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Introduction

The theory of manifolds without conjugate points is one of the most chal-
lenging research areas in geometry. A complete Riemannian manifold
(M, g), where M is a C∞ manifold and g is a C∞ Riemannian metric
in M , has no conjugate points if the exponential map at every point is
non-singular. This is equivalent to the fact that every geodesic is glob-
ally minimizing in the universal covering M̃ endowed with the pullback of
the metric g by the covering map. Namely, the distance between any two
points in a geodesic in M̃ is just the length of the subset of this geodesic
bounded by these two points. Hyperbolic space and manifolds of nonposi-
tive curvature are well known examples of such manifolds, but the question
of knowing if a manifold without conjugate point admits a metric with non-
positive curvature is very difficult and open.

The absence of conjugate points is on the one hand, a strong condition
from the topological point of view; but on the other hand it gives no hints
about the local geometry of the manifold. So the usual way in geometry to
get the global description of manifolds from local data - like in the theory
of manifolds whose sectional curvatures have constant sign - does not pro-
ceed in this theory. The geometric theory of manifolds without conjugate
points is therefore the result of an exciting interplay between many areas in
mathematics, from classical Riemannian geometry and dynamical systems
to calculus of variations, classical mechanics and geometric group theory.

The purpose of this survey is to give an overview of the main techniques
and results about one of the main subjects of the theory: the relationships
between the topological dynamics of the geodesic flow, the topology and
the global geometry of the manifold. We shall focus on the aspects of the
theory which are not part of the theory of manifolds with nonpositive curva-
ture, where there are already fairly good, complete surveys and books (see
for instance [34], [8], [5], [60]). The theory of manifolds with nonpositive
curvature is much richer in results than the theory of manifolds without
conjugate points, simply because the convexity of many geometric func-
tions and objects determined by the nonpositive curvature is a powerful
tool to study global geometry, topology and the dynamics of the geodesic
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8 Rafael O. Ruggiero

flow of the manifold. This is perhaps the reason why the theory of man-
ifolds without conjugate points is not so popular: it is much harder and
the results are quite often weaker than in the theory of manifolds with
nonpositive curvature.

The topics presented in the survey could be classified in two main sub-
jects: first of all the application of smooth methods or C1 methods to study
the geometry and the dynamics of the geodesic flow in manifolds without
conjugate points; and secondly the application of C0 or variational methods
to study geodesics and global geometry in such manifolds. The application
of C1 methods concerns of course Jacobi fields and curvature, and such
methods allow to study global structures from local data, like in the the-
ory of manifolds with nonpositive curvature. We shall illustrate some of
these methods, unfortunately we have to choose and many interesting ap-
plications won’t be considered. The variational or C0 methods concern the
use of the globally minimizing nature of geodesics in the universal covering
regardless of the sign of sectional curvatures. This is in fact the only in-
formation we have for sure about manifolds without conjugate points. We
shall apply this kind of methods to study the connections between weak
forms of hyperbolicity in the geodesic flow and some hyperbolic aspects of
the topology and the global geometry of the manifold.

The survey is divided in 8 chapters. Chapter 1 has some preliminaries
of Riemannian geometry and some basic results of the theory of geodesic
flows. Chapter 2 contains a survey about the theory of stability of dynam-
ical systems which is closely related with the theory of geodesic flows in
manifolds with negative curvature.

In Chapter 3 we analyze some relevant C1 methods of the theory of
manifolds without conjugate points. Chapter 3 introduces many smooth
objects associated to manifolds without conjugate points, mostly related
to the asymptotic behavior of Jacobi fields. Green subspaces and the Ric-
cati differential equation associated to them are considered; we show that
geodesic flows of compact manifolds with negative curvature are Anosov
and we show the characterization of Anosov flows in manifolds without con-
jugate points: they are characterized by the linear independence of Green
subspaces. The theory of the Riccati equation is closely related with the
theory of Lagrangian invariant graphs which are important tools in calcu-
lus of variations (Hamilton-Jacobi equation, Aubry-Mather theory). These
ideas gave rise to a different, elegant proof of the famous Klingengerg’s the-
orem, made by Mañé, who went further and showed that the existence of a
continuous invariant, Lagrangian subbundle in the unit tangent bundle of a
compact manifold implies the absence of conjugate points. We won’t prove
this theorem in the survey, the book by Paternain [72] is a very good refer-
ence for the subject. We chose the above three theorems as examples of the
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applications of C1 methods because they were turning points in the theory
of Anosov geodesic flows. Anosov’s theorem shows the stability of geodesic
flows in negative curvature; Eberlein’s theorem gives a beautiful geometric
characterization of Anosov geodesic flows in terms of invariant subspaces
naturally associated to manifolds without conjugate points. And Klin-
genberg’s theorem shows an important link between hyperbolic dynamics
and manifolds without conjugate points through the calculus of variations.
Moreover, Green subspaces are Lagrangian, and Mañé’s theorem suggests
that the existence of “many” Lagrangian, invariant subspaces is a typical
feature of manifolds without conjugate points.

In Chapter 4 we start with the study of C0 methods of the theory of
manifolds without conjugate points. We start by the description of surfaces
without conjugate points. We show the famous flat torus Hopf’s theorem;
we show the striking Morse’s description of globally minimizing geodesics of
surfaces of higher genus, and we prove Green’s result about the divergence
of geodesic rays of surfaces without conjugate points. Then we define all the
usual geometric objects of the theory: horospheres, Busemann functions,
and we give a summary of results of what is known about their regularity.

The remaining chapters are devoted to study the interplay between the
dynamics of “weakly stable” geodesic flows without conjugate points and
the global geometry of the manifold. Roughly speaking, weak stability
will refer to different notions of stability - already discussed in Chapter
2 - which are weaker than structural stability. We shall expose a theory
developed since 1990 in several papers by R. Ruggiero ([83], [84], [85], [86],
[87], [88], [89], [90], [91], [92]), based in the following main idea: although
weak forms of stability might not be enough to give accurate data about
local geometry, they are strong enough to imply many important properties
of global hyperbolic geometry.

With the basic topological tools introduced in Chapter 4, we start in
Chapter 5 the application of C0 methods to study the dynamics of expan-
sive geodesic flows in compact manifolds without conjugate points. We
show that such flows have practically the same topological dynamics of an
Anosov geodesic flow. Here we find an example of how powerful is the
combination of the globally minimizing nature of geodesics and a topolog-
ical assumption of hyperbolic nature (expansiveness) on the geodesic flow.
Either one of these conditions considered independently seems to be very
weak. The results of this chapter are very important for the sequel, they
motivate many questions about the relationship between global geometry
and topological hyperbolic dynamics.

In Chapter 6 we pursue the study of the global geometry of the man-
ifold by looking at the relationships between the fundamental group and



10 Rafael O. Ruggiero

the geodesic flow. At this point we give a brief introduction of geometric
group theory, which showed to be very convenient and enlightening in the
study of global geometry. We define Gromov hyperbolic groups, Preiss-
mann groups, and many geometric objects associated to groups as metric
spaces. We apply such notions to describe the fundamental group of com-
pact manifolds without conjugate points and expansive geodesic flow: ex-
pansiveness implies Gromov hyperbolicity. This surprising fact strengthens
the analogies between Anosov and expansive geodesic flows in what con-
cerns the global geometry of the manifold. And motivate us to look for the
weakest hyperbolic-like assumptions on the geodesic flow which still grant
some hyperbolicity for the fundamental group. One interesting question
arising in this context is a sort of topological version of the stability con-
jecture: does topological stability of the geodesic flow in compact manifolds
without conjugate points imply Gromov hyperbolicity?

In the final two chapters we are devoted to explain the main ideas and
results concerning the interplay between weak stability properties of the
geodesic flow in manifolds without conjugate points, the global geometry
of the universal covering, and geometric group theory. We make first a
review of results in nonpositive curvature in Chapter 7 and then in Chap-
ter 8 we present some recent developments for manifolds without conjugate
points and variable curvature sign. We would like to point out that some of
the main ideas of this theory have the flavor of the theory of connecting or-
bits in Aubry-Mather theory. We conclude the survey with a combination
of the results of Chapters 7 and 8 and the recent work of Perelmann about
the solution of the Poincaré conjecture. We get the existence of metrics
of negative curvature in some three dimensional manifolds without conju-
gate points and weakly hyperbolic geodesic flows, and we could conjecture
that almost every three dimensional, compact manifold without conjugate
points and expansive geodesic flow admits a metric of negative curvature.

I am deeply grateful to Professor Nalini Anantharaman, who made a
careful revision of the manuscript, found many mistakes in its preliminary
versions and gave valuable suggestions and comments which improved sub-
stantially the reading of the text.



Chapter 1

Preliminaries on Riemannian
geometry and geodesics

Our main references here are [29], [34], [31], however any basic text of Rie-
mannian manifolds would contain the material of the section. We shall use
the notation (M, g) to designate a C∞ Riemannian manifold: a differen-
tiable manifold endowed with a Riemannian metric g that will be assumed
to be also C∞.

1 Riemannian manifolds as metric spaces

Let TM be the tangent space ofM . We shall call by lg the length associated
to the metric g, i.e., given a differentiable curve γ : [a, b] −→M , its lenght
in the metric g is

lg(γ) =

∫ b

a

‖ γ′(t) ‖ dt,

where ‖ γ′(t) ‖=
√
g(γ′(t), γ′(t)) is the norm of γ′(t) in the metric g. The

notion of length can be defined in fact in the family of rectifiable curves,
or curves with bounded variation. There is a natural distance associated
to the Riemannian metric g: if x, y are points in M , then

d(x, y) = inf{lg(γ), γ : [0, 1] →M,γ(0) = x, γ(1) = y},
where γ is a diffferentiable (rectifiable) curve. The intuitive idea of a
geodesic joining x and y corresponds to a curve joining these points whose
length attains the distance d(x, y). The Riemannian manifold (M, g) is en-
dowed with a natural structure of metric space associated to this distance,
and we say that (M, g) is complete if it is complete as a metric space.

This idea goes back to ancient greek mathematicians, who studied the
problem of finding the shortest path joining two points in a sphere. Cer-
tainly, the notion of the shortest path joining two points is behind Euclid’s

11
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postulates of plane geometry. Indeed, in the Euclidean plane the straight
lines minimize the length of curves joining points in the plane, and in the
hyperbolic upper-half plane the hyperbolic geodesics are straight lines and
circles which minimize the length of curves with fixed endpoints. The def-
inition of distance is variational in nature: it is the infimum of the lengths
obtained by “varying” the curves joining two points.

Geodesics joining two points always exist in complete Riemannian mani-
folds by Hopf-Rinow’s Theorem. With the aid of some basic features of the
theory of Riemannian manifolds we can formulate rigourously a variational
problem that leads to the solution of a differential equation whose solutions
include the above minimizing geodesics.

2 The Levi-Civita connection

Recall that every Riemannian metric g has a (unique) Levi-Civita connec-
tion

∇ : X (M) ×X (M) −→ X (M),

where X (M) is the set of smooth vector fields of M . The operator ∇
acts as a differentiation of vector fields along curves in M : the vector field
∇(X,Y )p = (∇XY )p evaluated at a point p in M is the same as the value
of (∇ZY )p where Z is a vector field in M such that Z(p) = X(p). In other
words, the operator ∇ acts as a derivation operator in TM × X (M), this
operator restricted to curves is called covariant differentiation.

The Levi-Civita connection satisfies the well known compatibility condi-
tions with respect to the Riemannian metric: if X, Y , Z are smooth vector
fields in M , then

1. Xg(Y,Z) = g(∇XY,Z) + g(Y,∇XZ),

2. [X,Y ] = ∇XY −∇Y X,

where [X,Y ] is the Lie bracket of the vector fields X and Y . The Levi-
Civita connection has an interpretation in terms of classical mechanics: it
defines an acceleration of curves that is compatible with the metric, namely,
the vector field

∇α′(t)α
′(t),

where α is a smooth curve in M . We say that a smooth vector field X
defined along a smooth curve α(t) is parallel if it satisfies the differential
equation

∇α′(t)X(α(t)) = 0.

We say that X(α(t)) is the parallel transport of X(0) along α. It is easy
to check that the parallel transport is an isometry, it preserves angles and
norms of vectors. So we can view the parallel transport as a natural coun-
terpart of the parallel transport of vectors in Euclidean space.
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3 The differential equation of geodesics

Given a smooth curve γ : [0, T ] −→ M with γ(0) = x, γ(T ) = y, a
smooth variation of γ by curves is defined as a differentiable function f :
(−ε, ε)× [0, 1] −→M such that f(0, t) = γ(t). We say that the variation f
has fixed endpoints x and y if f((−ε, ε)×{0}) = x, and f((−ε, ε)×{1}) = y.
A variation of γ can be thought as a local surface containing the curve γ.
A natural way to think about the geodesic joining x to y is to define such
a curve as minimum of the length of variations with endpoints x, y.

A common alternative approach in the literature about geodesics is
to define them as minima of the so-called energy function of varia-
tions: the energy E(c) of a smooth curve c : [0, T ] −→ M is given by

E(c) =
∫ T

0
g(c′(t), c′(t))dt. Observe that taking [0, T ] = [0, 1], we get

by the Schwartz inequality that (L(c))2 ≤ E(c), with equality if and
only if the curve c has constant speed. If we consider now the energy
Eg(f(s × [0, 1])) = E(s) of the curves of a variation f(s, t), and take
derivatives with respect to the parameter s we obtain the well known first
variation formula for the energy:

∂E

∂s
(0) =

∫ 1

0

g(∇γ′(t)γ
′(t),

∂f

∂s
(0, s))dt.

Therefore, since the variational vector field ∂f
∂s (0, s) depends on the vari-

ation f that is an arbitrary variation of γ, we conclude that a critical point
γ (a curve in fact) of the function E(s) must satisfy the differential equation

∇γ′(t)γ
′(t) = 0.

This equation is a second order, linear, ordinary, differential equation, and
hence, a solution γ is uniquely determined by the initial conditions γ(0) =
p, γ′(0) = v. Notice that the equation implies that the solutions have
constant speed:

g(γ′(t), γ′(t))′ = 2g(∇γ′(t)γ
′(t), γ′(t)) = 0,

according to the definition of the Levi-Civita connection (the derivative
g(γ′(t), γ′(t))′ is a notation for the derivative of g(γ ′(t), γ′(t)) with respect
to the vector field γ′(t)). So the solutions γ of the equation satisfy L(γ) =

E(γ)
1
2 . Now, it is easy to check that the minima for L(s) are just the

minima for E(s).
The solutions of the equation ∇γ′(t)γ

′(t) = 0 include of course those
critical points of the energy function which might not be minimum points.
However, a geodesic in the usual literature on Riemannian geometry is
a solution of the above equation. The interpretation of the geodesics in
terms of classical mechanics is that they are precisely the curves of the
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space with vanishing acceleration. So geodesics represent the free motion
in a Riemannian manifold.

The first variation formula has many important consequences, we state
next one of them because it will appear in many places in the survey.

Lemma 1.1. Let (M, g) be a complete Riemannian manifold, and let f :
(−ε, ε) × [0, T ] −→ M be a variation of a geodesic γ(t) = f(0, t) that is
parametrized by arc length. Then we have

∂E

∂s
(0) = g(γ′(T ),

∂f

∂s
(0, T )) − g(γ′(0),

∂f

∂s
(0, 0)).

The above formula tells us that when the variation of a geodesic γ has
no fixed endpoints, then the derivative of the length of the variation at γ
depends of the angles between γ ′(t) and the variational vector field ∂f

∂s at
t = T and t = 0. From this formula we can deduce that the distance from
a point p to a proper submanifold S of M is the length of a minimizing
geodesic β : [0, 1] −→M with β(0) = p, β(1) ∈ S, and β ′(1) perpendicular
to Tβ(1)S.

The basic theory of Riemannian geometry shows that geodesics are in-
deed local minimizers: given a point p in a complete Riemannian manifold
M there exists δ > 0 such that the open neighborhood Vδ(p) of radius δ
centered at p contains every geodesic segment [x, y] joining any two points
x, y in Vδ(p), and this geodesic segment is the unique geodesic segment
joining x, y. In particular, [x, y] minimizes the length among all curves
joining x and y. Such a neighborhood is called normal or convex. This
fact can be proved in many ways, one of them is calculating the second
derivative of the length of variations (the second variation formula) and
verifying that it is always positive for small variations with fixed endpoints
(see for instance [31] for this approach). Another way of proving the local
minimizing property of geodesics is using the theory of the exponential map
that is the subject of the next subsection (see [29]).

4 The exponential map, curvature and Ja-
cobi fields

The exponential map expp : TpM −→ M at the point p ∈ M is defined as
expp(v) = γv(1), where γv(t) is the geodesic whose initial conditions are
γv(0) = p, γ′v(0) = v. Since geodesics have constant speed, we have that

expp(tv) = γv(t)

for every unit vector v ∈ TpM . This map is differentiable, and the unique-
ness of geodesics in terms of their initial conditions grants that the expp is
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a local diffeomorphism (in fact the differential map D0expp is the identity).
Gauss (see [29] for instance) observed that geodesics starting at a point p
in a surface are perpendicular to small spheres centered at p. This fact
holds in any dimension and is called Gauss Lemma, and with this property
in hands we can define local polar coordinates in Riemannian manifolds
with small metric spheres and geodesic rays. From the above observation
it is not hard to show that geodesics are local minimizers as we mentioned
in the previous subsection.

The exponential map is closely related with Jacobi fields and curvature.

Definition 1.1. Given three smooth, non-vanishing vector fields X,Y, Z
defined in an open neighborhood U ⊂ M , the curvature tensor K(X,Y )Z
is another vector field given by the formula

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

The sectional curvature of the plane generated by X(p), Y (p) is defined by

Kp(X,Y ) =
gp(R(X,Y )X,Y )

|X ∧ Y | ,

where |X∧Y | is the area of the parallelogram generated by X(p), Y (p) with
respect to the metric g.

It is not difficult to show that Kp(X,Y ) does not depend on the vector
fields X(p), Y (p) generating the same plane in the tangent space Tp. The
function Kp(X,Y ) is just the Gaussian curvature in the case of surfaces,
and if the surface is a submanifold of Euclidean space, it is of course the
determinant of the second fundamental form. A classical argument due to
Riemann shows that the sectional curvature Kp(X,Y ) is the curvature of
the surface expp(tX(p) + sY (p)), for t, s small, viewed as a submanifold
of the ambient space (M, g). So the curvature describes the shape of the
local surfaces in (M, g) given by the exponential of small open subsets of
the tangent plane at every point.

Definition 1.2. A Jacobi vector field J(t) defined along a geodesic γ(t) is
a vector function which is a solution of the differential equation

J ′′(t) +R(γ′(t), J(t))γ′(t) = 0,

where J ′(t) = ∇γ′(t)J(t) is the covariant derivative of the vector field J(t)
with respect to the vector γ′(t).

Let γ|(a,b) be a geodesic, and let f : (−ε, ε) × (a, b) −→ M be a C3

variation of γ by geodesics, i.e., every curve αs0
(t) = f(s0, t), t ∈ (a, b), is

a geodesic and α0(t) = γ(t). The vector field

J(t) =
∂

∂s
f(s, t)|s=0
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that is tangent to the variation along the geodesic γ(t) is a Jacobi field,
as proved by Jacobi. So, the qualitative theory of the Jacobi equation is
closely related to the study of the infinitesimal behavior of geodesics.

As a solution of a second order differential equation, a Jacobi field is
determined by the values of the vector field and its derivative at one point
of the geodesic. The set of Jacobi fields of a geodesic is a finite dimensional
vector space, and one of the most widely used tools to study the behavior
of the norm of such vector fields is the comparison theory (Sturm-Liouville
theory) for second order, ordinary differential equations. This is the reason
why when the sectional curvatures have fixed sign a lot is known about
the qualitative behavior of Jacobi fields. In Riemannian geometry, the
comparison theory of Jacobi fields is called Rauch’s comparison theory
(see [79]).

The following result connects the exponential map with Jacobi fields.

Lemma 1.2. Let J(t) be a Jacobi field defined in the geodesic γv(t), such
that J(0) = 0, J ′(0) 6= 0. Then

J(t) = Dtvexpp(tJ
′(0)).

The proof of the lemma is very simple: the differential map of expp

applied to a vector W ∈ Ttv(TpM) is the derivative of a curve of the
form ct(s) = expp(tc(s)), where c(0) = v, c′(0) = W . But the function
f(t, s) = ct(s) is a variation by geodesics, so its derivative with respect to
s is a Jacobi field.

A straightforward consequence of the lemma is that if the sectional cur-
vatures are nonpositive, then the exponential map is always non-singular.
From this fact we can deduce the well known Cartan-Hadamard Theorem:

Theorem 1.1. Let (M, g) be a compact manifold with nonpositive curva-
ture. Then the exponential map expp is a covering map for every p ∈M .

The non-singularity of the exponential map at every point is a remarkable
feature, it implies in particular that the universal covering of the manifold is
Rn. Riemannian manifolds with this property are called manifolds without
conjugate points and manifolds with nonpositive curvature are examples of
such manifolds.

Definition 1.3. A geodesic γ of (M, g) has no conjugate points if every
Jacobi field defined in γ has at most one zero.

An elementary application of Lemma 1.2 is the following.

Lemma 1.3. (M, g) has no conjugate points if and only if every geodesic
of (M, g) has no conjugate points.
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The notion of geodesic without conjugate points goes back to variational
calculus and Morse theory. We shall deal with manifolds without conju-
gate points in more detail in a forthcoming section. The most general
result concerning the existence of geodesics is closely related to global ex-
istence theorems of ordinary differential equations and is known as the
Hopf-Rinow Theorem. We state one of its many versions for the sake of
completeness.

Theorem 1.2. Let (M, g) be a C∞ Riemannian manifold. Then the fol-
lowing are equivalent:

1. (M, g) is a complete metric space.

2. Given any two points p, q in M there exists a geodesic joining p to q
such that d(p, q) equals the length of this geodesic.

3. The exponential map expp is surjective for every p ∈M .

4. The maximal interval of definition of any geodesic in M (as a solution
of an ordinary differential equation) is R.

5 The geodesic flow

The interplay between variational ideas and ordinary differential equations
proved to be very rich and convenient, allowing the introduction of many
interesting objects related to geodesics. The equation of geodesics im-
plies that the tangent vector of a geodesic must be parallel with respect
to the connection, and in particular of constant norm, so it is often as-
sumed that geodesics are always parametrized by arclength. We shall sup-
pose throughout the exposition that geodesics have unit speed, we do not
loose any information about the geometry of geodesics if we change their
parametrizations.

The unit tangent bundle T1M of (M, g) is the set of vectors whose norm
is 1 in the norm induced by g. The previous observations about geodesics
imply that we can define a flow in T1M whose orbits are natural lifts of
geodesics. Let θ ∈ T1M and let (p, v) be the canonical coordinates of θ,
namely, p ∈M , v ∈ TpM .

Definition 1.4. The geodesic flow of (M, g) is a one parameter family of
diffeomorphisms, φt : T1M −→ T1M defined by

φt(p, v) = (γ(p,v)(t), γ
′
(p,v)(t)),

where γ(p,v)(t) is the geodesic whose initial conditions are (p, v).
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This flow is C∞ if (M, g) is C∞. The geodesic flow is complete if (M, g)
is complete, and it is clear that the geodesic flow sets up a frame to study
geodesics that is much simpler in many respects than the manifold itself:
the geodesics in (M, g) do not form a flow, they cross each other as often
as we wish. The map π : TM −→ M given by π(p, v) = p is called the
canonical projection of the tangent bundle onto M . By the definition of
the geodesic flow, the canonical projection of an orbit of the geodesic flow
is a geodesic.

Let us denote by M̃ the universal covering of the manifold M , and by
Π : M̃ −→M the covering map. The metric g induces a metric in M̃ called
the pullback of g, denoted by g̃, and defined by g̃(v, w) = g(DΠ(v), DΠ(w)),
where DΠ is the differential of the map Π. The covering transformations
of M̃ become isometries in (M̃, g̃), and the covering map is a local isometry
between M̃ and M . This implies that the geodesics of (M̃, g̃) are projected
under the covering map onto geodesics of (M, g), so the geodesics of M can
be canonically lifted to M̃ . This simple idea is very important and useful
in global Riemannian geometry, and we shall use it many times along the
exposition.

5.1 Sasaki metric, Jacobi fields and the differential of
the geodesic flow

The Riemannian metric g defined in M induces a natural Riemannian
metric in T1M called the Sasaki metric. To construct the Sasaki metric we
need some definitions.

Definition 1.5. Let π : T1M −→M be the canonical projection, π(p, v) =
p. The vertical subspace at a point θ ∈ T1M is the kernel of the map Dθπ.
We denote this subspace by Vθ. The collection of vertical subspaces form a
vector bundle called the vertical bundle of T1M .

Definition 1.6. The horizontal subspace Hθ at a point (p, v) ∈ T1M is the
kernel of the connection map K : TT1M −→ TM which is defined in the
following way: let Z ∈ TθT1M , where θ = (p, v), and let c(t) = (a(t), b(t)),
t ∈ (−ε, ε), be a smooth curve in T1M such that c(0) = θ, c′(0) = Z; then

K(Z) = ∇a′(0)b(0) = ∇Dπ(Z)b(0).

In the last definition, notice that b(t) defines a vector field along the curve
a(t), and that if b(t) is parallel along a(t) then c′(0) is a horizontal vector
of TθT1M . In particular, if γ(t) is a unit speed geodesic with γ(0) = p,
then the curve (γ(t), γ′(t)) is horizontal. Namely, the vector field tangent
to the geodesic flow is always horizontal.

The vertical subspace has dimension n− 1, and the horizontal subspace
has dimension n if n is the dimension ofM . We have that TθT1M = Hθ⊕Vθ,
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and that the horizontal subspace H(p,v) is canonically isomorphic to TpM :
since Dπ is a submersion, given a vector w ∈ TpM there exists a unique
vector W in H(p,v), called the horizontal lift of w, such that Dπ(W ) = w.
Clearly, the map w 7→ W is an isomorphism. The Sasaki metric <,> in
the tangent space of T1M is the metric which turns these subspaces into
orthogonal subspaces,

< X,Y >(p,v)= gp(Dπ(X), Dπ(Y )) + gp(K(X),K(Y )).

The map Dπ is a Riemannian submersion with respect to this metric:
the restriction of Dπ to each horizontal subspace is an isometry.

Now, let γθ be a unit speed geodesic of (M, g), where θ = (p, v) ∈ T1M
indicates the initial position and velocity of γθ. Observe that γθ(t) =
π(φt(θ)).

Lemma 1.4. Given a vector (V,W ) ∈ TθT1M = Hθ ⊕ Vθ, there exists
a unique Jacobi field J(V,W )(t) defined in γθ whose initial conditions are
J(V,W )(0) = V , J ′

(V,W )(0) = W , such that

Dθφt(V,W ) = (J(V,W )(t), J
′
(V,W )(t))

in coordinates of Tφt(θ)T1M = Hφt(θ) ⊕ Vφt(θ).

This lemma is very important, it makes the link between the geometry
of (M, g) and the infinitesimal behavior of the dynamics of the geodesic
flow. The lemma asserts essentially that the behavior of the differential of
the geodesic flow is determined by the behavior of Jacobi fields, and hence,
by the sectional curvatures of (M, g).

One of the immediate consequences of Lemma 1.4 is a reduction of the
study of the dynamics of Dφt to the subbundle of TT1M that is perpen-
dicular to the geodesic vector field. Let Nθ be the subspace of TθT1M of
vectors which are orthogonal to the geodesic flow with respect to the Sasaki
metric, and let N be the subbundle whose elements are the subspaces Nθ,
θ ∈ T1M . Let Hθ ⊂ TθT1M be the intersection of the horizontal subspace
of θ with the subspace Nθ, and let H be the subbundle of such subspaces.

Lemma 1.5. The subbundle N is invariant by the geodesic flow.

Proof. This is a straightforward consequence of the basic theory of the
Jacobi equation and Lemma 1.4, we sketch the proof for the sake of com-
pleteness. Let γ be a unit speed geodesic in (M, g), and let J(t) be a
Jacobi vector field defined in γ. If we differentiate twice the function
f(t) = gγ(t)(J

′(t), γ′(t)) we get that f ′(t) = 0 for every t ∈ R. More-
over, gγ(t)(J(t), γ′(t))′ = gγ(t)(J

′(t), γ′(t)) = gγ(0)(J
′(0), γ′(0)) for every

t ∈ R. Integrating the previous equation we obtain

gγ(t)(J(t), γ′(t)) = gγ(0)(J(0), γ′(0)) + gγ(0)(J
′(0), γ′(0))t.
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Therefore, if J(0) = 0 and gγ(0)(J
′(0), γ′(0)) = 0, the Jacobi field J(t)

stays perpendicular to γ′(t) for every t ∈ R. The subspace of Jacobi fields
generated by such fields has dimension n − 1 and corresponds by Lemma
1.4 to vertical vectors. Let W = (0, J ′(0)) ∈ Vθ, then Lemma 1.4 and
the above formula imply that Dθφt(W ) = (J(t), J ′(t)) ∈ Nφt(θ) for every
t ∈ R.

Now, let J(t) be a Jacobi field such that J ′(0) = 0, gγ(0)(J(0), γ′(0)) = 0.
Such fields generate a n − 1 dimensional subspace of Jacobi fields, which
corresponds to vectors in H according to Lemma 1.4. The initial conditions
of these Jacobi fields grant that gγ(t)(J(t), γ′(t)) = 0 for every t ∈ R, and
again by Lemma 1.4 we obtain that Dθφt(Hθ) ⊂ Nφt(θ) for every t ∈ R.

Since Dθφt is a diffeomorphism for every θ ∈ T1M , t ∈ R, and Hθ, Vθ are
linearly independent generators ofNθ, we conclude thatDθφt(Nθ) = Nφt(θ)

as we wished to show.

The subspaces Nθ are very important in the symplectic theory of the
geodesic flow, which is the subject of the next section.

5.2 Transversal symplectic structure of the geodesic
flow

In this section we review some aspects of the theory of geodesic flows from
the point of view of conservative dynamics. Our main references for the
section are [3], [31]. The geodesic flow of (M, g) is the Euler-Lagrange flow
of the Lagrangian L : TM −→ R given by L(x, v) = 1

2gx(v, v) in the energy
level E = 1, where the energy E is just E(x, v) = gx(v, v). Recall that the
Euler-Lagrange equation of a Lagrangian L defined in TM is

d

dt
Lv(x(t), x′(t)) = Lx(x(t), x′(t)),

where Lv, Lx are respectively notations for the gradients of L with respect
to the v-coordinates in TxM , and the x-coordinates in M . In the case of
the geodesic flow the Euler-Lagrange equation is simply ∇γ′(t)γ

′(t) = 0,
where ∇ is the Levi-Civita connection. As a particular case of mechanical
Lagrangian, i.e., a Lagrangian of the form L(x, v) = 1

2gx(v, v) − U(x),
U : M −→ R, the geodesic flow can be interpreted as the free motion in
the manifold (M, g) (in the case of the geodesic flow, U(x) = 0 for every
x ∈M).

The symplectic structure underlying the geodesic flow arises from the
well known duality relating Lagrangian systems and Hamiltonian systems.
Recall that a symplectic two-form Ω : Rn×Rn −→ R is closed, alternating,
non-degenerate two-form. A symplectic form Ω : TM −→ R is a function
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with the property that the restriction Ωp : TpM −→ R to each tangent
space TpM is a symplectic two-form. Of course, the dimension of M has
to be even if it admits a symplectic form.

The so-called Fenchel transform H : T ∗M −→ R of a convex Lagrangian
L is given by:

H(x, p) = supv∈TxM (p(v) − L(x, v)),

where T ∗M is the cotangent bundle of M and (x, p) are canonical local
coordinates for T ∗M . The function H is called the Hamiltonian associated
to L. The expression of H in the case of the geodesic flow is very simple.
Indeed, let x = (x1, x2, ..xn) be local coordinates for M , and let v ∈ TxM
be given by v = (v1, v2, .., vn) in the coordinates δ

δx1
, δ

δx2
, .., δ

δxn
of TxM .

Let σ : TM −→ T ∗M be the dual map induced by the metric g, given in
local coordinates by

σp(v).w = gp(v, w) =
n∑

i,j=1

gij
p viwj ,

where recall that σ is a 1-form, p ∈M , w ∈ TpM , and gij are the coefficients
of the metric g in the coordinate basis.

Then we get in the case of the geodesic flow that the Hamiltonian H is
just

H(x, p) =
1

2
gx(σ−1(p), σ−1(p)).

Once we have a smooth function H : T ∗M −→ R and a symplectic two
form Ω : TT ∗M −→ R, we define the Hamiltonian vector field XH by the
differential equation

D(x,p)H(Y ) = Ω(XH(x, p), Y ),

where Y ∈ T(x,p)T
∗M and D(x,p)H is the differential of H. The vector

field XH is often called the symplectic gradient of H with respect to Ω. If
we write the differential equation in local coordinates (x, p) of T ∗M we get
the Hamilton equations

x′(t) = Hp(x(t), p(t)),

p′(t) = −Hx(x(t), p(t)),

where Hp, Hx are respectively the gradients with respect to the coordinates
p, x.

There are natural differential forms associated to the cotangent bundle
T ∗M . The canonical (Liouville) 1-form ω : TM −→ R is given by

ω(x,p)(W ) = p(Dxπ
∗(W )),
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where W ∈ T(x,p)T
∗M and π∗ : T ∗M −→ M is the canonical projection.

In local coordinates, the canonical 1-form is given by

ω(x,p) = p · dx =

n∑

i=1

pidxi.

The canonical symplectic form associated to H is defined by

Ω = dω = dp ∧ dx =

n∑

i=1

dpi ∧ dxi.

The geodesic flow in T ∗M is defined by the solutions of the symplectic
gradient of H(x, p) = 1

2gp(σ
−1(p), σ−1(p)) with respect to the canonical

symplectic two-form Ω.

It is not difficult to check that the Euler-Lagrange flow of a convex La-
grangian and the Hamiltonian flow associated to its Fenchel transform are
conjugate by the Legendre transform L : TM −→ T ∗M :

L(x, v) = (x, Lv(x, v)),

where Lv is the gradient of L with respect to the canonical coordinates of
the tangent space TxM (the vertical coordinates in fact). In the case of
geodesic flows, the Legendre transform is just the dual map σ.

A straightforward calculation in local coordinates gives that the pull-
backs L∗(ω) : TTM −→ R, L∗(Ω) : TTM −→ R of the forms ω, Ω, by the
Legendre transform, are the forms

L∗(ω)(x, v)(W ) =< W,X(x, v) >,

L∗(Ω)(x, v)(W,Z) = gx(PH
(x,v)(W ), PV

(x,v)(Z)) − gx(PH
(x,v)(Z), P V

(x,v)(W )),

where < W,X > is the Sasaki metric, X(x, v) is the geodesic vector field,
PH

(x,v) : T(x,v)TM −→ H(x,v) is the orthogonal projection in the horizontal

space, and P V
(x,v) : T(x,v)TM −→ V(x,v) is the orthogonal projection in the

vertical subspace.

Since we shall work mainly in the Lagrangian framework of the geodesic
flow, we shall use the same notations ω, Ω for the pullbacks of the canonical
forms. Their restrictions to TT1M will be denoted by ω, Ω too. Remark
that the restriction of Ω to TT1M is not a symplectic form, because the
dimension of T1M is odd. However, the restriction Ω⊥ : N −→ R to the
subbundle N defined in the previous section gives a symplectic form. Its
expression is

Ω⊥(x, v)(W,Z) = gx(PH
(x,v)(W ), PV

(x,v)(Z)) − gx(PH
(x,v)(Z), P V

(x,v)(W )),
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where PH
(x,v) : T(x,v)TM −→ H(x,v) is the orthogonal projection in the sub-

space H(x,v) = H(x,v)∩N(x,v). A fundamental fact of the theory of geodesic
flows is that these forms are invariant by the differential of the geodesic
flow. In a standard reference of mathematical physics, the invariance of
the canonical forms is shown using the Hamiltonian formalism. We shall
use the Lagrangian point of view just to apply the results of the previous
sections.

Lemma 1.6. The canonical forms ω, Ω⊥ are invariant by the geodesic
flow in T1M . Namely, φ∗t (ω) = ω, φ∗t (Ω

⊥) = Ω⊥ for every t ∈ R, where
φ∗t Θ(w1, w2, .., wk) = Θ(Dφt(w1), .., Dφt(wk)) for every k-form Θ.

Proof. According to Lemma 1.4, given a vector (W,Z) ∈ TθT1M = Hθ ⊕
Vθ, there exists a unique Jacobi field J(W,Z)(t) defined in γθ whose initial
conditions are J(W,Z)(0) = W , J ′

(W,Z)(0) = Z, such that

Dθφt(W,Z) = (J(W,Z)(t), J
′
(W,Z)(t))

in coordinates of Tφt(θ)T1M = Hφt(θ) ⊕ Vφt(θ). Let X(θ) be the geodesic
vector field. Writing Dθφt(W,Z) in the coordinates X(φt(θ)) ⊕Nφt(θ) we
get

Dθφt(W,Z) = gγ(t)(J(W,Z)(t), γ
′(t))X(φt(θ))

+ PN (J(W,Z)(t), J
′
(W,Z)(t))Nφt(θ).

So the canonical one-form ω evaluated in Dθφt(W,Z) gives

ω(Dθφt(W,Z)) = gγ(t)(J(W,Z)(t), γ
′(t)).

By Lemma 1.5 we have that

gγ(t)(J(W,Z)(t), γ
′(t)) = gγ(0)(J(W,Z)(0), γ

′(0)) + gγ(0)(J
′
(W,Z)(0), γ

′(0))t

= ω(W,Z) + gγ(0)(J
′
(W,Z)(0), γ

′(0))t.

Therefore, if we assume that gγ(0)(J
′
(W,Z)(0), γ

′(0)) = 0 we have that

φ∗tω(W,Z) = ω(W,Z) as we wish to show. The point is that the Jacobi
fields with this condition together with parallel Jacobi fields generate all
Jacobi fields in γ. And it is clear that the form ω is φt-invariant along
parallel Jacobi fields. This shows that ω is φt-invariant.

Regarding the symplectic two-form Ω⊥, we get by elementary calculus
of differential forms that if f = φt,

f∗(Ω) = f∗(dω) = d(f∗(ω)) = d(ω) = Ω,

so the symplectic form Ω in TM is φt-invariant. Since the subbundle N is
Dφt-invariant too, we get that Ω⊥ is invariant by the geodesic flow.
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Another nice way of proving that Ω⊥ is φt-invariant is using elementary
properties of the Jacobi equation. In fact, we have,

Ω⊥(Dθφt(W1, Z1), Dθφt(W2, Z2)) = gγ(t)(J(W1,Z1)(t), J
′
(W2,Z2)

(t))

− gγ(t)(J
′
(W1,Z1)

(t), J(W2,Z2)(t)).

This quantity is nothing but the Wronskian of the solutions J(W1,Z1)(t),
J(W2,Z2)(t) that is constant for the Jacobi equation. This implies that

φ∗t (Ω
⊥) = Ω⊥.

Corollary 1.1. The geodesic flow preserves the measure µ = (Ω⊥)n−1∧ω,
the Liouville measure.

The Liouville measure is in fact the Lebesgue measure of T1M . So this
corollary has many strong consequences for the dynamics of the flow and
is the starting point of the smooth ergodic theory of the geodesic flow.
We shall be more concerned in the survey with topological dynamics than
ergodic theory, so we won’t go very deep into this subject in the present
text. However, the symplectic structure of the geodesic flow and little
of ergodic theory will be used in forthcoming sections to illustrate some
important applications of C1 methods to study its dynamics. We would
like to remind one of the main theorems of ergodic theory, due to Birkhoff
[63]. We state the theorem for the case of flows.

Theorem 1.3. Let ψt : N −→ N be a smooth flow, where N is a complete
smooth manifold. Suppose that N supports a probability measure µ that is
invariant by ψt, i.e., for every measurable set A ⊂ N , µ(ψt(A)) = µ(A)
for every t in the set of parameters. Let f : N −→ R be a measurable,
integrable function. Then

1. The function

f̄(x) = lim
t→+−∞

1

t

∫ t

0

f(ψs(x))dx

is a well defined limit in a total measure subset of N .

2. f̄ is integrable and ψt-invariant: f̄(ψt(x)) = f̄(x) for almost every x
in N .

3. The integral of f̄ satisfies
∫

N

f̄(x)dµ =

∫

N

f(x)dµ.

6 The universal covering

We devote the end of the chapter to give a crash course about the theory
of covering spaces. Given two topological spaces X,Y and a continuous
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map Π : X −→ Y , we say that Π is a covering map if for every p ∈ X
there exists an open neighborhood Up ⊂ X containing p such that the
restriction of Π to Up is a homeomorphism. Given a topological space Y , the
collection CY of topological spaces X such that there exists a covering map
ΠX : X −→ Y admits a natural partial order: X1 ≤ X2 if there exists a
covering map σ : X2 −→ X1. By Zorn’s Lemma, there is a maximal element
Ỹ in CY which is called the universal covering of Y . The universal
covering is unique up to homeomorphisms.

The key property of covering spaces is the so-called lifting property of
maps. Namely,

Lemma 1.7. Let Π : X −→ Y be a covering map between two topological
spaces X,Y , and let f : Z −→ Y be a continuous map from a topological
space Z to Y . Let z ∈ Z and q ∈ Π−1(f(z)). Then there exists a unique
continuous map f̃ : Z −→ X such that Π ◦ f̃ = f and f̃(z) = q.

The proof of Lemma 1.7 is based on the fact that the covering map Π is a
local homeomorphism: we can construct local lifts of f using local inverses
of Π. Then we can patch such local lifts and get a lift f̃ of f . We leave the
details to the reader. The map f̃ is called a lift of f , and in general there
might be many lifts of a single map.

6.1 Homotopy classes

One of the most relevant aspects of the theory of covering spaces is its
connection with homotopy theory, isometric actions and uniformization
theory. We recall next the basic notions of the homotopy theory of curves.
The above theory is suited for path connected spaces, so from now on
we shall assume that our topological spaces are just smooth, connected
manifolds.

Given a smooth manifold M , and two continuous curves c : [0, 1] −→M ,
w : [0, 1] −→ M , a homotopy from c to w is a continuous map F : [0, 1] ×
[0, 1] −→M such that

1. F (0, t) = c(t) for every t ∈ [0, 1],

2. F (1, t) = w(t) for every t ∈ [0, 1].

When c(0) = c(1) we say that c is a closed curve or a loop. If c(1) = w(0)
we define the composition c ◦ w : [0, 1] −→M as follows:

1. c ◦ w(t) = c(2t) for every t ∈ [0, 1
2 ],

2. c ◦ w(t) = w(2t− 1) for every t ∈ [ 12 , 1].
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Two closed curves c1, c2 are called homotopic or freely homotopic if
there exists an homotopy from c1 to c2. The homotopy relation between
closed curves is an equivalence relation, and the set of equivalence classes
is called the free homotopy group.

Given p ∈ M , the collection Ωp of loops c with c(0) = c(1) = p is
called the space of loops with base point p. The composition of loops in
Ωp is well defined and gives another element of Ωp. A homotopy F from
c ∈ Ωp to wΩp with base point p is a homotopy from c to w such that
F (s, 0) = F (s, 1) = p for every s ∈ [0, 1]. The homotopy F with base point
p can be viewed as a path of curves in Ωp from c to w. The curves c, w
in Ωp are called homotopic if there exists a homotopy from c to w with
base point p. A loop in Ωp is homotopically trivial if it is homotopic to the
constant loop p. M is said to be simply connected if every loop in Ωp is
homotopically trivial for some p ∈M . With the help of the lifting property
(Lemma 1.7 we can show that the universal covering is simply connected.

It is easy to check that the property of being homotopic in Ωp defines an
equivalence relation in Ωp. Moreover, the composition of loops induces a
natural operation in the set of pairs of equivalence classes which is a group
operation. So the set of equivalence classes in Ωp endowed with this group
operation is called the fundamental group π1(M,p) with base point p of
M . It is easy to show that π1(M,p) and π1(M, q) are isomorphic (in fact,
they are conjugate) for every p, q ∈ M . So we shall denote by π1(M) the
conjugacy class of the base point fundamental groups of M , and we shall
refer to it as the fundamental group of M .

One of the fundamental links between homotopy groups and geometry
is the following famous theorem due of Birkhoff.

Theorem 1.4. Let (M, g) be a C∞ complete (as a metric space) Rieman-
nian manifold. Then in each nontrivial homotopy class there exists a closed
geodesic whose length is minimal in the class.

6.2 Covering transformations and fundamental group

A covering transformation F : M̃ −→ M̃ is a homeomorphism satisfying
Π ◦F = Π. The basic theory of covering spaces shows that covering trans-
formations are closely related with the elements of the fundamental group,
we explain briefly this connection for the sake of completeness.

Given an element [α] ∈ π1(M,p), where α : [0, 1] −→ M is a loop with
base point p, and a lift α̃ ∈ M̃ with α̃(0) = p̃ ∈ Π−1(p), there is a natural
homeomorphism T[α] : M̃ −→ M̃ associated to α which is defined as follows.

Let q̃ ∈ M̃ , to get T[α](q̃) we consider a continuous curve β̃ : [0, 1] −→ M̃
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joining q̃ to p̃. This curve projects onto a curve Π(β̃) = β : [0, 1] −→ M
joining q to p. The curve Γβ = β−1 ◦ α ◦ β defines a loop Γβ : [0, 1] −→M
based on q, where β−1 is just a notation for the curve β−1(t) = β(1 − t).
By Lemma 1.7 we can lift this curve to a curve Γ̃β ⊂ M̃ starting from

q̃ = Γ̃β(0), in a way that α̃ ⊂ Γ̃β . The point T[α](q̃) is given by

T[α](q̃) = Γ̃β(1).

It is easy to show that this point does not depend on the choice of β, so
it is well defined. Moreover, T[α] is a homeomorphism of M̃ without fixed
points, and if we replace α̃ by another lift of α, we get a homeomorphism
S : M̃ −→ M̃ that is conjugate to T[α]. So in fact T[α] also depends on α̃,
but we won’t make this explicit in the notation. The maps T[α] are covering
transformations, and they provide a natural representation of π1(M,p) in
the group of homeomorphisms of M̃ . The maps T[α] can be viewed as
geometric realizations of the elements of the fundamental group.

The main basic feature of the covering transformations is the following
result.

Lemma 1.8. Let M be a smooth manifold. Given p ∈M , we have that M
is diffeomorphic to the quotient space given by the orbit space of the action
of π1(M,p) on M̃ .

6.3 Covering transformations as isometries

Given a Riemannian metric g defined in M , the covering map allow us to
give a natural metric g̃ in M̃ , the pullback of g by the covering map. It is
defined by

g̃x̃(V,W ) = gx(Dx̃Π(V ), Dx̃Π(W ))

where V,W ∈ Tx̃M̃ , and Π(x̃) = x. The manifold (M̃, g̃) is locally isometric
to (M, g) and the geodesics of (M̃, g̃) are lifts of the geodesics in (M, g).

The fundamental group π1(M,p) acts as a group of isometries in (M̃, g̃)
by the very definition of the covering transformations associated to the
fundamental group. Combining this observation and Lemma 1.8 we have
that every connected Riemannian manifold can be obtained as the quotient
of a simply connected Riemannian manifold by the action of a discrete
subgroup of isometries. This simple but relevant fact will be very important
for the sequel, it leads naturally to many considerations and problems in
uniformization theory.



Chapter 2

Dynamical systems and
stability

The purpose of the chapter is to develop some basic notions and tools of
the theory of dynamical systems related to the study of global stability of
systems. A dynamical system is a continuous action φ : Γ×M −→M of a
group Γ on a topological space M , where Γ is taken to be either R or Z. If
M is a C∞ manifold and the action is Ck, we say that φ is a Ck dynamical
system.

Smooth flows in complete manifolds φt : M −→M whose orbits are solu-
tions of a first order ordinary differential equation are well known examples
of smooth dynamical systems or R-actions. The geodesic flow is just one
of such examples. As examples of Z-actions or discrete actions we might
mention the action of smooth endomorphisms of manifolds and its iterates.

Many relevant physical models are given in terms of dynamical systems,
like iteration processes and conservative dynamical systems coming from
classical mechanics. The study of dynamical systems as models leads nat-
urally to look at the evolution of initial conditions of the space under the
action of the system. Such evolution gives rise to asymptotic configurations
of the system, whose study is one of the main subjects of the general theory
of dynamical systems. We shall discuss in the chapter some of the main
results of the asymptotic theory of systems, notably in the case of systems
enjoying some amount of hyperbolicity.

1 Limit set and non-wandering set

The complexity of the dynamics of a system is concentrated in the so-called
limit set of the system.

28
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Definition 2.1. Given a continuous dynamical system φ : Γ ×M −→ M
acting on a complete metric space M , the limit set of a point p ∈M is the
set L(p) ⊂ M given by the following property: for every q ∈ L(p), there
exists a sequence Γk of elements in Γ such that

lim
k→+∞

d(q, φ(Γk, p)) = 0.

The α-limit set α(p) of p is the subset of L(p) given by the limits of
sequences φ(Γk, p) with Γk → +∞. The ω-limit set ω(p) of p is given by
the limits of sequences φ(Γk, p) with Γk → −∞. The limit set L(φ) of a
dynamical system φ is the union of the limit sets of the points in the space.

Definition 2.2. Given a continuous dynamical system φ : Γ ×M −→ M
acting on a complete metric space M , the set NW (φ) of non-wandering
points is defined as follows: p ∈ NW (φ) if and only if for every open
neighborhood V of p there exists n ∈ Γ n ≥ 1, such that V ∩ φ(n, V ) 6= ∅,
where φ(n, V ) = {φ(n, x), x ∈ V }.

Every point in the limit set of a system is non-wandering, and the set
of non-wandering points is a closed, invariant set for the system. If M is
compact, the set of non-wandering points is nonempty. A natural question
in the theory of dynamical systems is to know whether the limit set coin-
cides with the non-wandering set. It happens to be that the answer to this
question is related in many cases with the stability and the hyperbolicity
of the system. We shall come back to this point later in the chapter.

Conservative dynamical systems enjoy many special properties which are
not found in general systems. One of the main basic results of conservative
systems, whose proof is a straightforward exercise, is the following.

Lemma 2.1. Let (M,µ) be a probability space endowed with a probability
measure µ. Let f : M −→M be a smooth homeomorphism which preserves
µ: for every subset A ⊂ M we have that µ(f(A)) = µ(A). Then every
point in the support of µ is non-wandering.

In fact, Lemma 2.1 can be improved.

Definition 2.3. Let φ : Γ ×M −→ M be a continuous dynamical system
acting on a complete metric space M . A point p ∈ M is called positively
recurrent if there exists a sequence Γn ∈ Γ with Γn → +∞, such that
limn→+∞ φ(Γn, p) = p. A point q is called negatively recurrent if the same
above assertion holds with Γn → −∞.

It is clear that the set of recurrent points is a special subset of the set
of non-wandering points. The following result can be easily deduced from
Birkhoff’s theorem (Theorem 1.3).
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Lemma 2.2. Let (M,µ) be a probability space, endowed with a probability
measure µ. Let f : M −→M be a smooth homeomorphism which preserves
µ. Then the set of recurrent points of f has total measure.

Lemmas 2.1 and 2.2 have analogous versions for nonsingular conserva-
tive flows. In particular, such lemmas hold for geodesic flows of compact
Riemannian manifolds.

2 Hyperbolic sets and Anosov dynamics

We introduce in this section the notion of hyperbolic set of a dynamical
system. We define first hyperbolic sets for diffeomorphism and then for
flows.

Definition 2.4. Let f : M −→ M be a C∞ diffeomorphism acting in a
C∞ Riemannian manifold M . A closed invariant subset A ⊂ M for f is
called hyperbolic if there exist constants, C > 0, λ ∈ (0, 1), and a direct
sum decomposition by invariant subspaces TpM = Es(p)⊕Eu(p) for every
p ∈ A, such that

1. ‖ Dfn(W ) ‖≤ Cλn ‖W ‖ for every W ∈ Es(p) and n ≥ 0,

2. ‖ Dfn(W ) ‖≤ Cλ−n ‖W ‖ for every W ∈ Eu(p) and n ≤ 0.

Definition 2.5. Let ψt : M −→M be a C∞ flow acting without singulari-
ties on a complete manifold M . A closed invariant subset A ⊂M is called
hyperbolic for the flow if there exist constants, C > 0, λ ∈ (0, 1), and a di-
rect sum decomposition by invariant subspaces TpM = Es(p)⊕Eu(p)⊕X(p)
for every p ∈ A, where X(p) is the subspace tangent to the orbits of the
flow ψt, such that

1. ‖ Dψt(W ) ‖≤ Cλt ‖W ‖ for every W ∈ Es(p) and t ≥ 0,

2. ‖ Dψt(W ) ‖≤ Cλ−t ‖W ‖ for every W ∈ Eu(p) and t ≤ 0.

The subspace Es(p) is usually called the stable subspace, and the
subspace Eu(p) is called the unstable subspace. When the set of non-
wandering points of a diffeomorphism f is a hyperbolic set, then the dif-
feomorphism is called Axiom A. If the manifold M is a hyperbolic set
then the dynamical system is called an Anosov system, in the honor of
D. Anosov who developed a fairly complete theory of such systems in the
1960’s after the works of E. Hopf and G. Hedlund about geodesic flows of
compact surfaces of negative curvature. We shall come back to this issue
in Chapter 3.

The theory developed by D. Anosov included an accurate analysis of the
topological dynamics of the systems, which led to the proof of the structural
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stability; and the study of statistical or ergodic features of the dynamics.
Since the emphasis of this survey is more topological than ergodic, we shall
discuss for the sake of completeness the main ideas involved in the proof of
the structural stability of Anosov systems.

The first fundamental property of compact hyperbolic sets is the exis-
tence of invariant submanifolds which are tangent to the invariant sub-
spaces Es(p), Eu(p) at every p ∈ A. This result is often called the In-
variant manifold Theorem, and generalizes the existence of invariant
submanifolds of hyperbolic periodic orbits of systems. We follow [48].

Theorem 2.1. Let φ : Γ × M −→ M be a C1 dynamical system given
by either a diffeomorphism (Γ = Z) or a smooth flow without singularities
(Γ = R), acting in a C∞ Riemannian manifold M , and let A ⊂ M be a
compact, invariant hyperbolic set for φ. Then for each p ∈ A there is a
pair of embedded, C1 disks W s

loc(p), W
u
loc(p), called the local stable and the

local unstable submanifolds of p respectively, such that

1. The tangent space of W s
loc(p) at p is Es(p), and the tangent space of

Wu
loc(p) at p is Eu(p).

2. φ(W s
loc(p), t)) ⊂ W s

loc(φ(p, t)), φ(W u
loc(p),−t) ⊂ W u

loc(φ(p,−t)), for
every t ≥ 0,

3. For every δ > 0 there exists C(δ) such that

d(φ(p, t), φ(q, n)) < C(δ)(λ+ δ)td(p, q),

for every q ∈W s
loc(p) and t ≥ 0;

d(φ(p,−t), φ(q,−t)) < C(δ)(λ− δ)−td(p, q),

for every q ∈W u
loc(p) and t ≥ 0.

4. There exists β > 0 and a family of neighborhoods Up which contain
the ball of radius β around p such that

W s
loc(p) = {q ∈M,φ(q, t) ∈ Uφ(p,t) ∀ t ≥ 0},

Wu
loc(p) = {q ∈M,φ(q,−t) ∈ Uφ(p,−t) ∀ t ≥ 0}.

5. If the dynamical system φ is Ck, k ≥ 1, then the stable and unstable
sets are Ck submanifolds.

Given a diffeomorphism f , the global stable manifold W s(x) where x
belongs to a compact hyperbolic set is defined by

W s(x) =
⋃

n≥0

f−n(W s
loc(f

n(x))),
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and the global unstable manifold W u(x) is defined by

Wu(x) =
⋃

n≥0

fn(Wu
loc(f

−n(x))).

If φt is a nonsingular flow with a compact hyperbolic set A, the global
stable and unstable manifolds at a point x ∈ A are given by

W s(x) =
⋃

t≥0

φ−t(W
s
loc(φt(x))),

Wu(x) =
⋃

t≥0

φt(W
u
loc(φ−t(x))).

In the case of Anosov systems the dimension of Es(x) is constant, it does
not depend on x, as well as the dimension of Eu(x). Moreover, the sub-
spaces Es(x) depend continuously on x, as well as the subspaces Eu(x). So
Anosov systems have the property that stable sets have constant dimension,
and unstable sets have constant dimension too. Since for Anosov diffeomor-
phisms stable and unstable subspaces have complementary dimensions, we
have that stable and unstable manifolds of Anosov diffeomorphisms have a
local product structure.

Definition 2.6. Given k > 0, 0 < m < n, a Ck, m-dimensional foliation
of a C∞ n-dimensional manifold M , is a partition F of M into a collection
of sets F (x) called leaves, x ∈M , satisfying the following properties:

1. x ∈ F (x) for every x ∈M , and if F (x)∩F (y) 6= ∅ then F (x) = F (y).

2. Given x ∈M there exists an open neighborhood U of x and a Ck dif-
feomorphism ψ : (−1, 1)m×(−1, 1)n−m −→ U such that ψ((−1, 1)m×
{y0}) is the connected component of the intersection F (ψ(0m, y0))∩U
which contains ψ(0m, y0), for every y0 ∈ (−1, 1)n−m, where 0m is the
zero vector in Rm.

The above definition can be modified to include C0 foliations of dimen-
sion m: we just replace the Ck diffeomorphism ψ by a C0 homeomorphism.
Similarly, we can define a Hölder foliation, or Cα foliation with α ∈ (0, 1),
by replacing the Ck diffeomorphism ψ by a Hölder homeomorphism with
exponent α. The map ψ is often called a trivialization of the foliation F .

Definition 2.7. Let F1, F2 be two Ck foliations in a C∞ n-dimensional
manifold M . We say that F1, F2 have a Cm local product structure,
for m ≥ 1, if for every x ∈ M there is an open neighborhood U of x, and
a Cm diffeomorphism Φ : (−1, 1)a × (−1, 1)n−a −→ U such that

1. Φ((−1, 1)a × {y0}) is the connected component of F1(Φ(0a, y0)) ∩ U
containing Φ(0a, y0) for every y0 ∈ (−1, 1)n−a.
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2. Φ(x0×(−1, 1)n−a) is the connected component of F2(Φ(x0, 0
n−a))∩U

containing Φ(x0, 0
n−a) for every x0 ∈ (−1, 1)n−a.

So F1, F2 have local product structure if they have leaves of complemen-
tary dimensions and there are local simultaneous trivializations of F1, F2

at every point defining local parametrizations of M . We can define C0, Cα

local product structures, with α ∈ (0, 1), replacing the Cm diffeomorphism
Φ by a C0 (Cα) homeomorphism.

The well known Anosov linear automorphisms of the torus illustrate
very well the invariant manifold theorem. The linear map f̃ : R2 −→ R2,
f̃(x, y) = (2x + y, x + y) is a symmetric, measure preserving map which
preserves as well the lattice of points with integer coordinates. So by means
of the covering map from R2 onto T 2 we can project f̃ into a diffeomorphism
f : T 2 −→ T 2. Its differential at every point has two eigenvalues λ < 1 < µ,
which yields that f is Anosov. The eigenvectors of Dpf determine the
directions of the stable and unstable subspaces at p, and the eigenvalues
give the contraction of stable vectors and the expansion of unstable vectors
under the action ofDpf . The topological theory of Anosov diffeomorphisms
is well developed by now. For instance, Anosov diffeomorphisms in T n are
conjugated to linear Anosov maps [38], and there is a beautiful theory of
the so-called codimension one Anosov diffeomorphism combining dynamics,
foliation theory and topology to classify such systems. For a complete
survey about the theory of Anosov diffeomorphisms we refer to [101].

The local product structure for invariant submanifolds of flows without
singularities is defined in a slightly different way since the stable and the
unstable subspaces are not transversal in this case.

Definition 2.8. Let ψt : N −→ N be a C∞, complete flow without sin-
gularities acting on a C∞, n-dimensional manifold N . Suppose that there
exists a pair of foliations of N , F1, F2 preserved by ψt (i.e., the leaf Fi(p)
of Fi containing p satisfies ψt(Fi(p)) = Fi(ψt(p)) for every t ∈ R). We say
that F1, F2 have a Ck local product structure if for every p ∈ N there is a
local transversal section Sp of the flow containing p, a Ck diffeomorphism
f : (−1, 1)(n−1) −→ Sp, and integers a, b with a+ b+ 1 = n, such that

1. f((−1, 1)a × {ȳ0}) is a subset of the connected component of

F1(f(0a, ȳ0)) ∩ Sp

containing f(0, ȳ0) for every ȳ0 ∈ (−1, 1)b.

2. f({x̄0} × (−1, 1)b) is a subset of the connected component of

F2(f(x̄0, 0
b)) ∩ Sp

containing f(x̄0, 0) for every x̄0 ∈ (−1, 1)a.
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The foliations have a C0 local product structure if the local trivialization
f : (−1, 1)(n−1) −→ Sp is a homeomorphism for every p ∈ N . The fo-
liations have a Cα local product structure, where α ∈ (0, 1), if the local
trivialization is Hölder with exponent α.

Anosov flows have always a pair of foliations with Hölder local product
structure, namely, the so-called center stable and center unstable fo-
liations. The center stable foliation W cs of an Anosov flow ψt is given by
the union of the leaves W cs(p) which are defined by

W cs(p) =
⋃

t∈R

φt(W
s(p)),

where W s(p) is the stable submanifold of p. The center unstable foliation
W cu of ψt is given by the union of the leaves W cu(p) which are defined by

W cu(p) =
⋃

t∈R

φt(W
u(p)),

where Wu(p) is the unstable submanifold of p. The submanifolds W s(p),
Wu(p) are usually called strong stable and unstable submanifolds respec-
tively.

The combination of Anosov dynamics and the local geometry of invariant
submanifolds (namely, local product structure) give rise to two of the most
important features of Anosov dynamics: the Anosov closing lemma and the
pseudo-orbit tracing property. These two results are crucial for the proof
of the structural stability of Anosov systems and motivate the definitions
of weak stability which will appear later in the survey. Such properties will
be the subject of the next section.

3 Local product structure, expansiveness and
stability

We start with the definitions of the main notions of stability that will be
considered throughout the survey.

Definition 2.9. Let f : M −→M be a Ck diffeomorphism acting on a C∞

complete manifold M . We say that f is C i-topologically stable, for i ≤
k, if there exists an open Ci neighborhood V of f such that for every h ∈ V ,
there exists a semi-conjugacy σh : M −→M : σh is a surjective, continuous
map satisfying σh ◦ f = h ◦ σh. If f is a continuous homeomorphism
we define the C0 topological stability of f by taking i = 0 in the above
definition.
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Definition 2.10. A Ck diffeomorphism f : M −→ M acting on a C∞

complete manifold M is called Ci-structurally stable if it is Ci topolog-
ically stable and all the semi-conjugacies σh with diffeomorphisms in the
open neighborhood V of f are conjugacies, i.e., homeomorphisms. If f is a
continuous homeomorphism, we define the C0 structural stability by taking
i = 0 in the above definition.

Notice that structural stability is stronger than topological stability. The
purpose of the section is to discuss the famous result due to Anosov:

Theorem 2.2. Let f : M −→ M be an Anosov diffeomorphism acting on
a smooth, compact Riemannian manifold M . Then f is C1 structurally
stable.

We shall deduce Theorem 2.2 from a more general result which will be
important in forthcoming sections. We first define a more general category
of systems which includes Anosov systems.

Definition 2.11. Let f : X −→ X be a homeomorphism acting on a
metric space (X,d). We say that f is expansive if there exists a constant
ε > 0 such that for any given x, y ∈ X satisfying d(fn(x), fn(y)) ≤ ε for
every n ∈ Z, we have that x = y.

For flows the definition of expansiveness is slightly more technical.

Definition 2.12. Let ψt : X −→ X be a continuous flow acting on a
metric space (X,d). The flow ψt is said to be expansive if there exists a
constant ε > 0 such that for every x ∈ X we have the following property:
if for a given y ∈ X there exists a continuous, surjective map h : R −→ R
with h(0) = 0 such that

d(ψt(x), ψh(t)(y)) ≤ ε

for every t ∈ R then there exists t0 such that ψt0(x) = y.

We shall often call the number ε in the above definitions a expansive-
ness constant for the dynamical system considered. Observe that if ε is
a expansiveness constant then ε′ ≤ ε is a expansiveness constant too. One
of the main consequences of Theorem 2.1 is

Corollary 2.1. Every Anosov system acting on a compact Riemannian
manifold is expansive.

The proof of this corollary is very simple but illustrates the power of the
geometric realization of hyperbolic invariant subspaces given by Theorem
2.1. We just give an outline of the proof in the case of diffeomorphisms for
the sake of completeness.

Theorem 2.1 and the local product structure of invariant foliations imply
that the dynamics is locally very well approximated by an Anosov linear
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dynamics. So let x, y be two points in the manifold and assume that they
do not belong to the same orbit. If they are close enough, say in a local
product neighborhood of the system, then the local stable manifold of x
meets the local unstable manifold of y in a unique point p. Therefore, the
forward orbits of p and x will approach exponentially fast, while the forward
orbits of p and y will get far from each other exponentially fast. Hence, the
forward orbits of x and y will get far from each other exponentially fast by
the triangle inequality. The same happens with the backward orbits of x
and y. This shows the expansiveness of Anosov diffeomorphims, a expan-
siveness constant can be calculated in terms of the size of local product
neighborhoods and the expansion-contraction exponents of the dynamics.

Many important properties of the topological dynamics of Anosov sys-
tems hold for expansive systems. Our next result is fully proved in [85],
but it appears in some other references about expansive systems in low
dimensional manifolds (see for instance [62]).

Theorem 2.3. Let f : M −→ M be an expansive homeomorphism acting
on a smooth, compact Riemannian manifold M . Suppose that there exists
a pair of continuous, invariant foliations F1, F2 satisying the following
properties:

1. F1, F2 have a C0 local product structure.

2. F1(p) is the stable set of p for every p ∈M , namely,

lim
n→+∞

d(fn(q), fn(p)) = 0

for every q ∈ F1(p) and

lim
n→−∞

d(fn(q), fn(p)) = 0

for every q ∈ F2(p).

Then f is C0 topologically stable.

One of the main applications of Theorem 2.3 is that it shows the existence
of a family of systems which are topological stable but not structurally
stable. We shall postpone the discussion of this matter for the moment
and concentrate in the proof of the above two theorems.

The key step of the proof of Theorem 2.3 is, as in Anosov’s proof of The-
orem 2.2, the so-called shadowing property or pseudo-orbit tracing
property.

Definition 2.13. Let f : M −→ M be a homeomorphism defined in a
complete metric space M . Given α > 0, a sequence {xn} of points in M is
called a α-pseudo-orbit if d(f(xn), xn+1) ≤ α for every n ∈ Z.
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For instance, when M is a compact manifold, any orbit of a ε-Ck per-
turbation of f : M −→ M is a α(ε)-pseudo-orbit of f , if ε is sufficiently
small. The links between the pseudo-orbit tracing property and stability of
systems have been considered by many authors since the 1970’s, we would
like to point out the classical work of Walters [103]. The next result is the
main step toward the proof of Theorem 2.3. It is proved in [85] in a more
general setting.

Lemma 2.3. Let f : M −→M be a ε-expansive homeomorphism defined in
a compact manifold. Suppose that f satisfies the assumptions of Theorem
2.3. Then there exists α = α(ε) > 0 such that every α-pseudo-orbit of f
can be ε

2 shadowed by a unique orbit of f . Namely, given a α-pseudo-orbit
{xn}, there exists a unique p ∈ M such that d(fn(p), xn) ≤ ε

2 for every
n ∈ Z.

We shall subdivide the proof of Lemma 2.3 in several steps. Let us begin
the proof with the following important remark due to Walters [103].

Lemma 2.4. Let f : M −→ M be an expansive homeomorphism of a
compact manifold M with expansiveness constant ε > 0. Then given 0 <
δ ≤ ε there exists N = N(δ) ∈ N such that for every pair of points p, q
satisfying

sup{d(p, q), d(fk(p), fk(q)))} ≤ 1

N
,

where k ∈ N, then we have that

sup
0≤i≤k

d(f i(p), f i(q)) ≤ δ.

Proof. Suppose that the statement is not true. Then there exists some
δ > 0, a sequence tn > 0, and pairs of points pn, qn, such that

1. sup{d(pn, qn), d(f tn(pn), f tn(qn))} ≤ 1
n ,

2. sup
0≤i≤tn

d(f i(pn), f i(qn)) ≥ δ.

By the continuity of f we can choose qn such that

sup
0≤i≤tn

d(f i(pn), f i(qn)) = δ ≤ ε.

Obviously, as n → +∞ we have tn → +∞. Otherwise, if there exists
T > 0 such that tn ≤ T , by the uniform continuity of f in M we have
that d(pn, qn) ≤ 1

n → 0 implies that sup
0≤i≤T

d(f i(pn), f i(qn)) → 0, which

contradicts the choice of δ.

Let sn be such that d(f sn(pn), fsn(qn)) = δ. The above argument shows
that sn → +∞ and tn − sn → +∞ as n→ ∞.
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Consider the pairs of points xn = fsn(pn), yn = fsn(qn). By taking a
convergent subsequence of such pairs, we get a pair of points x∞, y∞ such
that

1. d(x∞, y∞) = δ ≤ ε,

2. d(f i(x∞), f i(y∞)) ≤ δ ≤ ε, for every i ∈ Z.

This clearly contradicts the expansiveness assumption.

Lemma 2.5. Let ρ > 0 be the injectivity radius of M . Then, given
δ > 0 there exists nδ > 0 such that for every p ∈ M , and every q in
the connected component of F1(p) ∩ Bρ(p) which contains p we have that
d(fm(p), fm(q)) ≤ δ for every m ≥ nδ, where Br(p) is the ball of ra-
dius r centered at p. Analogously, there exists mδ < 0 such that if q
is in the connected component of F2(p) ∩ Bρ(p) which contains p then
d(fn(p), fn(q)) ≤ δ for every n ≤ mδ.

Proof. In other words, the stable sets F1(p) are uniformly contracted by
positive iterates of f , and the unstable sets F2(p) are uniformly contracted
by negative iterates of f . The connected component of F1(p)∩Bρ(p) which
contains p plays the role of local stable sets in the case of Anosov diffeo-
morphisms. In Anosov dynamics, the above contractions are exponential
functions of n. The choice of ρ as the radius of balls is just to grant that
Bρ(p) is embedded for every p ∈M .

The proof follows from the assumptions of items (1) and (2) in Theorem
2.3 and Lemma 2.4. Let us show for instance that stable sets contract
uniformly in the sense of Lemma reftopcontraction. Let σ > 0. Since

lim
n→+∞

d(fn(q), fn(p)) = 0

for every q ∈ F1(p), and the set connected component of F1(p) ∩ Bρ(p)
which contains p is a compact set, there exists np > 0 such that for every
q in this connected component we have

d(fnp(q), fnp(p)) < σ.

Since the family of connected components of F1(p) ∩ Bρ(p) containing p
varies continuously with respect to p, we have an open neighborhood Up

of p where the same inequality holds. By compactness of M , we cover M
by a finite number of such neighborhoods and thus get a number n0 > 0
such that d(fn0(q), fn0(p)) < σ for every p ∈ M and q in the connected
component of F1(p)∩Bρ(p) containing p. Since F1 is an invariant foliation
we have shown that for every p ∈M ,

fkn0(q) ∈ F1(f
kn0(p)) ∩Bσ(fkn0(p))
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for every k ∈ N and every q in the connected component of F1(p) ∩ Bρ(p)
containing p. By Lemma 2.4 there exists δ(σ), with limσ→0 δ(σ) = 0, such
that

sup
i≥n0

d(f i(p), f i(q)) ≤ δ(σ),

for every q in the connected component of F1(p) ∩ Bρ(p) containing p. So
given δ > 0, the lemma follows just choosing σ such that δ(σ) < δ.

Proof of Lemma 2.3

Let ε > 0 be an expansiveness constant for f . Lemma 2.5 allows us to
define the sets

Sr(p) = {q ∈M,d(fn(q), fp) ≤ r, ∀ n ≥ 0},

Ur(p) = {q ∈M,d(fn(q), fp) ≤ r, ∀ n ≤ 0}.
Notice that Sε(p) ⊂ F1(p) and Uε(p) ⊂ F2(p). Because two orbits which

satisfy
α ≤ d(f i(p), f i(q)) ≤ ε

for every i ≥ 0 give rise in their ω-limits to two different orbits O(p∞),
O(q∞) such that

d(f i(p∞), f i(q∞)) ≤ ε,

for every i ∈ Z (like in the proof of Lemma 2.5). Therefore, two forward
orbits which stay within a distance of at most ε must approach.

Moreover, from the local product structure of the C0 foliations F1, F2 it
is not difficult to show that there exists ρ > 0 such that if d(x, y) < ρ then
Sε/4(x) ∩ Uε/4(y) 6= ∅.

To show the pseudo-orbit tracing property of f , it is enough to show the
same property for h = fN where N is some fixed integer. We now proceed
to determine the constant α in the statement in terms of ε. Let us first
choose some constants:

1. Let n0 > 0 be the minimum of the integers n ∈ N such that

(a) ε
4 + 2ε

n < ε
2 ,

(b) Sε/4(x) ∩ Uε/4(y) 6= ∅ for every x, y with d(x, y) < 2ε
n ,

(c) If q ∈ Sε(p) (or in Uε(p)), and d(p, q) < 2ε
n then q ∈ Sε/4(p)

(Uε/4(p) respectively).

2. We takeN > 0 such that fk(Sε(p)) ⊂ Sε/n0
(fk(p)), and f−k(Uε(p)) ⊂

Uε/n0
(f−k(p)) for every p ∈M and k ≥ N .
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Claim: Every ε
n0

-pseudo-orbit of h = fN can be ε
2 -traced by an orbit of h.

We follow the same steps of the usual proof in the hyperbolic case (see
for instance, Proposition 3.6 in Bowen [18]). However, in some steps of the
proof the lack of hyperbolicity will make things a little more difficult. So
let us consider a ε

n0
-pseudo-orbit {xn} of h. Let us define a sequence yn,

n ∈ N, by the following recursive formula:

y0 = x0

y1 = Uε/4(h(y0)) ∩ Sε/4(x1)

....

yn = Uε/4(h(yn−1)) ∩ Sε/4(xn).

Let us now show that the orbit of pn = h−n(yn) ε
2 -shadows the sequence

xi, for 0 ≤ i ≤ n. To see this, we prove first that

d(hi(pn), yi) = d(hi−n(yn), yi) <
2ε

n0
,

and that

hi(pn) ∈ Uε/2(yi),

for every 0 ≤ i ≤ n. We make a sort of reverse induction. For i = n we
have hi(pn) = hn(pn) = yn which satisfies the above two properties. So we
assume that both properties hold for i = k + 1 and let us show that they
hold for i = k. By the induction assumption we get that h−n+k+1(yn) ∈
Uε/2(yk+1), and this yields

h−n+k(yn) ∈ h−1(Uε/2(yk+1)) ⊂ Uε/n0
(h−1(yk+1)),

where the last inclusion comes from the assumption on n0. From the con-
struction of the sequence yn we have that yk+1 ∈ Uε/4(h(yk))∩Sε/4(xk+1),
which implies that

h−1(yk+1) ∈ h−1(Uε/4(h(yk))) ⊂ Uε/n0
(yk),

again by the choice of n0. Thus we get

d(h−n+k(yn), yk) ≤ d(h−n+k(yn), h−1(yk+1)) + d(h−1(yk+1), yk)

≤ ε

n0
+

ε

n0
=

2ε

n0
,

that is the first part of the induction assumption. At the same time,

h−n+k(yn) ∈ Uε/n0
(h−1(yk+1)) ⊂ Uε(yk),
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so from the choice of n0 we obtain that in fact h−n+k(yn) ∈ Uε/4(yk). This
finishes the proof of the induction assumption.

Using the previous remark we get

d(hi(pn), xi) = d(hi−n(yn), xi) ≤ d(hi(pn), yi) + d(yi), xi) ≤
ε

4
+

2ε

n0
<
ε

2
,

since yi ∈ S ε
4
(xi) and 2ε

n0
< ε

4 by hypothesis. This finishes the proof of the
claim.

To get an orbit of h which ε
2 -traces the pseudo-orbit {xn}, just take

a convergent subsequence of the points pnk
→ p∞. The orbit of p∞ is

the desired orbit. This orbit is clearly unique since ε is an expansiveness
constant for f .

We would like to remark that Lemma 2.3 is proved usually in references
about symbolic dynamics under hyperbolicity assumptions. There is a
natural, well known version of Lemma 2.3 for compact hyperbolic sets
of diffeomorphisms where all stable and unstable submanifolds intersect.
Isolated, closed hyperbolic sets are called in the literature basic sets in the
context of Axiom A diffeomorphisms, and play an important role in the
study of the stability of Axiom A systems. We refer to [18] for further
details on the subject.

Proof of Theorem 2.3

We just outline the proof because it is straightforward from Lemma 2.3.
Every orbit of a δ-C0 small perturbation fδ of an expansive homeomor-
phism f is a α = α(δ) pseudo-orbit of f . So we can choose δ small in terms
of the expansiveness constant ε of f in order to apply Lemma 2.3 to every
orbit of fδ. In this way, we define a map

h : M −→M, h(x) = x0,

where the f -orbit of x0
ε
2 -traces the fδ-orbit of x in the sense of Lemma 2.3.

It is clear that h is well defined because x0 is unique. Indeed, if the orbits
of two points x0, y0

ε
2 -trace the orbit of x, by the triangular inequality

we would get that d(fn(x0), f
n(y0)) ≤ ε for every n ∈ N, which by the

expansiveness of f yields x0 = y0. It is easy to show that h is a continuous
semi-conjugacy between fδ and f , which shows that f is C0-topologically
stable.

Corollary 2.2. In the hypotheses of Lemma 2.3, given 0 < ε there exists
a C0 neighborhood V of the ε-expansive homeomorphism f such that every
ε-expansive homeomorphism in V is actually conjugate to f .
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Proof. This is an immediate consequence of Lemma 2.3. In fact, if fδ is δ-
C0 close to f it is semi-conjugate to f and the orbits of f ε

2 -trace the orbits
of fδ according to Lemma 2.3. But if fδ is also ε-expansive, the triangular
inequality implies that two fδ-orbits cannot be traced by the same f orbit
(as in the proof of Theorem 2.3). So the semi-conjugacy between fδ and f
is in fact a conjugacy as we wished to show.

Theorem 2.4. An Anosov diffeomorphism f : M −→ M defined on a
compact manifold M is C1 structurally stable.

Proof. We just outline the proof of this famous result. We can show that
if a diffeomorphism h : M −→ M is C1 sufficiently close to f , then h is
Anosov (see for instance [48]). Since Anosov diffeomorphims are expansive,
we can apply Corollary 2.2 to h to conclude that h is conjugate to f . Since
this happens in an open C1 neighborhood of f , then f is C1 structurally
stable as we claimed.

The structural stability extends to Axiom A diffeomorphisms acting on
compact manifolds which satisfy the strong transversality condition:
the intersections of the stable and unstable submanifolds is always transver-
sal. This result was proved by Robbin [80], Robinson [81], and De Melo [28]
in the 1970’s. Lemma 2.3 is not enough to show the structurally stability
of Axiom A systems, some extra work is needed to control the dynamics
outside the non-wandering set. We refer to the book by Hirsch, Pugh and
Shub [51] for a complete proof of this result.

A further, important consequence of Lemma 2.3 is the well known Anosov
closing lemma.

Lemma 2.6. Let f : M −→M be an ε-expansive homeomorphism defined
on a compact manifold M . Suppose that there exists a pair of continuous
foliations F1, F2, which are invariant by f , satisfying the assumptions of
Theorem 2.3. Suppose that the orbit of p ∈ M satisfies d(p, fn(p)) < α(ε)
for some n > 0, where α(ε) is defined in Lemma 2.3. Then there exists
a periodic point p0 of period n such that d(f i(p), f i(p0)) ≤ ε for every
0 ≤ i ≤ n.

Proof. We consider the sequence of points given by

xk = fkmodn (p),

where kmodn
is the integer k modulo n: k = mkn + kmodn

. In this way,
xmn+k = xk for every integer m. By the assumption on p, the sequence
{xk} is a α-pseudo-orbit of f , so by Lemma 2.3 there exists an orbit
{fk(p0), k ∈ Z} which satisfies d(xk, f

k(p0)) ≤ ε
2 . The point is that p0
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must be a periodic point of f . Because by the choice of p0 and the trian-
gular inequality we get

d(fk+n(p0), f
k(p0)) ≤ d(fk+n(p0), xk+n) + d(xk+n, f

k(p0))

≤ ε

2
+ d(xk, f

k(p0))

≤ 2
ε

2
= ε.

So the orbits of p0 and q = fn(p0) satisfy d(fk(q), fk(p0)) ≤ ε for every
k ∈ Z which implies, by the expansiveness of f , that p0 = q = fn(p0) as
we claimed.

Corollary 2.3. In the hypotheses of Lemma 2.6, if every point of f is
non-wandering then the set of periodic orbits is dense in M . In particular,
if f preserves the Lebesgue measure then the periodic orbits are dense.
Moreover, there exists a dense orbit and hence the limit set coincides with
the whole manifold.

All the above results can be extended in a natural way to flows without
singularities. Let us start with the definitions of the different stability
notions already considered.

Definition 2.14. Let ψt : M −→ M be a Ck flow without singularities
acting on a complete Riemannian manifold M . The flow ψt is said to be Ci-
topologically stable, where 0 ≤ i ≤ k, if there exists a C i neighborhood
V of the time one map f = ψ1 such that for every flow σt with σ1 ∈ V we
have the following property:

There exists a continuous surjective map hσ : M −→ M such that for
every y ∈ M there exists a continuous, surjective function ρy : R −→ R,
ρy(0) = 0 with

hσ(ψt(y)) = σρy(t)(hσ(y))

for every t ∈ R. If the map hσ is a homeomorphism for every σt where
σ1 ∈ V , and ρy is bijective for every y ∈M , then the flow ψt is said to be
structurally stable.

There is a well known procedure to reduce the study of flows without
singularities acting on compact manifolds to diffeomorphisms. However,
the rigorous formulation of this procedure is full of technical details, so we
just give an outline of it for the sake of completeness.

We can obtain a fairly good discrete representation of the continuous dy-
namics of a flow by taking an appropriate finite collection Σi, i = 1, 2, .., n,
of local cross sections of the flow, and considering the Poincaré maps
Pi,j : Σi −→ Σj with a natural partial ordering.
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We say that Σi is consecutive to Σj if there exists a point x ∈ Σj such
that Pj,i(x) = φt(j,i)(x) ∈ Σi, where

0 < t(j, i) = inf
k 6=j

{t > 0, φt(x) ∈ Σk}.

Let Σ = ∪iΣi, and let F : Σ −→ Σ be given by F (p) = Pj(p),i(p)(p),
where p ∈ Σj(p) and φt(j(p),i(p))(x) ∈ Σi(p).

The choice of the sections Σi is made in a way that we can describe the
trace of each orbit of the flow in Σ as an orbit of the map F . We would
like to warn the reader about the obvious technical problems involved in
the formulation of this sort of discrete coding of the dynamics of the flow.
These problems are inherent to the Poincaré maps (just to mention some:
the map F might not be continuous, the representation of an orbit as an
orbit of F might not be unique). We won’t enter into much detail about the
subject, we refer the reader to some very good references in the literature
([78], [103] for instance).

In this discrete setting, a α-pseudo-orbit of the flow φt is given by a
collection of points pk ∈ Σi(k), a collection of curves ck : [tk, sk] −→ M ,
k ∈ Z, defined by

ck(t) = φt−tk
(pk),

satisfying the following properties:

1. ck(sk) ∈ Σi′(k), where i(k) 6= i′(k).

2. d(ck(sk), pk+1) ≤ α for every k ∈ Z.

So a pseudo-orbit of φt is given by a sequence {ck} of curves tangent to
the flow, whose endpoints form a pseudo-orbit of the map F . The definition
of pseudo-orbit depends on the chosen system of sections.

All the proofs of the results about stability proven before for diffeo-
morphims can be carried out for non-singular flows by using this discrete
framework. Hence, the pseudo-orbit tracing property and the topologi-
cal stability of expansive flows with local product structure; as well as
the structural stability of Anosov flows, hold independently of the chosen
discrete representation of the flow. Notice then that the semi-conjugacy
between a non-singular, expansive flow with local product structure and
a neighboring system might not be unique. The study of the uniqueness
of conjugacies between Anosov systems is part of a very interesting theory
associated to cohomological problems of Anosov systems. The discussion
of this theory is out of the scope of this book, we refer to [48] for further
details on the subject.
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4 The stability conjecture(s)

The stability of Anosov systems raised a very natural question: does the
stability of a system imply that such system is hyperbolic? The study of
this problem was parallel to the study of the stability of Axiom A systems
in the 1970’s. The first important result in this subject is due to Newhouse
[71].

Theorem 2.5. Let f : M −→ M be a symplectic C4 diffeomorphism
acting on a compact manifold M . f is structurally stable if and only if f
is Anosov.

A symplectic diffeomorphism is a diffeomorphism whose differential pre-
serves a symplectic form, which was defined in the last section of Chapter 1.
Symplectic diffeomorphisms enjoy very special dynamical properties, like
the preservation of a volume form and the fact that the non-wandering set
is the whole manifold (Lemma 2.1). In the proof of Theorem 2.5 we find
two of the main steps in the study of any stability problem.

First of all, the differential of a structurally stable diffeomorphism at a
periodic point is a hyperbolic linear map. The proof of this fact in the
case of symplectic diffeomorphisms is related with the algebraic nature of
symplectic linear maps and the Birkhoff’s normal form of elliptic periodic
points of symplectic maps (see for instance [70], this is why the C4 assump-
tion is required). Secondly, given any recurrent point p of the dynamics of

f there exists a C1 perturbation f̂ of f such that p is a periodic point of f̂ .
This remarkable result is known as the C1 Closing Lemma, which was
proved by Pugh [77] in the 1960’s for diffeomorphims and flows, but also
holds in the symplectic category.

The characterization of C1 structurally stable systems, a problem which
was widely known as the stability conjecture, was obtained in the 1980’s
by Mañé [63], Liao [64] in the two dimensional case, and by Mañé [65] for
any dimensions.

Theorem 2.6. A diffeomorphism f : M −→ M acting on a compact
manifold M is C1 structurally stable if and only if it is Axiom A and
satisfies the strong transversality condition.

The rich, deep theory developed to solve the stability conjecture had
(and still has) a tremendous impact in the C1 generic theory of dynamical
systems. The characterization of Ck structurally stable systems for k > 1
is, as far as we know, an open problem. Unfortunately, we won’t discuss
the proof of the C1 stability conjecture in the present survey. However,
the stability conjecture is one of the main sources of inspiration of many
problems in topological dynamics of geodesic flows.
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We would like to finish the section with a list of some considerations and
questions about stability and hyperbolicity in the realm of geodesic flows,
which give us a guideline for the exposition of many of the results in this
survey.

First of all, an important part of the methods used in the proof of the C1

stability conjecture do not apply to geodesic flows. Because the C1 generic
theory is much more difficult in the category of geodesic flows than in gen-
eral flows. For instance, the C1 closing lemma is unknown and hence many
essential parts of the proof of the stability conjecture do not proceed. One
of the main consequences of the closing lemma is that the non-wandering
set of structurally stable systems is the closure of the set of hyperbolic
periodic orbits. We shall show how to deal with some questions related to
this subject assuming that the geodesic flow is expansive.

An interesting question arising from the stability conjecture is the fol-
lowing: what can be said about a system which enjoys a weaker form of
stability? By weak stability we mean the shadowing property (pseudo-
orbits of the system can be traced by true orbits of the system) and/or
the topological stability in some Ck topology. In some sense, the shadow-
ing property could be regarded as a form of stability that is stronger than
the topological stability. Because according to the results in the previous
section, the shadowing property is used to get the topological stability of
certain expansive systems. However, outside the context of expansive sys-
tems it is hard to link the shadowing property with the topological stability.
So it makes sense to assume each one of them independently and try to
characterize systems enjoying either one or the other.

By Mañé’s theorem (Theorem 2.6) a system which enjoys a form of sta-
bility that is not structural stability cannot be Axiom A. In the case of
symplectic diffeomorphisms, by Newhouse theorem the system cannot be
Anosov. We showed that expansive systems with local product structure
are topologically stable and have the shadowing property, and we shall see
in Chapter 5 that expansive geodesic flows of compact surfaces have local
product structure. Moreover, it is not hard to construct examples of ex-
pansive geodesic flows which are not Anosov. In the case of general systems
enjoying weaker forms of stability there are some partial results by Sakai
[93], [94].

Yet, we shall show in Chapters 5 and 6 that the global geometry of
the universal covering of compact manifolds without conjugate points and
expansive geodesic flows shares many remarkable properties with the global
geometry of manifolds with Anosov geodesic flows. The global geometry of
the universal covering is closely related with the so-called geometric group
theory of the fundamental group of the manifold. In fact, we shall discuss
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in detail, at the end of the survey, the following question: Does a compact
manifold without conjugate points and expansive geodesic flow admits a
metric of negative curvature?

Based in the above comments, we could expect that geodesic flows which
enjoy weaker forms of stability like the shadowing property or the topolog-
ical stability have hyperbolic global geometry. The main difficulty here is
that many important C1 tools used to study structural stability cannot be
applied to study weaker forms of stability. For instance, it is not true that
weakly stable systems in our sense must have hyperbolic periodic orbits,
a fact that holds in hyperbolic systems due to the linearization theory of
hyperbolic linear maps. Moreover, in the category of geodesic flows this
implies that we cannot use curvature estimates and Jacobi fields to study
weakly stable systems, because we saw in Chapter 1 that the action of the
differential of the geodesic flow is expressed in terms of Jacobi fields. So
we have to develop another kind of theory to understand weakly stable
systems.

So the purpose of the following chapters is to show what we can do to
study the dynamics of the geodesic flow with C1 methods (Chapter 3), and
then to show some topological methods developed to study dynamics and
global geometry of weakly stable systems (from Chapter 4 on).



Chapter 3

C1 tools to study geometry and
dynamics: Jacobi fields,
hyperbolicity and global
geometry

In the previous chapter we discussed the stability properties of Anosov
systems, one of their most important features. Stability for a certain dy-
namical system implies roughly that nearby systems behave analogously.
This is relevant in mathematical models because a model is usually an
aproximation of a real physical phenomenon. Therefore, we have good
reasons to look for Anosov systems in conservative dynamics, and in par-
ticular in the case of geodesic flows. The main goals of this chapter are,
first of all, to discuss how to find sufficient conditions for a geodesic flow
to be Anosov; and secondly, to present some of the main consequences of
Anosov dynamics in the global geometry and the topology of the manifold.
Certainly, the interplay between Anosov dynamics and global hyperbolic
geometry is one of the main motivations for some conjectures about weak
stability and global geometry that will be considered in the last part of the
survey.

The very definition of Anosov systems requires the existence of invariant
subbundles, and in the context of geodesic flows this means the existence of
special subspaces of Jacobi fields according to Lemma 1.4. This is what we
mean by C1 methods: special assumptions on either Jacobi fields or sec-
tional curvatures (sign) should imply particular properties of the dynamics
of the geodesic flow. Jacobi fields constitute a first order, linear approxima-
tion of the geodesic flow, so it is natural to expect that the global geometry
of geodesics could be understood from reasonable assumptions on Jacobi
fields.

48
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1 Negative curvature and Anosov dynamics

The first result of the chapter is a classical one, it relates manifolds of
negative sectional curvatures with Anosov dynamics.

Theorem 3.1. Let (M, g) be a compact Riemannian manifold with negative
sectional curvatures. Then the geodesic flow is Anosov.

Theorem 3.1 was proved first by Hedlund [49] for surfaces of constant
negative curvature, Hopf [52] extended this result to compact surfaces of
negative curvature, and many years later Anosov [2] proved the theorem
for any dimension. We shall give a sketch of proof of this theorem using
Rauch’s comparison theorem, to illustrate how we can get information
about the dynamics of the geodesic flow when we know the behavior of
Jacobi fields. This proof is a good example of the interplay between ge-
ometry, analysis and the theory of ordinary differential equations in the
study of the geodesic flow. We shall need to introduce many important
basic tools of the theory of manifolds without conjugate points before the
proof of Theorem 3.1.

1.1 Rauch’s comparison theorem

Let us first recall the Rauch’s comparison theorem, whose statement was
taken from [29], [23].

Theorem 3.2. (Rauch) Let (M̄, ḡ) be a complete manifold of dimension
n + k, where n = dim(M). Let γ, be a geodesic of (M, g) and γ̄ be a
geodesic of (M̄, ḡ), and let J(t), J̄(t) be Jacobi fields in γ, γ̄ respectively
such that

1. J(0) = J̄(0) = 0,

2. g(J ′(0), γ′(0)) = ḡ(J̄ ′(0), γ̄′(0))

3. ‖ J ′(0) ‖g=‖ J̄ ′(0) ‖ḡ .

Suppose that γ̄ has no conjugate points in [0, l] and that for every v ∈
Tγ(t)M , w ∈ Tγ̄(t)M̄ , we have

K̄(w, γ̄′(t)) ≥ K(v, γ′(t)),

where K̄(X,Y ) is the sectional curvature of (M̄, ḡ). Then we have that
‖ J̄(t) ‖ḡ≤‖ J(t) ‖g for every t ∈ [0, l]. Moreover, if there exists a point t0 ∈
(0, l] such that ‖ J̄(t0) ‖ḡ=‖ J(t0) ‖g, then K(J(t), γ̄′(t)) = K(J̄(t), γ′(t))
for every t ∈ (0, t0].

Rauch’s comparison theorem is in fact the geometric version of the fa-
mous Sturm-Liouville comparison theorems for ordinary, second order dif-
ferential equations. Actually, the proof of Rauch’s comparison theorem for
surfaces follows from the classical Sturm-Liouville comparison theorems
applied to the Jacobi equation of geodesics.
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1.2 Asymptotic Jacobi fields and Riccati equation

The first step towards the proof of Theorem 3.1 is to understand the so-
called Green subbundles of the unit tangent bundle of a manifold without
conjugate points. The absence of conjugate points in a geodesic allows
the construction of asymptotic Jacobi fields. More precisely, let γ(t) be
a geodesic without conjugate points where the sectional curvatures are
uniformly bounded from below by a constant K0. Let V ∈ Tγ(0)M be
perpendicular to γ′(0), and let JT (t) be the Jacobi field whose boundary
conditions are JT (0) = V , JT (T ) = 0. Since there are no conjugate points
in γ, we have that JT exists and is unique. Moreover, by the equation

gγ(t)(J(t), γ′(t)) = gγ(0)(J(0), γ′(0)) + gγ(0)(J
′(0), γ′(0))t,

already used in the proof of Lemma 1.5 we have that the linear function
f(t) = gγ(t)(JT (t), γ′(t)) has two zeroes: t = 0 and t = T . So f(t) must
be zero for every t ∈ R and hence, JT (t) is perpendicular to γ′(t) for every
t ∈ R.

Let e0(t) = γ′(t), e2(t),..,en−1(t) be an orthonormal, parallel frame de-
fined along γ(t). We can write every Jacobi field J(t) perpendicular to γ
as

J(t) =

n−1∑

i=1

gγ(t)(J(t), ei(t))ei(t).

Define the curvature matrix K(γ(t)) by

K(γ(t))ij = gγ(t)(R(γ′(t), ei(t))γ
′(t), ej(t)),

where R is the curvature tensor of g. The Jacobi equation written in the
coordinates defined by the frame {ei(t), i = 1, 2, .., n − 1} gives a matrix
Jacobi equation

J′′(t) + K(γ(t))J(t) = 0,

whose solutions are (n − 1) × (n − 1) matrices J(t) obtained as follows: if
J1(t), J2(t),..,Jn−1(t) are Jacobi fields which are perpendicular to γ, then
Jij(t) = gγ(t)(Ji(t), ej). Every Jacobi field J(t) perpendicular to γ in the
subspace generated by J1(t), J2(t),..,Jn−1(t) can be written as

J(t) = J(t)W,

where W is a (n − 1) vector. If we consider the Jacobi fields Ji,T (t),
i = 1, 2, .., n− 1, which are perpendicular to γ and satisfy Ji,T (0) = ei(0),
Ji,T (T ) = 0 ∀i = 1, 2, .., n−1, we get a special matrix solution of the Jacobi
equation which shall be denoted by JT (t). Observe that JT (t) is invertible
for every t 6= T , because the Jacobi fields Ji,T (t), i = 1, 2, .., n− 1 generate
a subspace of dimension (n− 1) of Jacobi fields.
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The matrix Jacobi equation gives rise to a matrix Riccati equation

U ′(t) + U2(t) + K(γ(t)) = 0 (3.1)

where U(t) = J′(t)J(t)−1. We denote by UT (t), for T ∈ R, the special
solution UT (t) = J′T (t)JT (t)−1, that is defined for every t 6= T .

Notice that in the case of surfaces, the above equation is one dimensional,
and the curvature matrix is just the Gaussian curvature K. Moreover, if
the curvature K is a negative constant, we have two constant solutions

Us(t) = −
√
−K, Uu(t) =

√
−K.

The remaining solutions can be calculated explicitly from the above, and
they belong to two types of solutions: the first type are the solutions con-
tained in the strip bounded by U s and Uu, which are defined for every
t ∈ R; and the second type of solutions are just the functions UT (t), having
singularities and defined for every t 6= T . Let us denote by u−T the solutions
which are below U s, and u+

T those which are above Uu. Then it is easy to
check that

lim
T→+∞

u−T (t) = Us(t),

lim
T→−∞

u+
T (t) = Uu(t),

where the above limits are uniform on compact subsets. The following
lemma was proved by Hopf [53] for surfaces and by Green [45] for any
dimension.

Lemma 3.1. Let (M, g) be a compact manifold without conjugate points
whose sectional curvatures are bounded below by a constant −K0, where
K0 ≥ 0. Then there exists a constant K1, such that for every geodesic γ
we have:

1. ‖ UT (t) ‖∞≤ K1, for every |t− T | ≥ 1,

2. For every V ∈ Tγ(0)M that is perpendicular to γ′(0), the limit

lim
T→+∞

JT (t)(V ) = Js
V (t)

exists for every t ∈ R, and it is a perpendicular Jacobi field with
Js

V (0) = V ,

3. Analogously, the limit limT→−∞ JT (t)(V ) = Ju
V (t) exists, and it is a

perpendicular Jacobi field with Ju
V (0) = V ,

4. The Jacobi fields Js
V (t), Ju

V (t) never vanish if V 6= 0, and we have
‖ Js

V
′(t) ‖≤ √

K0 ‖ Js
V (t) ‖, ‖ Ju

V
′(t) ‖≤ √

K0 ‖ Ju
V (t) ‖, for every

t ∈ R.
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The main idea of the proof is a comparison argument between the so-
lutions of the Riccati equation of (M, g) along γ and the Riccati equation
U ′(t) + U2(t) − K0 = 0, where K0 = K0I, I is the identity matrix. The
proof in the case of surfaces is relatively easy, a complete general proof can
be found in [33].

The Jacobi fields Js
V are called stable Jacobi fields, the Jacobi fields Ju

V

are called unstable Jacobi fields. It is easy to check that in the case of
constant negative curvature −a2, the norms of such Jacobi fields satisfy

‖ Js
V (t) ‖=‖ V ‖ e−at,

‖ Ju
V (t) ‖=‖ V ‖ eat,

for every t ∈ R. Hence, if (M, g) is compact with negative curvature,
applying Rauch’s comparison theorem we get upper bounds, which are
exponential functions, for the norm of stable and unstable Jacobi fields.

The stable and unstable Jacobi fields of the geodesic γθ give rise to special
matrix solutions of the Jacobi equation Js

θ(t), Ju
θ (t) which are determined

by

Js
θ(t)(V ) = Js

V (t),

for every t ∈ R and V ∈ Tγθ(0)M perpendicular to γ′(0);

Ju
θ (t)(V ) = Ju

V (t),

for every t ∈ R and V ∈ Tγθ(0)M perpendicular to γ′(0). In particular,
Js

θ(0) = Ju
θ (0) = I. The corresponding matrix solutions of the Riccati

equation

Us
θ (t) = Js

θ
′(t)(Js

θ(t))
−1,

Uu
θ (t) = Ju

θ
′(t)(Ju

θ (t))−1,

will be called respectively the stable Riccati solution and the unstable
Riccati solution. By Lemma 3.1, the matrices U s

θ (t), Uu
θ (t) are uniformly

bounded linear operators for every θ ∈ T1M , satisfying

‖ Us
θ (t) ‖∞≤

√
K0,

‖ Uu
θ (t) ‖∞≤

√
K0,

where K0 ≥ 0 and −K0 is a lower bound for the norm of the sectional
curvatures of M .
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1.3 Green subbundles

The set of stable Jacobi fields is a subspace of Jacobi fields, as well as the set
of unstable Jacobi fields. These subspaces lift to T(p,v)T1M (Lemma 1.4)
to invariant subspaces Es(p, v), Eu(p, v) respectively called the Green sub-
spaces, where (p, v) is any point in the orbit (γ(t), γ ′(t)) of the geodesic
flow. Green subspaces have dimension n− 1 if n = dim(M), and a basis of
Es(φt(θ)) is given by the set

{(Js
i (t), Js

i
′(t)), i = 1, 2, .., n− 1},

where Js
i (t) is the stable Jacobi field defined by Js

i (0) = ei(0), and (W,Z) ∈
Nθ is given in coordinates Hθ ⊕ Vθ. Replacing s by u in the upper indices
of Js

i we get a basis for Eu(p, v).

Let Us
θ (t), Uu

θ (t) be the solutions of the Riccati equation defined in the
previous subsection along the geodesic γθ, θ = (p, v). Then the Green
subspaces at θ are defined by

Es(θ) = {(W,U s
θ (0)W ),W ∈ Hθ},

Eu(θ) = {(W,Uu
θ (0)W ),W ∈ Hθ},

where Hθ is the horizontal subspace of Nθ. So Green subspaces are graphs
of linear maps which depend on θ. In fact, the dependence of U s

θ (0), Uu
θ (0)

with respect to θ is just measurable, and there are examples of compact
surfaces without conjugate points where these subspaces do not depend
continuously on θ [6].

The following assertions are easy to check.

1. If the sectional curvatures of (M, g) are nonpositive, the Green sub-
spaces depend continuously on θ ∈ T1M . Moreover, the Green sub-
spaces attached to a geodesic γ are linearly dependent if and only if
there exist parallel Jacobi fields along γ which are perpendicular to
γ. This implies that there exists a vanishing sectional curvature at
every point of the geodesic.

2. If dim(M) = 2, we have the following identities:

‖ Js
θ (t) ‖=‖ Js

θ (0) ‖ e
R t
0

Us
θ (r)dr,

‖ Ju
θ (t) ‖=‖ Ju

θ (0) ‖ e
R t
0

Uu
θ (r)dr.

3. If dim(M) = 2 and M is compact with negative curvature, the
geodesic flow is Anosov.
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Item (3) is a particular case of Anosov’s theorem. In the case of surfaces
it is easy to verify that negative curvature implies that the stable solutions
of the Riccati equation are always negative, and the unstable solutions of
the Riccati equation are always positive. This is because the norms of
Jacobi fields are strictly convex functions. Now, from item (2) and Lemma
1.4 we get that stable vector are exponentially contracted by Dφt, t > 0,
and unstable vectors are exponentially contracted if t < 0.

In higher dimensions, it is also true that negative sectional curvatures
imply that the stable and unstable Riccati solutions are respectively, neg-
ative definite and positive definite matrices. However, we won’t use this
approach to show Anosov’s theorem in the next section, we shall apply
Rauch comparison theorem. If we do not assume any restrictions on the
curvature of (M, g), it is more difficult to establish a link between U s

θ (t),
Uu

θ (t) and the action of Dθφt. What we can say is that they are related
with the so-called Lyapunov exponents of the geodesic flow. Freire and
Mañé [40] show that the metric entropy of the geodesic flow of compact
manifolds without conjugate points is given by the integral of the trace of
the unstable Riccati operator. We won’t give further details on the subject,
we suggest the reader to look at [40].

1.4 Proof of Anosov’s theorem and the impact of hy-
perbolicity in the global geometry of geodesics

So let (M, g) be a compact manifold with negative sectional curvatures
bounded below by −K0, and bounded above by −a2, where a,K0 > 0.
By Lemma 3.1 we have that for every stable Jacobi field J s(t) and every
unstable Jacobi field Ju(t),

‖ Js′(t) ‖≤
√
K0 ‖ Js(t) ‖,

‖ Ju′(t) ‖≤
√
K0 ‖ Ju(t) ‖ .

LetW s = (X1, X2) ∈ Es(θ) be a stable Green vector, andW u = (Z1, Z2) ∈
Eu(θ) be an unstable Green vector, where their expression in coordinates
correspond to Nθ = Hθ⊕Vθ. Let Js

(X1,X2)
, Ju

(Z1,Z2)
be the associated Jacobi

fields according to Lemma 1.4. Then, the same Lemma 1.4 tells us that

‖ Dθφt(W
s) ‖S≤

√
1 +K0 ‖ Js

(X1,X2)
(t) ‖,

‖ Dθφt(W
u) ‖S≤

√
1 +K0 ‖ Ju

(Z1,Z2)
(t) ‖,

where ‖ v ‖S is the Sasaki norm.
By Rauch’s comparison theorem, comparing the Jacobi equation of (M, g)

along γθ(t) with the Jacobi equation of a manifold with constant negative
curvature −a2, we have that

‖ Dθφt(W
s) ‖S≤‖ Js

(X1,X2)
(0) ‖

√
1 +K0e

−at
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for every t ≥ 0, and

‖ Dθφt(W
u) ‖S≤‖ Ju

(Z1,Z2)
(0) ‖

√
1 +K0e

at,

for every t ≤ 0. The above inequalities clearly imply that the Anosov condi-
tions are fulfilled by the Green subspaces, thus proving Anosov’s theorem.

To finish the section, we would like to mention some of the main conse-
quences of Anosov dynamics in the global geometry of (M, g).

1. Let p ∈ M̃ , and let St(p) be the sphere of radius t centered at p.
Given two different geodesic rays γ(t), β(t) with γ(0) = β(0) = p,
the distance in St(p) between γ(t) and β(t) diverges exponentially
with t.

2. The volume growth of St(p), namely, limt→+∞ 1
t ln(V ol(St(p))) is

bounded below by a positive constant independent of p.

The proofs of items (1) and (2) follow from the definition of the exponen-
tial map and its relationship with radial Jacobi fields, we give a sketch for
the sake of completeness. In fact, by Lemma 1.2 we can write the norm of
the differential of expp : TpM̃ −→ M̃ in terms of the norm of Jacobi fields
which vanish at p. But by the Anosov properties of Green subbundles,
such Jacobi fields behave asymptotically like unstable Jacobi fields whose
norms diverge exponentially. We leave the details to the reader. In forth-
coming sections we shall mention other further implications of the Anosov
dynamics in the global geometry of M .

2 Characterization of Anosov geodesic flows
in manifolds without conjugate points

In this section we sketch the proof of one of the most important results
of the theory of manifolds without conjugate points, which was proved in
the early 1970’s and is due to Eberlein [33]. As we showed in the previous
section, the Green subspaces of a compact, n-dimensional manifold with
negative curvature are linearly independent, have dimension n-1, and the
differential of the geodesic flow acts hyperbolically when restricted to each
one of them. Eberlein’s beautiful idea was to show that just the linear inde-
pendence of Green subspaces characterizes Anosov geodesic flows. About
10 years later, R. Mañé suggested a different point of view to show Eber-
lein’s theorem, using the notion of quasi-Anosov systems ([63] for instance
for the definition) that appears in his works about the stability conjecture.
We present here a rather simple proof inspired by Mañé’s point of view,
although we won’t use the notion of domination in the argument.
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Theorem 3.3. Let (M, g) be a compact Riemannian manifold without con-
jugate points. The geodesic flow is Anosov if and only if the Green subspaces
are linearly independent at every point.

We shall subdivide the proof in several steps.

2.1 On the divergence of Jacobi fields in manifolds
without conjugate points

The first one is a fundamental result proved by Eberlein [33] about the di-
vergence of Jacobi fields with a zero in manifolds without conjugate points.

Proposition 3.1. Let (M, g) be compact without conjugate points, and let
γθ(t) be a geodesic, where θ ∈ T1M . Let J(t) a nontrivial Jacobi field such
that J(0) = 0. Given c > 0, a > 0, there exists T = T (c, a, γθ) > 0 such
that if ‖ J ′(0) ‖≥ a, then ‖ J(t) ‖≥ c for every t ≥ T .

Proof. We shall sketch the proof in the case of surfaces, which was proved
by Green [44], just to give an idea of the method. The main tool of the
proof is the Riccati equation, that is easier to handle in dimension 2. The
generalization of the argument for dimension n is quite technical and we
refer to Eberlein’s paper for the complete proof.

So let us suppose that dim(M) = 2, where we can restrict ourselves
to the study of the one dimensional Jacobi equation along γθ(t), f

′′(t) +
K(t)f(t) = 0, where K(t) = K(γθ(t)) is the Gaussian curvature at γθ(t).
Since (M, g) has no conjugate points, Lemma 3.1 implies that there exists
at least a solution Y (t) (either the stable or the unstable one, they might
coincide) which never vanishes. Let us suppose that Y (t) > 0 for every
t ∈ R.

Since the set of solutions J(t) of the Jacobi equation which vanish at t = 0
is a one dimensional subspace, we can assume that J(0) = 0, J ′(0) = 1 to
show the proposition. The solutions J(t), Y (t) are linearly independent,
so their Wronskian is a non-zero constant,

W (J(t), Y (t)) = J ′(0)Y (0) − J(0)Y ′(0) = J ′(0)Y (0) = Y (0) > 0.

Let us consider the function h(t) = J(t)
Y (t) . Its derivative is

h′(t) =
1

Y 2(t)
(J ′(t)Y (t) − J(t)Y ′(t)) =

1

Y 2(t)
W (J, Y ) > 0,

and thus h(t) strictly increasing.

Let us suppose by contradiction that the proposition is false. Then there
exists a sequence xn → +∞ such that limn→+∞ J(xn) = c ∈ R. Let an be



Weak stability and hyperbolic geometry 57

the sequence given by Y (xn) = anJ(xn), which is decreasing since an =
1

h(xn) and h(t) is increasing. In this way we get that limn→+∞ an = a ≥ 0,

so let us consider the solution of the Jacobi equation given by

Z(t) = Y (t) − aJ(t).

The above solution of the Jacobi equation is linearly independent of Y (t),
so the Wronskian W (Z, Y ) = d is a non-vanishing constant. Moreover, we
have

lim
n→+∞

Z(xn) = 0.

Claim: Z(t) 6= 0 for every t > 0.

In fact, we have Z(0) = Y (0) > 0, and Z(xn) = Y (xn) − aJ(xn), which
implies that

Z(xn)

J(xn)
= an − a > 0,

so Z(xn) > 0 for every n ∈ N. Thus, if we had some number t0 > 0 such
that Z(t0) < 0, the solution Z(t) would have at least two zeroes which is
impossible by the no conjugate points assumption.

So we get that Z(t) ≥ 0 for every t ≥ 0, and if Z(s) = 0 for some s > 0,
we would have Z ′(s) = 0 = Y ′(s) − aJ ′(s). This implies that Y (t), J(t)
satisfy Y (s) = J(s), Y ′(s) = J ′(s), which yields Y (t) = J(t) for every t ∈ R
by the uniqueness of solutions of the Jacobi equation. Since Y (0) > 0 and
J(0) = 0 this latter identity is a contradiction, so we get that Z(t) > 0 for
every t ≥ 0 as we claimed.

By Lemma 3.1, the solutions u1(t) = Z′(t)
Z(t) , u2(t) = Y ′(t)

Y (t) of the Riccati

equation u′ + u2 +K = 0 are bounded by a constant L for every t ≥ 1. If
we divide W (Z, Y ) by Z(t) we get

d

Z(t)
=
W (Z, Y )

Z(t)
=
Z ′(t)
Z(t)

Y (t) − Y ′(t) = (u1(t) − u2(t))Y (t).

Given ε > 0 let n0 > 0 be such that |J(xn) − c| ≤ ε for every n ≥ n0.
Taking t = xn with n ≥ n0 in the above equation we have

d

Z(xn)
= (u1(xn)−u2(xn))Y (xn) = (u1(xn)−u2(xn))anJ(xn) ≤ 2La(c+ε).

On the other hand, limn→+∞ Z(xn) = 0, so d
Z(xn) cannot be bounded. The

contradiction arose from assuming that J(xn) is bounded for every n > 0,
thus finishing the proof of the proposition.



58 Rafael O. Ruggiero

We would like to remark that the proof for surfaces shows that the
number T does not depend on the geodesic γθ. This is very important
and was used by Green to show that geodesic rays in surfaces without
conjugate points diverge [44]. We shall come back to this issue later.

2.2 Quasi-Anosov systems

Let us start with the definition of a quasi-Anosov system.

Definition 3.1. Let ψt : N → N a C∞ flow defined in a complete Rie-
mannian manifold N . The system ψt is called quasi-Anosov if for every
non-zero vector V ∈ TN that is linearly independent from the vector field
that is tangent to the flow we get

sup
t∈R

‖ Dψt(V ) ‖= +∞.

Anosov systems are quasi-Anosov, but the converse of this assertion is
not true in general. The main result of this subsection is the following:

Lemma 3.2. Let (M, g) be a compact manifold without conjugate points. If
the Green bundles are linearly independent then the geodesic flow is quasi-
Anosov.

The proof of the lemma follows immediately from the following result:

Lemma 3.3. Let (M, g) be a compact manifold without conjugate points.
Suppose that there exists a geodesic γθ and perpendicular Jacobi field J
defined in γ such that ‖ J(t) ‖≤ C for every t ≥ 0. Then J is a stable
Jacobi field and the vector (J(t), J ′(t)) ∈ Nφt(θ) is in Es(φt(θ)) for every
t ∈ R. Analogously, if ‖ J(t) ‖≤ C for every t ≤ 0, then J is an unstable
vector field.

Proof. Assume that ‖ J(t) ‖≤ C for every t ≥ 0. Let us consider the Jacobi
fields JT defined in Subsection 3.2 by JT (0) = J(0), JT (T ) = 0. We know
that that the limit as T → +∞ of JT is a stable Jacobi field.

Claim: lim
T→+∞

JT (t) = J(t) for every t ∈ R.

Indeed, consider the Jacobi fields YT (t) = J(t) − JT (t) which satisfy

YT (0) = 0, ‖ YT (T ) ‖=‖ J(T ) ‖≤ C.

Applying Proposition 3.1 to YT we get

lim
T→+∞

Y ′
T (0) = 0.

So clearly, limT→+∞ J ′
T (0) = J ′(0), and since JT (0) = J(0) for every

T > 0 we have that JT (t) tends uniformly in t to J(t) (by the continuous
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dependence of solutions of the Jacobi equation upon initial conditions).
Therefore, J(t) is a stable Jacobi field as we wished to show. The proof for
unstable Jacobi fields is completely analogous.

Proof of Lemma 3.2

The proof of Lemma 3.2 is straightforward from Lemma 3.3. If the
geodesic flow is not quasi-Anosov, there exists by Proposition 1.4 a non-zero
Jacobi field J(t) defined in some geodesic γθ, that is linearly independent
from the geodesic vector field, such that ‖ J(t) ‖≤ C for every t ∈ R.
Since Jacobi fields split into Jacobi fields perpendicular to γ ′θ(t) and Jacobi
fields parallel to γ′θ(t), we get a perpendicular Jacobi J⊥(t) field whose
norm is uniformly bounded in time. But then Lemma 3.3 implies that
J⊥(t) is in the intersection of the set of stable Jacobi fields and the set of
unstable Jacobi fields. Hence, the vector (J⊥(0), J⊥′(0)) ∈ Nθ belongs to
Es(θ) ∩ Eu(θ) = {0}, so J⊥(0) = 0. Since J⊥(t) is perpendicular to γ′θ(0)
this yields that J⊥(t) = 0 for every t ∈ R, contradicting the hypothesis
on J(t).

This result is the fundamental piece of the proof of Theorem 3.3.

2.3 Quasi-convexity of Jacobi fields and continuity of
Green subbundles

From this subsection, we shall explore the strong consequences of Lemma
3.2 over the geometry of Jacobi fields.

Corollary 3.1. Let (M, g) be a compact manifold without conjugate points
whose Green bundles are linearly independent. Then Jacobi fields are quasi-
convex. Namely, there exists L > 0 such that for every geodesic γ ⊂ M
and every Jacobi field J(t) defined in γ we have

sup
t∈[a,b]

‖ J(t) ‖≤ L max{‖ J(a) ‖, ‖ J(b) ‖},

for every a < b.

Proof. Assume by contradiction that there exist a sequence of geodesics
γθn

, perpendicular Jacobi fields Jn defined in γθn
, and sequences an < bn

such that

sup
t∈[an,bn]

‖ Jn(t) ‖≥ n max{‖ Jn(an) ‖, ‖ Jn(bn) ‖}.

Let tn ∈ [an, bn] be the point where ‖ J(t) ‖ attains its maximum value.
Clearly, |an − tn| and |bn − tn| tend to ∞ with n. Let

Zn(t) =
1

‖ Jn(tn) ‖Jn(t+ tn),
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be Jacobi fields obtained by dividing Jn by ‖ Jn(tn) ‖. Each Zn(t) is
a Jacobi field of the geodesic βn(t) = γθn

(t + tn). We have that
‖ Zn(t) ‖≤ 1 for every t ∈ [an − tn, bn − tn], and ‖ Zn(0) ‖= 1. Taking a
convergent subsequence of the vectors (βn(0), β′

n(0)), Zn(0), we get a limit
geodesic γ(t) where there is a limit Jacobi field J(t) satisfying ‖ J(0) ‖= 1,
‖ J(t) ‖≤ 1 for every t ∈ R, contradicting Lemma 3.2.

Corollary 3.2. Let (M, g) be a compact manifold without conjugate points
and linearly independent Green subbundles. Then each Green subbundle is
continuous, i.e., the maps θ → Es(θ), θ → Eu(θ), are continuous in the
Grassmanian of subspaces of TM .

Proof. This is straightforward from the definition of stable and unstable
Jacobi fields and quasi-convexity. Let T > 0, since the Jacobi fields JT (t)
satisty ‖ JT (0) ‖= 1, and JT (T ) = 0, the quasi-convexity yields that

‖ JT (t) ‖≤ L

for every t ∈ [0, T ]. Since stable Jacobi fields J(t) with ‖ J(0) ‖= 1 are
limits of the JT as T → +∞, we get that ‖ J(t) ‖≤ L for every t ≥ 0 and
every stable Jacobi field J(t). The same holds for unstable Jacobi fields
and t ≤ 0.

The continuity of the map θ → Es(θ) follows from the above remark: if
we take convergent limits of stable Jacobi fields Jn such that ‖ Jn(0) ‖= 1,
then its limit will be a Jacobi field J∞ with ‖ J∞(0) ‖= 1 and ‖ J∞(t) ‖≤ L
for every t ≥ 0. By Lemma 3.3 J∞ is a stable Jacobi field. The same
happens with unstable Jacobi fields, thus proving the continuity of both
Green subbundles.

2.4 Hyperbolic behavior of Green subbundles

In this subsection we finish the proof of Eberlein’s Theorem. We begin
with the following further consequence of Lemma 3.2.

Lemma 3.4. Let (M, g) be compact without conjugate points such that the
Green subbundles are linearly independent. Then, if V ∈ Es(θ) we have

lim
t→+∞

‖ Dφt(V ) ‖= 0,

and if W ∈ Eu(θ) we have

lim
t→−∞

‖ Dφt(V ) ‖= 0.

The above limits are uniform in θ ∈ T1M .
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Proof. By Lemma 1.4 in Chapter 1, it is enough to show the statement for
stable and unstable Jacobi fields. By Lemma 3.3 we know that ‖ J(t) ‖≤
L ‖ J(0) ‖ for every t ≥ 0 if J(T ) is a stable Jacobi field.

So assume by contradiction that ‖ J(t) ‖ does not converge to zero if
t → +∞. Then there is a sequence tn → +∞ and a constant a > 0 such
that ‖ J(tn) ‖≥ a for every n ∈ N. Let us define the Jacobi fields

Jn(t) =
1

‖ J(tn) ‖J(t+ tn),

which are stable Jacobi fields satisfying

‖ Jn(t) ‖≤ L

a
‖ J(0) ‖

for every t ≥ −tn, and ‖ Jn(0) ‖= 1 for every n ∈ N.

Let γ be the geodesic where J(t) is defined, let θn = (γ(tn), γ′(tn)), take
a convergent subsequence of points θnk

→ σ ∈ T1M . We get a geodesic γσ

possessing a Jacobi field Jσ(t) whose norm is uniformly bounded in t ∈ R.
This contradicts Lemma 3.2, so the norm of every stable Jacobi field J(t)
must tend to zero as t → +∞. The same fact holds for unstable Jacobi
fields and t→ −∞.

The following technical result will lead to the proof of the hyperbolicity
of Green subbundles.

Lemma 3.5. Let f : R → R be a continuous, positive function, that is
bounded above by A > 0, and such that

1. f(t+ s) ≤ f(t)f(s) for every s, t.

2. limt→+∞ f(t) = 0.

Then there exists constants C > 0, λ ∈ (0, 1) such that f(t) ≤ Cλtf(0) for
every t ≥ 0.

Proof. The proof is an elementary calculus exercise. By the hypothesis,
there exists m ∈ N such that f(t) < 1 for every t ≥ m. By item (2) in the
hypothesis we get

f(km) ≤ f(m)k

for every k ∈ N. Thus, if t ≥ 0, t = cm + r where c ∈ N and r ∈ [0,m),
which implies

f(t) ≤ f(cm)f(r) ≤ f(m)cf(r).

Let A be an upper bound of f , and let b = f(m). Then we have

f(t) ≤ Abc = Ab
t−r
m = Ab−

r
m (b

1
m )t.

In this way, letting C = Ab−
r
m , λ = (b

1
m )t, we get the lemma.
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Proof of Eberlein’s Theorem

Consider the functions

f(t) = sup
θ∈T1M

‖ Dφt|Es(θ) ‖

for t ≥ 0 and

g(t) = sup
θ∈T1M

‖ Dφ−t|Eu(θ) ‖

for t ≥ 0. It is simple to verify the following assertions:

1. Since Dφt, t ∈ R, is a family of linear operators, we have f(t+ s) ≤
f(t)f(s), g(t+ s) ≤ g(t)g(s), for every s, t ≥ 0,

2. By the compactness of M and the continuity of Es(θ), Eu(θ) with
respect to θ ∈ T1M , the functions f(t), g(t) are bounded above by a
constant A > 0 for every t ≥ 0,

3. Lemma 3.4 tells us that the limit of both f(t), g(t) as t→ +∞ is 0.

Therefore, applying Lemma 3.5 to f and g we conclude that the geodesic
flow is Anosov.

Further remarks

Eberlein’s Theorem is closely related with a more general result which
does not involve any assumption concerning conjugate points.

Theorem 3.4. A symplectic diffeomorphism acting on a compact manifold
is Anosov if and only if it is quasi-Anosov.

Theorem 3.4 is due to Mañé, and it is not easily found in the literature.
There is a corresponding version for geodesic flows: quasi-Anosov geodesic
flows of compact manifolds are Anosov. The main ideas of the proof of this
result are similar to the ideas of the proof of Eberlein’s theorem, we give
next an outline of proof. Of course, the interesting part is that the quasi-
Anosov property implies the Anosov property. The first step generalizes
Corollary 3.1.

Lemma 3.6. Let f : X −→ X be a symplectic diffeomorphism acting on
a compact manifold X. If f is quasi-Anosov there exists C > 0 such that
for every p ∈ X, W ∈ TpX, we have

sup
n∈[0,m]

‖ Dpf
n(W ) ‖≤ C sup{‖W ‖, ‖ Dpf

m(W ) ‖},

for every m ∈ N.
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The proof is quite similar to the proof of Corollary 3.1. Arguing by
contradiction, if we assume that such constant C does not exists then we
get a nonzero vector W0 ∈ Tp0

X such that

‖ Dp0
fn(W0) ‖≤ 1

for every n ∈ N. This is forbidden by the quasi-Anosov assumption.

Once we have the quasi-convexity of the action of the differential Df , we
can follow step by step the proof of Eberlein’s theorem.

1. For every point p ∈ X there exists a stable subspace

Es(p) = {v ∈ TpX, ‖ Dpf
m(v) ‖≤ D ‖ v ‖ ∀ m ≥ 0}.

This follows from the quasi-convexity of Df , the quasi-Anosov as-
sumption and the preservation of a symplectic form (good exercise).

2. In fact, the constant D appearing in item (1) does not depend on the
point p. This implies that the subspaces Es(p) depend continuously
on p and that

lim
n→+∞

‖ Dpf
m(v) ‖= 0

for every v ∈ Es(p), and every p ∈ X.

3. Applying Lemma 3.5 we get exponential contraction for the action of
Df in Es(p).

4. The preservation of a symplectic form by f grants the existence of
unstable subspaces, varying continuously and which are exponentially
contracted by the backward iterates of Df . This implies that f is
Anosov.

3 Anosov dynamics and globally minimizing
properties of geodesics: hyperbolicity im-
plies the absence of conjugate points

We would like to finish this chapter with a remarkable theorem due to
Klingenberg [57], which completes the characterization of Anosov geodesic
flows in compact manifolds.

Theorem 3.5. Let (M, g) be a compact Riemannian manifold whose geodesic
flow is Anosov. Then (M, g) has no conjugate points.

This result was later generalized by Mañé [66], proving the following
amazing result:
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Theorem 3.6. Let (M, g) be a compact Riemannian manifold such that the
geodesic flow preserves a continuous Lagrangian subbundle. Then (M, g)
has no conjugate points.

A subspace Lθ ⊂ Nθ is called Lagrangian if dim(Lθ) = n − 1 and
Ω⊥(V,W ) = 0 for every V,W ∈ Lθ, where Ω⊥ is the canonical two-form of
the geodesic flow. The definition of Lagrangian subspaces of a symplectic
form is taken from mathematical physics. A subbundle L of the normal
subbundle N is called Lagrangian if each subspace in L is Lagrangian with
respect to the canonical two-form Ω⊥.

Mañé [66] observed that the stable and unstable subbundles of an Anosov
geodesic flow are Lagrangian, we shall show this fact here to give a flavor
of the proof of Theorem 3.6.

Lemma 3.7. Assume that the geodesic flow of (M, g) is Anosov. Then the
stable and the unstable subbundles of the flow are invariant and Lagrangian.

Proof. Let W,Z ∈ TθT1M be two vectors in the stable subspace of θ. Since
the canonical two-form is invariant by the geodesic flow φt, we have

Ω⊥(Dθφt(W ), Dθφt(Z)) = Ω⊥(W,Z)

for every t ∈ R. Let C > 0, λ ∈ (0, 1) be the constants in the definition of
Anosov flow, so ‖ Dθφt(Y ) ‖≤ Cλt ‖ Y ‖ for every t ≥ 0 and every stable
vector Y . This yields,

lim
t→+∞

Ω⊥(Dθφt(W ), Dθφt(Z)) = 0,

and by the invariance of the form Ω⊥ we conclude that Ω⊥(W,Z) = 0 for
every pair of vectors W,Z in the stable subspace of θ. The same holds for
unstable vectors, letting t→ −∞.

We can show that Green subbundles are Lagrangian too, regardless of
any further hypothesis on the dynamics of the geodesic flow.

Lemma 3.8. The Green subbundles in a manifold without conjugate points
are invariant, Lagrangian subspaces.

Proof. This follows from the definition of the canonical two-form com-
bined with the definition of Green subbundles. Let W s = (W1,W2),
Zs = (Z1, Z2) be two stable vectors in Es(θ), then

Ω⊥(W s, Zs) = gγθ(t)(J(W1,Z1)(t), J
′
(W2,Z2)

(t))

− gγθ(t)(J
′
(W1,Z1)

(t), J(W2,Z2)(t)),
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where J(Wi,Zi)(t) is the Jacobi field such that J(Wi,Zi)(0) = Wi, J
′
(Wi,Zi)

(0) =

Zi. This is the Wronskian of the solutions J(W1,Z1)(t), J(W2,Z2)(t) which is
constant. By the definition of Es(θ), we know that

J(Wi,Zi)(t) = lim
T→+∞

Ji,T (t),

where Ji,T (t) is the Jacobi field perpendicular to γθ satisfying Ji,T (0) =
J(Wi,Zi)(0), Ji,T (T ) = 0. So we have

gγθ(T )(J1,T (T ), J ′
2,T (T )) − gγθ(T )(J2,T (T ), J ′

1,T (T )) = 0.

And since the Wronskian of J1,T (t), J2,T (t) is constant we get that it van-
ishes for every t ∈ R. Taking limits as T → +∞, the continuity of Ω⊥ yields
that Ω⊥(W s, Zs) = 0 for every pair of stable vector fields in Es(θ). Since
the dimension of Es(θ) is n-1, this subspace is Lagrangian for every θ. An
analogous argument taking T → −∞ shows that Eu(θ) is Lagrangian.

Lemma 3.8 shows that manifolds without conjugate points whose sec-
tional curvatures are bounded from below always have invariant, Lagrangian
subspaces. Theorem 3.6 tells us that the converse of the above assertion is
also true.

Mañé proved Theorem 3.6 using tools of symplectic topology (Maslov
index). Theorem 3.6 belongs to a remarkable research area in mathematical
physics and calculus of variations which relates the existence of the so-called
invariant graphs of the dynamics with globally minimizing properties of
the orbits of the dynamics with respect to some variational principle. The
theory of the Hamilton-Jacobi equation, Birkhoff Theorems for twist maps
and Lagrangian, invariant tori, and Mather’s theory, are also important
bodies of work in this research area. The proof of Theorem 3.6 is out of
the scope of this survey. We recommend [72] for a complete, clear proof of
the theorem.

3.1 Conclusions

As a conclusion of the subsection, we get that the geodesic flow of a compact
manifold is Anosov if and only if the manifold has no conjugate points and
the Green subspaces are linearly independent at every point. So Anosov
geodesic flows are well understood from the point of view of the geometry of
the manifold. In the forthcoming chapters we shall discuss the influence of
Anosov dynamics in the global geometry of the manifold and the structure
of the fundamental group.

The structural stability of Anosov flows, which implies that the Anosov
dynamics is persistent in open neighborhoods of the flow, has an inter-
esting corollary in the case of geodesic flows. Namely, the persistence of
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Anosov dynamics carries the persistence of the absence of conjugate points
of the metric according to Klingenberg’s theorem. More precisely, if the
geodesic flow of a compact manifold (M, g) is Anosov, then there exists a
C2 neighborhood U of (M, g) such that the geodesic flow of every metric in
the neighborhood U has no conjugate points. The persistence of globally
minimizing properties of all geodesics is is quite exceptional in the set of
metrics of a manifold, and in fact this remark has a converse proved in [83]:

Theorem 3.7. Let (M, g) be compact without conjugate points. If there
exists a C2 open neighborhood of (M, g) where the geodesic flow of every
metric has no conjugate points, then the geodesic flow is Anosov.

Theorem 3.7 says that the interior in the C2 topology of the set of met-
rics in compact manifolds without conjugate points is precisely the set of
metrics whose geodesic flows are Anosov. These metrics are usually called
Anosov metrics. An open question is to know whether the boundary of the
set of metrics in M without conjugate points is in the closure of Anosov
metrics, given that M admits an Anosov metric.

4 Further applications of the Riccati equa-
tion in ergodic theory

The Riccati equation is a very useful tool in the theory of manifolds without
conjugate points. We would like to finish the chapter by mentioning, for
the sake of completeness, some of its applications in ergodic theory.

The Riccati equation is closely related with the calculus of the metric
entropy of the geodesic flow with respect to the Liouville measure. The
definition of the metric entropy of a dynamical system with respect to a
measure preserved by the system is quite technical and we won’t include
it in the survey (we refer to [48] for instance for details). Intuitively, the
metric entropy is a way of measuring chaos in a system. Freire and Mañé
in [40] showed the following result:

Theorem 3.8. Let (M, g) be a compact manifold without conjugate points.
Then the metric entropy hµ(φt) of the geodesic flow φt with respect to the
Liouville measure µ is given by the following formula:

hµ(φt) =

∫

T1M

trace(Uu
θ (0))dµ,

where Uu
θ (0) is the solution of the Riccati equation in the geodesic γθ asso-

ciated to the unstable Green subspace Eu(θ), and trace(M) is the trace of
a linear operator M .
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The proof of Theorem 3.8 uses the fact that the metric entropy is the
integral of the positive Lyapunov exponents of the flow, an equation known
as Pesin’s formula. Recall that the Lyapunov exponent χθ(W ) of a tangent
vector W ∈ TθT1M is given by

χθ(W ) = lim
t→+

−∞

1

t
ln(‖ Dθφt(W ) ‖).

This limit might not exist, however, Osedelets’ Theorem [48] grants the
existence of a total measure subset Λ of T1M where Lyapunov exponents
exist for every tangent vector. Moreover, Oseledets’ theorem implies that
for every θ ∈ Λ there exists a decomposition

TθT1M = E1(θ) ⊕ E2(θ) ⊕ ..⊕ En(θ)(θ)

by invariant subspaces of the flow such that the Lyapunov exponent χi
θ

is constant in Ei(θ), and such that χ1
θ < χ2

θ < .. < χ
n(θ)
θ .

Let us define the function χ+(θ) as the sum of the positive Lyapunov
exponents of the subspaces Ei(θ). The well known Pesin’s formula applied
to geodesic flows implies that

hµ(φt) =

∫

T1M

χ+(θ)dµ,

where µ is the Liouville measure. Freire-Mañé show in [40] that for geodesic
flows of compact manifolds without conjugate points,

∫
T1M

χ+(θ)dµ is just
the integral of the trace of the unstable solution of the Riccati equation.

Just to give some hints of the kind of ideas involved in [40], let us look
more carefully to the case when M is a surface. The solutions of the Riccati

equation are of the form U(t) = f ′(t)
f(t) = d

dt (ln(f(t)), where f(t) is a solution

of the one dimensional Jacobi equation f ′′(t) + K(t)f(t) = 0. Of course,
the above equation is well defined at the points where f(t) 6= 0. Integrating
we get

f(t) = f(0)e
R t
0

U(r)dr.

If J(t) is either a stable or an unstable Jacobi field defined in the geodesic
γ(t), the one-dimensional solution of the Jacobi equation is given by a non
vanishing function f(t) = g(J(t), γ ′(t)). So in fact, we can suppose that
the one-dimensional solutions f(t) in the case of surfaces are the norms of
Jacobi fields. So let f(t) be the norm of a stable Jacobi field. We get

1

t
ln(f(t)) =

∫ t

0

Us
θ (r)dr,
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and if f(t) is the norm of an unstable Jacobi field we have

1

t
ln(f(t)) =

∫ t

0

Uu
θ (r)dr.

Using Lemma 1.4 we can prove easily that for every stable vector W ∈
Es(θ), and θ ∈ Λ, we have

lim
t→+∞

1

t
ln
(
‖ Dθφt(W ) ‖

)
≤ lim

t→+∞
1

t

∫ t

0

Us(φr(θ))dr.

An analogous formula holds for unstable vector fields and Uu. Let χs(θ),
χu(θ) be respectively the stable and unstable Lyapunov exponent in θ.
Then, by Birkhoff’s ergodic theorem we get

∫

T1M

χs(θ)dµ ≤
∫

T1M

Us(θ)dµ,

∫

T1M

χu(θ)dµ ≤
∫

T1M

Uu(θ)dµ.

Thus, we see that the Riccati solutions associated to stable and unstable
Jacobi fields are connected with Lyapunov exponents. Freire-Mañé show
that the above inequalities are actually equalities, and that the positive
Lyapunov exponents are precisely those of Green unstable vectors.

Freire-Mañé conjectured, inspired by Theorem 3.8, that the metric en-
tropy of the manifold is zero if and only if the manifold is a flat torus. They
proved the conjecture for manifolds without focal points, and G. Knieper
[60] showed the conjecture for the so-called manifolds with bounded asymp-
tote, which will be defined in Chapter 4.



Chapter 4

C0 tools to study global
geometry of geodesics in the
universal covering of manifolds
without conjugate points

In the previous chapter, we gave some examples of the use of C1 tools
to study the geodesic flow: a priori restrictions on the sign of sectional
curvatures and Jacobi fields, Sturm-Liouville comparison theorems, Ric-
cati equation. In few words, any information about the local geometry
of the manifold carries naturally some information about the dynamics of
the geodesic flow. We have dealt so far with the application of C1 tools
to study Anosov geodesic flows, but in a forthcoming section we shall dis-
cuss some important, powerful applications to the theory of manifolds with
nonpositive curvature.

The use of C1 tools in the general theory of manifolds without conju-
gate points does not go too far, as in the study of nonpositive curvature
geometry. The hypothesis of absence of conjugate points might not imply
any particular restriction in the local geometry of the manifold. If no as-
sumptions are made on the curvature it is very difficult to say something
about the behavior of Jacobi fields and geodesics. Most of the results of the
theory of manifolds without conjugate points obtained by using C1 meth-
ods and no restrictions on curvatures or Jacobi fields use integrals of the
Riccati solutions to connect geometry to topological invariants. We shall
discuss Hopf’s theorem about tori without conjugate points to illustrate
our remark. Such line of reasoning works very well in dimension 2, but in
higher dimensions it is not really fruitful. The proof of Hopf’s conjecture
by Burago-Ivanov [21] has nothing to do with the Riccati equation.

The purpose of this chapter is to introduce some C0 (topological rather

69
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than differentiable) methods to study the global geometry of geodesics in
manifolds without conjugate points. We shall discuss the theory of glob-
ally minimizing geodesics of compact surfaces developed by Morse [69],
which strongly influenced the theory of visibility manifolds introduced by
Eberlein-O’Neil [35], and more recently the theory of Gromov hyperbolic
spaces [46]. Such theories give us important guidelines to pursue the study
of the global geometry of geodesics without any information about the lo-
cal geometry. By global geometry of geodesics we mean the geometry of
geodesics in the universal covering M̃ endowed with the pullback of the
metric g of M by the covering map.

We shall review first some of the fundamental objects of the geometry of
manifolds without conjugate points. We shall remind many of the different
categories of manifolds without conjugate points studied in the literature in
order to explore the knowledge on the global geometry of geodesics without
direct assumptions on the sectional curvatures. And we shall compare
different important features of such manifolds with their counterparts in
the theory of manifolds with nonpositive curvature, where there is a quite
complete understanding of the global geometry of geodesics.

1 Horospheres and Busemann flows in M̃

Let M̃ be the universal covering of M , and let (M̃, g̃) be the universal
covering endowed with the pullback of the metric g in M by the covering
map. We always parametrize geodesics by arc length. We shall often
call by [p, q] the geodesic segment joining two points in M̃ . This geodesic
segment is unique, since geodesics in manifolds without conjugate points
are globally minimizing. Let us start discussing this phenomenon.

Definition 4.1. Let (M, g) be a complete Riemannian manifold. A geodesic
γ ⊂ M is called globally minimizing if for every lift γ̃ of γ in (M̃, g̃) we
have that γ̃([s, t]) is the curve of minimal length joining γ̃(s) and γ̃(t) for
every pair of real numbers s < t.

Geodesics in Euclidean spaces and manifolds with nonpositive curvature
are always globally minimizing. This follows from Lemma 1.2 and the fact
that the norm of Jacobi fields is always convex in nonpositive curvature.
Indeed, geodesic rays starting at a point p ∈ M̃ hit a point q 6= p in just
one direction, since geodesic rays diverge if the norm of Jacobi fields is
convex. So the geodesic [p, q] is unique in M̃ which yields that the length
of [p, q] is the minimal length of curves joining p, q. Now, if θ = (p, v) is
the unit vector tangent to the geodesic [p, q] at p in a way that γθ(t) = q
for t = d(p, q), the same reasoning shows that γθ([s, t]) is the curve with
minimal length joining γθ(s) and γθ(t), which yields that geodesics are
globally minimizing as we claimed.
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In manifolds without conjugate points, each geodesic has no conjugate
points, which is in principle weaker than globally minimizing. In fact, basic
Morse theory for geodesics [29] tells us that given a geodesic γ without con-
jugate points, and points γ(s), γ(t), s < t, the length of γ([s, t]) minimizes
the length of local variations of γ([s, t]) by curves joining γ(s) and γ(t).

Lemma 4.1. Geodesics in complete manifolds without conjugate points are
globally minimizing.

Proof. The proof relies on the non-singularity of the exponential map, as
in the case of manifolds with nonpositive curvature. Indeed, once (M, g)
has no conjugate points, (M̃, g̃) has no conjugate points. So the map
expp : TpM̃ −→ M̃ is non-singular and hence a covering map for every

p ∈ M̃ . Since M̃ is simply connected we have that expp is a diffeomor-

phism, so given a point q ∈ M̃ different from p, there exists a unique
geodesic expp(tv) reaching q. Since the manifold is complete, there exists
a minimizing geodesic joining p to q, which has to be a subset of expp(tv).
The same reasoning we used in the case of nonpositive curvature yields
that expp(tv) is globally minimizing.

The fact that every geodesic is globally minimizing has strong topological
consequences. The first one we would like to mention is the existence of
the so-called Busemann functions: given θ = (p, v) ∈ T1M̃ the Busemann
function bθ : M̃ −→ R associated to θ is defined by

bθ(x) = lim
t→+∞

(d(x, γθ(t)) − t)

The level sets of bθ are the horospheres Hθ(t) where the parameter t means
that γθ(t) ∈ Hθ(t). Notice that γθ(t) intersects each level set of bθ per-
pendicularly at only one point in Hθ(t). Moreover,

bθ(γθ(s)) = lim
t→+∞

(d(γθ(s), γθ(t)) − t) = lim
t→+∞

((t− s) − t) = −s,

for every s ∈ R. So bθ(Hθ(s)) = −s for every s ∈ R.
We list some basic properties of horospheres and Busemann functions

that will be needed in the forthcoming sections (see [75], [26] for instance,
for details).

Lemma 4.2. Let (M, g) be a C∞ Riemannian manifold without conjugate
points whose sectional curvatures are bounded from below by a constant
C ≤ 0. Then we have:

1. bθ is a C1 function for every θ.

2. The gradient ∇bθ has norm equal to one at every point.
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3. Every horosphere is a C1+K , embedded submanifold of dimension
n − 1 (C1+K means K-Lipschitz normal vector field), where K is
a constant depending on curvature bounds.

4. The orbits of the integral flow of −∇bθ, ψθ
t : M̃ −→ M̃ , are geodesics

which are everywhere perpendicular to the horospheres Hθ. In partic-
ular, the geodesic γθ is an orbit of this flow and we have that

ψθ
t (Hθ(s)) = Hθ(s+ t)

for every t, s ∈ R.

Proof. We would like to give the main lines of the proof for the sake of
completeness. The main point of the proof is the bounded geometry of large
spheres in M̃ granted by the solutions of the Riccati equation. Observe that
the non-singularity of the exponential map at every point of (M̃, g̃) implies
that spheres are C∞, embedded, codimension one submanifolds. Let us
consider the sphere Sr(x) of radius r centered at x ∈ M̃ .

Claim: The second fundamental form of Sr(x) at the point expx(rv) =
γ(x,v)(r) is the product of (−1) by the solution of the Riccati equation
(equation 3.1)

Uθ(v,r),r(t) = J ′
θ(v,r),r(t)(Jθ(v,r),r(t))

−1,

at t = r, where θ(v, r) = (γ(x,v)(r),−γ′(x,v)(r)), and Jθ(v,r),r(t) is the matrix
solution of the Jacobi equation defined by Jacobi fields perpendicular to
γθ(v,r) satisying Jθ(v,r),r(r) = 0.

The second fundamental form Aq : TqSr(x) −→ TqSr(x) of Sr(x) at a
point q is the linear operator

Aq(Y ) = ∇Y (N),

which gives the covariant derivative of the unit, inward field of normals N
of Sr(x) at q with respect to Y . To show the claim, first observe that the
sphere of radius t > 0 centered at x is given by

St(x) = {expx(tv), v ∈ TxM̃, ‖ v ‖= 1}.

The field of unit normals N(q) at q ∈ St(x) is just

N(q) = N(expx(tvq)) = θ(vq, t),

where q = expx(tvq). So to get a unit vector Y ∈ TqSr(x) we consider a
variation of geodesic rays of the form

f(t, s) = expx(tv(s)),
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with |s| < ε, t = r, and v(s) a differentiable curve of unit vectors in TxM̃
satisfying Drv(0)expx(v′(0)) = Y (this follows from Lemma 1.2). Thus we
get

Aq(Y ) = ∇Y N = −∇NY = −J ′
r(0),

where Jr(t) = D(r−t)v(0)expx(tv′(0)) is the Jacobi field defined in γθ(v,r)

(according to Lemma 1.2) satisfying Jr(0) = Y , Jr(r) = 0. The equality
∇Y N = −∇NY comes from

∇Y N −∇NY = [Y,N ] = 0,

where [Y,N ] is the Lie bracket of Y , N (N and Y commute because they
are coordinate vector fields of the parametrized surface f(t, s)). Taking an
orthonormal basis {e1, e2, .., en−1} of TqSr(x), and considering the Jacobi
fields J i

r(t) in γθ(v,r) given by J i
r(0) = ei, J

i
r(r) = 0, we get a matrix

solution Jθ(v,r),r(t) of the Jacobi equation defining perpendicular Jacobi
fields in γθ(v,r). The matrix Jθ(v,r),r(t) satisfies Jθ(v,r),r(0) = I. By the
above considerations about the second fundamental form of spheres we
have

Aq(ei) = −J i
r
′(0) = −Uθ(v,r)(0)(ei),

with Uθ(v,r)(t) = J ′
θ(v,r),r(t)(Jθ(v,r),r(t))

−1 is the matrix solution of the
Riccati equation given in Section 1.2 of Chapter 3. This proves the claim.

To proceed with the proof of the Lemma, let p ∈ M̃ , let w ∈ TpM̃ be a
unit vector, and consider the family of spheres Sr(γ(p,w)(r)), r > 0. This
family is monotone, in the sense that the region bounded by Sr(γ(p,w)(r))
contains all St(γ(p,w)(t)) if t < s. By the Claim and Lemma 3.1, given T > 0
there exists K > 0 such that the norm of the second fundamental form at
every point of Sr(γ(p,w)(r)) is bounded above by K. So by Arzela-Ascoli
theorem, given any compact ball BR(p) centered at p there is a convergent
subsequence of the sets Sr(γ(p,w)(r))∩BR(p) in the C1 topology. The limit
set Σ(p, w) is a C1 submanifold with K-Lipschitz first derivatives.

The geodesic rays starting at γ(p,w)(r) converge to a flow if r → +∞
which is perpendicular to Σ(p, w). And the definition of the Busemann
function implies that Σ(p, w) = H(p,w)(0). Replacing p by any point
γ(p,w)(t) we get a horosphere H(p,w)(t) which contains γ(p,w)(t). The limit
flow of geodesic rays from γ(p,w)(r) is perpendicular to every H(p,w)(t). So
this flow is just the Busemann flow. The regularity of the Busemann func-
tion and flow follows from the regularity of the horospheres. This proves
items (1), (2), (3) in the Lemma.

Item (4) follows from the first variation formula (Lemma 1.1) applied
to variations by geodesics of γ(p,w) joining γ(p,w)(t) to points in H(p,w)(s).
Indeed, the first variation formula gives that the geodesic of minimal length
of the type [γ(p,w)(t), q], where q ∈ H(p,w)(s), has to be perpendicular to



74 Rafael O. Ruggiero

H(p,w)(s) at q. By uniqueness of geodesics with respect to initial conditions,
we get that q = γ(p,w)(s) and that the distance from γ(p,w)(t) to H(p,w)(s) is
|t− s|. Thus, we actually have that the horospheres Hθ(t) are equidistant,
i.e., given any point p ∈ Hθ(s), the distance d(p,Hθ(t)) is equal to |t− s|.
This proves item (4).

Notice that by item (4) in Lemma 4.1 we have that bθ(Hθ(t)) = −t for
every t ∈ R. The proof of Lemma 4.2 shows an interesting geometric in-
terpretation of the solutions of the Riccati equation (eq. 3.1 in Chapter 3).
The singular solutions of the Riccati equations are the second fundamental
forms of spheres. Hence, when the horospheres are of class C2 the asymp-
totic solutions of the Ricatti equation describe the curvatures of the horo-
spheres endowed with the restriction of the metric g̃. In general, although
horospheres might not be smooth enough, the asymptotic solutions of the
Riccati equation, namely, the stable and the unstable solutions defined in
Chapter 3, could be interpreted as their second fundamental forms (they
are not true second fundamental forms for the horospheres because Arzela-
Ascoli theorem in the proof of Lemma 4.2 does not grant C2 smoothness
of the horospheres).

The link between Riccati solutions and curvatures in spheres and horo-
spheres is very eloquent. We have seen in Chapter 3 that the solutions of
the Riccati equation are connected with Lyapunov exponents and contrac-
tion (expansion) of spheres and horospheres by the action of the geodesic
flow. The relationship with curvatures in spheres shows that the contrac-
tion (expansion) produced by the geodesic flow in spheres and horospheres
is connected with the way they curve in space. Negative curvature of (M, g)
implies that the Riccati solutions are definite linear operators (the stable
is negative definite, the unstable is positive definite). This means that
spheres and horospheres are convex submanifolds, and Busemann flows
tend to either contract horospheres or expand horospheres.

To finish the section, we would like to recall two natural dynamical ob-
jects closely related to horospheres: the so-called central subsets of the
geodesic flow.

The canonical lift in T1M̃ of Hθ(0) is the set F̃s(θ) = {(p,−∇pb
θ), p ∈

Hθ(0)}. The projection of F̃s(θ) in T1M by the map P : T1M̃ −→ T1M ,
P (p, v) = (Π(p), DΠ(v)), will be denoted by F s(P (θ)). This set is usually
called the stable set of P (θ), a notation based on the fact that in the case
of Anosov geodesic flows Fs(p, v) is indeed the strong stable submanifold
of (p, v). The saturation of Fs(P (θ)) by the geodesic flow is called the
central stable set of θ. It is not known whether the collection of stable
sets forms a continuous foliation. It is true in the case of manifolds of
nonpositive curvature, this fact is connected in general with the continuity
of horospheres in the compact open topology.
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Analogously, the projection in T1M by the map P of the set F̃u(p, v) =
{(p,∇pb

(p,−v)), p ∈ H(p,−v)(0)}, gives rise to the unstable set Fu(P (p, v))
of P (p, v). The saturation by the geodesic flow of an unstable set is called
central unstable set. In the case of Anosov geodesic flows, the collection of
the sets Fs(p, v), Fu(p, v), (p, v) ∈ T1M give two continuous foliations F s,
the stable foliation, and Fu, the unstable foliation. The theory of hyper-
bolic dynamical systems tells us that the leaves are smooth submanifolds
of dimension n− 1, where n = dim(M), and that the foliations are Hölder
continuous, according to the work of Anosov [2]. In the case of surfaces,
the stable and unstable foliations are C1, as showed by Hopf [52].

For Anosov flows, by the hyperbolic theory of regularity of invariant
submanifolds (Lemma 2.1), the sets F s(p, v), Fu(p, v) have the same dif-
ferentiability class of the flow. So horospheres are highly regular too, and
in this case the asymptotic solutions of the Riccati equation are in fact the
corresponding fundamental forms. Eberlein [34] showed that in manifolds
with nonpositive curvature, horospheres are C2 submanifolds, providing a
non-Anosov example where the Riccati solutions give the second funda-
mental forms of spheres and horospheres. In the general case of manifolds
without conjugate points it is not known if horospheres are always C2 sub-
manifolds.

2 Two-dimensional tori without conjugate
points are flat

The purpose of the next two sections is to survey some of the main results
concerning surfaces without conjugate points. We hope to motivate from a
geometric point of view many of the conjectures presented and the problems
solved at the end of the survey. First of all, the two dimensional sphere has
no metric without conjugate points. Because the universal covering of a
complete, n-dimensional manifold with a metric without conjugate points
is diffeomorphic to Rn, and the universal covering of the sphere is the
sphere itself. So by the classification of compact surfaces, the topologically
simplest surface in the list, after S2, is the two-torus T 2. The following
famous result due to E. Hopf [53] solves the issue:

Theorem 4.1. Two dimensional tori without conjugate points are flat.

Proof. The proof is one of the first, paradigmatic examples of the use of the
Riccati equation to get information about the global geometry of manifolds
without conjugate points. It works very well in dimension two as we already
observed.

Let (T 2, g) be a metric without conjugate points. By Lemma 3.1 there
exists a solution Uθ(t) of the Riccati equation for every θ ∈ T1M which
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never vanishes, we can assume without loss of generality that Uθ(t) = Us
θ (t).

The function θ → U s
θ (0) is measurable, and U s

φt(θ)(0) = Us
θ (t) for every

t ∈ R. Integrating the Riccati equation and taking the mean value of the
integrals in the equation, we get

lim
t→+∞

1

t

∫ t

0

(Us
θ (t))2dt = − lim

t→+∞
1

t

∫ t

0

K(γθ(t))dt,

where K(p) is the Gaussian curvature at p. The above limits exist in a
full Lebesgue measure set of T1M by Birkhoff’s ergodic theorem (Theorem
1.3). Notice that γθ(t) = γφt(θ)(0), so the same Birkhoff’s theorem implies
that ∫

T1T 2

(Us
θ (0))2dµ = −

∫

T1T 2

K(θ)dµ = −2πχ(T 2) = 0,

where χ(T 2) is the Euler characteristic of the torus. In the last equality we
used of course Gauss-Bonet theorem. Hence, the operator (U s

θ (0))2 must
be equal to zero in a total Lebesgue measure set, because it is positive
semi-definite. Since U s

θ (0) is a symmetric linear operator, this yields that
Us

θ (0) = 0 almost everywhere in T1T
2.

The set Γ where U s
θ (0) = 0 might not be invariant, but since the geodesic

flow preserves the Lebesgue measure, we have that φt(Γ) ∩ Γ has total
measure for every t ∈ R. Since a countable intersection of full measure sets
is a full measure set, we have that

Γ∞ =
⋂

t∈Q
φt(Γ)

has full measure. Observe that Γ∞ is φt-invariant in the set of rational
values of the parameter t. So θ ∈ Γ∞ implies that φt(θ) ∈ Γ∞ for every
rational t and hence, U s

θ (t) = 0 for every rational t.

Since Us
θ (t) is differentiable in the geodesic γθ, we conclude that U s

θ (t) =
0 for every t ∈ R. By the Riccati equation, K(γθ(t)) = 0 for every t ∈ R.
Since Γ∞ has total measure, we deduce that the Gaussian curvature is
zero in a dense subset of T 2, which implies that the curvature vanishes
everywhere.

This beautiful application of the Riccati equation to get the geometric
rigidity of two-dimensional tori was generalized by Green [45], who consid-
ered n-dimensional tori and replaced the Gaussian curvature by the Ricci
curvature. Using the same Hopf’s proof Green showed that n-dimensional
tori without conjugate points have nonpositive Ricci curvature, which van-
ishes everywhere if and only if the torus is flat. The problem of proving
Hopf’s theorem, usually called the Hopf’s conjecture, in any dimension, re-
mained open for about 45 years (Hopf’s work appeared in the 1940’s), until
Burago-Ivanov [21] proved the conjecture using totally different methods.
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3 Surfaces without conjugate points of higher
genus, quasi-geodesics and quasi-convexity

So surfaces without conjugate points and non constant curvature are ei-
ther non compact or have genus greater than one. Since it was known
from Hadamard’s theorem that nonpositive curvature implies no conjugate
points, many authors looked for examples of such surfaces admitting re-
gions of positive curvature. Gulliver [47] found non compact examples,
Ballmann-Brin-Burns [6] give a compact example of a surface with very
high genus where the Green subbundles are not continuous; and recently
Donnay-Pugh [30] constructed examples of compact embedded surfaces in
R3 with Anosov geodesic flows and hence, by Klingenberg’s theorem, with
no conjugate points.

Thus, there is no geometric classification of compact surfaces without
conjugate points and higher genus. All of them admit a metric of constant
negative curvature but there are many other metrics without conjugate
points.

We start with the classical work of Morse [69] describing completely the
qualitative behavior of globally minimizing geodesics of compact surfaces
of genus greater than one. This result is crucial to understand many of
the conjectures posed in the survey about weak stability of geodesics and
global geometry. More precisely, Morse showed the following:

Theorem 4.2. Let (M, g) be a compact surface of genus greater than one,
and let (M, g0) be a hyperbolic metric in M with constant curvature −1.
Then, given A > 0, B > 0 there exists C > 0 such that every A,B quasi-
geodesic in (M̃, g̃) is in the hyperbolic tubular neighborhood of radius C of
some geodesic in the hyperbolic plane H2 = (M̃, g̃0).

An A,B-quasi-geodesic of (M̃, g̃) is a continuous rectifiable curve
α : [0, 1] −→ M̃ such that

lg̃(α[t, s]) ≤ Adg̃(α(t), α(s)) +B,

for every t, s ∈ [0, 1], where lg̃ is the length in the metric g̃. The definition of
quasi-geodesic makes sense in more general spaces, called geodesic metric
spaces. We shall come back to this point in more detail in forthcoming
sections.

Morse Theorem provided one of the first relevant evidences of the in-
fluence of the topology of manifolds in the global geometry of geodesics.
The uniformization theory of compact surfaces is crucial for the argument,
there is no such a theorem for higher dimensional manifolds. The solution
of the Poincaré conjecture by Perelmann and its aplications to Thurston’s
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geometrization conjecture yield a version of Morse theorem for some com-
pact three dimensional manifolds. We shall come back to this point at the
end of the survey. The following very simple result is the starting point of
many strong implications of Theorem 4.2.

Lemma 4.3. Let (M, g), (M,h) be two C∞ Riemannian structures in
a compact manifold. Then there exists A > 0 such that every globally
minimizing geodesic of (M,h) is a A,0-quasi-geodesic of (M, g).

Proof. This is in fact straightforward from the fact that the two metrics g
and h are equivalent: there exists B > 0 such that

1

B2
gp(v, v) ≤ hp(v, v) ≤ B2g(v, v)

for every p ∈ M and every tangent vector v ∈ TpM . The equivalence
follows from the compactness of T1M and the continuity of the norms of h
and g in T1M .

Now, let γ ⊂ (M̃, h̃) be a globally minimizing geodesic for h̃. Then, the
distance in the metric h from γ(t) to γ(s) is

dh(γ(t), γ(s)) =

∫ s

t

h(γ′(r), γ′(r))
1
2 dr,

for every t < s, which implies

1

B
dg(γ(t), γ(s)) ≤ 1

B

∫ s

t

g(γ′(r), γ′(r))
1
2 dr

≤ 1

B
dh(γ(t), γ(s)).

Consider a g-minimizing geodesic β : [a, b] −→ M̃ such that β(a) = γ(t),
β(b) = γ(s). Then, interchanging the roles of h and g in the above estimates
we get

dh(γ(t), γ(s)) ≤ B

∫ b

a

g(β′(r), β′(r))
1
2 dr = Bdg(γ(t), γ(s)).

Since changing γ we cover all pairs of points in M̃ , we get the lemma.

Roughly speaking, Theorem 4.2 and Lemma 4.3 imply that the existence
of a hyperbolic metric in a surface yields that globally minimizing geodesics
of any metric in the surface behave in the same way when lifted to the
hyperbolic space. This nice idea can be considered the germ of what is
called nowadays the theory of hyperbolic groups, or geometric group theory.
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Next, we proceed to sketch the proof of Theorem 4.2. For this purpose,
we recall some basic features of hyperbolic plane geometry. We shall con-
sider the upper half plane model of the hyperbolic space, H2, endowed with
the metric g(x,y)(v, v) = <v,v>

y2 , where < v, v > is the Euclidean metric. In
this model, the geodesics are the vertical straight lines and the circles which
are perpendicular to the horizontal axis. We shall denote by lH2(c) the hy-
perbolic length of a curve in H2. We need two preliminary elementary
lemmas of hyperbolic geometry to show 4.2.

Lemma 4.4. 1. The tubular neighborhood of radius r,

Vr(γ) = {p ∈ H2, dH2(p, γ) ≤ d}

of the hyperbolic geodesic γ(t) = (0, t) is the cone Cα in H2 bounded
by the two straight lines y = tan(α)x, with x > 0, and y = − tan(α)x,
with x < 0, where 0 < α < π

2 . The distance r from the vertical axis
γ(t) and the boundary of Cα satisfies the following formula:

r = ln(cot(
α

2
)).

2. Let 0 < ρ1 < ρ2. Then the hyperbolic length of the segment Iα,ρ1,ρ2
⊂

r+α bounded by the circles x2 + y2 = ρ2
1, x

2 + y2 = ρ2
2 is

lH2(Iα,ρ1,ρ2
) = cosh(s(α)) ln(

ρ2

ρ1
).

Proof. The proof is elementary, we just sketch it for the sake of complete-
ness. We take polar coordinates (ρ, θ) in the plane and calculate the lengths
of the statement in such coordinates. Any circle x2+y2 = r2 is a hyperbolic
geodesic that is perpendicular to the vertical axis. By the first variation
formula we have that the distance from a point p ∈ {y = tan(α)x} with
ρ(p) = r to the vertical axis is just the length of the arc of x2 + y2 = r2

bounded by y = tan(α)x and the vertical axis. So we have

dH2(p, γ) = lH2(ρ = r, θ ∈ (α,
π

2
))

=

∫ π
2

α

rdθ

r sin(α)

= ln(cot(
α

2
)).

Notice that the above number does not depend on r, so the distance from
any point of y = tan(α)x to γ is constant.

The distance from the vertical axis to r−α is the same above number,
since the symmetry with respect to the vertical axis T (x, y) = (−x, y) is a
hyperbolic isometry. This shows item (1).
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The proof of item (2) is similar. Parametrize Iα,ρ1,ρ2
in polar coordinates,

we get the curve (ρ ∈ [ρ1, ρ2], θ = α). So the length of Iα,ρ1,ρ2
is given by

lH2(Iα,ρ1,ρ2
) =

∫ ρ2

ρ1

dr

r sin(α)
= ln(

ρ2

ρ1
)

1

sin(α)
.

To get the expression of lH2(Iα,ρ1,ρ2
) in terms of the distance s(α) from

r+α to the vertical axis just replace in the above formula the equation for
s(α) obtained in item (1).

Lemma 4.5. Let Sα ∈ H2 be the cone bounded by y = tan(α)x, x > 0,
and and the horizontal axis y = 0. Let P : Sα −→ {y = tan(α)x} be
the hyperbolic orthogonal projection onto y = tan(α)x, i.e., the projection
along hyperbolic geodesics which are perpendicular to y = tan(α)x. Then
P shrinks the hyperbolic length of curves: if c : [0, 1] −→ Sα is a smooth
curve contained in Sα, then lH2(P (c)) ≤ lH2(c).

Proof. Assume without loss of generality that c is a simple curve and that
ρ(c(0)) ≤ ρ(c(1)). It is not difficult to show that there exists a partition
0 = t0 < t1 < .. < tk < tk+1 = 1 of [0, 1] such that

1. The hyperbolic geodesic ci = [c(ti), c(ti+1)] is contained in Sα for
every i = 0, 1, .., k.

2. ρ(c(ti)) ≤ ρ(c(ti+1)) for every i = 0, 1, .., k.

Since each ci is an arc of circle or a vertical segment, and ρ(c(ti)) <
ρ(c(ti+1)), we get that the restriction of the projection P to ci is an in-
creasing function for every i = 0, 1, .., k. Moreover,

P (ci) = Iα,ρ(c(ti)),ρ(c(ti+1))

for every i = 0, 1, ..k. So we can parametrize each geodesic ci by the radius
ρ. We get monotone parametrizations

ci(ρ) = (ρ cos(θ(ρ)), ρ sin(θ(ρ)))

for ρ ∈ [ρ(c(ti)), ρ(c(ti+1))].

Observe that θ(ρ) ≤ α for every t ∈ [0, 1] because ci ⊂ Sα for every i.
Since sin(θ) is increasing in θ ∈ [0, π

2 ], we get that 1
sin(θ(ρ)) ≥ 1

sin(α) for every

ρ ∈ [ρ(c(ti)), ρ(c(ti+1))], and every i = 0, 1, ..k. Calculating the hyperbolic
length of ci we have

lH2(ci) =

∫ ρ(c(ti+1))

ρ(c(ti))

√
1 + ρ2(θ′(ρ))2

ρ sin(θ(ρ))
dρ

≥
∫ ρ(c(ti+1))

ρ(c(ti))

1

ρ sin(α)
dρ

= ln
ρ(c(ti+1))

ρ(c(ti))

1

sin(α)
= lH2(Iα,ρ(c(ti)),ρ(c(ti+1))).
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So we get that lH2(ci) ≥ lH2(P (ci)) for every i = 0, 1, .., k. Since the
sum of the lengths of the ci’s at most the length of c, and the union of the
projections by P of the ci’s is contained in the projection by P of c, we
conclude that lH2(c) ≥ lH2(P (c)) as we wished to show.

Proof of Theorem 4.2

Let c : [a, b] −→ H2 be an A,B quasi-geodesic, which we suppose to
be the union of a finite number of smooth curves. Let [c(a), c(b)] = β
be the hyperbolic geodesic joining c(a) to c(b). We shall show that there
exists D > 0, D = D(A,B), such that c([a, b]) is contained in the tubular
neighborhood VD(β) = {p ∈ H2, dH2(p, β) ≤ D} of β with radius D.

Since the group of isometries of H2, the orientation preserving Moebius
transformations, act transitively in H2, we can suppose that β is a vertical
segment parametrized as γ(t) = (0, t), t ∈ [t1, t2]. In this way, c is a quasi-
geodesic joining two points in the vertical axis, c(a) = γ(t1), c(b) = γ(t2).
Let ρ(c(t)) be the radial polar coordinate of c(t).

Let us suppose that for r > 0, the curve c has some points outside Vr(γ).
Let Cαr

be the corresponding cone. Let Sαr
be the complement of Cαr

in
the first quadrant. In this way, we can separate the set

Er = {t ∈ [a, b], c(t) ∩ Sαr
6= ∅}

into two subsets: [a, b] = U r
1 ∪Ur

2 , where U r
1 is the set of connected compo-

nents [s, t] of E where ρ(c(t))
ρ(c(s)) ≤ e, and U r

2 is the set of connected components

of E where ρ(c(t))
ρ(c(s)) > e.

Observe that if [s, t] ∈ U r
1 , we have that the length of Iα,ρ(c(s)),ρ(c(t)) is

bounded above by csc(αr). And since c is a A,B-quasi geodesic, we have
that

lH2(c([s, t])) ≤ AdH2(c(s), c(t)) +B ≤ A csc(αr) +B.

So the length of each component in U r
1 is bounded by a universal constant

κr = A csc(αr) +B.

Claim: There exists r0 = r0(A,B) such that if [t, s] ∈ U r
2 , then r ≤ r0.

In fact, assume that c[s, t]) is contained in U r
2 . Let σ ∈ [s, t] such that

dH2(c([s, t]), {y = tan(αr)x}) = dH2(c(σ), {y = tan(αr)x}) = ν.
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Assume that ρ(s) ≤ ρ(σ) ≤ ρ(t). The reasoning applied in this case also
holds in the general case. Since c is an A,B-quasi geodesic we have

lH2(c([s, t])) = lH2(c(s), c(σ)) + lH2(c(σ), c(t))

≤ A(dH2(c(s), c(σ)) + dH2(c(σ), c(t))) + 2B

≤ A(2r + 2ν + ln(
ρ(c(t))

ρ(c(σ))
) + ln(

ρ(c(σ))

ρ(c(t))
) + 2B

= A(2(2r + ν) + ln(
ρ(c(t))

ρ(c(s))
)) + 2B.

Notice that

ν ≤ lH2(c([s, t])) ≤ AdH2(c(s), c(t)) +B

≤ A ln(
ρ(c(t))

ρ(c(s))
) +B.

Combining with the previous estimate, we get

lH2(c([s, t])) ≤ A(2A+ 1) ln(
ρ(c(t))

ρ(c(s))
) +B(2 +A) + 4Ar.

Since the orthogonal projection Iαr,ρ(c(s)),ρ(c(t)) of c([s, t]) onto
{y = tan(αr)x} has less hyperbolic length than c([s, t]) (Lemma 4.5), we
have

ln(
ρ(c(t))

ρ(c(s))
) cosh(r) = lH2(Iαr,ρ(c(s)),ρ(c(t)))

≤ A(2A+ 1) ln(
ρ(c(t))

ρ(c(s))
) +B(2 +A) + 4Ar.

Dividing this inequality by Q = ln( ρ(c(t))
ρ(c(s)) ) > 1, we obtain

cosh(r) ≤ A(2A+ 1) +B(2 +A) + 4Ar.

Since cosh(r) is an exponential function of r, there exists r0 > 0 such
that the inequality holds if and only if r ≤ r0. This finishes the proof of
the Claim.

From the Claim we get that there exists r0 such that if the set U r
2 is

nonempty for some r, then r ≤ r0. From the the definition of U r
1 , it is

clear that there is a number R0 > 0 such that either there exists r with
Ur

2 =6= ∅, or the length of c([a, b]) is bounded above by R0. In the latter
case the statement of the Lemma follows. In the former case, it follows
from the Claim and the fact that the length of a connected component in
Ur

1 is at most κr0
. This finishes the proof Theorem 4.2 in the case where

[a, b] is finite.
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If c : (−∞,+∞) −→ H2 is a A,B-quasi geodesic, then we consider a
sequence [an, bn] of intervals where an → −∞, bn → +∞, and apply the
previous result to each quasi geodesic c([an, bn]). We get a sequence of
geodesics γn : [sn, tn] −→ H2 which are contained in a tubular neighbor-
hood of radius D of c([an, bn]). It is clear that there exists a convergent
subsequence of the γn whose limit is a geodesic γ∞, that is in the D-tubular
neighborhood of c, as we wished to show. This finishes the proof of Theo-
rem 4.2.

Morse’s result has strong consequences on the global geometry of geodesics.
For instance, we get that (M̃, g̃) is a quasi-convex space.

Definition 4.2. A complete Riemannian manifold (N,h) is K,C-quasi-
convex if given a1, a2, b1, b2 in N , then any pair of geodesics [a1, a2] joining
a1, a2, and [b1, b2] joining b1, b2, satisfies

d([a1, a2], [b1, b2]) ≤ Ksup{d(a1, b1), d(a2, b2)} + C,

where d([a1, a2], [b1, b2]) is the Haussdorff distance from one geodesic to the
other.

Corollary 4.1. Let (M, g) be a compact surface without conjugate points
and genus greater than one. Then (M̃, g̃) is a quasi-convex space.

Proof. This follows essentially from Proposition 4.2, which asserts that
every geodesic in (M̃, g̃) is globally minimizing; combined with Theorem
4.2 and the triangular inequality.

The proof of Morse’s theorem (Theorem 4.2) can be extended to any
compact manifold admitting a metric with negative curvature. Eberlein
and O’Neil [35] introduced visibility manifolds and showed the shadow-
ing of quasi-geodesics by geodesics. Such manifolds are in fact manifolds
where geodesic rays diverge and whose fundamental groups are Gromov
hyperbolic, a subject that will be treated later on (Chapters 6, 7) in this
survey.

Corollary 4.2. Let (M, g) be a compact surface of genus greater than one
without conjugate points. Let (M, g1) be any other metric in M without
conjugate points. Then there exists r > 0 depending on g, g1, such that for
every g̃1-geodesic γ1 ∈ (M̃, g̃1) there exists a g̃-geodesic γ ∈ (M̃, g̃) such
that

d(γ, γ1) ≤ r,

where the above distance is the Hausdorff distance.

Proof. Another straightforward consequence of Theorem 4.2. Let (M, g1)
be any metric without conjugate points in the surface M . Then the shad-
owing of the g̃1-geodesics by hyperbolic geodesics, and the shadowing of
the g̃-geodesics by hyperbolic geodesics, implies by the triangular inequal-
ity that g̃-geodesics shadow g̃-geodesics.
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The quasi-convexity of (M̃, g̃) and the shadowing of geodesics are re-
markable consequences of the topological classification of compact surfaces.
Usually, any information about the global behavior of geodesics is obtained
from some information about the local geometry (curvature) of the surface.
To explore the relationships between global properties of geodesics and the
topology of manifolds is one of the main goals of the survey.

4 Divergence of geodesic rays and continuity
of Hθ(0) with respect to θ

We continue our survey of results about surfaces without conjugate points
with the analysis of two very natural questions of the theory of manifolds
without conjugate points:

1. Do geodesic rays diverge in M̃?

2. Do horospheres Hθ depend continuously on θ?.

Definition 4.3. We say that two geodesic rays γ(t), β(t) in M̃ , with γ(0) =
β(0) diverge if limt→+∞ d(γ(t), β(t)) = +∞. We say that geodesic rays
diverge uniformly in M̃ if given ε > 0, D > 0, there exist T = T (ε,D) > 0
such that if γ, β are two geodesics with γ(0) = β(0) which form an angle
greater than ε at t = 0, we have that d(γ(t), β(t)) ≥ D for every t ≥ T .

Geodesic rays diverge in manifolds with nonpositive curvature due to the
convexity of the norm of Jacobi fields and the definition of the exponential
map (Lemma 1.2).

The continuity of θ → Hθ(0) in the compact open topology is defined
as follows: let θn converge to θ, then Hθn

(0) converges to Hθ(0) uniformly
on compact subsets of M̃ . Although by Lemma 4.2 it is clear that Hθ(t)
depends continuously on t ∈ R, it is not known whether Hθ(0) depends
continuously on θ. The continuity of θ → Hθ is equivalent to the continuity
in the C1 topology of the map θ → bθ uniformly on compact subsets of M̃ .

Horospheres Hθ(0) depend continuously on θ in manifolds with nonpos-
itive curvature and sectional curvatures bounded from below. The conti-
nuity of horospheres and the divergence of geodesic rays are closely related
through the notion of asymptoticity of geodesics in M̃ .

4.1 Asymptoticity and quasi convexity

Definition 4.4. A geodesic β is asymptotic to a geodesic γ in M̃ if there
exists a constant C > 0 such that d(β(t), γ(t)) ≤ C for every t ≥ 0.
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We shall denote by Busemann asymptotes of γθ the orbits of
the flow ψθ

t .

Lemma 4.6. Let (M, g) be a compact manifold without conjugate points
such that (M, g) is quasi-convex (Def. 4.2). Then Busemann asymptotes
of γθ are asymptotic to γθ.

Proof. This is a consequence of the quasi-convexity of (M, g) and the
definition of Busemann asymptotes. Recall that each Busemann asymp-
tote β of γθ is defined as a limit as T → +∞ of geodesics of the form
βT = [β(0), γθ(T )], where the notation [p, q] means the geodesic joining p
to q (we already know that [p, q] it is unique). Let γθ(t0) be the closest
point of γθ to β(0). By quasi-convexity we have constants A,B such that

dH(γθ([t0, T ]), βT ) ≤ Ad(γθ(t0), β(0)) +B,

where dH is the Hausdorff distance. Clearly, this estimate extends to the
limit if T → +∞, so we get

dH(γθ([t0,∞)), β([0,∞)) ≤ Ad(γθ(t0), β(0)) +B

thus proving that β is asymptotic to γθ.

Corollary 4.3. If (M, g) is a compact surface without conjugate points,
then Busemann asymptotes of γθ are asymptotic to γθ for every θ ∈ T1M̃ .

This is just a combination of the quasi-convexity of compact surfaces
without conjugate points (Corollary 4.1 and the previous lemma).

In higher dimensions, Busemann asymptotes of γθ might not be asymp-
totic to γθ. Lemma 4.6 can be applied to manifolds with nonpositive cur-
vature and without focal points.

Definition 4.5. A complete Riemannian manifold (M, g) without conju-
gate points has no focal points if for every (p, v) ∈ TM , v 6= 0, the restric-
tion of the exponential map expp to the subspace of TpM that is perpendic-
ular to v is nonsingular.

There are many equivalent ways to define manifolds without focal points,
we summarize some of them with the help of the tools developed in Chap-
ter 3.

Lemma 4.7. A complete manifold (M, g) without conjugate points has no
focal points if and only if:

1. The second fundamental form of every sphere in (M̃, g̃) is semi-
definite.
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2. The norm of the stable Jacobi fields defined in Chapter 3 is always
non-increasing, and the norm of unstable Jacobi fields in always non-
decreasing.

3. The matrix solutions U s
θ (t) of the Riccati equation (eq. 3.1) are nega-

tive semi-definite for every θ ∈ T1M , t ∈ R; and the matrix solutions
Uu

θ (t) are positive semi-definite for every θ ∈ T1M , t ∈ R.

The proof of the above lemma is a good exercise and we leave it to
the reader. It is easy to check, using Lemma 4.7, that manifolds with
nonpositive curvature have no focal points. Moreover, from Lemma 4.7
we can easily deduce that the universal covering of a complete manifold
without focal points is 1, 0-quasi convex. So Busemann asymptotes are
true asymptotes in this case. The theory of manifolds without focal points
is an important, well understood part of the theory of manifolds without
conjugate points. They were studied by Eberlein, Pesin, Eschenburg and
many others, and most of the results known for manifolds with nonpositive
curvature generalize to such manifolds.

In the case of manifolds without conjugate points, Croke-Schröeder [26]
showed that two different bi-asymptotic lifts γθ, γσ of a closed geodesic
γ ∈M have the property that the corresponding Busemann functions differ
by a constant, provided that (M, g) is analytic. This statement implies in
particular that γθ and γσ are Busemann asymptotes of each other. In fact,
using the tools developed in [26] it is not difficult to show that

Lemma 4.8. Let (M, g) be compact without conjugate points. Let γθ, γσ

be two different, bi-asymptotic lifts in M̃ of a closed geodesic γ ∈M . Then
they are Busemann asymptotes of each other.

We shall prove Lemma 4.8 in Chapter 6, using elementary properties of
the fundamental group of manifolds without conjugate points.

4.2 Divergence of geodesic rays in surfaces without
conjugate points

In the previous section we analyzed the problem of knowing whether a
Busemann asymptote of a given geodesic in M̃ is a true asymptote of the
geodesic. In the present section we look at a sort of converse of this prob-
lem: given a geodesic that is asymptotic to a given one, is it Busemann
asymptotic? The answer to this question is closely related with the diver-
gence of geodesic rays.

More generally, the issue of the divergence of geodesic rays comes in
when we ask the following question: given a geodesic γ ⊂ M̃ , and a point
p ∈ M̃ , is there a unique geodesic asymptotic to γ starting at p? In the
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case of quasi convex manifolds, Lemma 4.6 shows that such an asymptotic
geodesic always exists. But the quasi convexity assumption does not grant
the uniqueness of the asymptote. If we had two geodesics asymptotic to γ
starting at p, then we would have two non diverging geodesic rays. In par-
ticular, if the manifold has nonpositive curvature there is a unique geodesic
asymptotic to γ ⊂ M̃ passing through p ∈ M̃ . It is not difficult to show
that the above assertion also holds for manifolds without focal points.

In compact surfaces without conjugate points, the problem of the diver-
gence of geodesic rays was solved by Hopf and Green [44]. Hopf’s theo-
rem (Theorem 4.1) says that if the surface is a torus then the metric is
flat. Therefore, the universal covering is just Euclidean space and clearly
geodesic rays (straight lines) diverge. For surfaces of higher genus, the
divergence of geodesic rays is also true by the work of Green.

Proposition 4.1. Let (M, g) be a compact surface without conjugate points.
Then geodesic rays diverge uniformly in M̃ .

Proof. The argument of the proof relies strongly in two dimensional topol-
ogy, it does not extend to higher dimensions. Suppose by contradiction,
that we have p ∈ M̃ , and two geodesics γ(p,v), γ(p,w), such that

d(γ(p,v)(t), γ(p,w)(t)) ≤ C

for every t ≥ 0. Let us assume that the pair (v, w) has the canonical
orientation of M̃ .

The set {γ(p,v)(t), t ≥ 0} ∪ {γ(p,w)(t), t ≥ 0} bounds a geodesic cone

S ∈ M̃ with the following properties:

1. There exists a smooth curve c : [0, a] −→ TpM̃ of normal vectors c(s)
such that c(0) = v, c(a) = w, and ‖ c′(s) ‖= 1 for every s ∈ [0, a].

2. The cone S is given by

S = {expp(tc(s)), t ≥ 0, s ∈ [0, a]}.

The set St = {expp(tc(s)), s ∈ [0, a]} is an arc of the sphere St(p) of
radius t centered at p. Recall that St(p) has bounded geometry if t ≥ 2 say,
namely, the curvatures of large spheres are bounded by a uniform constant
(Lemma 4.2). So the assumption d(γ(p,v)(t), γ(p,w)(t)) ≤ C for every t ≥ 0
implies that there exists a constant L0 > 0 such that the length of the arcs
St is bounded above by L0 for every t ≥ 0. The length of St is given by

lg̃(St) =

∫ a

0

‖ Dtc(s)expp(tc
′(s)) ‖ ds =

∫ a

0

‖ Js(t) ‖ ds,

where Js(t) = Dtc(s)expp(tc
′(s)) is a Jacobi field according to Lemma 1.2.

This Jacobi fields vanish at t = 0, and J ′
s(0) = c′(s) for every s ∈ [0, a]. So

‖ J ′
s(0) ‖= 1 for every s.
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The fact that lg̃(St) ≤ L0 for every t ≥ 0 implies that

∫ a

0

‖ Js(t) ‖ ds ≤ L0

for every t ≥ 0. Applying the mean value theorem for integrals, given t > 0,
there exists st ∈ [0, a] such that

‖ Jst
(t) ‖≤ aL0.

On the other hand, Proposition 3.1 in the case of surfaces implies that given
r > 0 there exists T = T (r) > 0 such that ‖ Js(t) ‖≥ r for every t ≥ T . In-
deed, Proposition 3.1 says that Jacobi fields which vanish at a point diverge
uniformly with respect to the norm of its derivative. This contradicts the
assumption of the non divergence of rays, so we get Proposition 4.1.

Remark that the argument in the proof of Proposition 4.1 fails in higher
dimensions essentially because of the (possibly) non uniform divergence of
vanishing Jacobi fields. In fact, the divergence of vanishing Jacobi fields
might depend on the geodesic where it is defined, and not only on the norm
of its initial derivative. This is the best result known about divergence
of vanishing Jacobi fields, it was proved by Eberlein [32] as we already
observed in Chapter 3.

Corollary 4.4. Let (M, g) be a compact surface without conjugate points.
Given a geodesic γ ⊂ M̃ , and p ∈ M̃ , there is a unique geodesic asymptotic
to γ containing p. This geodesic is the Busemann asymptote of γ pass-
ing through p. The relation between geodesics γRβ if and only if “γ is a
Busemann asymptote of β” is an equivalence relation.

To conclude the subsection, we would like to discuss the last part of
the statement of Corollary 4.4 in general dimensions. Assuming that the
manifold has nonpositive curvature or even no focal points the Corollary
remains true. This is because in such manifolds we have both divergence
of geodesic rays and quasi-convexity of (M̃, g̃). We could expect that the
above relation is an equivalence relation in the category of manifolds with-
out conjugate points. Observe that if we drop the word “Busemann” from
the definition of the relation, it becomes obviously an equivalence relation.

The main difficulty to prove the equivalency of the relation of being
Busemann asymptote is precisely the reflexive property. As far as we know,
this is an open problem of the theory of manifolds without conjugate points.
We continue to deal with the divergence of rays in higher dimensions in the
next subsections.
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4.3 Divergence of geodesic rays in higher dimensions

The previous discussion can be generalized in higher dimensions in the
following statement.

Lemma 4.9. Let (M, g) be a compact manifold without conjugate points.
Suppose that geodesic rays diverge in M̃ . Then any geodesic asymptotic to
γ ⊂ M̃ is a Busemann asymptote of γ.

The (possibly) non uniform divergence of vanishing Jacobi fields moti-
vated Eberlein to define an ad hoc condition on Jacobi fields, the so-called
bounded asymptote condition.

Definition 4.6. The manifold (M, g) without conjugate points satisfies the
bounded asymptote condition if there exists C > 0 such that every stable
Jacobi field J(t) satisfies ‖ J(t) ‖≤ C ‖ J(0) ‖ for every t ≥ 0.

Of course, the convexity of the metric (nonpositive curvature and no
focal points) imply the bounded asymptote condition. However, it is very
hard to prove it if we don’t know something about the local geometry of
the manifold. Moreover, the bounded asymptote condition implies that
(M̃, g̃) is C, 0-quasi-convex, according to Definition 4.2.

Manifolds with bounded asymptote were studied for instance by Eschen-
burg [37], Croke-Kleiner [25], and Knieper [60].

Lemma 4.10. [60] Let (M, g) be a compact manifold without conjugate
points and bounded asymptote. Then vanishing Jacobi fields diverge at least
linearly. Namely, there exists C > 0 such that given a nontrivial Jacobi
field J(t) with J(t) = 0, we have that

‖ J(t) ‖≥ C ‖ J ′(0) ‖ t,

for every t ≥ 0.

With this result, we can show that geodesic rays diverge with the same
order of magnitude.

Corollary 4.5. [89] Let (M, g) be a compact manifold without conjugate
points and bounded asymptote. Then geodesic rays diverge at least linearly.
Namely, there exists C > 0 such that given two geodesic rays γ(p,v), γ(p,w),
we have that

d(γ(p,v)(t), γ(p,w)(t)) ≥ C](v, w)t,

for every t ≥ 0, where ](v, w) is the angle formed by v, w.
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4.4 The continuity of horospheres

In this subsection we analyze the link between divergence of geodesic rays
and the continuity of horospheres. The following elementary remark sum-
marizes the main idea behind all the results that will be presented in the
subsection: let (M, g) be compact without conjugate points. The map
θ → bθ is continuous in the compact open topology of M̃ (according to the
definition given at the beginning of the section) if and only if then the map
θ → Hθ(0) is continuous. Indeed, if the Busemann functions bθ depend
continuously on θ in the C1 topology, their level sets Hθ(t) will depend
continuously on θ as well.

So the continuity of θ → Hθ(0) is equivalent to the continuous depen-
dence of Busemann asymptotes upon their initial data. This is not easy
to show in a manifold without conjugate points and no further hypothesis.
Pesin [75] introduced a category of manifolds without conjugate points that
is inspired by this remark.

Definition 4.7. Let (M, g) has no conjugate points. (M̃, g̃) satisfies the
asymptoticity condition if every geodesic γ in M̃ has the following property:

Given any sequence of points pn ∈ M̃ converging to x ∈ M̃ , and any
sequence of points qn ∈ M̃ such that

1. limn→+∞ d(qn, γ(0)) = +∞,

2. There exists a constant D > 0 such that d(qn, γ) ≤ D for every n,

then the sequence of geodesic segments [pn, qn] converges to a geodesic γx

-depending only on x - that is asymptotic to γ.

The asymptoticity condition is a little technical, but is weaker than the
bounded asymptote condition because it is an assumption made on the
geodesics and not on Jacobi fields. The example of Ballmann-Brin-Burns
[6] of a compact surface without conjugate points does not satisfies the
bounded asymptote condition. Nevertheless, geodesic rays diverge and
horospheres depend continuously in the compact open topology.

Notice that the geodesic γx in the above definition only depends on the
point x and is independent of the sequences qn, qn. So the asymptotic
geodesic γx is the unique geodesic asymptotic to γ through x.

Pesin in [75], showed that under the asymptoticity axiom, Hθ(0) depend
continuously on θ ∈ M̃ according to the notion of continuity given at the
beginning of the section. Actually, Pesin’s axiom of asymptoticity implies
the continuity of horospheres almost by its definition. We leave the details
of this proof to the reader.
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Unfortunately, the axiom of asymptoticity is very hard to check it in a
manifold without conjugate points and no further hypothesis on the geom-
etry. Surfaces without conjugate points satisfy the asymptoticity condition
by Corollary 4.4. If the curvature of the manifold is nonpositive, the axiom
of asymptoticity holds as well since the argument in the proof of Corollary
4.4 can be extended to such manifolds: it is based on quasi-convexity of
(M̃, g̃) and divergence of geodesic rays, both hold in nonpositive curvature.

Lemma 4.11. Let (M, g) be a compact manifold without conjugate points.
Suppose that (M̃, g̃) is quasi-convex and that geodesic rays diverge in (M, g).
Then the map θ → Hθ(0) is continuous.

Finally, the following somehow surprising result gives some light about
the relevance of the asymptoticity condition in the continuity of horo-
spheres.

Theorem 4.3. [91] Let (M, g) be a compact manifold without conjugate
points. If θ → Hθ(0) depends continuously on θ ∈ T1M̃ , then geodesic rays
diverge uniformly in M̃ .

This theorem is interesting because it has no hypothesis on the geometry
of the manifold, nor on the geodesics or Jacobi fields. It might suggest
that the divergence of geodesic rays should hold without the need of quasi-
convexity or asymptoticity conditions. As a consequence of this theorem we
get that Pesin’s asymptoticity condition implies the divergence of geodesic
rays. It would be interesting to show that divergence of geodesic rays and
continuity of horospheres are equivalent.

5 Summary of results about the geodesic flow
of compact surfaces without conjugate
points

We would like to conclude our discussion about compact surfaces without
conjugate points with a summary of the most important results about the
geodesic flow. The topological dynamics of the geodesic flow, as well as
important results in ergodic theory, foliation theory and rigidity, are well
known in the case of surfaces. Many of such results are open problems in
higher dimensions.

1. The geodesic flow of compact surfaces without conjugate points and
genus greater than one is C0 semi-conjugate to the geodesic flow of
a hyperbolic surface [42].
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2. The collection of central stable (unstable) forms a foliation of T1M .
If the genus of the surface is greater than one this foliation is C0 con-
jugate to a hyperbolic central foliation by a (vertical) fiber preserving
conjugacy. Moreover, the central foliations are the only codimension
one, continuous foliations which are invariant by the geodesic flow
[13].

3. Every compact surface whose geodesic flow preserves a codimension
one, C1 foliation has no conjugate points, and if the foliation is C3

then the curvature of the surface is a nonpositive constant [12].

4. The topological entropy of the geodesic flow of a compact surface of
genus greater than one is nonzero and there is always a hyperbolic
closed geodesic [48].

5. In a compact surface without conjugate points and genus greater than
one, if the Green subbundles are continuous the metric entropy with
respect to the Lebesgue measure is nonzero [60].

6. If the geodesic flow is Anosov, the foliations F s and Fu are C1, and
the flow is ergodic (Hopf [52]).

7. Moreover, if the geodesic flow is Anosov then the stable and unstable
foliations are minimal (Hedlund [50]), and in the case of constant
negative curvature the so-called horocycle flows are uniquely ergodic
(Furstenberg [41]).

For the definitions and the basic theory of measure preserving systems
(ergodicity, entropy, etc) we refer to [48]. Observe that all the above prop-
erties are well known for Anosov geodesic flows in compact manifolds. It is
indeed surprising that two dimensional topology combined with the general
structure of Jacobi fields of compact manifolds without conjugate points
gives such a rich topological structure for the geodesic flow in compact
surfaces with no conjugate points.

We won’t discuss these statements in the present survey, however it is
worthwhile to mention such properties to get a more complete panorama.
Notice that item (2) says that the central foliations in compact surfaces
without conjugate points behave like Anosov central foliations, they are the
only codimension one continuous invariant foliations. Item (3) generalizes
a famous theorem due to E. Ghys [43] involving Anosov geodesic flows of
compact surfaces. Items (4) and (5) suggests that the geodesic flow of
compact surfaces with higher genus and nonpositive curvature should be
ergodic. However, this problem is very hard and remains open so far.
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6 Higher dimensional manifolds without con-
jugate points: Convexity and flats in the
universal covering

Recall that a continuous function f : R −→ R is convex if f((1−t)x+ty) ≤
(1 − t)f(x) + tf(y) for every t ∈ [0, 1] and x, y ∈ R. When f is C2, it is
convex if and only if f ′′(x) ≥ 0 for every x. Convex functions on intervals
are defined in an analogous way.

We say that a continuous function f : (M, g) −→ R is convex if f ◦ γ(t)
is convex for every geodesic γ. The existence of convex functions in a
Riemannian manifold is quite exceptional, and manifolds with non positive
curvature have plenty of them. Let us list some of the convex functions of
nonpositive curvature geometry, we follow [34].

Lemma 4.12. Let (M, g) be a complete manifold with nonpositive curva-
ture. Then

1. Let γ be either a geodesic of (M, g) or a geodesic of (M̃, g̃). Let J(t)
be a Jacobi field on γ. Then the norm of J(t) is a convex function.

2. If C ⊂ M̃ is a convex subset, the function dC : M̃ −→ R given
by dC(p) = d(p, C) = inf{d(p, q), q ∈ C} is convex, where d is the
distance with respect to g̃.

3. The distance to a given point in M̃ is a convex function. In particular,
spheres in M̃ are convex submanifolds (i.e., their second fundamental
forms are definite) and balls are convex subsets.

4. Busemann functions bθ are convex, and subsets of the form bθ ≤ T
are convex subsets of M̃ for every T ∈ R.

5. If F is an isometry of (M̃, g̃), then the displacement of F , dF : M̃ −→
R given by dF (x) = d(x, F (x)) is a convex function.

The convexity of distance functions has strong consequences in the ge-
ometry of nonpositive curvature. We list some of the main properties of
the global geometry of M̃ which follow from convexity. A good reference
for this subject is [8].

Lemma 4.13. 1. The flat strip theorem: any two bi-asymptotic
geodesics in M̃ bound a flat strip that is a convex set. The set of
bi-asymptotic geodesics to a given one in M̃ is a convex set foliated
by bi-asymptotic geodesics.

2. There exists a set of bi-asymptotic geodesics to γ(p,v) in M̃ if and only
if H(p,v)(t) ∩H(p,−v)(−t) contains a convex, nontrivial set for every
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t ∈ R. Moreover, H(p,v)(t) ∩H(p,−v)(−t) is precisely the intersection
of the geodesics which are bi-asymptotic to γ(p,v) and H(p,v)(t) for
every t ∈ R.

The flat strip theorem (item (1) above) is one of the fundamental tools
in the study of global geometry in nonpositive curvature. We could ask if
convexity can exist in manifolds whose curvature has variable sign. The
answer is affirmative, there exist manifolds without focal points (Defini-
tion 4.5) where the spheres in the universal covering are smooth convex
sets and have some regions with positive curvature. Many of the results
stated in Lemmas 4.12 and 4.13 hold for manifolds without focal points.
In particular, the flat strip theorem holds for such manifolds (see [75] for
instance). However, there are deep results of the theory of nonpositive cur-
vature manifolds like the structure theorem of higher rank manifolds [5],
[7] which are not known for manifolds without focal points.



Chapter 5

Expansive geodesic flows in
manifolds without conjugate
points: an example of the
application of C0 methods to
study dynamics and global
geometry

An interesting application of C0 methods, namely, the study of geodesics
without any a priori information about Jacobi fields, in higher dimensions,
is the theory of expansive geodesic flows in manifolds without conjugate
points.

As we saw in Chapters 2 and 3, Anosov geodesic flows of compact man-
ifolds are examples of expansive geodesic flows without conjugate points
(recall that the definition of an expansive flow is Definition 2.12). How-
ever, it is not hard to get examples of geodesic flows which are expansive
and non Anosov. The expansiveness hypothesis is of purely topological
nature, the differential of the geodesic flow (and hence Jacobi fields) do
not appear in the definition. Expansive flows are natural generalizations
of Anosov flows, and it is natural to ask whether the features of global
geometry of manifolds with Anosov geodesic flows can be generalized to
manifolds with expansive geodesic flows. This will be the main subject of
the chapter.

95
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1 Expansiveness and no conjugate points

In the 1980’s, R. Mañé made the following conjecture inspired by Klingen-
berg’s Theorem (Theorem 3.5 in Chapter 3):

Let (M, g) be a compact Riemannian manifold whose geodesic flow is
expansive. Then (M, g) has no conjugate points.

The conjecture was proved by M. Paternain [73] for surfaces. The proof
has two main ideas which do not generalize to higher dimensions. The first
one is the existence of stable and unstable sets for expansive homeomor-
phisms of surfaces, proved independently by Lewowicz [62] and Hiraide.

Let f : X −→ X be a homeomorphism defined in a metric space X.
Inspired by the definitions of local stable and unstable sets in Chapters 2,
3, given a > 0 we define the a-local stable set of p as

W s
a (p) = {q ∈M,d(fn(p), fn(q)) ≤ a ∀ n ≥ 0}.

The a-local unstable set of p is given by

Wu
a (p) = {q ∈M,d(fn(p), fn(q)) ≤ a ∀ n ≤ 0}.

The following result is a version for expansive homeomorphisms of the
existence of invariant submanifolds in hyperbolic dynamics (Theorem 2.1).

Theorem 5.1. [62] Let f : S −→ S be an ε-expansive homeomorphism of
a compact surface S. Then for every point p ∈ S the sets W s

ε (p), W s
ε (p)

are continuous curves which have a local product structure at every point
of S but at a finite number of periodic orbits. These exceptional orbits
behave like prone singularities of pseudo-Anosov homeomorphisms of sur-
faces. Moreover, every expansive homeomorphism of a compact surface is
conjugate to a pseudo-Anosov homeomorphism.

For the definition of pseudo-Anosov homeomorphisms and prone singu-
larities we refer to [99]. According to the definition of local product struc-
ture given in Chapter 2, we have that the collections of stable and unstable
sets behave like a pair of foliations with singularities. Outside the singu-
larities each point p has an open neighborhood U(p) where the stable and
unstable sets determine a continuous chart ψ : U(p) −→ (−1, 1) × (−1, 1).
This chart satisfies the following two properties:

1. ψ(p) = (0, 0).

2. ψ−1((−1, 1)×{y0}) is the connected component of W s
ε (ψ−1(x0, y0))∩

U(p) containing ψ−1(x0, y0) for every y0 ∈ (−1, 1).

3. ψ−1({x0}×(−1, 1)) is the connected component ofW u
ε (ψ−1(x0, y0))∩

U(p) containing ψ−1(x0, y0) for every x0 ∈ (−1, 1).
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We have then a very good topological description of the dynamics of ex-
pansive homeomorphisms of compact surfaces. Such homeomorphisms are
almost Anosov systems from the topological point of view. They fail to
be topologically Anosov in a finite set of periodic orbits. This structure is
generalized without much problems to expansive flows without singularities
in three dimensional manifolds.

The second important idea is the application of some tools of the the-
ory of codimension one foliations, which allow to show that there are no
prone singularities and that the central leaves are graphs of the canonical
projection. We recommend the reader to look at [73] for details.

The conjecture remains open in higher dimensions. We shall show a
partial result at the end of the chapter.

2 Expansive geodesic flows without conjugate
points in higher dimensions

We shall see in this section how qualitative methods to study geodesics in
manifolds without conjugate points can provide deep knowledge about the
dynamics and the global geometry of expansive geodesic flows. The purpose
of the section is to show the highlights of the proof of the following result
found in [86].

Theorem 5.2. Let M be a compact manifold without conjugate points.
Suppose that the geodesic flow is expansive. Then the following properties
hold:

1. If a pair of geodesics γ, β in (M̃, g) with d(γ, β) ≤ D for some con-
stant D > 0, we have that γ = β. Here, d(γ, β) is the Hausdorff
distance.

2. Geodesic rays diverge in the universal covering.

3. The map θ → Hθ(0) is continuous.

4. The sets F̃s(θ), F̃u(θ) are true stable and unstable sets for every
θ ∈ T1M̃ , namely, each orbit starting at η ∈ F̃s(θ) satisfies
d(φt(η), φt(θ)) → 0 as t→ +∞.

5. The families of sets Fs, Fu are continuous foliations having a local
product structure.

We shall subdivide the proof in many steps.
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2.1 Expansiveness implies quasi-convexity and asymp-
toticity

Let us start with the following result, which is inspired by Lemma 2.4 in
the work of Walters [103].

Lemma 5.1. Let M be a compact manifold having no conjugate points and
let φt : T1M −→ T1M be ε-expansive. Then, given 0 < δ ≤ ε there exists
n = n(δ) ∈ N such that for every pair of geodesics γ, β in M̃ satisfying

sup{d(γ(t), β(t)), d(γ(s), β(s))} ≤ 1

n

for some t < s then we have that

dH(γ([t, s]), β([t, s])) ≤ δ,

where dH is the Hausdorff distance.

Proof. The proof of the lemma goes pretty much as the proof of Lemma 2.4
for expansive homeomorphisms of compact manifolds. However, Lemma 5.1
is not a straightforward consequence of Lemma 2.4 applied to the time one
map of the geodesic flow in T1M . The point is that the assumptions of
Lemma 5.1 involve the distance in M̃ and not in T1M , and nearby points
in different geodesics in M̃ might not be close to each other in T1M .

We argue by contradiction. Suppose that the statement is not true.
Then there exists some δ > 0 such that for every n ∈ N there is a pair of
geodesics γn, βn, and numbers sn < tn satisfying

1. sup{d(γn(sn), βn(sn)), d(γn(tn), βn(tn))} ≤ 1
n ,

2. dH(γn([sn, tn]), βn([sn, tn])) ≥ δ.

Let us join γn(sn), βn(sn) with the geodesic [γn(sn), βn(sn)], and join
γn(tn), βn(tn) with the geodesic [γn(tn), βn(tn)]. By the continuity of
geodesics in M̃ with respect to boundary conditions (recall that geodesics
in M̃ are unique minimizers), we can find points an ∈ [γn(sn), βn(sn)],
bn ∈ [γn(tn), βn(tn)], such that

dH(γn([sn, tn]), [an, bn]) = δ.

So we can assume without loss of generality that βn([sn, tn]) = [an, bn],
and let xn be such that d(γn(xn), βn([sn, tn)) = δ. It is clear that if n →
+∞, then |sn − xn| → +∞ and |tn − xn| → +∞, by the continuity of
geodesics with respect to initial conditions.

Consider the geodesics Γn(t) = γn(t+xn), Υn(t) = βn(t+xn) restricted
to the intervals [sn − xn, tn − xn]. This interval contains t = 0 where
Γn(0) = γn(xn), Υn(0) = βn(xn).
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By taking covering isometries in M̃ , we can suppose that the points Γn(0)
belong to a compact fundamental domain M0 of M . So we get a convergent
subsequence of geodesics Γnk

→ Γ∞, Υnk
→ Υ∞, such that

1. Γ∞ 6= Υ∞,

2. dH(Γ∞,Υ∞) ≤ δ.

This contradicts the expansiveness assumption.

The above observation has strong consequences in the global geometry
of geodesics in M̃ . The first one is quasi-convexity.

Corollary 5.1. Let (M, g) be compact without conjugate points and ex-
pansive geodesic flow. Then (M̃, g̃) is quasi-convex.

Proof. Let [a, b], [p, q] be two geodesic segments in M̃ and assume without
loss of generality that d(a, p) ≥ d(b, q). Let n0 be as in Lemma 5.1 and let
N0 = [[d(a, p)n0]], where [[r]] is the integer part of the number r. Let us
make a partition of the geodesic segments

[a, p] =

N0⋃

i=0

[ai, ai+1]

[b, q] =

N0⋃

i=0

[bi, bi+1]

with a0 = a, b0 = b, aN0+1 = p, bN0+1 = q such that

1. length
(
[ai, ai+1]

)
= 1

n0
for every 0 ≤ i ≤ N0 and length

(
[aN0

, aN0+1]
)

≤ 1
n0

(notice that aN0
may be equal to aN0+1).

2. length
(
[bi, bi+1]

)
= d(b,q)

N0+1 ≤ 1
n0

for every i.

From Lemma 5.1 and properties 1, 2 above we deduce that

d([a, b], [p, q]) ≤ ΣN0
i=0d([ai, bi], [ai+1, bi+1])

≤ (N0 + 1)δ(n0)

= δ(n0)([[n0d(a, p)]] + 1)

≤ δ(n0)n0d(a, p) + δ(n0)

= K sup(d(a, p), d(b, q)) + C

where K = δ(n0)n0 and C = δ(n0). This finishes the proof of the lemma.

Corollary 5.2. Let (M, g) be a compact manifold with expansive geodesic
flow. Then, there exists K,C > 0 such that for every geodesic γ ⊂ M̃ and
every Busemann asymptote of γ, β, we have

dH(α([0,+∞)), β([0,+∞)) ≤ Kd(γ(0), β(0)) + C.

Proof. This follows from the quasi convexity of (M̃, g̃) and Lemma 4.6.
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2.2 Strong stable and unstable sets

The stable set of the geodesic flow at θ ∈ T1M̃ is defined by

W s(θ) = {x ∈ T1M̃, d(φt(x), φt(θ)) ≤ C(x, θ) ∀ t ≥ 0}.

The unstable set of θ ∈ T1M̃ is defined by

Wu(p) = {x ∈ T1M̃, d(φt(x), φt(θ)) ≤ D(x, θ) ∀ t ≤ 0}.

Notice that the above definition is slightly more general than the defi-
nition of a-local stable and unstable sets. The constants C(x, θ), D(x, θ)
might depend on x, θ, while in the case of a-local stable and unstable sets,
we took a = C(x, θ) = D(x, θ). Given θ ∈ T1M̃ , let us consider the sets
F̃s(θ), F̃u(θ) defined in Chapter 4, at the end of Section 4.1. Recall that
F̃s(θ) is the set of vectors which are opposite to the gradients of the Buse-
mann function of θ at the points of Hθ(0). So, according to Corollary 5.2,
we have that F̃s(θ) is a subset of the stable set of θ. Analogously, Fu(θ)
is a subset of the unstable set of θ. The question is: are there more points
in the stable and unstable sets of θ? The answer is no:

Proposition 5.1. Let (M, g) be a compact manifold without conjugate
points whose geodesic flow is expansive. Then

W s(θ) = F̃s(θ),

Wu(θ) = F̃u(θ),

for every θ ∈ T1M̃ .

Proposition 5.1 is in fact a generalization of Lemma 2.5, which states the
topological contraction of local stable sets of expansive homeomorphisms
with local product structure of compact manifolds. However, Proposition
5.1 is not just purely dynamical. It involves the issue of the existence and
uniqueness of asymptotic geodesics and their relationship with Busemann
asymptotes, discussed in Chapter 4. We shall subdivide the proof in many
steps. The first one is another application of Lemma 5.1.
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Lemma 5.2. Let (M, g) be compact without conjugate points, with expan-
sive geodesic flow. If γ, β are two geodesics in M̃ satisfying

dH(γ, β) ≤ C

where dH(γ, β) is the Hausdorff distance - then there exists t0 such that
γ(t) = β(t+ t0).

Proof. Let ε be the the expansiveness constant of the geodesic flow. It is
clear that there exists ε̄ such that two geodesic segments of length greater
than 1 in M have Hausdorff distance less than ε̄ if and only if their Hausdorff
distance in T1M̃ as pieces of orbits of the geodesic flow is less than ε, so
we shall assume without loss of generality that ε̄ = ε. Now, let us assume
that the Hausdorff distance between γ and β is bounded above by C. Then
these geodesics are bi-asymptotic and there exists C ′ > 0 such that

d(γ(t), β(t)) ≤ C ′

for every t ∈ R. Consider the geodesic segments σm = [γ(m), β(m)]. All
their lengths are less than or equal to C’.

Let δ = ε, n = n(ε) > 0 be the numbers defined in Lemma 5.1. Let us
take m > 0 and let us suppose without loss of generality that the length
of σm is greater than or equal to the length of σ−m. Let us parametrize
σm : [0, am] −→ M̃ , for m > 0, by arc length in a way that σm(0) = γ(m),
σm(am) = β(m). We can choose a partition 0 = tm0 < tm1 < .. < tmkm

= am

of [0, am] such that tmi+1 − tmi = 1
n , for every 0 ≤ i ≤ km − 2, and am −

tmkm−1 ≤ 1
n . Let us consider a partition 0 = sm

0 < sm
1 < .. < sm

km
= a−m of

[0, a−m] such that sm
i+2 − sm

i+1 = sm
i+1 − sm

i for every 0 ≤ i ≤ km − 3, and
a−m − sm

km−1 = am − tmkm−1. In this way we get

sm
i+1 − sm

i ≤ tmi+1 − tmi =
1

n

for every 0 ≤ i ≤ km − 1, because we are assuming that σm is larger than
σ−m, or equivalently, a−m ≤ am. Observe now that similar partitions can
be obtained for [0, am], [0, a−m] assuming am ≤ a−m, just interchanging
the roles of am, a−m, so we can suppose without loss of generality that
a−m ≤ am for every m > 0.

Consider now the geodesic segments

αi
m = [σ−m(sm

i ), σm(tmi )]

for every 0 ≤ i ≤ km. From the construction we get that

dH(αi
m, α

i+1
m ) ≤ δ ≤ ε
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for every 0 ≤ i ≤ km and m ≥ 1. By the choice of km, we have that

km
1

n
≤ C ′,

which implies that km ≤ nC ′ = A. Since M̃ is quasi-convex, there exists
B > 0 such that the Haussdorff distance from αi

m to γ is bounded above
by B. So taking convergent subsequences of the segments αi

m as m goes to
∞ we can obtain a collection of at most A+ 1 geodesics αi, i = 0, 1, .., A′,
where α0 = γ, αA′

= β, satisfying

dH(αi, αi+1) ≤ ε

for every i. But from the definition of expansiveness we get that γ = αi = β
for every i, thus proving the lemma.

Observe that Lemma 5.2 tells us that the expansiveness of the geodesic
flow implies a sort of universal expansiveness in M̃ : the geodesic flow in
T1M̃ is expansive for every constant C > 0. This implies that

Corollary 5.3. Let (M, g) be compact without conjugate points and expan-
sive geodesic flow. Then two asymptotic geodesics are strongly asymptotic.
Namely, if d(γ(t), β(t)) ≤ B for every t ≥ 0, then there exists t0 ∈ R such
that

lim
t→+∞

d(γ(t), β(t0 + t)) = 0.

Proof. This is more or less the same argument of the proof of Lemmas 2.5
and 5.2. In fact, if we had two asymptotic geodesics γ, β in M̃ and a > 0
such that

lim sup
t≥0

d(γ(t), β) ≥ a,

then we can obtain a sequence of pairs of geodesics converging to a pair of
different bi-asymptotic geodesics. This contradicts Lemma 5.2.

The following shortcut result due to Morse [69] is the last step before
the proof of Proposition 5.1.

Lemma 5.3. Let (M, g) be a complete manifold. Given α > 0 there exists
δ > 0 such that for every pair of globally minimizing geodesics γ(p,v), γ(p,w)

in M̃ , such that the angle formed by v, w is at least α, we have

d(γ(p,v)(t), γ(p,w)) ≥ δ,

d(γ(p,w)(t), γ(p,v)) ≥ δ,

for every t ≥ 1.
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The proof is very simple, the reader may look at Morse’s work [69] or
take it as an exercise.

Proof of Proposition 5.1

Let γθ ⊂ M̃ be a geodesic, and let γ(x,w) be asymptotic to γθ. We must
show that γ(x,w) is a Busemann asymptote of γθ. We already know that
there is a Busemann asymptote γ(x,v) of γθ through x. If (x, v) 6= (x,w),
then we can apply Lemma 5.3 to deduce that there is δ > 0 such that

d(γ(x,v)(t), γ(p,w)) ≥ δ,

d(γ(x,w)(t), γ(p,v)) ≥ δ,

for every t ≥ 1. By considering iterates of this pair of geodesics by cover-
ing isometries of the fundamental group of M , the same limiting argument
used in the proof of Lemma 5.2 gives us a pair of different, bi-asymptotic
geodesics in M̃ . This contradicts Lemma 5.2, so (x, v) = (x,w), and the
Busemann asymptote γ(x,v) is the only geodesic asymptotic to γθ contain-
ing x.

Corollary 5.4. Let (M, g) be a compact manifold without conjugate points
and expansive geodesic flow. Then the map θ → Hθ(0) is continuous.

Proof. By Proposition 5.1, given θ ∈ T1M̃ and x ∈ M̃ there exists a unique
geodesic asymptotic to γθ through x. This is just Pesin’s asymptoticity
axiom (Definition 4.7), which implies the continuity of horospheres.

We get as corollary as well the uniform (topological) contraction of the
stable sets.

Corollary 5.5. Let M be a compact Riemannian manifold with no conju-
gate points whose geodesic flow is expansive. Then given 0 < r < D there
exists T > 0 such that for every θ = (p, v) ∈ T1M̃ we have

ψθ
t

(
BD(p)

⋂
Hθ(0)

)
⊂ Br(ψ

θ
t (p))

⋂
H(γθ(t),γ′

θ(t))(0),

for every t ≥ T, where Br(p) is the ball of radius r centered at p, and ψθ
t

is, as in Chapter 4, the Busemann flow of θ. Moreover, we have that

W s(θ) ∩Wu(θ) = {θ}

for every θ ∈ T1M̃ .
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3 Divergence of geodesic rays in M̃

The divergence of geodesic rays in M̃ is closely related with the existence
of strong stable sets. Actually, we can get the divergence of geodesic rays
by applying Corollary 5.4 and Theorem 4.3. However, we can prove the
divergence as a consequence of the contraction of stable sets.

Lemma 5.4. Let (M, g) be a compact manifold without conjugate points
and expansive geodesic flow. Then geodesic rays diverge uniformly in M̃ .

Proof. Assume by contradiction that there is no uniform divergence. Then
there exist α > 0, b > 0, such that for every n ∈ N, there exist geodesics
γ(pn,vn), γ(pn,wn) in M̃ , satisfying

1. ](vn, wn) ≥ α for every n ∈ N.

2. There exist tn, sn → +∞ such that

d(γ(pn,vn)(tn), γ(pn,wn)(sn)) ≤ b.

By quasi convexity, we get

d(γ(pn,vn)(t), γ(pn,wn)(t)) ≤ b

for every t ∈ [0,min{tn, sn}]. By Morse’s shortcut Lemma (Lemma 5.3)
there exists δ > 0 such that

d(γ(pn,vn)(t), γ(pn,wn)) ≥ δ,

d(γ(pn,wn)(t), γ(pn,vn)) ≥ δ,

for every t ≥ 1. Since min{tn, sn} → +∞ with n, we apply the same
limiting argument in the proof of Lemma 5.2 to iterates of γ(pn,vn), γ(pn,wn)

by covering isometries. So we get a pair of different, bi-asymptotic geodesics
in M̃ which contradicts Lemma 5.2. This finishes the proof of the lemma.

We saw all the information about the global geometry of geodesics in M̃
that we got from the expansiveness assumption, that is purely topological.
In the next chapter we shall give some other applications of C0 methods
to study the fundamental group of manifolds with expansive geodesic flow.

4 Proof of Theorem 5.2 and applications

Items (1), (2), (3), (4) in Theorem 5.2 follow from the results of the previous
sections. Item (5), the local product structure, is not very difficult to show
and we just give an outline of the proof.
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Given θ = (p, v) ∈ T1M̃ , let δ > 0 be such that the ball Bδ(z) of radius
δ centered at z ∈M is embedded for every z ∈M . Let F̃s

δ (θ) be the set

F̃s
δ (θ) = {(x,w) ∈ F̃ s(θ), d(x, p) < δ}.

This is a C0, n − 1 dimensional subset of T1M , since it is homeomorphic
to the ball Bδ(p). Let

F̃u
δ (θ) = {(x,w) ∈ F̃u(θ), d(x, p) < δ}.

If Π : T1M̃ −→ T1M is the projection Π(p, v) = (π(p), Dpπ(v)), where

π : M̃ −→ M is the covering map, then the sets Pi(F̃s
δ (θ)), Π(F̃u

δ (θ) are
open subsets (in the relative topology) of local stable and unstable sets
respectively for π(p, v) in T1M .

Consider the set

S(θ) =
⋃

σ∈F̃s
δ (θ)

{φt(F̃u
δ (σ)), |t| < δ},

that is an open neighborhood of θ in T1M̃ because of Brower’s invariance
of domain theorem. The set S(θ) is foliated by the local center unstable
sets {φt(F̃u

δ (σ)), |t| < δ}. Let us define

U(θ) =
⋃

σ∈F̃u
δ (θ)

{φt(F̃s
δ (σ)), |t| < δ},

again an open neighborhood of θ in T1M̃ . This set is foliated by the local
center stable sets {φt(F̃s

δ (σ)), |t| < δ}, and then the intersection B(θ) =
S(θ) ∩ U(θ) is an open neighborhood of θ where local center stable and
local unstable sets intersect by the continuity of the stable and unstable
foliations.

By the expansiveness of the geodesic flow, the center stable set of θ and
the center unstable set of θ just meet at the orbit of θ. Now, it is not
difficult to show that there exists a local transversal section of the geodesic
flow at θ where the intersections of the local center stable sets and the local
center unstable sets give a local product structure. For the details we refer
to [86]. The same configuration of stable and unstable sets occurs in T1M
after applying the projection Π. This finishes the proof of Theorem 5.2.

We would like to finish the section with some applications of Theorem
5.2. Combining the local product structure with the stability results of
Chapter 2 we get (see [86]),
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Corollary 5.6. Expansive geodesic flows in compact manifolds without
conjugate points are topologically stable and have the pseudo-orbit tracing
property. In particular, the Anosov closing lemma holds and closed orbits
are dense. Moreover, the geodesic flow is topologically transitive.

The next application is in [85], and is a partial answer to Mañé’s conjec-
ture relating expansiveness and conjugate points.

Theorem 5.3. Let (M, g) be compact without conjugate points and expan-
sive geodesic flow with expansiveness constant ε > 0. There exists an open
C1 neighborhood U(g) of the metric g of C∞ metrics in M , and ε′ > 0,
such that if (M,h) ∈ U(g) has expansive geodesic flow with expansiveness
constant ε′ then (M,h) has no conjugate points.

Proof. Since the geodesic flow φt of (M, g) is topologically stable, there
exists an C1 open neighborhood U(g) of the metric where the geodesic flow
ψt of a metric h in U(g) is semi-conjugate to φt. According to the results in
Chapter 2, there exists ε′ > 0 such that if ψt is ε′-expansive then the semi-
conjugacy is actually a continuous conjugacy f : (T1M,h) −→ (T1M, g).
Since f is a homeomorphism and the closed orbits of φt are dense, the
closed orbits of ψt are also dense.

Claim: Each closed geodesic in (M, g) is unique in its free homotopy class.

This follows from the fact that two closed geodesics in a homotopy class
of M lift to M̃ to pairs of bi-asymptotic geodesics. And by Lemma 5.2
there are no such geodesics.

Hence, the Claim holds in (M,h) too, because of the existence of the
homeomorphism f . Since in each non trivial homotopy class there exists
at least one which minimizes the length in the class, we get that all closed
geodesics of (M,h) are minimizers in their corresponding homotopy classes.
Therefore, closed geodesics in (M, g) have no conjugate points. And since
the set of closed geodesics is dense in (T1M,h), we conclude that the whole
set of h-geodesics has no conjugate points, because the set of geodesics
without conjugate points is a closed subset of the set of geodesics. This
finishes the proof of the theorem.

In the next chapter we shall mention some other special features of
the global geometry of manifolds without conjugate points and expansive
geodesic flows. The universal covering of such a manifold is what is called
a Gromov hyperbolic space, a fact that has very strong implications in the
global geometry of the manifold.

The theory of expansive geodesic flows in manifolds without conjugate
points is one of our main motivations for the conjectures in the survey.
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They provide examples of higher dimensional, non Anosov systems with
many of the most important properties of the topological dynamics and
global geometry of Anosov geodesic flows. And it would be natural to
ask whether compact manifolds without conjugate points and expansive
geodesic flows admit metrics of negative curvature. We shall discuss this
issue later in the context of three dimensional manifolds and the works of
Perelmann about the Poincaré conjecture.



Chapter 6

The fundamental group, global
geometry and geometric group
theory

In this chapter we continue to develop the employ of C0, topological meth-
ods to study the relationships between the dynamics of the geodesic flow,
the topology and the global geometry of the manifold. When we refer to
the global geometry of a manifold (M, g) we refer actually to the geometry
of the universal covering M̃ endowed with the pullback g̃ of the metric g
by the covering map. We follow the notations of Chapter 1.

1 Fundamental group, algebra and geometry

We start by recalling briefly some basic facts concerning the fundamental
group of compact manifolds without conjugate points. As we observed in
Chapter 1, there is a natural representation of the point base fundamental
groups with groups of covering isometries of (M̃, g̃), so we shall identify
π1(M) with the group of covering isometries throughout the chapter. Our
main references for this subject are [26], [88].

Lemma 6.1. Let M be a compact manifold with no conjugate points. Then
the following assertions hold:

1. Given a covering isometry T , the displacement function dT : M̃ −→
R, dT (x) = d(x, T (x)), assumes a positive minimum. Moreover, the
set of critical points of dT consists only of minimum points.

2. The critical set of dT is foliated by geodesics γ ⊂ M̃ satisfying
T (γ(t)) = γ(t + c(T )) for every t ∈ R, where c(T ) is the mini-
mum value of dT and coincides with the minimum length of a closed
geodesic in the free homotopy class of Π(γ). Such a geodesic is called

108
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an axis of T and it is the lift of a closed geodesic of M in the homotopy
class of Π(γ), where Π : M̃ −→M is the covering map.

3. A geodesic γ is an axis of T if and only if it is an axis of T n. We
have Tn(γ(t)) = γ(t+ nc(T )) for every t ∈ R.

4. A covering isometry S commutes with a covering isometry T if and
only if S permutes the axes of T .

5. If S commutes with T , the displacement function dS is bounded along
any axis of T .

We just give some ideas of the proof of Lemma 6.1 because its statement
is quite eloquent. From the very definition of covering isometries (last
section of Chapter 1) we know that given p ∈ M and p̃ ∈ Π−1(p), we
obtain a representation of the point base fundamental group π1(M,p) by
a subgroup of isometries. Each element of this representation is obtained
by lifting closed paths in a fixed homotopy class in π1(M,p), in a way that
all the lifts contain the point p̃.

So let us take p in a closed geodesic γ(p,v) with nontrivial homotopy

class, and a lift γ̃(p̃,ṽ) of γ(p,v) in M̃ . Then there exists a covering isometry

T : M̃ −→ M̃ associated to γ(p,v) and p̃ which satisfies T (γ̃(p̃,ṽ)) = γ̃(p̃,ṽ).
Moreover, parametrizing γ(p,v) by arc length we have

T (γ̃(p̃,ṽ)(t)) = γ̃(p̃,ṽ)(t+ l(γ(p,v))),

where l(γ(p,v)) is the minimum positive period of γ(p,v) (which coincides
with the length of γ(p,v) of course). Since γ(p,v) minimizes length in its (free)
homotopy class - by Birkhoff’s Theorem (Theorem 1.4) and the absence of
conjugate points (Lemma 4.1) - the displacement dT (x) = d(x, T (x)) is
minimal along γ̃(p̃,ṽ). Moreover, the displacement dT (x) is the length of a
closed path in M homotopic to γ(p,v), so it is minimal if and only if it equals
the length of γ(p,v). Thus, any point where the displacement is minimal is
contained in a lift of a closed curve c with minimal length in the homotopy
class of γ(p,v) and hence a geodesic. The above considerations are part of
the proof of items (1),(2) in Lemma 6.1. The proof of the fact that all
critical points of dT are minima requires a little more work, we refer the
reader to [26] for the details of this proof and the proof of item (3). Items
(4) and (5) are easy to check from the definitions and the fact that covering
isometries preserve distances.

Item (2) implies that π1(M) has no torsion, because any nontrivial cov-
ering isometry preserves the lift in M̃ of a closed geodesic of M . Since
every geodesic in M̃ is globally minimizing, a periodic point of a covering
isometry would give rise to a closed minimizing geodesic in M̃ , a contra-
diction. In particular, every nontrivial element of π1(M) has infinite order.
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We shall change for convenience the notation of covering isometries given
in Chapter 1. Since every covering isometry preserves an axis γ̄ in M̃ , we
shall often denote by Tγ̄ the covering isometry whose critical displacement
is the minimum positive period of Π(γ̄).

The first studies of the fundamental group of manifolds without conju-
gate points are due to Busemann [22], who gave some hints about many
analogies between such groups and groups of isometries of manifolds with
nonpositive curvature. For instance, Busemann observed that covering
isometries with bounded displacement in M̃ have in fact constant displace-
ment and hence, all points in M̃ are critical and contained in axes of the
covering isometry. Such axes are all bi-asymptotic, so this covering isome-
try looks like a translation in Rn which preserves a flow by parallel lines.

The above result has a sort of converse whose proof gives a flavor of
geometric rigidity type results involving the action of covering isometries
and geodesics in manifolds without conjugate points with no a priori re-
strictions on the curvature sign. The following lemma is proved in [89], we
include its proof here for the sake of completeness.

Lemma 6.2. Let M be a compact manifold without conjugate points. Let
γ̄ be the lift of a closed geodesic γ in M of minimum period l(γ) which is
an axis of Tγ̄ . A covering transformation T in π1(M) commutes with Tγ̄

if and only if T (γ̄) is bi-asymptotic to γ̄.

Proof. If T commutes with Tγ̄ then T preserves the axes of Tγ̄ by Lemma 6.1
(4). In particular, the geodesic T (γ̄) is an axis of Tγ̄ and the displacement
dT is bounded along γ̄: there exists L > 0 such that dT (γ̄(t)) ≤ L for every
t ∈ R. But dT (γ̄(t)) = d(γ̄(t), T (γ̄(t))) ≤ L for every t ∈ R, and thus γ̄,
T (γ̄ are bi-asymptotic.

To show the converse, suppose that γ̄ and T (γ̄) are bi-asymptotic. There
exists B > 0 such that dH(T (γ̄), γ̄) ≤ B, where dH is the Haussdorff
distance between the geodesics. Let A = d(γ̄(0), T (γ̄(0))), and let l > 0 be
the minimum period of γ.

Claim 1: d(γ̄(nl), T (γ̄(nl))) ≤ A+ 2B, for every n ∈ Z. In particular, the
displacement of T restricted to γ̄ is bounded above.

For, let tn ∈ R be a point where the distance from T (γ(nl)) to γ is
attained, i.e., d(T (γ(nl)), γ) = d(T (γ(nl)), γ(tn)). On the one hand, by
the triangle inequality and the fact that T is an isometry, we have

d(γ(0), γ(tn)) ≤ d(γ(0), T (γ(0))) + d(T (γ(0)), T (γ(nl)))

+ d(T (γ(nl)), γ(tn))

≤ A+ nl +B,
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which implies that

d(γ(0), γ(tn)) − nl ≤ A+B.

On the other hand, by the same reason we have

nl = d(T (γ(0)), T (γ(nl))) ≤ A+B + d(γ(0), γ(tn)),

and hence
nl − d(γ(0), γ(tn)) ≤ A+B.

Therefore, we conclude that

|d(γ(0), γ(tn)) − nl| ≤ A+B.

Now, it is not difficult to show that γ(tn) cannot be too far from γ(nl). In
fact, assume first that tn ≤ nl. Then

d(γ(0), γ(nl)) = d(γ(0), γ(tn)) + d(γ(tn), γ(nl)),

which, by the above inequality, implies that

nl ≥ nl − (A+B) + d(γ(tn), γ(nl)).

Thus, d(γ(tn), γ(nl)) ≤ A + B. Assuming that tn ≥ nl, an analogous
reasoning leads to the same conclusion. Hence,

d(γ(nl), T (γ(nl))) ≤ d(γ(nl), γ(tn)) + d(γ(tn), T (γ(nl)))

≤ A+B +B = A+ 2B,

as stated in the Claim.

Claim 2: There exists k ∈ Z such that TT k
γ̄ = T k

γ̄ T .

In other words, there exists a power of Tγ̄ that commutes with T . First
of all, by Claim 1, we have that

d(γ(nl), T (γ(nl))) = d(T n
γ̄ (γ(0)), TTn

γ̄ (γ(0)))

= d(γ(0)), T−n
γ̄ TTn

γ̄ (γ(0)))

≤ A+ 2B,

for every n ∈ Z. And then, since the action of the isometries of π1(M) is
discrete in M̃ , there are only a finite number of different conjugates of γ(0)
of the type T−n

γ̄ TTn
γ̄ (γ(0)). So there exist 0 < n1 < n2 such that

T−n1
γ̄ TTn1

γ̄ (γ(0)) = T−n2
γ̄ TTn2

γ̄ (γ(0)),

which implies that
T−n1

γ̄ TTn1
γ̄ = T−n2

γ̄ TTn2
γ̄ ,
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because π1(M) is torsion free. Hence,

T = T
−(n2−n1)
γ̄ TT

(n2−n1)
γ̄ ,

thus proving the Claim with k = n2 − n1.

Claim 3: TTγ̄ = Tγ̄T .

Indeed, notice that the geodesic γ1 = T (γ̄) is a lift of γ with the same
minimum period l. Let Tγ1

be the translation with axis γ1 and critical
displacement dTγ1

(γ1(t)) = l. Since T k
γ̄ commutes with T , the geodesic γ1

is also an axis of T k
γ̄ :

T k
γ̄ (γ1) = T k

γ̄ T (γ̄) = TT k
γ̄ (γ̄) = T (γ̄) = γ1.

Therefore, T k
γ̄ is a power of Tγ1

. But Tγ̄ and Tγ1
have the same critical

displacement along γ1, and hence, since π1(M) is torsion free, we must
have that Tγ̄ = Tγ1

. Finally, recall that Tγ1
is obtained by conjugating Tγ̄ :

Tγ1
= TTγ̄T

−1.

This follows from the fact that the map TTγ̄T
−1 preserves the geodesic

γ1, where its critical displacement is l (as it is easy to check). Thus, the
actions of Tγ̄ and TTγ̄T

−1 coincide along γ1, and being π1(M) torsion free
the two maps must coincide. This finishes the proof of the Claim and the
Lemma.

A straightforward consequence of Lemma 6.2 and Lemma 6.1 is the fol-
lowing:

Lemma 6.3. Let γ ⊂M be a closed geodesic, γ̄ a lift of γ, Tγ̄ the generator
of the group of covering isometries preserving γ̄. Then a lift β of γ is an
axis of Tγ̄ if and only if β is asymptotic to γ̄.

Proof. Indeed, if β is asymptotic to γ̄ it is actually bi-asymptotic to γ̄. So
we have a covering isometry F such that β = F (γ̄) which commutes with
Tγ̄ by Lemma 6.2. But once F commutes with Tγ̄ we have by Lemma 6.1,
(3) that F takes axes of Tγ̄ into axes of Tγ̄ . Hence, β must be an axis of Tγ̄

as well. Moreover, if β is an axis of Tγ̄ it was already shown in the proof
of Lemma 6.2.

An application of Lemma 6.1 is Lemma 4.8 which was stated in Subsec-
tion 4.4.

Lemma 6.4. Let (M, g) be compact without conjugate points. Let γθ, γσ

be two different, bi-asymptotic lifts in M̃ of a closed geodesic γ ∈M . Then
they are Busemann asymptotes of each other.
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Proof. Let T be a covering isometry such that γθ is an axis of T . By
Lemma 6.1 item 2, the geodesic γσ is also an axis of T and the displacement
of T restricted to both γθ and γσ attains its minimum value l = Per(γ),
the minimum period of γ. Let us assume that γσ(0) ∈ Hθ(0). Since T
is an isometry we have that T (Hθ(t)) = Hθ(t + l) for every t ∈ R. So
T (γσ(0)) ∈ Hθ(l) and hence, by Lemma 5.1, the distance

d(γσ(0), T (γσ(0))) = dT (γσ(0))

coincides with the distance between Hθ(0) and Hθ(l) that is precisely l.
Since the distance between two horospheres Hθ(t) and Hθ(s) is attained at
the geodesics of the Busemann flow ψθ

t , the geodesic γσ must be an orbit
of the Busemann flow ψθ

t thus proving the lemma.

This basic result will be used in the last sections of the survey.
There is a classical, rich theory about the links between the geometry of

M̃ and algebraic properties of π1(M) for nonpositive curvature manifolds.
Each time we refer to a subgroup of π1(M) we really mean a subgroup of
π1(M,p) for some p ∈ M . We shall adopt this convention from now on to
shorten notation. Just to give some examples of results: normal subgroups
of π1(M) give rise to the existence of an isometry between M̃ and a prod-
uct manifold; the well known Bieberbach theorems of groups of isometries
in Euclidean space have corresponding versions for nonpositive curvature.
Good references for the above subject are the books of Wolf [102], Cheeger-
Ebin [23], and Ballmann-Gromov-Schröeder [8]. If we drop the assumption
on the curvature sign very few is known about the relationships between
the algebraic structure of π1(M) and rigidity properties of M̃ . The follow-
ing result due to Croke-Schröeder [26] is perhaps the best we can say about
manifolds without conjugate points concerning the subject.

Theorem 6.1. Let (M, g) be a compact, manifold without conjugate points.
Then every nilpotent subgroup of π1(M) is abelian. If in addition we sup-
pose that M is analytic, then π1(M) is Bieberbach: every solvable subgroup
of π1(M) contains a finite index abelian subgroup.

We shall come back to this theorem and its proof in the forthcoming
subsections, it contains some ideas about the geometry of subgroups of
π1(M) that will be relevant for the main results of the survey.

2 Fundamental group in negative curvature,
Preissmann’s theorem and Gromov hyper-
bolic groups

In this subsection we focus on some remarkable properties of π1(M) when
(M, g) has negative curvature. One of the first fundamental links between
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algebraic properties of π1(M) and negative curvature geometry is the fa-
mous Preissmann’s theorem [76].

Theorem 6.2. Let (M, g) be a compact manifold whose sectional curva-
tures are strictly negative. Then every abelian subgroup of π1(M) is infinite
cyclic.

One way of proving this theorem is the following. Suppose that G ⊂
π1(M) is an abelian, subgroup. Let T, S be two nontrivial elements of
G, and let us assume without loss of generality that T has the smallest
displacement of G. Since TS = ST by Lemma 6.1 S and T permute the
axes of each other. Moreover, is a good elementary exercise to show that
Sn preserves an axis of T if and only if S is in the cyclic group generated by
T , since π1(M) has no torsion. So let γ be an axis of T , then S(γ) is also
an axis of T which remains at bounded distance from T , because the axes
of T are lifts of closed geodesics in the same homotopy class. And since the
distance between geodesics in negative curvature spaces is strictly convex,
such distance has to be zero. Thus, S(γ) = γ and therefore, S is in the
group generated by T .

Preissmann’s theorem is one of the first results relating the geometry
of negative curvature and algebraic properties of π1(M). Of course, the
theory of manifolds of negative curvature experienced an extraordinary de-
velopment since the times of Preissmann. The so-called geometric group
theory introduced by Gromov and Thurston is the most broad, clear frame-
work to understand the rich interaction between geometry and algebra in
spaces of negative curvature.

Let us give a brief account of definitions and some results of the theory
of Gromov hyperbolic spaces. Our main references are [46] and [27]. We
recall the definition of Gromov hyperbolic spaces given in the Introduction.
A metric space (X, d) is called a geodesic space if every pair of points can
be joined by a geodesic segment.

Definition 6.1. A complete geodesic space (X, d) is called δ-hyperbolic
(or simply hyperbolic) if every geodesic triangle is δ-thin, i.e., every point
of a given side of the triangle is at distance at most δ from the union of
the other two sides.

δ-hyperbolic spaces are often called Gromov hyperbolic. This notion
contains the essential characterization of geodesic triangles in the usual
hyperbolic space, and is based in the so-called CAT-comparison theory
(from Caratheodory, Alexandrov, Toponogov). Observe that the definition
of δ-thin spaces is very general, we do not need a Riemannian metric for
the definition. This allows to study a wide range of metric spaces from the
point of view of hyperbolic geometry, including trees, groups, and polygonal
spaces.
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Of course, the hyperbolic plane and the universal covering of compact
manifolds of negative curvature are Gromov hyperbolic. Compact man-
ifolds whose geodesic flow is Anosov have Gromov hyperbolic universal
coverings. This fact is a combination of a result due to Klingenberg [58] -
who shows that universal coverings of compact, Anosov manifolds have the
so-called visibility property (see Section 3 of this chapter)- and Theorem
6.8 in this chapter. If (M, g) is a compact surface without conjugate points
of genus greater than one, then (M̃, g̃) is a Gromov hyperbolic space too
by the work of Morse. Surfaces without conjugate points of higher genus
are good examples of how the notion of Gromov hyperbolicity captures the
global, coarse geometry of spaces.

The fundamental group of such manifolds can be regarded as a Gromov
hyperbolic space as well, by means of the word metric. Namely, given a
symmetric set of generators of π1(M), we define the length of an element
T of π1(M) as the number of generators in the shortest string representing
T as a product of such generators. The word distance w(T, S) from T to
S is the word length of T−1S. The group π1(M) acts by isometries of
the metric space (π1(M), w) by left multiplication. We can even turn this
discrete metric space into a continuous metric space, by constructing the
Cayley graph Γπ1(M) of the group π1(M): we put a segment of length one
between any two elements of π1(M) whose distance in the word metric is
one, and extend the word metric to a continuous metric in this graph.

If we change the set of symmetric generators, the word metrics are quasi-
isometric.

Definition 6.2. A map f : X −→ Y between two geodesic spaces (X, d),
(Y, h) is a quasi-isometry if there exist positive constants L, B and a map
h : Y −→ X satisfying the following conditions:

1. d(f(p), f(q)) ≤ Ld(p, q) +B ∀p, q ∈ X

2. d(h(p), h(q)) ≤ Ld(p, q) +B ∀p, q ∈ Y

3. d(f(h(p)), p) ≤ B ∀p ∈ Y

4. d(h(f(p)), p) ≤ B ∀p ∈ X

The spaces X and Y are called quasi-isometric and we shall refer to
the image f(X) either as a quasi-isometric immersion of X or as a quasi-
isometric copy of X. Notice that the map h above can be regarded as a
sort of quasi-inverse of f . The notion of quasi-isometry allows us to identify
π1(M) with a sort of discrete analogous of M̃ .

Theorem 6.3. Let (M, g) be a compact Riemannian manifold. Then
(M̃, g̃) and (π1(M), w) are quasi-isometric.
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Another definition for quasi-geodesic, equivalent to the previous one, is
the following:

Definition 6.3. Let (X, d) be a metric space. A rectifiable curve C
parametrized by arc length c : [a, b] −→ X is called A,B-quasi-geodesic

if the metric spaces (c, d̂) and ([a, b], | . |) are A,B-quasi-isometric, where

d̂ is the metric induced by d on the curve c and | . | is the metric given
by the absolute value in the interval [a, b].

So a quasi-geodesic is quasi-isometric to a geodesic. The theory of Gro-
mov hyperbolic spaces is very close to the theory of negatively curved man-
ifolds, although Gromov hyperbolic spaces are much more general spaces
(exponential growth of balls, compactification and ideal boundaries, etc,
etc). A very interesting area of geometric group theory deals with the
so-called geometric properties of groups: these are properties of groups
which are preserved by quasi-isometries. We won’t enter into details in
this matter, the reader can look at the references. We shall mention some
fundamental results for the sake of completeness.

Lemma 6.5. Let G be a finitely generated group. Then any two word
metrics in G give two quasi-isometric metric structures on G.

Theorem 6.4. Gromov hyperbolicity is a geometric property.

The following result proved by Gromov [46] extends Morse’s work for
compact surfaces without conjugate points.

Theorem 6.5. Let (X, d) be a Gromov hyperbolic space. Given
A,B > 0, there exists D = D(A,B) > 0 such that every A,B quasi-
geodesic is contained in the tubular neighborhood of radius D of a geodesic.

The following statement proved by Bonk [16] classifies Gromov hyper-
bolic spaces in terms of tracing of quasi-geodesics by true geodesics of the
space.

Theorem 6.6. Let (X, d) be a complete geodesic space. If for every given
A,B > 0 there exists D = D(A,B) > 0 such that every A,B quasi-geodesic
is contained in the D-tubular neighborhood of a geodesic, then (X, d) is a
Gromov hyperbolic space.

The above results are very interesting counterparts of the stability fea-
tures of Anosov dynamics. Theorem 6.5 is analogous to the C1 stabil-
ity of Anosov dynamics, but it is stronger in the sense that Theorem 6.5
holds for every quasi-geodesic of the Gromov hyperbolic space, not just for
quasi-geodesics arising from perturbations of the system. Observe that,
since Gromov hyperbolicity is equivalent to the tracing of quasi-geodesics
by geodesics, and Gromov hyperbolicity is a geometric property, then the
tracing of quasi-geodesics by geodesics is a geometric property. Moreover,
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since π1(M) endowed with the word metric and (M̃, g̃) are quasi-isometric,
then the Gromov hyperbolicity of one of them implies the Gromov hyper-
bolicity of the other one.

Theorem 6.6 can be compared to the stability conjecture proved by Mañé
[65], which characterizes hyperbolic dynamics by structural stability. How-
ever, Theorem 6.6 seems to be weaker than the stability conjecture because
it requires that all quasi-geodesics have to be shadowed by geodesics to
grant the Gromov hyperbolicity of the space.

Both theorems are concerned with the relationship between shadowing
(or tracing) of quasi-geodesics by geodesics and hyperbolicity. Such results
inspire some of the main results that we shall discuss next.

3 Preissmann property implies Gromov
hyperbolicity?

This natural question is in fact a hard problem closely related with
Thurston’s geometrization conjecture. Some partial answers are known
for manifolds with nonpositive curvature, and these results will be crucial
for the proofs of the main theorems of the survey. The first important
step towards the study of this problem is the following statement due to
Eberlein-O’Neil [35].

Theorem 6.7. Let (M, g) be a compact manifold of nonpositive curvature.
If (M̃, g̃) is not a visibility manifold then there exists a totally geodesic, flat
plane in M̃ .

The manifold (M̃, g̃) is a (uniform) visibility manifold if given ε > 0
there exists r > 0 such that for every p, x, y ∈ M̃ , if the distance between
p and the geodesic [x, y] is greater than r, then the angle at p formed by
the geodesics [p, x], [p, y] is less than ε. The universal covering of compact
manifolds of negative curvature are visibility manifolds. Eberlein-O’Neil
showed that once a compact manifold M without conjugate points admits
a visibility structure, then the universal covering of every metric in M
without conjugate points is a visibility manifold. The notion of visibility
is actually almost equivalent to Gromov hyperbolicity, from [84], [91] we
have,

Theorem 6.8. Let (M, g) be compact without conjugate points. Then
(M̃, g̃) is a visibility manifold if and only if geodesic rays diverge in M̃
and M̃ is Gromov hyperbolic.

Proof. We just make a sketch of the proof pointing out the role of the
divergence of geodesic rays in the argument.
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We show first that the Gromov hyperbolicity and divergence of geodesic
rays in M̃ imply visibility. Let δ > 0 be such that every geodesic triangle
in M̃ is δ-thin. Let us denote by [x, y] the geodesic joining x, y. It is
easy to see that there exists D = D(δ) such that in every geodesic triangle
[x0, x1] ∪ [x1, x2] ∪ [x2, x0] there exists three points yi ∈ [xi, xi+1] (indices
taken mod. 3) with d(yi, yi+1) ≤ D.

Let us suppose that the distance between x0 and every point in [x1, x2]
is greater than L > 0. By the triangle inequality, we have that

inf{d(x0, y0), d(x0, y2)} ≥ L−D.

So we have two geodesic rays γ0, γ2 starting at x0 = γ0(0) = γ2(0), namely,
the geodesic rays containing the geodesic segments [x0, x1], [x0, x2] respec-
tively, having points y0 ∈ γ0, y2 ∈ γ2, such that

1. d(γi(0), yi) ≥ L−D, for i = 0, 2.

2. d(y0, y2) ≤ D.

It is not hard to see that the compactness of M implies the uniform
divergence of rays in M̃ (see [91] for instance). So given ε > 0, there exists
T > such that if L −D ≥ T , the angle formed by γ0 and γ2 at x0 is less
than ε, which implies visibility as we wished.

To show that visibility implies divergence of geodesic rays and Gromov
hyperbolicity, let us observe that the divergence of geodesic rays is just
straightforward from the visibility property. The proof of the fact that
geodesic triangles are δ-thin for some δ > 0 goes by contradiction. Suppose
that geodesic triangles are not δ-thin for any δ > 0. Then given n ∈ N,
there exists a geodesic triangle [xn, yn] ∪ [yn, zn] ∪ [zn, xn], and a point
tn ∈ [xn, yn] such that

inf{d(p, tn), p ∈ [yn, zn] ∪ [zn, xn]} ≥ n.

Consider the geodesic triangles

[tn, xn] ∪ [xn, zn] ∪ [zn, tn]

and

[tn, yn] ∪ [yn, zn] ∪ [zn, tn].

By the visibility assumption, the angle αn formed by the geodesics [tn, zn],
[tn, xn] at the point tn must go to zero as n → +∞. The same holds for
the angle θn formed by the geodesics [tn, zn], [tn, yn] at the point tn. On
the other hand, notice that the sum αn + θn is equal to π, which is clearly
a contradiction.
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From Theorem 6.8, Theorem 6.5 and Theorem 6.6 we can deduce in fact
that if (M, g) is compact without conjugate points and (M̃, g̃) is a visibility
manifold, then every metric in M without conjugate points has the same
property. Eberlein showed that visibility manifolds enjoy many important
properties of manifolds of negative curvature, like the existence of com-
pactification for M̃ , the existence of the cone topology, the existence of an
extension of the action of π1(M) to the boundary of the compactification,
and the verification of many properties of the hyperbolic topological dy-
namics of this action. Later, Gromov in [46] proved the same results (and
many more) for Gromov hyperbolic spaces using more abstract, general
arguments. We could say that nowadays, the theory of visibility manifolds
is included in the theory of Gromov hyperbolic spaces.

Next, Bangert and Schröeder in [11] showed the following amazing result:

Theorem 6.9. Let (M, g) be a compact analytic Riemannian manifold
with nonpositive curvature. If M̃ contains a flat, totally geodesic isometric
embedding of Rk, for some k ≥ 2 then M contains an immersed, totally
geodesic flat torus.

Of course, if M contains a flat, totally geodesic flat torus then the fun-
damental group of such torus is a non cyclic, abelian subgroup of π1(M).
So combining Theorems 6.3, 6.7, 6.8, and Theorem 6.9 we get

Theorem 6.10. Let (M, g) be a compact analytic manifold with nonposi-
tive curvature. Then (M̃, g̃) is Gromov hyperbolic if and only if π1(M) is
Preissmann: every abelian subgroup of π1(M) is infinite cyclic.

So the question posed in the beginning of the section is completely an-
swered in the category of compact analytic manifolds with nonpositive
curvature. There is a generalization of Eberlein’s flat plane theorem for
quasi-convex manifolds without conjugate points [87]:

Theorem 6.11. Let (M, g) be a compact manifold without conjugate points
such that (M̃, g̃) is quasi-convex. Then (M̃, g̃) is not Gromov hyperbolic if
and only if there exists a quasi-isometric immersion of the Euclidean plane
in (M̃, g̃).

Of course, the techniques employed to study the analytic nonpositive
curvature case do not apply to the quasi-convex, C∞ case. However, in
the light of the recent work of Perelman about the Poincaré conjecture and
Thurston’s geometrization conjecture, it seems that Theorem 6.10 would
hold for three dimensional, irreducible compact manifolds without conju-
gate points.
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4 Expansive dynamics, weak stability and Gro-
mov hyperbolicity

We would like to finish the chapter with an application of the notion of
Gromov hyperbolicity to study the geometry of M̃ in the case of expansive
geodesic flows. The main result of the section is the following [84]:

Theorem 6.12. Let (M, g) be a compact manifold without conjugate points
whose geodesic flow is expansive. Then (M̃, g̃) is Gromov hyperbolic.

We have already showed in Chapter 5 that expansive geodesic flows of
compact manifolds without conjugate points enjoy many of the properties
of the topological dynamics of Anosov systems. The above theorem shows
that the analogy between such systems extends to the global geometry of
the universal covering of the manifold. The interesting point of Theorem
6.12 is that the expansiveness assumption does not involve Jacobi fields or
sectional curvatures. Just the expansiveness of the geodesic flow is enough
to grant the Gromov hyperbolicity of M̃ .

We give next an outline of the proof of Theorem 6.12. We would like to
remind that by Corollary 5.1, the universal covering (M̃, g̃) is quasi-convex.
The key lemma of the proof is the following.

Proposition 6.1. Let (M, g) be a compact manifold without conjugate
points such that (M̃, g̃) is quasi-convex. If (M̃, g̃) is not Gromov hyperbolic,
the following is true: given n ∈ N, there exists a pair of geodesics γn, βn in
M̃ such that

1. γn and βn are bi-asymptotic.

2. For every t ∈ R we have that

inf
s∈R

d(γn(t), βn(s)) ≥ n.

3. For every s ∈ R we have

inf
t∈R

d(γn(t), βn(s)) ≥ n.

Proposition 6.1 tells us that the failure of the Gromov hyperbolicity
implies the existence for every n ∈ N of bi-asymptotic geodesics in M̃
which are far away from each other at a distance of at least n. But Lemma
5.2 such geodesics cannot exist if the geodesic flow is expansive.

Notice that Proposition 6.1 gives a proof of the flat plane theorem of
Eberlein (Theorem 6.7). Indeed, by the geometry of nonpositive curvature,
such geodesics bound a flat strip whose width is at least n. Passing to a
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convergent subsequence of strips Sn of width at least n (this subsequence
exists because of the co-compact isometric action of π1(M)) we get a flat
plane in M̃ .

The proof of Proposition 6.1 follows from a careful analysis of the shapes
of non-thin geodesic triangles in M̃ . The main idea of the proof of the
Lemma is the following: if we consider grids of geodesic segments joining
the endpoints of appropriate partitions of different sides of a fat geodesic
triangle in M̃ , we would expect to get from the grid a fat geodesic quadri-
lateral. So what we can show is that given n ∈ N, there exists L(n) > 0
such that if we have a sequence of increasingly fatter geodesic triangles, we
get a sequence of increasingly larger geodesic quadrilaterals whose width is
bounded above by L(n) and bounded below by n.

Let us be more precise. We shall denote by [a, b] the geodesic joining a, b
in M̃ . Suppose that (M̃, g̃) is not Gromov hyperbolic. Then there exists
a sequence of geodesic triangles ∆(pn, qn, rn) in M̃ , whose vertices are the
points pn, qn, rn, with the following property:

There exists xn ∈ [pn, qn] such that

inf
y∈[pn,rn]∪[qn,rn]

d(xn, y) → +∞,

when n → +∞. Let us introduce the following definition which describes
the asymptotic shape of certain sequences of non-hyperbolic triangles.

Definition 6.4. Let 4n be a sequence of geodesic triangles with vertices
pn, qn, rn. We say that the sequence of geodesic quadrilaterals

�n = [a1
n, b

1
n] ∪ [b1n, b

2
n] ∪ [a2

n, b
2
n] ∪ [a1

n, a
2
n],

where a1
n, b

1
n ∈ [pn, qn], a2

n, b
2
n ∈ [pn, rn], is a thin up-to-scale sequence

of quadrilaterals if they satisfy the following conditions:

1. d(a1
n, pn) < d(b1n, pn) for every n,

2. d(a1
n, [pn, rn]) = d(a1

n, a
2
n), and d(b1n, [pn, rn]) = d(b1n, b

2
n) for every n,

3. There exists A > 0 such that Ad(b1n, b
2
n) ≤ d(a1

n, a
2
n) for every n,

4. d(a1
n, a

2
n) → +∞ with n→ +∞,

5. d(a1
n, b

1
n) → +∞ with n→ +∞,

6.
d(b1n,b2n)
d(a1

n,b1n) → 0 when n→ +∞.
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By the definition it is not difficult to show that there exists n0 > 0 such
that d(a2

n, pn) < d(b2n, pn) for every n > n0, and hence the quasi-convexity
of (M̃, g̃) yields that

d(a1
n, a

2
n) ≤ Kd(b1n, b

2
n) + C,

for every n > n0 whereK,C are the quasi-convexity constants of (M̃, g̃). So
d(b2n, pn) tends to +∞ as well, as a consequence of the definition. The term
thin up-to-scale is suggestive: if we think of the geodesics [a1, a2], [b1n, b

2
n] as

the “vertical” sides of the quadrilateral �n, item (6) in the definition tells
us that the hight of �n compared with the length of its base [a1

n, b
1
n] is very

small. So re-scaling with respect to the length of [a1
n, b

1
n], the quadrilaterals

�n look like very thin rectangles.

The next result shows that the existence of thin up-to-scale sequences of
quadrilaterals implies Proposition 6.1.

Lemma 6.6. Let (M, g) be a compact manifold without conjugate points
such that (M̃, g̃) is K,C-quasi-convex. Assume that there exists a sequence
of geodesic triangles 4n, with vertices pn, qn, rn, containing the vertices
a1

n, a
2
n, b

1
n, b

2
n of a sequence of thin up-to-scale geodesic quadrilaterals �n.

Then given m ∈ N, there exists a pair of geodesics γm, βm in M̃ such that

1. γm and βm are bi-asymptotic.

2. For every t ∈ R we have that

inf
s∈R

d(γm(t), βm(s)) ≥ m.

3. For every s ∈ R we have

inf
t∈R

d(γm(t), βm(s)) ≥ m.

Proof. Let D > 0 be an arbitrary positive number, and let us make parti-
tions

[a1
n, a

2
n] = ∪jn−1

i=0 [xn
i , x

n
i+1],

[b1n, b
2
n] = ∪jn−1

i=0 [yn
i , y

n
i+1],

with the following properties:

1. xn
0 = a1

n, xn
jn

= a2
n, and yn

0 = b1n, yn
jn

= b2n.

2. d(yn
i , y

n
i+1) = D for every i ∈ [0, jn − 1], d(yn

jn−1, y
n
jn

) ≤ D.

3. d(xn
i , x

n
i+1) = d(xn

i+1, x
n
i+2) for every i ∈ [0, jn − 2].
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Since there exists n0 > 0 such that for n > n0 the length of [a1
n, a

2
n]

satisfies
d(a1

n, a
2
n) ≤ Kd(b1n, b

2
n) + C,

the assumptions on the partitions imply that there exists n1 > 0 such that
for every n > n1, and jn ≥ 2 we get

AD ≤ d(xn
i , x

n
i+1) ≤ KD + 2,

for every i ∈ [0, jn]. Let us consider the geodesics

σn
i = [xn

i , y
n
i ]

for every i ∈ [0, jn]. Notice that σn
0 = [a1

n, b
1
n], and σn

jn
= [a2

n, b
2
n].

Claim: There exists λ = λ(A,K,C,D) > 0 for which there exist in ∈
[0, jn], and a point wn ∈ σn

in
, such that

1. d(wn, σ
n
in+1) ≥ λD,

2. limn→+∞ d(wn, x
n
in

) = ∞ and limn→+∞ d(wn, y
n
in

) = ∞.

Otherwise, for every λ > 0 there would exist l > 0 such that for every
i ∈ [0, jn], and p ∈ σn

i with d(p, xn
i ) ≥ l, d(p, yn

i ) ≥ l, we would get

d(p, σn
i+1) ≤ λD.

This yields, by the triangular inequality, that there exist points zn ∈ σn
0 ,

sn ∈ σn
jn

, such that d(zn, sn) ≤ jnλD. Since we are assuming that M̃ is
K,C-quasi-convex, we have that

d(a1
n, a

2
n) ≤ Kd(zn, sn) + C ≤ KjnλD + C,

since σn
0 ⊂ [pn, b

1
n], σn

jn
⊂ [pn, b

2
n]. Combining this with the assumptions

on the partitions we get

A(jnD) ≤ Ad(b1n, b
2
n) ≤ d(a1

n, a
2
n) ≤ KjnλD + C.

Dividing by KDjn we obtain

AD

K
≤ λ+ εn,

where εn → 0 if n → +∞. This yields that for n big enough, λ must be
greater than AD

2K , which clearly leads to a contradiction.

The claim gives us a sequence of pairs of geodesics σn
in

, σn
in+1 of the form

σn
in

= [pn, y
n
in

], σn
in+1 = [pn, y

n
in+1],

that satisfy
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1. The Hausdorff distance from σn
in

to σn
in+1 is less thanK sup{D,KD+

2} + C by quasi-convexity,

2. The minimum distance from a point in σn
in

to σn
in+1 is at least λD;

as well as the minimum distance from a point of σn
in+1 to σn

in
.

3. The conditions of Claim 1 hold.

Letting n→ +∞, and taking convergent subsequences of appropriate it-
erates of σn

in
, σn

in+1 by covering isometries, we get the pair of bi-asymptotic
geodesics which are separated by a distance of at least λD. Since D is
arbitrary, we can take m ≤ λD to get the geodesics required in Proposi-
tion 6.1.

The next asymptotic configuration of non-hyperbolic geodesic triangles
is in some sense the complement of the thin up-to-scale configuration.

Definition 6.5. We say that a sequence of geodesic triangles 4n, n ∈ N,
is L-fat for L > 0 with respect to its vertices pn, qn, rn if

1. infs∈[0,d(qn,rn){d(pn, [qn, rn](s)}≥L sup{d(pn, rn), d(qn, rn), d(pn, qn)},
where [qn, rn](s) is an arc length parametrization of [qn, rn] with
[qn, rn](0) = qn.

2. For every t ∈ [0, d(pn, qn)] we have

d([pn, qn](t), [pn, rn]) ≥ Lt,

where [pn, qn](t) is an arc length parametrization of [pn, qn] with
[pn, qn](0) = pn.

L-fat sequences of geodesic triangles have sequences of pairs of sides
whose distance grows at least linearly, while in the case of thin up-to-scale
sequences there were sequences of sides looking like very thin rectangles up
to re-scaling. Observe that the notion of L-fatness is relative to a certain
choice of the vertices of the triangles.

Notice as well that the definition of L-fat triangles implies that the
lengths of the sides of the triangles in the sequence are comparable. More
precisely, let d1

n ≤ d2
n ≤ d3

n, be the lengths of the sides l1n, l2n, l3n, of 4n

ordered by non-decreasing length. Then d1
n, d2

n are the distances from the
vertices of l3n to the common vertex of l1n ∩ l2n. So if the common vertex is
pn in the definition of L-fatness we get from item (1) that

1. Ld3
n ≤ d1

n ≤ d3
n,

2. Ld3
n ≤ d2

n ≤ d3
n,

3. Ld2
n ≤ d1

n ≤ 1
Ld

2
n,



Weak stability and hyperbolic geometry 125

4. Ld1
n ≤ d2

n ≤ 1
Ld

1
n.

Otherwise, if pn is in l3n ∩ l1n for instance we get from item (2) that

Ld3
n ≤ d2,

and from item (1) we get
Ld3

n ≤ d1.

So we get again the same above set of inequalities comparing all the lengths
of the sides of 4n. When pn is in l3n ∩ l2n the argument is just analogous.

The following result yields the proof of Proposition 6.1 for fat sequences
too.

Lemma 6.7. Let (M, g) be a compact manifold without conjugate points
such that (M̃, g̃) is K,C-quasi-convex. Assume that there exists a sequence
of geodesic triangles 4n, with vertices pn, qn, rn, that is L-fat. Then given
m ∈ N, there exists a pair of geodesics γm, βm in M̃ such that

1. γm and βm are bi-asymptotic.

2. For every t ∈ R we have that

inf
s∈R

d(γm(t), βm(s)) ≥ m.

3. For every s ∈ R we have

inf
t∈R

d(γm(t), βm(s)) ≥ m.

Proof. We just sketch the proof since it is quite similar to the proof of
Lemma 6.6. The difference in this case is the grid of geodesics constructed
through partitions of the sides of the sequence of triangles. So we describe
the construction of the grid and leave to the reader the details of the proof
of the Lemma.

Given D > 0 we define partitions

[pn, qn] = ∪jn−1
i=0 [xn

i , x
n
i+1],

[pn, rn] = ∪jn−1
i=0 [yn

i , y
n
i+1],

with the following properties:

1. xn
0 = pn = yn

0 , xn
jn

= qn, and yn
jn

= rn.

2. d(yn
i , y

n
i+1) = D for every i ∈ [0, jn − 1], d(yn

jn−1, y
n
jn

) ≤ D.

3. d(xn
i , x

n
i+1) = d(xn

i+1, x
n
i+2) for every i ∈ [0, jn − 2].
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Observe that since d(pn, rn) ≥ d(pn, qn) we get that d(xn
i , x

n
i+1) ≤ D for

every i ∈ [0, jn − 1]. As in the previous lemma, let σn
i = [xn

i , y
n
i ].

Claim: There exists η = η(L,K,C,D) > 0 for which there exist in ∈
[0, jn], and a point wn ∈ σn

in
, such that

1. d(wn, σ
n
in+1) ≥ ηD,

2. limn→+∞ d(wn, x
n
in

) = ∞ and limn→+∞ d(wn, y
n
in

) = ∞.

The proof follows the same lines of the proof of the Claim in Lemma 6.6
and we leave it to the reader. Once we have the sequence of pairs of
geodesics σn

in
, σn

in+1 we can obtain after a limiting process (like in the proof
of Lemma 6.6) the pair of bi-asymptotic geodesics required by Lemma 6.7.

Finally, the proof of Proposition 6.1 follows from Lemma 6.6, Lemma 6.7,
and the next result that is proved in [84].

Lemma 6.8. Let (M, g) be a compact manifold without conjugate points
such that (M̃, g̃) is K,C-quasi-convex. Assume that (M̃, g̃) is not Gromov
hyperbolic. Then one of the following assertions hold:

1. Either there exists L > 0 and L-fat sequence of geodesic triangles
in M̃ ,

2. Or there exists a sequence of geodesic triangles containing the vertices
of a thin up-to-scale sequence of geodesic quadrilaterals.

The main idea of the proof of Lemma 6.8 is quite natural. First of all,
the lack of Gromov hyperbolicity implies the existence of a sequence 4n of
large geodesic triangles whose sides get more and more apart as n→ +∞.
The point is in what way such sides get apart from each other. Lemma 6.8
says that this happens roughly in two different ways: either the sequence
4n has a sequence of sides whose distances diverge at least L-linearly for
some constant L > 0 (namely, 4n is L-fat for some L > 0), or there are
sequences of pairs of sides in the sequence 4n which look like thin ends
up to re-scaling as n → +∞. In this case we can show that there exists
a sequence of thin up-to-scale quadrilaterals whose vertices belong to the
triangles 4n. We won’t write the complete proof of Lemma 6.8, for the
details we refer to [84].

Some further comments to conclude the chapter. First of all, the ideas
of the proof of Theorem 6.12, specially Lemma 6.1, are the starting point
for the proof of Theorem 6.11. With a certain (nontrivial) amount of work,
one can show that distant bi-asymptotic geodesics give rise to subsets of
M̃ which are quasi-isometric to flat strips. Then, if (M̃, g̃) is not Gromov
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hyperbolic, a limit process using sequences of such quasi-strips shows the
existence of a quasi-isometric copy of a flat plane.

Finally, Theorem 5.2 implies that the expansiveness of the geodesic flow
of a compact manifold (M, g) without conjugate points yields the shadow-
ing property. Theorem 6.12 combined with Theorem 6.5 show that such
flows have the property of shadowing of quasi-geodesics of (M̃, g̃). This
last property says that for any metric (M,h), the globally minimizing
geodesics of (M̃, h̃) are traced by geodesics of (M̃, g̃). So (M,h) might
not be a perturbation of (M, g) and nevertheless, the globally minimizing
geodesics in (M̃, h̃) behave roughly like the geodesics of (M̃, g̃). The shad-
owing of quasi-geodesics is a strong property in geometric group theory, it
characterizes Gromov hyperbolic spaces. We shall show in the forthcoming
chapters that the shadowing of quasi-geodesics which are just geodesics of
perturbations of (M, g) still implies in certain manifolds that the universal
covering is a Gromov hyperbolic space. How much can one weaken stability
assumptions on the geodesic flow and still have hyperbolicity in the large
in M̃?



Chapter 7

Weak hyperbolicity of the
geodesic flow and global
hyperbolic geometry in
nonpositive curvature

The purpose of Chapters 7 and 8 is to give an overview, including very
recent results, of a theory which involves weak stability properties of the
geodesic flow in manifolds without conjugate points, the global geometry
of the universal covering, and geometric group theory. This theory gathers
all the tools we have presented until now and illustrates very well the
interaction between topological dynamics, geometry and group theory. The
subject of the last two chapters has been developed essentially in four
articles: [88], [89], [90], [92]. Let us start with a new definition.

Definition 7.1. We say that a smooth flow φt : N −→ N satisfies the
ε-Ck-shadowing property for some ε > 0 if there exists a Ck neighborhood
V of φt such that for every ψt ∈ V there is a continuous map f : N −→ N
such that for every p ∈ N there exists a continuous surjective map r : R −→
R with r(0) = 0 and

d(φt(f(p)), ψr(t)(p)) ≤ ε,

for every t ∈ R.

The ε-Ck-shadowing property is clearly inspired in the shadowing prop-
erty of pseudo-orbits defined in Chapter 2 (Definition 2.13). However, this
notion involves the ε-approximation of orbits of perturbations ψt of the flow
φt by orbits of φt. So from the point of view of the classical pseudo-orbit
tracing property of Chapter 2, Definition 7.1 requires the tracing of those
pseudo-orbits of φt which are as well orbits of perturbations of φt. There-
fore, the ε-Ck-shadowing property of a flow φt is weaker than the tracing
of pseudo-orbits of φt.

128
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Definition 7.1 resembles the notion of topological stability, in the follow-
ing sense: the possibility of ε-shadowing every orbit of a perturbation of a
system by true orbits of the system might suggest the existence of a corre-
spondence between the perturbed orbits and the orbits of the system. In
fact, the pseudo-orbit tracing property is one of the main ingredients of the
proof of the structural stability of Axiom A diffeomorphisms and Anosov
systems: the shadowing of pseudo-orbits implies the structural stability in
these cases as we showed in Chapter 2.

Lemma 2.3 in Chapter 2 together with the results in Chapter 5 yield that
expansive geodesic flows in compact manifolds without conjugate points
have the shadowing property of pseudo-orbits, like expansive homeomor-
phisms of compact surfaces [62]. So expansive geodesic flows in compact
manifolds without conjugate points have the ε-C0-shadowing property for
an appropriate ε (depending on the expansiveness constant) according to
Definition 7.1. And the results in Chapter 2 imply that the pseudo-orbit
tracing property of such expansive systems yields their topological stabil-
ity (in general, expansive systems are not structurally stable). However,
there are C1 generic families of diffeomorphisms which are not hyperbolic
where the C1 pseudo-orbit tracing property does not hold [17], [1]; so the
shadowing property in expansive, non-hyperbolic systems is exceptional in
some sense. It is interesting to remark that the tracing of pseudo-orbits in
expansive systems implies that the semi-conjugacies with nearby systems
are homotopic to the identity. So in many respects the pseudo-orbit tracing
property might be considered stronger than the assumption of topological
stability, and in some families of two dimensional, C1 generic systems the
C1 shadowing property actually implies structural stability [93], [94]. In
more general contexts there is no clear relationship between shadowing and
stability.

On the other hand, the ε-Ck-shadowing property has a strong flavor of
the shadowing of quasi-geodesics by true geodesics occurring in Gromov
hyperbolic spaces. Let us recall that this property characterizes Gromov
hyperbolic spaces according to a theorem due to Bonk [16] as we already
observed in Chapter 6. So both the classical theory of hyperbolic topolog-
ical dynamics and the theory of Gromov hyperbolic spaces, suggest that
the ε-Ck-shadowing property, as well as the topological stability, should
imply that (M, g) might be hyperbolic in some sense. Based on the above
considerations, we formulate a conjecture that could be viewed as a sort of
“topological stability conjecture” for geodesic flows of manifolds without
conjugate points.

Conjecture (?):
Let (M, g) be a compact, smooth Riemannian manifold without conju-

gate points such that the geodesic flow enjoys either the ε-Ck-shadowing
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property for some k ≥ 0 and ε > 0, or the Ck topological stability for some
k ≥ 1. Then the universal covering of M endowed with the pullback of the
metric g is a Gromov hyperbolic space.

We would like to remark that the ideas used by Bonk in [16] cannot
be applied to our problem. Bonk’s result implies that (M, g) is Gromov
hyperbolic provided that for every A,B > 0 there exists C = C(A,B)
such that every A,B-quasi-geodesic is in the C-tubular neighborhood of a
geodesic in (M, g). Our hypothesis about the class of curves in the space
that are shadowed by geodesics is more restrictive: we just assume that
geodesics of perturbations of (M, g) can be shadowed by geodesics, and
the collection of quasi-geodesics of (M, g) might be much larger than the
collection of geodesics of perturbed metrics.

We shall discuss in this chapter the nonpositive curvature case where we
have a much better understanding of the global geometry of M̃ . The main
results of the chapter show that the conjecture is true in certain manifolds
with nonpositive curvature. Our main reference is [88].

Theorem 7.1. Let M be a compact, analytic Riemannian manifold of non-
positive curvature. If the geodesic flow of M is Ck topologically stable for
some k > 0 then the universal covering M̃ of M is a Gromov hyperbolic
space.

Theorem 7.2. Let M be a compact, analytic Riemannian manifold of non-
positive curvature. Let ρ > 0 be the injectivity radius of M . Then there
exists a constant C > 0 such that if the geodesic flow of M satisfies the
Cρ-Ck-shadowing property for some k > 0 then the universal covering M̃
of M is Gromov hyperbolic.

The analyticity of the metric assumed in the above two theorems is very
important for their proofs. Indeed, if we drop the analyticity hypothesis we
get a much weaker result: both assumptions, the ε-Ck-shadowing property
and the topological stability grant that the fundamental group has the
Preissmann property. So the solution of the conjecture leads naturally to
the problem discussed in Chapter 6 concerning the relationship between
the Preissmann property and Gromov hyperbolicity. This issue is closely
related with the solution of Thurston’s geometrization conjecture in the
case of three dimensional manifolds. We shall comment in more detail this
subject at the end of the survey.

In fact, Theorems 7.1 and 7.2 hold assuming C∞ topological stability or
ε-shadowing instead of Ck. We shall subdivide the proofs of the theorems
in many steps.
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1 Homoclinic geodesics in the two torus and
instability

We follow the notations of Chapters 1 and 6 concerning the fundamental
group and covering isometries. A covering isometry T is naturally identified
with an element of one of the point base fundamental groups π1(M,p),
p ∈ M . So we shall write the statement T ∈ π1(M) as a convention to
stress this identification.

There is a key idea that is common to the proof of Theorems 7.1 and 7.2:
the instability of the geodesic flow of a flat metric in the two torus produced
by the existence of homoclinic geodesics in arbitrarily small perturbations
of such metrics. Given a flat metric structure in the two torus, (T 2, g), and
a closed geodesic γθ, we find C∞ perturbations ḡ of g such that

1. the geodesic γθ is a geodesic of (T 2, ḡ),

2. the geodesic γθ is a waist in its homotopy class, i.e., the ḡ-length of
every closed loop freely homotopic to γθ is strictly bigger than the
ḡ-length of γθ.

Under this conditions, it was proved by Morse [69] that there exists a
minimizing ḡ-geodesic β ⊂ (T 2, ḡ) that is homoclinic to γθ: the α and ω
limits of β coincide with γθ. Moreover, if we take two consecutive lifts γ1,
γ2 of γθ in the universal covering of T 2 (i.e., there is no other lift of γθ in
the strip bounded by γ1 and γ2), there is a lift β̃ of β contained in the strip
bounded by γ1 and γ2 such that

lim
t→+∞

d(β̃(t), γ1) = 0,

and
lim

t→−∞
d(β̃(t), γ2) = 0.

The existence of the homoclinic geodesic β yields the proof of the conjecture
for the two torus, a fact that we might naturally expect but that is very
important for the proof of the conjecture in nonpositive curvature.

Lemma 7.1. The geodesic flow of a flat metric in T 2 is not Ck topologically
stable for any k ≥ 0.

Proof. Assume that the geodesic flow of (T 2, g) is topologically stable in
some Ck topology. Let γ be the closed geodesic of (T 2, g) of minimum
length. Let (M, ḡ) be a Ck perturbation of (M, g) of the type described
above, that turns γ into a waist in its homotopy class. We remark that
ḡ can be constructed arbitrarily close to g in the C∞ topology. Let β be
the homoclinic ḡ-geodesic above, and let γ1, γ2 be two consecutive lifts of
γ in T̃ 2 = R2, bounding a strip in R2 where there is no other lift of a
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closed ḡ-geodesic homotopic to γ. Let β̃ the lift of β in this strip with the
asymptotic properties stated above. Consider the semi-equivalence

f : (T1T
2, ḡ) −→ (T1T

2, g)

provided by the topological stability of the geodesic flow of (T 2, g)
(to simplify notation, we denote by g and ḡ the Sasaki metrics associ-
ated to g and ḡ respectively). Let us also denote by γ, β β̃, γ1,γ2 the orbits
of the corresponding geodesic flows associated to these geodesics.

Claim: f(β) = f(γ).

Indeed, f(γ) is an orbit of the geodesic flow of the flat metric (T 2, g),
that is closed because γ is closed. By continuity of f , the geodesic f(β)
must approach f(γ) in the future and in the past. But the geodesic f(γ)
corresponds to the projection of a straight line of R2 in T 2, and hence the
only geodesic of (T 2, g) that approaches f(γ) is f(γ) itself, thus proving
the claim.

Let l > 0 be the minimum period of γ, and let us consider the closed
loops cn in T 2 formed in the following way: join the point γ2(−nl) to a
close point in β̃, say β̃(tn), with a geodesic segment [γ2(−nl), β̃(tn)]; join
the point γ1(nl) to a close point in β̃, say β̃(sn), with a geodesic segment
[γ1(nl), β̃(sn)]; consider the curve

Cn = [γ2(−nl), β̃(tn)] ∪ β̃([tn, sn]) ∪ [γ1(nl), β̃(sn)],

and let cn = Π(Cn), where Π : R2 −→ T 2 is the covering map. Observe
that, as n → +∞, the lengths of the geodesic segments [γ2(−nl), β̃(tn)]
and [γ2(nl), β̃(sn)] tend to zero. So we have that

lim
n→+∞

tn = −∞, lim
n→+∞

sn = ∞.

Moreover, since f is continuous, and f(β) = f(γ), the images f(β(tn)) and
f(β(sn)) are close to f(γ(0)). So we can suppose without loss of generality
that f(β(tn)) = f(β(sn)). Since f is a surjective semi-equivalence, f is
surjective on the closed orbits of the geodesic flow and then, the induced
linear map

f∗ : H1(T
2,Z) −→ H1(T

2,Z)

in the first homology group is surjective. A linear, surjective transformation
of Rm onto itself must be an isomorphism. Denote by [c] the homology class
of a closed curve in T1T

2. Notice that the homology class of cn is

[cn] = 2n[γ] + x,

where x ∈ H1(T
2,Z) is a nontrivial homology class. Hence, we have that

f∗([cn]) = 2nf∗([γ]) + f∗(x).
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However, taking n large, f(cn) is a closed curved composed by f(γ) together
with two small closed curves homological to zero. Therefore,

f∗([cn]) = 2nf∗([γ]) + f∗(x) = 2nf∗([γ]),

which implies that f∗(x) = 0 contradicting the fact that f∗ is an isomor-
phism.

The fact that the geodesic flow is not structurally stable is much easier
to show, because a geodesic flow in T 2 with a homoclinic orbit cannot be
equivalent to the geodesic flow of a flat torus. The next lemma concerns
the shadowing property. It can be interpreted in the following way: if the
geodesic flow of a flat two torus has the ε-Ck shadowing property for some
ε > 0, then the diameter of the torus has to be of the order of ε. Therefore,
if ε is small enough, the geodesic flow of a given flat torus cannot have the
ε shadowing property.

Lemma 7.2. Let (T 2, g) be a flat metric in the torus, whose injectivity
radius is ρ. Then the geodesic flow of (T 2, g) does not have the ρ

5 -Ck-
shadowing property for any k ≥ 0.

Proof. First of all, let us explain the choice of the constant ρ
5 . The injec-

tivity radius is one half of the length of the shortest closed geodesic of the
manifold. It is not difficult to show (see for instance [88], Lemma 1.6) that
we can choose generators v1, v2 of the fundamental group of (T 2, g) such
that

1. The shortest closed geodesic of (T 2, g) has homotopy class v1,

2. the length of a closed geodesic with homotopy class v2 is the
shortest among the lengths of closed geodesics excluding the loops
with homotopy class v1,

3. identifying v1, v2 with vectors in R2, the angle between v1 and v2,
∠(v1, v2), satisfies π

3 ≤ ∠(v1, v2) ≤ 2π
3 .

A fundamental domain of T 2 taking v1, v2 as generators of the fundamental
group is a parallelogram whose sides have lengths l1 = ρ, l2, where li is
the length of a closed geodesic with homotopy class vi. The estimate for
the angle formed by v1, v2 implies that there exists C > 0 such that the
distance between the sides of this parallelogram is bounded above by Cρ.
Elementary trigonometry shows that C

2 > 1
5 , and that is why the number

ρ
5 appears in the statement.

Assume, by contradiction, that the geodesic flow φt of (T 2, g) satisfies the
ε-Ck-shadowing property for some ε ≤ ρ

5 . Let α1, α2 be closed geodesics
of (T 2, g) whose homotopy classes are respectively v1, v2.

Claim: The distance between two consecutive lifts of α1 in the universal
covering is less than 2ε.
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In fact, let us consider a C∞ perturbation (T 2, g1) of (T 2, g) such that α1

is strictly minimizing in its homotopy class with respect to the g1-length.
Let β̃ be the geodesic of (R2, g1) mentioned above, such that β = π(β̃) is
homoclinic to α1 and such that β̃ is asymptotic to two different, consecutive
lifts α̃1, α̃2 of α1, α2. Since β is ε-shadowed by some geodesic γ in (T 2, g),
by the choice of ε we have that the lift β̃ is ε-shadowed in R2 by a lift γ̃ of
γ. But a lift of γ is a straight line, and hence γ̃ has to be parallel to both
α̃1 and α̃2. Since β̃ is contained in the strip bounded by α̃1 and α̃2, it is
not difficult to see that the width of this strip has to be at most 2ε as we
wished to show.

But now, the choice of ε implies that 2ε < 2C
2 ρ = Cρ, and this yields that

the distance between α̃1 and α̃2 is less than Cρ, contradicting the choice
of C. The contradiction arose from the assumption of ε-Ck shadowing,
therefore the geodesic flow of (T 2, g) cannot have the this property for any
ε ≤ ρ

5 as claimed.

2 The closing lemma for flat planes in ana-
lytic manifolds with nonpositive curvature
and the proof of the conjecture in this case

The second important ingredient of the proof of the conjecture for non-
positively curved, analytic manifolds is Theorem 6.9 due to Bangert and
Schröeder, which essentially says that isometric embeddings of Rk for k ≥ 2
in M̃ give immersed, totally geodesic tori in M .

The third key idea to prove the conjecture is Eberlein’s characterization
(Theorem 6.7) of nonpositive curvature manifolds whose universal coverings
are not Gromov hyperbolic: the universal covering contains flat planes.

So the idea to prove the conjecture for analytic compact manifolds of
nonpositive curvature goes by contradiction. Suppose that the universal
covering of (M, g) is not Gromov hyperbolic. Then M̃ has a flat plane
and hence there exists an immersed flat, totally geodesic two torus T in
(M, g). Now, it is shown in [88], Section 3, that there exist arbitrarily small,
C∞ perturbations (M, ḡ) of the metric g which keep T totally geodesic and
such that (T, ḡ) has all the features mentioned in the previous subsection: a
given closed geodesic in (T, g) becomes a waist in (T, ḡ) and therefore all the
results of Subsection 2.1 hold for the geodesic flow of (T, ḡ). The convexity
of nonpositive curvature geometry allows to extend the instability results
obtained for (T, ḡ) to (M, ḡ) [88], thus finishing the proof of the conjecture
in this case.
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A brief summary of the argument would be the following: the geodesic
flow of a flat metric in the two torus has neither the topological stability
property nor the shadowing property. The same conclusion can be extended
to compact analytic manifolds of nonpositive curvature because we can
reduce the problem to deal with a flat torus. The Bangert-Schröeder closing
lemma of flats in analytic manifolds is crucial to the argument. Therefore,
the extension of this technique to the C∞ case is not possible in general.

3 Sharpening the shadowing result by means
of Aubry-Mather theory

The variational arguments employed in the previous subsection have a fla-
vor of Aubry-Mather theory. The description given by Morse and Hedlund
[49] of globally minimizing geodesics in surfaces has many natural coun-
terparts in the dynamics of minimizing orbits of measure preserving twist
maps of the annulus, first studied by Birkhoff [15].

Recall that a measure preserving map of the closed annulus F : S1 ×
[0, 1] −→ S1 × [0, 1], F (t, s) = (t̄, s̄), is called a monotone twist map if

1. F preserves the boundary of S1× [0, 1], i.e., the restrictions F |S1×{0},
F |S1×{1} are diffeomorphisms

F |S1×{0} : S1 × {0} −→ S1 × {0},

F |S1×{1} : S1 × {0} −→ S1 × {1}.

2. F is a diffeomorphism in S1 × (0, 1) which satisfies

∂t̄

∂s
6= 0,

for every point in S1 × (0, 1).

The name twist map comes from the fact that the images of the vertical
lines {p} × [0, 1] by F are always transversal to the vertical lines and can
be expressed as graphs of monotone functions defined in connected subsets
of S1. There is a natural variational principle associated to monotone
twist maps whose minima are certain orbits of the dynamics satisfying very
special properties, the so-called Aubry-Mather sets (for definitions and a
clear, simple exposition of the theory we refer to [9]).

It is well known that the geodesic flow of a flat two torus can be repre-
sented, locally, by a measure preserving twist map of the annulus. Indeed,
any region in the unit tangent bundle bounded by two invariant tori with
different rotation numbers can be represented by a measure preserving,
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monotone twist map in a certain annulus, the so-called Birkhoff map which
we recall briefly in the next paragraph.

Given a Riemannian metric (T 2, h) in T 2, and a simple closed geodesic
β, the Birkhoff map Pβ associated to β is the first return map of geodesics
intersecting β transversally. Namely, if γ is a geodesic in (T 2, h) with
γ(0) = β(s), and γ′(0) is transversal to β′(0), then Pβ(γ) = γ(r) = β(s̄) is
the next intersection of γ with β. If we assume that such next intersection
always exists, the Birkhoff map induces a map

Tβ : S1 × (0, 2π) −→ S1 × (0, 2π),

Tβ(s, t) = (s̄, t̄),

where S1 = R/Z, (s, t) represents the geodesic γθ = γθ(s,t) with initial
conditions γθ(0) = β(slh(β)), t = cos−1h(γ′θ(0), β

′(slh(β))). So the co-
ordinate t is a branch of the angle with respect to β. Analogously, (s̄, t̄)
represents the first return of γθ to β, i.e., Pβ(γθ) = γθ(r) = β(s̄lh(β)), and
t̄ = cos−1h(γ′θ(r), β

′(s̄lh(β))). This map might not be defined everywhere,
but in the case of flat metrics in T 2 (and sufficiently small perturbations
of such metrics), it is possible to represent by a suitable Birkhoff map the
whole dynamics of an invariant set of the geodesic flow bounded by two
invariant tori with different rotation numbers.

The representation of the geodesic flow by a twist map allows us to es-
tablish a correspondence between objects and properties of geodesic flows
and twist maps: geodesics correspond to orbits of a twist map; asymptotic
behavior (according to Hedlund’s work [49]) of geodesics is a natural coun-
terpart of the rotation number of orbits of a twist map; invariant tori of
the geodesic flow correspond to invariant curves of the twist map, glob-
ally minimizing geodesics (Definition 4.1 in Chapter 4) are counterparts of
Mather sets. Of course, the twist map associated to any region bounded
by two invariant tori of a flat metric is totally integrable: the domain of
the twist map is foliated by invariant curves.

The local representation of the geodesic flow by twist maps also holds
for geodesic flows in the two torus of metrics which are sufficiently close to
a flat metric in the C4 topology. This is due to KAM theory, which grants
the persistence of many invariant tori in C4 perturbations of a flat metric.
So the motivation for the results in [90] is to use this link between geodesic
flows in the torus and the powerful Mather theory about minimizing orbits
of twist maps to improve the results in the previous subsection.

Recall that the main tool used to produce instability was the existence
of homoclinic geodesics after perturbing the geodesic flow. The asymptotic
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behavior of the homoclinic geodesics is determined by the asymptotic be-
havior of a closed geodesic. By the representation of the geodesic flow by
twist maps, heteroclinic geodesics correspond to the so-called connecting
orbits of a twist map (i.e., orbits whose α and ω limits are Mather sets
with different rotation numbers). Given two closed, minimizing geodesics
γ1 and γ2 with different asymptotic directions in the two torus, a geodesic
β is heteroclinic to γ1, γ2 if β is α-asymptotic to γ1 and ω-asymptotic
to γ2. Heteroclinic behavior of geodesics in the torus is much far away
from Euclidean geometry than homoclinic behavior. So we might guess
that the creation of heteroclinic behavior (that is more “chaotic” in some
sense) by perturbations of a flat metric in the torus would improve the
results obtained in Section 2. Let us consider the following new definition
of shadowing of geodesics.

Definition 7.2. Let (M, g) be a complete, smooth Riemannian manifold.
We say that the geodesic flow of (M, g) satisfies the Ck-shadowing property
if there exists a Ck neighborhood V of (M, g) such that every metric ḡ ∈
V has the following property: given a geodesic γ in (M̃, ḡ), there exist a
geodesic β in (M̃, g) within a finite Hausdorff distance from γ.

Notice that the ε in the definition of the shadowing property given in
Definition 7.1 is not involved in Definition 7.2. The new shadowing property
just requires that perturbed geodesics are shadowed by geodesics of the
initial metric, regardless of the distance to the “shadow”. The main results
in [90] concern this stronger notion of shadowing.

Theorem 7.3. Let (M, g) be a compact Riemannian manifold with nonpos-
itive curvature. If (M, g) satisfies the C4 shadowing property then (M, g)
contains no immersed, flat, totally geodesic tori.

Observe that Theorem 7.3 is inspired by the results of Section 4, where
the main idea of the proofs of Theorems 7.1 and 7.2 was that the presence
of flat tori in the manifold implied instability. Applying Theorem 7.3, the
ideas of the Section and the theory of rank one manifolds we get:

Theorem 7.4. Let (M, g) be a compact manifold with nonpositive curva-
ture. Assume that (M, g) has the Ck shadowing property for some k > 0.
Then

1. The rank of M is one, the Pesin set of the geodesic flow has posi-
tive Lebesgue measure, and in particular, the metric entropy of the
geodesic flow with respect to the Lebesgue measure is positive.

2. If (M, g) is analytic, the universal covering (M̃, g) endowed with the
pullback of g is a Gromov hyperbolic space.

Indeed, item (1) of Theorem 7.4 follows from the fact that flat, totally
geodesic tori are dense in compact, higher rank manifolds of nonpositive
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curvature [7], [5], and hence by Theorem 7.3 such manifolds cannot have
the shadowing property. Rank one manifolds have many hyperbolic-like
ergodic properties like a positive Lebesque measure Pesin set which coin-
cides with an open and dense subset of T1M almost everywhere (see [5],
[61] for instance, or [82] for a similar result for manifolds with bounded
asymptote).

Item (2) combines the ideas of Section 2 with Theorem 7.3: the Bangert-
Schröeder closing lemma of flats (Theorem 6.9) holds in compact, analytic
manifolds of nonpositive curvature and therefore the shadowing property
prevents the existence of flats in the universal covering. Then, Eberlein’s
theorem (Theorem 6.7) implies that the universal covering is a Gromov
hyperbolic space.

The main issue of the section is Theorem 7.3. The crucial idea of the
proof of this theorem is the existence of a sort of complicated “almost”
heteroclinic behavior in perturbations of a flat metric in the two torus.
The proof of this fact relies in the following result due to Mather [67]:

Theorem 7.5. Let F : S1 × R −→ S1 × R be a monotone twist map, and
let B be a Birkhoff region of instability. Let Γ−, Γ+ be the invariant curves
in the boundary of B, with rotation numbers ρ− < ρ+, and let MF,ω be
the Mather set of F with rotation number ω ∈ (ρ−, ρ+). Consider for each
i ∈ Z a real number ωi ∈ [ρ−, ρ+] and a positive number εi. Then there
exists an orbit {F k(x)} in B and an increasing bi-infinite sequence {ji} of
integers such that d(F ji(x),MF,ωi

) < εi.

Recall that a Birkhoff region of instability B of a twist map F : S1 ×
R −→ S1 × R is an open annulus bounded by two homotopically nontriv-
ial, invariant curves of F where there are no other invariant curves of F .
Mather’s theorem implies that in a Birkhoff region of instability, given any
sequence of rotation numbers ωi in the rotation interval [ρ−, ρ+] of the
monotone twist map in the Birkhoff region, there exists an orbit O(x) of
the twist map with a large piece Oi “shadowed” by the Mather set whose
rotation number is ωi, for every i ∈ Z. This is not exactly what we meant
by heteroclinic behavior, because the orbit O(x) might not be asymptotic
to any of the Mather sets involved. However, the behavior of O(x) connects
somehow these Mather sets which have different asymptotic behaviors.

Now, we apply Mather’s theorem to geodesic flows on the two torus.
Starting with a flat metric on T 2, we consider a Ck perturbation of this
metric for k ≥ 4. There are regions of the geodesic flow of the perturbed
metric that can be represented by a monotone twist map of an annulus
F : A −→ A as we observed before. Globally minimizing geodesics of the
geodesic flow give rise to Mather sets of the twist map, and the asymp-
totic behavior of these geodesics determines the rotation number of the
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corresponding Mather set. However, we need to find a Birkhoff region of
instability in this twist map to be able to apply Mather’s result. The ex-
istence of a Birkhoff region of instability follows from the following lemma
in [90].

Lemma 7.3. Given k > 0, the set of metrics in T 2 without invariant
tori having rational rotation numbers is dense in the Ck topology. In the
C2 topology, the above set is generic (i.e., an intersection of a countable
collection of open and dense sets).

Claim: Given a C∞ metric ḡ in T 2 such that

1. (T 2, ḡ) is a C4 perturbation of a flat metric in the torus,

2. The geodesic flow of (T 2, ḡ) has no invariant tori of rational rotation
number,

there exists an invariant region (in fact many of them) of the unit tangent
bundle of (T 2, ḡ) that can be represented by a monotone twist map of an
annulus having a Birkhoff region of instability.

To show the claim it will be enough to find an open region of the unit
tangent bundle bounded by two invariant tori of different rotation numbers,
where there is no other invariant torus. Let us first recall that the collection
of invariant tori varies continuously in the unit tangent bundle, as well
as their corresponding rotation numbers (see [9] for instance for a nice
exposition about invariant tori). We already know that there are lots of
invariant tori if the perturbed metric is sufficiently close to the flat metric.
But the absence of invariant tori with rational rotation numbers implies
that invariant tori cannot be dense in the unit tangent bundle. Otherwise,
since the collection of invariant tori is closed, every point in the unit tangent
bundle would be contained in some invariant torus. In particular, a periodic
orbit would be contained in an invariant torus, contradicting the absence
of invariant tori with rational rotation numbers. Since the set of invariant
tori of the perturbed metric is almost dense in the unit tangent bundle,
there must be a pair of invariant tori close to each other and bounding
a region where there is an open set B not meeting any invariant curve.
Let Aρ1,ρ2

(B) be an invariant region of the unit tangent bundle bounded
by two invariant tori whose rotation numbers are ρ1 < ρ2, which contains
B. The intersection of this collection of invariant regions gives rise to the
desired Birkhoff region of instability.

Another way of proving that invariant tori cannot be dense in the unit
tangent bundle of a perturbation of a flat metric in the torus is to use
Birkhoff’s theorem of invariant curves of twist maps. Indeed, identifying
invariant tori with invariant curves, it is possible to show that invariant
tori of perturbations of flat metrics are minimizing, in the sense that every
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geodesic contained in such a torus is globally minimizing [9]. Hence, if
invariant tori are dense then every geodesic would be minimizing and thus
the metric would have no conjugate points. But the only metrics in the
torus without conjugate points are the flat metrics by Hopf’s theorem. We
leave the details to the reader.

The next step to show Theorem 7.3 consists in looking at the instability
of geodesics of perturbations of a flat metric in the two torus produced by
Mather’s theorem.

Lemma 7.4. A flat metric in the two torus does not satisfy the Ck shad-
owing property for any k ≥ 4.

Proof. We just sketch the argument in [90]. Let us consider a C4 pertur-
bation (T 2, ḡ) of a flat metric (T 2, g) as described above. Mather’s result
implies that there exist a sequence (in fact many of them) ωi, i ∈ Z of
different asymptotic directions; globally minimizing geodesics γi in (R2, ḡ)
(the universal covering of (T 2, ḡ)) whose asymptotic directions are ωi; and
a geodesic β ∈ (R2, ḡ) such that large subsets β[ti, si] of β are shadowed
by the geodesics γi. If we assume that (T 2, g) satisfies the Ck shadow-
ing property for k ≥ 4, then the geodesic β must have a shadow in the
collection of geodesics of a flat metric, namely, straight lines in the plane.
Since β is within a finite distance from its shadow, β has an asymptotic
direction. On the other hand, β follows, along large subsets, minimizing
geodesics γi with different asymptotic behaviors. By Hedlund’s work [49]
the geodesics γi are shadowed by straight lines, and the distance of these
geodesics to their shadows is uniform in i ∈ Z. Therefore, we conclude that
β has a collection of large subsets β[ti, si] which are within finite distance
of straight lines Li which diverge: they have different asymptotic behav-
iors. Using this fact we prove in [90] that β cannot have a well defined
asymptotic direction, contradicting the assumption.

The proof of Theorem 7.3 combines the previous lemma with the ge-
ometry of nonpositive curvature. Let (M, g) be a compact manifold of
nonpositive curvature containing an immersed, flat, totally geodesic torus
(T 2, g). Assume that the manifold satisfies the Ck shadowing property for
some k ≥ 4. We use the same idea of Section 2 to get perturbations (M, ḡ)
of (M, g) which keep (T 2, ḡ) totally geodesic, in a way that (T 2, ḡ) satis-
fies Lemma 7.3. Then we show, by means of the convexity of nonpositive
curvature geometry, that a geodesic of (T 2, ḡ) that is shadowed by some
geodesic in (M, g) can be actually shadowed by a geodesic in (T 2, g), thus
reducing the problem to the two torus and Lemma 7.4.



Chapter 8

Weak hyperbolicity of
geodesics, global geometry and
Poincaré conjecture

The last chapter of the survey is devoted to discuss some generalizations
of the theorems presented in Chapter 7. Such generalizations are far from
a complete answer to the conjecture settled in Chapter 7, but show how to
deal in some cases with the lack of convexity of the metric.

The first result concerning the conjecture for manifolds which might have
regions of positive curvature involves the so-called manifolds with bounded
asymptote defined in Chapter 4 (Definition 4.6). The theorem we shall
discuss next is proved in [89].

Theorem 8.1. Let (M, g) be a compact manifold without conjugate points
and bounded asymptote with constant B. Let ρ(M) be the injectivity radius
of (M, g). Assume that the geodesic flow is either topologically stable or
possesses the ε-Ck shadowing property, where ε = 1

6B ρ(M). Then every
abelian subgroup of the fundamental group of M is infinite cyclic.

The bounded asymptote condition is weaker than the restriction of non-
positive curvature. However, it is difficult to check in practice and thus it
is not a very satisfactory assumption. Yet, the C0 techniques developed
to deal with the absence of nonpositive curvature are very interesting and
show how hard is to study dynamics and global geometry in the absence of
convexity. Some results for a more general class of manifolds were proved
for three dimensional manifolds in [92].

Theorem 8.2. Let (M, g) be a compact three-dimensional manifold without
conjugate points with the weak asymptoticity property, where (M̃, g) is K,C

quasi-convex and C < ρ(M)
4 . If (M, g) satisfies the ε-Ck shadowing property

141
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for some k > 0, and ε < 1
2K (ρ(M)

2 − 2C), then π1(M) has the Preissmann
property.

We say that a complete manifold without conjugate points (M, g) satisfies
the weak asymptoticity property if the map θ → Hθ(0) is continuous ac-
cording to the definition given in Chapter 4, Section 4. Weak asymptoticity
and quasi-convexity are properties of manifolds with bounded asymptote,
according to Lemma 4.11. However, they are again difficult properties to
verify in practice and they are usually related to uniformization theory
(example: Corollary 4.1 in the case of surfaces).

Concerning the relationship between topological stability and the Preiss-
mann property, we have to introduce the notion of strongly topologically
stable.

Definition 8.1. We say that the geodesic flow of (M, g) is strongly Ck-
topologically stable for some k > 0 if the geodesic flow of (M, g) is Ck-
topologically stable and the equivalences arising from the topological stability
of the geodesic flow of (M, g) act trivially in the homotopy group of (M, g).

The above definition is based on the theory of hyperbolic systems: the
theory of structural stability of Anosov systems implies that the conjugacies
between such a system and neighboring systems are isotopic to the identity.
Then, we can show the following:

Theorem 8.3. Let (M, g) be a compact three-dimensional Riemannian
manifold without conjugate points with the weak axiom of asymptoticity

whose universal covering is K,C-quasi-convex, where C < ρ(M)
2 . If the

geodesic flow is strongly Ck topologically stable then the fundamental group
has the Preissmann’s property.

Observe that in both Theorem 8.2 and Theorem 8.3 the quasi-convexity
additive constant C has an a priori bound. So Theorems 8.2 and 8.3 can be
viewed as generalizations of the results in Chapter 7 for manifolds which
are not far from being K, 0-quasi-convex.

The last section of the chapter will be devoted to discuss the connections
of the theory presented in Chapters 6, 7 and 8 with the recent work of Perel-
mann about the Poincaré conjecture and its relationship with Thurston’s
geometrization conjecture. We shall show that under certain usual topolog-
ical assumptions, the Preissmann property implies the Gromov hyperbolic-
ity of the universal covering of compact, connected three dimensional man-
ifolds without conjugate points, provided that Thurston’s geometrization
is true. Moreover, Thurston’s geometrization conjecture and the results of
Chapter 6 would imply that compact, connected three dimensional mani-
folds without conjugate points and expansive geodesic flows admit metrics
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of negative curvature. So the results in Chapters 6, 7 and 8 would give
a relevant link between weak stability properties of the geodesic flow and
uniformization theory in higher dimensions.

1 Homoclinic geodesics in manifolds without
conjugate points and variable curvature sign

One of the main steps towards the proof of the conjecture for nonpositive
curvature manifolds was the creation of homoclinic geodesics by perturbing
the metric (M, g). This problem is in itself interesting and hard, we shall
devote this section to show in some detail some of the results on the subject.
The main result of the section concerning this issue is the following [92]
(see also [89]) which hold under quite general assumptions.

Proposition 8.1. Let (M, g) be a compact Riemannian manifold without
conjugate points such that (M̃, g̃) is quasi-convex. Assume that there exists
a closed geodesic γ, and a lift γ̄ of γ in M̃ , such that the centralizer of
the covering isometry Tγ̄ contains a subgroup isomorphic to Z× Z. Then,
given δ > 0 small and k > 0, there exists a δ-Ck conformal perturbation
(M, gδ) of (M, g) satisfying the following properties:

1. The geodesic γ is a gδ geodesic that is a waist in its homotopy class
with respect to the gδ-length.

2. Given a lift γ1 of γ in M̃ , there exist a lift η 6= γ1 of γ, and a gδ-
geodesic β with the following properties:

(a) lim
t→−∞

d(β(t), γ1) = 0 and lim
t→+∞

d(β(t), η) = 0.

(b) If θ = (γ1(0), γ
′
1(0)), then we have that

lim
t→+∞

∠(β′(t),−∇bθ(β(t))) = 0,

where ∠(v, w) is the angle in the metric g formed by the vectors
v, w.

Proposition 8.1 is an interesting generalization of Morse-Hedlund two di-
mensional theory of existence of homoclinic geodesics. Observe that there
is no restriction on the dimension of the manifold, there are no extra as-
sumptions on the curvature and Jacobi fields, and the geodesic Π(β) in M
is homoclinic to γ. However, the lemma does not grant that the lift γ2 of
γ is an axis of the covering isometry Tγ1

: M̃ −→ M̃ which translates γ1,
as in the case of surfaces.

We would like to make a remark that is connected with some of the
questions posed at the end of the survey. The metric gδ in Proposition 8.1 is
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a perturbation of the metric g which has no conjugate points. Since π1(M)
has an abelian subgroup of rank at least two, the geodesic flow cannot
be Anosov because π1(M) for compact manifolds with Anosov geodesic
flows is Gromov hyperbolic according to Chapter 6. Therefore, by virtue
of Theorem 3.7 the metric (M, g) is in the boundary of the set of metrics
of M without conjugate points and hence, the metric gδ is likely to have
conjugate points. The existence of conjugate points for gδ is not part
of the proof of Proposition 8.1, this feature of gδ is not needed in that
proof. However, the kind of homoclinic behavior of geodesics claimed in
Proposition 8.1 is a strong sign of the existence of conjugate points in
(M, gδ), since in all known examples of manifolds without conjugate points
such behavior is not possible. We think that homoclinic geodesics like in
Proposition 8.1 should not exist in manifolds without conjugate points, but
we do not know how to show this assertion. We shall come back to this
issue in forthcoming sections.

Proposition 8.1 will play a key role in the study of the main conjecture in
the case of manifolds whose curvature sign may change. Moreover, Propo-
sition 8.1 is stated in [92] without proof. So we think that is interesting to
show the main ideas of its proof with some detail due to its relevance for
the rest of the survey.

1.1 A generalization of Hedlund’s tunnels

The construction of the perturbations in Proposition 8.1 is motivated by
some of the ideas that Hedlund [49] applied to investigate minimizing
geodesics in certain metrics on the torus T n. Hedlund changed the flat
metric on Tn in tubular neighbourhoods of closed geodesics generating the
homotopy of Tn, n ≥ 3, by shrinking drastically the metric on these neigh-
bourhoods. This was to show the existence of homoclinic and heteroclinic,
globally minimizing geodesics in the new metric. Such construction showed
that there were examples of globally minimizing, homoclinic geodesics in
Tn, n ≥ 3, and showed new global behavior of minimizers in T 3 (hetero-
clinic geodesics). Now we known from Mather’s theory that there exists
heteroclinic minimizing geodesics in any non-flat metric in T 2 as well as
we noticed in Chapter 7.

Inspired by these Hedlund’s tunnels, we construct in [89] perturbations of
(M, g) supported in a tubular neighborhood of a closed geodesic that force
the globally minimizing geodesics of the perturbed metric to be most of the
time in the support of the perturbation. Let us denote by lg(γθ) the length
of a closed geodesic γθ with respect to the metric g. The perturbation
Lemma is the following:

Lemma 8.1. Let (M, g) be a compact Riemannian manifold and let [γ] be
a nonzero free homotopy class represented by a minimizing closed geodesic
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γθ, where θ ∈ T1M . Then, given k ∈ N , δ > 0, there exists a δ − Ck

conformal perturbation (M, gδ) of (M, g) such that

1. γθ is a geodesic of (M, gδ).

2. lgδ
(γ) < lg(γ).

3. Let g̃δ be the pull-back of gδ in M̃ . Let γθ̃ be a lift of γθ in M̃ ,

where θ̃ ∈ T1M̃ . Let β : [0, 1] −→ M̃ be a smooth curve such that
β(0) ∈ Hθ̃(0), β(1) ∈ Hθ̃(lg(γθ)). Then lg̃δ

(γθ̃) ≤ lg̃δ
(β) ≤ lg̃(β).

4. Let β be the curve defined in item (3). Then given ε > 0 there exists
a = a(ε) such that if

|lg̃δ
(β) − lg̃δ

(γθ̃)| ≤ a

then dH(β, γθ̃[0, lg(γθ)]) ≤ ε, where dH is the Hausdorff distance in
the metric g̃.

Proof. The proof follows the same line of reasoning in [89]. We give next
a sketch of proof.

The main idea is to multiply the metric g in by a factor function of the
form fδ(p) = (1−hδ(p))

2, where hδ : M −→ R is a δ-small C∞ nonnegative
function supported in a tubular neighborhood Vr(γθ) of γθ of small radius
r = r(δ). We can choose hδ with the following properties:

1. hδ(γθ(t)) = mδ > 0 for every t ∈ [0, lg(γθ)], and mδ is the maximum
of hδ in M .

2. hδ(p) < mδ for every p /∈ γθ.

So the metric (gδ)p = fδ(p)gp shrinks the length of the geodesic γθ:

lgδ
(γθ) = (1 −mδ)lg(γθ).

To shorten notation, let us denote by P the g-length of γθ. Consider a lift
γθ̃ of γθ in the universal covering M̃ . Take a smooth curve β : [0, 1] −→ M̃
such that β(0) ∈ Hθ̃(0), β(1) ∈ Hθ̃(P ). Since the g̃-distance between the
horospheres Hθ̃(0) and Hθ̃(P ) is P = lg(γθ) = lg̃(γθ̃[0, P ]), we have that
lg̃(β) ≥ lg̃(γθ̃[0, P ]). Moreover, we have equality in the previous inequality
if and only if β is a subset of an orbit of the Busemann flow of γθ̃. Let us

parametrize β : [0, s] −→ M̃ by g̃-arc length. We have

lg̃δ
(β) =

∫ s

0

(1 − hδ(β(t)))
√
g̃(β′(t), β′(t))dt

= lg̃(β) −
∫ s

0

hδ(β(t))dt.
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So we get

lg̃δ
(β) − lg̃δ

(γθ̃[0, P ]) = lg̃(β) − lg̃(γθ̃[0, P ])

−
(∫ s

0

hδ(β(t)) dt−
∫ P

0

hδ(γθ̃(t)) dt

)
.

Namely,

lg̃δ
(β) − lg̃δ

(γθ̃[0, P ]) = s− P −
(∫ s

0

hδ(β(t)) dt− Pmδ

)

= s− P −
(∫ s

0

(hδ(β(t)) −mδ) dt+ (s− P )mδ

)

= (s− P )(1 −mδ) +

∫ s

0

(mδ − hδ(β(t)) dt.

The terms (s−P )(1−mδ) and
∫ s

0
(mδ −h(β(t))dt are both non negative,

since mδ is the maximum value of hδ and s ≥ P . It is clear that their sum
goes to zero if and only if s = lg̃(β) tends to P and hδ(β(t)) tends to mδ.
By the choice of hδ, this can only happen if β[0, s] tends to γθ̃[0, P ] in the
Hausdorff distance.

The fact that γθ is still a gδ-geodesic can be checked in many ways. This
is a consequence, for instance, of the conformal connection formula and
the fact that the function f is critical along γθ (see [88], [89] for details).
Another way to show this fact is to use item (3) of the lemma. Indeed,
item (3) implies that γθ is a gδ-minimizer in its homotopy class. Because
if a closed curve c ⊂ M is homotopic to γθ, it has a lift c̃ within a finite
Hausdorff distance from the lift γθ̃ of γθ. This yields that c̃ meets every
horosphere Hθ̃(t), t ∈ R, so we can apply item (3) to compare the gδ-length
of periodic pieces of c̃ with the length of γθ. We leave the details to the
reader.

1.2 On finding homoclinic, minimizing geodesics in
perturbed metrics

Now, let [γ] be a nontrivial free homotopy class represented by a closed
geodesic γθ. Let us assume that there is a lift γθ̃ of γ = γθ such that
the covering isometry T = Tγθ̃

has nontrivial centralizer Z([γ]), i.e., the
quotient Z([γ])/ < T > is not the identity. The notation dg(p,A) means

the g-distance from a point p to a set A. If γ, β are two geodesics in M̃ ,
the notation dH(γ, β) means the Hausdorff distance between γ and β in
the metric g̃. Notice that since any two metrics in M are equivalent, the
Hausdorff distances associated to two metrics g̃, h̃ obtained as pull backs
of metrics in M are equivalent too. So in general, we shall not refer to the
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metric g in the notation dH of the Haussdorff distance unless it is strictly
necessary. Sometimes we shall use the notation d(, ), meaning dg. We shall
always use the notation dh whenever h is a metric different from g.

We apply Lemma 8.1 to γθ to get a metric gδ in M satisfying all the
properties of the lemma. In particular, γθ is a gδ-geodesic which is a waist
in its homotopy class.

Recall that the length lg(γθ) is the positive, minimum period of γθ in the
metric g. We shall always assume that the displacement of T along γθ̃ is
lg(γθ) (in general, the displacement of covering isometries preserving γθ̃ is
an integer multiple of lg(γθ)).

Let b ∈ Z([γ])\ < T > and define γη̃ = Tb(γθ̃). The geodesic γη̃ is bi-
asymptotic to γθ̃ according to Lemma 6.1, i.e., there exists L = L(b) > 0
such that d(γθ̃, γη̃) ≤ L, because T and Tb commute. Parametrize both
geodesics in a way that γη̃(t) = γη̃ ∩Hθ̃(t).

Call βn the geodesic of (M̃, gδ) that attains the distance between
γθ̃(−nlg(γθ)) and γη̃(nlg(γθ)). We shall show that a subsequence of the
βn approaches the lift β0 of a homoclinic geodesic β of γθ. This procedure
generalizes the standard method used in surfaces by Morse to show the
existence of homoclinic geodesics.

We shall always parametrize βn : [0, Ln] −→ M̃ by g̃δ-arclength, where
βn(0) = γθ̃(−nlg(γθ)) and βn(Ln) = γη̃(nlg(γθ)). We shall denote by
dT1M̃ (v, w) the Sasaki distance associated to g̃ in the unit tangent bundle

of M̃ . The following notion was introduced in [87].

Definition 8.2. Given ε > 0, θ ∈ T1M , and a lift γθ̃ of γθ in M̃ , we say

that a g̃δ-geodesic segment α : (a, b) −→ M̃ is ε, θ̃-critical if the following
two conditions hold:

1. ∠(α′(t),−∇bθ̃(α(t))) ≤ ε for every t ∈ (a, b), where the angle ∠(, ) is
measured with respect to the metric g.

2. There exists a lift γη̃ of γθ which can be parametrized so that
dT1M̃ (α′(t), γ′η̃(t)) ≤ ε for every t ∈ (a, b).

A 0, θ̃-critical geodesic segment is a subset of a lift of γθ that is an orbit

of the Buseman flow ψθ̃ (recall that every lift of γθ is also a gδ-geodesic
by the construction of gδ). In particular, this lift is asymptotic to γθ̃ and
therefore, by Lemma 1.3 in [89], it is an axis of T .

Lemma 8.2. A gδ-geodesic segment η : (a, b) −→ M̃ that is a limit of ε, θ̃-
critical segments is an ε, θ̃-critical geodesic segment. Moreover, if α(a, b) is
ε, θ̃-critical then (T )k(α(a, b)) is also ε, θ̃-critical for every k ∈ Z.
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Proof. Since the proof is easy, we just give an outline for the sake of com-
pleteness. The first assertion of the Lemma follows from the fact that items
(1) and (2) in Definition 8.2 are given by closed conditions. The second
assertion follows from two facts. First of all, the map T is an isometry

of (M̃, g̃) that preserves the Busemann flow ψθ̃, i.e., (DT )k(−∇pb
θ̃) =

−∇T (p)b
θ̃, so T preserves the g-angles of curves with respect to −∇bθ̃.

Secondly, the representation of π1(M) in the group of diffeomorphisms
of M̃ acts by isometries in both (M̃, g̃) and (M̃, g̃δ). This is just by the
definition of such representation: the action of πM in M̃ is topological
and intrinsic, it is obtained by lifting closed curves in M . Clearly, this is
independent of the metric in M , so T is an isometry of (M̃, g̃δ).

Now, if α(a, b) is a g̃δ-geodesic segment, then T k(α(a, b)) is a g̃δ-geodesic
segment for every k ∈ Z. Moreover, if α′(t) is close to the vector field
−∇bθ̃ for every t ∈ (a, b), then DT k(α′(t)) remains close to the vector field

DT k(−∇bθ̃) = −∇bθ̃ for every t ∈ (a, b). Furthermore, if α(a, b) is close to
a lift β of γθ, then (T )k(α(a, b)) is close to T (β) that is a lift of γθ. This
concludes the proof of the Lemma.

Lemma 8.3. There exists ε0 such that, if ε ≤ ε0 and two consecutive
g̃δ-geodesic segments α(a, b), α(b, c) are ε, θ̃-critical, then α(a, c) is also
ε, θ̃-critical.

Proof. If α(a, b), α(b, c) are ε, θ̃-critical, then ∠(α′(t),−∇α(t)b
θ̃) ≤ ε for

every t ∈ (a, b) ∪ (b, c), and there exist two lifts β, σ of γ such that

dT1M̃ (α′(t), β′(t)) ≤ ε

for every t ∈ (a, b),

dT1M̃ (α′(t), σ′(t)) ≤ ε

for every t ∈ (b, c). The point is that if ε is small enough, then β = σ.
Indeed, since the action of π1(M) is discrete in M̃ , there exists ε1 > 0 such
that if two lifts σ1, σ2 of γθ have points at distance less than ε1, then either
σ1 = σ2, or σ1 intersects σ2 transversally at some point making an angle
of at least ε1. This clearly implies that there exists ε2(ε1) > 0 such that,
given two lifts σ1, σ2 of γ, then either σ1 = σ2, or dT1M̃ (σ′

1(t), σ
′
2(t)) > ε2

for every t ∈ R. Now, let ε0 = ε2
2 . If dT1M̃ (α′(t), β′(t)) ≤ ε0 for every

t ∈ (a, b), and dT1M̃ (α′(t), σ′(t)) ≤ ε0 for every t ∈ (b, c), then

dT1M̃ (β′(b), σ′(b)) ≤ 2ε0 ≤ ε2,

and hence β = σ according to the definition of ε2. This implies that the
geodesic segment α(a, c) is within a distance ε0 from a single lift of γθ, thus
concluding the proof of the Lemma.
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From now on, we assume that the number r = r(δ), that is the radius of
the support Vr(γθ) of gδ, is smaller than ε0. To simplify the notation during
this section, let us call by Hk the horosphere of γθ̃ in (M̃, g̃) containing the
point γθ̃(klg(γθ)). Take a partition of βn by connected segments βn[ti, ti+1],
for −n ≤ i ≤ n, such that βn(ti) ∈ Hi and ti < ti+1.

Lemma 8.4. For each 0 < ε ≤ ε0 there is a number N(ε) such that,
for any n ∈ N, all except at most N(ε) of the segments βn([ti, ti+1]) are
ε, θ̃-critical. Furthermore, the complement of the union of the ε, θ̃-critical
segments βn([ti, ti+1]) has g̃δ-length bounded above by N(ε)(lgδ

(γθ) + L),
where L was defined by dH(γθ̃, Tb(γθ̃)) ≤ L.

Proof. By horosphere geometry we have that the g̃-distance between Hi

and Hi+m is equal to mlg(γθ) = ml, so

lg̃(βn[ti, ti+1]) ≥ lg(γθ)

for every i ∈ [−n, n]. This means by Lemma 8.1 (3) that

lgδ
(βn[ti, ti+1]) ≥ lgδ

(γ)

for every i. From the fact that βn is gδ-globally minimizing and the triangle
inequality we obtain

lgδ
(βn) =

n−1∑

i=−n

lgδ
(βn[ti, ti+1]) ≤ 2nlgδ

(γθ) + 2L,

which implies that

0 ≤
n−1∑

i=−n

[lgδ
(βn[ti, ti+1]) − lgδ

(γθ)] ≤ 2L. (8.1)

The above inequality has strong consequences. Since each term
[lgδ

(βn[ti, ti+1]) − lgδ
(γ)] is positive, the fact that their sum is bounded

by 2L for all n implies that given λ > 0 there exists N = N(λ, δ, L) and a
subset AN,n of indexes, with card(AN,n) ≤ N , such that

| lgδ
(βn[ti, ti+1]) − lgδ

(γ) |≤ λ

for every i ∈ [−n, n] \AN,n.

Claim 1: Given λ > 0 there exists µ = µ(λ) > 0, and covering isometries
ai,n ∈ π1(M), such that, if | lgδ

(βn[ti, ti+1]) − lgδ
(γθ) |≤ λ, then

dT1M̃ (β′
n(t), ai,n(γ′

θ̃
(x(t)))) ≤ µ,

and
∠(β′

n(t),−∇bθ̃(βn(t))) ≤ µ,
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for every t ∈ [ti, ti+1], where x(t) ∈ R.

Otherwise, the contradiction of the hypothesis of Claim 1 implies that
there exists t ∈ [ti, ti+1] such that, either d(βn(t), a(γ0)) > µ for every
a ∈ π1(M), or the angle between β′

n(t) and −∇bθ(βn(t)) is at least µ. In
the first case, there exists α(µ, δ) > 0 such that

[lgδ
(βn[ti, ti+1]) − lgδ

(γθ)] > α(µ, δ), (8.2)

by Lemma 8.1, (3). In the latter case, there exists ω(µ) > 0 such that
[lg(βn[ti, ti+1])− lg(γθ)] > ω(µ), since the g-distance between Hi and Hi+1

is attained at the asymptotes of γθ̃ and equals l = lg(γθ). Thus, again by
Lemma 8.1, there exists ᾱ(µ, δ) > 0 such that

[lgδ
(βn[ti, ti+1]) − lgδ

(γθ)] > ᾱ. (8.3)

But, the number of indexes i ∈ [−n, n−1] such that [ti, ti+1] satisfies either
(2) or (3) is bounded above by N(inf{α, ᾱ}). It is clear that lim

λ→0
µ(λ) = 0.

This finishes the proof of Claim 1.

As a consequence of the Claim we get that, given ε > 0 there exists
λ = λ(ε) such that µ(λ) ≤ ε, since lim

λ→0
µ(λ) = 0. Let

I1
n = I1

n(ε) = {βn(t) s.t. dT1M̃ (β′
n(t), σ′)) > ε ∀ lift σ of γθ}.

and
I2
n = I2

n(ε) = {βn(t) s.t. ∠(β′
n(t),−∇bθ(βn(t))) > ε}.

In the definition of I1, the notation σ′ where σ is a lift of γθ stands for
the orbit of σ under the geodesic flow. Let In = I1

n ∪ I2
n. By inequality

(1), and Claim 1, the cardinality of the collection of the βn[ti, ti+1] that
contain points of In is bounded above by AN,n ≤ N = N(λ(ε)) = N(ε).
Moreover, by inequality (7.1), lgδ

(βn[ti, ti+1]) ≤ lgδ
(γθ) + 2L, and hence,

the length of the union of the βn[ti, ti+1] having points in In is bounded by
N(lgδ

(γ) + 2L) (that is a number independent of n). Finally, observe that
if βn[ti, ti+1] does not contain points of In then βn[ti, ti+1] is an ε, θ-critical
geodesic segment. This finishes the proof of the Lemma.

Lemma 8.4 motivates the following definition (taken from [89]).

Definition 8.3. Given ε > 0, we say that a g̃δ-geodesic segment
α : (a, b) −→ M̃ is mostly ε, θ̃-critical if there exist an integer r ≤ N(ε),
and a collection of intervals [c1, d1], .., [cr, dr] such that

1. a ≤ c1 < d1 < c2 < ... < cr < dr ≤ b.

2. Each curve α([ci, di]) is ε, θ̃-critical.
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3. the g̃δ-length of the complement of the set ∪r
i=1α([ci, di]) is at most

N(ε)(lgδ
(γ) + 2L) = Q(ε).

Clearly, an ε, θ̃-critical geodesic segment is mostly ε, θ̃-critical.

Corollary 8.1. Given 0 < ε ≤ ε0, the geodesic segment βn is mostly
ε, θ̃-critical for every n ∈ N.

Proof. According to Lemma 8.4, each βn contains at most rn ≤ N(ε) inter-
vals βn[tij

, tij+1], 0 ≤ j ≤ rn, which are not ε, θ̃-critical. The total g̃δ-length
of these geodesic segments is at most Q(ε). Each connected component
in the complement of this collection is a union of ε, θ̃-critical g̃δ-geodesic
segments. Since ε ≤ ε0 by hypothesis, Lemma 7.3 implies that such a
component is ε, θ-critical, thus proving the corollary.

Corollary 8.1 improves Lemma 8.4: the geodesic segments βn are most

of the time (up to a subset of length ≤ Q(ε)) close to the vector field −∇bθ̃,
and simultaneously close to a certain number of lifts of γ. This number of
lifts is bounded above by N(ε), a number which does not depend on n.

Proposition 8.2. There exists a subsequence of the βnk
satisfying the

following properties:

1. There exists covering isometries Fk such that the sequence of g̃δ-
geodesics β̄k = Fk(βnk

) converges to a globally minimizing g̃δ-geodesic

β : (−∞,∞) −→ M̃,

2. There exists a lift η of γθ in M̃ , that is different from γθ̃ such that

lim
t→−∞

d(γθ̃, β(t)) = 0,

lim
t→+∞

d(η, β(t)) = 0.

Proof. The proof of the lemma is based on the ideas in [89], where the
hypothesis of bounded asymptote is assumed (and hence, the conclusion of
the lemma is stronger: we get that η is in fact bi-asymptotic to γθ̃). We
shall show that we do not need the bounded asymptote hypothesis to prove
the lemma. The first remark is that

Claim 1: Any limit of mostly ε, θ̃-critical geodesic segments is mostly
ε, θ̃-critical. Also, the image of a mostly ε, θ-critical geodesic segment by
any power of T is a mostly ε, θ̃-critical geodesic segment.

The second important remark is the following result proved in [89]
(Lemma 4.4):
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Lemma 8.5. Let γθ̃, T = Tγθ̃
∈ π1(M), Tb(γθ̃), and βn be as before.

Suppose that given ε > 0 there exists n0 > 0 such that for every n ≥ n0 we
have an interval [sn, rn]-with |sn − rn| ≥ n- and an axis Γ of T such that
dH(βn([sn, rn]),Γ) ≤ ε. Then the angle formed by βn and γθ̃ at βn(0) must
tend to zero as n→ +∞.

The proof of Lemma 8.5 is based on a well known shortcut argument
used by Morse [69] to study globally minimizing geodesics in surfaces. We
show in [89] that this argument can be applied in this n-dimensional case.
From this lemma we get:

Claim 2: Let βn : [0, Ln] −→ M̃ , where βn(0) ∈ γθ̃, and βn(Ln) ∈ Tb(γθ̃).

Let β([cni , d
n
i ]) be the ε, θ̃-critical subsets of βn given by Corollary 8.1. If

there exists a subsequence nk → +∞ such that

dH(β([cnk
i , dnk

i ]), γθ̃) → 0,

then the angle between the T -axis Tb(γθ̃) and βnk
at βnk

(Lnk
) must tend

to 0 as k → +∞. Analogously, if the sequence of curves β([cnk
i , dnk

i ])
approaches Tb(γθ̃) then the angle between γθ̃ and βnk

at βnk
(0) tends to 0

as k tends to +∞.

Claim 3: Assume that (M̃, g̃) is K,C-quasi-convex. Then the sequence
βn ε-approaches (in the sense of Definition 8.3) at least two different lifts
of γθ.

Notice that the quasi-convexity assumption in Proposition 8.1 has not
been used so far, this is the first place in the proof of the proposition where
it shall be required.

Indeed, by Corollary 8.1 the geodesics βn are most of the time close to
some lift of γθ. By Lemma 8.5 we know that if the sequence βn approaches
either γθ̃ or Tb(γθ̃) then the sequence βn must approach both of them (and
Claim 3 holds).

So let us suppose that the ε, θ-critical subsets of the sequence βn get
close to neither γθ̃ nor Tb(γθ̃).

Under this condition, assume by contradiction that that there exists a
subsequence βni

which comes close to just one lift γi of γθ. More precisely,
assume that there exist ε > 0, B = B(ε) > 0, a subsequence βni

, a sequence
of lifts γi of γθ which are different from γθ̃ and Tb(γθ̃), such that

1. The ε, θ-critical subsets βni
([cni

j , d
ni
j ]) of βni

([0, Lni
]), where 1 ≤ j ≤

Ni, satisfy

dH(βni
([cni

j , d
ni
j ]), γi) ≤ ε,

for every 0 ≤ j ≤ Ni ≤ N(ε), where N(ε) is the number defined in
Definition 8.3.
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2. The length of the complement in βni
([0, Lni

]) of the union of the
ε, θ-critical subsets is bounded above by B.

Notice that, since Lni
goes to +∞ with i, assumptions (1) and (2) imply

that
lim

i→+∞
|cni

1 − dni

Ni
| = +∞.

Let ai, bi be such that

1. d(γi(ai), βni
(cni

1 )) ≤ ε,

2. d(γi(bi), βni
(dni

Ni
)) ≤ ε,

The contradiction assumptions and the triangle inequality imply that

d(γi(ai), γθ̃) ≤ d(γi(ai), βni
(cni

1 )) + d(βni
(cni

1 ), γθ̃)

≤ ε+ d(βni
(cni

1 ), βni
(0))

≤ ε+B.

Analogously,

d(γi(bi), Tb(γθ̃)) ≤ d(γi(bi), βni
(cni

Ni
)) + d(βni

(cni

Ni
), Tb(γθ̃))

≤ ε+B.

This yields

max{dg̃(γi(ai), γθ̃), dg̃(γi(bi), γθ̃)} ≤ B + ε+ P,

where P is an upper bound for the distance between γθ̃ and Tb(γθ̃).

By the K,C-quasi convexity of (M̃, g̃), we get that

dH(γi([ai, bi]), γθ̃) ≤ K(B + P + ε) + C.

It is clear that |ai − bi| → +∞ as i→ +∞. Let D ⊂ M̃ be a closed ball
centered at γθ̃(0) with radius 2K(B + ε + P ) + 2C. We have iterates T ki

of the covering isometry T such that T ki(γi(
bi−ai

2 )) belongs to D. Since T
is an isometry preserving γθ̃, the lifts T ki(γi([ai, bi])) of γθ remain within
a distance of 2K(B + P + ε) + 2C from γθ̃.

Hence, we get on the one hand a convergent subsequence of the lifts
T ki(γi([ai, bi])) which converges to a g̃-geodesic η that is bi-asymptotic to
γθ̃. The geodesic η is a lift of γθ, and hence it is not difficult to show (see
Lemma 1.3 in [89]) that η has to be an axis of T .

On the other hand, since the number of lifts of γθ meeting the com-
pact set D has to be finite, we have in fact that the number of geodesics
T ki(γi([ai, bi])) is finite. Therefore, the convergent subsequence of the
geodesics T ki(γi([ai, bi])) must coincide with its limit η, and this yields
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that all the γi are bi-asymptotic to γθ̃ and hence axes of T . This leaves
us in shape to apply Lemma 8.5 to conclude that the sequence βni

must
approach both γθ̃ and Tb(γθ̃), that is forbidden by the assumptions in the
sequence βni

.
The contradiction arose from the uniqueness of the lift γi ε-approached

by βni
, so we conclude that there must be at least two different lifts of γθ

approached by any subsequence of the geodesics βn as n → +∞, as we
wished to show.

Claim 3 together with Corollary 8.1 imply that for n big enough, we see
at least two different lifts γn

1 , γn
2 of γθ which are ε-approached by βn (in

the sense of Definition 8.3 along intervals [cnj1 , d
n
j1

], [cnj2 , d
n
j2

], such that

1. limn→+∞ |cnji
− dn

ji
| = ∞ for i = 1, 2.

2. dH(βn([cnji
, dn

ji
]), γn

i ) ≤ ε for i = 1, 2.

3. dn
j1
< cnj2 , and there exists a constant E > 0 such that |cnj2 −dn

j1
| ≤ E.

Let Fn be a sequence of covering isometries which send γn
1 to γθ̃, in such

a way that
d(βn(dn

j1), γθ̃([0, lg(γθ)])) ≤ ε,

where lg(γθ) is the period of γθ. This gives g̃δ-geodesics β̄n = Fn(βn) and
intervals [sn

1 , r
n
1 ], [sn

2 , r
n
2 ] such that

1. limn→+∞ |rn
i − sn

i | = ∞ for i = 1, 2.

2. dH(β̄n([sn
1 , r

n
1 ]), γθ̃) ≤ ε.

3. rn
1 < sn

2 , and there exists a constant E > 0 such that |sn
2 − rn

1 | ≤ E.

4. The curve β̄n([rn
1 , s

n
2 ]) is contained in the ball W of radius lg(γθ) +

ε+ E centered at γθ̃(0) for every large n.

5. There exists a lift γ̄n of γθ that is different from γθ̃ such that
dH(β̄n([sn

2 , r
n
2 ]), γ̄n) ≤ ε.

Notice that the number of lifts γ̄n has to be finite by their choice, since
all of them have points within a distance of lg(γθ) + 2ε + E from γθ̃(0).
So letting n → +∞, we get a convergent subsequence of the geodesics β̄n

which converges to a globally minimizing g̃δ-geodesic β. The geodesic β is
ε-close to γθ̃ in the past and gets ε-close to some lift η of γθ in the future.
The lift η is different from γθ̃, and replacing L by ε in inequality (7.1) in
the proof of Lemma 7.4 we get that in fact

lim
t→−∞

d(β(t), γθ̃) = 0,

lim
t→+∞

d(β(t), η) = 0,

thus proving Proposition 8.2.
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Proof of Proposition 8.1

Item (1) and item (2), (a) of Proposition 8.1 follow from the construction
of the metric gδ (Lemma 8.1) and Proposition 8.2. Item 2, (b) follows from
the fact that the limit β of the ε, θ̃-critical geodesics β̄n is ε, θ̃-critical too,
together with Proposition 8.2.

1.3 Morse homoclinic geodesics and bounded
asymptote

To distinguish between general homoclinic geodesics and the sort of homo-
clinic geodesics found by Morse using variational calculus, we shall denote
the latter ones by Morse homoclinic geodesics. Namely, β ⊂M is Morse
homoclinic to a closed geodesic γ if there exist two different bi-asymptotic
lifts α1, α2 in M̃ of γ and a lift β1 of β such that β1 is backward asymptotic
to α1 and forward asymptotic to α2. The best we can say about the asymp-
totic geometry of the lifts γθ̃, η of the closed geodesic γθ in Proposition 8.1
is the following:

Lemma 8.6. Let (M, g) be a compact manifold without conjugate points
such that the universal covering is quasi-convex. Let γσ̃ ⊂ M̃ , and let
γη̃ ∈ M̃ be any geodesic such that

lim
t→+∞

∠(γ′η̃(t),−∇bσ̃(γη̃(t))) = 0,

where bσ̃ is the Busemann function of γσ̃. Then

lim
t→+∞

1

t
d(γσ̃, γη̃(t))) = 0.

Proof. Let K,C be the quasi-convexity constants of (M̃, g̃). To shorten
notation, let us call β(t) = γη̃(t). Given n ∈ N, let tn → +∞ such that

d(β(t), γ−∇bσ̃(β(t))) ≤
1

n
,

for every t ∈ [tn, tn+1]. By the continuity of geodesics with respect to
initial conditions, we have that limn→+∞|tn+1 − tn| → +∞. Let βn(t) be
the Busemann asymptote of γσ̃ such that

1. βn(0) ∈ Hσ̃(0),

2. There exists an > 0 such that βn(an) = β(tn).

Let bn>0 be the supremum of the values of t>an for which d(β, βn(t))≤ 1
n .

Then we get

1. d(βn(bn), βn+1(an+1)) ≤ 1
n ,
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2. d(βn(bn + t), βn+1(an+1 + t)) ≤ K 1
n + C for every t ≥ 0.

3. lim
n→+∞

|bn − an| = +∞.

Item (2) is a consequence of quasi-convexity and the weak asymptoticity.
Item (3) follows from the triangular inequality: we have that

||tn+1 − tn| − |bn − an|| ≤
1

n
,

for every n > 0, and since |tn+1− tn| → +∞ the same happens to |bn−an|.

The above properties of βn imply that for every t ≥ an and m > 0,

d(βn(t), βn+m) ≤ m(
K

n
+ C),

and hence

d(γσ̃(t), βn+1(t)) ≤ d(γσ̃(t), β1(t)) + n(
K

n
+ C)

≤ K(d(γσ̃(0), β1(0)) + C + n(
K

n
+ C)

≤ K(D + 1) + C(n+ 1),

for every n > 0, where D = d(γσ̃(0), β1(0)).

Claim: lim
n→+∞

n
tn

= 0.

To see this, we can write tn+1 = t0 +
∑n

i=0(tn+1 − tn), and thus

n

tn
=

n

t0 +
∑n

i=0(tn+1 − tn)
.

Now, recall that (tn+1 − tn) → +∞, so it is an easy exercise to check the
claim.

From the claim, we deduce that

lim
n→+∞

1

tn+1
d(γσ̃(tn+1), βn(tn+1)) ≤ lim

n→+∞
K(D + 1)

tn+1
+ C

n+ 1

tn+1
= 0,

and by quasi-convexity we obtain

lim
n→+∞

1

t
d(γσ̃(t), βn(t)) = 0.

Therefore we have for t ∈ [tn, tn+1],

d(β(t), γσ̃(t)) ≤ d(β(t), βn) + d(βn, γσ̃) ≤ 1

n
+ d(βn(t), γσ̃(t)),

from which the lemma follows.
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At this point, the bounded asymptote hypothesis appears in the argu-
ment for the first time. Notice that the bounded asymptote hypothesis im-
plies quasi-convexity. Item (2b) of Proposition 8.1 tells us that the geodesic
β behaves asymptotically like an integral orbit of the Busemann flow of γθ̃,
and since β is asymptotic to η the same holds for η. But Knieper showed
([60], see also [89]) that under the assumption of bounded asymptote the
distance between any two geodesics in (M, g) either diverges at least lin-
early or the geodesics are asymptotic. Hence, η has to be asymptotic to γθ̃.
Now, as in Claim 3 of the proof of Proposition 8.2, we have that a lift of
γθ that is asymptotic to γθ̃ has to be an axis of the covering isometry Tγθ̃

.
So we get from Proposition 8.1 (compare with Proposition 5.1 of [89]):

Corollary 8.2. Let (M, g) be a compact Riemannian manifold without
conjugate points and bounded asymptote. Assume that there exists a free
homotopy class [γ] represented by a closed geodesic γ such that centralizer
of T = Tγ̄ contains a subgroup isomorphic to Z × Z, where γ̄ is a lift of
γ. Then, given δ > 0 small and k > 0, there exists a δ-Ck perturbation
(M, gδ) of (M, g) satisfying the following properties:

1. The geodesic γ is a gδ geodesic that is a waist in its homotopy class
with respect to the gδ-length.

2. There exists a gδ-geodesic β that is Morse homoclinic to γ.

2 Bounded asymptote and Preissmann’s
property

In this section we show Theorem 8.1. One of the crucial steps to show
the conjecture in nonpositive curvature manifolds, namely, the existence
of homoclinic and connecting orbits in perturbations of flat metrics in the
two torus, relies strongly in two key facts: the geometry of nonpositive
curvature and two dimensional topology. In nonpositive curvature, we have
flat planes in the universal covering if it is not a Gromov hyperbolic space.
Moreover, we get flat tori in the manifold if there exists a subgroup of the
fundamental group isomorphic to Z× Z. The possibility of perturbing the
metric keeping a perturbation of a flat torus totally geodesic, allows us to
use the theory of minimizing geodesics of surfaces (Morse-Hedlund) to get
homoclinic geodesics; as well as to use Mather’s theorem about connecting
orbits of twist maps. But, if we drop the assumption on the sign of the
curvature of the manifold it is not clear whether we can produce chaotic
behavior of geodesics by using the geometry of minimizing geodesics of
the two torus. In general, it is not known (and seems to be very difficult
to prove) if a compact manifold without conjugate points whose universal
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covering is not Gromov hyperbolic has a flat plane in its universal covering.
Moreover, it is not known if the existence of a subgroup of the fundamental
group isomorphic to Z×Z implies that the manifold has an immersed, flat
torus. There are some examples of manifolds without conjugate points
where the flat strip theorem is false [19].

Theorem 8.1 is a generalization of Theorem 7.3, and shows that the same
weaker version of the conjecture that holds for manifolds of nonpositive
curvature holds for manifolds with bounded asymptote. The main idea of
the proof is the existence of homoclinic geodesics in perturbations of metrics
without conjugate points whose fundamental group contains a subgroup
isomorphic to Z× Z.

2.1 Shadowing of geodesics and the Preissmann
property in bounded asymptote

The proof of the fact that ε -Ck-shadowing property implies Preissmann’s
property, for ε as in the statement of Theorem 8.1, is a natural generaliza-
tion of the argument used in the proof of Theorems 7.2, 7.3. Let us give
a brief sketch of the proof (see [89] for details). Suppose that there is a
subgroup S of π1(M) isomorphic to Z × Z. Let T, P be two commuting
covering isometries. It is easy to show (see for instance [22]) that if α is an
axis of T , then Pn(α) is an axis of T for every n ∈ Z. As in the proof of
Lemma 7.2 in the nonpositive curvature case, we have to find a good pair
of generators T1, T2 of S. Let us make precise this notion.

Definition 8.4. Let G be an abelian, finitely generated subgroup of π1(M).
We say that a set of generators {a1, a2, ..., am} is tight if

1. da1
is the least displacement among the non-trivial elements of G,

2. dai+1
is the least displacement among the elements of the quotient of

G by the subgroup generated by {a1, a2, .., ai}, for every i ≤ m.

It is not difficult to get a tight set of generators of an abelian subgroup
of π1(M) when M is compact (see for instance [88], [89]). In our case,
let T1, T2 be a pair of tight generators of S, and let us suppose that T1

has the minimum displacement among the nontrivial elements of S. The
special property of tight generators that will be important for the proof of
the theorem is the following.

Lemma 8.7. Let (M, g) be a compact manifold without conjugate points
and let S be a rank two abelian subgroup of the fundamental group with tight
generators T1, T2. Let us suppose that T1 has the minimum displacement
among the nontrivial elements of S. Then each two different axes of T1

in M̃ are separated by a distance which is bounded below by the constant
C = 1

3B ρ(M) (which depends only on the manifold (M, g))
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The proof of this lemma is not difficult, we leave the details to the reader.
Now, let γ be a closed geodesic such that a lift γ1 of γ is an axis of T1.
Let (M, gδ) be a δ-Ck perturbation of (M, g) satisfying Corollary 8.2. Let
γ2 be the other axis of T1 such that there is a homoclinic geodesic β ⊂ M̃
that is α-asymptotic to γ1 and ω-asymptotic to γ2. The argument in the
proof of Theorems 7.2, 7.3 can be generalized without problems because,

Claim: Under the assumption of bounded asymptote, there are no ho-
moclinic geodesics in (M̃, g) “connecting” two different axes of a covering
isometry ([89], Lemma 5.2).

Here we denote by (M̃, g) the universal covering endowed with the pull-
back of g. In fact, the bounded asymptote hypothesis implies that given γ̃,
β̃ two asymptotic geodesics in M̃ , with γ̃(0), β̃(0) in the same horosphere
of γ̃, then

d(γ̃(t), β̃(t)) ≤ Bd(γ̃(0), β̃(0)),

for every t ≥ 0. So every geodesic that is asymptotic to γ1 and whose initial
conditions are close to γ1 must remain in a tubular neighborhood of γ1 of
small diameter.

At this point, we used the bounded asymptote condition in the argument
for the second time. Therefore, it is not difficult to show that if we can
ρ-Ck shadow the homoclinic geodesic β, then its shadow β̄, that is a g-
geodesic, must be within a distance of the axes of T1 which is comparable
to ρ. Hence, the distance between the axes must be comparable to ρ as
well. So if ρ is suitably small we contradict the fact that the minimum
distance between γ1 and γ2 is bounded below by some universal constant
according to Lemma 8.7. The contradiction yields the proof of the claim.

2.2 Topological stability and Preissmann property

The proof of the fact that topological stability implies the Preissmann
property (Lemma 5.4 in [89]) is as well a generalization of the argument in
Theorems 7.2, 7.3. Let us recall the main idea in the proof of Lemma 7.1:
the image of the perturbed geodesic β, homoclinic to a closed geodesic γ, by
a semiconjugacy of the perturbed geodesic flow with the flat geodesic flow
coincides with the image of γ by the semiconjugacy. This is a consequence
of the fact that the image of β by the semiconjugacy has to be a geodesic
of the flat metric, and by continuity of the semiconjugacy this geodesic
has to be asymptotic to the image of γ. Now, two asymptotic lines in the
plane have to coincide, thus concluding the proof. Under the hypothesis
of Theorem 8.1, there is no restriction on the sign of the curvature, so the
behavior of bi-asymptotic geodesics might be different from the behavior of
straight lines. We have already noticed that the flat strip theorem does not
hold in manifolds without conjugate points. But the bounded asymptote
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assumption implies that there are no homoclinic geodesics in (M, g) whose
lifts in M̃ “connect” two different axes of a covering isometry (Claim 2.1
in the previous subsection). Hence, the image of β by the semiconjugacy
must coincide with the image of γ, and the same argument proceeds to
conclude the proof of the theorem.

The issue of the nonexistence of homoclinic behavior in manifolds with-
out conjugate points is a delicate point of the analysis of the relationship
between topological stability and the Preissmann property. However, the
absence of homoclinic behavior is not essential in the study of the connec-
tions between the shadowing property and the Preissmann property. It is
not difficult to show that Theorem 8.1 hold under the assumption of K, 0
quasi-convexity of the universal covering.

Proposition 8.3. Let (M, g) be a compact manifold without conjugate
points whose universal covering is K, 0-quasi-convex. Then either the ε-
Ck shadowing property for some appropriate ε = ε(M) > 0 or the Ck-
topologically stability of the geodesic flow imply the Preissmann property.

We leave the details of the proof to the reader. Notice that theK, 0-quasi-
convexity is similar to the bounded asymptote condition. In fact, bounded
asymptote condition implies K, 0-quasi-convexity for some K > 0, because
the bounded asymptote is an assumption of similar type on the norm of
stable Jacobi fields (whose integrals give the behavior of Busemann flows).
The converse of this statement is likely to be false, however we do not know
examples which support this assertion. The ideas developed in this section
rise the following interesting question in itself: Are there manifolds without
conjugate points with homoclinic geodesics connecting two different axes
of a covering transformation? We would guess that the answer to this
question is negative, because this type of homoclinic behavior is typical of
manifolds with conjugate points. However, we do not know the answer to
this question so far. We shall deal with this problem in the forthcoming
sections.

3 Further results in certain manifolds
without conjugate points

In this section we briefly discuss the proof of Theorems 8.2 and 8.3, which
are generalizations of Theorem 8.1 under the weaker hypotheses introduced
in the chapter. We follow [92].
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3.1 Morse homoclinic geodesics in perturbations of
metrics without conjugate points

We follow the strategy used to deal with manifolds with bounded asymp-
tote. So we need first of all a generalization of Corollary 8.2 for this case.

Proposition 8.4. Let (M, g) be a compact three-dimensional manifold
without conjugate points such that the universal covering endowed with the
pullback of g is a quasi-convex space and satisfies the weak axiom of asymp-
toticity. Let {S, T} be a pair of tight generators of a subgroup of covering
isometries which is isomorphic to Z× Z. Let γ be a closed geodesic with a
lift γθ which is an axis of T . Let γη ⊂ M̃ be any lift of γ such that

lim
t→+∞

∠(γ′η(t),−∇bθ(γ′η(t))) = 0,

where ∠(v, w) is the angle in the metric g̃ formed by the vectors v, w, and
bθ is the Busemann function of γθ in (M, g̃). Then γη is also an axis of T ,
and in particular, the above geodesics are bi-asymptotic.

Proposition 8.4 implies in particular that the Hausdorff distance between
any two lifts of the closed geodesic γ given in the proposition is either finite
or diverges at least linearly. Let us give an outline of the proof of Proposi-
tion 8.4 ([92]). Proposition 8.1 already implies the existence of a pair of lifts
of closed geodesics in (M̃, g̃) such that the distance from one to the other
diverges sublinearly. The existence of a subgroup of π1(M) isomorphic to
Z × Z such that one of the above lifts is an axis of T implies that there
exists a grid of axes of T . Now, in dimension 3, and with the help of the
action of π1(M) on the pair of initial lifts of closed geodesics, we show that
either such pair of lifts is bi-asymptotic, or we get a sequence of balls in
M̃ whose volumes increase at most as a polynomial function of their radii.
Then we apply Gromov’s theorem relating polynomial growth of the fun-
damental group with virtually nilpotent groups; Croke-Schröeder theorem
[26] connecting nilpotent subgroups of π1(M) and abelian subgroups when
M is compact and has no conjugate points; and Burago-Ivanov solution of
the Hopf conjecture in n-dimensional tori (too many big shots indeed ...).
So we conclude that the assumptions on Proposition 8.4 imply that either
the pair of lifts in Proposition 8.1 are in fact bi-asymptotic, or the manifold
M is a flat torus. Since in a flat metric the divergence of axes in M̃ is at
least linear, we conclude that the pair of lifts in Proposition 8.1 had to be
bi-asymptotic anyway.

It is possible to prove Proposition 8.4 following a simpler approach based
in elementary properties of the fundamental group of compact manifolds
without conjugate points. However, the proof would be long and technical
and we prefer not to present it in this survey. Although Proposition 8.4
seems to be a mild improvement of Corollary 8.2 (only holds for three



162 Rafael O. Ruggiero

dimensional manifolds and the assumptions on the global geometry of the
universal covering are not the ideal ones), the proof is not easy. Even for
three dimensional manifolds, we do not have a version of Proposition 8.1
available without the assumption of quasi-convexity.

3.2 On the nonexistence of Morse homoclinic geodesics
in manifolds without conjugate points

The second step of the proof of the theorem requires a result about the
nonexistence of Morse type homoclinic geodesics in manifolds without con-
jugate points, like in the proofs of the previous cases. Our main reference
is [92]. We get a partial nonexistence result assuming weak asymptoticity
and quasi-convexity. In the proof of this result the weak asymptoticity
assumption plays once more time a crucial role.

Lemma 8.8. Let (M, g) be a compact manifold without conjugate points
satisfying the weak axiom of asymptoticity, such that (M̃, g) is K,C-quasi-
convex. Then, if the Haussdorff distance between two different axes γ1, γ2

of a covering isometry is greater than C, there are no geodesics β in M̃
satisfying

lim
t→−∞

d(β(t), γ1) = 0,

and

lim
t→+∞

d(β(t), γ2) = 0.

Proof. The proof of this lemma is much simpler than the proof of Proposi-
tion 8.4, so we give it in detail for the sake of completeness. Let p = γ1(0),
q = γ2(0), such that the maximum distance between γ1 and γ2 is attained
at d(p, q). Let γ = Π(γ1), and let lg(γ) > 0 be the period of γ. lg(γ) is
the period of Π(γ2) too, because all minimizing geodesics in the same free
homotopy class have the same period. Then the points pn = γ1(nlg(γ)),
qn = γ2(nlg(γ)) satisfy d(pn, qn) = d(p, q). Assume that d(p, q) > C and

suppose that there exists a geodesic β ⊂ M̃ such that

lim
t→−∞

d(β(t), γ1) = 0,

lim
t→+∞

d(β(t), γ2) = 0.

Given ε > 0, let tε < 0, sε < 0 be such that d(β(tε), γ1(sε)) < ε. Since the
axes γ1 and γ2 are bi-asymptotic, the geodesic β is bi-asymptotic to both
γ1 and γ2. Therefore, by Lemma 4.9, β is an orbit of the Busemann flow
associated to γ1 and γ2. This implies that, by definition, the geodesic β
is the limit of the geodesics [β(tε), γ1(t)] joining the points β(tε), γ1(t), as
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t → +∞. Since β(t) approaches γ2 as t → +∞, given δ > 0 there exist
t0 > 0, n0 > 0, and points xt,n ∈ [β(tε), γ1(t)], such that

d(qn, xt,n) < δ

for some n > n0 and every t > t0. By the quasi-convexity of the metric in
M̃ we have

d([β(tε), γ1(t)], γ1[sε, t]) ≤ Kd(β(tε), γ1(sε)) + C ≤ Kε+ C.

By the triangle inequality, we get

d(qn, γ1[sε, t]) ≤ d(qn, xt,n) + d(xt,n, γ1[sε, t]) ≤ δ +Kε+ C,

since xt,n ∈ [β(tε), γ1(t)]. This clearly implies that the distance between
qn and γ1 cannot be greater than C, otherwise we would get

C + a < d(qn, γ1) ≤ d(qn, γ1[sε, t]) ≤ δ +Kε+ C,

for some a > 0. So a < Kε + δ, but by the choice of δ and ε these
numbers can be arbitrarily small. Therefore, we conclude that if there
exists a homoclinic geodesic β connecting γ1, γ2 in the way described in
the hypothesis, then the distance between γ1 and γ2 must be less than C,
as claimed.

As we have already mentioned, it would be interesting to know if Morse
homoclinic behavior is possible in manifolds without conjugate points with-
out any additional assumptions on the metric. In surfaces it is not possible
by the work of Morse [69]. In higher dimensions, we can show for instance
that

Lemma 8.9. Let (M, g) be a compact manifold without conjugate points
such that π1(M) has non-trivial center Z. Then closed geodesics in a ho-
motopy class in Z cannot have Morse homoclinic geodesics.

Proof. We just give an outline of proof. The proof relies in Lemma 8.5,
which implies that any geodesic β in M̃ that is backward asymptotic to an
axis γ1 of a covering isometry T , and forward asymptotic to another axis γ2

of T , cannot intersect any axis of T . On the other hand, if we suppose that
π1(M) has non-trivial center Z, and T ∈ Z is a covering isometry, we have
that M̃ is foliated by the axes of T . Thus, any Morse homoclinic geodesic
has to intersect some axis, proving that such geodesics cannot exist under
the hypothesis of the lemma.
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3.3 Proof of Theorem 8.2

As in Chapter 7 we argue by contradiction. Suppose that there exists a
subgroup G of π1(M) isomorphic to Z×Z. Let S, T be tight generators of
G, and let γ be a closed geodesic in M that is a waist in G such that the
axes of T are lifts of γ. Let γ1, γ2 be two different axes of T . Lemma 8.7
(or Lemma 5.3 in [86]) implies that the minimum distance from points in

γ1 to γ2 is at least ρ(M)
2 , where ρ(M) is the injectivity radius of M .

Applying Proposition 8.1 and Proposition 8.4, given δ > 0 we get a δ-Ck

perturbation (M, gδ) of (M, g), for any k > 0, such that γ is a gδ-waist in
its homotopy class and there are lifts γ1, γ2 of γ which are axes of the same
covering isometry T , connected by a Morse homoclinic g̃δ-geodesic β. We
can suppose that β(t) approaches γ1 when t→ −∞, and approaches γ2 as
t → +∞. Suppose that β is ε-shadowed by some g-geodesic β̄ in M̃ . Let
us consider n < 0, sn < 0 such that

d(γ1(n), β(sn)) ≤ 1

|n| ,

where d is the distance in (M̃, g̃). Let an be such that d(β(sn), β̄(an)) ≤ ε.
Then we have that

d(γ1, β̄(an)) ≤ d(γ1, β(sn)) + d(β(sn), β̄(an)) ≤ ε+
1

|n| .

Since β̄ is a g̃-geodesic which is clearly asymptotic to both γ1 and γ2, by
the weak axiom of asymptoticity (Lemma 4.9 (2)) β̄ is a limit of g̃-geodesics
β̄n,m of the type

β̄n,m = [β̄(an), γ1(Tm)],

where Tm → +∞, and the notation [x, y] designates the (unique) g̃-geodesic
curve joining x, y. By the K,C-quasi-convexity we get

d(γ1, β̄) ≤ K(ε+
1

|n| ) + C,

and since |n| can be taken arbitrarily large, we conclude

d(γ1, β̄) ≤ K(ε) + C.

The same estimate holds for the distance between β̄ and γ2. Thus we get

d(γ1, γ2) ≤ 2Kε+ 2C,

so by the claim we obtain

ρ(M)

2
< d(γ1, γ2) ≤ 2Kε+ 2C.
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This yields
1

2K
(
ρ(M)

2
− 2C) ≤ ε.

This estimate determines the constants C, ε in the statement of the the-

orem, in terms of K and the injectivity radius. For if we take C < ρ(M)
4 ,

the left hand side of the inequality is strictly positive, and if we consider

any ε < 1
2K (ρ(M)

2 − 2C) we get a contradiction. Since the contradiction
arises from the existence of an abelian subgroup of π1(M) isomorphic to
Z×Z together with the ε-shadowing assumption, we get that π1(M) must
enjoy the Preissmann’s property provided that the geodesic flow has the

ε-Ck shadowing property for some k > 0 and ε < 1
2K (ρ(M)

2 − 2C).

3.4 Proof of Theorem 8.3

We extend the argument of Chapter 7 to this case. If there are no Morse
type homoclinic geodesics in (M, g) whose lifts in M̃ are asymptotic to two
different axes of a covering isometry, we get the Preissmann’s property.
However, Lemma 8.8 just tells us that there are no such geodesics if the
Hausdorff distance between the axes of a covering isometry is greater than
C, the quasi-convex constant. So in principle, a pair of axes in M̃ which are
close to each other might be connected by lifts of Morse type homoclinic
geodesics.

At this point we use the strong stability assumption. Assume by contra-
diction that there is a subgroup S of π1(M) isomorphic to Z×Z. Let γ be
a closed geodesic whose homotopy class belongs to S and whose length is
the shortest among closed loops with homotopy class in S. By the proof of
Theorem 8.2, the distance between two different lifts τ , σ of γ which are

axes of a covering isometry T is at least ρ(M)
2 . So by Lemma 8.8 and the

hypothesis of Theorem 8.3, there are no Morse type homoclinic geodesics
in (M, g) whose lifts connect τ , σ. Now, apply Proposition 8.1 and Propo-
sition 8.4 to get arbitrarily small perturbations (M, ḡ) of (M, g) in the Ck

topology such that γ is a waist in its homotopy class with respect to ḡ-
length, and such that there is a homoclinic geodesic β̄0 ⊂ M with a lift
β̄ ⊂ M̃ connecting two different axes γ1, γ2 of T . Let f be the equivalence
between orbits of the geodesic flows of (M, ḡ) and (M, g). By the continuity
of f , the image β0 = f(β̄0) is a g-geodesic that is homoclinic to f(γ). By
lifting f to

f̃ : T1(M̃, ḡ) −→ T1(M, g̃),

f(β̄0) lifts in M̃ to a g̃-geodesic β that connects two axes α1, α2 of a
covering isometry T ′. These axes are lifts of f(γ), moreover, f̃(γ1) = α1,
and f̃(γ2) = α2.
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The natural homomorphism

f∗ : π1(M) −→ π1(M)

induced by f in homotopy satisfies the following property: if G is a covering
isometry of (M̃, ḡ), and c is a closed ḡ-geodesic with nontrivial homotopy
class, then

f̃(G(c̃)) = f∗(G)(f̃(c̃)),

for every lift c̃ of c in (M̃, ḡ) (here we identify covering isometries with
elements of the homotopy group of M).

Now, by hypothesis, f∗ acts trivially in the free homotopy group, and
therefore the homotopy class of f(γ) is the same as the homotopy class of γ.
So T = T ′, f(γ) is a closed geodesic of minimal g-length among the closed
loops with homotopy class in S; and by Lemma 8.8, there are no homoclinic
g-geodesics connecting any two different lifts of f(γ) in M̃ . Hence, α1 and
α2 coincide, and f̃(β̄) is bi-asymptotic to f̃(γ1) = α1 = α2 = f̃(γ2). On
the other hand, by the contradiction assumption we have that there exists
a nontrivial covering isometry P in the subgroup S such that

1. P (γ2) = γ1,

2. P does not belong to the subgroup generated by T .

Since the action of f∗ in π1(M) is trivial, we must have that

f̃(γ2) = f̃(P (γ1)) = f∗(P )(f̃(γ1)) = P (f̃(γ1)).

Hence, since we have that f̃(γ1) = f̃(γ2) we get that

P (f̃(γ1)) = f̃(γ1),

namely, the isometry P preserves the axis f̃(γ1). This implies that P must
belong to the subgroup generated by T , leading to a contradiction. The
contradiction arose from the existence of a subgroup of π1(M) isomorphic
to Z× Z, thus finishing the proof of the Theorem.

4 Weak stability and Thurston’s geometriza-
tion conjecture

We would like to finish the survey with a brief discussion about Thurston’s
geometrization conjecture and its connections with the weak stability con-
jectures stated in the introduction of Chapter 7. Our main references for
this subject are [96], [99], [56]. The term geometrization means the exis-
tence of a geometric structure for a manifold. The term geometry in this
context is a model, simply connected Riemannian manifold X which is a
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homogeneous space. A manifold M admits a geometric structure if it ad-
mits a locally homogeneous metric, which is equivalent to say that M is
homeomorphic to the quotient of a homogeneous, simply connected space
X by the action of a discrete subgroup of isometries of X.

4.1 The Poincaré conjecture

Surfaces admit geometric structures by the well known theory of classifi-
cation of surfaces: two-dimensional spaces are quotients of either the two
sphere, the Euclidean plane or the hyperbolic plane by discrete subgroup
of isometries. However, in higher dimensions the classification theory of
manifolds is much harder, and in the late 1970’s Thurston proposed what
it would be the complete list of geometric structures on three-dimensional
manifolds.

The first geometrization problem in the realm of three-dimensional mani-
folds is the so-called Poincaré conjecture, which claims that a compact, sim-
ply connected three-dimensional manifold is homeomorphic to S3. Poincaré
proposed a proof which had a gap, and since then this problem has fas-
cinated mathematicians and inspired a great body of work in topology.

The conjecture in dimension 4 was proved by Freedman [39] in 1982, in
dimension 5 by Zeeman [104] (1961), in dimension 6 was shown by Stallings
[98] (1962), and for dimension higher than 6 by Smale [97] in 1961. Actually,
Smale extended later his proof to include all dimensions n ≥ 5.

The recent work of Perelman [74] (2003), certified by many mathemati-
cians around the world (Kleiner-Lott [56], Besson [14] and many others)
seems to have solved the Poincaré conjecture. The work of Perelman is re-
markable not only because of the solution of the Poincaré conjecture, but
also because it would lead to the solution of the Thurston’s geometrization
conjecture (see [56] for instance).

4.2 Thurston’s geometrization conjecture

Before stating Thurston’s geometrization conjecture we need to recall some
basic notions of the theory of three-dimensional manifolds. We won’t en-
ter into deep detail about the theory of three-dimensional manifolds be-
cause this subject is in itself an incredibly huge area of topology. Three-
dimensional manifolds possess what is known as a standard two-level de-
composition. First of all, there is the connected sum decomposition proved
by Kneser [59], which says that every compact three-manifold is the con-
nected sum of a finite collection of prime three-manifolds. A three-manifold
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M is called prime if whenever we can express M as a connected sum
M1]M2, then either M1 or M2 is homeomorphic to S3. Milnor [68] showed
that when M is orientable, this connected sum decomposition is unique.

The second kind of decomposition of three-manifolds is the so-called
Jaco-Shalen-Johannson torus decomposition [55], [54], which states that
irreducible orientable compact three-manifolds have a canonical (up to iso-
topy) minimal collection of disjointly embedded, two-sided incompressible
tori such that if we remove these tori from the manifold then each remain-
ing connected component is either atoroidal or a Seifert fiber space. A
surface S ⊂ M in a three-dimensional manifold M is called incompress-
ible if S is neither S2 nor the projective space, and the natural inclusion of
π1(S) into π1(M) is injective. A three-manifold is called atoroidal if every
incompressible torus is isotopic to an incompressible boundary component
of the manifold. Of course, if the manifold has no boundary, the above
definition implies that there is no incompressible torus in the manifold. A
three-manifold M is called a Seifert fiber space if M is foliated (fibred)
by circles (the fibers) in a way that each point of M has an open neigh-
borhood which is homeomorphic to either a fibred solid torus or a fibred
solid Klein bottle. The unit tangent bundle of a surface is an example of
Seifert fiber space. A famous result of Epstein [36] shows that every com-
pact three-dimensional manifold that is foliated by circles is a Seifert fiber
space, so we can take as definition of compact Seifert fiber space a compact
three-dimensional manifold foliated by circles.

After all these preliminaries, we can state Thurston’s geometrization
conjecture:

Conjecture: Let M be a prime three-manifold that is either atoroidal or
a Seifert fiber space. Then M0 has exactly one of the following geometric
structures:

1. Euclidean geometry,

2. Hyperbolic geometry,

3. Spherical geometry,

4. The geometry of S2 × R,

5. The geometry of H2 × R,

6. The geometry of ˜SL(2,R), the universal cover of the Lie group
SL(2,R), of 2 × 2 matrices with determinant 1,
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7. Nil geometry, where Nil is the real, three-dimensional group of up-
per triangular matrices with only 1 in the diagonal, under matrix
multiplication,

8. Sol geometry.

The Nil group is the three-dimensional Heisenberg group of nilpotent
matrices. The Sol group is most easily defined as a split extension of R2

by R. We have the following exact sequence

0 −→ R2 −→ Sol −→ R −→ 0,

where an element t ∈ R acts in R2 by the hyperbolic map ft(x, y) =
(etx, e−ty). For instance, torus bundles over the circle with hyperbolic
gluing maps admit Sol geometric structures.

4.3 Applications of the Thurston’s geometrization con-
jecture to weak stability problems

As we mentioned before, Perelman’s work about the Poincaré conjecture
seems very promising regarding the solution of Thurston’s geometrization
conjecture. So we would like to state some consequences of Thurston’s
conjecture combined with the results of Chapters 5, 6, 7, 8. We shall adopt
the notation of topologists to distinguish compact manifolds from compact
manifolds without boundary, which we shall denote by closed manifolds.
Our main result would be the following:

Theorem 8.4. Let (M, g) be a closed, prime, three-dimensional manifold
without conjugate points. Assume that Thurston’s geometrization conjec-
ture is true and that M satisfies one of the following conditions:

1. The geodesic flow is expansive,

2. M has bounded asymptote and the geodesic flow is Ck-topologically
stable for some k ∈ R,

3. M has bounded asymptote and the geodesic flow satisfies the ε-Ck

shadowing property for ε = 1
6B ρ(M), where ρ(M) is the injectivity

radius of M .

Then M admits a hyperbolic metric of constant curvature −1.

Theorem 8.4 solves the conjectures posed in the Introduction of Chap-
ter 7 for prime, three-dimensional manifolds of bounded asymptote: the
existence of a hyperbolic structure implies that the fundamental group is
Gromov hyperbolic. A slightly more general version of Theorem 8.4 can be
stated using the assumptions of Theorems 8.2 and 8.3.
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The proof of Theorem 8.4 relies in the hyperbolic properties of the funda-
mental group of M proven in Chapters 6, 7, 8, under the hypotheses of the
theorem. The proof of item (1) is perhaps the simplest one. By Theorem
6.12, the expansiveness of the geodesic flow implies that the fundamental
group is Gromov hyperbolic. In particular, the fundamental group has the
Preissmann property and therefore, the manifold is atoroidal. So we can
apply Thurston’s geometrization conjecture to conclude that M admits one
of the geometric structures in the above list. Since π1(M) is Gromov hy-
perbolic, the universal covering (M̃, g̃) is Gromov hyperbolic. Hence, by
the results of Chapter 6, any metric h in M has the property that (M̃, h̃) is
Gromov hyperbolic. So the geometric structure of M has to be a Gromov
hyperbolic space, and the only one with this property is the hyperbolic
three-space.

The proofs of items (2), (3) rely as well in the Preissmann property,
which holds under the assumptions of Theorem 8.4 by Theorem 8.1. So
the following partial answer to a question posed in Chapter 6 would be
enough to finish the proof of the theorem:

Theorem 8.5. Assume that Thurston’s geometrization conjecture is true.
Let (M, g) be a closed, prime, three-dimensional manifold without conjugate
points whose fundamental group has the Preissmann property. Then M
admits a hyperbolic geometric structure.

The proof of Theorem 8.5 requires a certain amount of work, so we just
give an outline of the argument and leave the details to the reader.

1) First of all, if M has no conjugate points then it cannot admit a
geometric structure whose model space is either S3, S2×R. This is because
M̃ is diffeomorphic to R3 and none of the above geometries satisfies this
property.

2) By Theorem 6.1, if M admits a Nil geometric structure, then π1(M)
would be nilpotent and hence abelian. Since M is three-dimensional and
is an Eilenberg-Maclane space, the rank of π1(M) as an abelian group has
to be 3 (see for instance [60]). Thus, π1(M) is not Preissmann. The same
conclusion follows if we suppose (M, g) analytic and having a Sol structure:
Theorem 6.1 would imply that π1(M) has an abelian subgroup of finite
index, which has to have rank 3 contradicting the Preissmann property.
However, since we are not assuming analyticity for (M, g) we have to deal
with Sol using a different argument.

3) The case of manifolds admitting a Sol structure is well understood.
We follow Peter Scott ([96] Theorems 4.17 and 5.3).

Theorem 8.6. M is a closed three-dimensional manifold admitting a ge-
ometric structure modelled on Sol if and only if M is finitely covered by
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a torus bundle over S1. Moreover, the identity component of Isom(Sol)
intersects the fundamental group of M in a subgroup G ⊂ π1(M) of finite
index that is isomorphic to Z× Z.

Clearly, Theorem 8.6 yields that if M has the Preissmann property then
it cannot admit a Sol structure.

4) The following result is proved in the book of Peter Scott (Theorems
4.15, 4.16 and 5.3):

Theorem 8.7. M is a closed three-dimensional manifold admitting a ge-

ometric structure modelled on one of S3, R3, S2 ×R, H2 ×R, ˜SL(2,R) or
Nil if and only if M is a Seifert fiber space. Moreover, if the geometric
structure of M is H2×R, then M is finitely covered by a trivial fiber bundle
M0 = S × S1, where S is a compact surface of genus greater than one.

Theorem 8.7 implies that if M has the Preissmann property, then it can-
not admit a H2×R structure. Indeed, since in this case M is a Seifert fiber
space we have that for every p ∈ M , the subgroup of π1(M,p) generated
by the homotopy class of the fiber through p is infinite cyclic, and it is not
difficult to show that it is a normal subgroup of π1(M,p). The fact that M
is finitely covered by a trivial bundle implies that there exists a subgroup
of finite index of the fiber subgroup which has nontrivial center in π1(M).
Since π1(M) has no torsion, we get a subgroup of π1(M) isomorphic to
Z× Z, which contradicts the Preissmann property.

5) We are left to consider the cases of ˜SL(2,R) and H3 structures. The
next result tells us that a Seifert fiber space without conjugate points is
almost a product manifold.

Proposition 8.5. Let (M, g) be a closed three-dimensional manifold with-
out conjugate points. If M is a Seifert fiber space, then (M̃, g̃) is quasi-
isometric to a Riemannian product S × R.

Proof. We just give an outline of the proof since it shares many ideas
with the proof of Lemma 8.9. As we mentioned in item (4), there is a
nontrivial, infinite cyclic subgroup of π1(M,p) attached to the S1-fibers of
a Seifert fiber space, that is a normal subgroup of π1(M,p). This is the
key observation which leads to the proof of the proposition.

Claim: Let (M, g) be a compact manifold without conjugate points such
that π1(M) has a nontrivial, infinite cyclic normal subgroup G. Let γθ ⊂
M̃ be a lift of a closed geodesic representing a minimal generator of G
and let T : M̃ −→ M̃ be the corresponding covering isometry. Then the
displacement of T is constant in M̃ , and M̃ is quasi-isometric to Hθ(0)×R
(here, Hθ(0) is endowed with the restriction of the metric g̃).
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This statement is well known for manifolds with nonpositive curvature,
where M̃ splits in fact in a Riemannian product. Let us show first the
following statement:

There exists P > 0 such that the displacement dT of T satisfies
dT (x) ≤ P for every x ∈ M̃ .

To see this, recall that an iterate g(γθ) by a covering isometry g is an axis
of the conjugate gTg−1 of T . The isometry T belongs to a representation of
π1(M,p), for p = Π(γθ(0)), in the group of isometries of M̃ . By hypothesis,
the group generated by T is normal in this representation of π1(M,p). This
implies that given a covering isometry g in π1(M,p), there exists n ∈ Z
such that gTg−1 = Tn. Therefore, g(γθ) is an axis of Tn and by Lemma
6.1 item (3) it is an axis of T as well.

Let θ = (p̃, v), p̃ ∈ M̃) and let D0 be a compact fundamental domain
containing p̃. Given a fundamental domain D of M in M̃ there exists
a covering isometry g in the above representation of π1(M,p) such that
g(D0) = D and hence, g(γθ) ∩D is nonempty. So we get that every point
in M̃ is within a finite distance from an axis of T .

Now, recalling that the displacement dT of T restricted to their axes is
just the period of the closed geodesic Π(γθ), we get that every fundamental
domain in M̃ has a point where dT is the period of Π(γθ). By the conti-
nuity of T and the compactness of the fundamental domains, there exists
a constant P > 0 such that dT (q) ≤ P for every q ∈ M̃ . This implies that
the displacement is constant: indeed, the above argument implies that dT

attains its maximum value in M̃ , but Lemma 6.1 tells us that the critical
points of dt are only minimum points. Therefore, the maximum and mini-
mum values of dT are equal which yields that dT is constant. This finishes
the proof of the statement.

The above statement shows that there is a rigidity phenomenon associ-
ated to the presence of normal subgroups of the fundamental group. In fact,
since every point of M̃ is critical for dT , we have that M̃ is foliated by lifts
of the geodesic γθ, which are translated by T and which are perpendicular
to the foliation of horospheres Hθ(t), t ∈ R. The map T acts isometri-
cally in the foliation of horospheres: Hθ(t) is isometric to Hθ(t + nO) for
every n ∈ Z, where O is the period of Π(γθ). From this fact it is not
hard to show that all horospheres are quasi-isometric. Namely, there ex-
ists constant K,C such that any two horosphreres Hθ(t1), Hθ(t2) endowed
with the restriction of the metric g̃ are K,C-quasi-isometric. Now, a little
amount of work allows to conclude that M̃ is quasi-isometric to Hθ(0)×R,
where the factor R represents the axes of T .

Proposition 8.5 and Theorem 8.7 imply that M cannot admit neither a
˜SL(2,R) structure or a Nil structure, since none of them is quasi-isometric

to a product.
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After (1), (2), (3) and (4) we conclude that the only possible geometric
structure for M under the assumptions of Theorem 8.4 is H3, thus finishing
the proof of the statement.

5 Further remarks and questions

We would like to finish the survey with a list of questions and problems
arising from the many subjects considered along the exposition.

We start with the notions of asymptoticity introduced in Chapter 4. The
asymptoticity axiom for manifolds without conjugate points introduced by
Pesin in [75] is stronger than our notion of weak asymptoticity defined in
Chapter 8, in fact, Pesin’s asymptoticity axiom implies the weak asymp-
toticity property . It would be interesting to know if quasi-convexity implies
Pesin’s asymptoticity axiom.

Regarding the theory of Morse homoclinic geodesics developed in Chap-
ters 7 and 8, notice that the hypothesis of Proposition 8.1 just requires
no conjugate points and its conclusion seems to be close to the conclusion
of Proposition 8.2. This motivates us to guess that Proposition 8.2 would
hold without the quasi-convexity hypothesis.

The question of knowing if the Preissmann property implies the Gromov
hyperbolicity of the fundamental group of a compact manifold manifold
without conjugate points remains a very difficult question of geometric
group theory. We saw in Chapter 7 that the answer to this question is
positive in compact, analytic manifolds with nonpositive curvature by the
Bangert-Schröeder closing lemma for flats and Eberlein’s characterization
(in terms of the existence of flats) of non Gromov hyperbolic universal
coverings of manifolds with nonpositive curvature [35]. In compact, three
dimensional manifolds without conjugate points we have just pointed out
the connections of this problem with Thurston’s geometrization conjecture
and Perelman’s work. Certainly, the existence of a hyperbolic metric in
the manifold is stronger than the Gromov hyperbolicity of the fundamental
group, and we cannot expect to have the same result in higher dimensions.

Finally, we would like to observe that the connections between weak sta-
bility properties of the geodesic flow and the global geometry of the mani-
fold might exist outside the context of manifolds without conjugate points.
It is interesting to point out that the two dimensional sphere does not admit
an expansive geodesic flow, since expansiveness in this case implies that the
surface has no conjugate points. This was proved by Paternain [73]. We
could ask for instance if there exists a topologically stable geodesic flow in
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the two sphere. Moreover, we do not know if the shadowing property can
be satisfied by the geodesic flow of a metric in the two sphere. It seems to
be that weak stability properties of the geodesic flow would imply strong
restrictions in the global geometry of the manifold. We could guess based
on the Anosov theory that the weak stability properties considered in the
survey might imply that the fundamental group of the manifold is infinite.
How close to expansive geodesic flows are flows satisfying one of our weak
stability properties? This field is completely open, we do not have any
hints or results about the subject.
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Mathématiques de l’IHES (1987) 66, 721-724.
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