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Symplectic geometry and Floer
homology

Francois Laudenbach

In memory of Laurent Schwartz whose charm was so
very influential. I owe it to him to have become a
mathematician.

Summary. Here are the revised notes for lectures held at the 13th Brazilian
Topology Meeting in Belo Horizonte (July 2002). The purpose is to give an
introduction to symplectic Floer homology and, in a simple case, a sketch of
proof of the Arnold conjecture. This conjecture gives a lower bound for the
number of fixed points of a Hamiltonian diffeomorphism in terms of the sum of
the Betti numbers. Floer theory is a sort of infinite dimensional Morse theory
on a loop space. The Morse index is replaced by the Maslov-Conley-Zehnder
index. Some results about the Maslov cycle in the linear symplectic group are
gathered in an appendix.

1 A conjecture by V.I. Arnold

Conjecture [4]. Actually the conjecture goes back to Arnold’s note [1]. Here
is the statement:

Let (M?",w) be a symplectic closed manifold. Let o1 be a Hamiltonian diffeo-
morphism of M. Then p1 has at least as many fixed points as a smooth function
has critical points:

Fi > inf it f.
#Fixp, > fecgl(M’R)#crl f

If we think only of the generic case, it is natural to look at Morse functions.
Remembering the Morse inequalities, one can extract a weaker form of the
conjecture.
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Weak conjecture. For a generic Hamiltonian diffeomorphism, the number of
fized points is at least the sum of the Betti numbers:

#Fixp, > Z rank H;(M,7Z) .

i

Conley and Zehnder proved the strong conjecture for M = T?" in [14]. A
particular case of the weak Arnold conjecture — when (M, w) is called monotone
— has been proven by Andreas Floer [24]. Since that time other cases of the
weak conjecture have been proven; the most general case has been solved by K.
Fukaya and K. Ono [25], and also by G. Liu and G. Tian [35]. But as stated
above the Arnold conjecture is still an open question, in particular in the non-
generic case (except for 72"). In this mini-course we would like to explain a
very simple case of the weak conjecture where Floer’s ideas apply. First we
recall a little from symplectic geometry as well as the prehistory of the subject
which begins with Poincaré’s last geometric theorem.

1.1 Basic definitions in symplectic geometry

A symplectic structure on a manifold M is given by a 2-form w € Q?(M), which
satisfies the two following conditions:

1) dw =0,

2) for every x € M, w(z) : T,M x T, M — R is bilinear, skew-symmetric and
nondegenerate.

The determinant of a skew-symmetric n X n matrix vanishes when n is odd.
Then condition 2 forces the dimension of M to be even, dim M = 2n, and the
non-degeneracy condition just says that w™ := w A ... Aw is a volume form on
M. In particular M is oriented.

Example. M = R?" with coordinates (p;,q;), wo = Y. dp; A dg; and

wy =nl(dpy ANdgy A ... Ndpp Adgy) .

Darboux’s Theorem. Any 2n-dimensional symplectic manifold is locally iso-
morphic to (R*™,wp) .

Definition 1.1. Thinking of R*™ as the cotangent space T*R" = R" x R",
where the q;’s are the coordinates on the basis and the p;’s the coordinates on
the fibre, the standard Liouville form is Ao = Y p; dg; and d\g = wy .

Theorem 1.2. The Liowville form Ao is “natural” in the following sense. Let
¢:U —V be a (local) diffeomorphism of R"™, Q = ¢(q). Let ® : U x R** —
V x R™™ be its cotangent extension:

D(q,p) == (so(q), t(Dso(q))fl) .

Then ®* (3. P,dQ;) = Y. pidg; = 'p.dq.
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Proof. ®*(*P.dQ) = 'p.Dy(q)~t.Dp(q) .dq . O

Corollary 1.3. Let M = T*N be the cotangent space of N. There exists a
1-form, called the canonical Liouville form X\, which is given in coordinates as
pdq . Its differential w = dX is closed and is given locally by dp AN dq. So w is
a symplectic form.

Other examples: 72", P"(C), the orientable surfaces equipped with an area
form.

Definition 1.4. With a smooth function H : RxR?*"® — R, (¢,p,q) — H(t,p,q)
= H(p,q), called a Hamiltonian (function), one can associate a Hamiltonian
differential system:

. oH,
b= dq

_ oM,
q= ap

2
Example. With the Hamiltonian H = % + V(q) the following system is asso-

ciated:

p=—vV
g=p

When H is time independent, H(p(t), ¢(t)) is constant along any solution of the

system.

Notation 1.5. Let us identify R?>” and C" = {p; +iqi,...}. If J denotes the
operator of multiplication by i in each complex factor, the Hamiltonian system
from definition 1.4 reads:

z=JVH(z).

Definition 1.6. On a symplectic manifold (M,w) let H : R x M — R be a
smooth Hamiltonian function. We denote Xy, the Hamiltonian vector field
w-dual of dHy:

i (Xg,)w=—dH;.
For each t, X; is also called the symplectic gradient of the function Hy and reads
X: =V H;.

The sign — is due to the usual convention in classical mechanics. When (M,w) =
(R, wp), then v, = JV.

Proposition 1.7. A time dependent vector field X, is Hamiltonian iff it sat-
isfies the two following conditions:
1) gfw = w where ¢, denotes its flow,

2) for any closed curve ¢, [ i(X;)w =0.
c
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d . . . . .
Proof. = 1) ZPw = (Lx,w) = ¢} (((X¢)dw + di(X¢)w) = @i (—ddH,) =
0.
2) [dH, =0.
< By the above calculation the first condition implies that the 1-form (X;)dw

is closed. According to the second condition it is exact.
O

Definition 1.8. The time 1 map @1 from a Hamiltonian flow is said a Hamil-
tonian diffeomorphism. Ham(M) is the set of Hamiltonian diffeomorphisms.

Exercise. Ham(M) is a group.

Lemma 1.9. The same @1 can be obtained from a Hamiltonian function which
is 1-periodic in time.

Proof. Let H; be a Hamiltonian yielding the flow ¢;. Then we have

d .
T Pal®) = Pany@ () = Xm, (Vo) &' () = Xarym, (Paw) -
Then Ky := o/(t)H; is a Hamiltonian for the isotopy {¢aq)}. If : [0,1] —
[0,1] we have @,(1) = ¢1. Moreover if a(t) =4, i = 0,1, for t close to i, K; = 0
near 0 and 1 and then it can be extended periodically.

O

Note. In the rest of this text any Hamiltonian H under consideration will be
1-periodic in time, je: H : S' x M — R, where S* = R/Z. If ¢; denotes its
flow, we have the following 1-1 correspondence:

Fix o1 <= {1 — periodic orbits of Xp,}.

1.2 The Poincaré — Birkhoff Theorem

Theorem 1.10. Let f be an area preserving homeomorphism of the annulus
A = S' x [—1,+1] which satisfies the twist condition. Then f has at least 2
fized points. [7)

Moreover there are infinitely many periodic points, all geometrically distinct
[12].

The universal cover is A = R x [—1,+1]. Let (p, q) be the coordinates in this
product. On A, p becomes an angular coordinate. The area form is w = dpAdg .
A lift f to A reads

(r,9) — (¥',q)
' =p+alpq)
q =q+b(p,q)

where a and b are two functions 1-periodic in p, such that b vanishes for ¢ = £1:
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Definition 1.11. The homeomorphism f satisfies the twist condition if there
is some lift f to A with a(p,+1) > 0 and a(p,—1) < 0.

We will give a proof in two particular cases. The first one is very particular, but
it shows clearly how the fixed points problem is related to the critical points
problem of functions. The second one could be called the Poincaré case. The
idea of generating functions comes to play there.

Proof.

1) The very particular case. Here X = V,,h where h : A — R is a function which
is independent of time and constant along each component of the boundary,
with a (usual) gradient pointing inside the annulus. If 7i is an outgoing vector
at each point of A, we have w(X,7) > 0 and then, if f is the time 1 map of
the flow of X the twist condition is satisfied.

Figure 1

In this situation we have:

crith C Fix f.
We have to prove: #crith > 2. Certainly there is some maximum which is
not on the boundary since the gradient of h points in. So it is a first critical
point lying in the interior of A. Let us assume there is only one maximum. The
second critical point will be obtained by a minimax argument.
Let T = {o:[-1,41] » 8* x [-1,41] | ais C°, a(*1) € S x {£1}}. By
definition the minimax value is

o= o opshot).

Due to the boundary condition and because the absolute maximum is unique,
we have:
max (h(S* x {j:l})) <c<maxh.

The existence of the second critical point follows by the following lemma.
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Figure 2

Lemma 1.12. The minimaz value ¢ is a critical value.

Proof. If not, for some ¢ > 0, h~!([c — ¢, ¢ + €]) is diffeomorphic to h=!(c) x
[c —€,c+¢] and any path from 7 lying in h~1(] — 0o, c +¢]) can be pushed by
a homotopy with fixed endpoints into h~!(] — 0o, ¢ — £]) which contradicts the
definition of c.

O

2) The Poincaré case. Here f is assumed C'-close to Identity (without lying
on a l-parameter group).

Let f be a lift of f as in definition 1.11. We look at the graph G(f) inAx A
endowed with the symplectic form w © w := dp’ A dg’ — dp A dq. The area
preserving property of f is equivalent to G(f) being a Lagrangian submanifold
(ie: w© w induces the null 2-form on G(f)). Now we can make precise the
closeness of f to Id: ~

(¥) det(Df+1Id)#0.

This condition amounts to the transversality of G(f) to the anti-diagonal foli-
ation.

Lemma 1.13. Let © : Ax A - T*A~R2 x A be defined by

p+p a+d
(p,¢:pd)—~Pi=q—q, Bb=p —p, Q=" Q="5—.
Then:

1) © is a symplectic embedding,
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2) the image of the diagonal A is {0} x A,
3) O is equivariant with respect to the actions of Z given by (p,q,p’,q’) —
(p+1,¢,p" +1,¢) and (P, P2, Q1,Q2) — (P1, P2, Q1 +1,Q2) .

Proof. By calculation we get dP; AdQq +dP> AdQ2 = dp’ Adq' —dpAdg. The
other points are obvious. O

On ©(G(f)) we have:

(1) dPyANdQ1+dP, NdQ2 =0
(2) P1 = Pi(Q1,Q2), P> = P2(Q1,Q2).

Condition (2) means that ©(G/(f)) is the graph of some 1-form
a(Q1,Q2) = P1(Q1,Q2) dQ1 + P2(Q1,Q2) dQ2,

and condition (1) means that da: = 0. By the so-called Poincaré Lemma o = ds
for some function S : A — R and:

q—¢ =05
P —p=03S.

These last formulae make clear the following equivalence:
(p,q) € Fix f < (p,q) € crit S .

If g=¢ = -1, then Q2 = ﬂizq— = —1, P, = 0 and P» < 0 according to the
twist condition. _
If ¢ = ¢ = +1, then Q2 = +1, P, = 0 and P, > 0. Therefore S is constant
along each boundary component of A and the gradient points out.

Lemma 1.14. S: A — R is I-periodic in Q1 .

Proof. The graph G(f) is Z-invariant. Then according to 3) from lemma 1.13
the differential of S is 1-periodic in Q1. So it is sufficient to check the periodicity
of S along {Q2 = 1}. But there S is constant, a fortior: 1-periodic. O

As a consequence S descends to the annulus A4 = S x [—1,+1] hence defines a
function S : A — R. Knowing the position of its gradient along the boundary
and using the minimax argument (lemma 1.12), we see that S has at least two
critical points. It finishes the proof that f has at least two fixed points.

Remark 1.15. A function S as above is called a generating function of the
symplectic diffecomorphism f. The same idea does not work directly when
f is not close enough to the Identity. But in [30] L. Hérmander introduced
a generalization, called generating phase or generating family in Weinstein’s
terminology. With this tool M. Chaperon succeeded in giving a simple proof of
the Arnold conjecture for the 2n-torus, previously proven by C. Conley and E.
Zehnder [14]. As V.I. Arnold noticed in Appendix 9 from [1], the case n = 1
includes the C!- Poincaré-Birkhoff theorem.
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2 Symplectic action on loops

2.1 Action functional in case of (R*",w; = dp A dq)

Let H € C~(S' x R?™,R) be a 1-periodic time dependent Hamiltonian and
let H; be its restriction to {t} x R?". Denote A := C*(S',R?"). For x € A,
z(t) = (p(t), q(t)), we define the action functional by the following formula:

Op(x) = 7/51 z*[pdq — Hdt] = 7/ [p(t)q(t) — H(t,x(t))] dt.

s1

If 6z is a tangent vector to A at z (ie a vector field in R?" along z), the
differential of ® g is well defined in the direction of dz and we have:

d®y(z). 0z = —/ [46p + pdq — dHy(z) . 6z] dt
St
After integration by parts we get:
d®y(z).6z = — [4 [¢6p — pdq — dHy.0z] dt
= — [ [wo(dz(t), #(t)) — dHy (). 6x] dt

=+ [s1 [wo(d,02) + dHy(x) . 6] dt .

This computation is basic in the calculus of variations and yields the following
proposition:

Proposition 2.1. The loop x is a critical point of ®y < wo(z,-) + dHi(z) =
0& &= Xg,(z) © x is a I-periodic solution of the Hamiltonian system from
definition 1.4.

2.2 Case of an autonomous C?-small Hamiltonian

Lemma 2.2. Let H : R*® — R be an autonomous Hamiltonian function satis-
fying ||[dVH (z)|| < 2m . Then any 1-periodic solution of the Hamiltonian system
is constant and coincides with a critical point of H .

Proof. The n-th Fourier coefficient of z is ¢, (z) = fol e~ 2"ty (t)dt and ¢, () =
—2imncey(z) . Since ¢o(#) = 0 from Parseval’s formula we have:

; 1.
l#llzz < 5lllz2 -

But £ = JdVH (). implies ||£|loc < 27||#||oo, Which leads to a contradiction
if  is not constant. O
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Corollary 2.3. Let M be a closed symplectic manifold and H : M — R an
autonomous Hamiltonian. If H is C?-small enough, any 1-periodic solution of
& = Xp(x) is constant.

Proof. Let us equip M with a finite atlas of compact symplectic charts. This
means a finite covering of M with the interiors of compact domains K; on the
neighourhood of which symplectic charts are defined. If H is C'-small, every
solution of & = Xpg(z) has a small diameter and then it remains in one of
the K;’s. Here the C2 norm is equivalent to the Euclidian norm of & in the
symplectic coordinates of K; and the above lemma applies. O

There are two consequences of the previous discussion.

1) If our goal is to estimate from below #Per (Xg, ), the number of 1-periodic
solutions, independently of H, we see that we have to take only the contractible
orbits into account.

2) In the case of Lemma 2.2 we have Per(Xp) = crit H showing how the Morse
theory comes into the problem of periodic orbits.

2.3 Action functional in the case of the 2n-torus

Let 7 : R?" — T be the universal cover. Let us denote A = C°(S!, T%"), the
space of smooth contractible loops. For z € A we have u : D? — T2" which is
unique up to homotopy relatively to S* (because the 2nd homotopy group of
T?" is trivial), and 7 : S' — R?" such that z is the restriction of u to S and
z = moZ. Given a Hamiltonian H 1-periodic in time, the action integral is now
defined by:

Bua(z) = f/ # (pdg) +/ Hit,x)dt.
St St
By the Stokes formula we also have:
Dpy(z) = 7/ w'wo+ [ H(t,z)dt
D2 St
where wy denotes the standard symplectic structure on T2" .

2.4 Homotopic assumption

In order to define the action integral for a more general symplectic manifold
(M, w) we will for simplicity make the following very strong assumption:

<w,m(M)>=0

ie: for any V : 2 — M, / v*w =0. Of course this assumption is much
52

stronger than monotonicity, the assumption made in Floer’s work. If A still
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denotes the space of smooth contractible loops of M, for € A the following
integral is well defined:

@H(z):f/ uw+ H(t,z)dt,
D2 St
where u : D> — M extends z : S* — M. The usual calculus of variations
yields:
z € crit @y <= z is a 1-periodic solution of & = Xp, .

In the sequel we will try to make a Morse theory for the action functional even
though it is defined on an infinite dimensional space.

As a side-remark we observe that, when < w, mo(M) ># 0, the action func-
tional becomes a multivalued function. Indeed for a given x : S — M there
are different v : D? — M providing different integrals | pzw*w. Only the
differential of ®p is well defined. Hence the problem of counting the critical
points deals with Morse-Novikov theory which is an analogue of Morse theory
for closed 1-forms instead of real functions ([38], [28]). Actually there are other
difficulties that appear simultaneously when the above homotopic assumption
is not made, like the loss of compactness as it is stated in section 4.

2.5 [L2-gradient of the action in the case of the standard
torus

First let us recall J, the complex structure on C", and its relation with the
symplectic structure wy and the Euclidean product. For £,n € C™,

wO(é?”) =—-<¢&Jdn> .

Here < , > stands for the Euclidean scalar product on R**. Now if z is a
smooth loop in 72" and dz a variation of = we have:

d®p(z) .0z = [wo(&, 62) — wo(Xp(t,x), dz)dt
= [(- <&, Jox >+ < Xpg(t,x), Jox >)dt
= [r <J&+VH, 6z > dt
=< Ji+ VH(t,z), dx >12 .
Therefore the L2-gradient of ® is defined at x € A by:
grad @y (z) = J& + VH(t,x),

which is a vector field tangent to 72" along the loop z .
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Remark 2.4. One can check that the Cauchy problem associated with this
gradient on A is ill-posed. In order to correct this fact the very seminal idea of
Floer is to look at the gradient lines globally. As in Morse theory one looks at
descending gradient lines. Such a line in A is a family of loops

u: Rx St -1
(5,) = u(s,t)

which is a solution of

ou ou

—=—-J——VH(t t)) .

ds ot (t,u(s1))
This equation is nothing but a Cauchy-Riemann equation perturbed by a non-
linear term of order 0: _

Ou+ VH(t,u) =0

ou ou
— 4+ J=.
5 o
Proposition 2.5. Ifu: R x S' — T?" is a solution of the perturbed Cauchy-
Riemann equation, then we have:

where du =

‘I:'H(um) - (I>H(usn) = - I:Ol ngad (DHH%} dsdt
== J2 [ 1 T% + VH(t,w)||* dsdt .

2.6 L*-gradient of the action for a general symplectic man-
ifold

This requires the choice of a compatible almost complex structure.

Definition 2.6. An almost complex structure J on the manifold M is a linear
isomorphism of the tangent space TM such that J*> = —1 . If w is a symplectic
structure, J is said w-compatible if w(&, Jn) is a scalar product.

Proposition 2.7. The space J(w) of the almost complex structures w-compa-
tible is contractible (in particular non-empty).

Proof. This is based on the polar decomposition of a linear isomorphism of
ToM. Let g be an auxiliary Riemannian metric on M. We have w(€,n) =
g(€,0n) and *Q = —Q is non-singular. There exists a unique symmetric iso-
morphism S, positive definite, such that S = Q!Q. Let us put J = Q°1S.
One easily checks:

e J is g—unitary,

e J1SJ is symmetric positive definite and it is a square root of Q*€, so
JI8J =8,
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o S22 =(8J1)2=0%= -2 and then J? = —
o w(&, Jn) =g(&,QJn) = g(& Sn) is a scalar product.

Finally the 1-1 correspondence g «» J answers the question. O
For the sequel we choose such a J and we define the Riemannian metric

<&m>=w(& JIn).

If VH is the gradient of H (¢ being kept fixed) with respect to this metric, the
Hamiltonian system reads

z=J(z)VH(t,z).

By a similar calculation to the case of M = T?", the L?-gradient of the action
functional is given by

grad @y (z) = J(z)& + VH(t, )
and the equation of the gradient lines of @ reads:

0

—“+J( )5 +vH(t W) =0.

3 A brief survey of Morse theory

3.1 Dynamical systems point of view

Definition 3.1. A function H : M — R is called a Morse function if for any
a € crit H, d2H(a) :ToM x T,M — R is non-degenerate. The Morse index
ind,H = ind(a) is the maximal dimension of a subspace in T, M on which
d*H(a) is negative definite.

As a consequence of the implicit function theorem the critical points of a Morse
function are isolated.

Theorem 3.2. (Thom [54]) When M is closed the set of Morse functions is
open and dense in C*°(M,R). In particular to be a Morse function is a generic
property in the sense of Baire.

Lemma 3.3. (Morse’s Lemma) If a is a Morse critical point of H there
ezist local coordinates around a such that

H(z)=H(a) -2} —...—a? + 2, +...

where i = ind, H .
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Figure 3

Such a chart is called a Morse chart. It contains Morse models an example of
which is drawn in figure 3. A Morse model is a compact domain in a Morse
chart whose frontier consists of three parts: the lower (resp. upper) side which
is contained in a regular level set of H below (resp. above) the critical value,
and the lateral side which is a union of gradient segments joining both other
sides. We will choose a Riemannian metric on M which coincides with the
Euclidean metric in some Morse charts around all the critical points. We look
at the descending gradient lines, solutions of

& =—-V H(z).
Let xt be its flow. The unstable (resp. stable) manifold of a is
W"(a) (resp. W*(a)) :={z € M | Xt(w)t;;oa}.

o

According to Morse’s Lemma and the choice of the Riemannian metric, W*(a)
R ind, H .

Theorem 3.4. (Smale [52]) A generic metric (among those which coincide
with a given metric near the critical points) meets the Smale transversality
condition: the stable and unstable manifolds are mutually transversal.

Comment. The reason why the extra (closed) condition imposed to the metrics
does not imply loss of genericity is the following. Starting from a metric go,
in order to make the stable and unstable manifolds mutually transversal it is
sufficient to modify gg near a family of regular level sets made of one between
each pair of consecutive critical level sets.
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The next theorem does not require the Smale transversality condition. On
a closed manifold it is elementary to see that, for any initial condition, the
corresponding solution of the gradient equation tends to a critical point when
t — +o00. Let M denote the set of solutions (or gradient lines) and, for a,b €
crit H, let M(a,b) denote the set of gradient lines descending from a to b:
M= U M(ab),
a,b ecrit H

including M(a,a) which is nothing but the constant a. Here a gradient line
means a parametrized gradient line. We have a natural evaluation map

ev: M—M
v+ 7(0)

and a right action of R on M by translation of time:
(yeM,seR)— (y-s)(t) :=(s+1).

An equivalence class 7 under this action is an unparametrized gradient line or
a connecting orbit.

Theorem 3.5. If M is a closed manifold and M is endowed with the C;2.(R, M)
topology, then we have the following:

1) M is a compact set and ev : M — M is a homeomorphism.

2) If v, — 7 is a converging sequence in M , with v, € M(a,b) for all n, then
there exist a subsequence (still denoted by ~v,) and :

o critical points ap = a, a1, ..., ag, agy1 =,

o for each k € {0,... L}, a sequence of real numbers (s§)7l and a gradient

line ¥ € M(ax, ar11)

such that v, - s& — 4* for every k.
3) The limit v is one of the ¥*’s (up to a finite shift of the variable) if v is not
constant, or one of the ay’s if it is.

The (£ + 1)-uple of connecting orbits (7°, ... ,7) is called a broken connecting
orbit from a to b.

Proof. 1) This is just the Cauchy-Lipschitz theorem.

2) There is a simple proof of this point using Morse models. But we take care to
give a proof which also works in infinite dimension. We look at a regular value
hi of H less than H(a) so that [k, H(a)[ contains no critical values. Let s} be
real numbers such that (H o+,)(s.) = hy. Taking a subsequence if necessary,
Yo - 85 — ' in M and 7! belongs to some M (ag,a1). We leave as an exercise
to prove that agp = a (argue as below). We have:

—infli 1
H(ay) = 1IT1f hTILnH (Wn(sp +T)) .
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For the next step we take a regular value hy of H with no critical values in
[ha, H(ay)[. Let s2 be real numbers such that (H o+,)(s2) = ha. Up to taking
a suitable subsequence, we have:

T 55— 7 € M(a,a2) .

Certainly s2 —s., is unbounded, if not 42 = v* up to a finite shift of the variable,
and
hy = H(%L(si)) = H("/Q(O)) > H(a1),

contradicting ho < H(a1). Hence, for every T > 0 and n big enough we have
H(’Yn(si - T)) < H('Yn(sh + T))

which yields H(a}) < H(a1). Since [hs, H(a1)| contains no critical values, we
have H(a}) = H(aq).

Let us prove that aj = ay. If not, there exist small disjoint open balls B and
B’ centered at a; and a} whose closure contains no other critical points of H
other than their centers. There exists 7 such that v!(¢) € B and v%(—t) € B’
for every t > 7. For n big enough, v, (s} + 7) € B and 7,(s2 — 7) € B’. So,
for every n, there exists 0, €]sl + 7,52 — 7 [ such that 7,(6,) € S, where S is
the frontier of B. Taking a suitable subsequence we have v, - 0,, — v € M.
The sequence ,, — s} is unbounded. If not, as above, 7/ = 7! up to a finite
shift; but ! (]7, +oc[) does not meet S; contradiction. In the same way s2 —6,,
is unbounded and the limit values of H o+’ satisfy

H(ay) > sup H oy'(R) > inf H o y/(R) > H(a}) = H(ay).

Therefore v’ is constant and ~/(0) € S is a critical point of H. Contradiction;
so @} = ay . The other steps go in the same way with a slight modification for
apr1="b.

3) Consider the case where H(v(0)) €] H(ap+1), H(ax) | for some k. Suppose
sk is unbounded; let us say sE — +oo (the other cases are left to the reader).
Hence

lim H (7,(0)) > sup H (+/(R)) = H(a).

So sk is bounded and v = v* up to a finite shift of the variable.
If now H(v(0)) = H(ax), then necessarily s¥ — 400 ans s=! — —oco0 and we
conclude that H o~ is constant. But 7 is a gradient line. So it is a critical point
¢. As in the end of 2) ¢ # a leads to a contradiction with the fact that the

critical points are isolated. O

From now on, we assume the Smale transversality condition as in theorem 3.4.
Unfortunately in spite of the above theorem the picture of the closure of M(a, b)
is still a little difficult to describe, (but it is done in [33]). If we look at the
quotient space M /R of the connecting orbits, the picture is horrible because this
space is not Hausdorff. But there is an abstract compactification of M(a,b)/R



Symplectic Geometry and Floer Homology 16

which has a very nice structure as it is explained in the statement below, which
is a direct consequence of the transversality condition and of theorem 3.5.

Corollary 3.6.

1) M(a,b)/R is a manifold of dimension ind(a) — ind(b) — 1. In particular if
ind(b) > ind(a), M(a,b)/R is empty.

2) There is a compact manifold with boundary and corners M(a,b)/R formed
by adding all broken orbits from a to b.

Part 1) is obvious since W*(a)NW*#(b) is a manifold whose dimension is ind(a)—
ind(b), and the action of R on it is free and proper. A proof of part 2) can be
read in [31] or [46]. We will detail below the easy particular case when the
difference of indices is 1 or 2.

Corollary 3.7.

1) Ifind(a) — ind(b) = 1, M(a,b)/R is made of finitely many points.

2) If ind(a) — ind(b) = 2, M(a,b)/R is made of a finite number of closed
intervals or circles.

Proof. 1) Due to the indices there are no broken connecting orbits from a to
b and we have to show M(a,b)/R is already a compact set. Let (7,),, be a
sequence in the quotient space. It can be lifted to M(a,b) as a sequence (vn),,
such that 7,,(0) belongs to a given regular level set. Then, according to theorem
3.5, every cluster point of this sequence in M belongs to M(a,b). So M(a,b)/R
is compact. Being a 0-dimensional manifold it is a finite set.

2) Here a broken connecting orbit is made of exactly two pieces (7,,7;). Let ¢
be the intermediate critical point. Let k be its Morse index and n the ambient
dimension. We look at a Morse model about c¢. The upper side V., contained
in {H = H(c) + ¢}, is diffeomorphic to D¥ x §*~*=1 and W*(a) traces a k-
manifold ¥y on Vy which meets 0 x S*~%~1, the trace of W*(c), transversally
in a single point p corresponding to 7, . The lower side V_ of the Morse model,

contained in {H = H(c) — ¢}, is diffeomorphic to ¥~ x D"~*. The gradient
lines yield a diffeomorphism

G:Vi\(0x 8" F 1) v\ (81 x0).

If we use polar coordinates, ¢ € S¥~' 1 € S*~F=1 r €]0,1], a point of V is
given by ((go.,r),q/))7 a point of V_ is given by (Lp, (wm)) and , when r # 0,

Glo,r, %) = (p,9,7).

With the help of this model it is easy to see that G(X, \p) is a punctured mani-
fold which compactifies as a manifold with boundary %_ when adding S*~1 x 0
as a boundary. Now the trace of W*(b) on V_ is a (n— k) - dimensional manifold
which intersects S¥~1 x 0 transversally in exactly one point corresponding to 7, .
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Therefore its intersection with ¥_ is a 1-dimensional manifold with boundary.
As the interior points of this arc represent gradient lines descending directly
from a to b, this arc provides M(a,b)/R with a chart of a l-manifold with
boundary near (¥,,7,) - O

W ayny-

wheyny -

wim)n v

Figure 4: Traces of stable/unstable manifolds in the lower side V_ of the Morse
model.

3.2 The Morse-Smale-Witten complex

This complex is also called the Thom-Smale complex because of the note by R.
Thom [53] which is the very beginning of this story. But the idea of transver-
sality was missing and the right statement was given by S. Smale in [52]. More
recently E. Witten rediscovered this complex by another approach.

For simplicity we do not take the orientations into account. Therefore all the
coefficients are in Z/2. Here H will be a Morse function on the closed manifold
M and g will be a generic Riemannian metric as in theorem 3.4.

Notation 3.8. Cj(H,g) is the Z/2-vector space generated by crity(H), the set
of critical points of index k. For k ¢ {0,... ,dim M}, C, =0.

If a € crity(H) and b € crity_1(H), n(a,b) denotes the number of connecting
orbits from a to b.
The boundary operator 9y : Cy(H, g) — Cr_1(H, g) is defined by

k(@)= > nlab)b.

be crity 1 H
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Theorem 3.9.
1) 8k Oak+1 =0.

ker 8k
) Hi(H,g) = oo

3) (Poincaré duality) Hy(H,g) and H,_r(—H,g) are dual one to the other in
a canonical way.

is a Z/2-vector space of finite dimension.

Proof.
1) If b € crity—1(H) contributes to 9 o Ox+1(a), this means there exists a bro-
ken orbit (a,c,b) where ¢ is some critical point of index k. It corresponds to

an endpoint of some interval in M(a,b)/R. Then the other endpoint of this
interval cancels the contribution mod 2 of ¢ to the coefficient of b in 9 00k1(a) .

2) This is clear because Ci(H, g) is finitely generated.

3) If a is a critical point of H of index k, it is a critical point of —H of index
n — k. If 7 is a connecting orbit descending from a to b for H, then ~*, that
is v traversed in the opposite way, is a connecting orbit descending from b to a
for —H. Let us consider the pairing

Cy(H,9) ® Cok(—H,g) = Z/2

defined at the level of the critical points by < a,b >= 1 if and only if a = b.
According to the definition of the boundary operator, the one from C,(H, g) is
the transpose of the one from C,(—H,g). O

Theorem 3.10. (Continuation theorem)
1) If (Hx, gx), A € [0,1], is a generic path of pairs, each being formed with a
function and a Riemannian metric, it induces a morphism

@, : Hi(Ho, g0) — H.«(Hy,91) -

2) @, does not depend on the chosen path.
3) (Naturality) If we have a diagram

10 L5 92
H,(Ho, go) == H.(Hx1,g1) — H.(Hz,92) — H.(Ho, 90) ,

then ®%2 0 21 0 10 = 1d. In particular ®1° is an isomorphism whose inverse
is ®Y1
oL,

This statement allows us to define H,(M,Z/2) as the “common value” of all
homologies H,.(H,g). Notice also that the functions from the path in 1) are
allowed to be non-Morse for a finite number of values of the parameter.
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Proof. We only pay attention to the first part, whose proof yields easily the
other parts. We will show that the given path allows us to define a morphism
of complexes

®: C.(Ho, g0) — Cu(H1, 1),

which means a morphism commuting with the boundary operators. It is ob-
tained in the following way according to an idea of Floer. One integrates the

differential equation

dx

— = —VH,.

) A
For a generic path, there are finitely many connecting orbits from critical points
of Hy to critical points of H; whose indices are the same.

A=0 A=1

Figure 5: A gradient line of K descending from M x {0}

o A way to see this is to introduce a smooth decreasing function p(\) whose
derivative vanishes exactly at the endpoints of [0,1] to order 1. Let K :
M x [0,1] — R be defined by K(z,\) = Hx(z) + p(A). If p decreases
strongly enough, dK vanishes only at the critical points of H; in M x
{i} for i = 0,1. The gradient lines on the product yields the desired
connecting orbits. Observe that a critical point a of Hy satisfies ind, K =
ind,Hp + 1 . But a critical point a of H; satisfies ind, K = ind,H; .

Now, for a € crity(Hp), we set

®(a) = n(a,b)b
b

where the sum is taken over crit;(H1), n(a,b) being the number of connecting
orbits from a to b mod 2.
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The fact that ® commutes with 9 can be deduced from 9o d = 0 when we look
at the above mentioned function K on the product M x [0,1]. O

4 Compactness

4.1 Finite energy

We recall the situation: (M,w) is a closed symplectic manifold, H : S* x M —
R is a Hamiltonian 1-periodic in time, J is an almost complex structure w-
compatible and < &,7 >= w(§, Jn) is the associated Riemannian metric. We
have an action functional ®y defined on the space A of contractible smooth

loops in M:
<I>H:7/ v*w+/ H(t,z)dt,
D2 St

where z : S' — M, v: D? — M and v|0D? = x. It is well defined under the
homotopic assumption
<w,ma(M)>=0.

The critical points of ® are the 1-periodic solutions of the Hamilton differential
equation
z=J(x)VH(t, ).

The descending L>-gradient lines of ®; are the solutions of the perturbed
Cauchy-Riemann equation

ou ou

(%) 7 + J(u)a + VH(t,u) =0.
‘We define the energy of a gradient line u by
oo g
E(u) := 7/700 EQH (u(s)) ds

! ou s ou )
_- Ou - |
) /ny <|| 551 1 (W5; + VHE )] )dsdt

Here u(s) means u|{s} x S'. Of course both terms from the last integrand are
equal. We introduce the set of gradient lines whose energy is finite:

M ={u:Rx S" — M | smooth, contractible, solution of (*), E(u) < oo} .

Proposition 4.1.

1) Ifu € M, ®5(u(s)) tends to a critical value ®(us) when s goes to +oo,
where uy is a 1-periodic solution of the Hamilton equation and there is at least
one accumulating point of {u(s) | s — +oo} in A.

2) There ezists a constant C' > 0 such that (M) C [-C,C].

3) Forue M, E(u) <2C.
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Proof.
1) For u € M we have:

+oo
/ / lie — J(u)VH(t,u)||* dsdt < +o0
—00 Sl

. Ou .
where & = — . Then there exists a sequence s, — +00 (or —o0) such that

ot
(o) e — J (g ) VH (8, )| L2 — 0

where uy, := u(sg). In order to speak of L? we use an embedding of M into
some RV,

As VH is bounded (compactness of M), there exists B > 0 such that, for every
k, ||kl L2 < B. This bound implies that the family of the uy’s is equicontinu-
ous. Indeed:

t1
uk(tl)fumo):/ uk:/ Lyt < (11— to] /2wl = < Blts — t0]V/2.
to St

Thus the family has a compact closure in C°(S*, M) (Arzela-Ascoli Theo-
rem). Taking a subsequence if necessary uy — uy (or u_) in C°. Due to
(+*), u is a Cauchy sequence in L? converging to the continuous function
v=J(us)VH(t,us). By the dominated convergence theorem,

wr(t) — uy (0) = /O'v(e) do.

Therefore u, is C! and a solution of the Hamilton equation. Then it is C*.
Of course @ (ux) — Pp(uy) with k& — co. But, as ®p(u(s)) is monotone, we

get

Oy (u(s)) e Dp(ug).
2) The Arzela-Ascoli Theorem implies easily that the set of the 1-periodic so-
lutions of the Hamilton equation is compact in C*(S*, M). Then the action
functional is bounded on this set.

3) This is clear because E(u) = ®g(u_) — Pu(uy). O
Corollary 4.2. (Exercise, [29] p. 236) M is closed in C52 (R x S, M).

Remark 4.3. As pointed out by David Hermann, the arguments used in the
above proposition imply that the action functional meets the so-called Palais-
Smale condition: if (z,), is a sequence in A such that grad ®(z,) tends to 0 in
L?, then there is a subsequence converging to a critical point of grad ®. But
according to remark 2.4, this observation is of no help for the compactness of

M.
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4.2 Compactness theorem

Theorem 4.4. Under the assumption < w,ma(M) >= 0 (which allows us to
define the action functional) we have the following:

1) There exists A > 0 such that, for every u € M and (s,t) € R x St
[Vu(s,t)| < A.

2) M is compact in C52(R x ST, M) .

Proof. 1 =2

By 1) and the Arzela-Ascoli theorem, M has a compact closure in Cp (R x
S, M) . Moreover the Cauchy-Riemann equation is elliptic. Then the so-called
elliptic regularity implies that the solutions are C*, any C°-limit of solutions
is a solution and both C° and C> topologies coincide on M. Hence M is
C°-compact and then C*°-compact.

Proof of 1). Here it is more convenient to think of u € M as defined on R?
instead of R x S', in particular when a rescaling is performed. If 1) is not true,
there exist sequences uj, € M and (sg,t) € R? such that || Vug(sg,tx)| — co.
Let & > 0 such that e — 0 and || Vug(sk, tr)|| — oo.

Lemma 4.5. (Ekeland [18]) Let g : X — Ry be a continuous function on
a complete metric space. Given g € X and g9 > 0, there exist v* € X and
0 < e* <¢gg such that:

1) d(z*, zo) < 29,

2) e"g(z”) = eog(xo) ,
3) g(z) < 2g(z*) for every x € B(z*,e*).

Proof. If (zo,e0) satisfies g(z) < 2g(zg) for every © € B(zg,e9) one takes
z* = o and €* = g9. If not we choose z1 € B(zg,¢e0) with g(z1) > 2g(zo) and
€1 = €0/2 and so on. The complete proof is left to the reader.

Let us apply this lemma to g = ||Vug(s,t)||. Then there exist other & and
(Sk, tr) such that:

o | Vug(s, tr)]| — oo with &,
o 2| Vug(sk, tr)ll > [|[Vug(s, t)|| for every (s,t) € B((sk,tr)er) -

The sequel of the proof consists in some rescaling:

o= e (o) + 52

where Ry, = ||Vug(sg, tx)||. The formula makes sense when uy, is thought of as
defined on R?, as we said above. We have some obvious properties:

o [[vor(0,0)| =1,
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o ||Vug(s,t)|| < 2 on the “big” disk Dy = B(0,erRy) centered at the origin,

vy, vy, 1

— + J(vg)—=— + =—VH(t =0.
s TG TR, (”R o)
Lemma 4.6. For k big enough, we have
2 2
/ e H% <1C.
Dy || 08 ot

Proof. Let By := B((sk,tk), sk) . Tt is a small disk in R? or in the cylinder as
well. The first identity below is nothing but the change of variables in integrals
and the rest is obvious.

Jo, 190kl? =[5, Vu|?

8uk 2 Buk 2
< — —_r _
< /Bk D5 +‘ It XH(t uk)-‘rXH(t uk)

[ 8uk 2 Buk 2 2 Buk
< — - X X 2| — — Xg|.||X
,/Bk ‘ B +‘ o H + || Xu|* + o || I XH]
</ -%2+2 oue o I +2IXH|? (2ab < a® + 1)
= Jg, |l Os ot " = -

< 3B(ux) +2 [y, | Xul <60 +2 [, | Xl

The last inequality follows from proposition 4.1 and the last integral converges
to 0 with & — oo
O

Lemma 4.7. (The bubbling lemma.) 7Tuking a subsequence if necessary,
v, — v in C52(R2, M) with the following properties:

o |[Vv(0,0)|| =1 (in particular v is not constant),

o [|[Vu(s,t)|| <2 for every (s,t) € R?.

. ? + J(v)% = 0 which means that v is J-holomorphic,
s



Symplectic Geometry and Floer Homology 24

o Joo V02 < 0.

Proof. Using the previous lemma, the bubbling lemma follows from usual
Sobolev techniques as for 1 = 2. O

In order to finish the proof of theorem 4.4 let us show how the bubbling lemma
leads to a contradiction. We have

v
s

. v v L ov ov\ v
/szwf/ﬂqﬂw(g,E)dadtf/uJ(as,J(v)aS)f/‘

2
< 0.

7] 1%}
Since 6—1) and 8_1; are isometric and orthogonal, the last integral is the area of
s
v. Let us put A(r) := v*w, the area of v(B(r)), and {(r) the length of
B(r)

v(0B(r)) . We know that A(r) is a bounded primitive of £(r). Then there exists
a sequence r — oo such that £(ry) — 0 (we see the bubble).

Figure 6: J-holomorphic disk with a small boundary.

For k large, v(BB (rk)) has a small diameter and lies entirely in one of the charts
from a finite atlas of M. Taking a subsequence if necessary all the U(E)B(rk))’s
lie in the same chart U where w is exact, w = d\. We have

/v([)B(rk)) g

which converges to 0 with ¥ — oo. There is a disk Ay in U (maybe with
singularities) whose boundary is v(0B(ry)) and Stokes formula applies and

yields
/ w—0.
Ay

< const. {(ry)
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We remember the homotopic assumption < w,ma(M) >= 0. So we have

/U(B(Tk)) “- ’/Ak “

The right-hand side converges to 0. But the left-hand side converges to the
area of v which is positive because v is a non constant J-holomorphic curve.
This finishes the proof of the compactness theorem. O

4.3 Non-degeneracy condition

In the sequel we shall assume the following generic condition: Let ;1 be the
time 1 map of the Hamiltonian flow; for every fized point a of p1, 1 is not an
eigenvalue of Dy1(a). By the implicit function theorem a is an isolated fixed
point of ;. In that case we say that the 1-periodic solutions of the Hamilton
equation (or of Xp,) are non-degenerate.

Be careful! The non-degeneracy condition is never satisfied for a Hamiltonian
independent of time if there are non-constant 1-periodic orbits.

Looking at u € M as a curve in A, the space of smooth contractible loops in M,
we are interested in its cluster points. For this purpose it is useful to introduce
the evaluation map

ev: M—A

u — u(0)

(where u(s) stands for ¢ € S ~— u(s,t) € M) and the right action of R defined
by

(u-0)(s:t) = u(s +0,1).
One checks easily that u € M implies u-o € M.

Proposition 4.8. For u € M, any cluster point of u(s) in A when s — +oo
is a critical point of the action functional.

Proof. This is a little trickier than in finite dimension because we do not have
a flow on ev(M) (no Cauchy-Lipschitz theorem). Let s — 400 be a sequence
such that u(sy) — A € A. Certainly A belongs to ev(M). Indeed, since
M is compact and taking a subsequence if necessary, u - s, — v € M and
v(0) = A. The convergence being uniform on each compact interval [T, +7]
and according to proposition 4.1 1), we deduce :

sup(®py o v)(R) = sup lim®py (u(sy, —7T)) = lim @p (u(s)),
T—+oo k §—+00
inf(®y ov)(R) = TEIEOO lillcn Dy (u(sk+7T)) = sgrfoo D (u(s)) -

Then (P ov)(R) contains a single point ® (). Since v is a gradient line, this
implies that A is a critical point. O
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Corollary 4.9.
1) If all 1-periodic solutions of Xu, are non-degenerate, then for any u € M,
u(s) = ug in A when s — oo
u

2) —

) 0s
Proof.
1) We consider only s — +0co. We already know that there are cluster points
(propostion 4.1). The existence of a limit reduces to the uniqueness of cluster
points when s — +o00. This set of cluster points is

A= (@ET5 =)

and, as ev(M) is compact, it is a decreasing intersection of compact connected
sets. Therefore it is connected. But, by the previous proposition, it is included
in the finite set crit(®g). So A contains only one point.

(s,t) tends to 0 when s — +oo uniformly int € S*.

2) For u € M we have:

ou ou
- %(s,t) = J(U)E + VH(t,u)| (s,t)

and, according to 1), it tends to
[J(za)is + VH(E,21)] (2)

uniformly in ¢. But this limit is 0 since z1 is a l-periodic solution of the
Hamilton equation. O

In other words any u € M belongs to some M(z_,z.), the set of gradient
lines of @ descending from z_ to zy . The right action of R keeps M(z_,z4)
invariant and an equivalence class u is called a connecting orbit. Now it is
possible to state and prove an analogue of theorem 3.5 2).

Theorem 4.10. (Broken connecting orbit theorem).
Let u,, — u be a converging sequence in M, with u, € M(z_,xy) for all n.
Then there exist a subsequence (still denoted by u,) and:

o I-periodic solutions of Xg,, xo = X_,T1,... ,T¢, Tep1 = T4
o for each k € {0,...,}, a sequence of real numbers (sk), and a L2-
gradient line u* € M(xk, Tj11)

such that wu,, - sﬁ — u* whenn — oo

The (£ + 1)-uple of connecting orbits (@, ..., @) is called a broken connecting

orbit. The proof goes as in theorem 3.5 where the Morse function is replaced
by the action functional. Intentionally we avoided making use of Morse models.
We only used that the set of gradient lines is compact and the finiteness of the
critical set, which is true in our infinite dimensional setting.



Symplectic Geometry and Floer Homology 27

5 Floer Homology

Here is an “easy” case of Floer’s theorem we are aiming at.

Theorem 5.1. Let (M,w) be a closed symplectic manifold. Let H : RxM — R
be a Hamiltonian 1-periodic in time and Xy be its associated vector field. We
assume the following:

1) < [w],m(M)>=0,

2) < Cl(ﬂ/[),ﬂg(M) >=0,

3) the I-periodic solutions of Xp, are non-degenerate.

Then the number of 1-periodic solutions of the Hamilton equation is at least
dimg,, H (M, Z/2).

Condition 2) means that the tangent fiber space, equipped with any complex
structure J which is w-compatible, is trivial as a complex fiber bundle over any
2-sphere in M and this condition does not depend on the chosen J. Actually
there are more precise conclusions like Morse inequalities. But they require
defining an index for each 1-periodic solution of the Hamilton equation. One
could think of 1-periodic solutions as critical points of the action functional and
look at its Morse index. Unfortunately this does not work. When M = R?", an
easy calculation by Fourier transform shows that both the index and co-index
are infinite. The right index to consider is the Conley-Zehnder indez.

5.1 The Conley-Zehnder index (case of R*")

Let & = JVH(t,z) be the Hamiltonian differential equation under consider-
ation and let (m(t)) be a non-degenerate 1-periodic solution. The linearized
differential equation along (z(t)) reads

£=JS(t)E
where S(t) := D?H (t,z(t)), a symmetric matrix 1-periodic in ¢. Let (R;) be its
linear flow. It is a path in Sp(2n), the 2n x 2n symplectic matrices, such that

Ry = I and R; = JS(¢t)R;. The non-degeneracy condition of the 1-periodic
(z(t)) reads :

Ry € Sp(2n)* :={A € Sp(2n) | det(I — A) #0}.
The Maslov cycle is
Y :={A € Sp(2n) | det(I — A) =0}.

It is a hypersurface whose singularities have codimension > 3 in Sp(2n) (com-
pare [2]).
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Figure 7: The Maslov cycle in Sp(2) near I.

Proposition 5.2. [15][45]
1) Sp(2n)* has two connected components:

Sp(2n)* = {4 | det(I — A) € RF}.
2) Any loop in Sp(2n)* is contractible in Sp(2n) .

Another proof is given in the appendix.

Theorem 5.3. (Conley-Zehnder) [15][45]

1) Given a path (Ry) in Sp(2n) from I to Ry € Sp(2n)*, there exists a “natural”
index p((Rt)) € Z which is invariant under homotopy as long as Ry remains
in Sp(2n)*. Moreover it classifies the homotopy classes of such paths (Ry).

2) We have the following sign formula
sign det(I — Ry) = (—1)»~ ()
3) When S is symmetric, independent of t with ||S|| < 2w, then
1((exptJS)) = —ind(S) + n,

where ind(S) denotes the number of negative eigenvalues of S.

This index is “natural” in the sense that it is invariant under conjugacy and ad-
ditive with respect to direct sums. In [6] it is related to a symplectic translation
number.
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Sketch of proof.
1) The polar decomposition yields a homeomorphism

Sp(2n) — Q x U(n)

where U(n) is the unitary group, the intersection Sp(2n) NO(2n), and where Q
is the subgroup of symmetric, positive definite, symplectic matrices. The space
Q is contractible and

detc : U(n) — S*

induces an isomorphism on 7; . Here is a hint for the contratibility of @: for
A € Q, let E) be the eigenspace of eigenvalue A > 1 and set F) := E\ & Ey-1;
F), is a symplectic J-invariant subspace; then A reads in an unique way A = e’
where S is symmetric and anticommutes with J. Thus a contraction is provided
by (A,t) — et?S t e 0,1].

From the polar decomposition we get a continuous map
p:Sp(2n) — S*,

which is the composition of the projection Sp(2n) — U(n) followed by detc .
It induces an isomorphism on 7; . In both connected components Sp(2n)* we
choose base points:

W, = diag(-1,...,

—1) € Sp(2n)™
W_ = diag(Z,fl,.A.,%7

—1,...)eSp(2n)~.

We have p(W,) = (—=1)® and p(W_) = (-1)""!. Given a path (R;), one
connects Ry to W4 by a path a € Sp(2n)* yielding a new path (R}) from I to
Wy in the same homotopy class. In lifting ¢ — p(R}) to the universal cover of
St we get p(t) = ") with a(0) = 0 and a(1) € 7Z. We now can define:
a(l)
1((Ry)) = o

This integer does not depend on the choice of a because a change of « has the
effect of composing (R}) with a loop A in Sp(2n)* and, due to proposition 5.2
2), it does not change u((R:)). Therefore this integer is an invariant of the
homotopy class of (R;) as long as R; remains in Sp(2n)*. The fact that it is a
complete invariant of the homotopy class is a direct consequence of p being a
mp-isomorphism. Therefore we have the following invariance by conjugation

p((PRP) = p((Ry))
where t — P, is any path in Sp(2n).
2) For the sign formula we can take R; = Wy and any path « from I to W, .

Indeed composing a by a loop based at Wy changes p ((R;)) by an even in-
teger. Then calculating the invariant associated with a simple path from I to
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W yields the sign formula.

3) We only check this point on examples. For instance when n = 1 and S =
e 0 _ [ cose —sine e

( 0 & >7 we have exp JS = ( dine  cose > and p(expJS) = e**. If

2 > ¢ > 0, then, with the above notation, R| = W, and a(l) = +=x. If

—21 < e <0, then a(1) = — 7. In both cases we have

p((exptJS)) = —ind(S) + n.

— 0
When S = 0 e

The index formula is still true in that case.

, JS has two real eigenspaces and p((exp tJS)) =0.

Remark 5.4. If (U,) is a loop in U(n) based at I with det(U;) = ¢*® and
a(0) = 0, then a(1)/n is the usual Maslov index of this loop and it belongs to
2.

Definition 5.5. In the same setting as above the Conley-Zehnder index is de-
fined by

ioz((Rr)) = —p((B0)) -

The p-index is closely related to the Maslov index while the icz-index is closer
to the Morse index.

5.2 Relation with a Fredholm index

Let us consider P 9
Fi=—+4+J=+5(st
g5 o T
where S : Rx S' — End(R?") is continuous. When s — 400, S(s,t) is assumed
to tend to a symmetric matrix S4(t) . Let RE be the solution of R = JS4 (t).R

with initial condition Ry = I.
Theorem 5.6. If det(I — RY) # 0, then F : WH2(R x S, R?*") — L2(R x

S R is a Fredholm operator. Its Fredholm index is given by

ind(F) = p((R))) — p((R;))
=icz((R))) —icz((R))).

We recall that W12 is the Sobolev space of functions in L? whose weak deriva-
tives are in L2. It is a Hilbert space for a suitable scalar product. The operator
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F is Fredholm if it has a closed range and if its kernel and cokernel have a finite
dimension. By definition its Fredholm index is

ind(F') = dim ker F' — dim coker F .

Proof. The Fredholm property and the index do not change by adding a com-
pact operator, for instance in modifying S among the bounded matrix functions.
The right-hand side of the index formula does not change as long as Rf remains
in Sp*(2n). In this way we are reduced to the case when S(s,t) is symmetric
and independent of t. For every s € R,

A(s) = J% +5(s) : WH3(S', R*™) — L*(S",R*")

is self-adjoint. Its spectrum is discrete. It contains 0 if and only if there exists
some non-trivial 1-periodic solution of

3
—==JS

o = JS(s)¢
that is det(I — Rqs;) = 0, where Ry is the solution of R = JS(s)R, Re = I.
It is known ([8] Section 17, [43] Thm. A) that the Fredholm index of F is
the spectral flow of the family (A(s)) when s goes from —oo to +oo, that is
the algebraic number of eigenvalues crossing 0. Finally ind(F') is the algebraic
number of crossings of (R-S‘l)t: with the Maslov cycle when it is endowed with
a suitable co-orientation (cf. Appendix). It is “clear” from Figure 8 that this
number is the desired one p((Rf)) — pn((Ry)) -

Ry
r=1 - - >
A ! '

- ul VA +
R | R,
t=0

s =-00 1 s = + 00

Figure 8: The dot lines are {(s,t) | det( — R, ) = 0,¢ > 0}.

Of course one needs to be careful along t = 0. But the index of F' depends
only on the path (Rs1) and the Conley-Zehnder indices of the vertical sides
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do not change if their endpoints are kept fixed. This remark allows us to take
S(s,t) invertible for all s and small ¢. In that case {t = 0} becomes isolated in
{det(I — Rs;) = 0} and Figure 8 tells us the truth. O

5.3 The Conley-Zehnder index of a 1-periodic orbit

Let us consider (M,w, H) as in theorem 5.1. It is possible to define icz(x) when
z is a non-degenerate 1-periodic orbit of the Hamilton equation. We choose an
almost complex structure J which is w-compatible. The complex fiber bundle
(z*T'M,J) is trivial and, in fact, this trivialization is unique up to homotopy.
Indeed, according to 2) from theorem 5.1, it does not depend on the contraction
chosen for z . Having trivialized («*TM, J), the linearized differential equation
reads as in the R?"- case and i¢z(z) is defined as before.

5.4 Application to the gradient lines of the action

Notations. For a 1-periodic Hamiltonian H, Py will denote the set of con-
tractible 1-periodic solutions of the Hamilton equation # = Xg(¢,x). By as-
sumption they are all non-degenerate. We have

Py = crit®y

where ®p is the action functional defined on the smooth contractible loops.
For z_,z. € Py, M(x_,xy) will denote the set of gradient lines descending
from z_ to x4 . That means:

ue M(z_,z4) =
uw:R x S' — T?" is smooth

ou ou
FR +J(u)§ + VH(t,u) =0

u— x4 if s — Foo.

Remark 5.7. About the analytic setting.

The general aim is to describe the set M(z_,z4) as a submanifold of some
Banach manifold on which the perturbed Cauchy-Riemann equation would be
a regular Fredholm equation. This can be achieved when working with WP,
p > 2, the space of functions in LP whose first derivatives are in LP. When the
source is 2-dimensional, such a function is continuous (it can be non-continuous
if p=2). As we do not intend to deal with this sort of difficulty, in the sequel
we shall restrict ourselves to the case where M is the 2n-torus as a differentiable
manifold; as it is said below, in that case it is sufficient to work with W2, But
except for the Sobolev setting we will argue as in the general case.
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Indeed, when M = T?" = R?"/Z?" and if 7 : R?® — T2" denotes the projec-
tion, it is easy to define WH2(R x S, M,z_,x); it is a set of u’s of the form
u = 7o, where @ belongs to W,*(R x S, R**) with some limit conditions at
infinity we are explaining now. First we recall for @ € W2 (Rx ST, R**), accord-
ing to the Fubini theorem, for almost all s € R the restriction a(s) = U|{s} xS
lies in W12(S*, R?"), which is a space of continuous functions; the correspond-
ing u(s) : S' — T?" is continuous accordingly. This enables us to define
WL2(R x SY,T?", z_,x,) by the following requirements: there is some lifting
#4 of 24 to R?™ such that @ — #4 belongs to WH2(Ry x S',R??). It makes
sense because the loop z is homotopic to zero.

As a consequence, for almost every t € S', di(s,t) — £+ (t) is continuous and
tends to 0 when s goes to oo ([10] corollaire VIIL8). Therefore the lifting
z+ is uniquely determined by the choice of @ representing wu; in particular
the choice of @ is unique up to covering transformation. Now it is clear that
WH2(Rx S, T?" x_, x,) is a Banach manifold modelled on W2(R x S, R?").

Proposition 5.8. M(z_,z) is defined by a Fredholm equation in the sense
that, at every u € M(z_,xy), the linearized equation F,& = 0 is Fredholm.
Moreover the index of F,, is

ind(F,) =icz(z_) —icz(zy).

Proof. For u € M(z_,z) and &, a vector field along u tangent to 72",

Fu§ =D&+ J(u)Di& + (DgJ(U)).% + D¢ (VH(t,u))

0 0
where D and D, stand for the covariant derivative with respect to a_u and a—?
s
respectively. Let R = (Z1,..., Z2,) be an orthonormal J-invariant framing of

u*(T(T?")) (that is JR = R up to a permutation) which extends over the limit
orbits 4 and z_ . If ¢ = R(, with ((s,t) € R®", we get

(R*Fu)c - % + J% YL

where L. is an operator of order 0, that is L(s,t) € End(R?*").

Claim. When s goes to £oo, the limit of L(s,t) is a symmetric matriz.

Proof of the claim. The (i,j)-entry of L(s,t) is given by the value at (s,t) of
the following sum:

d
< 7:,D,Z; + JD,Z; + Dy, (J(u)).a—? + Dy, VH > .
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According to corollary 4.9 the limit when s — %00 is
CE(t) =< Z;,JD:Z; + Dy, (J).dox + Dz, VH >|za(t) -
From @4 = J(24)VH(t,z4) and J.Dz,(J) = —Dz,(J).J we derive :

C5(t) =< 2i,J (DxZ; — Dz, X) >
=< Ziv‘][X7 Z/] >= 7“}(21'7 [X7 Z7]) )

where X := JVH . Since X is a Hamiltonian vector field its flow preserves w.
Then
0 =Xw(Z;,Z;)
= (Lxw) (%i, Zj) + w (X, Zi], Z;) + w (2, [X, Zj))
=w (Zi1 [Xv Zj]) —w (Zjv [Xa Zl]) 5

hence L is symmetric. O

As a consequence the linearized equation (R*F,,) ( = 0 takes the form required
in 5.2. From theorem 5.6 we deduce that

R*F, : WH2(R x 81, R™) — L*(R x S, R*™™)
is a Fredholm operator and its index is icz(z—) — icz(z4) . O

In general the Fredholm property is not sufficient in order to deduce that
M(z_,z4) is a finite dimensional manifold. But we observe that H and J
play the role of parameters in the equation of M(z_,zy).

Definition 5.9. (H,J) is a reqular pair if, for every u € M(z_,zy), F, is
surjective.

It is easy to prove that there are enough possible deformations of (H,J) that
for a pair to be regular is a generic property in Baire’s sense. This fact follows
from the infinite dimensional version of Sard’s theorem due to Smale, which
applies to (C*°) - nonlinear Fredholm maps between Banach spaces ([51]).

Remark 5.10. If we start with a Hamiltonian function H whose 1-periodic so-
lutions are non-degenerate and with an arbitrary w-compatible almost complex
structure J, then approximating (H, J) by a regular pair (H, J) close enough to
(H, J) does not change the number of 1-periodic solutions nor their indices since
they can be followed along the approximation, according to the implicit func-
tion theorem (compare subsection 4.3). Moreover I think it is possible to take
H = H, but after the previous remark this question is irrelevant for theorem
5.1.

Corollary 5.11. When (H,J) is regular, M(z_,z) is a finite dimensional
manifold, whose dimension is icz(x_) — icz(Ty) .
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Proof. Apply the implicit function theorem. O

As in Morse theory we have a natural right action of R onto the manifold
M(z_,z4) by translation of the variable s. In particular when icz(z_) —
icz(zy) =0, M(z_,z,) is empty since if it contains a point it would contain
a line.

Theorem 5.12. There exists a natural compactification of M(z_,z)/R made
of adding the broken L*-gradient lines from x_ to x, . It is a manifold (with
boundary and corners) of dimension icz(x_) —icz(z4) — 1.

ZT-

Ty

T+

Figure 9: A broken L2-gradient line with two vertices.

In the example of figure 9 we have icz(z_) > icz(z1) > icz(x2) > icz(z).
Sometimes this theorem is called the glueing theorem and it corresponds to a
piece of work in Floer’s theory.

Corollary 5.13. If icz(z—-) = icz(z4+) + 1, M(z_,z+)/R is a compact 0-
dimensional manifold and hence a finite set whose cardinality mod 2 is denoted
by n(z—,x4).

5.5 The Floer complex

Given a regular pair (H,J), the vector spaces of the Floer complex are:

CFy(H,J) = @ 7)27).x
k( ) z € P(H), icz(a:):k( / )

The boundary operator 8y : CFy(H,J) — CFj_1(H, J) is defined by:

@)= D nlzyy.

icz(y) =k-1



Symplectic Geometry and Floer Homology 36

Theorem 5.14.
Ok 0 0ky1=0.

Using theorem 5.12, the proof of theorem 5.14 goes as in Morse theory. This
allows us to define homology groups

ker 8k
im gy

HF,(H,J) =

The following theorem claims that the Floer homology does not depend on the
chosen regular pair (H,J). It is similar to theorem 3.10.

Theorem 5.15. If (Hy, Jo) and (Hy,J1) are two regular pairs then there exists
a canonical isomorphism

[‘[F'*(I‘[()7 J()) g HF*(Hl,Jl).

The last result we will mention and which implies theorem 5.1 is the following.

Theorem 5.16. Let H be a Morse function independent of time and J an
almost complex structure w-compatible. We assume the Smale transversality
condition: for the Riemannian metric < £,n >= w(&, Jn) the stable and unsta-
ble manifolds are transversal in M.
Then, for T €]0,1] small enough, the following holds:

1) (tH,J) is regular.

2) HF,(tH,J) = H, (M, 7/27) .

Proof. We can start with H so C%-small that lemma 2.2 applies. Then the
only 1-periodic orbits of & = JVH (z) are the critical points of H. In that case
the linearized Hamilton equation at a critical point z¢ is

€= JD?*H(zo)E .

If |D?H (z0)|| < 27 the Conley-Zehnder index is icz(wo) = ind(wg) —n. Let
z_ and x4 be two critical points of H with icz(z_) = icz(z4+) + 1. We have
to find all the solutions of

ou ou

g +J(u)§ +VH(u)=0
such that u — x4 when s goes to £oo. For this purpose we follow Salamon-
Zehnder ([45], p. 1342).

Lemma 5.17. There exists 79 > 0 such that, for every 7 < 79, any u €
M(z_,xy), which is T-periodic in t , is independent of t .
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Proof. If this is not true, there exists a sequence uy € M(z_,z;) where uy, is
periodic in ¢ with a minimal period 74 such that 0 < 7, < 1/k. According to
the broken connecting orbit theorem 4.10, taking a subsequence and a suitable
shift of s if necessary, uy converges to a piece u € M of a broken connecting
orbit v from z_ to z; . Obviously u (and all pieces of v as well) is O-periodic
in ¢t and hence it is a solution of

ou

s +VH(u)=0 (1)
that is a usual gradient line of H in M . Under the Smale tranversality condition,
there are no usual broken connecting orbits from z_ to x4 in M which are
really broken, because their Morse indices differ by 1. As a consequence uy —
u € M(z_,z+) which is a usual gradient line. For such an u, there are two
linearized operators. The first one F? is obtained in linearizing equation (1)
of gradient lines of H. The second one F, depending on a parameter 7, is
obtained in linearizing the Cauchy-Riemann equation

ou ou
g#»J(u)EjLVH(u):O (2)

where u is T-periodic in ¢, that is u : R X R/7Z — M and x4 = lirin u(s,t).
§—1L 00
Let us be more precise. As in proposition 5.8 we use a framing R of u*T M.

Because u does not depend on ¢, one can choose R so that it does not either.
The equation Fj, £ = 0 becomes

for ¢ : R x R/7Z — R?™. The equation F2¢ = 0 becomes

a«

* 170 —
(RFD) ¢ = T

+5(s)¢=0

for ¢ : R — R?™. Here S(s) is an endomorphism of R?" having a limit at infinity
(indeed a symmetric endomorphism).
Sublemma.

1) FO : WY2(R,w*TM) — L*(R,u*TM) is surjective and its Fredholm index
is ind(z_) — ind(z4).

If T is small enough, the two following conclusions hold:
2) ker F) = ker FT .

3) FT is surjective.
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References for proofs
1) This is proven with all details in [44], thm. 3.3.
2) For ¢ : R x R/7Z — R?", let u(¢) be its mean with respect to the t-variable.

On the one hand, (R*F]) ¢ = 0 yields (R*F_) u.(¢) = 0. On the other hand if
u1(¢) = 0, there is an elementary estimate

lClze <7

i
ot || 12
from which one can derive :

¢

ot
where ¢ is a uniform bound of ||S(s)|| (compare [45], p. 1327-1328). When 7 is
small enough, we have ¢7 < 1. In that case (R*F;)({ = 0 and p(¢) = 0 imply
¢ =0; or: (R*F])¢ = 0 implies ¢ = u(¢), which is independent of ¢. Finally

& € ker F] implies £ € ker FB . The converse being obvious we have the wanted
conclusion.

¢

< (R Cllgs + e | 5

L2

L2

3) According to 1) we have

dimker FY = ind(z_) — ind(z4)
=icz(v-) —icz(v4)
= ind(F]) .

According to 2) it is also the dimension of ker F;] . Thus F is surjective. [

We return to the proof of lemma 5.17. Let us fix some 7 such that points 2)
and 3) in the above sublemma are valid. Since the Fredholm index of F] is 1,
by the implicit function theorem, wu is isolated in M (z_,xy) up to a shift in s,
where M (z_,z4) is the space of solutions of the perturbed Cauchy Riemann
equation, which are 7-periodic in time (it makes sense even if 7 is not a divisor
of 1, because the Hamiltonian is autonomous) and whose limits at infinity are
respectively z_ and . Moreover u is uniformly isolated in M,/ (z_,z) for
all 7/ close enough to 7, let us say 7/ €] 7 —¢, 7+ ¢ [; for that we use the implicit
function theorem with a parameter. When k is large, the period 7 is small,
some integer multiple 7, of 7, lies in |7 — &, 7 + & [ and uy, is close to u. Hence
u is not isolated in ./\/lTI; (z—,z4), leading to a contradiction. So the lemma is
proven.

O
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‘We now finish the proof of theorem 5.16. Let us consider the Hamiltonian 7H
and u,(s,t) := u(rs,7t). One checks easily that:

1. w, is 1-periodic in ¢ iff u is 7-periodic,

2. u, is a solution of the Cauchy-Riemann equation perturbed by 7H with
x4+ as boundary condition iff u € M(z_,z4).

3. Fy, is surjective iff F] is surjective.
Let u, be a 1-periodic solution of

ou

ou
%"”J(u)—*f’VTH(u) =0

ot

with x4 as boundary conditions. Let u be the associated 7-periodic map as
above. According to the sublemma, if 7 is small enough the pair (7H,J) is
regular.

In choosing 7y so that lemma 5.17 is valid, we deduce that u is 0-periodic, hence
u, also is. In other words the only 1-periodic solutions of
ou ou

g+.](u)E+V'rH(u) =0

with z1 as boundary conditions are the solutions of

ou

— +VTH(u) =0

95 + VTH(u)
that is the usual gradient lines from z_ to x4 . This amounts to saying that the
Floer complex CF,(TH, J) coincides with the Morse complex up to a translation
of the grading. O

Corollary 5.18. Let us consider the same data and assumptions as in theorem
5.1. Let us denote by py the number of 1-periodic orbits with Conley-Zehnder
index k and by by, the k" Betti number over 7./2Z. . The Morse inequalities are
valid:

Pl = Phet + o > bptk — Dot + ..+ (=1)Fhy .

Final comments

There are many other problems where a sort of Floer homology or cohomology
is involved; one speaks of cohomology when a product is defined and used. Such
groups, even when there are well defined, are not always computable. It is the
same situation as in classical algebraic topology; as there, even if HF, or HF* is
not computable, some deep results can be deduced for instance in arguing with
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exact sequences. Here are a few examples where various Floer (co)-homologies
appear.

1) Fixed points of symplectic diffeomorphisms which are not Hamiltonian (see
[16]). In [47] P. Seidel succeeded in computing the Floer homology of a Dehn
twist along a multi-curve on a surface.

2) Intersections of Lagrangian submanifolds [21]. Here we have to recall that
this problem (and paper) is the historical one because it is the first which has
been solved by means of Floer homology. In fact the problem of fixed points
of symplectic diffeomorphisms could be regarded as a particular case of this
one: take the graph of the diffeomorphism under consideration and look at
its intersection with the diagonal. Due to the topological restrictions in [21],
Floer found more efficient to create another Floer homology for the fixed points
problem in [24].

3) Picard-Lefschetz theory. Of particular interest is the generalization of the
2-dimensional Dehn twist discovered by V.I. Arnold in high dimension, namely
the Dehn twist along a Lagrangian sphere [5]. It appears as the monodromy dif-
feomorphism of a complex Morse singularity. P. Seidel formulated a symplectic
analogue of the holomorphic Morse functions and revealed a long exact sequence
involving the Floer homology of a pair of exact Lagrangian submanifolds and
the Dehn twist along an exact Lagrangian sphere [48].

4) The Weinstein conjecture [57]: Any closed hypersurface ¥ of contact type
in a symplectic manifold (M,w) carries a closed characteristic (contact type
means that along 3 there is a transversal vector field dilating w). In complete
generality it is still an open question. The linear case (M,w) = (R*™,wp)
was proven by C. Viterbo [55]; the proof was based on a linking phenomenon
in some loop space. Since this time many other cases have been solved by
means of various tools including pseudoholomorphic techniques. In [56] Viterbo
succeeded in putting the Weinstein conjecture into the Floer homology world.
It allowed him to recover the known cases and to solve new ones like: M = T*N
where N is 1-connected, or M is a sub-critical Stein manifold.

5) The “chord problem” for Legendrian submanifolds in a contact manifold.
In the case of a Legendrian knot k in R® endowed with its standard contact
form a = dz — ydz, Y. Chekanov [13] gave a “combinatorial” Floer homology
related to the chords of k, that is to the double points of the zy-projection of
k. In that way he succeeded in discovering Legendrian knots with the same
topological type and Thurston-Bennequin invariant, but which are not contact
isotopic. In [20] the Chekanov complex is related to a Floer complex of J-
holomorphic curves in the symplectization (R? x R,w = d(e")) in the spirit
of the contact homology theory from [19].

6) More about contact structures in dimension 3. P. Ozvéth and Z. Szabd
invented a Heegaard-Floer homology for 3-manifolds equipped with a Spin®-
structure [39]. When a contact structure £ (and the associated Spin®-structure)
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is given on the 3-manifold Y, they define an integer ¢(£) coming from calcula-
tions of some Heegaard-Floer groups. This invariant is non trivial but vanishes
when ¢ is overtwisted. So it is a deep new tool for studying tight contact struc-
tures.
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Appendix : Topology of Sp(2n)

A1 Local properties

We consider R?” = C" endowed with its standard symplectic structure wy and
its complex structure J. The basis is ordered as a real basis of C* = (R +
iR)™. The linear symplectic group Sp(2n) is the group of linear isomorphisms
of (R*™,wp). It is identified with a group of invertible 2n x 2n matrices. For
A € Sp(2n) close to I, one can write A = ¢’ where S is symmetric. Then
Sp(2n) is a Lie group which has the same dimension as the space of quadratic
forms on R?", that is n(2n + 1). We recall notation from section 5:

the Maslov cycle ¥ := {A € Sp(2n) | det(I — A) =0},

and Sp™(2n) := {A € Sp(2n) | det(I — A) # 0} .
The Maslov cycle is stratified by the dimension of V;(A), where V;(A) denotes
the eigenspace of A of the eigenvalue 1: ¥ = ¥y LI Xy L --- U Xy, , where the
union is made of disjoint strata

Y = Spi(2n) := {A € Sp(2n) | dim V4 (A) = k}.

Since A — dim(Vl(A)) is semi-continuous, the closure of ¥y is Sy = Xj U
Skt1 - UXa,. We recall that a linear isomorphim A of R?" is symplectic
iff its graph I'4 in R?>" x R?" is Lagrangian with respect to wy © wp. The
intersection of I'4 with the diagonal A projects onto V;(A4).

For a vector space E, Sym(E) denotes the space of self-adjoint operators S :
E — E* and Symy,(E) denotes the subspace of those whose kernel has dimension

k.

Proposition Al.1.
1) ) is a smooth submanifold of codimension M in Sp(2n) .
2) Let Ag € Xj, and Ey :=T 4, N A. There exists a germ of smooth embedding

T : (Sym(E)),0) — (Sp(2n), Ag)

with the following properties:
i) T is transversal to Xy, at Ao .
i) T(s) € Bj <= s € Sym,(Ey) -

Proof. 1) In order to study Sp(2n) near Ay we choose a Lagrangian complement
A* of the diagonal A transversal to A and to the graph I'4,. It is indeed
canonically isomorphic to the dual of A. Every Lagrangian subspace in R?"” x
R2™ close to Ty, is a 'y for some A € Sp(2n).

Let Ap be in 3. A nearby A lies in ¥ iff dim (T4 NA) = k. Let £ be the
space of Lagrangian subspaces in A @ A* transversal to 0 @ A*. Let us denote

Lp={Lel|dm(LNA)=k}.
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Every L € L has a generating quadratic form g. Precisely, L is the graph of a
linear self-adjoint operator B : A — A* and ¢(z) =< B(z),z >. Let us split
A into A = Ey @ Ejj and dually A* = Eo* @ E,". Then B reads as a matrix of

operators
a '
p=(32)

where a and c are self-adjoint. For Lg :=T4,, the corresponding matrix is

0 0
BO?(O Cg)

where ¢q is invertible. When B is close to By, ¢ is also invertible and
LeLly<=a+'clb=0 ().

The last equation says that the kernel of B has dimension k (and not less).
Since this equation is regular near By, we have proven 1). Moreover, in these
coordinates, the equation of the tangent space T, (L) reads a = 0.

2) As a consequence of the last remark the affine space of generating quadratic

forms
a 0 %
(0 co> (%)

is transversal to Ly at I'4, . Therefore when a is so small that L is a I'4, the
corresponding family of A’s is transversal to X at Ag. It is the transversal
T we are looking for. Moreover, the dimension of the kernel of matrix (xx) is
equal to the dimension of kera. Then 2ii) is clear. O

From the above properties we immediatly deduce the following corollary.

Corollary A1.2.

1) The codimension of Xy in Sp(2n) is at least 3 when k> 1.
2) By locally separates the Maslov cycle.

3) £\ X3 is locally connected.

A2. Global connectivity properties
Lemma A2.1. ¥, UX, is arcwise-connected.

Proof. According to 3) from corollary Al.2, it is sufficient to prove that ¥ is
arcwise connected.

Let A; and Ay be two symplectic isomorphisms with 1 as eigenvalue. Let us
choose v1 and vy two eigenvectors of A; and A respectively. Because Sp(2n)
acts transitively on R?" \ 0 one can move A in ¥ by means of a 1-parameter
family of conjugations in order to reduce ourselves to vy = v1 =: v. The sub-
group Sp(2n), stabilizing v acts transitively on the set of Lagrangian subspaces
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containing v. Then we can move A; and Ay in Sp(2n), such that they share a
common invariant Lagrangian subspace L. The subgroup Sp(2n);, stabilizing
L acts transitively on the set of Lagrangian subspaces transversal to L. Then
we are reduced to the case where A; and Ay keep invariant two transversal
Lagrangian subspaces L and L*, with v € L. In that case there are a basis B
of L, containing v, and its dual basis B* of L* such that, for i = 1,2, A; reads
in (B, B*) as

1 x
P R 0
v 0 1 0
x terl
Now connecting A; and As in ¥ is an exercise which is left to the reader
whatever the signs of det ®; may be. O

Proposition A2.2. 3 := Sp(2n) \ ¥ has two connected components.

Proof. One already knows that there are at least two components, one for
each sign of det(I — A). Because Sp(2n) is connected, the closure of each
component of ¥y meets ¥;. Hence it is sufficient to prove that, for every
path v : [0,1] — ;U Xa, v(t) adheres to the same component of Sp*(2n)
(resp. Sp~(2n)) as v(0) does. This is obvious as long as y(t) € X;. The
only problem could come when (ty) € X2, because in this case y(tp) seems
to adhere to three components of ¥y according to proposition Al.1 (compare
figure 5). Generically the 2-dimensional eigenspace V; (’y(to)) is symplectic. In
this case y(to) is conjugated to a normal form

10
01
0 D

Using the loop

cos2mt  —sin 2wt 0
te[0,1] — sin2nt  cos2mt
0 D

we see that, among the three local components of Xy near ¥(tp), two of them
belong to the same component of ¥ . O

A3. About 7(Sp(2n)\ ¥) and co-orientation

First we recall that, when A € ¥, the eigenvalue 1 has an even multiplic-
ity because its characteristic polynomial is symmetric. Generically on ¥; the
multiplicity is 2 and a normal form of A up to conjugation is

1
o1 0
0 @
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Definition A3.1. We define

sign(A) := sign(\. det(I — @)).

Proposition A3.2. The sign is well defined and locally constant on %y .

Proof. Here is a simple proof due to N. Depauw and improved by J. Barge. 1
am pleased to thank both of them for this. Let e;(A) be the unique eigenvector
of A with 1 as eigenvalue. Let us consider the endomorphism M = I— A. Since
A € %y, the kernel of M is generated by e;(A) and the induced map on the
quotient M’ : R*"/Re;(A) — R2" is injective. Let H be the wyp-orthogonal of
e1(A). As the wy-product with e;(A) is preserved by A, we have v — A(v) € H
for every v € R?". Hence the image of M’ is a subspace of H. Due to the
dimensions, M’ is an isomorphism. The symplectic form allows us to identify
the quotient R?” /R e;(A) and H . Therefore M’ can be seen as an isomorphism
of H. Its determinant d(A) is a well defined continuous function on ;. Using
the above notation, we have d(A) = Adet(I — ®) when A is generic. O

Notation A3.3. _

1) Let us denote ©F := {A € ¥ | sign(4) = +} and £* :=2F = 5F U, U
U,

2) % is a hypersurface with singularities of codimension greater than 2 and
it is co-oriented, the positive side being det(I — A) > 0. Then ¥F is a ho-
mological cycle, having a well defined intersection number [S7] . [y] with every
free homotopy class [y] of loops in Sp(2n). When v is in general position, the
intersection number is the number of positive crossings minus the number of
negative crossings.

3) For k € Z, let us define the loop 7 by:

cos 2wkt — sin 2wkt
te[0,1]— y(t) = sin 2wkt  cos 2wkt
0 D

Proposition A3.4. Let v be a loop in Spi(Qn) . Then ~y is homotopic to 0 in
Sp(2n) .

Proof. Since v and ¥* are mutually disjoint we have [£7].[y] = 0. But
we recall from the polar decomposition that «y is freely homotopic to the loop
t — M.y (t) for some k € Z, where M is any symplectic definite positive
symmetric matrix independent of ¢, for instance:

et ((§ 0 ) (5 &) e
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If £ is close to 1, an explicit calculation shows that M.~ crosses ©1 k times in
the same direction. Thus [E7]. [yx] = £k, which forces the k associated with
the given v to be 0. (Compare figure 10). O

Remark A3.5. Co-orientation of

It is clear from the previous discussion that, if the smooth part of ¥ is globally
co-oriented by the sign of det(I — A), then ¥ becomes a boundary in homology.
For this reason we choose for ¥~ the opposite co-orientation: the positive side
of £~ will be given by det(I — A) < 0. With this co-orientation ¥~ and L+
are homologous in Sp(2n). As a consequence we have a clear geometric reason
why the Maslov index of a loop is even.

Acknowledgement. I am very grateful to the anonymous referee whose careful
reading helped me improving this text. I also thank Nicolas Depauw and Jean-
Claude Sikorav for several conversations.
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