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Chapter 1

General introduction and
historical background

Isometric embeddings: from Schlaefli to Nash

A map f from a Riemannian manifold (Mn, g) into a Euclidean space
Eq = (Rq, 〈., .〉) is an isometry if the pullback of the inner product is the
initial metric: f∗〈., .〉 = g. This implies that f preserves length, that is the
length of every C1 curve γ : [a, b]→Mn is equal to the length of its image
f ◦ γ. Suppose that, in some local coordinate system, the metric is given
by

g =

n∑
i,j

gijdxidxj ,

then the isometric condition f∗〈., .〉 = g is equivalent to a non linear PDE
system

〈 ∂f
∂xi

,
∂f

∂xj
〉 = gij , 1 ≤ i ≤ j ≤ n

of sn = n(n+1)
2 equations. It was conjectured by Schlaefli [45] in 1873

that any n-dimensional Riemannian manifold can be locally isometrically
embedded in Esn .

In the years 1926-1927, Janet and Cartan proved that the above PDE sys-
tem has a solution if the dimension of the ambient space is at least sn and
(Mn, g) is an analytic Riemannian manifold. The number sn is thus called
the Janet dimension. In this case, every point of Mn has a neighborhood
which admits an isometric embedding into Eq [31, 10]. Their proof relies
on the Cauchy-Kowalevski Theorem and thus cannot be extended to the
non analytic case. In the smooth case, the best known general result is due
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to Gromov and Rokhlin [22] and also Greene [19]. By using a Nash-Moser
iteration they proved that local isometric embeddings exist if q ≥ sn + n.
A better result is known for n = 2: any smooth riemannian surface admits
local isometric embeddings into E4 [44]. For the smooth case, Schlaefli’s
conjecture is still open even for n = 2 (see [26] for a general reference on
smooth isometric embeddings, see [54] for an essay in french on the history
of isometric immersions).

In 1954, Nash surprised the mathematical community by breaking down
the barrier of the Janet dimension, considering maps with only C1 regu-
larity [39]. Precisely, he proved that any strictly short global embedding
f0 : (Mn, g) −→ Eq, i.e., an embedding that strictly shortens distances:
f∗0 〈., .〉 < g, can be deformed into a true C1 global isometric embedding f
provided that q ≥ n+2. Moreover, the embedding f can be required to be
arbitrarily C0 close to the initial map f0. But its C1 regularity cannot be
improved to C2 in general since the curvature tensor would then provide
obstructions to the existence of isometric maps. Shortly after, the theorem
of Nash was extended by Kuiper to the codimension 1 [34].

The result of Nash and Kuiper has many counterintuitive corollaries. We
mention here three examples, each dealing with one of the three Gaussian
curvature cases, K > 0, K < 0 and K ≡ 0 for surfaces.

A celebrated theorem of Alexandrov, Weyl, Nirenberg and Pogorelov
states that any abstract smooth Riemannian sphere (S2, g) admits a smooth
isometric embedding in E3. Moreover, two smooth convex embeddings of
the sphere are congruent [5, 11, 40, 43]. A consequence of the Nash-Kuiper
theorem is that this rigidity no longer remains in the C1 setting. For in-
stance, there exists a C1 isometric embedding of the unit round sphere
into any ball of arbitrary small radius!

The Efimov-Hilbert theorem shows that there is no C2 isometric im-
mersion in the three-dimensional Euclidean space of a complete surface of
Gaussian curvature bounded from above by a negative constant [13], see
also [38]. In contrast, a direct consequence of the Nash-Kuiper theorem is
the existence of C1 isometric embedding of the hyperbolic plane into E3

and of any complete orientable surface with negative Gaussian curvature.

A flat torus E2/Λ is a quotient of the Euclidean 2-plane by a lattice
Λ = Ze1 +Ze2, (e1, e2) being a basis of E2. Obviously, the Gaussian curva-
ture of a flat torus is identically zero. A classical argument shows that any
C2 complete compact surface in E3 has a point with positive Gaussian
curvature. From the Theorema Egregium it ensues that there is no C2

isometric embedding of any flat torus. In fact, Hartmann and Nirenberg
showed that a C2 complete surface of E3 with zero Gaussian curvature
has to be a plane or a cylinder [28]. They also provide a local geometrical
description: every C2 surface with zero Gaussian curvature is ruled, that
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is there is a straight-line (contained in the surface) passing through every
point of the surface. In the flat torus case, since strictly short embeddings
can be easily constructed, the Nash-Kuiper theorem implies that any flat
torus admits a C1 isometric embedding into E3.

It should be stressed that a C1 isometric map which is not C2 has no
defined Gaussian curvature but has a defined Gauss map: the image of
any C1 isometric embedding admits a tangent space at any of its points.
The unusual regularity of the Nash-Kuiper embeddings puzzles the imagi-
nation. Although the proof is constructive, it is not sufficiently explicit to
allow for visualization.

The Gromov Convex Integration Theory

The Nash-Kuiper result has long appeared as a curiousity; a separate
and isolated result in Riemannian geometry. Obviously, it seems to have
no relevance to the subsequent achievements of differential topology: the
discovery of the eversion of the sphere by Smale in 1958 [46, 47], the
classification of immersions by Hirsch (1959, [29, 30]), the classification of
piecewise-linear immersions Haefliger and Poénaru (1964, [24]), the Folding
Theorem of Poénaru (1966, [42]), the classification of submersions of open
manifolds by Phillips (1967, [41]), the classification of non-degenerate im-
mersed circles by Feldman (1968, [17]) and the classification of k-mersions
by Feit (1969, [16]). Nevertheless, there exists a deep but invisible link
that unifies all those results with the one of Nash-Kuiper. This link had
to be put into light by Gromov in the 70-80’s.

In his thesis (1969, see [23]), Gromov revisits the work of Smale and proves
a general theorem including some of the above results as corollaries. More
precisely, he first reformulates problems in differential topology in a general
sheaf-theoretic language. For instance, the immersion condition for a map
f : Rn −→ Rq, n ≤ q, requires that the Jacobian matrix for dfx has
maximal rank at each point x of Rn. This defines a subset R inside the
one-jet space of maps between Rn and Rq:

J1(Rn,Rq) = {(x, y, L) with x ∈ Rn, y ∈ Rq and L : Rn −→ Rq is linear }

by
R = {(x, y, L) ∈ J1(Rn,Rq) | rank L = n}.

This subset has a natural bundle structure induced by the projection
on the first factor R −→ Rn and any section x 7−→ (x, y(x), Lx) of
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that bundle is called a formal solution of the differential relation R. A
map f is a solution of R –that is an immersion– if and only if its 1-jet
x 7→ j1f(x) = (x, f(x), dfx) is a section of R.

Gromov turns the Smale method –the so called Covering Homotopy
Theorem– into a general procedure to solve a large class of differential
relations R ⊂ J1(Mn, Nq). Precisely, if the manifold Mn is open and if
R is both open and invariant by the action of the diffeomorphism group
Diff(Mn), he proves that every formal solution, that is every section of
R, can be deformed into a true solution by a sequence of “internal” twist-
ings. Even more, the space of sections of R is then weakly homotopy
equivalent to the space of solutions of R. He calls such a property, a h-
principle (h stands for homotopy). The differential relations of immersions
is open and Diff(Mn)-invariant and thus satisfies the h-principle. Hence,
the classification of immersions reduces to a topological task: the homo-
topic classification of sections of R. This is, in essence, the Smale-Hirsch
theorem. But the Nash-Kuiper theorem remains beyond the scope of this
first approach since the isometric differential relation is not Diff(Mn)-
invariant.

The fundamental step of the Nash-Kuiper proof is to construct from a
strictly short embedding f1 another embedding f2 which is still strictly
short but closer to an isometry, i.e.:

g − f∗2 〈., .〉 < g − f∗1 〈., .〉.

To this end, curves are lengthened in the normal neighborhood of the
embedding f1 by turning them into spirals (Nash) or into oscillating curves
(Kuiper). This fundamental step is then iteratively repeated to obtain an
isometric embedding in the limit.

Figure 1.1: The Nash spiraling process and the Kuiper oscillations

Four years after his thesis, Gromov extracts the basic idea of the Nash-
Kuiper fundamental step and converts it into a powerful tool to solve
partial differential relations: the Convex Integration Theory ([20], see also
[21, 49, 14]). The main ingredient of this theory is a barycentric formula
which captures the spirit of both the Nash spiraling and the Kuiper os-
cilating processes (see the formula 2.1 in Chapter 2). This formula plays a
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role that is similar to the Covering Homotopy Theorem in Smale’s method.
However it is quite different in nature and allows to solve differential rela-
tions which were, until then, out of reach. Indeed, the theorem obtained
by Gromov is of great generality: if the differential relation R is open as a
subset of J1(Mn, Nq) and if it satisfies a mild convexity condition called
ampleness then the h-principle holds for R.

As a consequence Gromov recovers the Smale-Hirsch classification of im-
mersions as well as the Nash-Kuiper Theorem. Nevertheless, this last the-
orem requires extra work since the isometric differential relation is neither
ample nor open. The lack of ampleness forces to start with a strictly short
initial map while the non openess is circumvented through an iterative use
of the Gromov theorem to obtain in the limit the desired C1 isometric
embedding.

The Convex Integration Theory gives a unified vision of a number of key
results in differential topology but it also provides new and unexpected
results. For instance, it shows that the differential relation of isometric
maps satisfies the h-principle. As a consequence, the space I(Mn,Eq)
of immersions of a Riemannian manifold Mn inside a Euclidean space
is weakly homotopy equivalent to the space of C1 isometric immersions
Iiso(M

n,Eq). In particular, the eversion of the sphere can be performed
among C1 isometric immersions. The interested reader will find a good
reference on the history of Immersion Theory in [50] (see also [48]).

Thurston Corrugations

The h-principle in general, and the Convex Integration Theory in par-
ticular have long been ignored because they contradict mathematical intu-
ition. As quoted from [6]: “analysis experts [did] not believe in [them] and
as a result prove from time to time parts of what was already in [Gromov’s
work]”. In addition, the high degree of abstraction was a discouraging ob-
stacle which seems to confine the whole theory to a conceptual level.

For instance, although the Convex Integration Theory gives the deep rea-
son of the existence of an eversion of the sphere, it played no role in the
whole history of its visualization. Albeit constructive, Smale’s proof was
far from practical and did not allow for visualization or for a simple mental
picture. Finding explicit regular homotopies that turn the sphere inside
out had been a natural and significant challenge. The successful response
to this challenge is certainly one of the best known pages of the history of
differential topology (accounts of which can be found in [18, 36, 51]).
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One of the most convincing visual eversions was invented by Thurston and
displayed in a computer graphics video in 1994 [37]. The basic idea was to
start with a mere homotopy and to modify it by introducing ondulations
in order to remove singular points. These oscillations, called corrugations,
soon proved to be a powerful tool to generate regular homotopies between
two given immersions. They also offered, in Thurston’s own words, a
“clear, compelling and coherent method to see, prove and understand”
([36], chapter ”Making waves: The Theory of Corrugations”).

Figure 1.2: Thurston corrugations on a plane

Thurston corrugations are quite similar to the oscillations introduced by
Kuiper to build C1 isometric maps. The whole Theory of Corrugations
can be seen as a simplified version of the Convex Integration Theory where
all quantitative aspects are ignored. The effectiveness of the corrugations
method was certainly a first evidence of the practicable nature of convex
integration. However, it is likely that this evidence went unnoticed at the
time, especially as convex integration was still widely unknown (despite
Gromov’s book [21]).

In constrast, it was clear that the rapid advance of computer capabilities
was opening a new era in mathematics. Computers helped to prove the-
orems (as in the Appel and Haken proof of the 4-color map theorem), to
renew the interest in exotic concepts (as fractals, a term coined by Man-
delbrot in 1975) or to understand barely conceivable results (as the Smale
sphere eversion). Simultaneously, the development of the computer led to
an interesting philosophical questioning about mathematical visualization
and more generally, about the essence of mathematical activity [27, 52].

Back to Nash-Kuiper C1 isometric embeddings

The first book entirely devoted to the Convex Integration Theory ap-
pears in 1998 [49]. In this book, Spring provides a meticulous and com-
prehensive exposition of what is presented in the Gromov’s treatise [21].
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He also fills some gaps. For instance, the iterated convex hull exten-
sion for non ample relations is discussed in great detail. The technique
is then applied to prove the h-principle version of the Nash-Kuiper theo-
rem. This book was followed four years later by the work of Eliashberg
and Mishachev which goes one step further in the understanding of the
h-principle. The authors realize that the h-principle stems from a more
general phenomenon: the Holonomic Approximation Theorem (see [14]).
The fourth chapter of the book broaches the Convex Integration Theory
with a viewpoint slightly different to that of Spring. It ends with a (rela-
tively) short proof of the Nash-Kuiper theorem. Without doubt, these two
books have helped greatly to popularize Convex Integration Theory. Eli-
ahberg and Mishachev also make apparent that the theory does not only
yield the existence of solutions, it can also provide effective constructions.

This was used recently by Conti, De Lellis and Székelyhidi to explore the
Hölder regularity of isometric immersions [12]. They showed that any
strictly short immersion f0 : (Mn, g) −→ Eq can be deformed into a C1,α

isometric immersion where α is any number such that

α <
1

1 + 2(n+ 1)sn
.

Borisov has conjectured that the optimal upper bound is 1
2 if n = 2 [7].

De Lellis and Székelyhidi also discovered a stunning analogy between iso-
metric immersions and the incompressible Euler equations. Just as the
Convex Integration Theory generates low regular solutions to the isomet-
ric differential relation, an adapted version of convex integration produces
highly irregular weak solutions to the Euler equations. Moreover, a weak
form of the h-principle holds [35], see also [53].

In a recent article [8], we take advantage of the constructive nature of
Convex Integration Theory to convert the Nash-Kuiper process into an
algorithm that generates C1 isometric embeddings of the square flat torus
E2/Z2 into E3. The implementation led us to the first images of such an
embedding. These pictures reveal a geometric structure made up of an
infinite stack of corrugations with decreasing amplitudes and increasing
frequencies. The resulting object lies in-between a fractal and smooth
surface, we have called it a C1 fractal.



14 V. Borrelli, S. Jabrane, F. Lazarus and B.Thibert

Figure 1.3: The C1 fractal structure of the square flat torus E2/Z2 into E3.

Content of the paper

This paper contains a full version of the short article [8]. It provides all
the details to implement the algorithm and to generate computer images
of an isometric embedding. It also gives complete proofs of the theorems
describing the geometric structure of the embedded square flat torus (see
Theorems 21 and 23).

It is divided into four parts: in Chapter 2, we present the Convex Integra-
tion process in the case of isometric embeddings. The convex integration
takes as input a map f and a positive integer N and outputs a corrugated
map F with N oscillations. The shape of the corrugations depends on the
choice of a family of loops (see Section 2.2). This family of loops is a free
parameter of the theory. We propose a family of loops whose effect on
the curvature is the simplest one: it adds a single term of frequency N to
the curvature measure. We then consider the problem of periodicity: in
general, even if the map f is defined over a torus, the map F fails to be
doubly periodic. We overcome this problem by spreading out the periodic-
ity gap smoothly over the whole torus. Chapter 3 describes how to reduce
the isometric default of an initial embedding using only three convex inte-
grations. We then iteratively apply this reduction to obtain a sequence of
embeddings converging toward an isometric embedding of the square flat
torus. In Chapter 4 we present the details of the implementation as well as
computer images. Chapter 5 is devoted to the description of the geometric
structure of the Gauss map n∞ of the limit isometric embedding. This
Gauss map is obtained as an infinite product of rotations applied to the
Gauss map n0 of the input embedding. The analytic expression of these
rotations is quite involved but their asymptotic expression is fairly simple.
This remarkable fact is the purpose of the Corrugation Theorem 21. The
asymptotic expression also reveals a formal resemblance of the normal map
with a Riesz product. Theorem 23 puts into light the Riesz-like behaviour
of the normal map.



Chapter 2

Convex Integration

In this chapter we provide the necessary details of the convex integra-
tion process applied to the isometric immersion of a torus. In the first
two sections we show how to apply convex integration to the isometric
immersion of a curve. In Section 2.3.1 this one-dimensional procedure is
generalised to cylinders. Section 2.3.2 explains how to tackle the torus
from the cylinder case and settle the main result for this chapter: the One
Step Theorem.

2.1 One-dimensional Convex Integration

Suppose that for each x ∈ I := [0, 1] we are given a subset Rx of vectors
in Rn. The disjoint union R = ∪x∈IRx is called a differential relation.
A solution of R is a C1 curve f : I → Rn such that f ′(x) ∈ Rx, for
all x ∈ I. In other words, a differential relation expresses a condition on
the derivative of a curve that depends on the considered parameter. (In
a more general setting, the differential relation depends on the parameter
and the image point on the curve [14].)

Given a C1 curve f : I → Rn, Convex Integration often allows us to
construct a solution of R that is C0-close to f . The first step of the process
is to define a C1 one-parameter family of loops h(x, ·) : R/Z→ Rx so that
f ′(x) is the average of h(x, ·):

∀x ∈ I, f ′(x) =

∫ 1

0

h(x, u)du. (2.1)

In practice, we first choose a path whose average is f ′(x). The loop h(x, ·) is
then obtained by travelling along this path in both directions (see Fig. 2.1).

15
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x

u h(x, ·)

f ′(x) R

Figure 2.1: The loop h(x, ·) is shown as a (red) thick curve contained
in the differential relation R (in blue) and surrounding f ′(x). In this
figure the sections Rx are all translates of a single section of the cylindrical
relation R.

The curve f is said to be strictly short if f ′(x) is interior to the convex
hull of Rx for all x ∈ I. When R is open and path connected, this is a
necessary and sufficient condition for h to exist [49, 14]. Our choice for
h is discussed in the next section. In the second step of the process we
simply define F : I → Rn by

F (t) := f(0) +

∫ t

u=0

h(x, {Nx})dx, (2.2)

where N is a positive integer and {Nx} is the fractional part of Nx.
Intuitively, F is obtained by integrating h along a periodic curve with
period 1/N (see Fig. 2.2). When N is large enough, the restriction of h
to each period is close to a single loop h(x, ·) and its integral is close to
f ′(x). Summing over the N periods, we see that F is roughly equal to a
Riemann sum of f ′, hence to f . This is formally stated in the following
lemma.

x

u
h(x, {Nx})

Figure 2.2: Because the parameter u belongs to S1 = R/Z, the horizontal
edges of the left square domain must be glued to produce a cylindrical
domain. The path x 7→ (x, {Nx}) winds N times around that cylinder.
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Lemma 1 (C0-density). Let f, h,N , and F be defined as above. Then F
is a solution of R and

‖F − f‖∞ ≤
K(h)

N
,

where K(h) only depends on the C1-norm1 of h.

Proof. Since h(t, {Nt}) ∈ Rt, it follows from the derivation of (2.2)
that F is a solution of R. By (2.1), we have

f(t) = f(0) +

∫ t

x=0

∫ 1

u=0

h(x, u)dudx.

Put n = bNtc, Ij = [ jN ,
j+1
N ] for 0 ≤ j ≤ n − 1, In = [ nN , t] and

Rk = Ik × [0, 1] for 0 ≤ k ≤ n. We write

F (t)− f(0) =

n∑
k=0

Fk and f(t)− f(0) =

n∑
k=0

fk

with Fk =
∫
Ik
h(s, {Ns})ds and fk =

∫
Rk
h(x, u)dudx. We consider

j ∈ [0, n− 1]. By the change of variables u = Ns− j, we get

Fj =

∫ 1

0

1

N
h(
u+ j

N
, u)du.

We now define Hj : Rj → Rn, (x, u) 7→ h(u+jN , u). In particular, Hj is
constant over each horizontal segment in Rj . It ensues that

Fj =

∫
Rj

Hj(x, u)dudx,

implying

‖Fj − fj‖ ≤
∫
Rj

‖Hj − h‖dudx

≤ 1

N2
‖∂h
∂x
‖∞.

The last inequality follows from the mean value theorem and the fact that
the area of Rj is 1/N . For j = n, a simpler upper bound holds:

‖Fn − fn‖ ≤ ‖Fn‖+ ‖fn‖ ≤
2

N
‖h‖∞.

1Here and in the sequel, ‖.‖ is the Euclidean norm and ‖g‖∞ := supp∈D ‖g(p)‖
denotes the C0-norm of any function g with domain D. We recall that for k ≥ 1, the

Ck-norm of the n-variate function g is given by
∑

i1+···+in≤k
0≤i1,...,in≤k

‖
∂i1+···+in

∂xi11 . . . ∂xinn
g‖∞.
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We finally obtain

‖F (t)− f(t)‖ ≤
n−1∑
j=0

‖Fj − fj‖+ ‖Fn − fn‖

≤ 1

N
‖∂h
∂x
‖∞ +

2

N
‖h‖∞.

2.2 The choice of the loops h(s, ·)
As far as the isometric embedding problem is concerned, we deal with

closed differential relations for which Rs is a sphere of radius r(s) in Rn,
for some strictly positive function r : I → R∗+. In other words, the relation
R constrains the norm of the derivative. In this case, a curve f is short if
and only if ‖f ′(s)‖ ≤ r(s), for all s ∈ I. Suppose that f ′ is never zero and
let n : I → Rn be a vector field normal to f . We choose the loop h(s, ·)
with image in the circle of radius r(s), intersection of Rs with the plane
spanned by t(s) := f ′(s)/‖f ′(s)‖ and n(s), and set

h(s, u) = r(s)(cos(αs cos(2πu))t(s) + sin(αs cos(2πu))n(s)) (2.3)

with αs := J−10 (‖f ′(s)‖/r(s)) (see Fig. 2.3). Here J0 is the Bessel function
of 0 order restricted to the interval [0, z], where z ≈ 2.4 is the smallest
positive root of J0. With this choice, the identity (2.1) easily follows from
the integral formula

J0(x) =

∫ 1

0

cos(x cos 2πu)du.

rn(s)

f ′(s)
rt(s)

αs

h(s, ·)

Figure 2.3: The loop h(s, ·) starts from the top of the (red) thick arc,
sweeps the arc and comes back to its starting point.
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As noted in [8], our convex integration formula (2.3) captures the natural
geometric notion of a corrugation. Indeed, in the planar case n = 2 the
signed curvature measure

µ := kds = k(t)‖F ′(t)‖dt

of the resulting curve F given by (2.2) is connected to the signed curvature
measure µ0 := k0ds of the initial curve f by the following simple formula

µ := µ0 + (α′ cos(2πNt)− 2πNα sin(2πNt)) dt.

Our corrugation thus modifies the curvature in the simplest way by sine
and cosine terms with frequency N . As an example, when r ≡ 1 is the
constant unitary function, formula (2.3) provides a plane curve F isometric
to the segment I (with the usual metric in R) that oscillates N times about
f . A more in-depth analysis of the one-dimensional convex integration
process based on formula (2.3) can be found in [9].

2.3 Two-dimensional Convex Integration:
the primitive case

Given a Riemannian metric µ on the torus T2 = R2/Z2, our objec-
tive is to find an isometric embedding of (T2, µ) in the 3-dimensional Eu-
clidean space. This is an embedding fiso : (T2, µ) → (R3, 〈·, ·〉R3) satisfy-
ing f∗iso〈·, ·〉R3 = µ. As described in the original methods [39, 34], we shall
start with an initial smooth2 embedding f : (T2, µ) → (R3, 〈·, ·〉R3) that
is not isometric. The general strategy is to view the torus as a family of
curves and to apply one-dimensional convex integration along each curve.
Intuitively, though, the one-dimensional process can only deal with one-
dimensional constraints. Following [39, 34, 14], we thus assume in this first
chapter (see Chapter 3 for the general case) that µ differs from f∗〈·, ·〉R3

by a primitive metric. In other words, we suppose that

µ = f∗〈·, ·〉R3 + ρ`⊗ ` (2.4)

for some positive function ρ : T2 → R∗+ and some non zero linear form `
on R2, identifying each tangent plane of T2 with R2. We further assume
that ker ` contains a non trivial vector with integer coordinates. This is a
rather weak assumption, as the set of integral vectors is dense in the set of
directions of the plane. We choose V ∈ ker `, with relatively prime integer
coordinates. As a consequence, the curve γ : [0, 1]→ T2, t 7→ [O+ tV ] is a
simple closed curve in T2. Henceforth, we shall denote by Cyl the cylinder
obtained by cutting T2 along γ. We also consider the vector U such that

2We use the term smooth as a synonym of C∞.
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(U, V ) is a direct orthogonal basis and ‖U‖‖V ‖ = 1 (See Fig. 2.4). In
particular, the rectangle determined by the origin O of R2 and the points
O + U and O + V is a fundamental domain of T2 under the action of Z2

on R2, and the cylinder Cyl can be viewed as the set of points of the form
O+ tV +sU for t ∈ R/Z and s ∈ I. For convenience, we shall assume that

`(U) = ‖U‖,

should we rescale ` and ρ accordingly.

O

U

V

Figure 2.4: The integral lattice of R2. The (green) rectangle is a funda-
mental domain of the action of Z2 on R2.

2.3.1 Convex integration on the cylinder Cyl
In a first step we extend the one-dimensional convex integration pro-

cess to the cylinder Cyl in order to get an almost isometric embedding of
(Cyl, µ) in the three dimensional Euclidean space. We show that the naive
approach that consists in applying the one-dimensional convex integration
along the generating lines of Cyl generally fails. In Section 2.3.1, we cor-
rect the naive approach and provide bounds on the isometric quality of
the obtained immersion.

A first attempt toward an isometry

The function f trivially induces a function on Cyl that we still denote
by f . Likewise the metric µ induces a metric on Cyl. We may consider Cyl
as a collection of curves φt : I → Cyl, s 7→ O+ tV + sU with t ∈ R/Z (See
Fig. 2.5). In order to get an isometric embedding out of f : (Cyl, µ) →
(R3, 〈·, ·〉R3) we could apply to each curve f ◦φt the one-dimensional convex
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O

tV

sU

φt(s)

Figure 2.5: The point φt(s) has coordinates (s, t) in the frame (O,U, V ).

integration process described in the previous sections. Let us push this
strategy a little forward. The isometry condition applied to a mapping
defined on the image of φt amounts to constrain the norm of its derivative
to be equal to

√
µ(U,U). This leads us to define a parametrised version

h(t, s, u) of (2.3) with

h(t, s, u) = h̄(φt(s), cos(2πu)), where

h̄(p, c) = r(p)
(
cos(α(p)c)t(p) + sin(α(p)c)n(p)

)
,

and

r :=
√
µ(U,U), t := U·f/‖U·f‖, α := J−10 (‖U·f‖/r).

As usual X·f = df(X) denotes the derivation of f along the vector field X.
A natural choice for n is given by the normal to the embedding, namely

n := U·f ∧ V ·f/‖U·f ∧ V ·f‖.

Equation (2.1) becomes

∂(f ◦ φt)
∂s

(s) =

∫ 1

0

h(t, s, u)du

and by (2.2), we obtain a smooth mapping F : (Cyl, µ) → (R3, 〈·, ·〉R3)
satisfying

F ◦ φt(s) := f(O + tV ) +

∫ s

u=0

h(t, u, {Nu})du. (2.5)

How far is F from being an isometry? To get an answer we just need to
evaluate and compare the two metrics F ∗〈·, ·〉R3 and µ at (V, V ), (U,U),
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and (U, V ). On the one hand, noting that ∂φt
∂s = U , we have3

〈U·F ,U·F 〉R3 =

〈
∂F ◦ φt(s)

∂s
,
∂F ◦ φt(s)

∂s

〉
R3

= ‖h(t, s, {Ns})‖2

and
‖h(t, s, {Ns})‖2 = r2 = µ(U,U),

whence
F ∗〈·, ·〉R3(U,U) = µ(U,U).

On the other hand, by differentiating (2.5) with respect to t, we see that
∂F◦φt(s)

∂t can be obtained by a convex integration process from ∂f◦φt(s)
∂t . We

can thus apply Lemma 1 to show that ‖∂F◦φt(s)∂t − ∂f◦φt(s)
∂t ‖ = O(1/N).

Noting that ∂φt
∂t = V , this is expressed by:

V ·F ≈N V ·f,

where u ≈N v means u = v + O( 1
N ). From the primitive condition (2.4)

together with V ∈ ker `, we deduce that〈
∂f ◦ φt(s)

∂t
,
∂f ◦ φt(s)

∂t

〉
R3

= 〈V ·f, V ·f〉R3 = µ(V, V ),

whence
F ∗〈·, ·〉R3(V, V ) ≈N µ(V, V ).

Whether or not F is close to an isometry eventually rests on the proximity
between µ(U, V ) and 〈U·F , V ·F 〉R3 . We have

〈U·F , V ·F 〉R3 = 〈h(t, s, {Ns}), V ·F 〉R3 ≈N 〈h(t, s, {Ns}), V ·f〉R3

and, omitting some parameters,

〈h(t, s, {Ns}), V ·f〉R3 = 〈r(cos(α cos(2πNs))t, V ·f〉R3

=

〈
r

cos(α cos(2πNs))

‖U·f‖
U·f, V ·f

〉
R3

= r
cos(α cos(2πNs))

‖U·f‖
〈U·f, V ·f〉R3

= r
cos(α cos(2πNs))

‖U·f‖
µ(U, V ).

The first equality follows from the orthogonality between n(s) and V ·f ,
while the last equality results from V ∈ ker `. We conclude that

F ∗〈·, ·〉R3(U, V ) ≈N r
cos(α cos(2πNs))

‖U·f‖
µ(U, V ).

3In the following, we sometimes omit the parameter p = φt(s).
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Therefore, unless µ(U, V ) is null, this definition of F does not converge to
an isometry, no matter how large is N . We now correct this first attempt
by replacing U with a vector field W that is µ-orthogonal to V .

A second attempt toward an isometry

We shall again consider the cylinder Cyl as a collection of curves. This
time, we replace U by

W = U + ζV with ζ = −µ(U, V )

µ(V, V )
= −
〈U·f, V ·f〉R3

〈V ·f, V ·f〉R3

,

chosen so that µ(W,V ) = 0. And we replace φt by the integral curve
ϕ(t, ·) : I → Cyl of W with initial condition O + tV (see Fig. 2.6), so that

ϕ(t, 0) = O + tV and
∂ϕ

∂s
(t, s) = W (ϕ(t, s)).

If we write this differential equation in the coordinate system of (U, V ),
we observe that

ϕ(t, s) = 0 + sU + ψ(t, s)V (2.6)

for some function ψ : R/Z×I → R such that ψ(t, 0) = t. In particular, the

O

tV

sU

ϕ(t, s)

W

Figure 2.6: The integral curve s 7→ ϕ(t, s) of the (non constant) vector
field W .

curve ϕ(t, ·) joins the point O + tV on one boundary of Cyl to the point
O + U + ψ(t, 1)V on the other boundary of Cyl, and ϕ : R/Z × I → Cyl
is indeed a diffeomorphism. We also observe by differentiating 2.6 that
∂ϕ
∂t (s, t) is proportional to V , so that

`(
∂ϕ

∂t
) = 0 and µ(

∂ϕ

∂t
,W ) = 0. (2.7)
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We mimic the previous strategy and apply the convex integration to each
curve f ◦ϕ(t, ·). For this, we redefine the parametrised version h(t, s, u) of
(2.3) by

h(t, s, u) = h̄(ϕ(t, s), cos(2πu)), where

h̄(p, c) = r(p)
(
cos(α(p)c)t(p) + sin(α(p)c)n(p)

)
, (2.8)

and, omitting the parameter p,

r :=
√
µ(W,W ), t := W·f/‖W·f‖,

n := W·f ∧ V ·f/‖W·f ∧ V ·f‖, α := J−10 (‖W·f‖/r).
We can now write

(W·f)(ϕ(t, s)) =
∂(f ◦ ϕ)

∂s
(t, s) =

∫ 1

0

h(t, s, u)du

and we obtain a smooth mapping F : (Cyl, µ)→ (R3, 〈·, ·〉R3) by setting

F ◦ ϕ(t, s) := f(O + tV ) +

∫ s

u=0

h(t, u, {Nu})du. (2.9)

We shall first compare the mappings F and f , as well as some of their
derivatives.

Lemma 2 (C0-density). With the previously defined quantities f , h, N
and F , we have

‖F − f‖∞ ≤
K(h)

N
,

where K(h) only depends on the C1-norm of h.

Proof. We first remark that ϕ being a diffeomorphism, ‖F − f‖∞ =
‖F ◦ ϕ− f ◦ ϕ‖∞. The lemma then follows from the C0-density lemma 1
applied to f ◦ ϕ(t, ·).

Lemma 3. With the previously defined quantities f , h, N , and F , we
have

‖∂(F ◦ ϕ)

∂t
− ∂(f ◦ ϕ)

∂t
‖∞ ≤

K(h)

N
,

where K(h) only depends on the C2-norm of h.

Proof. By differentiating (2.9) with respect to t we observe that
∂(F◦ϕ)
∂t (t, ·) is obtained from ∂(f◦ϕ)

∂t (t, ·) by a convex integration process.

We can thus apply the C0-density lemma to ∂(f◦ϕ)
∂t (t, ·) instead of f to

conclude that

‖∂(F ◦ ϕ)

∂t
− ∂(f ◦ ϕ)

∂t
‖∞ ≤

1

N
(2‖ ∂h

∂x1
‖∞ + ‖ ∂2h

∂x1∂x2
‖∞),
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where ∂h
∂x1

and ∂2h
∂x1∂x2

are the derivatives of h with respect to the first
parameter x1 and the second parameter x2.

Lemma 4. With the previously defined quantities f and F , including
µ = f∗〈·, ·〉R3 + ρ`⊗ `, we have

‖W·F −W·f‖∞ ≤
√

7.‖U‖.‖ρ‖
1
2∞.

We need the following preliminary sublemma for our proof.

Sublemma 5. The inequality

1 + J2
0 (α)− 2J0(α) cos(α) ≤ 7(1− J2

0 (α))

holds for every α ∈ [0, z] (recall that z is the first positive root of J0).

Proof. Subtracting the right hand side from the left hand side, we
rewrite this inequality as

4J2
0 (α)− J0(α) cos(α)− 3 ≤ 0.

By considering the alternating Taylor series of J0 and cos, we get

J0(α) ≤ 1− α2

4
+
α4

64
and cos(α) ≥ 1− α2

2
.

Whence

0 ≤ 4J0(α)− cos(α) ≤ 3− α2

2
+
α4

16
≤ 3 +

α2

2
,

where the last inequality follows from −α
2

2 + α4

16 ≤
α2

2 for all α ∈ [0, z].
We can now write

4J2
0 (α)− J0(α) cos(α)− 3 = J0(α)(4J0(α)− cos(α))− 3

≤ (1− α2

4
+
α4

64
)(3 +

α2

2
)− 3.

Putting x = α2/4, this last polynomial can be rewritten

(1− x+
x2

4
)(3 + 2x)− 3 =

x

2
(x− x1)(x− x2),

where x1 < 0 < z2/4 < x2. It ensues that this polynomial is negative for
α ∈ [0, z].

Proof of Lemma 4. By definition of ϕ, we have

∂F ◦ ϕ
∂s

(t, s) = dF (
∂ϕ

∂s
(t, s)) = W·F .
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It now follows from (2.9) that

W·F = h(t, s, {Ns}) = r
(
cos(α cos(2πNs))t + sin(α cos(2πNs))n

)
where r, α, t,n should be considered at the point ϕ(t, s).
Since W·f = ‖W·f‖t and J0(α) = ‖W·f‖/r, we obtain

‖W·F −W·f‖2 = r2 + ‖W·f‖2 − 2r‖W·f‖ cos(α cos(2πNs))

= r2(1 + J0(α)2 − 2J0(α) cos(α cos(2πNs))).

We also have cos(α cos(2πNs)) ≥ cos(α) for every α ∈ [0, z] ⊂ [0, π]. By
application of the sublemma, we get

‖W·F −W·f‖2 ≤ r2(1 + J0(α)2 − 2J0(α) cos(α))

≤ 7r2(1− J0(α)2) = 7(r2 − ‖W·f‖2).

By (2.4) we have

r2 = µ(W,W ) = ‖W·f‖2 + ρ`(W )2 = ‖W·f‖2 + ρ‖U‖2

since `(W ) = `(U + ζV ) = `(U) = ‖U‖. Putting all this together, we
finally get

‖W·F −W·f‖2 ≤ 7‖U‖2ρ.

We are now ready to compare the respective differential maps df and dF
of f and F . We use the induced norm ‖L‖ = supv 6=0 ‖Lv‖/‖v‖ for a linear
operator L. The notation ‖df‖∞ thus designates the supremum of the
induced norm of df(p) over all p ∈ Cyl.

Lemma 6.

‖dF − df‖∞ ≤
√

7‖ρ‖
1
2∞ +

K(ζ, ψ, h)

N
,

where K(ζ, ψ, h) only depends on the C0-norm of ζ and (∂ψ∂t )−1, and on
the C2-norm of h.

Proof. Since (U, V ) is an orthogonal basis with respect to the Eu-
clidean metric, we have

‖dF − df‖ ≤ ‖U·F − U·f‖
‖U‖

+
‖V ·F − V ·f‖
‖V ‖

. (2.10)

On the one hand, we have by (2.6):

∂ϕ

∂t
=
∂ψ

∂t
V,
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whence

‖V ·F − V ·f‖ = |∂ψ
∂t
|−1.‖∂(F ◦ ϕ)

∂t
− ∂(f ◦ ϕ)

∂t
‖. (2.11)

We remark that |∂ψ∂t | is the Jacobian of the diffeomorphism ϕ, so it never
vanishes. On the other hand, we get from W = U + ζV that

‖U·F − U·f‖ ≤ ‖W·F −W·f‖+ |ζ|.‖V ·F − V ·f‖. (2.12)

Inserting (2.11) and (2.12) into (2.10), and recalling that ‖U‖‖V ‖ = 1, we
obtain

‖dF − df‖ ≤ ‖W·F −W·f‖
‖U‖

+
|ζ|‖V ‖2 + 1

‖V ‖
.|∂ψ
∂t
|−1.‖∂(F ◦ ϕ)

∂t
− ∂(f ◦ ϕ)

∂t
‖.

We can now apply the lemmas 3 and 4 to conclude.

We end this section with a comparison between the pullback metric F ∗〈·, ·〉R3

and the target metric µ. We measure the difference of two scalar products
by the Frobenius norm of the difference of their matrices expressed in the
canonical basis of R2. We recall that the Frobenius norm of a matrix is
the square root of the sum of its squared coefficients.

Lemma 7.

‖µ− F ∗〈·, ·〉R3‖∞ ≤
K(f ◦ ϕ, h)

N
‖dϕ−1‖2∞,

where K(f ◦ ϕ, h) only depends on the C0-norm of ∂f◦φ
∂t and on the C2-

norm of h.

Proof. We shall first measure the difference between ϕ∗µ and
ϕ∗F ∗〈·, ·〉R3 = (F ◦ ϕ)∗〈·, ·〉R3 . We have

(F ◦ ϕ)∗〈·, ·〉R3(∂s, ∂s) = ‖∂F ◦ ϕ
∂s

‖2

= ‖h(t, s, {Ns})‖2

= µ(W,W )

= ϕ∗µ(∂s, ∂s),

where we used W = ∂ϕ
∂s for the last equality. We remark from (2.7) that

µ(∂ϕ∂t ,
∂ϕ
∂t ) = f∗〈·, ·〉R3(∂ϕ∂t ,

∂ϕ
∂t ). Whence

|((F ◦ ϕ)∗〈·, ·〉R3 − ϕ∗µ)(∂t, ∂t)| =
∣∣∣‖∂F ◦ ϕ

∂t
‖2 − ‖∂f ◦ ϕ

∂t
‖2
∣∣∣

≤ ‖∂F ◦ ϕ
∂t

− ∂f ◦ ϕ
∂t
‖‖∂F ◦ ϕ

∂t
+
∂f ◦ ϕ
∂t
‖

≤ ‖∂F ◦ ϕ
∂t

− ∂f ◦ ϕ
∂t
‖
(

2‖∂f ◦ ϕ
∂t
‖

+‖∂F ◦ ϕ
∂t

− ∂f ◦ ϕ
∂t
‖
)
.



28 V. Borrelli, S. Jabrane, F. Lazarus and B.Thibert

This shows with the help of Lemma 3 that

|((F ◦ ϕ)∗〈·, ·〉R3 − ϕ∗µ)(∂t, ∂t)| ≤
K1(f ◦ ϕ, h)

N

for some number K1(f ◦ ϕ, h) that only depends on the C0-norm of ∂f◦ϕ
∂t

and on the C2-norm h. We also remark from (2.7) and (2.4) that

f∗〈·, ·〉R3(
∂ϕ

∂t
,
∂ϕ

∂s
) = µ(

∂ϕ

∂t
,
∂ϕ

∂s
) = µ(

∂ϕ

∂t
,W ) = 0,

where the last equality follows from the collinearity of ∂ϕ
∂t and V . Since

h(t, s, {Ns}) is in the span of t and n, that is also the span of ∂f◦ϕ
∂s and

n, we infer from the previous equation that〈
∂(f ◦ ϕ)

∂t
, h(t, s, {Ns})

〉
R3

= 0.

So

|((F ◦ ϕ)∗〈·, ·〉R3 − ϕ∗µ)(∂t, ∂s)| = |(F ◦ ϕ)∗〈·, ·〉R3(∂t, ∂s)|

=
∣∣∣〈∂(F ◦ ϕ)

∂t
, h(t, s, {Ns})

〉
R3

∣∣∣
=

∣∣∣〈∂(F ◦ ϕ)

∂t
− ∂(f ◦ ϕ)

∂t
, h(t, s, {Ns})

〉
R3

∣∣∣
≤ ‖∂(F ◦ ϕ)

∂t
− ∂(f ◦ ϕ)

∂t
‖.‖h(t, s, {Ns})‖.

This shows again with the help of Lemma 3 that

|(F◦ϕ)∗〈·, ·〉R3(∂t, ∂s)| = |((F◦ϕ)∗〈·, ·〉R3−ϕ∗µ)(∂t, ∂s)| ≤
K2(h)

N
(2.13)

for some number K2(h) that only depends on the C2-norm of h. To sum-
marise, we have obtained

‖ϕ∗µ− ϕ∗F ∗〈·, ·〉R3‖ ≤
K1(f ◦ ϕ, h) + 2K2(h)

N
.

We finally conclude noting that

‖µ− F ∗〈·, ·〉R3‖ ≤ ‖ϕ∗µ− ϕ∗F ∗〈·, ·〉R3‖.‖dϕ−1‖2∞.

Henceforth, we denote by Φ : R2 × R → R2 the flow of W , considered as
a vector field in R2. In particular, ϕ(t, s) = Φ(O + tV, s).
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A note on dϕ−1. From (2.6), we know that s = `(ϕ(t, s) − O)/‖U‖.
From the group action of the flow Φ, together with ϕ(t, 0) = O + tV , we
see that (Figure 2.6)

ϕ−1(p) =
(〈

Φ

(
p,−`(p−O)

‖U‖

)
−O, V

‖V ‖2

〉
R2

,
`(p−O)

‖U‖

)
.

This shows that any reasonable bound on the derivatives of the flow es-
sentially holds for the derivatives of ϕ−1.

2.3.2 Convex integration on the torus T2

In the previous section 2.3.1, we have constructed an almost isometric
map F : (Cyl, µ) → (R3, 〈·, ·〉R3) that is C0-close to the map induced on
Cyl by f : (T2, µ)→ (R3, 〈·, ·〉R3). In general, the map F will not coincide
on the two boundaries of Cyl. This forbids to quotient F into a map on
T2. We therefore define a new map F̄ out of F by setting

F̄ ◦ ϕ(t, s) = F ◦ ϕ(t, s)− w(s)(F ◦ ϕ(t, 1)− f ◦ ϕ(t, 1)), (2.14)

where w : I → I is a smooth S-shaped function satisfying

w(0) = 0, w(1) = 1, and ∀k ∈ N∗ : w(k)(0) = w(k)(1) = 0.

Lemma 8. If f : T2 → R3 and w : I → I are smooth maps, then F̄
descends to the quotient as a smooth map on T2.

We need a preliminary lemma.

Lemma 9. If f : T2 → R3 is a smooth map, then W·F descends to the
quotient as a smooth map on T2.

Proof. Recall from the proof of Lemma 4 that

(W·F )(ϕ(t, s)) = h(t, s, {Ns}) = h̄(ϕ(t, s), cos(2πNs)),

where h̄ was defined by Equation (2.8). Since s = l(ϕ(t, s)− O)/‖U‖, we
can now write

(W·F )(p) = h̄(p, cos(2πN
`(p−O)

‖U‖
)).

But `(p−O)
‖U‖ is either 0 or 1 on the boundary ∂Cyl of Cyl. It follows from

the periodicity of the cosine function that p 7→ (p, cos(2πN `(p−O)
‖U‖ )) defines

a smooth map on T2. We can conclude by noting that h̄ : T2 ×R→ R3 is
smooth.



30 V. Borrelli, S. Jabrane, F. Lazarus and B.Thibert

Proof of Lemma 8. Setting s = 0 and s = 1 in (2.14) and noting
from (2.9) that F ◦ ϕ(t, 0) = f ◦ ϕ(t, 0), we get

∀t ∈ R/Z : F̄ ◦ϕ(t, 0) = f ◦ϕ(t, 0) and F̄ ◦ϕ(t, 1) = f ◦ϕ(t, 1). (2.15)

It follows that the restrictions of F̄ and f to the boundary ∂Cyl of Cyl
are identical. Hence, the map F̄ descends to the quotient on T2. Let us
show that this quotient map is C1. By differentiating the restrictions of F̄
and f to ∂Cyl we obtain for all p ∈ ∂Cyl:

dF̄p(V ) = dfp(V ). (2.16)

By further derivations of (2.16) and a simple induction, we obtain that the
equality

F̄ (k) (V, . . . , V )︸ ︷︷ ︸
k×

= f (k) (V, . . . , V )︸ ︷︷ ︸
k×

holds on ∂Cyl. It ensues that F (k)(V, . . . , V ) descends to the quotient on
T2. Furthermore, by differentiating (2.14) with respect to s we obtain for
all (t, s) ∈ R/Z× I:

W · F̄ (ϕ(t, s)) = W · F (ϕ(t, s))− w′(s)(F ◦ ϕ(t, 1)− f ◦ ϕ(t, 1)).

Or equivalently, recalling that Φ is the flow of W :

W ·F̄ (p) = W ·F (p)−w′(s(p))
(
F ◦Φ(p, 1−s(p))−f◦Φ(p, 1−s(p))

)
, (2.17)

where s(p) = `(p−O)
‖U‖ . We know from the preliminary lemma 9 that the

first term in this sum descends to the quotient. On the other hand, since
all derivatives of the second term involve non-trivial derivatives of w, they
vanish on ∂Cyl. It follows that F̄ (k)(W,V2 . . . , Vk) descends to the quotient
for Vi ∈ {V,W}, 2 ≤ i ≤ k. We conclude that F̄ (k) descends to the quotient
on T2.

We close this chapter with its main result.

Theorem 10 (One Step Theorem). Let f : (T2, µ) → (R3, 〈·, ·〉R3) be
a smooth embedding satisfying equation (2.4). Let F̄ be given by (2.14).
Then

1. ‖F̄ − f‖∞ ≤ K1(h)
N and ‖F̄ − f‖∞ ≤ 2

√
7‖U‖ ‖ρ‖

1
2∞,

2. ‖dF̄ − df‖∞ ≤ K2(h,ζ,ψ,w
′)

N +
√

7‖ρ‖
1
2∞,

3. ‖V ·F̄ − V ·f‖ ≤ K3(h,ψ)
N ,

4. ‖W·F̄ −W·f‖ ≤
√

7.‖U‖.(1 + ‖w′‖∞).‖ρ‖
1
2∞, and
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5. ‖µ− F̄ ∗〈·, ·〉R3‖∞ ≤ K4(f◦ϕ,r,h,w′,φ−1)
N ,

where

• K1(h) only depends on the C1-norm of h,

• K2(h, ζ, ψ, w′) only depends on the C2-norm of h and on the C0-
norm of w′, ζ, and (∂ψ∂t )−1,

• K3(h, ψ) only depends on the C0-norm of (∂ψ∂t )−1 and on the C2-
norm of h,

• K4(f ◦ ϕ, r, h, w′, ϕ−1) only depends on the C0-norm of ∂f◦φ
∂t , r, w′,

dϕ−1 and on the C2-norm of h.

Notation. The map F̄ resulting from our convex integration process
depends on the initial map f , the primitive metric µ and the oscillation
number N . We denote this map by IC(f, µ,N), i.e.

IC(f, µ,N) := F̄ . (2.18)

Proof. from (2.14) we derive for all p ∈ Cyl:

‖F̄ (p)− f(p)‖ ≤ ‖F (p)− f(p)‖+ ‖w‖∞‖F − f‖∞ ≤ 2‖F − f‖∞.

It remains to apply Lemma 2 to conclude the first inequality of Point 1 in
the theorem. Furthermore, ‖F − f‖∞ is bounded by ‖W·F −W·f‖∞ as
shown below:

‖F ◦ ϕ(t, s)− f ◦ ϕ(t, s)‖ = ‖
∫ s

0

(
∂F ◦ ϕ
∂s

(t, u)− ∂f ◦ ϕ
∂s

(t, u))du‖

≤
∫ s

0

‖(W·F )(ϕ(t, u))− (W·f)(ϕ(t, u))‖du

≤ ‖W·F −W·f‖∞.

The second inequality of the first item then directly follows from Lemma 4.
We now prove the second item of the theorem. Following the proof of
Lemma 6, we can obtain

‖dF̄ − df‖ ≤ ‖W·F̄ −W·f‖
‖U‖

+
|ζ|‖V ‖2 + 1

‖V ‖
.|∂ψ
∂t
|−1.‖∂(F̄ ◦ ϕ)

∂t
− ∂(f ◦ ϕ)

∂t
‖.

On the one hand, differentiating (2.14) we respect to s, we easily get

‖W·F̄ −W·f‖ ≤ ‖W·F −W·f‖∞ + ‖w′‖∞‖F − f‖∞. (2.19)

On the other hand, differentiating (2.14) with respect to t, we easily deduce

‖∂(F̄ ◦ ϕ)

∂t
− ∂(f ◦ ϕ)

∂t
‖ ≤ 2‖∂(F ◦ ϕ)

∂t
− ∂(f ◦ ϕ)

∂t
‖∞.
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We can plug these last two inequalities into the previous one and apply
Lemmas 2, 3, and 4 to conclude the second item. The previous inequality
together with (2.11) give the third item of the theorem. Likewise, the item
4 in the theorem follows from the inequality (2.19) together with Lemma 4,
noting as above that ‖F − f‖∞ ≤ ‖W·F −W·f‖∞.

We now consider Item 5 of the theorem. We follow the proof of Lemma 7
and first bound the difference between ϕ∗µ and (F ◦ ϕ)∗〈·, ·〉R3 . We have
from (2.14):

(F̄◦ϕ)∗〈·, ·〉R3(∂s, ∂s) = ‖∂F̄ ◦ ϕ
∂s

‖2 = ‖W·F−w′(s)(F◦ϕ(t, 1)−f◦ϕ(t, 1))‖2.

Using that ϕ∗µ(∂s, ∂s) = µ(W,W ) = r2 = ‖W·F‖2, we easily obtain

|(F̄ ◦ ϕ)∗〈·, ·〉R3(∂s, ∂s)− ϕ∗µ(∂s, ∂s)| ≤ |w′|C0‖F − f‖∞(2‖r‖∞
+‖w′‖∞‖F − f‖∞).

We deduce from Lemma 2 that

|(F̄ ◦ ϕ)∗〈·, ·〉R3(∂s, ∂s)− ϕ∗µ(∂s, ∂s)| ≤
X(w′, r, h)

N
, (2.20)

where X(w′, r, h) only depends on the C0-norm of w′ and r and on the
C2-norm of h. We also have from (2.14) and the fact that ϕ∗µ(∂t, ∂t) =

‖∂f◦ϕ∂t ‖
2:∣∣∣(F̄ ◦ ϕ)∗〈·, ·〉R3 (∂t, ∂t)− ϕ∗µ(∂t, ∂t)

∣∣∣ =
∣∣∣‖∂F ◦ ϕ

∂t
− w(s)(

∂F ◦ ϕ
∂t

(t, 1)−
∂f ◦ ϕ
∂t

(t, 1))‖2

−‖
∂f ◦ ϕ
∂t
‖2
∣∣∣.

We put A := ∂F◦ϕ
∂t , B := ∂F◦ϕ

∂t (t, 1)− ∂f◦ϕ
∂t (t, 1), and C := ∂f◦ϕ

∂t . Hence,∣∣∣(F̄ ◦ ϕ)∗〈·, ·〉R3(∂t, ∂t)− ϕ∗µ(∂t, ∂t)
∣∣∣ =

∣∣∣‖A− w(s)B‖2 − ‖C‖2
∣∣∣

≤ ‖A− w(s)B − C‖ ‖A− w(s)B + C‖
≤ (‖A− C‖+ ‖B‖)(‖A− C‖

+2‖C‖+ ‖B‖),

so that∣∣∣(F̄ ◦ ϕ)∗〈·, ·〉R3 (∂t, ∂t)− ϕ∗µ(∂t, ∂t)
∣∣∣ ≤ 4‖

∂F ◦ ϕ
∂t

−
∂f ◦ ϕ
∂t
‖∞(‖

∂F ◦ ϕ
∂t

−
∂f ◦ ϕ
∂t
‖∞

+‖
∂f ◦ ϕ
∂t
‖∞).

We now deduce from Lemma 3 that∣∣∣(F̄ ◦ ϕ)∗〈·, ·〉R3(∂t, ∂t)− ϕ∗µ(∂t, ∂t)
∣∣∣ ≤ Y (f ◦ ϕ, h)

N
(2.21)
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for some function Y (f◦ϕ, h) that only depends on the C0-norm of ∂f◦ϕ∂t and

on the C2-norm of h. Recall from (2.7) that ϕ∗µ(∂t, ∂s) = µ(∂ϕ∂t ,W ) = 0.
Whence∣∣∣(F̄ ◦ ϕ)∗〈·, ·〉R3(∂t, ∂s)− ϕ∗µ(∂t, ∂s)

∣∣∣ =
∣∣∣(F̄ ◦ ϕ)∗〈·, ·〉R3(∂t, ∂s)

∣∣∣.
We put D = ∂F◦ϕ

∂s and E = F ◦ ϕ(t, 1) − f ◦ ϕ(t, 1). Together with the
previous notations, we get∣∣∣(F̄ ◦ ϕ)∗〈·, ·〉R3(∂t, ∂s)

∣∣∣ = |〈A− wB,D − w′E〉R3 |

≤ |〈A,D〉R3 |+ |w′|‖E‖(‖A‖+ ‖B‖) + ‖B‖‖D‖.

We note that 〈A,D〉R3 = (F ◦ ϕ)∗〈·, ·〉R3(∂t, ∂s), whence by (2.13):

|〈A,D〉R3 | ≤ Z1(h)
N , for some function Z1(h) of the C2-norm of h. By

Lemma 2, we have ‖E‖ ≤ Z2(h)
N , for some function Z2(h) of the C1-norm

of h. By Lemma 3, we also have ‖B‖ ≤ ‖A−C‖∞ ≤ Z3(h)
N , for some func-

tion Z3(h) of the C2-norm of h. Noting that ‖A‖ ≤ ‖A − C‖ + ‖C‖, we

get ‖A‖ ≤ Z3(h)
N + ‖C‖. We finally note that ‖D‖ = ‖W·F‖ = r. Putting

all this together we obtain∣∣∣(F̄ ◦ ϕ)∗〈·, ·〉R3(∂t, ∂s)− ϕ∗µ(∂t, ∂s)
∣∣∣ ≤ Z(f ◦ φ,w′, r, h)

N
, (2.22)

where

Z(f ◦φ,w′, r, h) = Z1(h)+‖w′‖∞Z2(h)

(
‖∂f ◦ ϕ

∂t
‖∞ + 2

Z3(h)

N

)
+Z3(h)r.

As in the proof of Lemma 7, we write

‖µ− F̄ ∗〈·, ·〉R3‖ ≤ ‖ϕ∗µ− ϕ∗F̄ ∗〈·, ·〉R3‖.‖dϕ−1‖2∞.

This last inequality, together with (2.20), (2.21), and (2.22) allows to com-
plete the proof of the third point of the theorem with

K4(f ◦ϕ, r, h, w′, ϕ−1) = (X(w′, r, h)+Y (f ◦ϕ, h)+2Z(f ◦φ,w′, r, h))‖dϕ−1‖2C0 .



Chapter 3

Isometric immersions of
the square flat torus

3.1 Our convex integration process

In the previous chapter, we saw how to build a quasi-isometry
f : (T2, g) → E3 from an immersion f : T2 → R3 in the primitive case
where

g − f∗〈·, ·〉R3 = ρ `⊗ ` where ρ > 0.

The aim of this chapter is to build an isometry in the more general case
where the isometric default

D := g − f∗〈·, ·〉R3

is a metric, i.e., when f : (T2, g)→ E3 is strictly short. Following Nash [39,
34, 14] we shall decompose D into a sum of primitive metrics. For this,
we first observe that the set of inner products in R2 is a convex cone

Q+ =
{
Edx⊗dx+F (dx⊗dy+dy⊗dx)+Gdy⊗dy, EG−F 2 > 0, F > 0, G > 0

}
,

whose boundary is composed of squares of linear forms `′ ⊗ `′. In the
previously cited works, the decomposition is obtained by sampling Q+

with an infinite number of metrics qi with the property that any metric q
is a convex combination of a finite subset of the qi. The coefficients of this
combination have local support and can be defined to change smoothly
with q. Each qi is further decomposed into a sum of two squares of linear
forms. This leads to a decomposition of the form

D =

N∑
j=1

ρj(D)`j ⊗ `j with ρj(D) > 0,

34
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where the integer N and the linear forms `1, ..., `N are defined locally.
In our approach, we manage to make a uniform choice and to reduce this
number to N = 3 by assuming that f is such that the image of its isometric
default D belongs to the open cone

C := {ρ1`1 ⊗ `1 + ρ2`2 ⊗ `2 + ρ3`3 ⊗ `3 | ρ1 > 0, ρ2 > 0, ρ3 > 0},

where `1, `2 and `3 are the three linear forms over R2 given by:

`1 := dx , `2 :=
1√
5

(dx+ 2dy) , `3 :=
1√
5

(dx− 2dy).

In order to reduce the value of the three coefficients of the isometric default
D, we proceed by three successive convex integrations as in the primitive
case. More precisely, we first set

µ1 := f∗〈·, ·〉R3 + ρ1(D1)`1 ⊗ `1 with D1 := D,

and build the quasi isometry f1 := IC(f, µ1, N1) (see notation (2.18)). We
shall prove that for N1 large enough, the new isometric default

D2 := g − f∗1 〈·, ·〉R3 = ρ1(D2) `1 ⊗ `1 + ρ2(D2) `2 ⊗ `2 + ρ3(D2) `3 ⊗ `3

satisfies

D2 ∈ C, ρ1(D2) ≈ 0, ρ2(D2) ≈ ρ2(D1) and ρ3(D2) ≈ ρ3(D1).

In particular ρ2(D2) > 0. We next set

µ2 := f∗1 〈·, ·〉R3 + ρ2(D2)`2 ⊗ `2,

and build the quasi isometry f2 := IC(f1, µ2, N2). For N2 large enough,
the new isometric default

D3 := g − f∗2 〈., .〉

satisfies

D3 ∈ C, ρ1(D3) ≈ 0, ρ2(D3) ≈ 0 and ρ3(D3) ≈ ρ3(D2).

In particular ρ3(D3) > 0, and we finally set f3 := IC(f2, µ3, N3) with

µ3 := f∗2 〈·, ·〉R3 + ρ3(D3)`3 ⊗ `3.

For N3 large enough, f3 is almost an isometry for the metric g. We denote
this last immersion

IC(f, g,N1, N2, N3). (3.1)
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If we make N1, N2 and N3 tend to infinity, the C0 proximity property of
the One Step Theorem (Point 1) implies that the limit immersion is the
initial f : (T2, g)→ E3, thus is not an isometry. Because finite values of the
Ni only provide an approximation of an isometry, the whole process must
be repeated indefinitely in order to get closer and closer to an isometry.
To ensure that each constructed embedding is strictly short, we consider,
as in the Nash process, an increasing sequence gk that converges to the
flat metric dx ⊗ dx + dy ⊗ dy. In our process, the sequence Fk defined
recursively by

Fk := IC(Fk−1, gk, Nk,1, Nk,2, Nk,3),

will converge to an isometry. In order to iterate the process, we also need
to ensure that the isometric default Dk := gk+1−F∗k 〈·, ·〉R3 lies in the cone
C (cf. point ii) below). Our construction eventually relies on the following
result.

Theorem 11 (Stage Theorem). Let g and g be two Riemannian metrics
on T2 and let

f : (T2, g) −→ E3

be an immersion, such that

1. g − g ∈ C∞(T2, C)

2. g − f∗〈·, ·〉R3 ∈ C∞(T2, C)

There exist integers N1, N2 and N3 such that the immersion

f := IC(f, g,N1, N2, N3)

satisfies

i) f(0, 0) = f(0, 0)

ii) g − f∗〈·, ·〉R3 ∈ C∞(T2, C)

iii)
∥∥∥g − f∗〈·, ·〉R3

∥∥∥
∞
≤ ‖g − g‖∞

iv) ‖df − df‖∞ ≤ 11 ‖g − f∗〈·, ·〉R3‖
1
2∞.

Remark 1. The important point in the above assumptions 1 and 2 is that
g − g and g − f∗〈·, ·〉R3 lie in C at every point of T2.

Remark 2. We recall that for a linear operator L, ‖L‖ = supX 6=0
‖L(X)‖
‖X‖

designates its induced Euclidean norm and that for a bilinear form B over

R2, ‖B‖ =
√∑

1≤i,j≤2B
2
ij designates the Frobenius norm of its matrix

in the canonical basis. For metrics or differentials defined over T2, ‖.‖∞
designates the supremum of the appropriate norm over all p ∈ T2.
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V (1)

U(1)

U(2)

U(3)V (3)
V (2)

Figure 3.1: The fundamental domains for E2/Z2 spanned by the
(U(i), V (i))’s.

The next section is devoted to the proof of the Stage Theorem. In Sec-
tion 3.3, we will build a sequence of maps converging towards a C1 isomet-
ric immersion of the square flat torus into the three dimensional Euclidean
space.

3.2 Proof of the Stage Theorem

We build the required map f by applying to f three corrugations (that
is three convex integrations) in directions depending on the `i’s. We put

U(1) := ∂x, U(2) :=
1

5
(∂x + 2∂y), U(3) :=

1

5
(∂x − 2∂y)

and
V (1) := ∂y, V (2) := −2∂x + ∂y, V (3) := 2∂x + ∂y.

For every i ∈ {1, 2, 3}, the rectangle spanned by V (i) and U(i) is a funda-
mental domain for R2/Z2.

3.2.1 A Preliminary lemma

We will need the following lemma.

Lemma 12 (Preliminary lemma). Let B := ρ1`1⊗`1+ρ2`2⊗`2+ρ3`3⊗`3
be any symmetric bilinear form, then

|ρ1| ≤
√

17

4
‖B‖

|ρ2| ≤
5
√

3

8
‖B‖

|ρ3| ≤
5
√

3

8
‖B‖ .

In particular,

max{|ρ1|, |ρ2|, |ρ3|} ≤
5
√

3

8
‖B‖ .
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Proof. The bilinear form B can be decomposed into

B = Bxxdx⊗ dx+Bxy(dx⊗ dy + dy ⊗ dx) +Byy∂
∗
y ⊗ ∂∗y

and a straightforward computation shows that

ρ1 = Bxx −
1

4
Byy, ρ2 =

5

4
(
1

2
Byy +Bxy), ρ3 =

5

4
(
1

2
Byy −Bxy).

Using the canonical scalar product in R4, this can also be written

ρ1 =

〈
1
0
0
−1/4

 ,


Bxx
Bxy
Bxy
Byy


〉
, ρ2 =

〈
0

5/8
5/8
5/8

 ,


Bxx
Bxy
Bxy
Byy


〉

and ρ3 =

〈
0
−5/8
−5/8
5/8

 ,


Bxx
Bxy
Bxy
Byy


〉
.

It then remains to apply Schwarz’s inequality to obtain the desired result.

3.2.2 First corrugation

Let
D1 := g − f∗〈., .〉E3 .

From Assumption 2 of the Stage Theorem, we know that D1 ∈ C∞(T2, C).
In other words, there exist three positive functions ρ1(D1), ρ2(D1), ρ3(D1)
∈ C∞(T2,R∗+) such that

D1 = ρ1(D1)`1 ⊗ `1 + ρ2(D1)`2 ⊗ `2 + ρ3(D1)`3 ⊗ `3.

We define an auxiliary metric µ1 by

µ1 := f∗〈·, ·〉R3 + ρ1(D1)`1 ⊗ `1.

Our goal is to apply the One Step Theorem of chapter 2 to build a new
map that is almost isometric for µ1. Note that

f : (T2, µ1)→ E3

fulfills the assumptions of the One Step Theorem. For every N1 ∈ N∗ there
therefore exists an immersion

f1 : (T2, µ1)→ E3
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obtained by a convex integration process in the direction

W1 := U(1) + ζ1V (1) with ζ1 := −
〈V (1) · f, U(1) · f〉R3

〈V (1) · f, V (1) · f〉R3

such that

‖f1 − f‖∞ = O(
1

N1
), ‖df1 − df‖∞ = O(

1

N1
) +
√

7‖ρ1(D1)‖
1
2∞

and

‖µ1 − f∗1 〈·, ·〉R3‖∞ = O(
1

N1
).

Let
Err1 = µ1 − f∗1 〈·, ·〉R3 and err1 := ‖Err1‖∞

be the isometric default of f1 with respect to µ1. We consider the bilinear
form

µ2 := f∗1 〈·, ·〉R3 + ρ2(D2)`2 ⊗ `2
where

D2 := g − f∗1 〈·, ·〉R3

and ρ2(D2) is the second coefficient in the decomposition

D2 = ρ1(D2)`1 ⊗ `1 + ρ2(D2)`2 ⊗ `2 + ρ3(D2)`3 ⊗ `3.

Lemma 13. Let ρmin(D1) := minp∈T2{ρ1(D1)(p), ρ2(D1)(p), ρ3(D1)(p)}.
If

err1 <
8

5
√

3
ρmin(D1)

then ρ2(D2) : T2 −→ R∗+. In particular µ2 is a metric on T2.

Proof. From the above definition of D1, Err1 and D2 we easily get

Err1 = ρ1(D1)`1 ⊗ `1 −D1 +D2.

Whence,

Err1 = ρ1(D2)`1 ⊗ `1 + (ρ2(D2)− ρ2(D1))`2 ⊗ `2 + (ρ3(D2)− ρ3(D1))`3 ⊗ `3.

From our Preliminary Lemma we deduce that

‖ρ2(D2)− ρ2(D1)‖∞ ≤
5
√

3

8
err1. (3.2)

In particular,

ρ2(D2) ≥ ρ2(D1)− 5
√

3

8
err1
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and from the trivial minoration

ρ2(D1) ≥ ρmin(D1)

we conclude

ρ2(D2) ≥ ρmin(D1)− 5
√

3

8
err1 > 0.

We retain from the proof the following equality.

Err1 = ρ1(D2)`1⊗`1+(ρ2(D2)−ρ2(D1))`2⊗`2+(ρ3(D2)−ρ3(D1))`3⊗`3. (3.3)

3.2.3 Second corrugation

Choosing N1 large enough to fulfill the hypothesis of Lemma 13, the
map f1 : (T2, µ2)→ E3 satisfies the assumption of the One Step Theorem.
Thus, for every N2 ∈ N∗, there exists

f2 : (T2, µ2)→ E3

obtained by a convex integration process in the direction

W2 := U(2) + ζ2V (2) with ζ2 := −
〈V (2) · f, U(2) · f〉R3

〈V (2) · f, V (2) · f〉R3

such that

‖f2 − f1‖∞ = O(
1

N2
), ‖df2 − df1‖∞ = O(

1

N2
) +
√

7‖ρ2(D2)‖
1
2∞

and

‖µ2 − f∗2 〈·, ·〉R3‖∞ = O(
1

N2
).

We now consider the bilinear form

µ3 = f∗2 〈·, ·〉R3 + ρ3(D3)`3 ⊗ `3 (3.4)

where

D3 := g − f∗2 〈·, ·〉R3 (3.5)

and ρ3(D3) is the third coefficient in the decomposition of D3. Let us put

Err2 = µ2 − f∗2 〈. , 〉E3 and err2 = ‖Err2‖∞.
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Lemma 14. If

err1 + err2 <
8

5
√

3
ρmin(D1)

then ρ3(D3) : T2 −→ R∗+, so that µ3 is a metric on T2.

Proof. As for Err1, we easily check that

Err2 = ρ2(D2)`2 ⊗ `2 −D2 +D3.

Equivalently,

Err2 = (ρ1(D3)−ρ1(D2))`1⊗`1+ρ2(D3)`2⊗`2+(ρ3(D3)−ρ3(D2))`3⊗`3. (3.6)

From our Preliminary Lemma applied to (3.6) and (3.3) we deduce that

‖ρ3(D3)− ρ3(D2)‖∞ ≤
5
√

3

8
err2 and ‖ρ3(D2)− ρ3(D1)‖∞ ≤

5
√

3

8
err1

and by the triangle inequality we obtain

‖ρ3(D3)− ρ3(D1)‖∞ ≤
5
√

3

8
(err1 + err2). (3.7)

Whence

ρ3(D3) ≥ ρmin(D1)− 5
√

3

8
(err1 + err2) > 0.

3.2.4 Third corrugation

Once again we choose N2 large enough to fulfill the hypothesis of
Lemma 14 and apply the One Step Theorem to f2 : (T2, µ3) → E3 :
for every N3 ∈ N∗ there exists

f = f3 : (T2, µ3)→ E3

obtained by a convex integration process in the direction

W3 := U(3) + ζ3V (3) with ζ3 := −
〈V (3) · f, U(3) · f〉R3

〈V (3) · f, V (3) · f〉R3

such that

‖f3 − f2‖∞ = O(
1

N3
), ‖df3 − df2‖∞ = O(

1

N3
) +
√

7‖ρ3(D3)‖
1
2∞

and

‖µ3 − f∗3 〈·, ·〉R3‖∞ = O(
1

N3
).

Let

Err3 := µ3 − f3 ∗〈·, ·〉R3 and err3 = ‖Err3‖∞. (3.8)

In the following, we are going to show that f = f3 satisfies the conclusions
i to iv of the theorem.
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3.2.5 Controling the error

Lemma 15. We have

‖g − f∗3 〈·, ·〉R3‖∞ ≤ 4(err1 + err2 + err3).

Proof. We set D4 = g − f∗3 〈·, ·〉R3 . From (3.8), (3.4) and (3.5), we
get Err3 = ρ3(D3)`3 ⊗ `3 −D3 +D4. Analogous relations where obtained
for Err1, Err2 in Lemmas 13 and 14, so that for i = 1, 2, 3:

Erri = ρi(Di)`i ⊗ `i −Di +Di+1.

By summation, we get

3∑
i=1

Erri =

3∑
i=1

ρi(Di)`i ⊗ `i −D1 +D4.

It follows that

D4 = Err1 + Err2 + Err3 − ρ2(D2 −D1)`2 ⊗ `2 + ρ3(D3 −D1)`3 ⊗ `3

We already get the bounds (3.2) and (3.7):

‖ρ2(D2)− ρ2(D1)‖∞ ≤
5
√

3

8
err1, ‖ρ3(D3)− ρ3(D1)‖∞ ≤

5
√

3

8
(err1 + err2).

Since ‖`2 ⊗ `2‖ = ‖`3 ⊗ `3‖ = 1, we obtain by the triangle inequality:

‖D4‖ ≤ (1 +
5
√

3

4
)err1 + (1 +

5
√

3

8
)err2 + err3 ≤ 4(err1 + err2 + err3). (3.9)

Lemma 16. If

err1 + err2 + err3 <
2

5
√

3
ρmin(g − g) (C3)

then g − f∗3 〈·, ·〉R3 ∈ C∞(T2, C).

Proof. Let

∆ := g − g, D4 := g − f∗3 〈·, ·〉R3 and D := g − f∗3 〈·, ·〉R3 .

We have D = ∆ +D4 and for every i ∈ {1, 2, 3}

ρi(D) = ρi(∆) + ρi(D4)
> ρmin(∆) + ρi(D4).
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Thus, for every i ∈ {1, 2, 3}, the condition |ρi(D4)| < ρmin(∆) implies
ρi(D) > 0. From the Preliminary Lemma we know that

max{‖ρ1(D4)‖∞, ‖ρ2(D4)‖∞, ‖ρ3(D4)‖∞} ≤
5
√

3

8
‖D4‖∞

and from Lemma 15

‖D4‖∞ ≤ 4(err1 + err2 + err3).

Hence, the condition err1 + err2 + err3 < 2
5
√
3
ρmin(∆) implies that

‖ρi(D4)‖∞ < ρmin(∆) for i = 1, 2, 3, implying in turn that D ∈ C∞(T2, C).

3.2.6 End of proof and choice of the Ni

Loop conditions Let c > 0 and let e1, e2 and e3 be three positive
numbers such that

e1 + e2 < 8
5
√
3
ρmin(D1)

e1 + e2 + e3 < 2
5
√
3
ρmin(g − g).

We choose the number Ni of corrugations of the i-th convex integration
large enough so that

erri ≤ ei and ‖dfi − dfi−1‖∞ ≤ (c+
√

7)‖ρi(Di)‖
1
2∞, (3.10)

where f0 := f .

Such a choice of the Ni’s is always possible since, as we recalled in Sec-
tions 3.2.2, 3.2.3 and 3.2.4:

erri = O(
1

Ni
) and ‖dfi − dfi−1‖∞ ≤ O(

1

Ni
) +
√

7‖ρi(Di)‖
1
2∞,

and ρi(Di) > 0. Assuming that g − f∗0 〈·, ·〉R3 lies in the cone C, the
loop conditions imply by Lemmas 13 and 14 that we can apply the three
consecutive corrugations of Sections 3.2.2, 3.2.3 and 3.2.4 to obtain f3.
Lemma 16 further implies that g− f∗3 〈·, ·〉R3 lies in C, which is point ii) of
the Stage Theorem. Moreover,

‖g − f∗3 〈·, ·〉R3‖ ≤ 4(err1 + err2 + err3) (by Lemma 15)

≤ 8

5
√

3
ρmin(g − g) (by the choice of the Ni’s)

≤ ‖g − g‖∞ (by the Preliminary Lemma)
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which shows point iii). Note that point i) trivially follows from the convex
integration formulas (2.9) and (2.14). It remains to prove point iv). By
the triangle inequality,

‖df3 − df0‖ ≤ ‖df3 − df2‖+ ‖df2 − df1‖+ ‖df1 − df0‖

≤ (c+
√

7)
3∑
i=1

‖ρi(Di)‖
1
2∞.

Let us bound the three terms ‖ρi(Di)‖∞. Recalling from (3.2) and (3.7)
that

‖ρ2(D2)− ρ2(D1)‖∞ ≤
5
√

3

8
err1 and

‖ρ3(D3)− ρ3(D1)‖∞ ≤
5
√

3

8
(err1 + err2),

it follows that

‖ρ2(D2)‖∞ ≤ ‖ρ2(D1)‖∞ +
5
√

3

8
err1 and

‖ρ3(D3)‖∞ ≤ ‖ρ3(D1)‖∞ +
5
√

3

8
(err1 + err2)

whence, by the loop conditions:

‖ρ2(D2)‖∞ ≤ ‖ρ2(D1)‖∞ + ρmin(D1) ≤ 2 max
i
‖ρi(D1)‖∞.

Likewise ‖ρ3(D3)‖∞ ≤ 2 maxi ‖ρi(D1)‖∞. Applying the Preliminary
Lemma to the decomposition of D1 gives

‖ρ1(D1)‖∞ ≤ 5
√
3

8 ‖D1‖∞
‖ρ2(D2)‖∞ ≤ 5

√
3

4 ‖D1‖∞
‖ρ3(D3)‖∞ ≤ 5

√
3

4 ‖D1‖∞.
(3.11)

We finally get

‖df3 − df0‖ ≤ (c+
√

7)(2
√

2 + 1)

√
5
√

3

8
‖g − f∗0 〈·, ·〉R3‖

1
2∞.

Since

√
7(2
√

2 + 1)

√
5
√

3

8
< 11

this concludes the proof of point iv) by choosing c small enough.

Remark 3. To minimize the Ni’s and for numerical purposes, it may be
interesting to choose a large value of c. The constant 11 of the theorem
should be changed accordingly.
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3.3 A sequence converging to an isometric
immersion

Let F0 : T2 → E3 be an immersion1 such that

∆ := 〈·, ·〉R2 −F∗0 〈·, ·〉R3 ∈ C∞(T2, C),

and let (δk)k∈N∗ be an increasing sequence of positive numbers converging
to 1. We consider the increasing sequence of metrics (gk)k∈N∗ converging
towards the Euclidean metric 〈·, ·〉R2 and given by

gk := F∗0 〈·, ·〉R3 + δk∆.

We then build a sequence of immersions

Fk = IC(Fk−1, gk, Nk,1, Nk,2, Nk,3).

by repeatedly applying the Stage Theorem. At stage k ∈ N∗, the initial
immersion is f := Fk−1 and we set g := gk and g := gk+1. The resulting
immersion of the Stage Theorem is f := Fk. Note that

g − g = (δk+1 − δk)∆ ∈ C∞(T2, C)

as required in hypothesis 1 of the theorem. Hypothesis 2 holds inductively
from conclusion ii) of the theorem.

Theorem 17. If ∑√
δk − δk−1 < +∞,

the sequence (Fk)k∈N∗ is C1-converging towards a C1 isometric immersion
F∞ : E2/Z2 → E3.

Proof. To prove that the sequence (Fk)k∈N∗ is C1-converging, we
check that it satisfies the Cauchy condition. Conclusion iv) of the Stage
Theorem states that

‖dFk − dFk−1‖∞ ≤ 11 ‖gk −F∗k−1〈·, ·〉R3‖
1
2∞.

For k > 1, we have

‖dFk − dFk−1‖∞ ≤ 11 ‖gk − gk−1‖
1
2∞ + 11 ‖gk−1 −F∗k−1〈·, ·〉R3‖

1
2∞

and from conclusion iii) we deduce

‖gk−1 −F∗k−1〈·, ·〉R3‖
1
2∞ ≤ ‖gk − gk−1‖

1
2∞

1For instance, a standard parametrisation of a torus of revolution (with a suitable
choice of minor radius and major radius) satisfies the above condition.
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and therefore

‖dFk − dFk−1‖∞ ≤ 22 ‖gk − gk−1‖
1
2∞

≤ 22
√
δk − δk−1‖∆‖

1
2∞.

Since the series ∑√
δk − δk−1

converges and Fk(0, 0) = F0(0, 0) for all k ∈ N∗, the sequence (Fk)k∈N∗ is
C1 converging towards a C1-map F∞. By taking the limit in both sides of
inequality iii) of the Stage Theorem

‖gk −F∗k 〈·, ·〉R3‖∞ ≤ ‖gk+1 − gk‖∞

we obtain
‖〈·, ·〉R2 −F∗∞〈·, ·〉R3‖∞ = 0

i.e. F∞ is a C1-isometry.

Remark 4. Suppose that the starting immersion F0 is an embedding.
Since each corrugation is a normal deformation, the above process will
produce a sequence of embeddings provided the Nk,i are chosen sufficiently
large. Unfortunately, we do not have any practical criterion to perform
such a choice of the Nk,i. Nevertheless, as far as we can observe numeri-
cally, the maps resulting from our building process are embedded.



Chapter 4

Implementation

In this chapter, we provide details about our C++ implementation of
the convex integration process. Our main goal is to produce a computer
image or a 3D printing of the flat torus in the three dimensional space.
As our flat torus is the result of a limit process, and since there is no
closed formula for the limit, we actually compute an approximation of the
limit. In practice, applying four successive corrugations to an initial (non-
isometric) embedding of the torus seems to give visually satisfying results
as discussed in Section 4.8. The first section describes the way continu-
ous maps are encoded as discrete grids in the computer. In Section 4.2,
we explain how to compute the flow of the vector field needed for each
corrugation. The actual convex integration computation is described in
Sections 4.3 and 4.4. We finally explain in Section 4.6 how to choose the
main parameter of the process, i.e. the number of oscillations.

Here, we fix some notations. As described in Section 3.3, our flat torus
isometric immersion is the limit of the sequence defined recursively by

Fk = IC(Fk−1, gk, Nk,1, Nk,2, Nk,3).

The immersion Fk is itself obtained after three corrugations as discussed
in Sections 3.2.2, 3.2.3 and 3.2.4. We denote by fk,1, fk,2, fk,3 the corre-
sponding three corrugated maps. In other words fk,j is the map at step k
that is denoted fj in Sections 3.2.2, 3.2.3 and 3.2.4. In particular, we have
fk,3 = Fk.

4.1 Immersion encoding

Our first concern is to represent the successive immersions in order to
perform numerical computations. Since the convex integration process re-
sorts to integrals and does not provide a closed formula for each immersion

47
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f := fk,j , we must discretize f in some way in order to obtain a finite rep-
resentation. We choose to sample T2 with an n × n regular square grid
whose boundaries are pairwise identified. The choice of the parameter n
is discussed in Section 4.6. The grid node pi,j := (i/n, j/n), 0 ≤ i, j < n,
thus points to the three coordinates of the sample f i,j := f(pi,j). On
the one hand, we remark that the convex integration process relies on the
computation of flows and integrals that only depend upon the map f and
its first order derivatives. On the other hand, the best up to date numer-
ical schemata for solving differential equations or for computing integrals
need to evaluate the corresponding vector field or integrand at non grid
points [25]. In order to provide those values at non grid points we inter-
polate the n × n grid representing f with a C1 piecewise bicubic surface
based on cubic Hermite splines1. This is a C1 map f̂ : T2 → R3 that
is bicubic over each grid cell P i,j := [pi,j , pi+1,j , pi+1,j+1, pi,j+1] and such

that f̂(pi,j) = f i,j . We evaluate f̂ at a non grid point inside P i,j as follows.
We first estimate the partial derivatives ∂f

∂x (pi,j) and ∂f
∂y (pi,j) using finite

differences of order 4. We respectively denote f i,jx and f i,jy these estimates
up to the scaling factor n. Formally, we set

f i,jx :=
1

12
(f i−2,j − 8f i−1,j + 8f i+1,j − f i+2,j) (4.1)

f i,jy :=
1

12
(f i,j−2 − 8f i,j−1 + 8f i,j+1 − f i,j+2). (4.2)

We also estimate the cross partial derivative ∂2f
∂x ∂y (pi,j) by applying finite

differences of order 4 to the partial derivative estimates. We denote by
f i,jxy = f i,jyx the estimated cross partial derivative up to the scaling factor
n2:

f i,jxy :=
1

12
(f i,j−2x − 8f i,j−1x + 8f i,j+1

x − f i,j+2
x ) (4.3)

:=
1

12
(f i−2,jy − 8f i−1,jy + 8f i+1,j

y − f i+2,j
y ) = f i,jyx . (4.4)

Let
h0(t) := (1 + 2t)(1− t)2, h1(t) := t2(3− 2t),
h2(t) := t(1− t)2, h3(t) := t2(t− 1)

be the Hermite basis functions. We finally define our interpolating bicubic
surface at a parameter point (x, y) included in the grid cell P i,j by (see
Fig. 4.1):

1We have also tried to use a bilinear interpolating surface. This only leads to a C0

surface and appeared to be insufficient for the computation of the flow as the solver
code was failing to integrate it correctly. Interpolating surfaces with C2 or even higher
degree of continuity can also be used but implies heavier computations and did not
seem to be necessary for our purposes.
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func F F (0) F (1) F ′(0) F ′(1)

h0 1 0 0 0
h1 0 1 0 0
h2 0 0 1 0
h3 0 0 0 1

Table 4.1: The following table lists the values and derivatives of the Her-
mite basis functions at the parameters 0 and 1. Here, F is a generic name
for any of those functions.

f̂(x, y) :=

3∑
k=0

3∑
`=0

qk`hk(xi)h`(yj), (4.5)

where (xi, yj) := (nx− i, ny− j) are the local coordinates of (x, y) in P i,j

and

qk` =



f i+k,j+`, 0 ≤ k, ` ≤ 1

f i+k−2,j+`x , 2 ≤ k ≤ 3, 0 ≤ ` ≤ 1

f i+k,j+`−2y , 0 ≤ k ≤ 1, 2 ≤ ` ≤ 3

f i+k−2,j+`−2xy , 2 ≤ k, ` ≤ 3.

On the other hand, with the help of Table 4.1 we easily compute from (4.5):

qk` =



f̂(pi+k,j+`), 0 ≤ k, ` ≤ 1

1

n

∂f̂

∂x
(pi+k−2,j+`), 2 ≤ k ≤ 3, 0 ≤ ` ≤ 1

1

n

∂f̂

∂y
(pi+k,j+`−2), 0 ≤ k ≤ 1, 2 ≤ ` ≤ 3

1

n2
∂2f̂

∂x ∂y
(pi+k−2,j+`−2), 2 ≤ k, ` ≤ 3.

Equating the two above expressions for the control parameters qk`, the
function f̂ appears as the unique piecewise bicubic function whose values,
partial and cross derivatives at the points pij are fixed by the estimates
f ij , f ijx , f

ij
y and f ijxy. With the help of the above Table 4.1, the continuity

of f̂ and of its partial and cross derivatives ∂f̂
∂x , ∂f̂

∂y and ∂2f̂
∂x ∂y along grid

edges can be checked easily.
For instance, let us denote by qk` and q′k` the control parameters of f̂ on

P i,j and P i,j−1 respectively. For a parameter point (x, j/n) on the edge
[pi,j , pi+1,j ], we obtain

f̂(x, j/n) =
∑

0≤k,`≤3

qk`hk(xi)h`(0) =
∑

0≤k≤3

qk0hk(xi)
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f i,j

f i+1,j

f i+1,j+1

f i,j+1

f̂(x, y)

f̂

x

y

pi,j pi+1,j

pi,j+1

pi+1,j+1

(x, y)xi
yj

Figure 4.1: Interpolation of f at the (red) parameter point (x, y). The
plain dots on the left grid indicate the samples involved in the computation
of f̂(x, y).

considering that (x, j/n) belongs to the bottom edge (yj = 0) of the grid
cell P i,j , or

f̂(x, j/n) =
∑

0≤k,`≤3

q′k`hk(xi)h`(1) =
∑

0≤k≤3

q′k1hk(xi)

considering that (x, j/n) belongs to the top edge (yj = 1) of P i,j−1. These
two values indeed coincides because q′k,1 = qk,0 = f i+k,j . The remaining

continuity conditions can be checked in the same way. In particular f̂

has continuous partial derivatives ∂f̂
∂x and ∂f̂

∂y , whence f̂ is of class C1

over T2. We can now formally derive f̂ to provide an estimate of the
(first order) derivatives of f . In the computer program, f̂ and its first
order derivatives are indeed explicitly used in place of f and its first order
derivatives. Figure 4.2 shows the effect of the interpolation on a sampled
torus. Although the interpolating surface f̂ is not C2 in general, it is C1

with continuous cross derivatives and appeared to be well suited for our
computations.

4.2 Vector field and flow computation

At each substep (k, j), the quantities F , r, α, W , ϕ, ζ, µ of Section 2.3.2
are denoted Fk,j , rk,j , αk,j , Wk,j , ϕk,j , ζk,j and µk,j respectively. We use
the obvious circular convention fk,0 := fk−1,3. Recall from Sections 2.3
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a b

Figure 4.2: a, The standard torus sampled with a 10×10 grid. b, Bicubic
interpolation of the previous grid.

and 3.2 that the computation of fk,j from fk,j−1 relies on the flow of the
vector field

Wk,j = U(j) + ζk,jV (j) with ζk,j = −
〈U(j) · fk,j−1, V (j) · fk,j−1〉R3

〈V (j) · fk,j−1, V (j) · fk,j−1〉R3

,

where U(j) and V (j) are the constant vector fields defined in Section 3.2:

U(1) := ∂x, U(2) :=
1

5
(∂x + 2∂y), U(3) :=

1

5
(∂x − 2∂y)

and
V (1) := ∂y, V (2) := −2∂x + ∂y, V (3) := 2∂x + ∂y.

The computation of Wk,j , in particular of ζk,j , involves the first order
derivatives of fk,j−1, whose evaluation was described in Section 4.1. The
next step is to compute the integral curves ϕk,j(t, ·) of Wk,j with initial
condition ϕk,j(t, 0) = O+ tV (j). We use Hairer’s solver based on DOPRI5
for non-stiff differential equations [25]. This is an explicit Runge-Kutta
method of order 5 with adaptive step size. The non-stiffness of our ordi-
nary differential equation relies on the eigenvalues 0 and V (j) · ζk,j of the
Jacobian matrix of Wk,j . Though we did not evaluate those eigenvalues,
Hairer’s code is able to detect when the equation becomes stiff, which did
not happened in our case. For each i = 0 . . . n − 1 we thus call Hairer’s
code to solve the first order ordinary differential equation:

φ′(s) = Wk,j(φ(s)) with φ(0) = O +
i

n
V (j).

In practice, we use Hairer’s solver to compute ϕk,j(i/n, j/n) = φ(j/n) for
0 ≤ j < n. These values are stored in a n × n table whose (i, j) entry
contains ϕk,j(i/n, j/n). Figure 4.3 shows the integral curves up to the
fourth corrugation. Those were computed on a 10, 0002 grid. Only 100 of
the 10, 000 integral curves are shown at each step.
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a b

c d

Figure 4.3: Integral curves of Wk,j. In each subfigure two squares of
the integer grid are shown (in red). These are fundamental domains of
the action of Z2 on R2. a, The usual parametrization of the standard
torus exhibits orthogonal partial derivatives. The corresponding vector
field W11 = V (1) is thus constant and horizontal; its integral curves are
horizontal lines. b, For the second corrugation, the initial point of each
integral curve lies on the line with direction V (2) through the origin. c, As
we apply more corrugations, the embeddings get closer to an isometry. As
a consequence, the vector field W1,3 gets closer to the constant field V (3)
and its integral lines are straighter, though not yet orthogonal to V (3). d,
For the fourth corrugation, W11 is almost constant and horizontal.

4.3 Corrugation along flow curves

We are now ready to apply convex integration. From Equation (2.9) in
Section 2.3, we start with the following map Fk,j defined over the cylinder
R/Z× [0, 1]:

Fk,j ◦ ϕk,j(t, s) := fk,j−1(O + tV (j)) +

∫ s

u=0

h(t, u, {Nk,ju})du, (4.6)

with

h(t, s, u) = h̄(ϕk,j(t, s), cos(2πu)), where

h̄(p, c) = rk,j(p)
(
cos(αk,j(p)c)tk,j−1(p) + sin(αk,j(p)c)nk,j−1(p)

)
(4.7)
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and

rk,j :=
√
µk,j(Wk,j ,Wk,j), tk,j−1 :=

Wk,j ·fk,j−1

‖Wk,j ·fk,j−1‖ ,

nk,j−1 :=
Wk,j ·fk,j−1∧V (j)·fk,j−1

‖Wk,j ·fk,j−1∧V (j)·fk,j−1‖ and αk,j = J−10 (
‖Wk,j ·fk,j−1‖

rk,j
).

The metric µk,j corresponds to the auxiliary metric µj at step k as
defined in Sections 3.2.2 and 3.2.3:

µk,j = f∗k,j−1〈·, ·〉R3 + ρj(Dk,j)`j ⊗ `j

where

Dk,j := gk − f∗k,j−1〈·, ·〉R3

= ρ1(Dk,j)`1 ⊗ `1 + ρ2(Dk,j)`2 ⊗ `2 + ρ3(Dk,j)`3 ⊗ `3,

gk := (1− δk)F∗0 〈·, ·〉R3 + δk〈·, ·〉R2

and
δk = 1− e−k/10.

In practice, all the metrics are expressed as 2 by 2 matrices in the canonical
basis. In particular, the coefficients of the pullback metric f∗k,j−1〈·, ·〉R3 are
scalar products of the two partial derivatives of fk,j−1. Note also that it
is a matter of simple linear algebra to determine the coefficient ρj(Dk,j)
in the decomposition of Dk,j . In order to compute the integral in (4.6) we
use the same Hairer’s code as for the flow computation. Indeed, for a fixed
t, Equation (4.6) can be viewed as the solution of the differential equation

y′(u) = h(t, u, {Nk,ju}) with initial condition y(0) = fk,j−1(O+tV (j)).

We solve this equation for the sampled values t = i/n, 0 ≤ i < n. For each
such t, we compute the solution Fk,j ◦ ϕk,j(t, u) = y(u) at the sampled
values u = j/n, 0 ≤ j ≤ n. We experienced a more accurate computation
with Hairer’s code than with the basic trapezoidal rule for calculating
integrals. In the end we obtain a n × (n + 1) table whose (i, j) entry
contains Fk,j ◦ ϕk,j(i/n, j/n). It remains to glue the two boundaries of
this immersion of the cylinder to get an immersion of the torus. As given
by Equation (2.14) in the Section 2.3.2, we finally set

fk,j◦ϕk,j(
i

n
,
j

n
) = Fk,j◦ϕk,j(

i

n
,
j

n
)−w(

j

n
)
(
Fk,j◦ϕk,j(

i

n
, 1)−fk,j−1◦ϕk,j(

i

n
, 1)
)

where w : [0, 1]→ [0, 1] is a smooth S-shaped function satisfying

w(0) = 0, w(1) = 1, and ∀k ∈ N∗ : w(k)(0) = w(k)(1) = 0.

In practice, we have approximated w by the polynomial function

x3(6x2 − 15x+ 10).
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Though it only satisfies the above condition for k = 1, 2, we could not
detect perceivable differences when considering higher degree polynomi-
als. One reason is that we have performed only four convex integra-
tion steps. The other reason is that we have observed a very small gap
Fk,j ◦ ϕk,j( in , 1) − fk,j−1 ◦ ϕk,j( in , 1) in accordance with the C0-density
lemma 2 of the first part. In the next section we describe how to extract
fk,j from fk,j ◦ ϕk,j .

4.4 Back to the Euclidean coordinates

The above computations yield a uniform sampling of fk,j ◦ ϕk,j . In
order to iterate the process, that is to compute fk,j+1 from fk,j , we need
to extract a uniform sampling of fk,j . Said differently, knowing fk,j at
the sample points ϕk,j(i/n, j/n), 0 ≤ i, j ≤ n, we want to evaluate fk,j
at the grid points pi,j = (i/n, j/n). Since n is pretty large in practice we
can hardly afford a superlinear time algorithm. Hopefully, the specificity
of ϕk,j allows us to design a linear time algorithm. As we observed in the
first chapter, at Equation (2.6), we can write

ϕk,j(t, s) = O + sU(j) + ψk,j(t, s)V (j)

for some function ψk,j such that ψk,j(t, 0) = t. It follows that for a fixed
s, the set
{ϕk,j(t, s) | t ∈ R/Z} is included in the line Ls : x→ O+ sU(j) +xV (j)
that is parallel to V (j). Since V (j) has integer and relatively prime coor-
dinates and since |U(j) × V (j)| = 1, the lines Lu/n, for u ∈ Z, sweep
both the regular grid points and the points (ϕk,j(u/n, v/n))u,v∈Z (see
Fig 4.4). In order to evaluate fk,j at the regular grid points, for each
integer u ∈ [0, n− 1], we sweep the set of sample points

{qv := ϕk,j(u/n, v/n) | v ∈ [0, n]} ⊂ Lu/n.

Between any two consecutive points qv and qv+1 in this set, we may en-
counter grid points pi,j of the form

pi,j = (1− t)qv + tqv+1

with t ∈ [0, 1). We then approximate fk,j(p
i,j) by the convex combination

(1− t) · fk,j ◦ ϕk,j(
u

n
,
v

n
) + t · fk,j ◦ ϕk,j(

u

n
,
v + 1

n
).

This simple one-dimensional interpolation appeared quite accurate in prac-
tice.
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I

O

Figure 4.4: The flat torus is uniformly sampled by a regular 5 × 5 grid
(n = 5). The gray shaded region is a fundamental domain bounded by
two copies of the initial condition (thick red) line I and two copies of the
integral curve (ϕk,j(0, ·). Every point of the torus has a representative
of its Z2-class in this domain. The integral curves are shown as (green)
sampled curves. Every regular (black dot) sample of the domain lies in-
between two (green) samples on the integral curves on some (red) line
Lu/5.

4.5 The choice of F0

According to our convex integration process in Section 3.3, we must
choose F0 such that D1,1 := g1 −F∗0 〈·, ·〉R3 is interior to the positive cone
C spanned by `1 ⊗ `1, `2 ⊗ `2 and `3 ⊗ `3, where

`1 := dx, `2 :=
1√
5

(dx+ 2dy) and `3 :=
1√
5

(dx− 2dy).

Since D1,1 = δ1(〈·, ·〉R2 − F∗0 〈·, ·〉R3), this is equivalent to require that
〈·, ·〉R2 − F∗0 〈·, ·〉R3 lies in this cone. (In particular, F0 : (T2, 〈·, ·〉R2)→ E3

should be a strictly short immersion.) We choose for F0 the standard torus

X(x, y) =
1

2π
(r2 + r1 cos 2πx) cos 2πy

Y (x, y) =
1

2π
(r2 + r1 cos 2πx) sin 2πy

Z(x, y) =
r1
2π

sin 2πx

with minor and major radii r1 and r2 respectively. The matrix of F∗0 〈·, ·〉R3

in the canonical basis is given by(
r21 0
0 (r2 + r1 cos 2πx)2

)
.
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It is easily checked that the above requirement is satisfied if and only if
r1 + r2 < 1. In practice, we have chosen r1 = 1/5 and r2 = 1/2.
Figure 4.5 shows the range of F∗0 〈·, ·〉R3 in the cone of metrics Q+ =

{
(
E F
F G

)
| EG− F 2 > 0, E > 0, G > 0} and in the cone C.

F∗0 〈·, ·〉R3

E

G

F

Q+

`2 ⊗ `2

`3 ⊗ `3

`1 ⊗ `1
E

G

F

Q+

Figure 4.5: (Left) Range of F∗0 〈·, ·〉R3 in the cone Q+. (Right) The cone C
spanned by the primitive metrics `1 ⊗ `1, `2 ⊗ `2 and `3 ⊗ `3.

4.6 The choice of the Nk,j’s and of the grid
size

It remains to choose the appropriate oscillation number Nk,j appearing
in the formula (4.6). Here, appropriate means that the preliminary con-
ditions of the Stage Theorem 11 should be satisfied by fk,j in order to
apply the next convex integration. According to the Loop conditions of
Section 3.2.6, in order to select an appropriate Nk,j , it suffices to satisfy
the conditions:

‖µk,j − f∗k,j〈·, ·〉R3‖∞ ≤ ej (Cj)

where e1, e2, e3 are positive numbers chosen so that

e1 + e2 < 8
5
√
3
ρmin(gk − f∗k−1,3〈·, ·〉R3)

e1 + e2 + e3 < 2(1−e−
1
10 )

5
√
3

e−
k
10 ρmin(〈·, ·〉R2 −F∗0 〈·, ·〉R3),

and the conditions

‖dfk,j − dfk,j−1‖∞ ≤ (c+
√

7)
√
‖ρj(Dk,j)‖∞ (C ′j)

where c > 0 is a constant chosen arbitrarily. Here, µk,j and ρj(Dk,j)
are defined as in Section 4.3 and ρmin(·) is the minimum over T2 of the
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components of a bilinear form on the basis (`1 ⊗ `1, `2 ⊗ `2, `3 ⊗ `3), as
defined in Lemma 13. In practice we can choose all the ei equal to

0.99 min(
4

5
√

3
ρmin(gk−f∗k−1,3〈·, ·〉R3),

2(1− e−
1
10 )

15
√

3
e−

k
10 ρmin(〈·, ·〉R2−F∗0 〈·, ·〉R3).

Since we are computing a finite number of terms in the sequence (fk,j)
we can assume that c is large enough so that the Loop conditions (C ′j)
are always satisfied for the computed fk,j . We then select Nk,j by an
exponential search, starting from N = 2Nk,j−1. We plug this N into
Equation (4.6) and check if the resulting fk,j satisfies the above conditions
(Cj). If not, we simply double N until the conditions are satisfied. We
finally obtain the least N satisfying the conditions by dichotomy and set
Nk,j to this N . Unfortunately, Nk,j is increasing very fast with k and j
so that it is practically impossible to implement this method. Indeed, the
integral in (4.6) involves a function that oscillates Nk,j times and it seems
reasonable to require at least 10 samples per period. This implies that
the regular grid that represents fk,j should contain approximately n × n
samples with n ≥ 10Nk,j . As explained below in the paragraph on the
local computation, we experimentally found for the first four corrugations:

N1,1 = 611, N1,2 = 69, 311, N1,3 = 20, 914, 595, N2,1 = 6, 572, 411, 478.

These values would imply that we use a grid with (10×6, 572, 411, 478)2 ≈
4.3 1019 vertices! This is way above the capacity of the present computers.
Since the Loop conditions are sufficient but not necessary, we have tried
smaller values for the Nk,j ’s. We also tried different values for the sequence
δk. After several tentatives we could only perform three corrugations,
starting from the initial standard embedding F0 of Section 4.5. However,
it was desirable to apply four corrugations in order to give the feeling of
a limit surface. We have overcome this technicality by first applying a
corrugation to this F0 with N1,1 = 12 then resetting F0 to the resulting
immersion. We were able this way to reduce the four first oscillation
numbers to respectively

12, 80, 500, 9000.

We have used a grid of size 10, 0002 for the first three corrugations. For
the last corrugation, we have refined the grid ten times in the direction ∂y
of integration and only twice in the direction ∂x, leading to a grid with 2
billion samples. The following table summarizes the results.

k j Nk,j sup ‖I − f∗k,j〈·, ·〉R3‖ ave(‖I − f∗k,j〈·, ·〉R3‖) grid size

0 - - 1.32 1.21 108

0 1 12 1.20 1.05 108

1 2 80 0.99 0.84 108

1 3 500 0.91 0.63 108

1 1 9000 0.75 0.25 2.109
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a b c

Figure 4.6: Comparison of lengths in the parameter and image
domain. a, A fundamental domain of the flat torus with four nets of
meridians, parallels, main diagonals and skew diagonals, each composed
of 20 curves. b, The images by f1,1 of four curves, one taken in each net.
c, A closer look at the curves evinces a fractal geometry, though the limit
curves are C1 regular.

The first row corresponds to the standard embedding F0. The fourth
and fifth columns indicate respectively the computed maximum and the
average of the isometric default with respect to the Euclidean metric I =
〈·, ·〉R2 . Keeping the index j to agree with the direction of integration, the
sequence of computed immersions becomes

F0, f0,1, f1,2, f1,3, f1,1.

We also illustrate the metric improvement by comparing the lengths of a
collection of curves on the flat torus (Fig. 4.6a) with the lengths of their
images by the last immersion f1,1. The length of any curve in the collection
differs by at most 10.2% with the length of its f1,1 image. By contrast,
the deviation reaches 80% when the standard torus F0 is taken in place of
f1,1. The situation is even better, since we actually decreased the isometric
default with respect to g1 = (1 − δ1)F∗0 〈·, ·〉R3 + δ1〈·, ·〉R2 with δ1 = 0.8
rather than the Euclidean metric I. A simple computation shows that

0.217 < ‖I − g1‖ < 0.244

to be compared with the average value 0.25 of ‖I−f∗1,1〈·, ·〉R3‖). Figure 4.7
shows a local view of the successive corrugations.

Local computation. Independently of the production of images, it is
interesting to evaluate the rate of growth of the Nk,j ’s. A precise control
of this rate could yield a lower bound on the Hölder exponent in the C1,α

continuity of the limit isometric embedding [12]. In order to compute
a lower bound for the Nk,j ’s we have implemented a local version of the
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Figure 4.7: Top, Rendered view of f0,1. Second row, Local view of f1,2
and overlay with f0,1. Third row, Local view of f1,3 and overlay with
f1,2. Bottom row, Local view of f1,1 overlaid with f1,2 and zoom in of
f1,1.
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(r, r)

Figure 4.8: Local computation of an isometric embedding.
Schematic view of the (blue) flow lines in the central neighborhood Nr.
The (green) slanted line represents the set of initial conditions for the flow
lines. The outer (red) square represents four tiles of the integer grid. Each
tile is a fundamental domain of T2.

isometric immersion program. In the local version of the program, the grid
of sampled parameters represents a square neighborhood Nr = [−r, r]2 of
the parameter point (0, 0) ∈ T2. The function F0 is now restricted to
Nr. We apply the convex integration process to this restriction. We have
to slightly modify the process since the integral curves are restricted to a
small domain and do not join back the initial condition line. In particular,
there is no more gluing on the boundaries. We thus extend the flow lines
on both sides of the initial conditions as on Figure 4.8. As we apply
more corrugations we restrict the grid to a smaller neighborhood Nr′<r
and resample it so as to keep always the same number of samples. We
choose the half-width r′ inversely proportional to Nk,j in order to keep
constant the number of samples per period of integration. We were able
to apply more than 160 corrugations (See Fig. 4.9). In agreement with De
Conti et al.[12], we observe that the oscillation numbers Nk,j grow at least
exponentially. It should be noted that the half-width r of the neighborhood
decreases drastically; after 165 corrugations r drops to 10−300. In order to
preserve accuracy we apply an appropriate scaling of the domain and the
codomain of fk,j . In practice, we only take into account the condition (Cj)
to select Nk,j . For this reason, and also because the domain is eventually
shrinking to a point, the computed Nk,j are probably much smaller than
they should be. Computation were performed on a 64 bits processor using
double precision (64-bit) binary floating-point numbers. Figure 4.10 shows
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Figure 4.9: Exponential growth of the oscillation numbers. a, Nu-
merical estimate of the corrugation frequencies plotted on a logarithmic
scale. b, The isometric default of fk,j was measured as the maximum
of the Frobenius norm of 〈·, ·〉R2 − f∗k,j〈·, ·〉R3 over the appropriate square
neighborhood.

Figure 4.10: Left, The image of the grid mesh on T2 by f36,3 looks virtually
flat and isometric to the regular planar mesh at this scale. The half-width
of the domain of f36,3 is 9.34× 10−219. The (red) range of f37,1 also looks
flat. Right, The overlay of f36,3 (blue) and f37,1 (red) emphasizes the
oscillations of f37,1.

the overlay of f36,3 after 118 corrugations with f37,1. Since the domain of
f37,1 is (128 times) smaller than the domain of f36,3, only a small part of
this last domain is visible.

4.7 From Immersion to Embedding

It should be noted that the whole convex integration process applies
to embeddings as well as to immersions. In theory we could thus claim
to construct an isometric embedding rather than an isometric immersion.
However, we do not have a numerical condition, similar to the Loop con-
ditions, that would tell if Nk,j is large enough to obtain an embedding
fk,j . In practice, checking that fk,j is an embedding would require a large
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amount of computation for testing self-intersections. Although we did not
perform such tests, our pictures clearly show that we did in effect obtain
embeddings after four convex integrations. As further corrugations would
not be visible, we can claim that our pictures show an isometric embedding
of the flat torus. Indeed, we can assume to choose sufficiently big Nk,j ’s
for those remaining corrugations in order to get an embedding in the limit.

4.8 Rendering

We describe the final rendering stage to obtain the first images of an
embedded flat torus. In the previous chapter, we have described the algo-
rithm that produces the meshes associated to the immersions

F0, f0,1, f1,2, f1,3, f1,1.

For the first three corrugations, we found that a grid of size 10, 0002 was
enough to provide an accurate description of the immersions. However,
for the fourth corrugation, the number of oscillations is very large (9000)
and we had to use a grid of size 2 billions (20.108). Due to computer
limitations, the most popular ray tracer softwares cannot deal with such
a large grid. In fact, two problems arise:

- Ray tracer softwares require a large amount of memory (RAM). To
give an example, the rendering of a surface parametrized over a grid
of size 10, 0002 consumes about 40 GB of RAM with the software
Yafaray [4]. As the RAM needed by the software is roughly propor-
tional to the number of vertices of the grid, the rendering of a grid
of size 2 billions of points requires about 800 GB of RAM.

- The rendering computation is time consuming. For example, the
software Sunflow [3] takes about one week to render a grid of size
10, 0002 on a computer with 48 GB of RAM.

To cope with those limitations we had to cut the mesh into several small
patches, and to produce an image for each patch separately. In a second
step, we have combined the images of each patch to get an image of the
whole surface.

There exist alternative methods to produce an image of the fourth cor-
rugation directly from the mesh of the third corrugation. We can use the
mesh of the third corrugation and render it by simulating the wrinkles of
the fourth corrugation. This can be achieved by perturbing the normal
vector to the third corrugation during lighting calculations. However, al-
though those methods are much quicker, they have to be compared in any
case to the rendering of the fourth corrugation. In practice, they work well
if the fourth corrugation is small enough.
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In Section 4.8.1, we recall the bases of ray-tracing. The merging step
is described in Section 4.8.2. Section 4.8.3 provides some details on the
computations.

4.8.1 Ray tracing and numerical images

Figure 4.11: Ray-tracing. Image taken from wikipedia

A numerical image is composed of n×m pixels, where n is the width and
m is the height of the image. A pixel is the smallest picture element and
corresponds to a small monochromatic square or rectangle of the image.
The ray-tracing is a technique that allows to create a numerical image
from a scene that is composed of a camera, one or more objects, and one
or more lights, as illustrated in Figure 4.11. It traces the reverse path of
the light from the camera through any pixels of the image so as to calculate
its color.

The ray from the camera to a pixel may encounter several objects. The
depth of a pixel encodes how far is the first visible object along this ray.
These depths are recorded into a bidimensional array called the z-buffer.
If another object of the scene must be rendered in the same pixel, the
graphics card compares the two depths and chooses the one closer to the
observer. In Yafaray, the z-buffer is stored as a black and white image with
256 different values. In general, this z-buffer is not sufficiently accurate to
compare pixels that have similar depths.

The aliasing refers to artifacts due to the discrete nature of the numerical
image. For example, a slanted line will look like stairs if we just color
the pixels intersecting this line. The anti-aliasing refers to techniques
that allow to remove these artifacts, by slightly modifying the image. In
Yafaray, the anti-aliasing essentially consists in a local averaging of the
colors.
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4.8.2 How to combine images

Our huge mesh is divided into long strip patches. We first render each
strip as illustrated on Figure 4.13. The pixel width and height, the position
of the camera, the lights, and all the rendering parameters are common
to all the images. Once we have computed all these images, we need to
combine them in order to create an image of the whole surface. The process
is iterative. We explain how to combine two images A and B into an image
C. We denote by xi,j the pixels of an image X. Again, we assume that
A, B and C have the same dimensions (height and width). We denote by
MA and MB the meshes associated to A and B respectively.

For each pixel ci,j of C, we need to select either the color of ai,j or the
color of bi,j . We choose the pixel that corresponds to an object which
is closer to the camera. This choice relies on the z-buffer. We already
noticed that the Yafaray z-buffer is not accurate for this purpose. There
is in fact another issue. Although the anti-aliasing improves the rendering
of the image, it creates artifacts on the boundary of the strips when we
combine two images. More precisely, before any anti-aliasing, there is a
color discontinuity in image A at the boundary of the rendered stripMA,
passing from the interior ofMA to the background of the scene. The anti-
aliasing will thus sensibly modify the pixel colors nearby this boundary.
The same is true in image B for the boundary that is common toMA and
MB . The exact color of this boundary is lost in both images and a simple
merge of A and B will not give the same result as rendering MA ∪MB .
Unfortunately, we cannot simply remove the anti-aliasing process, as other
numerous artifacts would appear. We bypass this anti-aliasing problem
by considering larger strips that overlap. However, this creates another
artifacts: for a pixel ci,j corresponding to the intersection of two strips,
the two pixels ai,j and bi,j have the same depth and we don’t know which
pixel to select. If we choose randomly, we still have artifacts (see Figure
4.12) due to the fact that the light diffusion and shades are not the same
in the two images. If we look more carefully at the images, we notice that
the boundary of each strip is more exposed to the light. To overcome this
problem, we pick the darker when two pixels have the same depth.

In practice, the previous tricks remove the local artifacts. However, we
can still have global problems due to the shade. Suppose that the mesh
MA falls on the trajectory of the light between a light source and the mesh
MB . In this case, the rendering of MB alone in image B is lighter than
it should be in a rendering of MA ∪MB . To overcome this problem, we
put a large light above the center of the torus. Thanks to this choice, a
triangle of a strip is in the shade of the global mesh if and only if it is in
the shade of its strip. Therefore, there is no discontinuity of the light due
to the global shade.
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Figure 4.12: Combination of strip images: the pixels corresponding to
two overlapping strips are chosen randomly among the two individually
rendered strips. We notice many lighter pixels in each such overlapping
region.

Figure 4.13: A rendered flat torus obtained by combining 33 different
strip images. Each individual strip is rendered with Yafaray using a mesh
with 108 vertices. Top raw, from left to right: the first strip alone, the
combination of two strips and the combination of 8 strips.

4.8.3 Computer calculations

We have tested several popular ray-tracer softwares, such as PovRay
[2], Sunflow [3] and Yafaray [4]. We opted for the β-version Yafaray.0.1.X
(DarkTide-YafaRay-e45bb16) for the following reasons: we found its ren-
dering quite aesthetic, the rendering time was reasonable, and most impor-
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tantly, this β-version was the only one to provide the z-buffer information.
As already mentioned, the z-buffer computed by Yafaray is not accurate

enough for our purpose. Moreover, the z-buffer computed by Yafaray is
rescaled so that the range of depths of a rendered image fits to the interval
[0, 256]. This scaling obviously depends on the maximal depth of the image
and is different for each rendered strip. We thus had to modify the Yafaray
software to take this scaling into account.

Furthermore, the images computed by this non stable version of Yafaray
have many artifacts including pixels with wrong colors. Most of them are
either white, or black. Some have a different color, but are hopefully very
localised. The z-buffer exhibits similar artifacts. By smoothing simulta-
neously the z-buffer and the colors of the image, we were able to remove
these artifacts. This smoothing was useful to get a nice image for each
strip and also necessary for the combination of the strip images.

We used a 10, 0002 grid mesh for the three first corrugations. For the
fourth corrugation, we considered 33 grids of size 1, 000 ∗ 100, 000 with an
overlap of size 400 ∗ 100, 000 between consecutive strips. The rendering of
each strip was performed on a 8-core CPU with 48 GB of RAM with the
C++ parallelised Yafaray code and took about one hour and a half. Two
hours were needed to generate the 33 strip meshes and the combination
of their rendered images took a few minutes. Adding the time for the
rendering of the 33 strips (33 times one hour and a half), the final rendering
of the whole square flat torus thus took about two days. We could hardly
apply more than four corrugations to the standard torus, but hopefully
it appeared to be sufficient to get a good picture of the limit surface as
further corrugations would not be visible to the naked eye.

4.8.4 3D printing

Since our embedding is encoded as a three dimensional mesh, it is possi-
ble to take advantage of the existing 3D printing devices to obtain a solid
representation of an embedded flat torus. Due to the resolution of those
devices (about 0.1 mm), we had to limit the printing to the first three
corrugations. We used the printing facilities of an academic FABrication
LABoratory [1] to get a torus with diameter 250 mm as shown on the
following pictures.
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Figure 4.14: 3D printing (left column) and computer renderings (right
column) of the map f1,3 output by our algorithm.



Chapter 5

Gauss map of the flat
torus and convex
integration

In chapter 3, we built a sequence of immersions that C1-converges to a
C1-isometric immersion

F∞ : T2 → E3,

where each element of the sequence is obtained by a convex integration
process. In this chapter, we show that the Gauss map n∞ of F∞ can be
approximated by an infinite product of rotation matrices. This behavior
is reminiscent of a Riesz product that is known to have a fractal structure.
The Corrugation Theorem, which captures the Riesz-like structure of the
Gauss map, is stated in Section 5.2.

5.1 One dimensional case

In this section, we apply the iterative process of convex integrations as
summarized in Section 3.3 for the case of a torus to the simpler case of a
centrally symmetric immersion of the circle into the plane. Replacing the
torus by a circle not only simplifies the computations, it actually allows to
give an explicit formula for the limit immersion. Moreover, in this simple
case the relationship of the normal map with a Riesz product is direct and
manifest. A more thorough analysis of this special case can be found in [9].

68
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5.1.1 Corrugation Theorem on S1

Similarly to the torus case, we thus build a sequence of immersions fk :
S1 = E/Z → E2 that C1-converges to a C1-isometry f∞ : S1 → E2. Let
f0 : S1 → E2 be a strictly short immersion of the circle, i.e., for every
x ∈ S1 : ‖f ′0(x)‖ < 1. We further assume to simplify the calculations that
f0 is radially symmetric, i.e., satisfies:

∀ x ∈ S1, f ′0(x+
1

2
) = −f ′0(x).

We consider a sequence (δk)k∈N∗ of strictly positive numbers, strictly in-
creasing towards 1. For every k, we then set the metric

gk := f∗0 〈·, ·〉R2 + δk∆,

where ∆ := 〈·, ·〉R − f∗0 〈·, ·〉R2 . Trivially, gk ↑ 〈·, ·〉R .

We define fk : [0, 1]→ E2 ' C iteratively by:

fk(x) := fk−1(0) +

∫ x

0

rk (ck(s)tk−1(s) + sk(s)nk−1(s)) ds

where

tk−1 :=
f ′k−1
‖f ′k−1‖

, nk−1 := itk−1,

ck(s) := cos(αk(s) cos 2πNks), sk(s) := sin(αk(s) cos 2πNks),

αk = J−10

(‖f ′k−1‖
rk

)
, rk = gk(∂x, ∂x)

and (Nk)k∈N∗ is a sequence of even numbers. Note that the functions rk
(and hence the functions αk) are constant if x 7→ ‖f ′0(x)‖ < 1 is constant.
In any case, the limit of rk is the constant function equal to 1. Since

0 <
‖f ′k−1‖
rk

< 1 we also have,

∀x ∈ S1, 0 < αk(x) < z

where z ' 2.4 is the first zero of J0.

It is easy to check [9] that, for every k ∈ N∗, the map fk is well-defined on
S1 and radially symmetric. Moreover, it can be shown that

‖f ′k − f ′k−1‖∞ ≤ Cte
√
δk − δk−1.

Hence, (fk)k∈N is C1-converging if the increasing sequence (δk)k∈N is cho-
sen so that∑√

δk − δk−1 < +∞. Moreover, since

∀ x ∈ S1, ‖f ′k(x)‖ = rk(x)

the limit map f∞ is parametrized by arc-length, and therefore is isometric.
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Figure 5.1: Example of a sequence of maps (f0, f1, f2 and f∞) with an
exponential growth of the Nk’s.

Theorem 18 (Corrugation Theorem on S1). The Gauss map nk of fk is
given by

∀x ∈ S1, nk(x) =

 k∏
j=1

eiαj(x) cos 2πNjx

n0(x)

where n0 is the Gauss map of f0.

Proof. We have

tk = cktk−1 + sknk−1.

Therefore, by identifying E2 ' C, we obtain

nk = itk = i(cktk−1 + sknk−1) = (ck + isk)nk−1,

which allows to conclude.

5.1.2 C1 fractal structure

As an immediate application of the Corrugation Theorem on S1 we
deduce a formal expression of the normal map of the limit map f∞.
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Corollary 19 (Riesz structure of the normal map). The normal map n∞
of f∞ is given by

∀x ∈ S1, n∞(x) = eiA∞(x)n0(x) with A∞(x) =

∞∑
j=1

αj(x) cos 2πNjx.

This corollary puts into light some resemblance of n∞ with a Riesz product,
that is, an infinite product

p(x) :=

∞∏
j=1

(1 + αj cos(2πNjx)),

where (αj)j∈N is a sequence of real numbers such that for every j ∈ N∗,
|αj | ≤ 1, and

∀j ∈ N∗,
Nj+1

Nj
≥ 3 + q

for some fixed q > 0. In particular, if

p(x) = 1 +

∞∑
ν=1

γν cos(2πνx)

is the Fourier expansion of p, then γNj = αj and γν = 0 if ν is not of the
form Nj1 ±Nj2 ± ...±Njk , j1 > j2 > ... > jk [33]. Riesz products are well
known to have a fractal structure. Precisely, their Riesz measures p(x)dx
have a fractional Hausdorff dimension [32].

Informally, we say that the curve f∞ : S1 −→ E2 has a C1 fractal structure
as it is both a primitive of −in∞ and of class C1. An interesting case of a
C1 fractal structure occurs when

A∞(x) =
∑
j

aj cos(2πbjx)

for some positive numbers a, b with a < 1 and ab > 1. Indeed, in that
case, A∞ is the well-known Weierstrass function. Although its exact value
is conjectural, the Hausdorff dimension of its graph is strictly larger than
one [15]. It follows that the Hausdorff dimension of the graph of n∞ is
also strictly larger than one.

5.2 Riesz-like structure of the Gauss map of
the flat torus

Recall that the C1 isometric immersion of the flat torus F∞ : T2 → E3

described in Part 3 is obtained as the limit of a sequence

F0; f1,1, f1,2, f1,3; f2,1, f2,2, f2,3; f3,1, f3,2, f3,3; ...
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In this section, we first show that there is a natural orthonormal basis
(v⊥k,j+1, vk,j+1,nk,j+1) that comes with each map fk,j of this sequence.
We then state a theorem (the Corrugation Theorem) giving a description
of the rotation matrix that maps (v⊥k,j , vk,j ,nk,j) to (v⊥k,j+1, vk,j+1,nk,j+1).
From this theorem, we deduce an expression of the Gauss map n∞ of F∞
showing its formal resemblance with a Riesz product.

5.2.1 The Corrugation Theorem

In this section, we use the notations of Sections 4.2 and 4.3. In partic-
ular, we set

tk,j :=
Wk,j+1 · fk,j
‖Wk,j+1 · fk,j‖

and nk,j :=
Wk,j+1 · fk,j ∧ V (j + 1) · fk,j
‖Wk,j+1 · fk,j ∧ V (j + 1) · fk,j‖

.

Let p ∈ T2. We consider the orthonormal basis (v⊥k,j , vk,j ,nk,j)(p) given by

vk,j :=
V (j) · fk,j
‖V (j) · fk,j‖

and v⊥k,j := vk,j ∧ nk,j . (5.1)

We also introduce the vector

v+k,j :=
V (j + 1) · fk,j
‖V (j + 1) · fk,j‖

. (5.2)

From the choice of Wk,j+1, the vectors (tk,j , v
+
k,j) form a direct orthonor-

mal basis of the tangent plane of the embedding fk,j (see Lemma 24). In
particular, (tk,j , v

+
k,j ,nk,j) is a direct orthonormal basis in E3. We now,

introduce the following definitions (see Figure 5.2).

Definition 1. Let p ∈ T2.

1. We denote by Rk,j(p) the rotation matrix that maps
(v⊥k,j , vk,j ,nk,j)(p) to (tk,j , v

+
k,j ,nk,j)(p). In other words tk,j

v+k,j
nk,j

 (p) = Rk,j(p) ·

 v⊥k,j
vk,j
nk,j

 (p).

2. We denote by Lk,j+1(p,Nk,j+1) the rotation matrix that maps
(tk,j , v

+
k,j ,nk,j)(p) to (v⊥k,j+1, vk,j+1,nk,j+1)(p). In other words v⊥k,j+1

vk,j+1

nk,j+1

 (p) = Lk,j+1(p,Nk,j+1) ·

 tk,j
v+k,j
nk,j

 (p).
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Figure 5.2: The rotation that maps the basis (v⊥k,j , vk,j ,nk,j) to

(v⊥k,j+1, vk,j+1,nk,j+1) is the composition of two rotations: i) Up to O(εk,j),

the rotation that maps (v⊥k,j , vk,j ,nk,j) to (tk,j , v
+
k,j ,nk,j) is a rotation of

angle βj in the tangent plane to fk,j(T2) at fk,j(p). ii) Up to O
(

1
Nk,j+1

)
,

the rotation that maps (tk,j , v
+
k,j ,nk,j) to (v⊥k,j+1, vk,j+1,nk,j+1) is a rota-

tion about the axis spanned by vk,j+1 of angle θk,j+1.

3. We define the corrugation matrix Mk,j+1(p) as the rotation matrix
that maps (v⊥k,j , vk,j ,nk,j)(p) to (v⊥k,j+1, vk,j+1,nk,j+1)(p). In other
words

Mk,j+1(p) = Lk,j+1(p,Nk,j+1)Rk,j(p).
Here the symbol “·” denotes the natural action of 3× 3 matrices on
(R3)3.

The corrugation matrix Mk,j+1(p,Nk,j+1) has intricate coefficients
with integro-differential expressions. The Corrugation Theorem provides,
up to an error term, a simple expression for this matrix, which allows
us to express the basis (v⊥k,j+1, vk,j+1,nk,j+1)(p) in terms of the basis

(v⊥k,j , vk,j ,nk,j)(p).

Lemma 20. Let p ∈ T2. We have

i)

Lk,j+1(p,Nk,j+1) = Lk,j+1(p,Nk,j+1) +O
(
‖fk,j+1 − fk,j‖∞

+‖V (j + 1) · fk,j+1 − V (j + 1) · fk,j‖∞
)
,
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where

Lk,j+1(p,Nk,j+1) :=

 cos(θk,j+1(p,Nk,j+1)) 0 sin(θk,j+1(p,Nk,j+1))
0 1 0

− sin(θk,j+1(p,Nk,j+1)) 0 cos(θk,j+1(p,Nk,j+1))

 ,

θk,j+1(p,Nk,j+1) := αk,j+1(p) cos(2πNk,j+1sj+1(p)),

αk,j+1 = J−10 (
‖Wk,j+1·fk,j‖

rk,j+1
) and sj+1(p) is the U(j + 1) coordinate of p in

the frame (O,U(j + 1), V (j + 1)).

ii)

Rk,j(p) = Rj(p) +O(εk,j),

where

Rj(p) =

 cosβj sinβj 0
− sinβj cosβj 0

0 0 1

 ,

εk,j = ‖〈., .〉E2 − f∗k,j〈., .〉E3‖ is the isometric default and βj is the oriented
angle between U(j) and U(j + 1).

We defer the proof of this lemma to the next section. From the One
Step Theorem (Theorem 10), we get

‖fk,j+1 − fk,j‖∞ = O
(

1
Nk,j+1

)
and

‖V (j + 1) · fk,j+1 − V (j + 1) · fk,j‖∞ = O
(

1
Nk,j+1

)
,

which leads to the Corrugation Theorem.

Theorem 21 (Corrugation Theorem on T2). Let p ∈ T2. We have

i)

Lk,j+1(p,Nk,j+1) = Lk,j+1(p,Nk,j+1) +O

(
1

Nk,j+1

)
,

ii)
Rk,j(p) = Rj(p) +O(εk,j).

Point i) states that, up to O
(

1
Nk,j+1

)
, the matrix Lk,j+1(p,Nk,j+1)

represents a rotation about an axis parallel to vk,j+1. This rotation is
related to the convex integration process in the direction Wk,j+1. The

constant in O
(

1
Nk,j+1

)
depends on k and j.

Point ii) states that, up to the isometric default εk,j , the matrix Rk,j
is a rotation of angle βj + π and thus only depends on the choice of the
linear forms lj and lj+1.
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5.2.2 Asymptotic behavior of the Gauss map

We denote by Mk and Mk the matrices corresponding to a stage k:

Mk :=

 3∏
j=1

Mk,j

 =

3∏
j=1

Lk,jRk,j−1 and Mk :=

 3∏
j=1

Lk,jRj−1

 .

Here and in the sequel, products of matrices such as
∏q
j=pNj refer to left

multiplications:
q∏
j=p

Nj := NqNq−1 · · ·Np.

We have the following lemma

Lemma 22. Let p, q ∈ N∗, with p < q. Putting dk := ‖Mk −Mk‖∞, we
have

i)

dk = O
(√

δk+1 − δk + (1− δk)
)
,

ii) ∥∥∥∥∥∥
q∏

k=p

Mk −
q∏

k=p

Mk

∥∥∥∥∥∥
∞

≤
q∏

k=p

(1 + dk) − 1.

Proof. Let us bound the two terms involved in Lemma 20 i). We
put Dk,1 := gk+1 − f∗k 〈·, ·〉R3 . From Point 1 in the One Step Theorem 10,
we have

‖fk,j+1 − fk,j‖∞ ≤ 2
√

7 ‖U(j + 1)‖ ‖ρj+1(Dk,1)‖
1
2∞.

By the Loop condition (Equation (3.10)), we have:

‖V (j + 1) · fk,j+1 − V (j + 1) · fk,j‖∞ ≤ ‖dfk,j+1 − dfk,j‖∞
≤ (c+

√
7)‖ρj+1(Dk,1)‖

1
2∞.

Now, by Equation (3.11), we have

‖ρj+1(Dk,1)‖∞ ≤
5
√

3

4
‖Dk,1‖∞.

By the triangle inequality and Conclusion ii) of the Stage Theorem, we
have

‖Dk,1‖∞ = ‖gk+1 − f∗k 〈·, ·〉R3‖∞
≤ ‖gk+1 − gk‖∞ + ‖gk − f∗k 〈·, ·〉R3‖∞
≤ 2 ‖gk+1 − gk‖∞.
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Combining these equations together, we get

‖fk,j+1−fk,j‖∞+‖V (j+1) ·fk,j+1−V (j+1) ·fk,j‖∞ = O
(
‖gk+1−gk‖

1
2∞

)
.

From Lemma 20, we then get

‖Mk −Mk‖∞ = O

‖gk+1 − gk‖
1
2∞ +

2∑
j=0

εk,j

 .

By using that

εk,j ≤ ‖f∗k,j〈., .〉 − gk‖∞ + ‖gk − id‖∞ ≤ ‖gk+1 − gk‖∞ + ‖gk − id‖∞,

and since

‖gk+1 − gk‖∞ ≤ ‖gk+1 − id‖∞ + ‖id− gk‖∞ = O(1− δk),

we get

dk = ‖Mk −Mk‖∞ = O
(√

δk+1 − δk + (1− δk)
)
.

We put n = q−p+ 1, and A0
k = Mk and A1

k =Mk−Mk for k ∈ {p, ..., q}.
We have by the expansion of products in non-abelian rings

q∏
k=p

(A0
k +A1

k)−
q∏

k=p

A0
k =

∑
(εp,...,εq)∈{0,1}n\{0}n

q∏
k=p

Aεkk .

Whence, since the induced Euclidean norm ‖.‖ is multiplicative and
‖A0

k‖ = 1:

∥∥∥∥∥∥
q∏

k=p

(A0
k +A1

k)−
q∏

k=p

A0
k

∥∥∥∥∥∥ ≤
∑

(εp,...,εq)∈{0,1}n\{0}n

q∏
k=p

‖Aεkk ‖

=

q∏
k=p

(‖A0
k‖+ ‖A1

k‖)− 1

=

q∏
k=p

(1 + ‖A1
k‖)− 1,

which gives the point ii).
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We then get the following theorem

Theorem 23 (Riesz Asymptotic Behavior). If the sequence (δk)k≥0 is
chosen so that

∞∑
k=1

(1− δk) < +∞ and

∞∑
k=1

√
δk+1 − δk < +∞,

then we have the following properties:

i) The product
∏
Mk converges.

ii) For every ε > 0, there exists N > 0 such that for all n ≥ N :∥∥∥∥∥
∞∏
k=n

Mk −
∞∏
k=n

Mk

∥∥∥∥∥
∞

≤ ε.

Remark 5. The behavior of the Gauss map has to be related to the
regularity of the isometric embedding. It is well-known that every C2

surface with zero Gaussian curvature is ruled, that is there is a straight-
line (contained in the surface) passing through every point of the surface
[28]. Moreover, the Gauss map is constant along each ruling.

Remark 6. In this theorem, the two convergence conditions∑∞
k=1(1 − δk) < +∞ and

∑∞
k=1

√
δk+1 − δk < +∞ are not equivalent

and cannot be reduced one to the other. Tacking the Bertrand series
1 − δk = 1

k logβ k
with 1 < β ≤ 2, we get the convergence of the first sum

and the divergence of the second one. It is an exercise to define a sequence
δk such that the first sum divergences and the second sum converges.

Proof. Let us show that (
∏n
k=1Mk)n∈N∗ is a Cauchy sequence. Let

p, q ∈ N∗, with p < q. We have

‖
q∏

k=1

Mk −
p−1∏
k=1

Mk‖ ≤ ‖

 q∏
k=p

Mk − Id

(p−1∏
k=1

Mk

)
‖

≤ ‖

 q∏
k=p

Mk

− Id‖
≤ ‖

q∏
k=p

Mk −
q∏

k=p

Mk +

q∏
k=p

Mk − Id‖

≤ ‖
q∏

k=p

Mk −
q∏

k=p

Mk‖+ ‖
q∏

k=p

Mk − Id‖.
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By Theorem 17, since ∑√
δk+1 − δk < +∞

the sequence (fk)k∈N∗ is C1 converging. It follows that vk,0, v⊥k,0 and nk,0
also converge. Let ε > 0. Since v⊥q+1,0

vq+1,0

nq+1,0

 =

q∏
k=p

Mk ·

 v⊥p,0
vp,0
np,0

,
we have for p and q large enough

‖
q∏

k=p

Mk − Id‖ ≤
ε

2
.

By Lemma 22.i and the assumption on the δk, we have∑
dk < +∞,

which implies if p and q are large enough that

ln

 q∏
k=p

(1 + dk)

 =

q∑
k=p

ln(1 + dk) ≤
q∑

k=p

dk ≤ ln
(

1 +
ε

2

)
.

We finally have

q∏
k=p

(1 + dk) − 1 ≤ ε

2
.

By Lemma 22.ii we get that

‖
q∏

k=p

Mk −
q∏

k=p

Mk‖ ≤
ε

2
,

which allows to show that (
∏n
k=1Mk)n∈N∗ is a Cauchy sequence, hence

point i). Point ii) follows directly.

5.2.3 C1 fractal structure

Let us denote the limit bases v⊥∞
v∞
n∞

 =

∞∏
k=N

Mk ·

 v⊥N,0
vN,0
nN,0

,
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and  v⊥∞(N)
v∞(N)
n∞(N)

 =

∞∏
k=N

Mk ·

 v⊥N,0
vN,0
nN,0

 .

Theorem 23 indicates that for any ε > 0, we can choose N so that

‖n∞ − n∞(N)‖ < ε.

In other words, the Gauss map n∞ of the limit embedding F∞ can be
approximated by n∞(N).

The Corrugation Theorem together with theorem 23 show that the struc-
ture of the Gauss map n∞ of F∞ asymptotically resembles to a Riesz
structure. By analogy with the one dimensional case (see Section 5.1)
we call the corrugated torus F∞ a C1 fractal. This name suggests that
the Hausdorff dimension of the graph of n∞ is strictly larger than two.
Although this is likely to be the case, we did not attempt to prove it.

5.3 Proof of Lemma 20

Lemma 24. The family (tk,j , v
+
k,j) is a direct orthonormal basis of the

tangent plane of the embedding fk,j. In particular, (tk,j , v
+
k,j ,nk,j) is a

direct orthonormal basis in E3.

Proof. Since Wk,j+1 = U(j + 1) + ζk,j+1V (j + 1), the basis
(Wk,j+1, V (j + 1)) is direct, thus (tk,j , v

+
k,j) is also direct. Furthermore

we recall that Wk,j+1 is chosen so that

f∗k,j〈·, ·〉R3 (Wk,j+1, V (j + 1)) = µk,j (Wk,j+1, V (j + 1)) = 0,

which implies that

〈tk,j , v+k,j〉 = 〈Wk,j+1·fk,j , V (j + 1)·fk,j〉 = 0.

5.3.1 Proof of Lemma 20 i)

We use the following concise notations:

ck,j+1 = cos(θk,j+1(p,Nk,j+1)) = cos (αk,j+1(p) cos(2πNk,j+1sj+1(p))) .

sk,j+1 = sin(θk,j+1(p,Nk,j+1)) = sin (αk,j+1(p) cos(2πNk,j+1sj+1(p))) .

We also introduce the error vectors η1, η2 and η3 given by:
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 η1
η2
η3

 =

 v⊥k,j+1

vk,j+1

nk,j+1

−
 ck,j+1 0 sk,j+1

0 1 0
−sk,j+1 0 ck,j+1

 ·
 tk,j

v+k,j
nk,j

 .

Lemma 26 is a technical preliminary lemma. Then Lemma 27 (respectively
Lemmas 28 and 29) gives an upper bounds for η1 (respectively η2 and η3).

Lemma 25. For any vector a and b, one has:∥∥∥∥ a

‖a‖
− b

‖b‖

∥∥∥∥ ≤ 2
‖b− a‖
‖a‖

.

Proof. We have∥∥∥∥ a

‖a‖
− b

‖b‖

∥∥∥∥ =

∥∥∥∥ a

‖a‖
− b

‖a‖
+

b

‖a‖
− b

‖b‖

∥∥∥∥
≤ 1

‖a‖‖a− b‖+ ‖b‖
∣∣∣ 1
‖a‖ −

1
‖b‖

∣∣∣
≤ ‖a− b‖

‖a‖
+
|‖b‖ − ‖a‖|
‖a‖

.

We conclude by using the triangle inequality.

Lemma 26. We have the following properties

i)

‖Wk,j+1 · fk,j+1 − rk,j+1 (ck,j+1tk,j + sk,j+1nk,j) ‖ ≤ ‖w′‖∞ ‖Fk,j+1 − fk,j‖∞.

ii)

|〈Wk,j+1 · fk,j+1, V (j + 1) · fk,j+1〉| ≤ ‖w′‖∞ ‖Fk,j+1 − fk,j‖∞‖V (j + 1)‖

+‖Wk,j+1 · fk,j+1‖‖V (j + 1) · fk,j+1

−V (j + 1) · fk,j‖.

Remark 7. The two terms with a factor ‖w′‖∞ in points i) and ii) would
be zero without the smoothing operation (2.14). The other term depends
on how the corrugation process rotates the image of V (j + 1).

Proof. By Equation 2.17, we have:

Wk,j+1·fk,j+1(p) = Wk,j+1·Fk,j+1(p)− w′(sj+1(p)) (F ◦ Φk,j+1(p, 1− sj+1(p))

− f ◦ Φk,j+1(p, 1− sj+1(p))) .

Furthermore, from (2.8) and (2.9), one has:
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Wk,j+1·Fk,j+1(p) = rk,j+1(p) (ck,j+1tk,j(p) + sk,j+1nk,j(p)) .

We conclude the proof of point i) by using that

|F ◦Φk,j+1(p, 1− sj+1(p))− f ◦Φk,j+1(p, 1− sj+1(p))| ≤ ‖Fk,j+1− fk,j‖∞.

For point ii), we need to give an upper bound of
|〈Wk,j · fk,j , V (j + 1) · fk,j+1〉|:

〈Wk,j+1 · fk,j+1, V (j + 1) · fk,j+1〉 = 〈Wk,j+1 · fk,j+1, V (j + 1) · fk,j〉

+ 〈Wk,j+1 · fk,j+1, V (j + 1) · fk,j+1

−V (j + 1) · fk,j〉.

By definition, V (j + 1) · fk,j is proportional to v+k,j , thus orthogonal to
both nk,j and tk,j (by Lemma 24). Therefore

〈Wk,j+1 · fk,j+1, V (j + 1) · fk,j〉 = 〈Wk,j+1 · fk,j+1 − rk,j+1 (ck,j+1tk,j

+ sk,j+1nk,j) , V (j + 1) · fk,j〉.

Thus, since ‖V (j + 1) · fk,j‖ < ‖V (j + 1)‖, point i) of this lemma implies
that

|〈Wk,j+1 · fk,j+1, V (j + 1) · fk,j〉| ≤ ‖w′‖∞‖Fk,j+1 − fk,j‖∞‖V (j + 1)‖.

Thus,

|〈Wk,j+1 · fk,j+1, V (j + 1) · fk,j+1〉| ≤ ‖w′‖∞ ‖Fk,j+1 − fk,j‖∞‖V (j + 1)‖

+‖Wk,j+1 · fk,j+1‖‖V (j + 1) · fk,j+1

−V (j + 1) · fk,j‖.

Lemma 27.

‖η1‖ = ‖v⊥k,j+1 − (ck,j+1tk,j + sk,j+1nk,j) ‖

≤ C1
k,j‖Fk,j+1 − fk,j‖∞ + C2

k,j‖V (j + 1) · fk,j+1 − V (j + 1) · fk,j‖,

where

C1
k,j =

‖w′‖∞
‖Wk,j+1 · fk,j+1‖

(
1 +

2‖V (j + 1)‖
‖V (j + 1)·fk,j+1‖

)
and

C2
k,j =

2

‖V (j + 1)·fk,j+1‖
.
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Proof. We introduce an intermediate vector

uk,j+1 :=
Wk,j+1 · fk,j+1

‖Wk,j+1 · fk,j+1‖
,

and we are going to show that uk,j+1 is close to both v⊥k,j+1 and
(ck,j+1tk,j + sk,j+1nk,j). Since (Wk,j+1, V (j + 1)) is direct, the basis
(Wk,j+1 · fk,j+1, vk,j+1) of the tangent plane is direct. We deduce, by
using that (v⊥k,j+1, vk,j+1) is also direct that

v⊥k,j+1 =
Wk,j+1·fk,j+1 − 〈Wk,j+1·fk,j+1, vk,j+1〉vk,j+1

‖Wk,j+1·fk,j+1 − 〈Wk,j+1·fk,j+1, vk,j+1〉vk,j+1‖
.

We then have∥∥∥uk,j+1 − v⊥k,j+1

∥∥∥ =

∥∥∥∥ Wk,j+1 · fk,j+1

‖Wk,j+1 · fk,j+1‖

− Wk,j+1·fk,j+1 − 〈Wk,j+1·fk,j+1, vk,j+1〉vk,j+1

‖Wk,j+1·fk,j+1 − 〈Wk,j+1·fk,j+1, vk,j+1〉vk,j+1‖

∥∥∥∥ .
By using Lemma 25 with a = Wk,j+1·fk,j+1 and b = Wk,j+1·fk,j+1 −
〈Wk,j+1·fk,j+1, vk,j+1〉vk,j+1, one has∥∥uk,j+1 − v⊥k,j+1

∥∥ ≤ 2
‖〈Wk,j+1·fk,j+1, vk,j+1〉vk,j+1‖

‖Wk,j+1·fk,j+1‖
= 2‖〈uk,j+1, vk,j+1〉‖.

However, by Lemma 26 ii) one has

‖〈uk,j+1, vk,j+1〉‖ ≤ ‖w′‖∞ ‖V (j + 1)‖
‖Wk,j+1 · fk,j+1‖‖V (j + 1) · fk,j+1‖

.‖Fk,j+1 − fk,j‖∞

+
‖V (j + 1) · fk,j+1 − V (j + 1) · fk,j‖

‖V (j + 1) · fk,j+1‖
.

which leads to∥∥uk,j+1 − v⊥k,j+1

∥∥ ≤ 2 ‖w′‖∞ ‖V (j + 1)‖
‖Wk,j+1 · fk,j+1‖‖V (j + 1) · fk,j+1‖

.‖Fk,j+1 − fk,j‖∞

+
2‖V (j + 1) · fk,j+1 − V (j + 1) · fk,j‖

‖V (j + 1) · fk,j+1‖
.

Recalling that rk,j+1 = ‖Wk,j+1 · fk,j+1‖, Lemma 26 i) directly implies
that

‖uk,j+1 − (ck,j+1tk,j + sk,j+1nk,j) ‖ ≤
‖w′‖∞ ‖Fk,j+1 − fk,j‖∞
‖Wk,j+1 · fk,j+1‖

.

We get the result by combining the two last equations and the triangle
inequality:∥∥v⊥k,j+1 − (ck,j+1tk,j + sk,j+1nk,j)

∥∥ ≤
∥∥v⊥k,j+1 − uk,j+1

∥∥+

‖uk,j+1 − (ck,j+1tk,j + sk,j+1nk,j) ‖.
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Lemma 28.

‖η2‖ = ‖vk,j+1 − v+k,j‖ ≤ C
3
k,j‖V (j + 1) · fk,j+1 − V (j + 1) · fk,j‖,

where

C3
k,j =

2

‖V (j + 1) · fk,j‖
.

Proof of Lemma 28. By definition

vk,j+1 − v+k,j =
V (j + 1) · fk,j+1

‖V (j + 1) · fk,j+1‖
− V (j + 1) · fk,j
‖V (j + 1) · fk,j‖

Again by using Lemma 25, one has

‖vk,j+1 − v+k,j‖ ≤ 2
‖V (j + 1) · fk,j+1 − V (j + 1) · fk,j‖

‖V (j + 1) · fk,j‖
.

Lemma 29. The error η3 = nk,j+1 − (−sk,j+1tk,j + ck,j+1nk,j) satisfies

‖η3‖ ≤ ‖η1‖+ ‖η2‖.

Proof of Lemma 29. We put a = ck,j+1tk,j + sk,j+1nk,j . One has

η3 = nk,j+1 − nk,j
= v⊥k,j+1 ∧ vk,j+1 − a ∧ v+k,j
= v⊥k,j+1 ∧ (vk,j+1 − v+k,j)− (a− v⊥k,j+1) ∧ v+k,j ,

whence

‖η3‖ ≤ ‖vk,j+1 − v+k,j‖+ ‖a− v⊥k,j+1‖ ≤ ‖η1‖+ ‖η2‖.

End of Proof of Lemma 20 i).
We have η1

η2
η3

 =

 v⊥k,j+1

vk,j+1

nk,j+1

−
 ck,j+1 0 sk,j+1

0 1 0
−sk,j+1 0 ck,j+1

 ·
 tk,j

v+k,j
nk,j


=

(
Lk,j+1(p,Nk,j+1)− Lk,j+1(p,Nk,j+1)

) tk,j
v+k,j
nk,j

 .

On the other hand, by applying Lemmas 27, 28 and 29, we get

max{‖η1‖, ‖η2‖, ‖η3‖} = O(‖fk,j+1−fk,j‖∞+‖V (j+1)·fk,j+1−V (j+1)·fk,j‖∞),

which concludes point i).
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5.3.2 Proof of Lemma 20 ii)

Since the two orthonormal basis (v⊥k,j , vk,j ,nk,j)(p) and (tk,j , v
+
k,j ,nk,j)(p)

are direct, it is sufficient to show that error ηk,j for the second line of the
matrix satisfies

ηk,j := v+k,j −
[
− sinβjv

⊥
k,j + cosβjvk,j

]
= O(εk,j).

For convenience, we denote U(j) = U(j)/‖U(j)‖ and V (j) = V (j)/‖V (j)‖.
From the equation

V (j + 1) = − sinβj U(j) + cosβj V (j),

we have

v+k,j =
V (j + 1)·fk,j
‖V (j + 1)·fk,j‖

= − sinβj
U(j)·fk,j

‖V (j + 1)·fk,j‖
+ cosβj

V (j)·fk,j
‖V (j + 1)·fk,j‖

.

We denote by x and y the component of U(j)·fk,j/‖V (j + 1)·fk,j‖ in the
basis (v⊥k,j , vk,j) of the tangent plane:

x = 〈 U(j)·fk,j
‖V (j + 1)·fk,j‖

, v⊥k,j〉 and y = 〈 U(j)·fk,j
‖V (j + 1)·fk,j‖

, vk,j〉.

We finally get

v+k,j = − sinβj x v
⊥
k,j +

[
cosβj

‖V (j)·fk,j‖
‖V (j + 1)·fk,j‖

− sinβj y

]
vk,j .

Finally, the error ηk,j satisfies:

‖ηk,j‖ ≤ |1− x|+
∣∣∣∣1− ‖V (j)·fk,j‖

‖V (j + 1)·fk,j‖

∣∣∣∣+ |y|. (5.3)

The end of the proof consists in showing that each of the three terms in
Equation (5.3) is bounded, up to a constant, by the isometric default εk,j .
We first need the following lemma:

Lemma 30. Let (e1, e2) be a direct orthonormal basis of TpT2. Then

|1− ‖e1 · fk,j‖| ≤ εk,j and |〈e1 · fk,j , e2 · fk,j〉| ≤ εk,j .

In particular, if V is any unit vector of TpT2, one has :∣∣∣∣1− ‖e1·fk,j‖‖V ·fk,j‖

∣∣∣∣ ≤ 2 εk,j
(1− εk,j)

= O(εk,j).
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Proof of Lemma 30. Denote by Mk,j the matrix of the first funda-
mental form. By definition, the isometric default εk,j is the Frobenius
norm ‖Mk,j − Id‖ of the matrix Mk,j − Id. We have

|‖e1 · fk,j‖2 − 1| = |te1Mk,je1 −t e1e1| = |te1 (Mk,j − Id)e1|.

Now, by the Cauchy-Schwarz inequality and the fact that the Frobenius
norm is submultiplicative, we have

|te1 (Mk,j − Id)e1| ≤ ‖te1‖‖Mk,j − Id‖‖e1‖ ≤ εk,j .

We deduce
|1− ‖e1 · fk,j‖| ≤

εk,j
1 + ‖e1 · fk,j‖

≤ εk,j .

Similarly, using that te1e2 = 0, we also have

|〈e1 · fk,j , e2 · fk,j〉| = |te1Mk,je2|
= |te1Mk,je2 −t e1e2|
= |te1 (Mk,j − Id)e2|
≤ εk,j .

Let us now bound |y|. By Lemma 30, since U(j) and V (j) are orthonormal,
we have

〈U(j)·fk,j , V (j)·fk,j〉 ≤ εk,j ,

which leads to

|y| ≤ εk,j

‖V (j + 1)·fk,j‖‖V (j)·fk,j‖
≤ εk,j

(1− εk,j)2
= O(εk,j).

Let us now bound |1− x|. From

y2 =

(
‖U(j)·fk,j‖
‖V (j + 1)·fk,j‖

)2

− x2

=
(
‖U(j)·fk,j‖
‖V (j+1)·fk,j‖

− x
) ( ‖U(j)·fk,j‖
‖V (j + 1)·fk,j‖

+ x

)
,

we get ∣∣∣∣ ‖U(j)·fk,j‖
‖V (j + 1)·fk,j‖

− x
∣∣∣∣ ≤ y2 ‖V (j + 1)·fk,j‖

‖U(j)·fk,j‖
≤
ε2k,j (1 + εk,j)

(1− εk,j)3
.

We then have by the triangle inequality and Lemma 30:

|1− x| ≤
∣∣∣∣1− ‖U(j)·fk,j‖

‖V (j + 1)·fk,j‖

∣∣∣∣+

∣∣∣∣ ‖U(j)·fk,j‖
‖V (j + 1)·fk,j‖

− x
∣∣∣∣ = O(εk,j).
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Again by Lemma 30:∣∣∣∣1− ‖V (j)·fk,j‖
‖V (j + 1)·fk,j‖

∣∣∣∣ ≤ 2 εk,j
(1− εk,j)

= O(εk,j).

We have proven that the three terms involved in Equation (5.3) are bounded,
up to a constant, by εk,j , thus

ηk,j = O(εk,j).
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