SOCIEDADE BRASILEIRA DE MATEMÁTICA

Corrigendum to

"The Dynamics of Inner Functions"

Ensaios Matemáticos, Volume 3, 1991

Claus I. Doering

Ricardo Mañé

Let $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ be the Riemann sphere and $f : \overline{\mathbb{C}} \leftrightarrow$ a rational map. Let $U \subset \overline{\mathbb{C}}$ be a fixed parabolic basin of f and, for $z \in U$, let λ_z be the harmonic probability on the Borel σ -algebra of ∂U with respect to z.

In our memoir "The Dynamics of Inner Functions", Ensaios de Matemática (SBM), Volume 3 (1991), pp 1-79, we stated (see Theorem J, or Theorem 6.2) that if $q \in U$ and $\varphi \in L^{\infty}(\lambda_q)$ is ≥ 0 and not a.e. zero, then

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n} \int (\varphi \circ f^{i}) \psi d\lambda_{q}}{\sum_{i=0}^{n} \int (\varphi \circ f^{i}) d\lambda_{q}} = \int \psi d\lambda_{q} \qquad (*)$$

holds for every $\psi \in L^1(\lambda_q)$.

Jon Aaronson observed to us that this contradicts a result of his. In fact, our proof has a mistake (to be explained below). The mistake, as we shall see, disappears replacing $\varphi \ge 0$ by inf $\varphi > 0$. However, a much more interesting substitute for the above property is the following theorem, that is the original one with the hypotheses $\varphi \in L^{\infty}, \psi \in L^1$ interchanged.

Claus I. Doering

Instituto de Matemática e Estatística - UFRGS

cdoering@mat.ufrgs.br

Theorem 6.3. (*) holds for every $q \in U$ and $\varphi \in L^1(\lambda_q)$ that is ≥ 0 and not a.e. zero, and every $\psi \in L^{\infty}(\lambda_q)$.

First we shall prove the theorem. Afterwards we shall show where the published mistake is and how to trivially circumvent it when $\inf \varphi > 0$.

Lift $f|U: U \leftrightarrow$ to an inner function $\hat{f}: D \leftrightarrow$, where $D = \{z \in \mathbb{C} \mid |z| < 1\}$ is the open unit disk. We shall prove that if $q \in D$, then

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n} \int (\varphi \circ \hat{f}^{i}) \psi d\lambda_{q}}{\sum_{i=0}^{n} \int (\varphi \circ \hat{f}^{i}) d\lambda_{q}} = \int \psi d\lambda_{q} \qquad (**)$$

for functions $\psi, \varphi : \partial D \to \mathbb{R}$ satisfying $\varphi \in L^1(\lambda_q), \varphi \ge 0$ and not a.e. zero, and $\psi \in L^{\infty}(\lambda_q)$. Clearly (**) implies (*). To prove (**) we begin assuming that ψ is a Radon-Nykodim derivative $\psi = d\lambda_x/d\lambda_q$. Then we have to show

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n} \int \varphi d\lambda_{\hat{f}^{i}(x)}}{\sum_{i=0}^{n} \int \varphi d\lambda_{\hat{f}^{i}(q)}} = 1.$$
 (***)

But if $\tilde{\varphi}$ is the harmonic extension of φ , this is equivalent to

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n} \tilde{\varphi}(\hat{f}^{i}(x))}{\sum_{i=0}^{n} \tilde{\varphi}(\hat{f}^{i}(q))} = 1.$$

Since \hat{f} is the lifting of a rational map restricted to a fixed parabolic basin, we know from our Theorem 6.1 that given $\alpha > 1/2$, the inequality

$$1 - \left| \hat{f}^i(q) \right| \ge \frac{1}{i^{\alpha}} \tag{1}$$

holds for every sufficiently large i. This implies that \hat{f} is recurrent, hence ergodic, and then

$$\lim_{i \to +\infty} d_P(\hat{f}^i(x), \hat{f}^i(q)) = 0,$$
(2)

where $d_P(\cdot, \cdot)$ is the Poincaré metric. Since $\varphi \ge 0$, it follows from (1) that

$$\tilde{\varphi}(\hat{f}^i(q)) \geq \frac{C}{i^{\alpha}}$$

for some C > 0 and large *i*. Hence

$$\sum_{i} \tilde{\varphi}(\hat{f}^{i}(q)) = +\infty.$$
(3)

From (2) we get

$$\lim_{i \to +\infty} \frac{\tilde{\varphi}(\hat{f}^i(x))}{\tilde{\varphi}(\hat{f}^i(q))} = 1.$$
(4)

From (3) and (4) follows (***). Now let us prove (**) assuming that ψ is continuous. Let C^0 be the space of continuous functions $\psi : \partial D \to \mathbb{R}$ with the maximum norm $\|\psi\|_0 = \max_{z} |\psi(z)|$. Observe that $\varphi \ge 0$ implies

$$\left| \frac{\sum_{i=0}^{n} \int (\varphi \circ \hat{f}^{i}) \psi d\lambda_{q}}{\sum_{i=0}^{n} \int (\varphi \circ \hat{f}^{i}) d\lambda_{q}} \right| \leq \|\psi\|_{0}$$

Hence, if we prove (*) for a dense set of $\psi \in C^0$, it will follow for every $\psi \in C^0$. But finite linear combinations of functions of the form $d\lambda_x/d\lambda_q$, $x \in D$, are a dense subset of C^0 , and for them we have already checked (**). This completes the proof of (**) assuming ψ continuous. Now we want to prove it for $\psi \in L^{\infty}(\lambda_q)$. This will follow from an approximation procedure that requires the following remark.

Lemma 1. For every Borel set $A \subset \partial D$ we have

$$\limsup_{n \to +\infty} \frac{\sum_{i=0}^{n} \int (\varphi \circ \hat{f}^{i}) \psi_{A} d\lambda_{q}}{\sum_{i=0}^{n} \int (\varphi \circ \hat{f}^{i}) d\lambda_{q}} \le \lambda_{q}(A),$$
(5)

where ψ_A denotes the characteristic function of A.

To prove the lemma, simply observe that for every Borel set $A \subset \partial D$ and every $\varepsilon > 0$ there exists a continuous function $\psi \ge \psi_A$ with

$$\int \psi d\lambda_q < \lambda_q(A) + \varepsilon.$$

Then the lim sup in (5) is bounded by (**) for the selected ψ . Hence the lim sup in (5) is $\leq \lambda_q(A) + \varepsilon$. Since ε is arbitrary, the lemma is proved.

Now let us prove (**) when ψ is the characteristic function ψ_A of a Borel set $A \subset \partial D$. Take a sequence of compact sets $K_m \subset A$ and open sets $V_m \supset A$ such that $\lim_{m \to +\infty} \lambda_q(V_m - K_m) = 0$. Take continuous functions $\psi_m : \partial D \to \mathbb{R}$ with $\|\psi_m\|_0 = 1, \psi_m/K_m \equiv 1, \psi_m/V_m^c \equiv 0$. Then

$$\limsup_{n \to +\infty} \frac{\sum_{i=0}^{n} \int (\varphi \circ \hat{f}^{i})(\psi_{A} - \psi_{m})d\lambda_{q}}{\sum_{i=0}^{n} \int (\varphi \circ \hat{f}^{i})d\lambda_{q}}$$
$$\leq \limsup_{n \to +\infty} \frac{\sum_{i=0}^{n} \int (\varphi \circ \hat{f}^{i})\psi_{V_{m} - K_{m}}d\lambda_{q}}{\sum_{i=0}^{n} \int (\varphi \circ \hat{f}^{i})d\lambda_{q}} \leq \lambda_{q}(V_{m} - K_{m}).$$

Hence, since $(^{**})$ holds for ψ_m , we have

$$\limsup_{n \to +\infty} \left| \frac{\sum_{i=0}^{n} \int (\varphi \circ \hat{f}^{i}) \psi_{A} d\lambda_{q}}{\sum_{i=0}^{n} \int (\varphi \circ \hat{f}^{i}) d\lambda_{q}} - \int \psi_{m} d\lambda_{q} \right| \leq \lambda_{q} (V_{m} - K_{m}).$$

Taking limit when $m \to +\infty$,

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n} \int (\varphi \circ \hat{f}^{i}) \psi_{A} d\lambda_{q}}{\sum_{i=0}^{n} \int (\varphi \circ \hat{f}^{i}) d\lambda_{q}} = \int \psi_{A} d\lambda_{q} \,.$$

This proves (**) when $\psi = \psi_A$, and then (**) follows if ψ is a finite linear combination of characteristic functions. From this the final case $\psi \in L^{\infty}(\lambda_q)$ follows observing that for every $\varepsilon > 0$, there exist finite linear combinations of characteristic functions $\psi_1 \leq \psi \leq \psi_2$ with $\|\psi_2 - \psi_1\|_{\infty} < \varepsilon$, and applying the previous case to ψ_1 and ψ_2 .

Finally, the error in the proof of Theorem 6.2 (or Theorem J) lies in the first inequality of its proof, where we essentially asserted the existence of C > 0 such that

$$\left|\frac{\sum_{i=0}^{n}\int(\varphi\circ f^{i})\psi d\lambda_{q}}{\sum_{i=0}^{n}\int(\varphi\circ f^{i})d\lambda_{q}}\right| \leq C\|\psi\|_{1}$$

for all q and $\psi \in L^1(\lambda_q)$. But when $\inf \varphi > 0$, this is indeed true, taking $C = \frac{\|\varphi\|_{\infty}}{\inf \varphi}$, and then the rest of the proof of that theorem remains correct.