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Let C = CU {00} be the Riemann sphere and f : C < a rational map.
Let U C C be a fixed parabolic basin of f and, for z € U, let A, be the
harmonic probability on the Borel o-algebra of OU with respect to z.

In our memoir “The Dynamics of Inner Functions”, Ensaios de
Matematica (SBM), Volume 3 (1991), pp 1-79, we stated (see Theorem
J, or Theorem 6.2) that if ¢ € U and ¢ € L>(},) is > 0 and not a.e. zero,

then
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holds for every 1 € L1(\,).

Jon Aaronson observed to us that this contradicts a result of his. In
fact, our proof has a mistake (to be explained below). The mistake, as we
shall see, disappears replacing ¢ > 0 by inf ¢ > 0. However, a much more
interesting substitute for the above property is the following theorem, that
is the original one with the hypotheses ¢ € L™, € L' interchanged.
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Theorem 6.3. (*) holds for every ¢ € U and ¢ € L'()\,) that is > 0 and
not a.e. zero, and every 1 € L>(\,).

First we shall prove the theorem. Afterwards we shall show where the
published mistake is and how to trivially circumvent it when inf ¢ > 0.

Lift f|U: U < to an inner function f : D <=, where D = {z € C||z| < 1}
is the open unit disk. We shall prove that if ¢ € D, then
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for functions 1, ¢ : D — R satisfying ¢ € L'()\;), ¢ > 0 and not a.e.
zero, and ¢ € L*®()\y). Clearly (**) implies (*). To prove (**) we begin
assuming that v is a Radon-Nykodim derivative ¢ = dA,/dA\,. Then we
have to show
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But if ¢ is the harmonic extension of ¢, this is equivalent to
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=0
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Since f is the lifting of a rational map restricted to a fixed parabolic basin,
we know from our Theorem 6.1 that given o > 1/2, the inequality

fi(q)‘ > % (1)

]
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holds for every sufficiently large ¢. This implies that f is recurrent, hence
ergodic, and then

lim dp(f'(z), f'(q)) =0, (2)
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where dp(-,-) is the Poincaré metric. Since ¢ > 0, it follows from (1) that
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for some C > 0 and large <. Hence
> e(fi(@) = +oe. 3)

From (2) we get
lim 7%({(96)) =
iotoe o(fi(q))
From (3) and (4) follows (***). Now let us prove (**) assuming that v is

continuous. Let C° be the space of continuous functions 1 : 0D — R with
the maximum norm |[¢||o = max [¢(z)|. Observe that ¢ > 0 implies
z

(4)
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Hence, if we prove (*) for a dense set of 1 € C, it will follow for every
¢ € C°. But finite linear combinations of functions of the form d\,/d)\,,
x € D, are a dense subset of C°, and for them we have already checked
(**). This completes the proof of (**) assuming ¢ continuous. Now we
want to prove it for ¢ € L*(),). This will follow from an approximation
procedure that requires the following remark.

< [l%llo-

Lemma 1. For every Borel set A C 9D we have
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where Y4 denotes the characteristic function of A.

Aq(A); (5)

To prove the lemma, simply observe that for every Borel set A C 9D
and every € > 0 there exists a continuous function ¢ > 14 with

/ PdAg < Ag(A) + <.

Then the lim sup in (5) is bounded by (**) for the selected 3. Hence the

lim sup in (5) is < A4(A) + €. Since ¢ is arbitrary, the lemma is proved.
Now let us prove (**) when 1 is the characteristic function 4 of a

Borel set A C 0D. Take a sequence of compact sets K,, C A and open
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sets Vi, D A such that liIE A (Vi — K,y,) = 0. Take continuous functions
m—r—+00
U 2 0D — R with ||[Ymllo = 1, Ym/Km = 1,0 /V.,¢ = 0. Then
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Hence, since (**) holds for v,,, we have
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Taking limit when m — +oo,
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This proves (**) when ¢ = 14, and then (**) follows if ¢ is a finite
linear combination of characteristic functions. From this the final case
Y € L>®(\,) follows observing that for every € > 0, there exist finite linear
combinations of characteristic functions ¢; < 1) < b with ||h2—11 ]| < €,
and applying the previous case to 1 and 5.

Finally, the error in the proof of Theorem 6.2 (or Theorem J) lies in the
first inequality of its proof, where we essentially asserted the existence of

C > 0 such that .
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for all ¢ and ¢ € L'()\,). But when inf ¢ > 0, this is indeed true, taking
o _ Il
inf
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, and then the rest of the proof of that theorem remains correct.



