and choose a branch g: § — C of 2
positive half line {t € R |t > 0} invariant. Then u(z) = Reg(z) is
a harmonic function on S that vanishes on the sides of S. Consider
the harmonic function u o #: S — R and observe that there exists
I > 0 such that

~Klog|z]| > (wo)(z)

for all z € §. In fact, to check this inequality, it sufficies to verify it
at the boundary of §. It holds in the part of &5 mapped by ¢ onto
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the sides of the sector S, since there u o ¢ vanishes. Taking I large

enough we can make it true also on the part of dS$ that ¢ maps
onto {z € C||z| =6, |Arg(2)| < %”Tsl}, since u o ¢ is bounded
there. Now, for z; € S we have f"(zo) € §forn> N and

~Klog|f"(z0) 2 (w0 $)(f"(20)) = u(f"(¥(20)))
— Reg(f" (é(30)).
Since nli_{rgo [Arg(f"(¥(20)))| = 0, it follows that also
Jim_[Arg(g(f"(¥(z0)))] = 0
and therefore
Reg(/"((20))) > 3 lo(7"(b(z0))]
= S @)
for large n. Together with (3) we obtain, for large n,

1\ =1
(2)

O

f"(zo)‘ > %C’

Sk

—Klog

-

C%

|

1
2

n
Since ¢ > 0 is arbitrary, this proves (1). ]

THEOREM 6.2. Let U be a fixed parabolic basin of a rational map
f:C . Given x € U and a positive p € L®(\;), ¢ #0,

n—1

[(E o rw)a

lim i=0 = [ Pd),;

n—oo N1

S [wafiar

i=0

73



C. 1. Doering and R. Mainé

holds for every v € L1(\;).

PROOF: Since ¢ > 0, clearly, for each ¢ € L!(};),

/ (Ti(so o fi)) dAs

Z(g.o o fHd\,
=0

<|l#l, -

Hence it suffices to prove the theorem for a set of functions ¢ €
LY();) that span a dense subspace of L!();). Let us sec that the
Radon-Nikodym derivatives dA,/d\;, y € U, span such a dense
subspace of L}(\;). To check its density, it is enough, by the Hahn-
Banach theorem, to take any 5 € L*°(A;) such that

/'I](Z/\y = /17 (ijiy) d\, =0

for every y € U and show that n = 0 a.e.. Let us first assume

U = D. Then the harmonic extension 7: D — R of 5 satisfies

A(y) = / pdhy =0

for every y € D, hence n(w) = lin} (rw) = 0 for a.e. w € 9D,
r—

by Theorem 1.3. For the general U the same follows using the
uniformization theorem and this case U = D. Thus we proved the
density in L'(};) of the space spanned by dA,/d),, with y € U.
To complete the proof of the theorem we have to check it for ¢ =
dXy/d);. For these we have

n—1 1. I et i

;/(Wof )E—)i(»\t = ;/(goof)d,\y
n-1

= Z/‘,odxf.»(y,

i=0
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for each y € U. Instead of a general ¢ € L*(A,), let us first suppose

that ¢ is continuous and let $:U — R be its harmonic extension.

Then

/ (Z( Yoo S
Z /(»oof")dxz Sy

=0

We want to prove that this quoticgt converges to [ %fd/\, =
JdX\; =1 withn — co. But the Poincaré distance dp(fi(z), fi(y))
converges to 0 with n — oo, since the boundary map of f: U « is

ergodic (Theorem 3.1). Hence, by Harnack’s inequality,

A(fi(y)
®) )

We claim that
(6) Yo efi ) =
>0

This follows by lifting the problem to the disc D, via a uniform-
ization. In fact, let us denote by 3; the lifting of 4 and by f the
lifting of f. Now ¢; is harmonic and positive, therefore for some
C > 0 we get ¢1(z) > C(1 — |z]) for all z € D. Since U is a fixed
parabolic basin of f, Theorem 6.1 above gives 1 — Ifi(z)] > i~ for

all @ > 1, z € D and large ¢, and thercfore

> eilfiz) =

i>0

=1
(3]
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for all z € D. This proves (6); since (6) together with (5) implies
that (4) converges to 1 with n — oo, we proved the desired property
for continuous ¢. For the general case of ¢ € L®(), ), we observe
that the continuity of ¢ was used only to grant the existence of a

harmonic function ¢: U — R which satisfies

(7) b = [ oix,

for every p € U. Such a function, that extends the concept of
harmonic extension, is easily obtained for every positive (hence for
all) ¢ € L*(A,), p € U, by taking a sequence of continuous functions
¢n:0U — R which are a Cauchy sequence in L!(},,), for some

po € U, and ¢, — ¢ a.e. (in the harmonic class). Then

[&n(po) — Gmlpo)| = '/tpnd/\po - /cpmd/\po
< /I‘Pn—ﬁomld’\pm
Hence {¢n(po)} is a convergent sequence. By Harnack’s inequality,

{¢n} converges uniformly on compact sets to a harmonic function

@:U — R and, for all p e U, we get
$(0) = T galp) = lim [ ondy = [y,

thus providing the general ¢ € L°(A,) with a harmonic function
¢: U — R satisfying (7). o
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