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Introduction to the Theory of Systems

PHILOSOPHICAL INTRODUCTION

What is system theory? System theory is the study of systems.
What, then, is a system? A system is best defined by what it does.
It is a device or plant that receives inputs and transforms them
into outputs which it gives out. Inputs and outputs form a very

disparate class of objects. The best is to give examples.

Ex. 1: A car: it receives orders from the driver in the form of

signals (the inputs) and it transforms them into a ride (the output).

'EX. 2: A wireless set or a TV: it receives signals in the form of

waves and transforms them into sound waves or images.

EX. 3: A production machine: it receives both allotments of raw
materials and signals from the operator and transforms them into

manufactured objects.

EX. 4: The economy of a country: it receives raw materials, ca-
pitals from investors, work from the labour force, directives from
the managers or planners and transforms them into a variety of

products.

EX. 5: A person walking: he receives messages from the brain and
transforms them into an intricate movement of the body, especially

of the legs.
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We could go on and on, giving examples. In fact we shall
present some more, later on. For the moment, we will formalize

what has been done into a definition.

DEFINITION O: A system is a device represented by a mapping
which associates to elements of a set of vector functions called in-
puts, elements or subsets of another set of vector functions called
outputs. This mapping is called the input-output mapping of the

system.

With respect to the fact that the mapping might be multiva-

lued, let us discuss briefly the following example:

EX. 6: Inventory management: in the operation of a warehouse,
the inputs are the quantities of the stored goods that have been
ordered, the outputs are the quantities sold. Since there is a random
component in the demand, the output will not be represented by
one function but by a whole bunch of them, each fitted with a weight

representing the likelihood of that particular demand.

What are the goals of system theory? Besides the obvious goal
of broadening our knowledge, system theory has some very specific
ones. The system theorist wants to determine whether the system
can accomplish certain tasks preassigned by the operator of the
plant and to devise rules or algorithms in order to execute the jobs in

the most efficient way, according to criteria preset by the operator.

How does the system theorist go about his job?

a) First he has to construct a mathematical model of the sys-

tem. This is not an entirely scientific task since it involves, quite

6



Introduction to the Theory of Systems

often, economic and even political considerations. Usually the mo-
del constructed contains unknown parameters which have to be de-
termined. This involves procedures which go under the name of

identification of parameters.

b) Once this is accomplished, the mathematical study can start.
Questions are asked, problems are solved. Their nature varies from
system to system but there are some basic ones such as: controlla-
bility, observability, reduction of the model, stability, perturbation

decoupling, system decoupling, optimal control.

c) The last step is the numerical implementation of the results
found in b).

A broad classification of the models used.

There are several categories of models:

C) Deterministic versus stochastic.
D) Continuous versus discrete time.

E) Ordinary versus distributed control.

C and D are self-explanatory. As for E, in the ordinary models
the inputs and outputs are represented by functions of one parame-

ter, in the distributed models by functions of several.
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CHAPTER 1

LINEAR SYSTEMS

§0 Introduction

The models most commonly used in the praxis are the so-called

linear systems. They are also the best known ones.

DEFINITION O0: A linear input-output system is a sextuple
(U,X,Y,B,A,C) where U,X,Y are three finite dimensional vec-
tor spaces over R called, respectively, the input or control, state

and output spaces.

B, A,C are three linear mappings B : U — X, A: X — X,
C:X —Y. B,A are called, respectively, the control vector and
the drift vector. C is called the output mapping. An element of X

is called a state of the system.

REMARK 1: The preceeding notation is very cumbersome; usually
we shall represent the system by the triple (B, A,C) and forget

about the spaces. When C does not play any role, we simply write
(B, A).
§1 The “operation” of a linear system

Given a linear system (B, A,C), its input-output mapping
(IOM) is defined as follows.
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Let L1(U) denote the set of all mappings u : [a(u), B(u)] = U
which are L'. Here a(u) is a real number and B(u) is real and
larger than a(u) or else B(u) = +oo. Further, let AC(X) (resp.
AC(Y)) denote the space of all mappings z : [a(z), B8(z)] — X
(resp. ¥ : [a(y), B(y)] = Y), a and B as above, which are absolutely

continuous.

DEFINITION 1: 1) A trajectory of a system (B,A,C) is a pair
(z,u) : [a,b]) = X x U belonging to AC(X) x L*(U) such that
for almost all ¢ € [a,b], 4%(t) = Az(t) + Bu(2).

2) The IOM @ of the system (B, A,C) is the mapping @ :
X x LYU) — AC(Y) defined as follows: ®(zq,u) = y where u :
[a(u), B(u)] — U belongs to LY(U), z : [a(u),B(u)] — X is the

unique solution of

{ 42(¢) = Ax(t) + Bu(t)
z(a(u)) = 2o

defined on [a(u), B(u)] and y : [a(u),B(u)] — Y is the function
y(t) = Cz(t).

REMARK 2: An important property of @ is time stationarity, that
is: for any 7 > 0, ®(zq,u), = ®(zo,u,). (If f: [a,b] -7, then
frila—71,b—1] >?is given by f.(t) = f(t +7).)

REMARK 3: In practice, it can happen that constraints are imposed

on the input functions. We formalize this in the next definition.

DEFINITION 2: An admissible space of controls is a subspace U of
LY(U) having the following properties:

(i) for any u : [a(u), b(u)] — U, v : [a(v), b(v)] — U belonging
to U, if a{v) = b(u), then the function w = u*v : [a(u), b(v)] = U,

10
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w(t) = u(t) if t € [a(u),b(u)] and w(t) = v(t) if t € [a{v),b(v)],
belongs to u;
(ii) if u : [a(u),b(u)] — U belongs to ¥ and if 7 € R then
ur : [a(u) = 7,0(u) — 7] = U, u,(t) = u(t + 7), belongs to U.
Example of a linear system.
EX.: The accelerated vehicle. A vehicle V' moves along a prescribed
oriented path. Let z(t) be the algebraic arc length between the

initial position and the one at time ¢, m be the mass of V. Then

the movement of V is regulated by Newton’s law:

d*z dz
(NL) m-s (1) = u(t) — e (1),
where u(t) is the acceleration or braking force of V' (u > 0 acce-

leration, u < 0 braking) and —e4Z represents the resistance of the

medium to the movement. To simplify, let m = 1.

Clearly u is the control. To set up a linear model of (NL), it is
sufficient to take as X the phase space R%, z; =, 7, = 4% and as

U, the line R. Then Bu = uez, and A is represented by the matrix

{8 __16] in the canonical basis: e; = (1,0), ez = (0,1).

As the output space we can take Y = X and C = the identity
of X.

Two of the basic properties of a system are the accessibility
(or reachability, or controllability, or transitivity) property and the
observability property. Controllability answers the question about

what the system can do.

§2 Accessibility or controllability
DEFINITION 3: a) Given a system (B, A) and two states zy and

11
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in X, we say that z; is accessible from g if there exists a trajectory
(z,u):[0,T,] = X x U, such that z(0) = zo, 2(Ty) = z;. We say
that u steers z¢ to z;.

B) The set of all points z; accessible from a given state z¢ is
called the accessibility set of zy and denoted by A(zg).

v) Given a time T, the set of all points z; which can be steered
to, from g, in time T (that is, using a control u with T,, = T) is

called the accessibility set of z¢ at time T and denoted by A(zo,T).

REMARK 4: More generally, if J C Ry is a set of times, A(z,J)
will denote the union U{A(z,T) | T € J}.

It is obvious that A(z) = A(z,Ry).

§3 Main theorem on accessibility

THEOREM 0. Given a linear system (B, A):
(i) For any T > 0, A(0) is the same as A(0,T) and equals the
A-invariant vector subspace of X generated by the image B of B,
d-1
that is, A(0) = ) A™(B), d = dim X.
n=0
(ii) For any T > 0 and =z € X, A(z,T) is the affine space
eT4z + A0, T).
(iii) For any ¢ € X, A(z) is the sum v+(zx)+ A(0), where v4+(x)
is the positive semi-trajectory of x : v (z) = {4z | t > 0}.

PROOF: (i) Clearly A(0,T) is a vector subspace of X for any
T > 0, being the image of the operator Wr : LY([0,T};;U) — X,
Wr(u) = foT e(T=94By(t)dt. Let us determine the annihilator V
of A(0,T). By a well known theorem, the annihilator V in X' (dual

12
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of X) is the kernel of W} : X' — L'([0,T};U) (' denotes the
dual or the transpose). It is clear that p € X' belongs to V if
and only if: B'e(T-04"p = Oforall0<t<T. By the theorem of

Hamilton-Cayley this last condition is equivalent to the fact that p €
d—1 d—1
ﬂ Ker(B'Al"). Hence V = ﬂ Ker(B'A'"). Since the annihilator

n=0 n=0

d-1
of Ker B'’A™ in X is A™(B), it follows that A(0,T) = »  A™(B).

n=0

d-1
By remark 4 this implies that A(0) = A(0,T) = Y _ A™(B).
n=0

(i1) follows from (i) and the well known formula
2(T) = T4z + Wr(u)

for the solution z of ‘fl—f = Az + Bu, z(0) = z¢. (iii) follows from
(i1) by Remark 4. ) 0
DEFINITION 4: A linear system (B, A) is called transitive or con-

trollable if for any pair of states (zg,z1), zo can be steered to z;.

COROLLARY 1. A system (B, A) is transitive if and only if:
(iv) X is the A-invariant subspace generated by the image of B.
This condition is equivalent to either one of the following two:
(v) The rank of the mapping U¢ — X,

d—1
(uﬂa' .- ’ud-‘l) = ZAHBU",

n=0
is d.
(vi) Given two scalar products on U and X respectively, the
mapping L(T) : X — X, L(T) = J;)T etABB*e!A"dt is positive

13
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definite for any T > 0. B* : X — U, A* : X — X denote the

adjoints of B and A with respect to the given scalar products.

PROOF: The Corollary is clear: if the system is controllable then in
particular A(0) = X. If A(0) = X, then (iii) shows that the system
is controllable. (v) is a restatement of the condition A(0) = X. As
for (vi) it is clear that L(T) is positive semi-definite. It is also easy
to check that a vector z € X is orthogonal to A(0,T) if and only if
L(T)z = 0. O

From a theoretical point of view the preceeding results are nice,

but they are not very realistic.

§4 A more realistic point of view

In practice, the control functions are subjected to restrictions.
In particular their size is limited. Hence usually, given a linear
system (U, X, B, A), there exists a compact convex neighborhood
U; of 0 such that one may use controls with values in Uy only. As
in the general case, but using controls with values in U; only, we
can define accessibilily sets A(z,Us), A(z, T, U;) exactly as before.

We have the following result:

THEOREM 1. a) The system (Uy, X, B, A) is transitive if and only
if the equivalent conditions of Corollary 1 are satisfied and the spec-
trum of A is purely imaginary. We assume this in b) and ¢) below.

b) There exists a function 7 : X x X - R, such that given
any (z¢,71) € X X X, z; is reachable from z, at time T if and only
if T > (g, 71).

14



Introduction to the Theory of Systems

¢) Let H: X x X' x USR. (X' dual of X ) be the function
H(z,p,u) = (Az + Bu,p). For any pair (z¢,z;) € X x X there
exists a curve (Z,5,%) : [0,7(z0,21)] = X X X' x Uy such that:

1) Z,P are absolutely continuous, U is measurable.

2) For almost all t € [0, 7(zq, 1))

20 = Eao.n0,50), -2 = 2 @w0.10.a0)

and
H(@(@), 5(t), 6(t)) = inf{(H(@(t), B(t),0) | v € Uy},

3) E(O) = Zo, E(T(l‘o,l‘l )) = .

REMARK 5: Since %(z,p,u) = Az + Bu, %(t) = Az(t) + Bu(t)
and (T,%) is a trajectory of the restricted system (Ui, X, B, A)

taking z¢ to z1.

ProoF: We are not going to prove this result here. It is a fairly
easy application of the so-called maximum principle and the facts
that, for any t > 0, A(zg,t,U;) is a compact convex set and thé
mapping t — A(zg,t,U;) is continuous (in the Hausdorff topology).

a

§5 Observability

The state of an input-output system depends on a lot of para-
meters (dim X is large!). Most of these parameters are unknown.
All the information available about the system is contained in the

observed quantities y = Cz. Usually the number (dimY’) of these

15
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is small. This leads to the following problem: does the output de-
termine the state of the system? ‘

This can also be stated as follows: given a pair of states (21, z2),
z1 # T4, does there exist an input « € L!(U) such that ®(zy,u) #
P(zg,u)?

DEFINITION 5 Two states 21,2, 21 # 22, are called indistin-
guishable if for all u € L' (U), ®{(z1,u) = $(z2,u).
Introducing the functional X — Map(L!(U), AC(Y)), z — &,

®,(u) = ®(z,u), z; and z7 are indistinguishable if &, = &,,.

THEOREM 2. A pair (z1,72) € X x X is indistinguishable if and
d—1
only if 1 — z2 € I, where I = m Ker CA™.

n=0

PROOF: The proof is trivial since it is clear that [ = {z € X |
Cet4z = 0 for all t}. O

REMARK 6: It is clear that indistinguishability does not depend on
the inputs. This is a very special phenomenon due to the linearity

of the system.
DEFINITION.6: [ is called the indistinguishability distribution.

DEFINITION 7: A system (U, X,Y, B, A,C) is called observable if
I = {0}.

COROLLARY 2. The following properties are equivalent:
(vii) I = {0}.
(viii) The mapping X — Y?, 2+ (Cz,CAz,...,CA%1z) is

injective.

16
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(ix) Given any two scalar products on X and Y respectively,
for any T > 0 the mapping M(T) = UT et4" C*CetAdt is positive
definite.

PROOF: It is trivial that (vii) and (viii) are equivalent. It is also
clear that M(T) is always positive semi-definite. It is not hard to
check that z belongs to I if and only if M(T)z = 0. O

17
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CHAPTER 11

THE CATEGORY OF SYSTEMS

§0 Introduction

In a natural way, the set Y of all linear input-output systems
forms a category. Its objects are the systems. Its morphisms are
quite natural but harder to describe. To do this conveniently, let

us introduce a nice representation.

MATRIX REPRESENTATION OF SYSTEMS: given a linear system
(U,X,Y,B, A,C), it can be represented as a linear mapping X X
U — X x Y with matrix [é Ig] This matrix determines the

system uniquely.

MORPHISMS OF THE CATEGORY OF SYSTEMS: a morphism g :
(U,X,Y,B,A,C) — (Uy,X1,Y1, By, A1, Cy) is represented by two

matrices

gr:[ﬂal ﬂOQ]:XxU—»Xlel
and

g,=[8‘ z;] ‘X xY - X1 x Y4,
such that

A Bl [4 B
ge C 0 = Cl 0 gr-

18
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Sometimes we shall represent ¢ by (8, a,7), where
B:XxU—-Uy, B=p+ph, 7v:Y->XixV, vy=n+mr.

In this manner we get an additive category but not an abe-
lian one [see appendix]. This category is self-dual: given a system
(U, X,Y,B, A,C), its dual is the system (Y',X',U',C', A", B'). In
A
B 0

is the transpose of the matrix [A B

matrix representation, the matrix [ ] of the second system

cC o
The dual of a morphism g = (ge, g-) is (g, 95)-

] of the first system.

The category of systems has finite direct products which are

equal to finite direct sums. Let &; = (U;, X;,Y;, B, 4;,Ci), 1 <1 <

P
p, be p systems. Then the direct product ¥ = H ¥;, is the system

i=1

(U, X,Y,B,A,C), where U = fIU,-, X = ﬁX,-, Y = fIY,-, B =

i=1 i=1 =1

14 4 P
[[B.4a=]]4c=]]c.
=1 =1 1=1

§1 The feedback transformation groups

Given U, X and Y, let us denote by Y (U, X,Y) the full subca-
tegory of 3 having U, X, Y as control, state and output spaces res-
pectively. Denote by LT(X x U) (resp. UT(X x Y')) the subgroup
of Isom(X x U) (resp. Isom (X x Y')) of all lower triangular (resp.
upper triangular) invertible matrices

[gl ;J:XXU(-—: (resp. [((:; ?;]:XXY«—J).

19
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DEFINITION 0: (i) The extended feedback group, denoted by
EFB(U,X,Y), is the subgroup of UT(X x Y) x LT(X x U) of all

. a m a 0] .
airs g = ,0r), ge = , gy = ; in other words,
pairs g = (g¢,9+), 9e {0 72} g [,31 ﬂz]

all pairs such that prloggoil = proog,04,, wherei, : X — X xU,
il : X — X x Y are the canonical injections and pr, : X xU — X,
prl : X xY — X the canonical projections.

(ii) The control feedback group, denoted by CFB(U, X,Y), is
the subgroup of EFB(U,X,Y) of all pairs g = (g¢,gr) such that
71 =0, 72 = Idy.

(iii) The observation feedback group, denoted by OF B(U, X, Y'),
is the subgroup of EFB(U,X,Y) of all pairs g such that g; = 0,
B2 = Idy.

(iv) The restricted control (resp. observation) feedback group
is the normal subgroup of CFB(U, X,Y) (resp. OFB(U, X,Y)) of
all ¢ such that a = Idx, f2 = Idy (resp. v2 = Idy).

REMARK: The space Y (resp. U) does not play any role in the
definition of CFB(U,X,Y’) (resp. OFB(U,X,Y)). Hence we will
often abbreviate it to CFB(U, X)) (resp. OFB(X,Y)).

PROPOSITION 1. (v) The subset 3 (U, X,Y) of Y(U, X,Y) of all

controllable systems is invariant under CFB(U,X,Y).

' (vi) The subset 3 (U, X,Y) of 3 (U,X,Y) of all observable
systems in invariant under OFB(U, X,Y).

DEFINITION 1: We say that a property is a control (resp. obser-
vation) feedback invariant if the set of all systems having this pro-
perty is invariant under CF' B (resp. OF B). We say that a function
" X: Y - E (E some set) is control (resp. observation) feedback
invariant if A is constant on the orbits of CF B (resp. OF B).

20
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§2 Kronecker indices

The purpose of this section is to define some invariants of
unobserved (resp. uncontrolled) systems (B, A) (resp. (4,C)) un-

der the action of CFB(U, X) (resp. OFB(X,Y)).
d-1
Let (B, A) be a controllable system. Then X = ZA"(B),
n=0
where B is the image of B and d = dimX. For each integer k
k
define X(k) = ) A™(B).
n=0
LEMMA 0. (vii) The X(k) form a non-decreasing sequence of subs-
paces of X and X(k) = X ifk > d—1. The flag {0 = X(-1) C
X(0)=BC---CX(d-1)= X} is a control feedback invariant.
(viii) For every k > 0, A induces a surjective feedback invariant,

linear mapping A(k) : A—fg% — X—X(?{TQ

The proof of this lemma is trivial.

Let f(k) = dim XA&%—) Lemma 0 implies that f is non-
increasing and f(k) =0if k > d.
DEFINITION 2: The control Kronecker indices of a controllable sys-
tem (B, A) are the jump points of f, i.e., k is a Kronecker index if
f(k) < f(k—1). This is equivalent to saying that Ker A(k—1) # 0.
There are at most d(= dim X) Kronecker indices. We order them

in a decreasing sequence £(1) > £(2) > --- > k(r) and call it Kro-

necker’s list.

PROPOSITION 2. Kronecker’s list is a control feedback invariant.

OBSERVABILITY KRONECKER INDICES: given an observed system

(A4, C) we can define its observability Kronecker indices as the con-
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trol Kronecker indices of the controlled pair (C', A"). They can also

k
be defined directly as follows: for any k, let X (k) = ﬂ Ker CA".

n=0

LEMMA 0 (ix) The X (k) form a non-increasing sequence of
subspaces of X and X (k) =0ifk > d—1. Theflag {X = X(-1)D
.X(0) =Ker C D --- D X(d— 1) = 0} is an observability feedback
invariant.

(x) For any k > 0, A induces an injective output feedback
invariant, linear mapping A(k) : %)— — Xxﬁ;; ),
DEFINITION 3: The observability Kronecker indices of an obser-
vable system (4, C) are the jump points of the function f, f(k) =

dim ')'(')(il.%lL)’ that is: k is a Kronecker index if f(k —1) > f(k).

We shall not proceed any further in this direction, since: 1)
the observability Kronecker indices are much less used than the
controllability ones; 2) using the duality, one can pass from one

kind of index to the other.

§3 Partial canonical forms

Our goal in the next two sections is to find a canonical (or
normal) form of a system under the action of the controllability
feedback group. Since we will consider objects with only the con-
trollability (as opposed to observability) label attached to them, we
shall drop it altogether.

Consider a controllable system (B, A). To each integer k we
associate the subspace B(k) = BN A~¥(X(k — 1)) of B.
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LEMMA 1. The B(k)’s form a non-decreasing sequence of subspaces
of B. They are feedback invariants and B(k) = B(k — 1), except
when k is a Kronecker index of (B, A).

PROOF: Let ¢i : X(k) — 'XA((kélL) be the canonical projection. Then
@wAF :B=X(0) — X}‘((Tc(élﬂ is equal to the composition A(k —1)o
-++ 0 A(0) o B(k) is the kernel of gxA*. This shows that B(k) #
B(k — 1) if and only if Ker A(k — 1) # 0, since each factor of
A(j —1)o---0 A(0) is onto. It is clear that the B(k) are feedback

invariants. O

DEFINITION 4: The integers 3(i) = dim B(x(z)) — dim B(x(z) — 1)
are called the Brunovsky indices. They are feedback invariants.

Given any linear mapping K : X — U, denote by Ag the
mapping A + BK. The following proposition gives a partial nor-
mal form for the feedback transformed system (B, Ag). Denote by
k(1) > k(2) > --- > &(r) the Kronecker list of (B, A) and hence
also of (B, Ax).

PROPOSITION 3. For each integer i, 1 < i < r, choose a subspace
Bio of B(k(i)) complementary to B(k(¢ + 1)). Let B,-’fj denote the
subspace A% (Bio) of X if 0 < j < (i) — 1. Then:

r &(i)-1

(a) X is the direct sum @ @ BE,.

i=1 j=0
(b) For all 1,j, 1 <i < r,0<j < k) —2, Ak maps B{’(J
isomorphically into ij 11
x(i)—-1

PROOF: AR’ (Bio) C Y. Al(B(s(i)). This and the controllabi-

i=0
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lity of (B, A) imply that X is equal to the sum in a). That this
sum is direct, is easy to see as follows: were the sum not direct,
one could find vectors b;; € ij, not all 0, such that ) b;; = 0.
Let ¢ be the largest j such that there is a non zero b;;. Then
D bij == bij. Since bj; € X(g—1)ifj < g, Y _bij € X(g—1).
j=q i<g i=q
Let I; = {7 | big # 0}. For any ¢ € I, there is a b(z) € Bi o such that
big = AL b(2), therefore Z b(i) € B(q). Let t be the integer such
i€l,
that x(t) < g < k(¢ ~1). Since by € B{g ifiel,, ¢<k(i)—1,and
-1
all the i’s in I are smaller than t and Z b(i) € B(g)N @B,‘yo.
i€l, i=1
Since B(q) = B(k(t)), this intersection is 0. Hence 4(z) = 0 for all

i € I, which is a contradiction.

To prove b) assume that for some ¢, 7, j < £(¢) — 1, Ak restric-
ted to B,IJ( is not injective. Then there is a nonzero b in B;( such
that A7+'b = 0. This shows that b € B(j + 1). Since j + 1 < (i),
be B(k(i+1)). But then b€ B;o N B(k(i +1)) =0. 0

§4 The normal form

We shall show that one can choose the linear mapping K :
X — U in such a way that A5)(B; o) =0foralli=1,...,r.

LEMMA 2. There is a feedback K : X — U such that A;gi)(Bi,o) =
Oforalll1<:i<r.

PROOF: We can always assume that B is injective.  Since
&(i)—1
ARG)(B; o) C Z A’(B), it follows from Proposition 3 that there

=0
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exist uniquely defined linear mappings @ine : Bio — Beg such that:

&(i)-1 r

An(i) ] Bi,() — Z ZAK(i)_n_I‘r"ink-

n=0 k=1

To determine K, it is sufficient to compute BK. We compute
both the B,I; and the restrictions BK | ij( by induction on j. For

j =0, Bfg = Big, and BK | B;p = — zr:cp,'gn. Assume the Bfg
=1
have been computed for j < m and then restrictions BK | Bf‘j for
j <m—1. Then we set BK | B, = —igﬂ,‘mk 0 L, where
k=1
Lim : Bim — Bfg is the inverse of the restriction of A% to Bie.
(This is already defined). Once BI is defined on all the B,{(m,

i < i< r,weset BX, = (A+ BK)(BE,) if m < &(i) - 2;

otherwise Bf,, . is taken to be 0.

We have to check that with this I, A'I"éi)(B,-,o) = 0 for all
1 €1 < r. For this, I claim that for any 7, 1 <2 < r, and j,
0<j <) -1,

j-1 r

Al |Big==Y Y A" o+ Al | Bio.

n=0 {=1

We prove this by induction on j. Assume we have proved it for

j < m; then:

AR | Big = (4 + BK) o (A} | Bip).
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Since AT (B; o) C BE,, the above definition of BK implies

’lm,

m‘HIBzo-—(A Zsozmt’OLtm)OAKlB‘o

=1

= A0 AR | Bio— Y @imt;

=1
applying the induction hypothesis,
m—1 r
A1}7(1’+1 l Bi,O = Z ZAm "o Pink — szml + Am+1 [ Bz ,09
n=0 k=1
proving the claim for j = m + 1.
If we set j = (1),
&(i)-1 r
K(l) IB:O-— Z zAn(z)—n lo<p e+An(z) | B; 0=0,
n=0 f=1
which proves Lemma 2. O

Before stating our main Theorem we need a definition.

DEFINITION 5: For any integer n, denote by ¥(n) the system de-
fined as follows: U = R, X = R" with canonical basis ey,...,e,,
B(l) = €1, Ae,' = €i+1 if ¢ S n-— 1, Aen =0.

THEOREM 1. Let ¥ (U, X) denote the set of all controllable sys-
tems. The orbits of ), (U,X) under the action of the feedback
group CFB(U, X) are in 1 — 1 correspondence with the set IXB of
all sequences (k(1),...,x(r),B(1),...,B(r)) such that:

(xi) k(1) > &(2) > -+ > &(r) > 0;

(xii) B(F) >0 foralli, 1 <i<r;
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(xiiii) Y 5(3)B(i) = dim X;
i=1
(xiv) Y B(i) = dimU.
i=1
Any system (B,A) € > (U,X) is feedback equivalent to
EP(E(x(i))PD if (5(3), ..., &(r), BG),...,B(r)) is the Kronecker-
i=1
Brunovsky sequence associated to (B, A).
Theorem 1 follows directly from Lemma 2 by choosing a basis

in each B, .

Finally we have the following trivial Proposition.

PROPOSITION 4. Any system X(n) is indecomposable.

§5 Relation with the holomorphic vector bundles on
CP(1) (the Riemann sphere)

To any system (B, A) we can associate a differential operator
D: AC(X)® LY(U) — LX) as follows: D(z,u) = Az + Bu — %f—.
Let X¢, Uc denote the complexifications of X and U.

The Laplace transform D is the mapping CP(1) x X¢ xUg —
CP(1)xXc, (A #,d) — (A, A2 +Bi—i) if A # oo and (0o, &, 1)
(00, —&).

LEMMA 3. (xv) If (B, A) is controllable, the mapping D is onto.

(xvi) The space V(B,A) = Ker D = {(\,4,4) | D(\,4,4) =
(A, 0)} is a holomorphic vector bundle of rank dimU on CP(1).

(xvii) The correspondence F : 3. 3 (B,A) — V(B,A) €
holomorphic vector bundles on CP(1), is functorial. If a system
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(B, A) is the direct sum of two systems (B;, A;) and (B, A;) then
V(B, A) = V(By, A1) ® V(Bz, 42).

PROOF: If D were not onto, there would exist a A\ € CP(1) and
a linear form p' € Xg, p' # 0, such that D(A)'p’ = 0. Then
A # oo, \p) = A'p’ and B'p’ = 0. These relations imply that

pE ﬂ Ker B'A™. (A', B') is not observable, hence (4, B) is not

n=0
controllable.

Since D is holomorphic, (xvi) is an immediate consequence of
(xv).

Let p : (B, A) — (B1, A1) be a morphism in Y (U, X): ad; =
Aa + Bf1, aBy = Bf;. The linear mapping 7 : X¢ x Ug —
a 0
B P2
V(B,A) — V(B1, 4y). 0

X xUg defined by the matrix [ ] induces a bundle mapping

Now we state the main Theorem of this section:

THEOREM 2. (xviii) Given any controllable system (B, A) ha-

ving the sequence (&(1),...,&(r),B(1),...,B(r)) as the Kronecker-

Brunovsky list, the vector bundle V(B, A) associated to it is iso-

morphic to @0(—&(1'))"("). O(-1) is the tautological bundle on
i=1

CP(1), O(-n) = O(-1)®" if n > 0, O(n)™ is the direct sum

On)®--- @ O(n), m times.

PROOF: (B, A) is feedback equivalent to § = ED(Z(x(:)))’® by
1=1

Theorem 1, therefore, in view of Lemma 3-(xvii), it is sufficient

to prove (xviii) for this last system S. Now by Lemma 3-(xvii),
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V(S) = ®V(B(x(3)))?). Hence we have to determine V(Z(n)), n
integer. Since the control space of £(n) is one dimensional, V(Z(n))
is a line bundle. Calling e;,...,e, the canonical basis of C", the

following two mappings
s: CP(1) = {oo} = V(Z(n)), o¢:CP(1)—0— V(Z(n))

are sections of V(2(n)) and generate V(E(n)) on CP(1)—{oo} and
CP(1) — {0} respectively:

s(A) = (/\"_161+~ - Aen—1ten, A") € C"XC, X € CP(1)—{o0},

o(z) = (ze14---+2z"en, 1) € C* x C, z coordinate on CP(1)— {0}.

On CP(1) — {0,00}, zA = 1. Hence s(1) = J-o(2), which shows
that s has a pole of order n at co: V{(E(n)) = O(—n). 0

86 Complex systems

One may ask whether the function F introduced in Lemma
3(xvi1) induces an equivalence of categories. We show in this appen-
dix that this is so if we allow complex coefficients. To be more
precise, let Y (U, X) be defined as before, except that the control
and state space may be complex vector spaces. Then we can define
the functor F : }__ — H, where H denotes the full subcategory of
the category of holomorphic vector bundles whose objects are all

negative (i.e., the Chern classes of their factors are < 0).

THEOREM 3. F is an equivalence of categories.

PROOF: It is easy to see that Lemma 3 and Theorem 2 are valid

for complex coefficients. To prove Theorem 3 it is sufficient to show
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that for any integers n, m, F maps the feedback Hom(Z(n), £(m)),
1 — 1 onto Hom(V(Z(n)), V(2X(m))). We leave this proof to the

reader. a
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CHAPTER III

APPLICATIONS OF CONTROLLABILITY AND
OBSERVABILITY

§0 Pole assignment

A necessary and sufficient condition for the 0 state of a linear
system %’f = Az to be asymptotically stable, is that all the eigen-
values of A have negative real parts. In this chapter, we shall see
that it is always possible to insure this condition in a controllable

linear system. In fact we prove much more.

DEFINITION 0: A poset in C is a mapping ¢ : C - N (N is the
set of all integers, 0 included) having a finite support. The norm,
lipll, of a poset ¢, is 3 {¢(z) | z € C}. A poset is called conjugate-
invariant if ¢(Z) = ¢(z) for all z € C (Z = complex conjugate of

z).

EX.: Given a real vector space X of finite dimension and a linear
endomorphism A of X, the spectrum of A, Spec (A), is the poset
¢ : C — N defined as follows: ¢(z) is the multiplicity of 2 as an
eigenvalue of A (if z is not an eigenvalue of A this multiplicity is

0). Clearly Spec (4) is a conjugate-invariant poset of norm dim X.

DEFINITION 1: Let (B, A) be a system. We say that it has the pole
assignment property if the mapping (B, A;) — Spec(A,), from the

31



Ivan Kupka

orbit of (B, A) under the control feedback group into the set of all
conjugate-invariant posets of norm equal to dim X, is onto. In other
words, for any conjugate invariant poset p of norm dim X there
exists a system (B, Ap), control feedback equivalent to (B, A), such
that Spec(4,) = p.

THEOREM 0. A system (B, A) has the pole assignment property if

and only if it is controllable.

PROOF: First assume that (B, A) is a £(n). A poset ¢ defines a
unique unitary polynomial P,[T] as follows: if z € C, z is a zero of
P_[T] with multiplicity ¢(z). The degree of P, is the norm of . If

i is conjugate invariant, P, has real coeflicients.

n—1
If |lof] = n, then Py[T] =T" = Y kn_,;T7.

=0
Let k: R® — R be the linear form k(z) = Z k;r; and define
Jj=1
the endomorphism A : R® — R”®, 4; = A+ ¢; ® k. Then (B, Ay)
is feedback equivalent to £(n) and its Hamilton-Cayley polynomial
is P,[T].

In the general case, since (B, A) is feedback equivalent to

r

@(E(K(i)))ﬂ () without loss of generality we can assume that
i=1

KerB = 0. To prove the “if” part of Theorem 0, it is suffi-
cient to do it for such a system. Call e(7, ;) the control vector
of the j** copy of L(k(:)), 1 < j < B(:). The set of vectors
(Ake(i, )1 <i < r1<j<pB),0<k < k() -1} is a basis
of the state space. Define a linear mapping K : X — U as follows:
identify U with the image of B; it admits the set {e(3,0) | 1 < < r}
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as basis. Then:
0 fk<k(®)—1
K(A¥(e(3,7))) = { e(i,7+1) ifk=«(s)—1andj<p(i).
e(t4+1,1) ifk=&()—1and j=p(1)
The couple (B, Ak) is feedback equivalent to (B, A). The system
(B1, Ak) with control space R and control mapping B1(1) = (1,1),

r

is isomorphic to I(n), n = Z £(¢)B(%), the dimension of the state
=1

space of (B, A). We can apply what has already been proved to

(B1,Ak). This completes the proof of the “if” part of Theorem 0.

Assume now that (B, A) is not controllable. Then § =
d-1
Y A™(Im B) # X, (d = dimX). Let V be the annihilator of

n=0

this space S in the complex dual X of X. Since S is A-stable,
so is V under the action of A'. Hence V contains at least one ei-
genvector p of A'. Let X be its eigenvalue: A'p = Ap. Since V
annihilates Im B, B'p = 0. Let (By, A;) be feedback equivalent to
(B, A). Then A, = a'Aa+&' Bp;, B, = @' Bf,. If ¢ = &'(p), then
Al g = \g since B'p = 0. This shows that A is an eigenvalue for any
system feedback equivalent to (B, A). Hence (B, A) does not have
the pole assignment property. a

§1 Stabilization

Given a linear system (B, 4), the actual evolution of the state
of the system is not governed by the equation 4£(t) = Az(t)+ Bu(t)
but more realistically by

‘;_f(t) = Az(t) + Bu(t) + w(t),
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where w represents an unknown perturbation. An important prac-
tical problem is to insure that perturbations do not blow up the
system, damage it or simply throw the system off a prescribed path.

Presently we shall show that if (B, A) is controllable, we can
prevent the occurrence of such an unwanted phenomenon by using
a feedback device, at least if we know that the perturbations are
bounded.

THEOREM 1. Assume (B, A) is controllable. For any number a >
0, there exist a system (B, Ay ) feedback equivalent to (B, A), (Aa =
Ak, = A+ BKy,K,: X — U) and an Euclidean norm || ||, on X

such that if (z,u), (&,u) are respectively the solutions of:

{ 92(t) = Aqx(t) + Bu(t) { 92(1) = Aa&(t) + Bu(t) + w(t),
z(0) = =z ' #(0) = &

both defined on [0, +00), then, for any T > 0,

. 1
sup [|z(2) — E(B)lla < —sup [lw(t)ll,
t>2T A>T

—aT

€ - ~
+ sup_[w(t)ll, + €77 [lzo — Foll, -
0<t<T

Actually, ”em"'(v)”a <e '), forallt >0 andv € X.

PROOF: Choose K, in such a way that all the eigenvalues of Ag, =
A, have their real parts smaller than —a. Define a scalar product
{, )q on X as follows: let {, ) be any scalar product and set
(2',2") = [i7 €2 (e**=(a’),e*A=(a")) ds. Then |e*4=(z')],
e |la'||, if t > 0. Set z(t) = a(t) — i(t); since %(t) =
Aaz(t) — w(t) and z(t) = e*de(zy — Fo) — fot elt=)Aagy(s)ds,

AN
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it follows that sup ||z(t)]l, < e 2°T ||lzg — &o|l, + S, where
>2T

§ = sup plleCMou(a) ds < sup e ()], do +

t _s e~ T
sup [1||et=Aaw(s)|| ds < €5 sup [lw(t)|l, + Lsup [lw(t)]],-
t>2T 0<t<T t>T

a

Let us give a few examples illustrating the use of this Theorem.

EX. 1: Balancing a pointer on the tip of your finger. In order to
simplify the problem we assume that:

1) your finger moves on a horizontal axis, taken to be the z-
axis;

2) the pointer is a homogeneous cylindrical rod, of negligible
diameter, having mass m and length L;

3) the pointer moves in a vertical plane P containing the z-axis.

We take a vertical line oriented upwards as the y-axis in P.

The control is the movement of your finger: let £ be its abscissa,
on the z-axis. The position of the rod is given if we specify the
coordinates =g,y of its center of gravity and the angle ¢ of the
pointer with the z-axis.

There are two constraints on the rod, expressing the fact that

the lower end of the rod lies on your finger:
L
zg =€+ 5 08P,
Yo = 3 sin .
The kinetic energy T of the rod is:

2
mL*® _,

1 . .
T = 5m(¥s +95) + 5"
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There are two forces acting on the rod: its weight and the reaction
of your finger on the rod. Since the constraints are holonomic we

can eliminate zg, yg and the reaction in the Lagrange equation:

1 . mL? mLsing . ;
T== 2 2 .
g T g ¥ 2
Since %(g% - %g = —Eg%ﬁ—‘ﬁ is the work of the weight mg when
¢ varies, we have
' 2L . .o
(E) 5% =—gcosp +sinp,

where £, the acceleration of your finger, is your control.

The vertical position of the pointer is an equilibrium position
of the rod, albeit an unstable one. Let us try to stabilize it using a
feedback. For this we linearize (E) around the equilibrium position

¢ = %. Let ¢ = § — ¢; then
) oL . .
(lin E) V=9

The equivalent linear system %{- = Az + Buis: z = (1/),1/)) €X =
R*, U=R,u=§

0 1 0
A:[ﬁ 0}’ B:[_L]‘
2L 2L

The pair (A, B) is obviously controllable.

—_3
Let e; = [ 03 ], e = [ ”’}. Then B(1) = e;, Ae; = e.
-3 0

If we define the feedback Ky : R?2 —» R by Kpe; = 0, Kgep = %,
then (Ag = A+ BKjy, B) is in normal form with respect to the basis

(ela 62)‘
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Assume we want {—1} as spectrum, with multipiicity 2. The
corresponding feedback is K : Kyjey = —2, Kjey = —1. Hence the
total feedback is K : Ke; = —2, Kep = ,%% — 1. The corresponding
control wis u(p) = — 2o+ (% — g)(5 —); notice that it depends
on the angular velocity ¢.

Does there exist a stabilizing feedback, depending on ¢ only? If
ul(p) = ky were such a feedback then the equation of the evolution
of the pointer would be

2L -

but (0,0) is not asymptotically stable for this equation. Hence any
stabilizing feedback has to take into account the speed with which
the pointer is falling.

ExX. 2: Libration point satellite: on the segment joining the Earth
to the Moon, there is a point L called the libration point where the
pull of the Earth on the satellite is equal to the sum of the pull of
the Moon and the centrifugal force due to the rotation of the Moon
around the Earth. This L is an unstable equilibrium point.

The satellite can be guided using a small reaction engine. One
wants to design a feedback in order to stabilize the satellite at L.
Taking a planar system of cartesian coordinates attached to the
Moon, the linearized equations of motion of the satellite around

the libration point are:

F—2wy—9wiz =0
(L) .. . )
4 2wz + 4wy = u
where w = g—g radians per day, u = 1;{:,, Th is the thrust of the

engine in the y direction and m is the mass of the satellite. The
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linear system associated to (L) is: 4 = Az + Bu, where the state

space is R?, the control space R, z = (21, 29,23,24): 21 =2, 23 = ¥,

29 =& — 2wy, 24 = Y + 2wz,

0 0 1 2w 0
0 -9w? 0 0 0
B(1) = 0]’ 4= 2w 0 0 1
1 0 0 —4w? 0
The characteristic polynomial of 4 is A* — w2A? 4 36w1.
‘ r0
The pair (4, B) is controllable: A(B(1)) = (1) ,
LO
2w r o
2 _ 0 3 _ 18w?
—4u? L 0

To compute a stabilizing feedback we shall use a method
due to Bass and Gina. Since this method is applicable in gene-
ral, we assume that A € End(R?) and B € Lin(R,R%). Let
P()) = det(AI — A) be the characteristic polynomial of A and
Py ()\) = det[A\] — A — BK] that of a feedback K : R* — R; then
Pye(X) = det[(AM — A)[I + (A — A)"!BK]]. K is a linear form, the

range of B being one dimensional. Hence:
Pr(X) = PQ)(1 + K)((M - 471 B(1)).

d—-1
Let P(A\) = A+ Y a4_;}, aa_; € R. It is easy to show that
j=0

(A -A4A) 1= F(l—/\-jQ(/\), where

d—2
QM) =271+ ZQq—l-,-)\j» Qa-1-; € End(R%).

=0
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The operators Q4_1—; can be computed using the relation P(A)] =

d—j—2
(M = A)Q(N): Qo = I, Qu-1-j = AdT1=d g Z ag_j1-,A".
r=0
Hence
d—1 ‘ d—j—2 ‘
Pi(A) = P(\)+Y_ [KA“B(1) + Y au_j_1-KA"B(1)| M
j=0 r=0 :

with the convention: a, =0if n < 0.
If the system (A, B) is controllable, the vectors {A"B(1) |0 <

r < d—1} form a basis of R and K is determined by the numbers
d—1

{KA™B(1) | 0 < r < d—1}. Then if Px(\) = A+ Y afl ;M is
=0

given, K can be computed using the recurrence relations:
KB(1) =a¥f —q;
and, for j < d -1,

d—j—2
KA*™'B(1) =af j~asj~ Y auj1-,JKA"B(1).
r=0
Let us go back to the libration point problem. We shall stabi-
lize the satellite using a feedback K such that Spec (A + BK) =
{~w, —w, —(1 + V/-1)w, (1 — V-1 w}:
Pre(X) = M 4 4wd3 + T 22 4+ 6w ) + 204,
P()) = M — w?)? 4 3601,
af = 4w, a; =0, aff = W2, a3 = —w?, aff = 6W?, a3 = 0,
afl = 204, aq = 36w, KB(1) = 4w, KAB(1) = 8w?, KA’B(1) =
6w? + w?dw = 10w?, KA*B(1) = —34w* + 8w?* = —26w*.
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§2 Observers

An observer is a device enabling us to reconstruct a trajectory

of the system (B, A, C) from the input and output data.

" DEFINITION 2: Given a system (B, A, C), an observer is a functio-
nal ¥ : Ry x LY([0,e);U) x AC([0,a];Y) — X (« depending on
¥) such that for any trajectory (z,u): [a,b] = X x U of (B, 4,C)
with output y = Cz and b — a > «, we have z(b) = ¥(b, uqa, Ya),
where (uq,ya) : [0,a] = U x Y is given by uq(t) = u(b— a + t),
Yalt) =y(b—a +1).

The main theorem about observers is the following:

THEOREM 2. A system (B, A,C) has observers if and only if it is

observable.

PROOF: Assume that the system has an observer 3 but is not obser-
vable. Then one can find two trajectories (z;,u) : [a,b] - X x U,
J = 1,2, b — a > @, having the same output y and such that
z1(b) # z2(b). On the other hand z1(b) = V(b ue,ya) = x2(b),
a contradiction.

If the system is observable, endow X and Y with scalar pro-
ducts (, })x and {, )y. For any a > 0, the endomorphism
L(a) = [ et C*Ce~tAdt is positive definite by Corollary 2-(ix),
§5, Chapter L.

Given any trajectory (z,u) : [a,b] —» X xU withb—a > a and

output y = Cz, we have

' t
y(t) = Celt=Dg(b) +-C'/ e("=4By(s)ds;
b
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therefore

b b
/ DA Gy ()t = / (DA O3 Ct=D) Ag (h)d
b—o

b—o

b t
+/ e(t—b)A‘C*C/ e(t_’)ABu(s)dsdt
b—a b
and
b -
z(b) = L(a)™* [ / DA Oy (1) dt
b—o
b ¢ .
—/ / DA C*Celt=) A By(s)dsdt
b—a Jb
b -
= L(a)™? / eOAT Ty (t)dt
b—o

b
+ / (W(a) —W(b—s))e(b_’)ABu(s)ds].
]

—x

where W(t) = fot e~?4'C*Ce~?4do. Hence
U(T,z,v) = L(a)™* {/ DA C* () dt
0
+ / (W(a) — W(2))et Bo(s)ds| .
0

O

This exact method of reconstructing the trajectory from the

input and output data is not always the most convenient to imple-

ment. In the next paragraph we give an approximate (asymptotic)
method.
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§3 Asymptotic observers

Given a system ¥ = (U, X.Y, B, A, C), we want to construct a
system £; = (U XY, X,Y, By, A;,C1) such that given any trajectory
(z,d) : [a, +00) — X x U of the first system with output ¥ = C7,
any trajectory (2,@,7) : [a,+00) = X xU x Y of the second system
has the property: t—lé+moo I2() — 2(t)]| =0 (|| || = some norm on X).
The system L, is called an asymptotic observer of L.

It is easy to see that such a system Y, will exist only if } is

observable. Under this obvious condition, it can always be found:

THEOREM 3. Given any observable system (U,X,Y, B, A,C) and
any number a > 0, there exist a system (U x Y, X,Y, By, Ao, Cao)
and a norm || ||, on X such that for any trajectory (T,u) :
[a,400) — X x U of the first system with output y = Cz, any
trajectory (z,u,y) : [a,+00) = X x U x Y of the second system
has the property:

limsup e ||z(t) — z(t)||, < +oo.
t-—+4oco

PROOF: Since (A4,C) is observable, (C',A') is controllable and
hence has the pole assignment property (see Theorem 0 and Chap-
ter I). Applying Theorem 1 to the pair (C’,A4’), we can find a
feedback L!, : X' —» Y’ dual of L, : Y — X, and a scalar pro-
duct {, ). on X' such that A", = A’ + L',C’ has the property:

o

. !
”emu (v’)“ <e t |||, forallt > 0 and all v’ € X'

(, ). induces a dual scalar product { , ), on X, dual space of
X' IfAy = A+L,C,forallt > 0and v € X we have He‘A"‘ (v)”a <

e~t*||lv|],. This can be seen as follows: for any v € X, ||v||, =
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o' 1%

sup{ﬂv—) [v'e X' — {0}},hence

(e w) __ehev'(v)

o'l o vl

etAa(y'
ot = < et o],

oy~

lle*?« @)l = sup

< [lvllg sup
vl

Now define the observer system as follows: Ay, = A + L,C,
By:U®Y — X, Bo(u,y) = Bu— Loy, Cq = C. Thenif (2,%4,y) :
[@,400) = X x U x Y is a trajectory of this new system,

dz(tt) = Aqaz(t) + Bu(t) ~ Loy(t).
But
T _ az(t) + Bu(t) = 4.5) - Lagtt) + Btt)
hence
M%i(t_)) = Aa(2(t) - (1))
and

2(t) — F(t) = "V 42(2(a) — T(a)).

Using the above inequality,

e Jlz(t) —Z()ll, < [l (2(a) = Fa))], -
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CHAPTER 1V

NONLINEAR SYSTEMS

§0 Introduction

In practice most systems are represented by nonlinear mathe-
matical models. The study of these models is much harder than
that of linear systems and is far from complete. This may be the
main reason why nonlinear systems have been little used in appli-
cations, up to now. Most practitioners prefer to approximate the
nonlinear model by a linear one. The fact that there are power-
ful and fast computers available, makes this procedure realistic and
efficient.

Nonetheless it is of interest to study nonlinear systems because
of their theoretical importance. Since we want to include the linear
systems among the more general “nonlinear” ones, it is better to

talk about general systems instead of nonlinear ones.

§1 What is a general system?

As with linear systems, we have input, output and state spaces.
The state space is usually a connected smooth (C* or C%) real
manifold X, the output space another smooth manifold Y, usually

a vector space, and the input space is a subspace U of a smooth
manifold MU.
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The dynamics of the systemn are modelled by a parametrized
vector field F: X x U — TX (the tangent space of X), F(z,u) €
T.X for all (z,u) € X x U, with parameter space U. F is assumed
to be smooth in the following sense: it has a smooth extension
F:X xMU-TX.

Finally, the output mapping is a smooth mapping h: X - Y.

Let us sum this up, in a formal definition.

DEFINITION 0: A general system Y is a quintuple (U, X,Y, F, k)
such that:

1} X and Y are real smooth manifolds, and U is a subspace of
a smooth manifold MU;

2) F: X xU — TX is a vector field on X parametrized by U,
having a smooth extension to X x MU;

3) h: X =Y is a smooth mapping.

REMARK 0: We could have assumed that U is just a topological
space and that F' is continuous in both z and v and smooth in
z. For technical reasons we feel that the more involved definition

above is easier to handle.

The next thing is to define trajectories.

DEFINITION 1: A trajectory of T is a pair (z,u) : [a,b] - X x U
(where eventually b = 400 and then [a,b] = [a, +00)) such that:

(i) z is absolutely continuous, u is measurable;

(ii) for almost every t € [a,b], 92(t) = F(z(t), u(?));

(iii) if (2',u) : [d',b'] = X x U, [@',¥'] C [a,b], satisfies (i) and
(ii), and if 2'(#') = z(t') for some t' € {a',b'], then 2'(¢) = z(¢) for
all ¢ € [d, b).
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In practice it happens very often that there are restrictions
on the controls in the sense that u : [a,b] — U must belong to
a family U of admissible functions u : [ay,b,] — U, where ay,b,
are real numbers depending on u, or else b, = +oo and [ay, b,]
means [ay,+o0). A very commonly used family U is PC(U), the
set of all functions u : [ay,b,] — U that are piecewise constant:
there exists a partition a, =tp < t; < --- <ty < b, =ty (or
ay =t <t <ty <--- <t, = o0 if b, = +00) such that u is

constant on each interval [tx,tx41), K =0,..., N (resp. k € N).

If a family U of admissible controls is given, we shall always

assume that it satisfies the following three conditions:

(R) if w : [a,b] — U belongs to U and [¢',b'] C [a,b], then the
restriction u | [, b'] belongs to U;

(T) ifu:{a,b] —» U belongs to!f and ¢ € R, then u. : [a—¢,b—c] —
U, u(t) =u(t+c), is in U.

(C) ifu: [a,b] = U and v : [b,e] — U belong to U, then their

concatenation u*v belongs to U, where

w(t) a<t<b
U(t) bSl‘SC'

wut) = {

§2 Input-output mapping
The most important object associated to a system is its input-
output mapping,.

NOTATIONS: (iv) Given any topological space T, let Mes(T') denote

the set of all measurable functions v : J — T, where J is a finite
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closed interval or else is infinite but closed on the left. J depends
on u.

(v) Given any smooth manifold M, denote by AC(M) the set
of all absolutely continuous curves z : J — M, where J is as in (iv)

and J depends on z.

DEFINITION 2: Let (U, X, Y, F, h,U) be a system with a set of ad-
missible controls ¢. The input-output mapping of the system is
the functional mapping ® : dom(®) — AC(Y') defined as follows:
dom® C X x U is the set of all pairs (2¢,u), u : [a,b] — U, such
that there exists a trajectory (z,u) : [a,b] —» X x U with z(a) = 2o
and ®(zg,u) = hoz € AC(Y).

Given ¢q € X, its response mapping ®, : dom(®,) — AC(Y) is
the restriction of & to the set {u | u € U, (¢,u) € dom(®)}. Given
v € U, its flow ®* : dom(®*) — AC(Y) is the restriction of @ to
the set {¢] ¢ € X, (¢,u) € dom(®)}.

REMARK 1: (vi) If no family i is given, we take i = Mes(U).
(vil) It can happen that dom(®,) or dom(®*) are empty for

some ¢ € X or some u € Y.

§3 Examples of general systems

EX. 1: Obviously any linear system is a particular case of a general

one.

EX. 2: Attitude of a satellite. A satellite travels in space and the
path of its center of gravity is prescribed. We are interested in the
motion of the satellite around its center of gravity. Assuming the

satellite S to be a rigid body, its position in phase space is given
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by an orthonormal frame (e, ey, e3) rigidly linked to S and by the
angular velocity w of (e, e, e3) with respect to itself. To simplify
the equations, we choose the principal axes of inertia of S as the
axes of the frame (e;, e2,€3). The motion of S around its’ center of
gravity is controlled by m small two-sided reaction engines.

The state space X of S is the product: (orthonormal frames of
R?) xR3. Since the orientation of a frame does not change during a
continuous motion we can identify the state space with the product
50(3) x so(3) of the special orthogonal group by its Lie algebra. If
ai,. .., Q& are the maximal thrusts of the small rockets, we take as
U the m-dimensional cube [—ay,a1] X -+ X [—@m, an] and as MU
the space R™.

The motion of S is determined by the equations:

dex(t)

G =wt) xe(t) k=123,

where x denotes the cross product in R? and the evolution of w is

determined by Euler’s equations: w = wye; + waeg + waes, with:

dw}t(t) = agyw(thws(t) + ]Z; uj(t)bi(7),

dwz( B2 _ o ot (8) + Zu](t)bz(JL
j=1

250) _ vy (thon(t) + ; uj(£)bs(7);

here a;; are constants depending only on the geometry of S, b(;) =

b1(j)er + ba(j)ez + b3(j)es are vectors depending on the location of
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the reaction engine and u; is‘ the thrust of the j** engine; u; > 0 if
the thrust is in the direction of b(j), and u; < 0 otherwise.

As output we can take, for example, one of the Euler angles
defining the position of the frame (eq, €2, €3) with respect to a fixed

one.

§4 Accessibility

Given a system X = (U, X, F'), the definitions of the accessi-
bility set and the accessibility set at time T' are similar to their

namesakes in the linear case.

DEFINITION 3: 1) For any z € X, the accessibility set of z with
respect to X, denoted by A(x,X) or simply by A(x), is the set
{2(Ty) | (2,u) : [0,T,] — X x U is a trajectory of ¥ and 2(0) = z}.

2) For any z € X and T > 0, the accessibility set of z with
respect to X, at time T', denoted by A(z, T, L) or simply by A(z, T,
is the set {z(T) | (z,u) : [0,T] — X x U is a trajectory of £ and
2(0) = z}.

In the general case the problem of accessibility is much harder
than in the linear case. Moreover one is lead to consider two notions
of accessibility, a global and a local one. Let us discuss the global
one, first. Very few general results about transitivity or about acces-

sibility are known. Let us state a basic result in accessibility (see

S

DEFINITION 4: A system ¥ is called weakly reversible if for any z
and y in X, y € A(z,X) is equivalent to ¢ € A(y, I).

THEOREM 0. (Sussmann [S1]) Assume T is weakly reversible.
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1) The accessibility set A(z, L) ofz € X is an immersed subma-
nifold of X (see the appendix for a definition).

2) If, moreover, T is analytic or ¥ is locally finitely generated
(see appendix), then for any = € X, T;(A(z,X)) = Lie(X)(z), where
Lie(X) is the Lie algebra of vector fields generated by {F, | u € U}.

In the general case, it is not true that T, A(z, ¥) = Lie(X)(z);
we only have an inclusion T, A(z, X) D Lie(X)(z). (See the counte-
rexample below.)

The proof will be given in the appendix.

If ¥ is a general system, then one can define a weakly reversible
system 3 = (U, X, F) as follows: U = U, UU_. is the disjoint union
F, ve Uy
~-F, uveU_
that £ is weakly reversible and that for any = € X, A(z,%) C

of two copies Uy,U_ of U and F, = { . It is clear

A(z,%). But we can say more. To start with, notice that by the

above Theorem, A(z, %) is an immersed submanifold of X.

PROPOSITION 0. IfY is analytic or if ¥ is locally finitely generated,
then the interior of A(z,X), with respect to the intrinsic manifold
topology of A(z,%), is dense in A(z, L), with respect to the same
topology.

In particular, if ¥ is any system such that Lie (£)(z) = T. X
for all z € X, then the interior of A(z,Z) is dense in A(z, I) for all
reX.

For the proof see the appendix.

COUNTEREXAMPLE: Let T be the system (R?, R?, F), where F, =
u1 Fy + ugF3 is given by Fy = -5‘2-1 and F; = a(acl)g‘z—z, with a C

and equal to 1 for ; > 1 and 0 for z; < 0. It is easy to see that
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A(z,X) = R? for all € R%. On the other hand, at any point
with z; < 0, dimLie(X)(z) = 1. Hence Lie(Z)(z) # T, A(z, ).

§5 Miscellany about accessibility

Let us now stat-e a few facts.

A) Given a system X, if the accessibility set A(z) is a
neighborhood of z for all z € X then the system is transitive, i.e.
Alz)=X forallz € X.

B) The structure of A(z) is unstable under small perturbations
of 3.

C) If X is real analytic, A(z) may well not be subanalytic.

D) If, for all z € X, the positive convex cone in T, X generated
by {Fy(z) | v € U} has a non empty interior then, for any z € X,
the boundary of A(z) is alocally Lipschitz submanifold of X: locally

-its boundary is the graph of a Lipschitz function.

These are rather negative results. One would like to know
sufficient conditions for transitivity. Several such conditions are
known: ~

E) the Kalman condition for linear systems (see Chapter 1 §3).

F) a general condition for all systems on homogeneous spaces
of semi-simple Lie groups induced by the group action (see [JK]).

Let us state and prove another such condition (see [B], {L]).

PRrRoPOSITION 1. Let ¥ = (U, X, F) be a system such that:
m
(viii) Fy = Fy + Y _u;Fj and U is a subset of R™ containing
i=1
{xe; |7 =1,...,m}, wheree,,... ,en is a basis of R™.
(ix) The set of all states € X, recurrent for Fy, is dense in

X.
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(x) For any ¢ € X, Lie (Fy,...,Fn)z) = T,X, where
Lie (Fy,...,Fy) is the Lie algebra of vector fields generated by
Fo,...,Fo.

Then ¥ is controllable: in fact for any z,y € X there exists a
piecewise constant control uy y : [0,Ts ] — {xej | j = 1,...,m}

steering z to y.

PROOF: In the first place, taking a linear transformation on the

controls and on the Fj, 1 < k < m, we may assume that €1,...,&np
m
is the canonical basis ey,...,e,, f R™ : ¢; = Zajiej» 1<i1<m.
j=1
m
Take as new controls Uy,..., Uy U; = Zaijﬂj; as new. control
j=1

3

m

ﬂij = E uka, and
1 k=1

fields Fl,.. .,Fm: —F,' = zaﬁFj' Then
j=1

<
i

gjissent toe;, 1 <5 <m.

Denote by Uy the subset {xe; | 1 < ¢ < m}of U. I claim that it
is sufficient to show that the closure A(z, Up) of A(z, Up) is always
X. This being so, condition (x) and Theorem 0 imply that the
interior int A(z,Us) of A(z,Uy) is dense in X for any = € X. Note
that the system Ty = (Up, X, —F) satisfies the same assumptions
as By = (U, X, F). Hence for any « € X, the interior int A= (z, Up)
of the accessibility set A~ (a, Up) of = with respect to £, is dense in
X too. For any z,y € X, take a z € int(A(z, Up)) Nint(A~(y, Up)).
There exists a piecewise constant control taking z into 2 and a
piecewise constant control taking y into z along the system X .
But it is easy to check that if u : [0,7] — Up steers y to z along
the system L=, then u': [0,T] — Uy, w'(t) = w(T ~ t) steers z to y
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along .

To show that m—) = X for any z € X, note that condition
(x) and Theorem 0 imply that given ény y € X, there exists a
function f : {1,...,N} — {F,...,Fn}, N depending on f, and
numbers t,...,tx € R, such that y = e /(M o ... 0 et /W(g).
Using induction on N, we may assume that we know that y; =
etv-1tS(N=1) o ... 5 ¢1f(1)(g) belongs to A(z, Up). We shall discuss

the possible cases separately:

CaSE 1: If f(N) = Fy and ty > 0, then y € A(y;,Up). Hence

y € A(”L‘, Uo)

Case 2: if f(N) = F, but ty < 0, we can find a sequence
{z(n) | n > 1} of recurrent points for F; contained in int A(z,Up)
such that z(n) tends to y;. Each z(n) being recurrent, so is
e fo(2(n)), hence we can find a T, > [tn]| such that the dis-
tance of e’ f(z(n)) to e(Tn+*Fo(z(n)) is less than 1. Then
lim e(Tr+t8)Fo(5(n)) = lim etfo(2(n)) = e*Fo(y;) = y, proving that

y € intA(z,Up) = A(z, Uyp).

CASE 3: f(N) = Fy, k > 0; let o be the sign of ty. Then tyFr =
[tn|[(Fo + 0 Fx) + (—Fp)]. By the Trotter-Kato formula, etV F* is

the uniform limit, on compact subsets of X, of the sequence of
diffeomorphisms ¢, = (elﬁl(F"*“’F“e;vI-uF") (n>1and ()" in

the sense of composition). Hence y = lird{x ¢n(y1) and by Case 2,
n—+oo :

wn(y1) € Az, Uo). o

§6 Application to the attitude control of a satellite

Let us recall the equations given at the end of §3. X is the
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product SO(3) x R3, U is the m dimensional cube [—ay, a;] x -+ - x

[—am- vm], * = (€1, €2,€3,w), w = wie; +waes + waez and

d
_deTk —wxer, k=1,2,3
L = Q)+ by,
i=1
where by,...,b,, are constant vector fields on R?® and

Q(w) = (azswows, az1wswy , G12w1W2).

m

We have a control-affine model F0+Z u;F;. Here Fy is the quadra-
j=1

tic field (w X e1,w X e2,w X e3,Q(w)) and Fi,..., F, are the fields

biyeoeybm.

It is a well known fact that the flow % = @Q(w) is the geodesic
flow on S3. Hence it is recurrent. The flow % =wXep, k=
1,2,3, is a flow on SO(3) generated by a time dependent Lie algebra
element w. Hence the field Fy is recurrent.

Using Proposition 1, we see that if Lie (Q,b1,...,by) is of
maximum rank at each point, the system is controllable (For more
details see [B]). In fact, it is easy to see that it suffices that Lie
(@,b1,...,5)(0) = R? this can be realized even if there is only
one control (m = 1) . On the other hand, this last observation has .
no practical use since, to control the system, we need the recurrence
of Fy. Now the return times can be very large, and we might have
to wait too long to get the satellite in the wanted position. This

justifies the discussion of the next paragraph.

87 Local accessibility
Let X be the system (U, X, F) and let (z,u): [0,T] » X x U
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be a trajectory of £. A property of the pair (I, (z,u)), very useful
in practice, is the following: whenever at some time t € [0,T], the
trajectory z is perturbed and the point z(t) is sent to some position
£ not too far from z, there exists a small time 7 and an admissible
control @ : [t,t-7] = U close to u, such that the trajectory (%, &) :
[t,t+ 7] = X X U starting at ¢ at time 7, ends at z(t + 7).

We are going to formalize this property. For technical rea-
sons, we define the. corresponding property for the system £~ =
(U, X,~F).

Denote by d a metric on U, compatible with the topology of

U. For any € > 0, 7 > 0, and any control @ : [0,T] = U, T > r,
let U(%,e,7) denote the set of all’controls v : [0,7] — U such that
sup{d(u(t),v(t)) |0 <t <7} <e. ‘
DEFINITION 5: Given a system ¥ = (U, X, F) and a trajectory
(z,7) : [0,T] = X x U of B, we say that it has the local con-
trollability property at T(0) if, given ¢ > 0, there exists a § > 0,
such that for any 7 > 0, 0 < 7 < ¢, the accessibility set A(Z(0), 7,
U(u,e,7)) of TZ(0) at time 7, using controls from U(T, e, 7) only, is
a neighborhood of Z(7).

A particular case of Definition 5 occurs when T is reduced to
a point, that is, we have an equilibrium point for the equation
£(1) = F(E(t),T(t).

In the general situation, very little is known about local con-
trollability but in the case of. control-aﬁ'iné systems, we have pre-

sently two results,
THEOREM 1. Let & = (U, X, F) be a control-affine system F =

Fy+ z u;Fj. Assume that U is a neighborhood of 0 in R™. Then

=1
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a drift trajectory @ : [0, T} — X, 4£(t) = Fy(%(t)), has the local con-
trollability property at T(0) if the following so-called ad-condition
is verified: the vectors {ad*Fy(F;)(Z(0)) | 1 < j < m,k > 1} ge-
nerate Tg(0)X , where ad* Fy(Fj) = adFp(ad* ' Fy(F})), adFo(G) =

|G, Fol.

For the proof see the appendix.
The next result generalizes part of Theorem 1 (see {S3]).

THEOREM 2. Let ¥ = (U, X, F) be a control-affine system with one
control vector: F' = Fy + u1 Fy. Assume that U is a neighborhood
of 0 in R and let 2o be an equilibrium point of Fy. Then z¢ is
locally controllable if the following conditions are satisfled: (xi)
Lie (Fo, F1)(zo) = Ty, X; (xii) Let Si be the subspaces of Lie
(Fo, F1) defined as follows: Sy = RF,, S; = linear span of Sy
and {ad*Fy(Fy) | k > 1} and Sy = linear span of Sy_; and
{ad*FyadFy(G) | G € Si—1}. Then for every odd k, Si(z¢) =
Sky1(zo).

Nice as they are, very seldom one can use them in practice.
Let us illustrate our point returning to the attitude control of a

satellity.

88 Local controllability of the satellite

Let us take a fixed frame (ef, €9, e3). Then zo = (e}, €3,¢€3,0)
is an equilibrium of Fj, that is, of the satellite without control
action. At zy the “ad-space” is 0, hence Theorem 1 is not applicable.
As for Theorem 2, assuming we have only one control vector by,
So(ze) = 0, Si(zg) = 0, Sz(zo) is either 0 or RFyy1(zo), where
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Fo11 is the constant vector field (0, [by, [b1, Q]]) (0 is in the SO(3)
part). If Fyi1 is not zero, the conditions of Theorem 2 are violated,
It is not hard to see that if we have only one control vector,

there is no local controllability at zo.
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APPENDIX

PROOF OF THE ORBIT THEOREM

Let £ = (U, X, F) be a system. Denote by G the set of all
triples (X1, ¢,X2), X1,X2 open subsets of X, ¢ diffeomorphism
from X; onto X,, having the following property: there exists a
smooth mapping ® : X; x [0,a] — X such that:

(1) ®(,0) = 0 for all z € X;; (ii) ®(z,a) = () for all
z € Xy; (iii) there is a u € U such that %?(:v,t) = F(®(z,t),u) for
all z € X; and t € [0,qa].

DEFINITION O: The semi-groupoid of £ denoted by SG(X) is the
smallest set of triples (X1, ¢, X2) as above, containing Gy and closed

under the following operations:

(iv) if X; C X is open, (Xi,Idx,,X1) belongs to SG(T);

(v) if (X1,9,X32) € SG(E) and X3 C X, is an open subset,
then (X3, | X3,0(X3)) € SG(D);

(vi) if {(X1(7), 9, X2(5)) | 7 € J} is a family of elements of
SG(X) with the property that ; | X1(7) N X1(k) = ¢r | Xh(J) N
X1 (k) for any pair (7, k) € J x J such that X;(j)NX;(k) # ¢, then
the triple (X1, ¢, X2), union of {(X1(5),¢j, X2(j)) | j € J}, isin
56(2): X1 = (J X:0), Xo = | Xa(h), ¢ | Xa(h) = 5.

jeJ kEJ

(vil) If (X1, ¢, X2) and (X2,%, X3) belong to SG(T), then the

composition (X4, o ¢, X3) belongs to it too.
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DEFINITION 1: A system ¥ is called reversible if for any triple
(X1,4,X2) in SG(T) and any = € X; there exists another triple
(X3,9,X4) in SG(T) such that ¢(z) € X35 and ¥(p(z)) = z. (The

274 triple usualy depends on z).

DEFINITION 2: Given & € X, the orbit 0(z) of z is the set of all
o(z) with (X1,¢,X2) € SG(T) such that z € X;.

NOTATION 0: (viii) We shall denote by Lie(F') the Lie algebra of
vector fields generated by the family {F, |v € U}

(ix) We shall denote by L the Lie algebra sheaf generated by the
family {.(Fu) | u € U,(X1,¢,X2) € SG(2)}; @u(F) is the vector
field on X, defined as follows: @.(F)(y) = dp(e 1 (¥))F(o~1(y)).

It is clear that the elements of Lie(F') are sections of L.

DEFINITION 3: A module M of vector fields on X is called locally fi-
nitely generated if for any z € X there exists an open neighborhood
V of z and a finite set F, ..., F, of sections of M over V such that
if F' is any section of M over an open subset W of V then there
q
exist functions a,...,a, € C*™(V;R) satisfying F = Z a; F;.
j=1
DEFINITION 4: A subset Y of X is called an immersed submanifold

of X, if Y has a smooth manifold structure and the injection Y — X

of Y into X is a smooth immersion.

THEOREM 0. Let £ be a system.
(x) For any z € X the orbit 0(x) of x under SG(X) is equal to
the accessibility set of ¢ under L.

(xi) f T is reversible then 0(z) is an immersed submanifold of
X foreachz € X.
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(xii) For any « € X, the tangent space of 0(z) at z, T.0(z), is
equal to the space L(z) obtained by evaluating L at z.

(xiii) If Lie(F) is locally finitely generated, then T.0(z) =
Lie(F)(z) .

(xiv) The conclusion of (zii1) is always true if & is an analytic

system.

PROOF: Is is clear that 0(z) is contained in A(z,X), the accessibi-
lity set of z under I. If (z,u) : [0,7] —» X x U is any trajectory
of ¥ such that u is piecewise constant, then z(t) € 0(x(0)) for all
t € [0,T]. Hence 0(z) = A(z, PC(U), X) the accessibility set of =
using only piecewise constant controls.

The basic fact for the proof of Theorem 0 is the following:
for any r € X and any (X1,¢,X2) € SG(X) such that 2 € X,
do(2)C(z) = £p()).

This can be seen as follows: that dp(z)L{u) C L(p(z)) is a
trivial consequence of the definition of £. Since ¥ is reversible,
there exists a triple (X3,%, X4) € SG(Z) such that X3 3 ¢(z) and
Y(p(z)) = 2. Then dy(p(z))L(p(z)) C L(z). Since both dp(z)
and dy(p(z)) are injective, and L(z), L(¢(z)) are finite dimensio-
nal, we get dp(z)L(z) = L{¢(z)).

A X-chart will be a smooth diffeomorphism ¢ : M x N —
W, of the product of a manifold M by an open subset N of an
Euclidean space R? onto an open subset W of X satisfying the
following conditions:

(xv) ¢ =1nf{dim L(z) | z € W}; ¢ will be denoted by v(p);

(xvi) for any m € M, ¢(m,N) is contained in an orbit of
SG(Z);

(xvii) for any (m,t) € M x N, dp(m,t)[T,N] is contained in
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L{p(m, ).

It follows from (xv) and (xvii) that if dim L(y(m,t)) = v(y),
do(m,t)[TyN] = L(p(m,t)). In what follows, we shall denote by
pry @ M X N — M the canonical projection and, for any m, by
@m : N — X the mapping on(t) = ¢(m,t).

Take any z¢ € X and any set Fy,..., Fy of vector fields belon-
ging to L(V'), V open neighborhood of zq, such that {Fi(zy),...,
F,(z¢)} is a basis of L(z¢). There exist open neighborhoods
Wi, Wa,. .., Wy, W of zg, W, CWa C W3- C W, CW, e >0
and ¢ smooth mappings ¢; : W x [—¢,¢] = X such that:

(xviii) @;j(z,0) = z for all z € W;

{xix) %‘?—(m,t) = Fj((z,t)) for all (z,t) € W x [—¢,¢€];

(xx) @jt(Wi) C Wigy for all t € [—e,e] and all 1 < k < ¢,
where j; : W — X is the mapping ¢;i(z) = ¢;(z,t).

Then we can define a smooth mapping ¢ : Wi x [—¢,e]? = X
as follows: @(x,t1,...,t5) = P10, 0P2,1, 0 0@y (). Let Zbea
(dim X — q)-dimensional submanifold of X, Z 5 xy, transversal to
L(zy). Let ¢ be the restriction of ¢ to Z x [—¢,¢]?. Since d@(zo,0)
maps TIOZ~ x R isomorphically onto T; X, there exist a connected
neighborhood N(z) of 0 in [—¢,¢€]?, a neighborhood Z(zg) of zg
in Z such that ¢ : Z(zo) X N(z9) — X is a diffeomorphism of
Z(x¢) x N(zq) onto the open neighborhood ¢(Z(zg) x N(z¢)) of
Zo. It is clear that ¢ is a E-chart with v(p) = ¢ = dim L(zy).

Now we define a manifold structure ML on X as follows: its
charts are the pairs (Y, xy) of a submanifold ¥ of X and a diffeo-
morphism of ¥ onto an open subset in some Euclidean space RY
with the following property: there exist a L-chart o : M x N — X,
a point m in M, an open subset w in N such that dim L(p(m,t)) =
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v(yp) = g for all t € w and (Y, xy) is the pair (¢ (w),p5!), where
¢m: N — X is the mapping ¢, (t) = ¢(m,t).

Let us see that these charts are compatible: let (Y,xy),
(Y',xy') be two charts such that Y NY’ # ¢. Then (Y,xy) =
(Pm(@), ) (¥, xy1) = (@l (@), ) for some S-charts ¢ :
MxN— X, ¢ M'x N' = X, with v(p) = dimY, v(¢') =
dimY’. Let y € Y NY'. T,Y = Kerd(pramr o ™1 )(y) = L(y) =
Kerd(pras 0 ¢ ") (y) = T,Y'. This shows that pras oo™ 0 ¢!,
(resp. pryy o <p"1 0 ¢m) is constant on any connected component
of w;l(lmage @) (resp. ¢! (Image ¢')). Atanyy e Y NY', Y
and Y’ define the same manifold germ. Hence the pairs (Y, xv)
define a manifold structure MY on X and it follows immediately
from condition (xvi) of the L-charts that Y is contained in an orbit
of SG(X). Hence the connected components of ML are contai-
ned in the orbits of SG(¥). In fact they coincide: let 29 € X
and let (z,u) : [0,7] = X x U be a trajectory of & such that
z(0) = zo. I claim that z : [0,7] — X is contained in a uni-
que component of MY and that it is absolutely continuous for that
structure. Since X 3 z — dimL(z) is lower semi-continuous, so
is [0,T] 2 t » 6(t) = dimL(z(t)). Let O C [0,T] be the set
of all ¢, € [0,7] such that 8(¢) is constant in a neighborhood
of tg; O is an open subset of [0,T]. It is everywhere dense: let
P =[0,T] — O and assume that the interior P° of P is not empty.
Let r = sup{é(¢) | t € P°}; if r € P® and é(r) = r, there exists
an open subset J of P° containing 7, such that §(¢) = r in J. But
then J C O, a contradiction.

Assume P is empty. Then 6(¢) is constant on [0,T}]. It does

not restrict the generality of our reasonning to assume that the
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curve x is contained in a coordinate chart $': Image 99 — MxN
such that 6(t) = v(p) for all t in [0,T). For almost every t €
[0,T),  is differentiable and 42(t) = F(z(t),u(t)) € L(z(t)). Since
dim £(z(t)) = v(p), L(z(t)) = Kerd(prmoe~!)(z(t)). So for almost
allt € {0, T}, %(prm ogpox)(t) =0. The conclusion follows.

IfP vis not empty, we can apply to the space P what we have
done above. Let w C P be the set of all t; € P such that § restricted
to a nbd of tg in P is constant. w is an open subset of the space P
and, as for O, we can show that it is everywhere dense in P. Hence
there exists an open interval J in [0,T] such that é restricted to
J N P is constant and equal to o, say.

J N O is a disjoint union of a sequence of open intervals. On
each of these intervals § is constant. Since J N P is not empty, there
is at least one of these intervals, (a, b), on which é is equal to £ and
£ # o. Either a or b or both belong to P. We shall assume b € P.
If not, one could take the same argument as below replacing b by
a.

There exists a L-chart ¢ : M; x Ny — X such that z(b) belongs
to the image of ¥ and v(¢) = dim L(z(b)) = o; ¥~ 1(z) = (m,£) €
My x Ny and ¥7H(F)(m, £,uv) = (E(m, €, u),G(m, & u)), E : My x
Ny xU—-TM;,G: My x Ny xU — TN;.

There is an > 0 such that z([b — ,b + n]) is contained in
the image of ¥ and ¥ ~1(z(t)) = (m(t),£(t)) if t € [b—n, b+ 7).
We have the relations: 42(t) = E(m(t),&(t),u(t)), %(t) =
G(m(t), €(t), u(t)) for almost all t € [b—n, b+7]. Since dim L(y) =0
for all y such that prag (¥7'(y)) = prag$7'(2(b)) = m(b), it
follows that F(y,w) € Kerd(pras, o9~ ')(y) for all such y’s. Hence
for any (&,u) € Ny x U, E(m(b),€,u) = 0. By the unique-
ness of solutions, m(t) = m(b) for all t € {b— n,b+ 5]. Hence
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pran ¥ (2(t)) = prayp~(2(8)). Then dim L(z(t)) = 0 < p for
t € [b —n,b+ 5], which contradicts the fact that if ¢t € [b — n,b),
dim £(z(t)) = é(t) = p. Our assumption that P is not empty leads

to a contradiction.

Now let us prove assertion (xiii). Assume that Lie(F) is locally
finitely generated. We are going to show that if (X;,¢,X2) is a
triple from SG(¥) and G is a section of Lie(F') over Xy, then ¢, (F)
belongs to Lie(F). It is sufficient to prove this when the triple
belongs to Gp: there exists a smooth mapping @ : X; x [0,a] —
X satisfying the conditions (i) and (ii) on the beginning of this
Appendix. It is easy to see that all we need to show is: for any
zg € X; there exist a open neighborhood V of z¢ and a number
€, 0 < € € @, such that for any G in Lie(F) defined on V, ®4(G)
belongs to Lie(F) if t € [0,¢].

Choose a neighborhood Vi C X; of zp such that, on Vi,
Lie(F) has a finite set of generators Fy,F,,...,F;. We can
find an open neighborhood Vo, C Vi of zy and a number ¢,
0 < ¢ £ a, such that ®;*(V3) C V; for all t € [0,¢]. On

q

Va, £20p(F) = ®n[F,F.] = @to[ZngFj], where the c;; are
j=1

smooth functions defined on Vi, since [Fj, F,] € Lie(F'). Hence,

g
3% (Fi) _ Zaﬁ@t‘(Fj), where Cji(z,t) = cji o ;' (z,1). Let

at
j=1

Q:V, x[0,e] — {g x g real matrices} be the solution of the Cauchy

q
problem: Q‘—;{"— = ZQ,-,CEH, Q(z,0) = Identity matrix. On V5, we
k=1

g
have & (F;) = Z FiQji4, for t € [0,¢], proving assertion (xiii).
i=1
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It is well known that if ¥ is analytic, the module generated by
{F. | u € U} is locally finitely generated. On the other hand it is
easy to prove (xiv) directly. O

COUNTEREXAMPLE: If we do not have uniqueness of solutions
along the trajectory (z,u) : [0,T] — X x U, it may happen that
the trajectory z is not contained in the orbit of z(0) under SG(X):
let X =R?, U =R? F(z,u) = wFi(z) + u2 Fy(z), F(z) = 3%,
Fi(e) = (21 4 @) 55 + (¢1 — @2) 3% Then if @3 # 0, 0(z) is
two-dimensional; if z3 = 0, 0(z) is just the z3-axis. I claim that
one can go from (1,0,0) say, to (0,0,1): let @ : [0,2] — U be the
function 4(t) = (1£5,0) f 0 <t < 1, a(t) = (0,1) if 1 < ¢ < 2. The
trajectory (z,u) starting at (1,0,0) is given by

#(t) = [(1 —¢) cos(log

), (1 — t) sin(log

),0], for 0 < ¢ < 1
1-—-1¢

#(t) =(0,0,t —1), for 1 <t < 2.

11

Clearly « is absolutely continuous and %(t) = F(i(t),u(t)) for
t#1.

PROOF OF THEOREM 1: For simplicity let ¢ : V X [—¢,e] = X
be a smooth mapping such that %f = Fy(yp), ¢(z,0) = z. Let
@t : V — X be the submapping ¢4(z) = ¢(x,t). To prove Theorem
1 we apply the transformation z(t) = ¢(z(t),t) to the equation ‘:Tf =

m

Fy(z) + Zquj(x), which becomes %(t) = Zuj(t)Gj(t,z(t)),

J=1 j=1
where G; is the time dependent field G;(t,z) = ¢ (Fj)(2). De-
note by z, the solution of this last equation satisfying the initial
condition z,(0) = (0).
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All we need to prove is that the mapping 4(0,e,7) 3 u — 2z,(7)
.covers a neighborhood of F(0). Choose a coordinate neighborhood

W of Z(0) contained in V. In W, z,{(r) — T(0) is given by:

r m T t m
/ > " (t)G(t, 7(0))dt + / / D Wie(t, )uj(t)ue(s)dsdt.
0 =1 070 =1
where We(t,s) = dG;(t, zu(5))[Gels, zu(s))]. To prove the above
assertion, it is sufficient to prove that the linear mapping L, :
LY([0,7}; R™) — R4, defined by

Lo(u)= / 'S (0G5 EO) L,

Jj=1

is onto.

If it were not, one could find a p, € (R?), (dual of RY),
pr # 0, such that for all u, [ > u;(t)(p-,G;(t,7(0)))dt = 0.

J=1

This implies that (p,,G;(¢t,Z(0))) = 0 for all t € [0,7] and all j,
1 < 7 < m. Taking a derivative and evaluating at t = 0, we get
(pr,ad*Fy(F;)(%(0))) = O for all k € N and all j, 1 < j < m,
contradicting the hypothesis of Theorem 1. 0
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CHAPTER V

OPTIMAL CONTROL THEORY

80 Introduction to the problems of optimal control theory

DEFINITION 0: Given a system & = (U, X, F), a cost function for

3 is a smooth function ¢ : X x U — R.

DEFINITION 1: Given a trajectory (z,u) : [a,b] = X X U, its cost
C(z,u) is defined as follows: let ¢y = sup(c,0), c~ = sup(—c,0);
both integrals f: cy(z(t), u(t))dt and f: c_(z(t), u(t))dt are defined
in the extended sense and take their values in {0, +00], 400 included.
Then: C(z,u) = [} cq(a(t),u(t))dt — [Fc—(a(t),u(t))dt, with the

conventions:

+00 — a = +00,
a-(+00)=—o0,  a€Ry
+00 — (+00) = 0.

An optimal control problem is the following setup: 1) a system
T = (U, X, F) with a cost function ¢, 2) two subsets A and B of X,
3) a class U C Mes(U) of controls; and, in the case of a fixed time

problem, 4) a positive number T.

NotaTions: Tr(A,B,U) = {(z,u) : [0,T,] — X x U trajectory
of T, u € U, z(0) € A, z(Tu) € B}. Tr(A,B,U,T) = {(z,u) :
[0,Ty] = X xU, (z,u) € Tr(A,B,U) and T, = T}.
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OPTIMAL CONTROL PROBLEM: Find a trajectory (%,%) : [0,T] —
X x U in Tr(A, B,U) such that

C(7,7) < C(z,u) forall (z,u) € Tr(4,B,U).

OPTIMAL CONTROL PROBLEM WITH FIXED-TIME T: Same state-
ment replacing Tr(A, B,U) by Tr(A, B,U,T) and T by T.

DEFINITION 2: The curve (T, %), if it exists, is called an optimal

trajectory.

§1 Some examples

EX. 1: The classical problem of calculus of variation. One is given
an open subset O of some space R?, a smooth function L : O x
R? — R, two points a and 8 in‘®. One wants to find, among the
absolutely continuous curves 7 : [0,T] — O satisfying: i) Z(0) = «,

Z(T) = B; ii) the function t — L(Z(t), £ (1)) is integrable on [0, 77,
one such that j? L(%(t), %(t))dt is minimal.

The optimal control setup for this problem is as follows: U =
R, X =0, F(z,u)=u, A= {a}, B= {8}, c= L.

EX. 2: Accelerated vehicle problem. A particule moves along a
prescribed smooth curve T, but we can control its acceleration. If
we choose an origin Or and an orientation on I' and denote by xz(t)
the curvilinear abscissa of the particle at time ¢, the equation of
motion is: mdd—zt% = u, where m is the mass of the particle, u its
acceleration. The origin Or and another point E on I are given.

One wants to determine u in such a way that the time needed for
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the particle to go from Or to E is minimal, assuming the particle

starts at Or from the rest position and arrives at E with zero speed.

The setup for this problem is as follows: U = [~a, b], where b is

the maximum acceleration, a the maximum braking force, X = R?,

%l = 23, Tg = 1, F(z,u) = (22, %), c is the constant function 1,

A is the point (0,0), B the point (L,0), with L the abscissa of E.

In case the particle is rcally a vehicle, the stability of the vehicle
during sharp turns can cause some anxiety. To allay these fears, we
may impose a bound I{ on the centrifugal force: if we denote by
R(z) the radius of curvature of I' at the point of abscissa z, the
setup for this new problem is as above except that X is now the
open subset {(z1,22) | 2% < KR(x1)} of R2.

Let us note that these two problems cannot be treated using

classical calculus of variation.

EX. 3: Flight of a rocket plane with minimal fuel consumption.
We shall assume that the flight takes place in a vertical plane P
with horizontal and vertical coordinates z and h respectively. It
is sufficient to study the trajectory of the center of gravity of the
plane. Let v denote the angle of attack of the wings, e the angle
between the thrust and the velocity vector, ¢ the gravity constant,
Vi the effective velocity of the outgoing combustion products, p the
rate of combustion, m the mass of the plane (with the fuel), D, L
the drag and the lift respectively, V the velocity of the center of
gravity, z, h its coordinates. The duration of the flight is given and

is equal to T. We want to minimize the fuel consumption.

The equations of the motion are %—f(t) = V() cosv(¢), %(t) =
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V(t)siny(t), 42(t) = —p(t), with

Ep(t) D
(t) =9 Slny(t) + (t) cos S(t) - m(t)’
Ven(t) L
V(t) (t) = —gcosvy(t) + m(t) sine(t) + ——= m()

Note that the mass varies with time since we are burning fuel.

One wants to minimize the amount @ of fuel burned during
the flight: @ = m(0) — m(T). D and L are usually functions of h
and V. The control parameters are p and ¢; p varies between 0 and
ps > 0, € between —¢, and €4 > 0.

To set up a control theoretic model of the plane, we take as U
the square [0, 8,] X [—£4,¢5]- The state of the plane depends on the
five parameters, z, h,m,V,v. As state space X we take the subset
RZ x [0,m,] x R4 x S? of the manifold R* x S!, m, being the mass
of the plane with a full tank. The field F is given by:

Fi(z,u) =V cosy, Fa(z,u)=Vsiny, Fz,u)=—u,

D(h
Fy(z,u) = —gsiny + uVe cosup — -—(—&,
m m
_ gcosy | wVp . L(h,V)
Fy(z,u) = v + Vo sinug + Vo

The amount @ = m(0) — m(T) is equal to fOT p(t)dt = _ﬂ)Tul(t)dt.
Hence c¢(z,u) = u; is the cost function.
Optimal control problems do not always have a solution. Let

us give a couple of examples of this occurrence.
Ex. 4: Let U = X = R, F(z,u) = u, o(z,u) = £ 4 = {0},
B = {1}. We have to minimize fOT' [x(t)2 + (%(t))z] dt among all

absolutely continuous curves z : [0,T;] — R such that z(0) = 0,
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z(T;) = 1. This is a classical calculus of variations problem. An

optimal curve 7 : [0, T] — R, if it exists, satisfies the Euler equation
£2(4) = F(t), 0 < ¢t < T. Since 7(0) = 0, Z(t) = asht, where

a = 7 The cost p(z) of 7 is [y o (L) dt: o(z)

‘;—zsh(?T) = “%sthhT = 1 coth(T). Hence the minimum is 1. It’

cannot be attained since cothT > 1, for all T > 0.

Ex. 5: U =[-1,+1] C R, X = R?, F(z,u) = (u,u?), c(z,u)
z2, A = {(0,0)}, B = {(0,1)}. Then C(z,u) > 0 for all (z,u) €
Tr(A, B). For any integer n > 1 define up, : {0,1] — U as

I

+1 <t
un(t) :{ 1 22;&1 <t 221&2 :
- 2n = < 2n
Then, if z, : [0,1] — X is the function:
2 gy g 2kil
xnl(t) - 2n n — - 2n4
2k+2 _ 1 2k41 4 < 2k42
2n 2n — " = 2n

Tpo(t) =1, then (zn,uq) : [0,1] = X xU is a trajectory in Tr{A4, B)
and C(24,un) < 353 Hence: inf{C(z,u) | (z,u) € Tr(4,B)} = 0.
It is not attained: were (Z, %) : [0,T] — X xU an optimal trajectory,
then 0 = C(7,%) = fo—fz%(t)dt. Hence 7;(t) = 0. But then ¥ = 0

and Z,(t) = 0, which is a contradiction since Zo(T) = 1.

§2 The most famous problem in optimal control

It is the LQC problem. In this problem, the system is a linear

one and the cost ¢ is quadratic:
1 1
C(.’L‘,u) = '2' (Pu)u> + (szu) + 5 (R.’E,.l‘) )
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where
P:U->U', Q:X-U', R: XX

are linear (U', X' are the duals of U and X respectively) and P and
R are symmetric:

(Pui,uz) = (Puz,u1) (Rxy,z2) = (Rze,71);
a and B are two points in X and it is a fixed time problem, the
duration of the process being T > 0.

REMARK 0: The reason for studying the fixed time problem only,
is that the non-fixed time problem has no solution. This is shown
by Example 4: Ex. 4 is a LQC problem witha=0,8=1, P =1,
R=1,Q=0.

Our basic assumption will be:
(H) ¢ is positive definite.

(H) implies that the cost C(z,u) of a trajectory (z,u) : [a,b] —
X x U is finite if and only if v € L%([a,b];U). Hence in what

follows we shall assume that the controls are in LZ.

NoTtaTiONS: AC%([0,T}; X) = {z : [0,T] — X, z absolutely conti-
nuons, 4% € L*([0,T); X}); E = AC*([0,T}; X) x L*([0, T}; X).

§3 Necessary conditions in the LQC problem

Assume that (Z,7) : [0,T] — X x U belongs to ENTr(a, ,T)
and is optimal for the cost C in Tr(a,$,T). To find conditions

satisfied by (Z,%), we use the variation method.
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Let (z,9) € ENTr(0,0,T). Define (zx,uy): [0,T] » X x U
as follows: o) = T+ Az, uy = @+ Av, A € R. Then (za,ur) €
Tr(a,B,T) and for all A € R, C(za,ur) > C(7,u). This implies
that for all (z,v) € ENTr(0,0,T),

©) /0 ! [%{z, @)z + gg(z, H)v] dt=0.

F is a linear system: F(x,u) = Az + Bu, A € End(X), Be L
in (U,X)}. Let D: ENTr(0,X,T) — L*0,T); X) x X be given by

D(y,w) = [—% + Ay + Buw, y(T)]

and denote by L : E — R the linear form
Tioe _ _ Oc ,_ _
L) = [ |SE@m+ o] d

Then it is clear that ENTr(0,0,T) is the kernel of D.
Condition (L) can be rephrased as:

h KerL D KerD

and we have:

LEMMA 0. A necessary condition for (Z,%) to be optimal is that L
belongs to the image of D', D' the transpose of D.

To get a handier condition on (Z, @) out of this Lemma, we have
to get a concrete realization of D'. As dual of L%([0,T}; X)x X, it is
natural to take L([0, T}; X')x X', X’ dual of X. If AC%([0,T};0, X)
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is the subspace of AC2([0,T}; X) of all curves starting at 0, a rea-
lisation of the dual of ACZ([0,7);0,X) is L%([0,T]; X') with the
pairing: = € AC?([0,T);0,X), ¢ € L%([0, T]; X")

o= [ (Ew.q0)a,

where ( , ) is the natural pairing X x X' - R. Then a realization
of the dual Ej of ENTr(0,X,T) is L2([0,T); X') x L*([0,T};U"),
(U' dual of U) and D' : L%([0,T]; X') x X' — L([0,T}; X") x
L2([0, T); U") is given by

’

T
D'(p,&)(t) = [ft A'p(s)ds + £ — p(t), B'p(t)

A" € End(X!), B' : Lin(X',U’) being the transposes of 4 and B.
Let us find the representation of L € Ej in the representation
L*([0,T); X') x L¥([0, T}; U') of E}: if (y,w) € Eo N Tr(0,X, T),

Lyw) = | i [q(t)% + 2, ﬂ)w] dt,
alt) = [ "2 ), (s

The Lemma 0 says that there exists a pair (,¢) € L%([0,T}; X')x X'
such that D'(p,€) = L, that is,

E+ [T A'B(s)ds — p(t) = [ 2(2(s),uls))ds

EXT1 v
( ) { B'p(t) = §2(z(t), u(t)).

The first condition implies that p is absolutely continuous. Hence if

(Z,%) is optimal, one can find an absolutely continuous p : [0,T] —
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X' such that

(EXT2) { 2+ AP = §:(T,u) = Qu+ Rz

B'p = 2(z, u) Pu + Q.

A more ingenious and deeper way of expressing these relations is
to introduce the function H : X x X' x U — R, H(z,p,u) =
(p, Az + Bu) — ¢(z,u). H is a 2 degree polynomial in z,p and u.
Since ¢ is positive definite, P is positive definite and hence for fixed
(z,p) € X x X', H(z,p,u) = —o0 as u — oo. This shows that

sup H(z,p,u) exists and is attained at 4 such that:
u

6(,) (z,p,0) =0;

in other words: B'p — %(z, %) = 0. Hence the condition (EXT2)
above is equivalent to:

THEOREM 0. An optimal trajectory (Z,%) : [0,T] — X x U with
C(z,u) < +oo is the projection on X x U of a curve (Z,p,u) :

[0,T] = X x X' x U satisfying the following conditions:

T, p absolutely continuous, U measurable,

%(t) = aH(J;( ), B(t), u(t)),

— () = G2 (=(1), B(t), u(t)),
H(z(t), P(t) u(t)) = sup{H(Z(?),p(t),u) | u € U},

for almost all t € [0,T].

(EXT3)

This is a particular case of the celebrated maximum principle

which applies in the general situation.

DEFINITION 3: A curve (z,p,u) : [a,b] = X x X' x U satisfying
EXTS3 is called an extremal.
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Actually, in this case, we can go much further, due to the fact
that the supremum in the 3¢ condition of EXTS3, is attained at a
unique point #(z,p) = P"1B'p — P71Qx.

Let H : X x X' — R denote the function H(z,p) =
H(z,p,u(z,p)). H is a quadratic form in (z, p):

1, 1, 1
'H(m,p) = (Alx7p) + }; <BP lB paP) - 5 (Rl,xa:U) )

Ay =A-BP'Q, Ri=R-QPQ.

Then we have the following Corollary.

COROLLARY. If a trajectory (T,u) : [0,T] — X x U is optimal, it is
the projection of a trajectory (Z,p) : [0,T] = X x X' of the linear

Hamiltonian system:

& (t) = $E(z(t), B(t)) = A13(t) + BP'B'R(1),
(EXT4) - B(t) = ZL(3(1), B(t) = A1B(t) — RaT(),
u(t) = P71B'p(t) — P~1Qz(t).

In other words, EXTS3 is equivalent to EXT4.

84 Optimal control synthesis in the LQC case

Our next step will be to analyze more deeply the system EXT1
and the relation between its trajectories and the optimal trajectories

of the given LQC system. This is done in the next Lemma.

LEMMA 1. Assume (Z,p,%) : [0,T] = X x X' x U is a solution of
EXT4 suth that 7(0) = a, Z(T) = B. Then (%,%) is an optimal
trajectory in Tr(A, B,T) and it is the unique one.
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PROOF: Let (z,u):[0,T] — X x U be a trajectory in Tr(4, B,T)
such that C(z,u) < +o00. Then C(z,u) = C(%F, @)+C(z—F, u—u)+Cy,

where
T
a
C; = /0 {55—(5, u)r—7T)+ g—i(f, u)(u —u)j dt.

Using the conditions EXT?2,

dc _ _ dp —
5z &0 =g T AP
Oc _ _

3, &) = B'p,

we get C; = fOT K:v -z, %’? + A'ﬁ> + (u — ﬁ,B’ﬁ)} dt and integra-
ting by parts the first term:

G = (z - %,p) 0+/0T<—'d(Ld;"T‘)‘+A(z—EE)+B(u—H),p>dt.

But (2 -7)(0)=a—a=0,(z—7)(T)=F~f=0and 42 =
A(z — Z) + B(u — @) for almost all ¢, hence C; = 0. Since C(z —
T,u —u) > 0, C(z,u) > C(7,u). In fact C(x,u) > C(Z,%) unless
C(z—7,u—1u) = 0. But since c is positive definite, this last condition
entails z =7, u = @.

All that remains to be done is to see if, whatever «, 8 aré in
X, there exists a solution (Z,p,%) of EXT4 such that Z(0) = «
Z(T) = B. '

In order to do this efficiently, let us recall some symplectic
geometry: X x X' has a natural symplectic structure  : X x X’ x
X x X' — R given by:

Qz1,p1, T2, p2) = {T1,p2) — (%2,1) .
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Denote by R 3 t — ¢; € Sp(X x X') (the symplectic linear group
of (X x X',Q)) the flow of the quadratic Hamiltonian H. Then the
set of points Z(t) of all solutions (Z,5,%) : [0,T] - X x X' xU
of EXT4 satisfying T(0) = « is just the projection onto X of the
affine subspace pr({a} x X') of X x X'. Hence there will be a
trajectory joining « to § for any points «, 3 € X if and only if the
projection of pr({a} x X') on X is onto. Since the dimensions of
¢r({a} x X') and of X are the same, this is equivalent to saying
that or({a} x X') is transversal to X' in X x X'. 0

LEMMA 2. If(B, A) is controllable then p¢({a} x X') is transversal
toX and X' in X x X', foralla € X and t > 0.

PRroOOF: Since p:({a} x X') is parallel to ({0} x X') = po(X’),
it is sufficient to take a = 0. Let (z,p) € X x X' and set ¢4(z,p) =
(z(t), p(t)). Then:

5 .00 = ( Gote0.p(0),000)) ~ (a0, Grtal).000)

= £ (Bp™ Bp(t),p(t)) + 5 (Raz(t), 2(1))

Ry = R—-Q'P7!Q. For any z € X, ¢(z,~P~'Qz) = } (Ryz,z).
Hence R,; is positive definite. Since P~! is positive definite,
(BP‘lB’p(t),p(t» > 0. From this we conclude that for ¢ > 0,
(z(¢),p(t)) = (z,p) and we have equality only if z(s).= 0 and
B'p(s) = 0 for 0 < s < t. In this last case: %(s) = —A'p(s), and

o0
B'p(s) = 0, 0 < s < t. This implies that p € ﬂ Ker B'A™. Since

n=0
(B, A) is controllable, p = 0. Thus (z(t), p(t)) > (z, p), unless z = 0
and p = 0, which shows that for any point (x(t),p(t)) € w«(X’), 0
excepted, (z(t),p(t)) > 0 and proves the Lemma. o
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REMARK 1: The Lemma is still true if we assume that (B, A) is
controllable, (A4;, R;) is observable, P is positive definite, c is posi-

tive semi-definite.

Let us sum up our results.

THEOREM 1. Assume that the cost function c is positive definite
and that (B, A) is controllable. Then for any T > 0 and any pair
a, B in X, there exists a unique trajectory going from « to 8 in time

T and minimizing the cost in Tr(a, ,T).

§5 The Ricatti equation

Using the notations of §4, for any t > 0, ¢,(X") is transversal
to X in X x X'. Since p¢(X'), X, X' are all Lagrangian subspaces
of (X x X',Q), there exists a unique symmetric linear mapping
K(t) : X' — X such that ¢,(X') is the graph of K(t) in X x X":
e X" = {(K(t)p,p) | p € X'}. We want to discuss the function
Ry 2t — K(t) € Sym(X', X), the set of all symmetric linear
mappings X' — X.

The symplectic flow {¢; | t € R} has a generating function
S:Rx X x X' = R, i.e., afunction with the following property:
if (z,p) € X x X' and ¢4(z,p) = ((t), p(t)), then

©  s=Tan0) p= Gt p0)

Since ¢y is a linear isomorphism, the relations (G) show that S is

a quadratic form in z and p,

S(t,z,p) = % (S1(t)z, =) + % (S22(t)p, p) + (S12(t)z, p)
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where S11() : X = X', Spa(t) : X' = X, S12(t) : X > X and Sy,
Sa2 are symmetric. Also the first equation of (G) shows that the
linear space (X'} is the space {(Z,p) | Z = g—i(t, 0,P) = S22(t)P};
this implies that Sy, = K.

The function S is the solution of the following Cauchy problem:

{ 5 +H(5.p) =0
5(0,z,p) = (,p)

(= plays the role of a parameter). Hence the matrix functions Si1,

S12, Sg2 = K satisfy the following equations:

83 ~ S1pR1512 =0 511(0) =0
2512~ 4,81, — S R1S12 =0 S12(0) = Idy

8K | A\K + KA, + BP7'B'-KR,K =0 K(0)=0.

PROPOSITION 0. Assume (B, A) is controllable and ¢ positive de-
finite. Given a point zr € X and a number T, the unique op-
timal trajectory for fixed time T joining 0 to zr is the projec-
tion on X of the unique trajectory of the Hamiltonian H passfng
through the point (z7, K(T) 'zr) at time T. The matrix function
Ry 5t K(t) € Sym(X', X) is the unique solution of the Cauchy

problem

) { K (t) + A1 K (t) + K(t)Ay - K(t)RiK(t)+ BP™'B' =0
K(0) =0.

REMARK 2: The fact that K(¢) is invertible for ¢ > 0, is a direct
consequence of the fact, from Lemma 2, that ¢,(X') is transversal
toX'in X x X' fort > 0.
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NOTATION: The equation from Proposition 0, satisfied by K, is
called the Ricatti equation associated to the LQC problem.

Let us now study the evolution of K(t) as ¢t goes to +o0o. We

need the following Lemmas.

LEMMA 3. If (B, A) is controllable and c positive definite then:

1) the Hamiltonian field H of H has no purely imaginary ei-
genvalues;

2) X x X' splits into a direct sum of two H-invariant Lagrangian
subspaces Ly and L_ such that the spectrum of the restriction of

H to Ly (resp. L_) has eigenvalues with positive (resp. negative)
real part only.

REMARK 3: The Lemma is still true if we assume that (B, A) is
controllable, (A;, B;) observable, ¢ positive semi-definite, and U 3

U — ¢(0,u) positive definite.

PROOF: Let (=,p) # 0 be an eigenvector of the field of M in the
complexified X¢ x X with eigenvalue A € v/—1R. Then:

{ Az + BP 'B'p= Xz
Rz — Ajp = Ap.

From this, multiplying scalarly by p* the first equation and by z*
the second one, z*, p* being the complex conjugates of z and p, we
get

{A1z,p") + (BP™'B'p,p") = Mz,p"),

(R1z>x*) - (Allp’ ‘7"*> = )\(.’L‘*,P);
this last equation is equivalent to:
(Rll',.'l?*) - (Alzyp*> =-A (m’p') )
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and we obtain
(Riz,z") + (BP_IB'p,p*> =0.

By the positive definiteness of ¢ (see the proof of Lemma
2) this implies: ¢ = 0, B'p = 0; therefore Ajp = —)\p and
e <)
pE ﬂ Ker B'A"™. Since (B, A) is controllable, this intersection

n=0

is 0. Hence p = 0, which is a contradiction. O
The second part of the lemma is a direct consequence of the

first and some well known facts about the symplectic derivations.

LEMMA 4 (SEE [Sh]). Assume (B, A) is controllable and ¢ positive

definite. If L is any H-invariant Lagrangian subspace of X x X',
then LNX'=0and LNX = 0.

PROOF: Let z = (0,p) € LN X'. Since H(z) € L, (z,H(z)) = 0.
Now Q(z,H(z)) = (BP~'B'p,p), therefore B'p = 0 and H(z) =
(0,—Ap) € LN X'. This shows that L N X' is A}-invariant and

contained in the kernel of B'. But LN X' C ﬂ Ker B'A'lﬂ =0,
n=0

since (B, A) and also (B, A) is controllable.
If z = (z,0) € LN X, then again Q(z,H(z)) = 0. But
Q(z,H(z)) = (z, Ryz), which shows that z = 0. o

COROLLARY. There exist symmetric isomorphisms Ky, K_ : X' —
X such that Ly and L_ are the graphs of K and K_.

Proor: Ly,L_ are H-invariant Lagrangian spaces by Lemma 3.

Here is the main result of this section.
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PROPOSITION 1. Assume (B, A) is controllable and ¢ is positive
definite. Let € = + or —.

1) The solution K(t) of the system (K) of Proposition 0 con-
verges exponentially to K, ast goes to eoo.

2) K, satisfies the algebraic Ricatti equation:
AK.+ K A, - KR K.+ BP7'B' =0,

where Ay = A—- BP7'Q, R;=R-QP71Q.
3) The linear mapping F: X - U, F=P }{[B' K1 ~Qlisa
stabilizing feedback for the system (B, A). '

PRrOOF: 1) By Lemma 4, Ly N X' = L_NX' = 0. Since Ly,L_
are ’_ﬁ-invaria.nt, LineX')=L-Np(X')=0forallt >0 (p
is the flow of 'ﬁ) Since H is hyperbolic (Lemma 3-1)) there exist a

norm || || on X x X' and a positive number a > 0 such that:

lpe(2)l 2 e [zl if ze€Ly, t20,
lpe( S e™* 2l i z€L-, 20,

and vice-versa if t < 0.
HzeX —{0},z=24+2-, 24 € Ly, 2- € L, 24 # 0,
z_ # 0; then

ei(z4) +0(e™*), t>0

‘Pt(z) = gpt(Z+) + cPt(‘z—) = { Sot(z—) + O(gta), t<0.

This shows that in the Grassmannian manifold of all Lagrangians
in X x X', ¢(X") converges exponentially to L, as t — eo0o. Since

Le, ¢+(X') are the graphs of K, and K (t) respectively, we get 1).
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2) Since K, is the limit, as ¢ — €00, of the trajectory R 3 ¢ —
K(t) of (K), K. is a stationary point of (K): this gives 2).

Ix 0
K;'l Iy

I'_(X) and it is easily checked that:

3)LetI‘_=[ ]:XxX’—-vaX'. Then L_ =

A, +BP'B'K! BP™B'

—147 _
F=nr- = [ 0 —Ay - KI'BP7'B’

The spectrum of the restriction of PZYHT_ to X is that of the
restriction of H to L_. Hence all eigenvalues of A; + BP~'B'K~?

have negative real parts. This proves 3). a
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CHAPTER VI

OPTIMAL CONTROL - MAXIMUM PRINCIPLE

§0 Introduction

Let £ = (U, X, F) be a system with a cost function ¢ : X xU —
R and boundary conditions (A, B). We assume that A and B are
smooth submanifolds of X and R x X respectively. We are going to
discuss conditions satisfied by the optimal trajectories of the system
¥ = (U,X, F,¢, A, B), that is, trajectories (7,7):[0,T) » X xU
of ¥ such that

(i) 7(0) € A, (T,2(T)) € B;

(i1) f?c(f(t),ﬂ(t))dt = inf{fOTc(a:(t), u(t))dt | (z,u): [0,T] -
X x U, trajectory of I, (0,z(0)) € A, (T,z(T)) € B}.

Obviously there are other optimal control problems but most
of them can be reduced to the one above. Let us give an example.
Quite frequently, the cost of a trajectory (z,u) : [0,T,] - X x U

has the more general form

/ * o(2(8), u(®))dt + Y(Tu, 2(T,)),
0

where v is a given smooth function on B.
At least in the C™ case, this can be reduced to our original

problem, provided that AN B = ¢. In this case, one can extend v
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to 4 : X x R — R in a C* fashion, with the following conditions
being satisfied: 4 |B =17, 47|A=0. Thenleté: X xUxR - R
be the function &(z, u,t) = ¢(z,u) + g—:l(a:,t)F(x,u) + %ftl(x, t). The
new cost depends on the time, but this can be taken care of by
extending the state space to include time as a state variable: the
new system % = (U, X, F') has X = R x X as new state space. The
new dynamic is F(i, u) = (1, F(z,u)) (¢ = projection of # onto X),
the cost &: X x U — R is &0, 2,u) = &, u,30), A = {0} x 4,
B = B. Hence this case is easy to handle.

On the other hand, if the systerﬁ is subjected to one-sided
constraints (that is: X is now a manifold with boundéry), then the
problem is quite different and cannot be handled by the methods

we are going to discuss (see [C] for a treatment of that case).

§1 Statement of the maximum principle

Let us return do the system ¥ discussed at the beginning of
§0. Let Hy : T*X x U — R denote the smooth function H(p,u) =
(p, F(z,u)) — Ae(z,u), where z is the projection of p on X and ) is

a parameter taking the values 0 or 1 only.

THEOREM 0. Let (z,%):[0,T] = X x U be an optimal trajectory
of £. ‘

(iii) There exist a A € {0,1} and an absolutely continuous
lifting of %, B : [0,T] — T*X, satisfying the following conditions:
for almost all t € [0,T), p(t) # Oz and

() = Hr(p(t), T(2)
(EX))

Hx(p(t), u(t)) = sup{Ha(p(t),v) | v € U};
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H » denotes the Hamiltonian vector field associated to the function
p — Hx(p,u) (u is considered as a parameter).

(iv) p satisfies the following boundary conditions: p(0) an-
nihilates Tg()A and there exists a scalar p such that the vector
(1, B(T)) € Tj(R x X) = TzR x Ty, X annihilates T, B, where

g = (T,%(T)).

DEFINITION: Any curve (p,u): [0,T] 3t — (p(t),u(t)) € T*X xU
such that p(¢) is absolutely continuons, u is measurable and such
that (p(2), u(t)) satisfies the condition EX A for almost all t € [0, TY,
is called an extremal. The extremal is ordinary if A = 1, exceptional-
if A=0.

COROLLARY. H, is constant along any extremal of EX\.
The proof of these results is given in Chapter VIL

SPECIAL FORMULATION: In case X is an open subset of an R* with
canonical coordinates (z1,...,z4), T*X = X x (R%)*, dual of R?,
and p can be represented by a pair (z,p), z = (z1,...,24) € X,
p = (p1,-..,pa) € (R?)*. The conditions EX) can be written as
follows: for almost all t € [0, T},

%&u) = 3 (a(t), p(t), u(t))
(EXA1) e (1) = G0 (a(t),p(t),u(t)  k=12,....d
A(ﬂﬂ(t),l)(t), u(t)) = sup{Hx((t), p(t),v) | v € U}.
Moreover p(t) is not identically zero.
In one particular instance can the system EXX be written as

a genuine Hamiltonian system:

THEOREM 1. Assume that there exists a smooth function @ :
T*X — U with the property that Hx(p,u(p)) > Hx(p,v) for all
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veU,v#u(p)andallpe T*X. Let Hy: T*X — R be the func-
tion Hx(p) = Hx(p,u(p)). Then EX ) is equivalent to the system

{ &) = Halp(t))
u(t) = u(p(t));

ﬁ,\ is the Hamiltonian field associated to Hy.

The result stated in Theorem 0 is called the maximum prin-
ciple. It is the control-theoretic equivalent of the combination:
Euler-Lagrange equations and the Weierstrass condition, in the clas-
sical calculus of variations (see the applications below). As these
two gadgets, it enables us to narrow down the search for optimal
trajectories to the projections of the extremals. Quite often there is
only one or only a finite number of extremals satisfying the boun-
dary conditions. The problem is therefore reduced to checking that
this unique one or one of those is optimal. This, by the way, is not
always an easy task.

One last question is: when do the exceptional extremals come
into the picture? There is no corresponding object in the classical
calculus of variations. It is clear that the exceptional extremals do

not depend upon the cost function.

§2 Applications

Ex. 1: Classical calculus of variations. Let X be an open subset
of R%, 4, B two points in X, ¢ : X x R? — R a smooth function.
Wanted is an absolutely continuous curve % : [0,T] — X such that
%(0) = A4, %(T) = B and foT (z(t), £ (t))dt is minimal among the

absolutely continuous curves joining A to B.
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One can formulate this problem as an optimal control problem
taking U as R and F as u : F(z,u) = u. Using the form EXA1 of

the maximum principle we get the extremal equations:

(EX)2)
22 (1) = u(t)
— (1) = —AZ(a(t), u(t))
(p(2), u(t)) = Ac(x(t), u(t)) = inf {{p(t), v) = Ac((?), v)}.

The last condition implies Lagrange’s 1°¢ order condition:

_ | dela(t), u(t)
p(t) = AT.
In particular, since p(t) cannot be identically 0, A = 1. Combining

with the 1°! and 2"? equations in EX ), we get:

dt ot oz T dt’

d <6c(m, 17)) _ Oc(z, %) b= dz
These are the Euler-Lagrange equations. The 3¢ equation in EX A2
can be written as follows:

W(z‘(ﬂ —v) + c(z(t),v) — c(z(t),2(t)) > 0.

The 1°' member of this relation is the Weierstrass £-function; we

get the Weierstrass condition.

EX. 2: The accelerated car. A car moves along a prescribed curve
T, controlled by its acceleration. Orient I', choosing as origin Op, the
initial position of the car, call z(t) the abscissa of the car’s position
at time t on I', M the mass of the car, and u its acceleration or

braking force. The dynamic equation of the problem is M %—z,ﬁ(t) =
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u(t), u(t) > 0 if the car accelerates, u(t) < 0 if it brakes. Let a
(resp. b) be the maximum braking (accelerating) force. One wants
to drive the car starting at 0 from rest to a point L on the curve
at a distance L from 0 on I, in minimum time, and stop at L. (see
Ex. 2 in Chapter V). ‘

The mathematical model of this process is a system ¥ =
(U, X, F), where U = [—a, b}, X is R? (the phase space), F(z,u) =
(z2, 3%), "T‘t’- =1, "7’;‘ = 47, Ais the point (0,0), B the point (L,0)
(the speed at A and B should be 0) and the cost function c is just
the constant 1. Let us write the system EXA2:

U
H,\(m,p,u) = piT2 + % - Ay

{%m=@w {—%m=o
Fo=% " |-Ro=n

AOLONN

) —infmOm0 + 22 _xjveuy,

P(t)7a(0) + =

with 7;(0) = 72(0) =0, 2,(T) =1L, z(T)=0.
Clearly A does not matter:

u(t) = { —a if po(t) < 0.

In case pa(t) = 0, u(t) is not determined.

We see that the projections onto X of the extremals belong to
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four families of curves:

0 { z1(t) = —537t* + 22(0)t + 1(0)
z2(t) = — 5t + x2(0)

(1) { T3 (t) = 72712 + 22(0)t + z,(0)

z2(t) = £t + 22(0)

21(t) = { ~zit” + 220)t +21(0) 0<t<t
(III) it - t)? + a2(t)(t — t) + 21(t1), th <t
aa(t) = { ’b‘ﬁt+$2(0)’ 0<t<ty
Lt —t)+zo(ty), <t
() = { st + (0 +2:(0), 0<tsh
(V) —bz—%z(t—tl) ()t —t) + 2a(ty), t1 <t
—E(t-t) +a(t), t<t

It is clear that a trajectory of the families I and II can not pass
through L with zero speed if it starts at 0 with zero speed. If the car

performs a trajectory of typé III, it will have zero speed only once

2
again; its position w, at that moment, will be —2—11\17 ("—%b—“) Since

L > 0, type II1 is ruled out. On the other hand, if the car follows
a trajectory of type IV, it will have zero speed only once again but

at that moment, T = %4, its position will be %‘%tf. Hence

12 = 2?’_"_“61; and T = ‘/Maibﬂ'_"}. This is the optimal trajectory; ¢,

is the time at which one should start braking.

EX. 3: Tank with a hole. Let us denote by h the depth of the liquid,
Q the flow rate of the feeding pipe, A, the area of the section of the
tank, V the velocity of escape of the fluid through the hole, A; the

area of the hole. The dynamics of the system are:

dh
& _g- a4V
A =04
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Now V can be taken equal to 0.61/2gk, where g is the gravity con-
stant. The flow rate @ is the control parameter.

Assuming that the supply of water is limited, by W say, and
that the maximum flow rate is @, , maximize the time during which
the level of the water in the tank is at least a (a given positive

constant).

EXx. 4: Motion of a rocket in space. We identify the rocket with a
point z. It is submitted to two forces, one the gravity of the earth,
which we denote by g(z), and the other the thrust F' of the rocket.
If M denotes the total mass of the rocket, ¢ the rate of combustion

of the fuel, the equations of the motion of the rocket are:

m% =mg+ F
i 4 ||F| =0 |IF|l = norm of the force F.

One wants to maximize the fuel consumption in a flight from a point
A to a point B, assuming the duration T of the flight is fixed. The

first order equations, equivalent to the dynamical equations, are

dz _
rria
F=g+%F
d;

@ =—¢IFl

We will assume that g is a central force deriving from a potential
V{llz|])- To get rid of the denominators we choose a new coordinate

m; instead of m : m = e~™1/¢. Then:
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Let p,q,r be the coordinates dual to z,y, m respectively. The cost

is ||F'|| and the Hamiltonian of the problem is:

H= (P,y) + <q,g + Fe_m‘/°> —_ ”F” e—mx/c‘

The control is obviously F. We assume that F' can be any vector
such that ||F|| < f (f some constant.)‘

Then, fixing z,y,m,p,q,r, the maximum of H is attained at
F=0ifl|¢gl <randat F = frk if llgll > r.

If ||lg]l = r, || F)| is not determined by the maximum principle.
Let us check if there are extremals on which ||g|| = r. The extremal

system is in our case:

dz dy dmq

—_— = —_— = —m1/c —_— = = F _ml/c

=Y g =9te™mIF — I1Flle

dp 9y dgq dr 1 -
—_—— = g — _—— = _———= = Fl - ,F me,

DBl Lyypy - e

Since F' = || F|| 14, llgl], r are constants and it remains to determine

I£1-

We have to recall that on any extremal on which ||¢f| = r, all
n 2 2 2
the derivatives ‘-i—d%%ﬂi are zero. The formulas for EJJC_?_‘[L and 4—}1%“—

2
do not involve F', only %L involves F'. Setting it equal to zero

gives us the value of | F|| we are looking for.

EX. 5: Minimal fuel ezpenditure in a rocket flight. We assume the
flight takes place in a fixed vertical plane with a horizontal and a
vertical axis. The horizontal coordinate will be called z, the vertical
one h. Let us denote by m(¢) the total mass of the rocket at time

t, by v its velocity, by D(h,v), L(h,v) respectively the drag and
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the lift at the altitude h and velocity v. Let 4 be the angle of
attack, € the angle between the thrust and the velocity vectors of

the outgoing combustion products and ¢ the gravity constant.

The duration T of the flight is fixed. One wants to minimize
the fuel expenditure m{0) — m(T). The control parameters are ¢
and the rate of combustion of the fuel, p. As A we take the origin
" (0,0) and as B, some other point with coordinates (z g, hp).

Let us write the dynamical equations:

(t) =v(t) COq*r(t) (t) = v(t)SIM(t) ( ) = p(),

dv plt) D(h(t),v(t»
() =—gsiny(t) + E(t) ose(t) =

m)
iy s Veplt) | L(h(t), v(t))
3 1) = =5 O+ S e+ Tl

The Hamiltonian function H) is the sum HY + H}; HY does
not depend on the controls p,e and Hi = [-M + A + an(V COsE +
%sin ¢)lp, where X,H,M,V,T" denote the variables adjoint to

z, h,m, v,y respectively.
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CHAPTER VII

PROOF OF THE MAXIMUM PRINCIPLE

80 Approximating cones

Let ¥ = (U, X, F) be a system, A a submanifold of X. We are
going to find a good approximation to the accessibility set of A at
any of its points. For this we need some regularity assumptions on

the trajectories we are going to study.

DEFINITION O: A trajectory (z,u): [0,T] — X x U of X is called
tame if there exist an open neighborhood V' of z([0, T}), a positive
number T; > T, an extension @ of u to {0,7}], and a continuous
mapping ¢ : [0,T1] x [0,T1] — Diff(V, X), the set of all smooth
embeddings of V into X with the usual topology, such that:
(i) ¢(s, ) is the injection of V into X, for all s € [0, T1];
(i) for any = € V, any s € [0,T1], the curve [0,T}] 3 t s
©(t,s)z € X is absolutely continuous and for almost all t € [0,T}]
Dop(t, s)x

2228 = Flolt,s)e, (1))

(iii) for any t1 > t2 > t3in [0, 1], (21, t3) = w(t1,t2)o(t2, 3)
on a smaller ncighborhood V(t3) of x(t3), V(t3) C V, depending on
t3.

NOTATION: Given a trajectory (z,u): [0,T] = X x U, a point t €
[0, T will be called a Lebesgue point of (z,u) if % is approximately
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continuous at ¢t and %(t) = F(a(t),u(t)). (See the appendix.)
It is easy to see that if = is approximately continuous at t, it is
differentiable there.

DEFINITION 1: Let (z,u) : [0,T] —» X x U, z(0) € A, be a
tame trajectory of ¥. The approximating cone of the accessibi-
lity set of A at 7 € [0,T] along the trajectory (Z,%) of I, deno-
ted by K(z,u,r, A, E) or, when no confusion is possible, simply by
K(r, A), is the convex cone in Tg(y)X generated by the vectors:

@iv) gg%;_o)g’ w € Ty(0)4;

(v) ZEDO p(z(t), v) — F(Z(t),@(t))], v € U, ¢ < 7, t a Lebesgue
point of (Z,@);

(vi) e%?F(f(t),ﬁ(t)), €=+ or —, t <1,ta Lebesgue point of
(=, ),

where ¥ is the mapping associated to (Z,u) by Definition 0.
LEMMA 0. Let 0 < 7 < 7y < T. Then ZLD K (7, 4) € K(r1, A).

PROOF: It is sufficient to check the inclusion for the generators of
K(r, A). Using property (iii) of 3, this is easy. O

The next lemma shows that K(z,%,, 4, ) is actually a good
approximation of the accessibility set of A at T(r); in its statement,
(z,7%) : [0,T] = X x U denotes a tame trajectory of .

LEMMA 1. Let h : w — Y be a submersion of an open neighborhood
w of Z(7) into some manifold Y. Given any C* curvea :[0,e] =Y
such that a(0) = h(Z(7)) and Z—K(O) belongs to the interior of the
cone dh(Z(7))K (7, A), there exists an €1, 0 < €, < ¢, such that
a([0,€1]) is contained in the image, under h, of the accessibility set
of A.
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PROOF: There exist generators Gj, 1 < j < m, of types (iv), (v),
(vi) of Definition 1 and positive scalars a;, 1 < j < m, such that:

(vii) The dimension of the linear space generated by the Gy,
1 <7 <'m, is at least equal to that of Y;

(viii) 42(0) = > a;dh(TF(7))G;.
J=1

We can index the G; as follows: for 1 < j < r < m, G;
is of type (iv), for j > r, G; is of type (v) or (vi): there exist
try1 < tppo < oo <y, such that

G = %Q[F(E(tj),uj) = F(a(t;),u(t;)]

or

G5 =& 2T Pz, ),

By modifying slightly the a; and the t;, we can assume that
tr41 < trypa < --- < t, (see the appendix). Let C be the cube
[0,c]™ in R™. We take ¢ > 0 sufficiently small in order that all
the subsequent constructions are possible and we define a mapping
C 3z (z(-,2),u(-,2)) € Tr(4,X) as follows: let I be the set
of all ¢ such that G; is of type (vi). Choose any smooth mapping
£:[0,¢]" — A such that £(0) = Z(0) and %(0) =a;w;, 1 <1< r,
where G; = §§%Z—ﬁlwi. By induction we define functions Sy : C . —
R, 7+ 1< k < m, as follows: S =0, Sy = Sp if k ¢ I,
Sk—1 = S + eragzy if k € I. Then (2(-,2z),u(:,2)) is defined on
[0,T(2)], where T(2) = 7 if t,, < Tort, =7 and m € I and

T(2) =7+ amem ift, =7 and m ¢ I, as follows:

3;(0, Z) = f(zl, ey Zr),
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{ o(t, z) = @(t + Sj(2),t; + 5;(2))2(t5, )
u(t, 2) = u(t + Sj(2))

if] EIand t_, StS tj+1,

{ z(t,z) = exp|(t — tj)Fuj]x(tj,z)

u(t,z) = u;j
if j¢ I'and t; <t <tj+a;z; and finally

{ a(t, z) = P(t + S;(2),t; + ajzj + Sj(2))z(t; + a;2j, 2)
u(t, z) = a(t + S;(2)) :

ifj¢Iandt;+az; <t <tjyy.

It is easy to check the following Lemma by induction on j.

LEMMA 2. The function C 3 z — x(7,z) € X is differentiable at
z = 0 and its differential is

¢ = EajGj ® de.

Jj=1

To finish the proof of Lemma 1, we need another Lemma, whose

proof will be given in the appendix:

LEMMA 3. Let G be a relatively compact open connected subset of
R", whose closure (resp. boundary) we denote by G (resp. 0G).
Let f,g : G — R" be two continuous mappings and let L(f,g)
denote the compact subset {(1—t)f(z)+tg(z) |z € 8G,0 <t < 1}
of R®. Assume that g is a homeomorphism. Then any point in
9(G) — L(f,g) belongs to the image of f.

We apply Lemma 3 to our situation as follows: by the assump-

tion of Lemma 1 there exists a simplex ¢ of dimension e = dimY,
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with one vertex at Opz(r)), containing 4%(0) in its interior and
contained in the cone dh(z(7))K(r, A). Since by condition (vii) @
is surjective, there exists a simplex A with one vertex at 0, contained
in R} = {z | z; > 0 for all i}, which is mapped isomorphically onto
o by ®. As G we shall take the simplex AA = {\z | z € A}, where
the value of A, A € (0, 1), will be choosen later. For A small enough,
AA is contained in C. Choose a C! coordinate chart (O, x) of Y at
y(r) = h(Z(7)), x : O = Ty(»)Y, such that:

(%) X(¥(r)) = Oy

(x) dx(y(7)) : Ty(nY — Ty»Y is the identity mapping;

(xi) x 0 a(A) = 42(0)A.

We choose A small enough so that the image of the mapping
AA D z — h(z(7,2)) is contained in O. As f we take the composi-
tion z — x(h(z(7,2))), as ¢ the differential of f at 0,

j=1
For any v € Ty)Y, any number ¢ > 0, let B(v,a) denote
the closed ball {w | w.€ TynY,llw—vl| < a}, where || || is
any norm on TyY. The set L(f,g) is certainly included in
L' = U(B(a(=) () | 2 € BAA)}. Since [le(2)] / 2] tends

to 0 as ||z|| goes to 0, it is clear that if A is small enough there will
be an ¢; > 0 such that g(n,...,n) € g(AA) — L' for all n € (0,¢,].
Then condition (xi) above and Lemma 3 imply that a([0,€1]) is

contained in the image of f. O

§1 The maximum principle in a special case

Consider the following problem. Let & = (U, X, F) be a sys-
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tem, A, B two submanifolds of X, k¥ : B — R a smooth function
of B without singular points. Let (z,%) : [0,T] — X x U be a
tame trajectory of ¥ satisfying #(0) € A, T(T) € B and (7,7)
is optimal with respect to the cost k(Z(T)) among all trajectories
(z,u) : {0,T,] - X x U of £ such that z(0) € 4, z(T,) € B.
Then we have the following necessary condition on (7,%). Let
H : T*X x U — R be the function H(p,u) = (p, F(z,u)}, z pro-

jection of pon X.

THEOREM 0. There exists an absolutely continuous lifting p :
[0,T) — T*X of T satisfying the following conditions:

(xii) for almost all t € [0,T], &(t) = H(B(t),u(t)), where
H(-,%(t)) is the Hamiltonian field of the function H(-,u(t));

(xiii) for almost all t € [0, T}, H(p(t),u(t)) = sggH(p(t),u);

(xiv) p(0) belongs to the annihilator of Tgg)4;
(xv) the restriction 5(T) | ;7B = udk(Z(T)), where p is a

non-negative scalar.

PROOF: Let m be the codimension of B at Z(T') plus 1. Then in an
open neighborhood w of Z(T) in X, there exists a submersion h =
(B1y... hm-1) : @ = R™ ! such that BNw = A~1(0). Replacing
w by a smaller neighborhood of Z(T) if need be, we can extend k
to a smooth function & : w — R such that the mapping h = A x k :
w— R™ =R™"! x R is a submersion.

We shall apply Lemma 1, taking R™ as ¥, T as 7 and as a,
the curve a : [0,+00) = Y, a()) = (0,...,0, =X + k(F(T))). The
image of a is the translation (0,...,0,k(Z(T))) + £ of the half line
£ ={(0,...,0,t) | t £ 0}. Lemma 1 says that if £ were contained
the interior of the cone dh(Z(T))K(T, A), then for any n > 0, small

100



Introduction to the Theory of Systems

enough, there would exist a trajectory (zy,uy) : [0,Ty] = X x U
of ¥ such that z,(0) € A and A(z,(Ty)) = a(n); but then
h(z,(Ty)) = 0, z,(T,) belongs to B and k(z,(Ty)) < k(FT)):
(Z,7) would not be optimal. Hence £ is not contained in the in-
terior of dh(z(T))K (T, A). The Hahn-Banach separation theorem
tells us that there exists a ¢ € (R™)* (dual of R™), such that
(g, w) > 0 for all w € dh(F(T))K(T, A) and (g, w) < 0for all w € .

Let p be the element godh(Z(T)) in T2 7 X The above shows
that (pz,G) > 0 for any element G of K(T, A). Let us denote by

Q-ﬂa;ﬂ. Taking G of type

p:[0,T] = T*X the function t — pp o
(iv), (v), (vi) respectively, we get:

(xvi) (p(0), w) > 0 for any w € Ty(g)4;

(ovit) (3(8), P(E(1), 0)) 2 {p(#), F(E(0), T(1))) for any v € U
and any Lebesgue point t of (%,%);

(xviii) € (B(t), F(z(¢),u(t))) > 0 for any € = + or — and any
Lebesgue point ¢ of (Z,%).

(xvi) shows that B(0) annihilates T5)A. (xviii) implies that
(B(t), F(Z(t), u(t))) = 0 for any Lebesgue point ¢. (xvii) and (xviii)
imply that (p(t),F(Z(t),v)) > 0 for any v € U and any Lebes-
gue point ¢. Hence we have proved conditions (xiil), (xiv) of the

Theorem.

VThe definition of 7(#) itself shows that p(t) satisfies (xii). Since
{g,w) <Oforallw €, <1‘J(T),w) = (ps,w) <Oforallw € T; 7B
such that dk(Z(T))w < 0. This shows that the restriction of p(T)

to T 7B is a non-negative multiple of dk(Z(T')) and finishes the

proof of Theorem 0. ]
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§2 The general maximal principle

Let us come back to the general optimal control problem stated
in the introduction to Chapter VI. We can reduce this problem to
the one stated in §1 above as follows. First we extend the state
space X to X = R x X x R and the system F to F = (a,F,c).
More explicitely, if d = dimX, T € X is a triple (zo, 2, Td+1),
Tg,T44+1 € R,

dz d_:c_d+_1

d(L'o
o = b g = fee, =5

= c(z,u).

A is replaced by A = {0} x Ax {0}, Bby B=Rx BxR
and the cost by a final cost k : B — R defined by k(zo,, za41) =
z4+1+7(z0, ). (Recall that the initial cost was fOT" c(z(t), u(?))dt+

(T, 2(T,))). It is clear that k has no singular points on B :

ok _
Ta41

We can apply Theorem 0 of §1 above and interpret the results in

our present setting. p(t) = (Py(t), B'(t), Pay1(t))s H(po, P, Pa+1,u) =
po + (p, F(z,u)) + pat1¢(z, u), where z is the projection of p on X.

Then (xii) tells us that %9- = B o, Po>Paqy are cons-

dt
tants. Let 5 : [0,T] — T*X be defined as follows: if py,; # 0,
pt) = N‘+ -P'(t); if pas1 = 0, B(t) = P(t). Set A = 0 if

Papr = 0, A = ‘];—Tﬁ if pay1 # 0. Then the last equation

of (xii) is: ‘—g(t) = H(p(t),u(t)) for almost all ¢ € [0,T], where
Hy(p,u) = (p, F(z,u)) — Ac(z,u). Since py is constant, (xiii) is
equivalent to:

H(p(t), u(t)) = sup{HA(P(t),u) |u € U} = 0.
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(xiv) says that 5(0) is in the annihilator of Tz(g)4. Finally (xv) sta-
tes the the restriction of podxo + (B(T), dz) + Pyy1dzas1 to TE(T)B
is equal to pdzgy + p—g—;l(i z(T))dx +p,g—%(7,'f(7))dxo. Therefore
Pat1 = and is positive. This shows that the scalar A is 0 or —1.

We have proved all the assertions of Theorem 0 of Chapter VI.
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APPENDIX TO CHAPTER VII

PRQOF OF LEMMA 3: Define for every ¢t € [0,1] a continuous
mapping fi:G — R" as follows: f(z) = (1 = t)g(z) + tf(=).
Then fi = f, fo = g and f(0G) C L(f,g) for any t € [0,1].
Let y € g(G) — L(f,9). Then y € ¢(G) and R™ — {y} D L(f,g).
Since L(f, g) is compact, it is easy to find a compact neighborhood
Q of 0G such that QN G is a manifold (0N is the boundary of Q)
and f,(QNG) CR" — {y} for all t € [0,1].

The f; induce homomorphisms of the n** singular homology
groups of pairs: f;, : H.(G,9NG) —» H(R*,R" — {y}).

Since t + f; is a homotopy of mappings of pairs (G,QNG) —
(R®,R"® — {y}), it follows that fo. = fi.. Hence f. = g.. Now g.

can be factored as follows:

H.(G,QNnG) £, Ha(R",R" — {y})
a /
Ha(G=9,0(G - ) ‘ T
o N\

Ha(9(G - 0)),09(G - Q)) —> Ha(9(G - 90),9(G -9 - {v})

a; is an excision of 1N G, hence an isomorphism. «; is induced by

g and is an isomorphism. # is an excision of R® — g(G — Q) and
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an isomorphism. B is onto since ¢(G — ) is a topological manifold
with boundary and y is an interior point. This shows that g, is onto.
If y did not belong to the image of f, f. would be zero and g, too,
since g, = f,. But g, is onto and then H,(R",R" — {y}) would be
zero; since it is isomorphic to Z, we have reached a contradiction.

a

APPROXIMATE CONTINUITY: A measurable function ¢ : {0,7] — Z
of the interval [0,7T] into some topological space Z is said to be
approximately continuous at 7 € [0,7] if for any neighborhood V
of o(7) in Z, the set of all t € [0,T] with ¢(¢) € V has density 1
at 7. The set of all these points has full measure. If Z is a vector
space, and ¢ is integrable, then any primitive of ¢ is differentiable
at 7. -

Given any point of approximate continuity 7 of ¢, any open
interval J containing 7 and any neighborhood V of ¢(7), there
exists a point t € J of approximate continuity of ¢ such that ¢t # 7,
and ¢(t) € V.

A function can be differentiable at a point which is not a point

of approximate continuity for the derivative. Define ¢; : [-1,+1] —

R as follows:

L, L>t>2k+1012;+1>t> k21
prt) = -1, @ >t2m3m T ag >t o k20
0, t=0.
@1 is integrable. Let o(t fo ©1(s)ds. Then 0 is not an appro-

ximate continuity point of w1 but ¢ is differentiable at 0 and its

derivate is 0 there.
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