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Parafermionic observables

and their applications to planar

statistical physics models

Hugo Duminil-Copin

Abstract. This volume is based on the PhD thesis of the author.
Through the examples of the self-avoiding walk, the random-cluster model,
the Ising model and others, the book explores in details two important
techniques:

1. Discrete holomorphicity and parafermionic observables, which have
been used in the past few years to study planar models of statistical
physics (in particular their conformal invariance), such as random-
cluster models and loop O(n)-models.

2. The Russo-Seymour-Welsh theory for percolation-type models with
dependence. This technique was initially available for Bernoulli
percolation only. Recently, it has been extended to models with
dependence, thus opening the way to a deeper study of their critical
regime.

The book is organized as follows. The first part provides a general
introduction to planar statistical physics, as well as a first example of the
parafermionic observable and its application to the computation of the
connective constant for the self-avoiding walk on the hexagonal lattice.
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The second part deals with the family of random-cluster models. It
studies the Russo-Seymour-Welsh theory of crossing probabilities for these
models. As an application, the critical point of the random-cluster model
is computed on the square lattice. Then, the parafermionic observable is
introduced and two of its applications are described in detail. This part
contains a chapter describing basic properties of the random-cluster model.

The third part is devoted to the Ising model and its random-cluster
representation, the FK-Ising model. After a first chapter gathering the
basic properties of the Ising model, the theory of s-holomorphic functions
as well as Smirnov and Chelkak-Smirnov’s proofs of conformal invariance
(for these two models) are presented. Conformal invariance paves the way
to a better understanding of the critical phase and the two next chapters
are devoted to the study of the geometry of the critical phase, as well as
the relation between the critical and near-critical phases.

The last part presents possible directions of future research by describing
other models and several open questions.
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Chapter 1

What is statistical
physics?

1.1 Phase transitions

When we heat a block of ice, it turns to water. This very familiar
phenomenon hides a rather intricate one: the properties of HoO molecules
do not depend continuously on the temperature. = More precisely,
macroscopic properties of a large system of HoO molecules evolve non-
continuously when the temperature rises. For instance, when the
temperature passes through 0 degree Celsius, the density increases from
0.91 to 1 (it is even more impressive when passing from water to vapor,
where the density drops by a factor 1600). This example of everyday life
is an instance of phase transition. In a system composed of many particles
interacting directly only with their neighbors, a phase transition occurs
if a macroscopic property of the system changes abruptly as a relevant
parameter (temperature, porosity, density) varies continuously through a
critical value.

An example of phase transition is given by superconductors.
Superconductivity is the phenomenon of exact zero electrical resistance
occurring in special materials at very low temperature. It was discovered
by Heike Kamerlingh Onnes and his student Gilles Holst in 1911 when
studying solid mercury at very low temperature (liquid helium had been
recently discovered, allowing to work with cryogenic temperatures). Below
a certain critical temperature T, = 4.2 K, the mercury loses its resistance
abruptly (they also discovered the superfluid transition of helium at
T. = 2.2 K). Since then, superconductivity has been studied extensively,
and the number of examples of superconductors has exploded. Practical
applications are numerous, and everyone has the image of a superconductor
levitating above a magnet in mind.

13



14 Hugo Duminil-Copin

Another experiment was performed in 1895 by Pierre Curie. He
showed that a ferromagnet loses its magnetization when heated above
a critical temperature, now called Curie temperature. The experiment
is fairly simple theoretically: one attaches a rod of iron to an axis,
near a large magnet. At room temperature, the rod is attracted by the
magnet. When the rod gets hot enough, the axis abruptly comes back
to vertical, indicating a loss of magnetization. In practice, the difficulty
of the experiment comes from the fact that this temperature equals 770
degrees Celsius for iron. If the composition of the magnet is different,
the critical temperature changes (it can be 30 degrees Celsius only), yet
the phenomenon remains the same: it is always possible to demagnetize
matter by heating it, which naturally leads to the following question: what
is the microscopic phenomenon explaining this macroscopic behavior?

Understanding how local interactions govern the behavior of the whole
system is extremely hard in general, and involves all fields of physics. In
order to simplify the problem, one can introduce a model, i.e. an idealized
system of particles following elementary rules, which should mimic the
behavior of the real model. The area of science in charge of modeling large
systems mathematically is called statistical physics.

1.2 Three models of statistical physics

The previous examples illustrate that different kinds of phase transitions
occur in nature. Before starting, a warning: not everything contained
in this section is necessarily proved mathematically! We simply plan
to motivate through three examples the introduction of diverse notions,
such as critical exponents, universality, correlation length, order of a
phase transition and thermodynamical quantities before we study them
thoroughly in the rest of this book.

1.2.1 Percolation

Definition and phase transition. Percolation is probably the model
of statistical physics which is easiest to define. It was introduced by
Broadbent and Hammersley in 1957 as a model for a fluid in a porous
medium [BH57]. The medium contains a network of randomly arranged
microscopic pores through which fluid can flow. One can interpret the d-
dimensional medium as being a lattice (for instance the hypercubic lattice
with Z< as sites and edges between nearest neighbors), each edge being a
possible hole in the medium. In our setting, an edge is called open if it is a
hole, and closed otherwise. One can then think of the sites of Z¢ together
with open edges as a subgraph of Z<.
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In order to model the randomness inside the medium, we simply state
that edges are open with probability p, and closed with probability 1 - p,
and this independently of each other. The random graph obtained is called
wp, and the probability measure is denoted by P,,.

For a fluid to flow through the medium there must exist a macroscopic
set of connected open edges. The phase transition in this model on Z?
thus corresponds to the emergence of an infinite connected component
(sometimes called cluster) of open edges.

Intuitively, there are more and more open edges in the graph when
p increases. It is thus not surprising that there exists a critical
Pe = pe(Z) €[0,1] such that

e for p < p.(Z?), there is no infinite cluster almost surely,

o for p> p.(Z?), there is an infinite cluster almost surely.
The behavior changes drastically when the porosity parameter p evolves
continuously through p.(Z?). This is the sign of a phase transition if
pe(Z%) lies strictly between 0 and 1. Actually, p.(Z) equals 1 (when the
edge-density equals p < 1, there are always closed edges to the right and
left of every given site), and there is no phase transition in dimension 1.
However, as soon as d > 1 the phase transition occurs in the sense that
pe(Z%) € (0,1). Let us mention that p.(Z?) = 1/2 (we will present a proof
of this fact in this book).

Infinite-cluster density 6(p) and universality. When p > p.(Z%),
there is in fact a unique infinite cluster (this result is non-trivial and will
be proved in this book). Via invariance by translation, this cluster has a
positive density 6(p), which can be defined as

6(p) = P,(0 belongs to the infinite cluster).

We are interested in the behavior of #(p) when p \ p.(Z?). This behavior
is very similar in every dimension, even though subtle differences do occur.
More precisely, 8(p) is always predicted to follow a power law decay in
p — pe. The exponent, usually named 3, depends on the dimension in the
following way:

5/36 ifd=2,
0(p) ~ (p-p.)’ where 8 ={numerical value if de{3,4,5},
1 if d>6.

The value g is called a critical exponent.

As mentioned earlier, one can consider percolation on the hypercubic
lattice. Nevertheless, percolation can be defined on any graph or lattice.
For instance, it could be defined on the hexagonal lattice or the triangular
lattice in dimension two. A striking feature of percolation, and more
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generally of a relevant statistical model, is that the behavior is universal:
the microscopic properties of the model depend on the local geometry of
the graph, while the macroscopic do not. It mimics real phase transitions:
the critical temperature for superconductors ranges from a few degrees
Kelvin to thirty or even more degrees Kelvin, yet the phase transition is
similar. In the case of percolation, connectivity properties between two
neighbors in the square or the hexagonal lattices are not the same, yet the
thermodynamical properties, such as the infinite-cluster density, behave
similarly and the exponent (3 is expected to be the same for any lattice of
a fixed dimension. For instance, 8 equals 5/36 for the hexagonal, triangular
and square lattices.

Correlation length £(p) and order of a phase transition. As a
matter of fact, phase transitions occur always in infinite volume. To
illustrate this, let us make a brief detour and discuss the physical notion of
correlation length. It is also a great opportunity to introduce an additional
critical exponent.

Assume that p is unknown and consider one realization of the percolation
of parameter p on a box of size N € (0,00]. Let us take the point of view
of a statistician in this paragraph and try to test whether the unknown
parameter p is smaller or larger than p.(Z?). When N = oo (in other
words, we look at the percolation on Z¢ itself), testing the existence or
not of an infinite cluster provides us with a perfect test. Now, if N is
finite, the situation is more intricate. Indeed, when N is not too large, it
is even difficult to give good bounds on p while when N is very large, the
configuration looks pretty much like the one on Z¢, and the existence or
not of very large clusters is a good test of p > p.(Z?) against p < p.(Z?).
Roughly speaking, the correlation length is the smallest N = N(p) for
which we can recognize with good probability if p is supercritical or not.
Similarly, the correlation length in the subcritical phase (when p < p.(Z%))
is the smallest N = N(p) for which we can decide if p is subcritical or not.

Mathematically, the correlation length is defined in an a priori
completely different fashion. When p < p.(Z%), the largest connected
components in boxes of size N are typically of size log N. Equivalently,
the probability for 0 to be connected by a path of adjacent open edges to
distance N decays exponentially fast like

P, (the cluster of 0 is of radius larger than N) = exp [ - %(1 + oN(l))]

where £(p) € (0,00) is called the correlation length. In the supercritical
case, a corresponding definition can be introduced.

In the case of percolation, the correlation length is finite when p # p.
and goes to infinity when p # p.. This is not the case for every model
(in general, the divergence of the correlation length is an indicator of a
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second order phase transition which is one among several possible types of
phase transitions). Once again, the behavior of £(p) is expected to follow
a power law governed by a critical exponent:

4/3 ifd=2,
&(p) ~ [p-p™” where v = {numerical value if d € {3,4,5},
1/2 if d> 6.

Remark 1.1. The results above are still conjectural for percolation on Z?
but they have been proved thanks to the works of Smirnov and Lawler-
Schramm-Werner for site percolation on the triangular lattice (see the
references in [BDC13]) and by Hara and Slade for Z¢ with d > 19 in [HS90]
(this bound was recently improved to d > 15 by Fitzner in his PhD thesis
[Fit13]).

1.2.2 Ising model

The celebrated Lenz-Ising model is one of the simplest models in statistical
physics exhibiting an order-disorder transition. It was introduced by Lenz
in [Len20] and studied by his student Ising in his thesis [Isi25]. It is a
model for ferromagnetism as an attempt to explain Curie’s temperature.
See [Nis09] for a historical review of the classical theory.

Definition. The definition is slightly more intricate than for percolation.
In the Ising model, iron is modeled as a collection of atoms with fixed
positions on a crystalline lattice. In order to simplify, each atom has a
magnetic “spin”, pointing in one of two possible directions. We set the spin
to be equal to 1 or —1 depending on their direction. Each configuration
of spins has an intrinsic energy, which takes into account the fact that
neighboring sites prefer to be aligned (meaning that they have the same
spin), exactly like magnets tend to attract or repel each other.

Formally, fix a box A in dimension d. Let o € {~1,1}* be a configuration
of spins 1 or —1. The energy of the configuration ¢ is given by the
Hamiltonian

Hi(0):=- > og0y
T~y
where x ~ y means that x and y are neighbors in A. Note that up to an
additive constant (equal to minus the number of couples z ~ y in A), H/f\
is twice the number of disagreeing neighbors.

Following a fundamental principle of physics, we wish to construct
a model of random spin configurations that favors configurations with
small energy. A natural choice is to sample a random configuration
proportionally to its Boltzman weight: at a temperature T', the probability
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Figure 1.1: A configuration of the Ising model on the square lattice.
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is the so-called partition function defined in such a way that the sum of
the weights over all possible configurations equals 1.

Note that the configurations minimizing the energy, and therefore the
most likely, are the extremal ones: either all +1 or all —1. Nevertheless,
there are only two of them, thus the probability to see them in nature is
tiny. In other words, there is a competition between energy and entropy.
The number of configurations for some level of energy can balance the
decrease of energy. This balance between energy and entropy depends on
the temperature. For instance, if T converges to oo, the configurations
become equally likely and the model is almost equivalent to a percolation
model (on sites this time) where sites are independent. This phase is
called disordered. On the contrary, when T goes to 0, the energy outdoes
the entropy and configurations with a large majority of +1 (or —1) become
typical. This phase is called ordered. The existence of two different phases
suggests a phase transition.
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Phase transition of the Ising model. Assume that spins on the
boundary of the box A are conditioned to be +1 — we denote the measure
thus obtained by “}7 A — and define the magnetization at the origin in the
box A by

MA(T) = :u},A(O'O)a

where oq is the spin at 0 (uf. 4 also denotes the expectation with respect
to the measure ur 5: the magnetization is therefore the average value of
the spin at 0). Since the boundary favors pluses, this magnetization is
positive. When letting the size of the box go to infinity, the magnetization
decreases and converges to a limit, called the spontaneous magnetization
M(T) :=limp nza MA(T).

The phase transition in dimension d > 2 can now be formulated: there

exists a critical temperature T, = T.(d) € (0,00) such that

e when T'>T,, M(T) =0,

e when T'<T,., M(T) > 0.
In other words, when the temperature is large, the correlation between
the spin at the origin and the boundary conditions tends to 0: there is no
long-range memory. When the temperature is low, the spin keeps track of
the boundary conditions at infinity and is still plus with probability larger
than 1/2.

We are now in a position to explain Curie’s experiment. A magnet
imposes an exterior field on an iron rod, forcing exterior sites to be aligned
with it. At low temperature, sites deep inside “remember” that boundary
sites are aligned, while at high temperature, they do not. Therefore,
sites become globally aligned at low temperature, hence explaining the
magnetization and the attraction.

In his thesis, Ising proved that there is no phase transition when d = 1. In
other words, at any positive temperature, the spontaneous magnetization
equals 0. He predicted the absence of a phase transition to be the norm in
every dimension. This belief was widely shared, and motivated Heisenberg
to introduce a famous alternative model where spins take value in the
sphere S% in 3d (in fact, this is the classical counterpart, first studied in
[Hei28] of the quantum Heisenberg model).

However, some years later Peierls [Pei36] used estimates on the length
of interfaces between spin clusters to disprove the conjecture, showing a
phase transition in the two dimensional case. In fact, a phase transition
occurs in every dimension d > 2, thus proving the prediction of Ising to
be wrong. The name “Ising model” was actually coined by Peierls in his
publication. Ising retired from academia, discovering 25 years later that
his model had become one of the most famous models of statistical physics.

Physical phase transition. Fixing boundary conditions to be +1 or
-1 is not completely satisfying physically. In order to mimic the real life
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experiment, let us add a magnetic field A in the following way: redefine
the energy to be

H[f\yh(a) = — Z 0,0y — h Z O

T~y xeA

Obviously, h favors pluses when it is positive (the energy decreases for each
spin +1), and minuses when it is negative. Exactly as before, the measure
1A, 7.5 is defined by assigning to each configuration a weight proportional to
exp[—%HIth(U)]. As expected, M(T,h) = pa,1n(00) is strictly positive
when h > 0 and strictly negative when h < 0, but what about h going
to 07 This operation corresponds to removing the magnetic field in the
model. A phase transition occurs in infinite volume, at the same critical
temperature T, as above in the following way:

e When T >T,., M(T,h) goes to 0 as h goes to 0.

e When T <T,., M(T,h) goes to M(T) >0 as h goes to 0 from above,

and to —M (T as h goes to 0 from below.

Therefore, at low temperature, the magnet keeps a spontaneous
magnetization of the sign of the magnetic field that was surrounding it.

Can we find the equivalent of the percolation critical exponent
B? Let us study the phase transition, and in particular try to find the
equivalent of percolation critical exponents. Exactly as in the percolation
case, the behavior of the magnetization M (T) when T approaches T, from
below follows a power law:

1/8 if d =2,
M(T) ~ (T.-T)"” where 3=10.3269... ifd=3,
1/2 if d>4.

The critical exponent 8 can be related to the exponent for the infinite-
cluster density of percolation via the class of random-cluster models (see
Chapter 7). We may also define the exponent v as follows. First, when
T <T,, it is predicted that
f ||
) = -—(1+ m|,

Hir(o0rs) = exp| - 2 (L ou(1)]
where &(T') is called the correlation length. The exponent v is then defined
by the formula £(T) ~ (T, -T)™ as T ~ T, (see Chapter 11 for more
details).

1.2.3 Self-avoiding walks

Around the middle of the twentieth century, Flory and Orr introduced
self-avoiding walks (SAW) as a model for ideal polymers [Flo53, Orrd7].
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Consider a lattice I (for instance Z? or the hexagonal lattice H): a
self-avoiding walk is a self-avoiding sequence of neighboring sites. More
formally, a walk of length n € N is a map v : {0,...,n} - L such that ~;
and 7;41 are nearest neighbors for each 7 € {0,...,n—1}. An injective walk
is called self-avoiding.

Enumeration of self-avoiding walks. The first question that pops to
mind is the question of the enumeration of self-avoiding walks of length n:

What is the number ¢, of SAWs of length n (on the lattice L)
that start from the origin?

While computations for small values of n can be made by hand (Orr
found c¢g = 16926 on L = Z3), they quickly become impossible to
perform, due to the fact that ¢, grows exponentially fast. With today’s
technology and efficient algorithms, one may enumerate walks up to
length 71 on Z? (see [Clil3]) and 36 on Z* (see [SBB11] where a new
algorithm is used together with 50000 hours of computing time to get
c36 = 2941370856 334 701 726 560 670).

No exact formula is expected to hold for general values of n but it is
still possible to study the asymptotic behavior of ¢, as n becomes large.
Since a (n +m)-step SAW can be uniquely cut into a n-step SAW and a
parallel translation of a m-step SAW, we infer that

Cn+m < CpCm,

from which it follows that there exists p.(IL) € [1,+00) such that
1
pe(IL) := lim ¢, .

The positive real number p.(L) is called the connective constant of the
lattice. We thus obtain that ¢, = . (IL)"*°(™) and the computation of the
connective constant becomes the first step towards the understanding of
the asymptotic behavior of ¢,.

Unfortunately, explicit formulae for pu.(L) are not expected to be
frequent, and mathematicians and physicists only possess numerical
predictions for the most common lattices! with the notable exception of

the hexagonal lattice H, for which y.(H) is exactly equal to /2 + /2 (see
the next chapter).

Overcoming the deception due to the absence (in general) of an explicit
formula for u.(IL), one can use this quantity to get sharper predictions

Mor instance pc(Z2) = 2.63815853035(2) [CJ12] and u(Z3) = 4.684039931(27)
[Cli13], where the parentheses correspond to the margin errors.
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Figure 1.2: A 1000-step self-avoiding walk on the square lattice ((©)
Vincent Beffara).

on the behavior of ¢,. Physicists (always one step ahead) conjecture that

4332 ifd=2,
cn ®n" (L) where v ={1.162... ifd=3,

1 if d > 4 with log corrections for d = 4.
Above, d refers to the dimension of the lattice. Once again,  is therefore
a universal exponent depending only on the dimension of the lattice. In
this context, universality seems even more surprising: it implies that even
though the number of SAWs is growing exponentially at different speeds for
say the hexagonal and the square lattice, the correction to the exponential
growth is the same for both lattices.

Mean-square displacement. Flory was not interested in the
combinatorial aspect of SAWs but rather in its geometry. He predicted
that the averaged squared Euclidean distance between the ending point
and the origin for SAWs of length n

WP =~ 3 h@P

n ~oflengthn

behaves like n*/? in dimension 2, where y(n) is the last step of an n-steps
SAW. Later, physicists provided strong evidence that

3/4 if d =2,
(Ilv(n)P) » n®  where v={0.59... ifd=3,
1/2 if d> 4.
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It is now a good place to compare SAWs to the simple random walks
model on d-dimensional lattices. A walk is a trajectory which is possibly
self-crossing. The number of walks of length n is obviously D™, where
D is the degree of the lattice, and the uniform measure on the family of
walks of length n has a nice interpretation: it corresponds to the random
walk constructed as follows: every step, the walker chooses a neighbor
uniformly at random. This model is much better understood than the
SAW (for instance, (|’y(n)|2> behaves asymptotically like n).

SAWSs are more spread (they go further) than simple random walks in
dimensions 2 and 3. This fact is expected since a self-avoiding trajectory
repulses itself. Interestingly, it is no longer true when the dimension
becomes larger. It is actually possible to guess that this would occur,
since the simple random walk itself becomes macroscopically self-avoiding
at large scales when d > 4.

Phase transition for SAWs. So far, the SAW is not fitting in the
framework of statistical physics since it does not depend on any parameter
and does not exhibit a phase transition. For this reason, let us restate the
model in a slightly different way.

Imagine we are now modeling a polymer in a solvent tied between two
points a and b on the boundary of a domain . We can model these
polymers by SAWs on a fine lattice Qg := dL n Q of mesh size § « 1.
In order to take into consideration the properties of the solvent, let = be
a real positive number. Our polymer will be a curve picked at random
among every possible SAWs in s from as to bs (a5 and bs are the closest
points to a and b on §2s), with probability proportional to z!, where [v]
is the length of the SAW ~. More precisely, let I's(€,a,b) be the set of
self-avoiding trajectories from as to bs in 5. The random polymer will
have the law

[vs]
X
]P)LMS(’Y&) = IM .

v€el's(Q,a,b)

This model of random interface exhibits a phase transition when z
varies?.  On the one hand, when z is very small, the walk is penalized
very much by its length, and it tends to be as straight as possible. On the
other hand, if = is very large, the walk is favored by its length and tends

to be as long as possible. Therefore, there exists x. such that:

e When z < z., s (which is a random curve) becomes ballistic when
0 goes to 0: it converges to the (deterministic) geodesic between a
and b in € [Tof98].

2Here, § — 0 replaces the passage to the infinite-volume n — oo for percolation and
Ising.
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e When z > z., 75 converges to a random continuous curve filling the
whole domain € when ¢ goes to 0 [DCKY11].

It is possible to prove that x. = 1/u.(L). In other words, in order to
obtain a critical model, one should penalize a walk of length n by p.(L)™
(which is somewhat intuitive, since there are roughly u.(IL)™ of them).
When z = z., the sequence (s) should converge in the space of random
continuous curves when § goes to 0. In particular, the possible limit
curves should be invariant under scaling. Typical objects having the scale-
invariance property are called fractals, and it is conjectured that the scaling
limit of SAWs at = = z. is indeed a random fractal.

Flory’s exponents and mean-field approximation. Since it is of
historical interest, let us sketch Flory’s original determination of v (a little
bit of sweetness in the hostile world of critical exponents). We wish to
identify the typical distance N of the last site y(n) of a n-step self-avoiding
walk. In order to do so, we compute the probability of |y(n)| = N in two
different ways.

First, let us make the assumption that sites are roughly spread on the
box of size N (actually one could take cg - N with a very large constant
instead of N, but this would not matter), and that all sites play symmetric
roles with respect to each other. We thus know that at each step k+1 < n,
a random walker must avoid the k previous sites if it wants to remain self-
avoiding, so that it must choose one of the N? — k available sites. Thus,
the probability that v is still self-avoiding after n steps is of order

n—-1 Nd —k n—1 TL2
— ) wmexp|- Y k/N| mexp|-—

05 o (-5 ) ool 5]
as long as n << N, The assumption consisting in forgetting geometry (we
do not require that the (k + 1)-th site is a neighbor of the k-th one) is
called the mean-field approzimation.

Second, make the natural assumption that the end-point of the walk is
distributed as a Gaussian, the probability for a walk to be at x after n
steps would then be of the order of

1
—7z P (=lz[* /).

Therefore, the probability that it ends at distance N from the origin is
then of the order of

1
N1 Wexp(—]\ﬂ/n).

(The term N ! comes from the fact that there are of order N9! sites
at distance N from the origin.) Equaling the two quantities, we find
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that n® ~ N2 je. N ~ n3(@*2) Tt gives the following predictions for
d=1,2,3,4:

Lifd=1,
|spaita=2,
Rley = 305 ipd = 3,
1/2 it d = 4.

Flory’s argument is slightly more involved and checks in particular that
the reasoning cannot be valid when d > 4. Surprisingly, the prediction is
true for d = 1,2 and 4. It is slightly off for d = 3. In fact, the prediction is
obvious when d = 1. For d = 4, the mean-field approximation is valid,
even though its rigorous justification is a very hard problem which is
currently under investigation [BIS09, BDS11]. Interestingly enough, the
prediction in dimension 2 is saved by the surprising cancellation of two
large mistakes. The probability to be self-avoiding is much smaller than
the one described above. In the same time the Gaussian behavior of the
walk is also completely wrong.

Flory’s argumentation (especially in dimension 4) emphasizes an
important fact of statistical physics: the mean-field approximation
(i.e. assuming that the system lives on the complete graph) provides
tractable ways to predict values for critical exponents and in large enough
dimensions, these predictions are right. The reason for this connection
is actually much deeper than Flory’s argument. Roughly speaking, high-
dimensional lattices behave with respect to statistical models like trees
or complete graphs (in such case we speak of mean-field behavior). The
dimension at which lattice exponents start to equal mean-field exponents is
called the upper critical dimension d.. It is equal to 4 for the self-avoiding
walk and the Ising model, while it is 6 for percolation.

On the contrary in low dimensions, the behavior does not correspond
to the mean-field one. Interestingly, the critical exponents in this case
are all rational and fairly simple, which suggests a specific feature of two-
dimensions that we shall discuss now.

1.3 Why two dimensions?

In the previous section, we studied three very different models of statistical
physics which shared properties concerning their phase transitions. On
the one hand, critical exponents become independent of the dimension
when exceeding the upper critical dimension of the model. On the other
hand, exponents have rational values in two dimensions, which suggests
the existence of a deep underlying mechanism coming from physical laws.
Our goal is to understand the phase transition in the latter case and we
now fix d = 2 for the rest of the book.
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In the next paragraphs, we will restrict our attention to critical
models for the following reason. The critical exponents related to
the thermodynamical quantities describing the phase transition are not
independent: they are connected via so-called scaling relations, which do
not depend on the model. For instance, one example of scaling relation is
given by 5 = vn, where § and v were defined in the context of percolation
and the Ising model (they also exist for other statistical models), and 7 is
the one-arm critical exponent, which is defined as follows:

e for percolation at criticality, there is no infinite cluster and the
probability for 0 and x to be connected converges to 0 when z tends
to co. In fact, the behavior should be

1

Pp. (0 & z) ~ W7

e for the Ising model, the magnetization equals 0 and we have

1
pr.(0003) ~ W-

The relation 8 = vn provides one relation between exponents but there
are other such relations (see e.g. [Kes87, BCKS99| for the fundamental
example of percolation, and Sections 11.4 and 13.2.3 for more details). The
important feature of these relations is that they relate exponents defined
away from criticality (for instance v and ) to fractal properties of the
critical regime. In other words, the behavior of a model through its phase
transition is intimately related to its behavior at criticality. It is therefore
natural to focus on the critical phase, which has a rich geometry that we
now discuss.

1.3.1 Exactly solvable models and Conformal Field
Theory:

The planar Ising model has been the subject of experimentations for both
mathematical and physical theories for almost a century. Through a
short history of this model, we shall explain two physical perspectives
on statistical physics.

Exactly solvable models. After Peierls’ proof of the existence of a
phase transition, the next step in the understanding of the Ising model was
achieved by Onsager in 1944. In a series of seminal papers [Ons44, KO50],
Onsager and Kaufman computed the free energy of the model. The formula
led to an explosion in the number of results on the planar Ising model
(papers published on the Ising model can now be counted by thousands).
Among the most noteworthy results:
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e the two-point function was proved to decay as the distance to the
power % by Onsager and Kaufman?® (i.e. n = i with the definition of
the previous page);

e Yang clarified the connection between the spontaneous magnetiza-
tion and the two-point function [Yan52] (the result was derived non
rigorously by Onsager himself);

e McCoy and Wu [MWT73] computed many important quantities of
the Ising model including several critical exponents. The study
culminated with the exact derivation of two-point correlations
pr(ogoy) between sites 0 and x = (n,n) in the whole plane.

See the more recent book of Palmer [Pal07] for an exposition of these and
other results and for precise references.

The computation of the partition function was accomplished later by
several other methods and the model became the most prominent example
of an exactly solvable model. The most classical techniques include the
transfer-matrices technique introduced by Kramers and Wannier (they
were also used by Onsager and then developed by Lieb and Baxter [Lie67,
Bax71] for more general models), the Pfaffian method, initiated by Fisher
and Kasteleyn, using a connection with dimer models [Fis66, Kas61], and
the combinatorial approach to the Ising model, initiated by Kac and Ward
[KW52] and then developed by Sherman [She60] and Vdovichenko [Vdo65],
see also the more recent [DZM*99, Cim12, KLM13].

Despite the number of results that can be obtained using the free energy,
the impossibility to compute it explicitly enough in finite volume makes
the geometric study of the model very hard to perform using the classical
methods. The lack of understanding of the geometric nature of the model
remained unsatisfying for years.

Renormalization Group and Conformal Field Theory. The arrival
of the Renormalization Group (see [Fis98] for a historical exposition)
led to a better physical and geometrical understanding, albeit mostly
non-rigorous. It suggests that block-spin renormalization transformation
(coarse-graining, e.g. replacing a block of neighboring sites by one site
having a spin equal to the dominant spin in the block) corresponds
to appropriately changing the scale and the temperature of the model.
The critical point arises then as the fixed point of the renormalization
transformations. In particular, under simple rescaling the Ising model at
the critical temperature should converge to a scaling limit, a “continuous”
version of the originally discrete Ising model, corresponding to a quantum
field theory. This continuous model leads naturally to the concept of
universality: the Ising models on different regular lattices or even more

3This result represented a shock for the community: it was the first mathematical
evidence that the mean-field behavior was inaccurate in low dimensions!
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general planar graphs belong to the same renormalization space, with a
unique critical point, and so at criticality the scaling limit of the Ising
model should always be the same: it should be independent of the lattice
while the critical temperature depends on it*.

Being unique, the scaling limit at the critical point must be invariant
under translations, rotations and scaling. This prediction enabled [PP66,
Kad66] to deduce some information about correlations.

In [BPZ84b, BPZ84a] Belavin, Polyakov and Zamolodchikov suggested
a much stronger invariance of the model. Since the scaling-limit quantum
field theory is a local field, it should be invariant by any map which is
locally a composition of translations, rotations and homotheties. Thus it
becomes natural to postulate full conformal invariance (under all conformal
transformations® of subregions). This prediction generated an explosion of
activity in conformal field theory®, allowing for non rigorous explanations
of many phenomena, see [ISZ88] for a collection of the original papers of
the subject.

Note that planarity enters into consideration through the fact that
conformal maps form a rich family of operators: conformal maps in
dimension d > 3 are simply compositions of translations, rotations and
inversions, while many other conformal maps can be found in two
dimensions.

Where are we now? The above exposition shows two different
approaches to the same problem relying heavily on two-dimensionality:

e The exact solvability of the (discrete) planar Ising model which
allows rigorous derivations of important quantities yet at the same
time provides a poor geometric understanding.

e The non-rigorous conformal field theory approach, with the
postulate of a “continuum limit” invariant under many geometric
transformations, which allows a deep geometric understanding of the
model.

1.3.2 A mathematical setting for conformal invariance
of lattice models

To summarize, Conformal Field Theory asserts that a planar statistical
model, such as percolation, Ising or self-avoiding walk, admits a “scaling

4The same phenomenon occurs for self-avoiding walks: the connective constant
depends on the lattice, while the polynomial correction to the exponential term does
not.

5Conformal maps are maps on open sets of C conserving the angles. Equivalently,
they are the one-to-one holomorphic maps.

6Conformal field theory is the domain of physics studying quantum field theories
which are invariant under conformal transformations.
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limit” at criticality, and that this scaling limit is a conformally invariant
object. From a mathematical perspective, the notion of conformal
invariance of an entire model is ill-posed, since the meaning of scaling
limit depends on the object we wish to study (interfaces, size of clusters,
crossings, etc). Nevertheless, a mathematical setting for studying scaling
limits of interfaces has been developed in recent years, and for this reason
we choose to focus on this aspect in this document.

Let us start with the study of one interface, meaning one curve
separating two phases of the model. For pedagogical reasons, we simplify
the presentation as much as possible by providing three examples in
elementary cases. Fix a simply connected domain (€, a,b) with two points
on the boundary and consider discretizations ({25, as,bs) of (2,a,b) by an
hexagonal lattice of mesh size 6. The clockwise boundary arc of s from
ags to bs is denoted by asbs, and the one from bs to as by bsas.

e The simplest model to start with is the critical SAW. The model of
random polymer between as and bs contains by definition only one
interface (the walk itself), denoted by v§4W.

e Let us now turn our interest to the critical Ising model on the
triangular lattice (the definition is similar to the definition on the
square lattice). Sites of the triangular lattice can be seen as faces of
the hexagonal one, and we may therefore see this model as a random
assignment of spins —1 and +1 on faces of the hexagonal lattice.
Assume now that we fix the spins to be +1 on the faces outside 25
and adjacent to asbs and —1 on the faces outside Q5 and adjacent
to bsas. With this convention, there exists a unique interface on the
hexagonal lattice between +1 and —1 going from as to bs. We denote
this interface by ’y}ssmg.

e We may also consider a percolation model defined as follows. Every
face of the hexagonal lattice is open with probability 1/2, and closed
with probability 1/2. If we fix faces outside €25 and adjacent to asbs
to be open, and faces outside 25 and adjacent to bsas to be closed,
we obtain a unique interface between closed and open faces going

from as to bs. This interface is called 5.

Conformal field theory leads to the prediction that v§4W, 'y(I;Sing and 75"
converge as § — 0 to a random, continuous, non-self-crossing curve from a
to b staying in €2, and which is expected to be conformally invariant in the

following sense.

Definition 1.2. A family of random non-self-crossing continuous curves
Y(Q,a,b)> oing from a to b and contained in €2, indexed by simply connected
domains with two marked points on the boundary (Q,a,b) is conformally
invariant if for any (9, a,b) and any conformal map 9 : Q — C,

Y(V(0,a,b)) has the same law as vy (), v (a),¢(b))-
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Figure 1.3: The interface of an Ising model at critical temperature ((©)
Stanislav Smirnov).

In words, the random curve obtained by taking the scaling limit of SAWs
on (¥(),¥(a),1(b)) has the same law as the image by 9 of the scaling
limit of SAWs on (£,a,b) (and similarly for percolation and the Ising
model). Let us emphasize how powerful this prediction is: it is clear,
when working on the hexagonal lattice, that rotations by an angle 7/3 are
preserving the model. Conformal Field Theory predicts that the model
possesses much more symmetries, such as rotations by any angle, as soon
as we consider the scaling limit.

In 1999, Schramm proposed a natural candidate for the possible
conformally invariant families of continuous non-self-crossing curves. He
noticed that interfaces of models further satisfy the domain Markov
property’ which, together with the assumption of conformal invariance,
determine a one-parameter families of possible curves. In [Sch00], he
introduced the Stochastic Loewner evolution (SLE for short) which is
now known as the Schramm-Loewner evolution. For x > 0, a domain
Q and two points a and b on its boundary, SLE(x) is the random Loewner
evolution in  from a to b with driving process \/kB;, where (B;) is a
standard Brownian motion®. By construction, the process is conformally
invariant, random and fractal. In addition, it is possible to study quite
precisely the behavior of SLEs using stochastic calculus and to derive path

7See Section 9.2 for a formal definition.
8The precise definition of SLE is presented in Section 9.2.
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properties such as the Hausdorff dimension, intersection exponents, etc...
Depending on «, the behavior of the process is very different, as one can
see on Fig. 1.4. The prediction of Conformal Field Theory then translates

into the following predictions for models: 7$4W, ’yésmg and 75"’ converge

as 6 — 0 to Schramm-Loewner Evolutions®.

The parameter x depends on the model. It is usually possible to
guess which one it should be and for instance, self-avoiding walks should
converge to SLE(8/3), while Ising interfaces should converge to SLE(3)
and percolation interfaces to SLE(6).

For completeness, let us mention that when considering not only a single
curve but multiple interfaces, families of interfaces in a model are also
expected to converge in the scaling limit to a conformally invariant family
of non-intersecting loops. In the case of self-avoiding walks, the problem
does not make sense, yet for the Ising or percolation models, there are
many interfaces. For instance, consider the Ising model with +1 boundary
conditions in an approximation of 2. Interfaces between +1s and —1s
now form a family of loops. By consistency, each loop should look like
a SLE(3). Sheffield and Werner (see e.g. [SW10, SW12]) introduced
a one-parameter family of processes of non-intersecting loops which are
conformally invariant. These processes are called the Conformal Loop
Ensembles CLE(k) for x > 8/3. The CLE(k) process is related to the
SLE(k) in the following manner: the loops of CLE(k) are locally similar
to SLE(k).

1.3.3 Conformal invariance of an observable in
percolation and Ising models

Even though we now have a mathematical framework for conformal
invariance, proving convergence of the interfaces in (Qs,as,bs) to SLE
remains an extremely hard task. Nevertheless, working with interfaces
offers an important simplification that we illustrate in the cases of
percolation and the Ising model.

In 1992, the observation that properties of interfaces should also be
conformally invariant led Langlands, Pouliot and Saint-Aubin [LPSA94|
to publish numerical values in agreement with the conformal invariance in
the scaling limit of crossing probabilities in percolation!®. More precisely,
consider a Jordan domain 2 with four points A, B,C and D on the
boundary. The 5-tuple (2, A, B,C, D) is called a topological rectangle.
The authors checked numerically that the probability Cs(2, A, B,C, D)
of having a path of adjacent open sites between the boundary arcs AB
and CD converges as § goes to 0 towards a limit which is the same for

9See Section 9.2 for more details on the notion of convergence considered here.
10The authors attribute the conjecture on conformal invariance of the limit of crossing
probabilities to Aizenman.
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Figure 1.4: Two examples of Schramm-Loewner Evolutions (SLE(8/3) and
SLE(6)). The behavior is very different: the first one is almost surely a
simple curve (i.e. non intersecting) while the second one has self-touching
points. The Haussdorff dimensions are also different. ((©) V. Beffara).
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(Q,A,B,C,D) and (', A’, B’,C’, D) if they are images of each other by
a conformal map. Notice that the existence of such a crossing property can
be expressed in terms of properties of a well-chosen interface, thus keeping
this discussion in the frame proposed earlier.

The paper [LPSA94], while only numerical, attracted many
mathematicians to the domain. The same year (1992), Cardy [Car92]
proposed an explicit formula for the limit. In 2001, Smirnov [Smi01] proved
Cardy’s formula rigorously for critical site percolation on the triangular
lattice, hence rigorously providing a concrete example of a conformally
invariant property of the model. A remarkable consequence of this theorem
is that, even though Cardy’s formula provides information on crossing
probabilities only, it can in fact be used to prove much more. In particular,
it implies the convergence of interfaces to the trace of SLE(6). In other
words, conformal invariance of one well-chosen quantity can be sufficient
to prove conformal invariance of interfaces.

This phenomenon is not expected to be restricted to the percolation case.
In 2010, Smirnov struck a second time by exhibiting conformally covariant
(see Chapter 9 for a definition of this concept) observables for the so-called
FK-Ising [Smil0] and Ising [CS12] models. Nonetheless, in this case the
study of the critical regime is harder than in the percolation case: long-
range dependence at criticality makes the mathematical understanding
more involved and even proving convergence of interfaces to SLEs is
difficult. However, the philosophy remains the same and full conformal
invariance follows from conformal covariance of these observables.

We conclude this paragraph with a warning (or a touch of hope,
depending on personal opinion): there are very few models which have
been proved to be conformally invariant. For instance, the self-avoiding
walk does not belong to this restricted club and it remains a very important
open problem to prove convergence of self-avoiding walks to SLE(8/3).

1.3.4 Discrete holomorphicity and statistical models

The previous section explained that it is sufficient to prove convergence
of discrete observables to conformally covariant objects in order to
understand the critical phase, but how do we do it? Archetypical examples
of conformally covariant objects are holomorphic solutions to boundary
value problems such as Dirichlet or Riemann problems. It becomes natural
that discrete observables which are conformally covariant in the scaling
limit are naturally preharmonic or preholomorphic functions, i.e. relevant
discretizations of harmonic and holomorphic functions, which are solutions
of discretization of classical Boundary Value Problems. It therefore comes
as no surprise that proofs of conformal invariance are based on discrete
complexr analysis in a substantial way.

The use of discrete holomorphicity appeared first in the case of
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dimers [Ken00] and has been extended to several statistical physics
models since then. Other than being interesting in themselves,
preholomorphic functions have found several applications in geometry,
analysis, combinatorics, probability, and we refer the interested reader
to the expositions by Lovéasz [Lov04], Stephenson [Ste05], Mercat [Mer01],
Bobenko and Suris [BS08].

To conclude this section, we are now in possession of a natural
mathematical framework to prove conformal invariance of a model: one
needs to prove conformal covariance of an observable. Proving this requires
a deep understanding of discrete complex analysis, and of its connections to
the model. Very often, the integrability properties of the underlying model
are at the heart of this connection, thus exhibiting a new link between
exactly solvable models and Conformal Field Theory.

1.4 A model to rule them all: the random-
cluster model

Percolation, Ising and self-avoiding walks provide us with three examples
of models which are conformally invariant in the scaling limit (only
conjecturally for the self-avoiding walk). They correspond to three values
of the Schramm-Loewner Evolution (k equals 6, 3 and 8/3 respectively).
But what about other values of k? Is it always possible to find a
conformally invariant model whose interfaces converge to SLE(x)? More
importantly, can these seemingly very different models be related to each
other? At last, can this relation explain the similarities between the
different models? The answer to these questions come from the existence
of two families of models, the random-cluster model and the O(n)-models.
These models will be at the heart of this book and we would like to briefly
present the random-cluster model now to motivate the next chapters.

Fortuin and Kasteleyn introduced the random-cluster model in 1969.
Roughly speaking, the random-cluster model (it is also named Fortuin-
Kasteleyn percolation) on a graph G is also a percolation model, in the
sense that the output is a random subgraph of G with the same set of sites
and a subset of its edges, but no longer independent.

More precisely, let p € [0,1] and ¢ € (0,00). An edge of a finite graph G
is either open or closed. The random-cluster configuration w is the graph
obtained by keeping only the open edges. The probability of w for the
random-cluster model on G with parameters p, ¢ is given by

1
ZG-,znq

# open edgeS(l _ p)# closed edgesq# connected components

¢p7q(w) = p

where Zg .4 is once again a normalizing factor called the partition function
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of the model. When ¢ = 1, the model is simply percolation. When ¢ # 1,
the model is different and exhibits long range dependence.

Figure 1.5: A macroscopic cluster in a critical percolation configuration
with p =1/2.

The previous measures are a priori defined on finite subgraphs of Z2,
however it is possible to extend the model to Z2. As for percolation, the
random-cluster model with fixed g > 0 should encounter a phase transition
in p. Below some critical parameter p.(q), there is no infinite cluster, while
above it, there exists a unique infinite cluster.

The phase transition is different when ¢ varies, and the richness of this
behavior is one of the successes of random-cluster models. More precisely,

e when ¢ € (0,4], the transition is expected to be continuous, in the
sense that the density 0(p,q) of the infinite cluster converges to 0
when p N p.(q). The critical phase should also be conformally
invariant, and the collection of interfaces at criticality'! should

We did not describe interfaces in bond percolation on Z?2 or the random-cluster
model, yet one can consider the boundary of connected components for instance. We
will provide more details in the next chapters.
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converge to CLE(xk), where

k = 4w [arccos(—/q/2).

e when ¢ > 4, the phase transition becomes first order and p — 6(p,q)
does not converge to 0 when p goes down to p.(q).

Another important advantage of the random-cluster model is its
connection to other models. When p — 0 with ¢/p — 0, we obtain a
model of a random connected graph, called the uniform spanning tree,
see [LSW11]. When ¢ is an integer, one can play the following game.
Color independently each connected component of a (p, ¢)-random-cluster
configuration w with one of ¢ fixed colors chosen uniformly'?. We obtain
a random coloring o € {1,...,¢}¢ of G. The probability measure P is a
Boltzman measure with energy given by

quG(O') = 2 Z 10’1¢C"y'

xr~Yy

The random coloring of the lattice with law P is called the Potts model
with ¢ colors at temperature 7. When ¢ = 2, it corresponds to the Ising
model (simply call one color +1 and the other —1). Therefore, there
exists a coupling of the Ising model with the ¢ = 2 random-cluster model.
This property links the Ising model to random-cluster models and thus to
percolation.

Conclusion

We presented several aspects of planar statistical physics and we
sketched important links between physics and mathematics. Nevertheless,
most of what we presented is still conjectural. In this book, we make some
of the connections between physics and mathematics rigorous by studying
random-cluster and O(n)-models.

In particular, we will focus on two important theories: the so-called
Russo-Seymour-Welsh theory of crossing events for random-cluster models,
and the discrete holomorphicity of so-called parafermionic observables. In
the specific case of the Ising model and its random-cluster representation
(i.e. with cluster-weight ¢ = 2), these two tools will lead to the rigorous
proof of conformal invariance. For more general cluster-weights, conformal
invariance remains out of reach, but the observable can still be used to
discriminate between second-order and first-order phase transitions (we
will define these concepts later) and to formulate precise conjectures.

12By this we mean that we choose a color for each cluster, and we color every site of
the cluster in this color.



Chapter 1. What is statistical physics? 37

1.5 Organization of the book

The book is organized as follows. Chapter 2 should be understood as a
warm-up: it provides a typical example of the application of parafermionic
observables in the simplest context of self-avoiding walks. Chapter 3
describes the definitions for graphs that will be used in the reminder of
the book.

We then devote an important part of this book to random-cluster models
with cluster-weights ¢ > 1 which are treated in Chapters 4, 5 and 6.
Chapter 4 begins with a description of basic properties of the random-
cluster model. Chapter 5 is devoted to the Russo-Seymour-Welsh theory
and its applications (computation of the critical point, mixing properties,
etc). Chapter 6 deals with the other important tool described in this
book, namely the parafermionic observable. We define the observable and
we describe two of its applications.

The third part of the book focuses on the Ising model and its random-
cluster representation, the FK-Ising model. In this case, the observable
can be proved to be discrete holomorphic. Chapter 7 gathers classical
features of the Ising model. Chapter 8 develops the theory of discrete and
s-holomorphic functions, two crucial concepts for the study of the critical
Ising model. Chapter 9 presents the proofs of conformal invariance of Ising
and FK-Ising models. Chapter 10 dives further into the study of crossings
for the FK-Ising model and their applications to arm-events. Chapter 11
concludes this part of the book by discussing the non-critical Ising model
(in particular we will compute the correlation length).

The last part of the book is composed of two chapters opening new
perspectives. The first one describes parafermionic observables and their
applications to other models. The last one lists important open problems.

=4
Chapter 1 Part 2 [ Chapter 5 ]m[ Chapter 6 ]
basic properties RCM
Part 1 Chapter 2 Chapter 4

basic properties RCM

definition FK-Ising

/\||

Chapter 3
r g
def graphs Chapter 9 Part 3
Chapter 12 [ Chapter 7 Chapter 8 ]
Part 4 basic properties Ising s-holomorphicity

Chapter 13 Chapter 11



Chapter 2

A warm-up: the
connective constant of the
honeycomb lattice equals

V2+/2

The present chapter is intended to offer an elementary application of the
parafermionic observable. It will provide us with the first example of a
parafermionic observable, which can in fact be very easily defined in this
context.

Let H be the hexagonal lattice of mesh size 1, translated and rotated
in such a way that 0 is the center of an horizontal edge. Consider self-
avoiding walks between mid-edges of H, i.e. centers of edges of H (the set
of mid-edges will be denoted by H). The length £(v) of the walk is the
number of vertices belonging to 7. Note that it is equal to the number of
mid-edges visited by the walk minus 1. In particular, a singleton is a walk
of length zero. We wish to estimate the number of self-avoiding walks of
length n starting from the origin'. Let ¢, be the number of self-avoiding
walks of length n starting from 0.

Lemma 2.1 (Hammersley). There exists pi. € [\/2,2] such that

Tim e}/ = i (H).

I The number of SAWs of length n between two vertices is related to the number of
self-avoiding walks of length n starting from mid-edges. The formula is not very explicit
but the ratio of these two quantities is clearly between 1 and 4. Therefore, studying
SAWs starting from vertices or mid-edges will be equivalent as long as we are interested
in a rough estimation of the number of such walks.

38
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Proof. As explained in the introduction, a (n + m)-step SAW can be
uniquely cut into a n-step SAW and a parallel translation of a m-step
SAW. Hence,

Cnt+m £ CpCm,

from which it follows (by a classical lemma on sub-multiplicative sequences
of real numbers) that there exists p.(H) € [1,+00) such that

pe(H) == lim cn%.

Now, a SAW is in particular non-backtracking, and therefore, c,, < 3x2"1.
On the other hand, if we force the walk to take a step to the right every
two steps, we necessarily obtain a self-avoiding trajectory, and therefore
cn 2 2172 O

The previous lemma illustrates the fact that one may estimate p.(H)
by adding more and more conditions on the local geometry of the walk.
The values v/2 and 2 can obviously be improved, since for instance a self-
avoiding walk is not only non-backtracking, but it also does not contain
any cycle of length 6, a fact which prevents many more walks, and shows
that p.(H) < 2. There is a priori no good reason for being able to
compute u.(H) explicitly. Nevertheless, the hexagonal lattice possesses
special properties which make such a derivation possible. More precisely,
B. Nienhuis [Nie82, Nie84] used the Coulomb gas formalism to predict that

pe(H) is equal to v/2 ++/2. Unfortunately, Nienhuis’s derivation is based
on assumptions that seem difficult to justify. In this chapter, we propose
an alternative way of approaching the problem and we rigorously prove
the following statement.

Theorem 2.2 (Duminil- Copln Smirnov [DCS12b]). For the hexagonal

lattice, pe(H) = /2 ++/2

We will write v : a - F if a walk - starts at ¢ and ends at some mid-edge
of E c H. In the case E = {b}, we simply write v:a - b. Let z >0. We
will work with the (increasing in x) sum

Z(xz)= ), 2/ € (0,+00].
y:ia—H

This sum does not depend on the choice of a. Establishing p = /2 + /2
is equivalent to showing that Z(z) = +oo for = > 1/3/2++/2 and

Z(z) < +oo for x < 1/\/2++/2. To this effect, we first restrict walks to
bounded domains and weigh them counting their windings. The vertex
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operator obtained like that leads to a parafermionic® observable which is
a generalization of the spin fermionic observable. To simplify formulese
below, we set z. := 1/v/2 + /2.

The chapter is organized as follows. In Section 2.1, the parafermionic
observable is introduced and its principal property is derived. Section 2.2
contains the proof of Theorem 2.2.

2.1 Parafermionic observable

A (hexagonal lattice) domain €2 c H is a union of all mid-edges emanating
from a given collection of vertices V() (see Fig. 2.1): a mid-edge z
belongs to  if at least one end-point of its associated edge is in V(2),
it belongs to 9 if only one of them is in V(2). We further assume Q
to be simply connected, i.e. being connected and having a connected
complement.

Figure 2.1: Left. A domain 2 with two marked mid-edges a and z. Right.
The winding of a curve 7 can also be seen as the number of left turns minus
the number of right turns times 3. We deduce that on the top, the winding
equals 27 (17 left turns and 11 right turns), in the middle —27 (6 left turns
and 12 right turns) and for the two bottom examples, 0 (respectively 3 and
6 left and right turns).

Definition 2.3. The winding W, (a,b) of a self-avoiding walk v between
mid-edges a and b (not necessarily the start and the end) is the total
rotation of the direction in radians when ~ is traversed from a to b, see
Fig. 2.1.

2The name parafermionic will be justified later in the book.



Chapter 2. Connective constant of the honeycomb lattice 41

The parafermionic observable is defined as follows: for a € 92 and z € 2,
set
F(z)=F(a,z,z,0)= > e lo W (a,2) . 0(7)

ye: a—z

Lemma 2.4. If z = z.(= 1/\/2+V/2) and o = g, then F satisfies the
following relation for every vertex v e V(Q):

(p=v)F(p) + (¢-v)F(q) + (r-v)F(r) =0, (2.1)
where p,q,r are the mid-edges of the three edges adjacent to v.

Note that with o = 5/8, the term e 17W+(a:2) gives a weight A or A per
left or right turn of -, where

)\=exp(—ig-g)=exp(—ig—z).

Proof. In this proof, we further assume that the mid-edges p, g and r are
oriented counterclockwise around v. Note that (p—v)F(p)+(¢—-v)F(q) +
(r—wv)F(r) is a sum of “contributions”

c(7) = (z —v)e WA (0:2) L)
over all possible walks v finishing at z € {p,q,r}. The set of walks =
finishing at p, ¢ or r can be partitioned into pairs and triplets of walks in
the following way, see Fig 2.2:

e If a walk 7, visits all three mid-edges p, ¢ and r, it means that the
edges belonging to 47 form a self-avoiding path plus (up to a half-
edge) a self-avoiding loop from v to v. One can associate to 1 the
walk passing through the same edges, but exploring the loop from v
to v in the other direction. Hence, walks visiting the three mid-edges
can be grouped in pairs.

e If a walk v, visits only one mid-edge, it can be grouped with two
walks 2 and 3 that visit exactly two mid-edges by prolonging the
walk one step further (there are two possible choices). The reverse is
true: a walk visiting exactly two mid-edges belongs to the group of
a walk visiting only one mid-edge (this walk is obtained by erasing
the last step). Hence, walks visiting one or two mid-edges can be
grouped in triplets.

If the sum of contributions for each pair and each triplet vanishes, then
the total sum is zero. We now intend to show that this is the case.

Let 71 and 7» be two walks that are grouped as in the first case. Without
loss of generality, we assume that v, ends at ¢ and 5 ends at r. Note that
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~1 and 7y, coincide up to the mid-edge p since (71,72 ) are matched together.
We deduce that £(v1) = £(72) and

W’h (a, q) = W’n (aap) + W'Yl (pa q) = W’Yl (a,p) - 4?71—7

W’Yz (aa ’I“) = W"/z (aap) + W’Yz (pa ’I“) = W"ﬂ (a,p) + 4?”

In order to evaluate the winding of v, between p and ¢, we used the fact
that a is on the boundary and €2 is simply connected. Altogether,

e(m) +e(y2) = (g - v)e TV (@Dl o (1 yy)eTioWra(ar) L(02)
=(p- v)e 1 Wn (M’)xﬁ(“) (j5\4 +3)\4) =0
where j = ¢i27/3,
A = exp(-i57/24).
Let 41, 72,73 be three walks matched as in the second case. Without loss
of generality, we assume that v; ends at p and that v, and 73 extend ~; to
q and r respectively. As before, we easily find that £(v2) = £(y3) = £(71)+1
and

The last equality is due to the chosen value

W’Yz (a?q) = W’Yz (a>p) +W’Y2 (p7 q) = W’Yl (a’vp) - %a
W’Y3 (a,r) = W’Y3 (a,p) + W’Y3 (p,?“) = W'Yl (a,p) + %

Following the same steps as above, we obtain

(1) +e(r2) +c(r3) = (p—v)e W (PO (14 25X +2.5N) = 0.

Here is the only place where we use the crucial fact that z ;! = /2 + V2=

2cos §. The claim follows readily by summing over all pairs and triplets.
]

&%? 9? )ﬂ? 1

Figure 2.2: Left: a pair of walks visiting the three mid-edges and matched
together. Right: a triplet of walks, one visiting one mid-edge, the other
twos visiting two mid-edges, which are matched together.

Remark 2.5. Coeflicients above are three cube roots of unity multiplied
by p— v, so that the left-hand side can be seen as a discrete integral along
an elementary contour on the dual lattice in the following sense. Let H*
be the triangular lattice constructed as follows: put a dual vertex v in the



Chapter 2. Connective constant of the honeycomb lattice 43

center of each face of H, and edges between nearest neighbors. For a path
~v:{0,...,n} — H*, where ~; and v;,1 are neighbors for every 0 < i < n,
the discrete integral of a function F': H — C is defined by

n—1
§ Fyazi= Y F(&) (st ). (2.2)
v i=0 2

Equation (2.1) implies that for any v € V (), the integral of F' along
the path 79 = a, 1 = b, 72 = ¢ and ~3 = a, where a, b and c are the three
dual vertices corresponding to faces around v, is zero. More generally, let
~v:{0,...,n} — H* be a self-avoiding path with 7, = 7. By summing
the previous relation over vertices surrounded by +, the discrete integral
along 7 also vanishes.

The fact that the integral of the parafermionic observable along discrete
contours vanishes is a glimpse of conformal invariance of the model in the
sense that the observable satisfies a weak notion of discrete holomorphicity,
see Chapter 13 for more details. Nevertheless, these relations do not
uniquely determine F: given a function f on the boundary, the solution of
the Boundary Value Problem: discrete contours of F' vanish and F'(z) =
f(z) for any z on the boundary of €2 is not unique. Indeed, the number
of mid-edges (and therefore of unknown variables) exceeds the number of
linear relations (2.1) (which corresponds to the number of vertices). (We
will see later that stronger notions of discrete holomorphicity will satisfy
this crucial property that boundary value problems possess unique discrete
holomorphic solutions.)

Let us conclude this remark by mentioning that these relations may also
be understood as discrete Cauchy-Riemann equations around vertices of
H. We will provide more details in the case of the square lattice later in
the book.

2.2 Proof of Theorem 2.2

Counting argument in a strip domain. We consider a vertical strip
domain St composed of T strips of hexagons, and its finite version St 1
cut at height L at an angle of 7/3, see Fig. 2.3. Then

V(Sr) = {z € V(H):0<Re(z) < ST; 1},
V(Sr.p) = {z € V(S7) : V/3Im(2) - Re(z)| < 3L}.

Denote by « the left boundary of Sr and by (§ the right one. Symbols
¢ and € denote the top and bottom boundaries of St . Introduce the
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following positive quantities:

T 14
AT = Z 2O,
~yeSt,Lra—ax{a}
T . 2(7)
BT,L : Z T ,
ycSt,rra—pB
Ef = Z 2/,

yeST, L a—eUE

L hexagons 1

Figure 2.3: The domain St ;, and its boundary parts a, 3, € and €.

Lemma 2.6. When x =z, we have

1=cq AT, + Bep + e Epep, (2.3)
where ¢, = cos(%“) and c. = cos(%).

Remark 2.7. The proof (see below) of this lemma can be understood
in the following way: we used the fact that the discrete integral along
the exterior boundary of St 1 vanishes. Then, we add the information
that the winding of self-avoiding walks ending at boundary mid-edges is
deterministic and explicit. Miraculously, even if the fact that discrete
contour integrals vanish does not determine a function from boundary
values, it is still sufficient to study their “average boundary value” and to
obtain highly non-trivial relations like (2.3).
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Proof. Sum the relation (2.1) over all vertices in V(Sy,). Values at
interior mid-edges disappear and we arrive at

0==>F(2)+ Y. F(2)+j Y. F(z)+j ). F(z), (2.4)

zex zef z€e z€E
where j = €*™/3 again. Using the symmetry mirror image of the domain,
we deduce that F(2) = F(z), where % is the symmetric of z with respect
to the real axis. Observe that the winding of any self-avoiding walk from
a to the bottom part of « is —7 while the winding to the top part is 7. We
conclude

—iom iomw

S F(z)=Fa)+ Y F(z):1+% -

zea zean{a}
3
=1 —cos(g) AT =1-caAT .

Above, we have used the fact that the only walk from a to a is of length
0. Similarly, the winding from a to any half-edge in 8 (resp. € and &) is 0

(resp. 2{ and —%”), therefore

Y. F(z)=Bf, and jY F(z)+j).F(z)= cos(g) Ef =cEf .

z€ef zee Z€E

The lemma follows readily by plugging these three formule in (2.4). O

Observe that sequences (A7 1 )rso and (Bf ;)10 are increasing in L
and are bounded for z < z. thanks to (2.3) and the monotonicity in z.
Thus, they have limits

x . . T ¢
A7 = lim AT = ) 2t
L—oco
ycSt:a—ax{a}
x . . x l
Bj:=lim Bf = 5 '),
L—oo -
yeSria—pB

When z = z., via (2.3) again, we conclude that (E7°; )10 decreases and
converges to a limit £7° :=limy . E7°, . Then, (2.3) implies

1 = co A% + Byf +c.Ejc. (2.5)

Proof of Theorem 2.2. Let us first prove that Z(z.) = +oco, which

implies p > /2 + /2. Suppose that for some T, E7¢ > 0. As noted before,
E7¢, decreases in L and therefore

Z(xc)> Y, Efep > Y Efe =+00,
L>0 L>0
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which completes the proof. Assume on the contrary that E7° = 0, then
(2.5) simplifies to
1=co A% + Bie. (2.6)

Observe that walks entering into account for A7¢,; and not for A7* have to
visit some vertex adjacent to the right edge of Sr,1. Cutting such a walk
at the first such point (and adding half-edges to the two halves), we obtain
two walks “crossing” Sr.1 (these walks are sometimes called bridges). We
conclude that )

Afs - A% <z (Bi,)". (2.7)

T+1
Combining (2.6) for T and T + 1 with (2.7), we can write

0=1-1=(cadls, + BE,) - (caAls + BE)

— Te T Te e
=ca(AT, - AT ) + By, - By

2
xr x Te
< Cale (BTC+1) + B - By,

SO
2

e Tc T

Calc (BT+1) +Bri, 2 Byt

By induction, it is easy to check that

min[ By, 1/(cqz.)]

BZe >
T T

for every T > 1. This implies

Z(z.) 2 Y B = +oo.
T>0

This completes the proof of the inequality p>z;' = /2 + V2.

Let us turn to the other needed inequality u < x;'. First of all, let
us restrict our attention to self-avoiding walks starting and ending at the
mid-edge of an horizontal edge. Let Z(x) be the partition function of such
walks. The reader may easily check that the number of self-avoiding walks
of length n starting and ending at a mid-edge of an horizontal edge is within
a bounded (in n) multiplicative factor of ¢,, and that therefore Z(x) < oo
if and only if Z(x) < co. A bridge of width T is a self-avoiding walk in Sy
from one side to the opposite side, defined up to vertical translation. The
partition function of bridges of width T is exactly B¥.. Using (2.5), we can
bound B7¢ by 1. Noting that a bridge of width 7" has length at least T,

we obtain for = < x.
T T
T T
BT < (—) Bjr < (—) .
Te Tc

Let us now state the following lemma.
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Lemma 2.8. For any x>0, Z(z)< LTI+ B§)2.
T30

Before proving this lemma, let us conclude the proof of the theorem.
The series }.7.o BT converges whenever x < z. and so does the product
[Trs0(1 +2B%). This implies that Z(z) < co and thus p <z = /2 + /2.
In conclusion, we only need to prove the previous lemma in order to finish
the proof of the theorem. O

Proof of the lemma. Let us show that a self-avoiding walk starting and
ending at the mid-edge of an horizontal edge can be canonically divided
into two so-called “half-space walks”, each of which can be decomposed
into bridges in a canonical way. This decomposition was first introduced
in the case of the square lattice by Hammersley and Welsh in [HW62] (for
a modern treatment, see [MS93, Section 3.1] or [BDCGS12]).

Figure 2.4: Left: Decomposition of a half-plane walk into four bridges
with widths 8 >3 > 1 > 0. The first bridge corresponds to the maximal
bridge containing the origin. Note that the decomposition contains one
bridge of width 0 (the walk corresponding to the decomposition without
this last bridge would not contain the last dotted steps). Right: The
reverse procedure. If the starting mid-edge and the first vertex are fixed,
the decomposition is unambiguous.

First assume that the first coordinate of the starting mid-edge of + is
extremal. We prove by induction on the width that the walk admits a
canonical decomposition into bridges of widths Ty > --- > T;. Without
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loss of generality, assume that the starting mid-edge is minimal. If v is
a bridge, the decomposition is the walk itself. If this is not the case,
proceed as follows. Out of the vertices visited by the walk and having
maximal first coordinate, choose the one visited last, say after n steps.
The walk up to this vertex together with the additional mid-edge on its
right form a bridge 41 (of width Tj). This bridge is the first bridge of
our decomposition. Erase 4; and the part of the walk between the n-th
vertex and the mid-edge between the (n + 1)-th and (n + 2)-th vertices
(the removed piece is composed of an edge plus a half-edge). The starting
mid-edge of the walk composed of the consequent steps corresponds to an
horizontal edge and has now maximum first coordinate among remaining
mid-edges. Note that the width 77 of the remaining walk is strictly smaller
than Ty. Using the induction hypothesis, we obtain a decomposition of this
new walk into bridges of widths 77 > --- > T}. The decomposition of =y is
created by adding ¥, to this decomposition.

Let us make two important observations:

e The sum of the lengths of bridges in the decomposition of v is equal
to the length of v minus j (recall that some steps of the walks are
deleted in-between bridges).

e Assume that the starting mid-edge of = is minimal. The walk
is determined by its decomposition. Indeed, there is a natural
reconstruction procedure defined inductively as follows, see Fig. 2.4.
Consider the first bridge in the decomposition. If there is only this
bridge in the decomposition, the walk is simply this bridge. If there
is more than one bridge in the decomposition, modify the end of
the first bridge as follows. Let v be the last vertex visited by the
bridge. By definition, the bridge passes through two mid-edges p
and q before and after v, and ¢ is the middle of an horizontal edge.
Remove this mid-edge and replace it by the third mid-edge r around
v (it corresponds to turning by %’T or —%’T the last half-edge around
the last vertex). Then, add to this walk an additional step from r to
the middle of the next horizontal edge (there is only one way of doing
so if we want the walk to remain self-avoiding). We then concatenate
the second bridge to the end of this new walk. If there is no bridge
left, we have found ~. Otherwise, we modify the end of the walk like
we did for the first bridge, and we concatenate the next bridge, and
so on. We proceed like that until we reach the last bridge. The final
concatenation gives us 7.

Let H(x) be the generating function of half-space walks, i.e. of self-avoiding
walks whose starting mid-edge has minimal first coordinate. The two
observations above have the following consequence:

H(z)<Y (+) Y BrBr..Br,)=1T](1+2B}).
7=0 To>Ty>->T} T>0
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Now, a self-avoiding walk in the plane can be divided into two pieces 7,
and 7, by cutting at the first vertex v of minimal first coordinate. Add
to 1 and 7 the additional mid-edge on the left of v. The two walks ~s
and v, are respectively a half-space walk and the time-reversal of one. We
deduce that

Z(z) < %H(I’)2 < z—lg H(l +zBF)?
T20

and we are done. O

Remark 2.9. There are variations on the observable used above. For
instance, let x,y > 0 and introduce the observable

G(Z) = G(a7 Z, T, yva) = Z e—iaWW(u,z)xé('y)yn('y)

yeST,Lt a—z

where n(y) is the number of visits of v to the right boundary of St 1. This
observable can be used to show that the so-called critical fugacity y. for
surface adsorption of self-avoiding walks on the hexagonal lattice equals
1+v2. Let us add a few words on this. Assume that the weight of a
half-space walk of length n is not uniform but proportional to y™(") where
n(y) is the number of intersections with the y-axis. Then,
e For y > y,., there exists ¢ = ¢(y) > 0 such that the probability that
a random half-space walk of length n visits the y-axis more than cn
times tends to 1 as n tends to infinity;
e For y < y. and for any ¢ > 0, the probability that the random half-
space walk of length n visits the y-axis more than en times tends to
zero exponentially fast in n.
We refer to [BBMDC*12] for more details.

Conclusion. The proof presented above involves several interesting
ingredients to which we will come back in other parts of this book. Let us
highlight them one more time.

1. A function expressed in terms of the self-avoiding walk model is
defined in finite subgraphs of the lattice. This function satisfies exact
local relations at some specific “integrable point” (here z = z.).

2. While the local relations do not determine the function explicitly
(in the sense that the boundary conditions are not sufficient to
reconstruct the function inside the domain), they are still sufficient
to understand the average boundary behavior.

3. This behavior enables us to exhibit a specific set of properties
satisfied at x = z..
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4. A completely different argument shows that these properties can only
be satisfied at the critical point of the model, thus identifying z. as
this critical point.

We will see variations around this strategy. The goal of the program
will often be different, and therefore Step 4 will be very different. In some
cases, Step 3 will be much more evolved, while in other cases, Step 1 will be
vastly improved, thus leading to a strong notion of discrete holomorphicity.



Chapter 3

Notation and definitions
for the graphs

We work with subsets of the plane. Points will therefore be considered
as elements of R? as well as elements of C depending on the context.
Seeing points as complex numbers will have its advantages. For instance,
an oriented edge of the medial lattice naturally gives rise to a complex
number. The distance between two points z and y will be measured by
the complex modulus |z —y|. Equivalently, it corresponds to the Euclidean
norm on R%. The distance between a point = and a closed set F is defined

by d(z, F) :=inf{|z —y|:y € F'}.

3.1 Primal, dual and medial lattices

We will work with subgraphs of the following lattices, see Fig. 3.1.

e The square lattice (Z*/E) is the graph with vertex set
72 = {(n,m) : n,m € Z} and edge set E given by edges between
nearest neighbors. The square lattice will be identified with the set

of vertices, i.e. Z2.

e The dual square lattice (Z*)* is the dual graph of Z*?. The vertex

11

set is (5,5

) + Z? and the edges are given by nearest neighbors. The

vertices and edges of (Z?2)* are called dual-vertices and dual-edges. In
particular, every edge e of Z? is naturally associated to a dual-edge,

denoted by e*, that it crosses in its center.

o The medial lattice (Z*)° is the graph with the centers of edges of
72 as vertex set, and edges connecting nearest vertices. This lattice
is a rotated and rescaled (by a factor 1/v/2) version of Z2. The
vertices and edges of (Z2)® are called medial-vertices and medial-
edges. We will often identify the faces of (Z?)° with the vertices

o1
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of Z? and (Z?)*. For instance, we may speak of the medial-edge
bordering a vertex or a dual-vertex: by this, we mean bordering the
face of (Z?%)° associated to this vertex or dual-vertex. A face of the
medial lattice is said to be black if it corresponds to a vertex of Z2,
and white otherwise. Edges of (Z?)° are oriented counterclockwise
around black faces, so that the medial lattice can sometimes be seen
as an oriented graph.

We will only consider subgraphs of Z2, (Z?)* or (Z?)°, and use the
following notations. For a graph G, we denote by V¢ its vertex set and by
FE¢ its edge set. If we do not need to put a special emphasis on Vg, we will
simply write G instead of V. An edge e of G with endpoints = and y is
denoted by [xy]; we then say that x and y are neighbors (in G) and write
x ~y. Furthermore, if x is an end-point of e, we say that e is incident to
z. Finally, the boundary of G, denoted by OG, is the set of vertices of G
with strictly fewer than four incident edges in F¢.

Let A, be the subgraph of Z? induced by [-n,n]2.

3.2 Discrete domains

In this section and the next one, we encourage the reader to look at pictures
as much as possible in order to get a better intuition of the definitions.
Discrete domains provide a discrete analog of simply connected open
sets. They are defined as follows.
Consider a sequence 0 = {vg ~ v1 ~ Vg ~ = ~ Uy ~ U, ~ Vo} Of
neighboring medial-edges satisfying the following conditions:
e The path 0 is edge-avoiding, i.e. it does not use the same medial-edge
twice.
e The path follows the orientation of the medial lattice, i.e. [v;v;41] is
oriented from v; to v;41.
e The corresponding oriented path is going counterclockwise.
We do not assume that all the end-points of edges of 0 are distinct: the
path may visit the same medial-vertex twice. Nonetheless, the path is
necessarily non-self-crossing since it follows the orientation of the medial
lattice. Also observe that the orientation of the lattice determines an
interior and an exterior.

Definition 3.1 (medial discrete domain). Let d be a path as above, and
Q° the subgraph of (Z?)° induced by the medial-vertices that are either
enclosed by 0, or endpoints of an edge of 9. Such a graph Q° is said to be
a medial discrete domain, see Fig. 3.2.

The graph Q° is necessarily connected as a subgraph of (Z?)°.
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1 1 1 1 1
-r0-rQ-r-0-r-0---0-r

1 1 1 1 1

T T T T T

1 1 1 1 1
-r0-FQ-r-0---0---0-r-

1 1 1 1 1

T T T T T

1 1 1 1 1
-r0-FQ-r-0---0---0-r-

| | | | |
\ 4 I I I I I

| | | | |
4071 -0-7-0-"-0---0---

=010 - 0- - 0- - 0- -

Figure 3.1: Top left. Square lattice. By convention, edges will always
be drawn with plain lines. Top right. Dual of the square lattice. By
convention, dual-edges will always be drawn in dashed lines. Bottom
left. Medial lattice. Bottom right. Medial lattice with the orientation
on edges. The faces corresponding to vertices of Z? are gray, the others
are white.

Remark 3.2. The graph £2° may be seen as a closed subset F' of the plane
by taking the union of the medial faces enclosed by d. Some points are
pinched points (i.e. that removing them disconnects the set). We may see
Q° as a simply connected domain of the plane by taking the interior of the
union of F' and small balls of radius € << 1 around the pinched points, see
Fig. 3.3.

Pinched points are medial-vertices of 0 visited twice by the path. In the
reverse direction, medial-vertices visited twice are not necessarily pinched
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Figure 3.2: A medial discrete domain with two marked points on its
boundary. The medial-vertices x°, y® and z° provide examples of medial-
vertices visited twice that correspond to two prime-ends. The medial-
vertex t° is another example of medial-vertex visited twice. This one
corresponds to a pinched point of the domain.

points. They can on the contrary correspond to “two points” of the
boundary. It will be important to distinguish between these two points
and we do so as follows. Consider the conformal map from the unit disk
onto the open domain enclosed by 0. Then, two different points of the
unit circle may be mapped to a single medial-vertex of 0 visited twice. In
such case, the medial-vertex corresponds to two distinct prime ends in the
standard complex analysis sense. Therefore, instead of considering such a
medial-vertex as one medial-vertex of degree 4, it is natural to consider it
as two distinct prime ends of degree 2. In particular, these vertices belong
to 090°.

In conclusion, medial-vertices of 0 visited twice are either pinched points
or medial-vertices corresponding to two prime-ends.

Remark 3.3. Since the boundary 9Q2° of Q° is the set of medial-vertices
having less than four incident medial-edges in Eq., it corresponds to only
roughly half of the end-points of 0.
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Figure 3.3:  One example of the open domain associated to a medial
discrete domain. Observe the additional small patch near t°, which
guarantees that the domain is simply connected.

Definition 3.4 (primal and dual discrete domains). Let 2° be a medial
discrete domain. Let © be the subgraph of Z? with edge-set given by edges
corresponding to medial-vertices of Q°\ 99Q°!, and vertex-set given by the
end-points of these edges. The graph €2 is said to be a primal discrete
domain, see Fig. 3.4. Let Q* be the subgraph of (Z?)* with edge-set given
by dual-edges corresponding to medial-vertices of {2° and vertex-set given
by the end-points of these dual-edges. The graph Q* is said to be a dual
discrete domain, see Fig. 3.4.

The notations 2, Q* and 2° will always refer to graphs that are primal,

dual and medial discrete domains, respectively. We drop the reference to
primal, dual and medial, and simply speak of discrete domain.

3.3 Dobrushin domains

Dobrushin domains are introduced to provide a discrete analogue of simply
connected domains with two marked points on their boundary. They are

1Recall that doubly-visited vertices are either pinched points, in which case they do
not belong to 9Q°, or two prime-ends, in such case they do belong to the boundary,
and therefore primal edges going through such medial-vertices are not included.
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Figure 3.4: The primal and dual discrete domains associated to the medial
discrete domain drawn in Fig. 3.2.

defined as follows.

Let a® and b° be two distinct medial-vertices, and 93, = {vg ~ vy ~ -+ ~
Un}, Of, = {wo ~ w1 ~ -+ ~ wy, } two paths of neighboring medial-vertices
satisfying the following properties:

e The paths start from a° and end at b°, i.e. vy = wy = a® and
Uy, = Wy, = b,
The paths follow the orientation of the medial lattice.
The path 07, goes counterclockwise, while 95, goes clockwise.
The paths are edge-avoiding.

e The paths intersect only at a® and b°.
Note that 95, udp, is a non-self crossing edge-avoiding polygon. However,
some vertices might be visited twice.

Definition 3.5 (medial Dobrushin domains). Let 93, and 95, be two paths
as above, and let Q° be the subgraph of (Z?)° induced by the medial-
vertices that are enclosed by or in the path 95, udy,. Then, (Q2°,a°,0°%) is
called a medial Dobrushin domain. An example is given in Fig. 3.5.

Remark 3.6. As before, the medial Dobrushin domains give rise to a
simply connected domain of the plane by taking the union of faces plus
small balls around medial vertices of 95, U 0y, corresponding to pinched
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Figure 3.5: A medial Dobrushin domain. Note the position of e, and ey.

points of the graph. As before, medial-vertices may be considered as prime-
ends.

As it stands, a® and b° have three incident medial-edges in Fq.. Call e,
and e;, the fourth medial-edges incident to a® and b° respectively. In what
follows, we will consider that e, and e, are also in Eq., but we will not
add in Ve the end-points of e, and e, which are not a® and b°. Therefore,
eq and e, have only one end-point in Q°.

Remark 3.7. Once again, the boundary 99° of 2° does not coincide
with all the elements of 97, and Jy, but only with roughly half of them.
Moreover, a® and b° do not belong to 9Q2° since with e, and ey, respectively,
they possess four incident medial-edges.

We are now in a position to define the (primal) and (dual) Dobrushin
domains, see Fig. 3.6.

Definition 3.8 (primal and dual Dobrushin domains with two marked
points). Let (2°,a°,0°) be a medial Dobrushin domain.

Let Q c Z2 be the graph with edge set composed of edges passing through
end-points of medial-edges in Eqo \ 97, (if a medial-vertex is the end-point
of a medial-edge in Eq- \ 07, and one in 03, it is included) and vertex set
given by the end-points of these edges. Let a and b be the two vertices of
Q bordered by e, and ep,. The triplet (€2, a,b) is called a primal Dobrushin
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Figure 3.6: The primal and dual Dobrushin domains associated to a
medial Dobrushin domain. Note the position of a, a*, b and b*.

domain. We denote by 0Oy, the set of edges corresponding to medial-vertices
in 092°, including doubly-visited ones, which are also end-points of medial-
edges in 0y, and set Oqp = 02\ Opq.-

Let Q* c (Z*)* be the graph with edge set composed of dual-edges
passing through medial-edges in Eq- \ 0y, and vertex set given by the end-
points of these dual-edges. Let a* and b* be the two dual-vertices of *
bordered by e, and e,. The triplet (Q*,a*,0*) is called a dual Dobrushin
domain. We denote by 0, the set of dual-edges corresponding to medial-
vertices in 0€2°, including doubly-visited ones, which are also end-points
of medial-edges in J7,, and set 0, = 0Q* \ 07,.

The notations (,a,b), (Q*,a*,0*) and (2°,a°,b%) will always refer to
a primal, dual and medial Dobrushin domain, respectively. The three
triplets are in direct correspondence. We will forget about the reference
to primal, dual and medial in the future and speak of Dobrushin domain.

Remark 3.9. We will often consider discrete domains Q° with two marked
points u® and v°® on 9N° (see for instance Fig. 3.2). Note that this graph
is not a Dobrushin domain with two marked points on the boundary.
Indeed, u® and v°® have degree 2 (meaning that two medial-edges are
incident to them), while a® and b° have degree 4 in the case of a Dobrushin
domain. Furthermore, 0 is oriented counter-clockwise, while 07, and Jf,
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are oriented from a°® to b°. Conversely, when forgetting about a® and b°
in a Dobrushin domain (Q2°,a®,5°), the graph Q° is not a discrete domain
for the same reason.

3.4 Discretizations of domains

We will be interested in finer and finer graphs approximating continuous
domains. For § > 0, we consider the rescaled square lattice 6Z2. The
definitions of dual and medial Dobrushin domains extend to this context.
Note that the medial lattice (6Z2)° has mesh-size §/v/2.

Generically, discrete domains on 6Z2, (6Z*)* and (6Z?*)° will be denoted
by Qs, Qf and Qf. Similarly, Dobrushin domains on §Z2, (6Z*)* and
(6Z2)° w1ll be denoted by (Qs,as,bs), (25,a5,b5) and (Q(S,a(;7 )

We wish to speak of discrete domains and Dobrushin domains
approximating a continuous domain with marked points on its boundary
(by a marked point, we mean a marked prime end). In order to quantify
how close a discrete graph is to its continuum counterpart, we introduce the
notion of Carathéodory convergence. Consider a discrete domain Q2§ or a
Dobrushin domain (€23, a5, b3) as a simply connected domain as explained
previously (in this case, the small additional balls are of size £ «< §). Let
H={zeC:Im(z) >0} be the upper half-plane.

Definition 3.10. Let (2,a,b) be a simply connected domain with two
marked points on its boundary. Consider a sequence of Dobrushin domains
(or discrete domains with two marked points on the boundary) (25, ag,b5).
We say that (€25, a5,b5) converges to (€2,a,b) in the Carathéodory sense
if

fs — f on any compact subset K c H,

where f5 (resp. f) is the unique conformal map from H to f (resp. )

satisfying f5(0) = a3, fs(o0) = b§ and f5(co0) =1 (resp. f(0) =a, f(o0) =10
and f'(c0) =1).

Let us mention that this notion of convergence coincides with the
Haussdorff convergence in the case of smooth domains. Therefore, one
may simply think of the Carathéodory convergence as being a very natural
notion of convergence and not bother with details. For sufficiently smooth
domains, a possible example of a converging sequence is provided by
Q5 = Qn (0Z%) with as and bs being the closest vertices of Qs to a and b,
but we may consider more general approximations.

We will be considering sequences of functions on €25 (more precisely
Va,) for ¢ going to 0 and we wish to speak of uniform convergence on
every compact subset of 2. In order to do this, we implicitly perform the
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following operation: for a function f on s, choose a diagonal for every
(square) face and extend the function to the faces of 25 in a piecewise
linear way on the two triangles made of the diagonal and two edges. Since
no confusion will be possible, the extension will be denoted by f as well.
Constructed like that, the function is not necessarily defined on all of Q
(since the union of faces of Q05 may be different from ), nevertheless, it is
defined on any compact subset of  provided that § is small enough (how
small it must be depends on the compact subset). The same procedure
will also be applied to functions defined on 25 and Q.

Remark 3.11. The Carathéodory convergence implies that for every
compact subset K of Q, there exists §y > 0 such that for any § < o,
K c Qs. Therefore, it is possible to speak of uniform convergence on
compact subsets of § for any sequence of functions (fs) defined on a
sequence of domains 25 converging to €.
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Chapter 4

Basic properties of the
two-dimensional
random-cluster model

Before diving into the study of the random-cluster model, and in particular
the Russo-Seymour-Welsh theory and the applications of parafermionic
observables, we need to gather several classical properties on this model.
For additional information, we refer to the extensive literature on the
subject, e.g. to [Gri06].

4.1 Formal definition of the random-cluster
model

The random-cluster model can be defined on any graph. However, we
restrict ourselves to the square lattice. Let G be a finite subgraph of Z2.
A configuration w is an element of {0,1}¢. An edge e with w(e) = 1 is said
to be open, otherwise it is said to be closed. The configuration w can be seen
as a subgraph of G, with vertex set Vi and edge set {e € Fg :w(e) =1}.
Two sites a and b are said to be connected if there is an open path, i.e.
a path a = vg,...,v, = b with ¢; = (v;,v;41) € Eg and w(e;) = 1 for any
0 < i < n (this event will be denoted by a < b). Two sets A and B are
connected if there exists an open path connecting a € A and b € B (denoted
A < B). The maximal connected components of w are called clusters.
Boundary conditions £ are given by a partition P, u---u Py of 9G. Two
vertices are wired in & if they belong to the same P;. The graph obtained
from the configuration w by identifying the wired vertices together is

63
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denoted by w® '. Boundary conditions should be understood informally
as encoding how sites are connected outside of G. Let o(w) and c(w)
denote the number of open and closed edges of w and k(w®) the number
of connected components of the graph w®.

Definition 4.1. The probability measure ¢f)q ¢ of the random-cluster
model on G with edge-weight p € [0,1] and cluster-weight ¢ > 0 and
boundary conditions £ is defined by

o(w) (1 — p)e(@) gh(w®)
p p q
) p Zg) (4.1)

,4,G

for every configuration w on G. The constant Z5 4G is a normalizing
constant, referred to as the partition function, deﬁned in such a way that
the sum over all configurations equals 1. From now on, (bp e denotes the
measure and the expectation with respect to this measure.

Four boundary conditions play a special role in the study of the random-
cluster model.

e The wired boundary conditions: they are specified by the fact that
all the vertices on the boundary are pairwise wired (the partition is
equal to {0G}). The random-cluster measure with wired boundary

conditions on G is denoted by qbp 0.G-

e The free boundary conditions: they are specified by no wiring
between vertices on the boundary (the partition is composed of
singletons only). The random-cluster measure with free boundary

conditions on G is denoted by qu .G

e The periodic boundary conditions: for n > 1, the torus T,, of size n
can be seen as a subgraph of Z? with specific boundary conditions
as follows. Consider the subgraph of Z? induced by the vertex set
{0,...,n}?, with the boundary conditions obtained by wiring (i, 0)
and (i,n) for every i € {0,...,n}, and (0,7) and (n,j) for every

j €{0,...,n}. The random-cluster measure on the torus of size n is
denoted by ¢ ..

e The Dobrushin boundary conditions, or domain-wall boundary
conditions: let (92,a,b) be a discrete Dobrushin domain. The
Dobrushin boundary conditions are defined to be free on J,, and

1Formally, wé can be seen as (V,E‘), where V is the vertex set V& quotiented by
the equivalence relation Ry if z and y are in the same P;, and E is the image of the
open edges of w by the canonical projection from Ey, to Ey. We will not really use
this formal definition.
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wired on Oy, (in other words, the partition is composed of Oy
together with singletons). These arcs are referred to as the free
arc and the wired arc, respectively. The measure associated to these
boundary conditions will be denoted by gb;’z_ﬂ.

Other boundary conditions will come from a configuration outside the
graph G (see the next paragraph). For a configuration £ on E \ Eg, the
boundary conditions induced by £ are defined by the partition P;u---u Py,
where z and y are in the same P; if and only if there exists a path in
¢ connecting = and y. In general, we identify the boundary conditions
induced by £ with the configuration itself, and we denote the random-

cluster measure by ¢£ WG

4.2 Finite energy and Domain Markov
properties

4.2.1 The domain Markov property

The following theorem describes how the influence of the configuration
outside a graph F on the measure within F' can be encoded using
appropriate boundary conditions £. This property is the analog of the
Dobrushin-Lanford-Ruelle property for Gibbs measures (see [Geoll] or
Proposition 7.4 for the Ising case). It will be useful when decoupling
events depending on disjoint sets of edges.

Let Fg be the o-algebra of events depending on the states of edges in
E only.

Theorem 4.2. Let p € [0,1], ¢ > 0 and & some boundary conditions.
Fiz F c G two finite subgraphs of Z2. For any Fg, -measurable random
variable X,

68 o(X|w(e) = v(e), Ve € B~ Br)(1) = 6% 1(X),

where 1 € {0,1YF EF  (recall the definition of ¢ from the previous
section,).

From now on, we set wjp to denote the restriction of w to edges in F
only.

Proof. Let us deal with the case F = (Vg,Eq ™ {e}). Let w be a
configuration on G and set w® to be the configuration on G equal to 1
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on e and w elsewhere. We find

&5 0.c(@°)
£ _ _ P,9,G
Prac(erl(©)=1) @5 . c(w(e) =1)

pP@IERIH (1 =)o) (@)

3
_ »,4,G
o(@ c(@ o
Z p()(l—p)()qk( )
@e{0,1}Fc:@(e)=1
3
p,4,G

po(w|EF)+1(1 _ p)c(leF)qk(wf;F)

Z po(‘:}‘EF)+1(1—p)C(Q‘EF)qk(J}f;F)

@\ e{0,1}FF

= ¢g,q7F(w|EF)

where £° is given by the boundary conditions £ with the two end-points of
e wired together. Similarly

Do (Wi lw(e) =0) =65 o p(wim,)

and the claim follows easily for F. The result can be deduced for
every random variable X by linearity. Now, one can repeat the previous
reasoning recursively and the result follows for any subgraph F of G. 0O

Ezample. Let F ¢ G with Eg \~ Er connected. Then if ¢(e) = 1 for
any e ¢ Ep, ¥ corresponds to wired boundary conditions. Similarly, if
¥(e) =0 for any e ¢ Ep, ¢° corresponds to free boundary conditions. This
justifies the notations 0 and 1 for the free and wired boundary conditions.

4.2.2 Finite energy property

The finite energy property roughly yields that the conditional probability
for an edge to be open knowing the states of all the other edges is bounded
away from 0 and 1 uniformly in p € [e,1-¢] (here € € (0,1/2) is fixed) and
in the states of all the other edges. This fact extends to any finite family
of edges. This property is a useful tool when comparing the probabilities
of two configurations differing by only finitely many edges.
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Lemma 4.3. Let ¢ € (0,1/2), ¢ >0 and F c G two finite graphs. There
exists ¢ = c¢(e,q, F) > 0 such that for any p € [e,1 - €], any configuration
¥ €{0,1YE7 and any boundary conditions €,

c< qbf)’q’G(w‘F =y)<l-c

Of course, the control on ¢ = ¢(g, g, F') deteriorates exponentially fast in
the size of F.

Proof. Let us first prove that
c<¢§qG(w(e): <l-c¢

uniformly on G and p € [e,1 - ¢]. In order to see this, observe that
conditionally on the states of the edges different from e, the two only
boundary conditions on the graph composed solely of the edge e and its
end-points are either the free boundary conditions (the two end-points of
e are not connected by the configuration outside e), or the wired ones (the
two end-points are connected outside e). In the first case, the probability
is equal to p/[p+ (1 -p)g], in the second one, it is equal to p.

The claim follows readily by successive applications of the domain
Markov property and by setting ¢ = min{e, /[eq + (1 -)]}/"¢! (the power
|E¢| comes from these successive applications). o

Proposition 4.4. Let ¢ € (0,1/2), ¢ > 0 and F c G two finite graphs.
There exists ¢ = c(e,q,F') > 0 such that for any event A depending on
edges outside F and any n € {0,1}FF,

B g (AN {wie, =n}) 2 cdr | (A).

Proof. Let ¢=c(e,q,F) >0 given by the previous lemma. We obtain

‘Zsp,q,Gg(A n{we, =n})
= > 05 o c({Wie sp =¥} N {we, =n}nA)

$e{0,1} PG \EF

= Z Qbi,q,c({W\EG\Ep =¢Yin A)¢f,,q,c(w|EF = 77|W\EG\EF =)

e{0,1} FG NEFR

= Y 8 cUwses =9I N A o(1)

Pe{0,1}EG NEF

>e Y 6 c(wsgaer =Y nA) =65 o(A).
’(Z)E{O,l}EG\EF
In the second line, we drop the condition on A in the conditioning since
this would be redundant: if v is not in A, then the first term equals 0
anyway. |
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Remark 4.5. A typical example of a model not satisfying the finite energy
property is the uniform measure on spanning trees. Indeed, knowing the
whole configuration outside an edge e, it is not necessarily possible for e
to be open (for instance if there is a cycle once e is open).

4.3 Planar duality

The planar random-cluster model enjoys a very interesting property called
planar duality. The next sections are devoted to this notion but before, let
us introduce a useful involution on edge-weights. For any p and ¢, define

p =p"(pq) = ( (1-p)a

1-p)g+p’ (4.2)

and the self-dual point psq = psa(q) as being the unique solution of the
equation p* (psd,q) = Psd, i-¢.
V4

psd(q) = 1+ \/a (43)

4.3.1 Planar duality for planar boundary conditions

Let G be a finite graph. We start by discussing planarity for planar
boundary conditions on G, i.e. boundary conditions coming from a planar
configuration outside G. In this section, let G* be the graph with edge-set
E* ={e*:e€ Eg} and vertex-set given by the end-points of E*.

Definition 4.6. For a configuration w € {0,1}¥¢, we define the dual
configuration w* € {0,1}Fe* by the formula

w(e)=1-w(e), VeeEq.

A dual-edge e* is said to be dual-open if w*(e*) = 1 and dual-closed
otherwise. Two sites v and v in G* are said to be dual-connected if there
is a dual-open path, i.e. a path of open dual-edges between u and wv.
Two sets U and V are dual-connected if there exists a dual-open path
connecting u € U and v € V. These events are denoted by u < v and

U<V respectively. The maximal dual-connected components will be
called dual-clusters.

Proposition 4.7 (Duality for planar boundary conditions). Let £ €
{0,1}5Fc | The dual model of the random-cluster on G with parameters
(p,q) and boundary conditions £ is the random-cluster with parameters
(p*,q) on G* with boundary conditions induced by £*, where £* is defined

by £ (e") = 1-&(e) for any e ¢ Eg.
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Figure 4.1: A configuration and its dual configuration. The graphs G and
G™ are in black and & and £* are in gray.

Proof. Recall that the graph w® is obtained from w by identifying the
vertices of G which are connected in €. Since € € {0, 1} ¢ the boundary
conditions ¢ are planar in the sense that w* is planar. Let (w®)* be the dual
of w® in the standard graph theoretical sense, meaning that the vertices
correspond to faces of w®, and the edges connect vertices associated to
adjacent faces. Then, (wf)* is equal to (w*)¢ (in fact, sometimes it
possesses an additional isolated vertex but this will be irrelevant here).

Let f(w®) be the number of faces in w®. Using Euler’s formula applied
to wé, we find that

|Ew5| + k(wg) +1 = |Vw5| + f(wg)’

Recall that V,c = Vge does not depend on w. From the definition of the
dual configuration w* of w, we have o(w)+o(w*) = |Eg|, where o(w”) is the
number of open dual-edges, and therefore |E ¢|+0o(w*) = o(w) +o(w*) does
not depend on w. Moreover, connected components of (w*)g* correspond
exactly to faces of w¢, so that f(w?) = k((w*)¢"). Overall, there exists a
constant C¢ not depending on w such that

k(W) = Ce+k((w)E)+o(w).

The probability of w* is equal to (bf) 4 o (w) which can be rewritten in terms
of w* as follows:
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1 oW clw (A)§
Shgc(@) = 7 P’ (1= p) gD
P,q,G
1 - P |Bol o(w wt
- - e
,4,G
E *
, 4(1‘517)‘ /(1= p) ] Fol-o") Cerk(@)E Yrow®)
Zp,q,G
|Ec|,Ce *
p q o(w* w*)¢
= e la0-p)p] @ ghl@™)
,¢,G
|Ec|,Ce . ng*
= L (1))
Zpyq,G
p|Ec\ch

* * *\E*
- (p*)°@) (1 = )@ k(@)
(1—p*)\Ec*|ZEqG

Gy (@):

In the third and sixth lines, we used the relation o(w*)+o(w) = |Eg+| = |Eq|-.
The Euler formula was invoked in the third line, and the relation between
p and p* in the fifth. O

Let us provide a few examples of dual boundary conditions.

Ezample 1 (free boundary conditions). Let Q be a discrete domain. In such
case, £ = 0 and therefore £* = 1. We obtain wired boundary conditions on
the dual graph Q* (defined as in the introduction).

Ezxample 2 (wired boundary conditions). Let Q be a discrete domain. Note
that the state of edges between vertices of 0f) is not relevant for wired
boundary conditions. Indeed, they are open with probability p and closed
with probability 1 - p (since their end-points are connected anyway), and
furthermore the connectivity properties of the configuration are not altered
by the states of these edges. For this reason, we will usually assume that
these edges are open. In such case £ can be chosen to be all 1 and therefore
& =0. The dual of wired boundary conditions is therefore free boundary
conditions. With our convention, it is defined on the dual graph of 2\ 09,
which is slightly smaller than Q.

Ezample 3 (Dobrushin boundary conditions). Let (€2, a,b) be a Dobrushin
domain. The Dobrushin boundary conditions are achieved by taking & to
be 0 everywhere, except on Oy, for which it is 1. Then, £* is equal to
0 on {e* : e € Opo} and 1 everywhere else. Equivalently, the boundary
conditions induced by &* correspond to the boundary conditions induced
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by the configuration equal to 1 on 9}, and 0 everywhere else. Therefore
the dual of Dobrushin boundary conditions on (2, a,b) are Dobrushin
boundary conditions on (Q*,b*,a*).

Ezample 4 (mized boundary conditions). Let Q be a discrete domain with
four marked points a, b, ¢ and d found in counter-clockwise order on
its boundary. These points determine arcs Oup, Jpe, Ocq and Oyg, when
going around the boundary in the counter-clockwise order. The boundary
conditions miz are wired on 0, and 0.4, and free elsewhere. Note that
Oup and O.q are not wired together. Then, the dual boundary conditions
are wired on 0;,u 0, (this time the two arcs are wired together), and free
elsewhere, where the dual arcs are defined in a similar way to Dobrushin
domains.

Remark 4.8. Often, most of the configurations £ (or equivalently &*)
will not be necessary to determine which partition on 0G is associated
to the configuration. In such case, we do not keep track of the whole
configuration in E, but only of some subset of the edges. For instance, if
any edge outside G with one end-point on G is closed, then the associated
boundary conditions are necessarily free.

4.3.2 Duality for periodic boundary conditions

The case of periodic boundary conditions, or equivalently the case of the
random-cluster model defined on a torus (with no boundary conditions) is
a little more involved: its dual is not a random-cluster model because its
boundary conditions cannot be achieved by a planar configuration. Yet,
the dual model is not very different from a random-cluster model, and that
will be enough for our purposes.

In order to state duality in this case, additional notations expressed
in terms of the geometry of the torus are required. Let f(w) be the
number of faces delimited by w, i.e. the number of connected components
of the complement of the set of open edges. We also introduce an
additional parameter §(w). Call a cluster of w a net if it contains two
non-contractible simple loops of different homotopy classes, and a cycle if
it is non-contractible but is not a net. Notice that every configuration w
can be of one of three types:

e One of the clusters of w is a net. Then no other cluster of w can be
a net or a cycle. In that case, let §(w) = 2;

e One of the clusters of w is a cycle. Then no other cluster can be a
net, but other clusters can be cycles as well (in which case all the
involved, simple loops are in the same homotopy class). Then let
ow) =1;
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e None of the clusters of w is a net or a cycle. Let §(w) = 0.

With this additional notation, Euler’s formula becomes
[V, |+ f(w) +0(w) = k(w) + 1 + o(w). (4.4)

Besides, these terms transform in a simple way under duality: o(w)+o(w*)
is a constant, f(w) =k(w*) and 6(w) =2 - §(w™*).
Define the balanced random-cluster model with weights

sy PP (1= p) () gh)

Zper
valIan

e ({w)) = Va

)

where ngj;n is a normalizing constant defined in such a way that the sum
over all configurations equals 1. The same proof as that of usual duality

implies the following result.

Proposition 4.9. The dual model of the balanced random-cluster on the
torus Ty, of size n with parameters (p,q) and periodic boundary conditions
is the balanced random-cluster with parameters (p*,q) on T},.

This means that even though the dual model of the random-cluster
model with periodic boundary conditions is not exactly a random-cluster
model at the dual parameter, it is absolutely continuous with respect to a
self-dual model and the Radon-Nikodym derivative is bounded from above
and below by constants depending only on gq. More precisely, the partition
functions of both models differ by a multiplicative factor at most ¢, while
the denominators involved in the expressions of the probabilities also
differ by a multiplicative factor at most q. Overall, the Radon-Nikodym
derivative is therefore between 1/¢? and ¢°.

4.4 Strong positive association when g > 1

A partial order can be naturally defined on {0,1}7¢: w <’ if and only if
for any e € Eg, w(e) <w'(e). A function f:{0,1}F¢ — R is increasing if
it is increasing for this order. An event A is increasing if 1 4 is increasing,
which is equivalent to the fact that w € A and w < w’ implies w’ € A. (In
words, an event is increasing if it is preserved by addition of open edges.)
Let us give several examples.

Ezample 1. w(e) is an increasing function.
Ezample 2. The number of open edges in F c Eq is an increasing function.

Example 3. The event that two sets of vertices A and B are connected by
an open path is increasing (even if the open paths are constrained to use
edges in F c Eg only).
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Ezxample 4. The event that there exists a cluster of radius larger than n is
an increasing event.

The class of increasing events is central in the study of random-cluster
models because of the so-called positive association of the model. We will
present this link in detail in the next section, but let us first introduce the
central notion of stochastic domination.

Definition 4.10. A measure p; stochastically dominates o if for every
increasing event A, p1(A) > pua(A).

4.4.1 Holley criterion and FKG inequality

Let us start by discussing stochastic ordering and correlation inequalities
for general probability measures on {0,1}¥¢. Define w; v ws and wy A wy
by the formulae

(w1 Vws)(e) = max{wi (€),wa(e)} and (w; Aws)(e) = min{w; (e),wa(e)}.

Theorem 4.11 (Holley inequality [Hol74]). Let u1,us be two positive
measures on {0,116 such that

pa(wr vV ws)pa(wi Aws) 2 pa(wi)pa(ws),  wi,ws € {0,13%¢,  (4.5)
then p1 stochastically dominates pio.

We sketch the proof here. For a configuration w and an edge e, define
the configurations w® and w, as the two configurations coinciding with w
for f + e, and equal to respectively 1 and 0 at e. Formally,

. ~ w(f) if f+e, _ w(f) if f+e,
w(f)_{l if f=e, we(f)_{o if f=e.

(We already used w® in the proof of Theorem 4.2.)

Proof. Let us construct a coupling P with marginals 1 and po in such
a way that P(w; > ws) = 1. The result will follow from the fact that

a(A) =P(wy e A) =P(ws € A and wy > ws) <P(w;y € A) = 1 (A4).

In the inequality, we used the fact that A is increasing.

An efficient way of constructing the measure P is to consider a Markov
chain whose stationary measure is P. Since we want the two marginals to
be uy and pg, we need the induced (marginal) Markov chains to have
stationary measures py and pe. This strongly suggests the following
Markov chain: consider the infinitesimal generator on

Q={(w,n) € {0,1}7¢ x {0,1}7¢ 1w > n}
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defined by
H(w7ne7we7ne) = 17
H(weanvwevne) = ul(we)v
pa (we)

) = pa(e) _ palwe)

p2(n®)  pa(we)
It is easy to check that the continuous time Markov chain with infinitesimal
generator is aperiodic and thus possesses a unique stationary measure
P. Now, when starting from the configuration (w,n) with w(e) = 1 and
n(e) = 0 for any e € Eg, every step preserves the inequality w > 1 and so
P(w > n) = 1. Finally, the Markov chains induced on the first and second
coordinates can be checked to have stationary measures p; and po. All
these facts together imply the proof readily. O

H(we77]e’we?ne

Theorem 4.11 possesses an elegant simplification: (4.5) does not need
to be checked for every configurations wy and ws. It is in fact sufficient to
check that for any w and e # f,

pr (W) p2(we) > (we)pa(w®) (4.6)
and  py (W ) pa(wer) > g (wl)pa(wh), (4.7)

v

where wep = (we)f, w! = (we)! and w® = (w)f. We refer to [Gri06,
Theorem 2.3] for more details on the reduction of the general Holley
criterion to this simpler inequalities.

The Holley criterion is particularly suitable to prove the famous Fortuin-
Kasteleyn-Ginibre inequality [FKG71] (FKG inequality in short). First
proved by Harris in the case of product measures (in this case, it is called
Harris inequality), the inequality relates the probability of the intersection
of two increasing events to the product of the probabilities.

Theorem 4.12 (FKG lattice condition). Let G be a finite graph and p be
a positive measure on {0,1YF¢ . If for any configuration w and e # f € Eg

pw ) p(wer) 2 p(wl)u(ws), (4.8)
then for any increasing events A and B,
n(AnB) > p(A)u(B). (4.9)

Proof. Equation (4.9) can be understood as p(-|B) stochastically
dominating p. Let us check Holley criterion (more precisely inequalities
(4.6) and (4.7)) for these two measures. Fix w as well as e # f. Let us
start by the inequality (4.6). We have

Locen p(w)p(we) 2 Lu.en pr(we)p(w®)
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since the indicator function on the left is equal to 1 if the one on the right
is equal to 1 (recall that B is increasing). Dividing by u(B), we get

p(weB)p(we) 2 p(we| B)pu(w®)

which is (4.6). We now focus on (4.7). We obtain

Loeren @) u(wer) 2 100 ple] (e,

We used that 1,erep 21, s 5 (because B is increasing) and (4.8). Dividing
once again by u(B) gives us (4.7). i

Remark 4.13. By taking complements, the inequality u(A n B) >
1(A)p(B) holds for decreasing events. Similarly, if A is increasing and B
is decreasing, then p(AnB) < u(A)u(B). The theorem above also implies
that p(XY) > p(X)p(Y) for any two increasing (resp. decreasing) random
variables X,Y . Indeed, by adding constants one may prove this result for
positive random variables only. Now, observe that {X >t} and {Y > s} are
increasing for any s,¢ > 0. Since X = [~ Lixsgdt and YV = [ 1iysqds,
the FKG inequality applied in the second line gives

W(XY) = /(;Mfomu({X>t}m{Y>s})dtds
> /(;M/Omu(X>t)u(Y>s)dtds
- (fow u(x >ty /Ow p(Y > 5)ds) = p(X)u(Y).

4.4.2 The FKG inequality for random-cluster models

The technology developed in the previous section enables us to prove the
following fundamental inequality.

Theorem 4.14 (Fortuin-Kasteleyn-Ginibre inequality [FKGT1]). Let p €
[0,1], ¢ > 1, and boundary conditions . For any two increasing events A
and B,

hac(ANB) 2 65 (A}, (B). (4.10)

Remark 4.15. Beware of the fact that ¢ is required to be larger than
or equal to 1: the result is false when ¢ < 1. It is in fact natural to
conjecture that negative association would hold whenever ¢ < 1 (uniform
spanning trees can be obtained as limits of the random-cluster model with
q going to 0 and thus provide one example of negatively correlated random-
cluster model with ¢ < 1). The theorem of negative association is not so
understood. We refer to [Pem00] for details on the subject.
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Proof. Let us check the condition (4.8). Fix a configuration w and two
edges e # f. By multiplying by partition functions, we need to prove that

po(wef)+0(wef)(1 _p)O(wef)JrO(wef)qk(wef)+k(wef)
> pO(wa)JrO(wjl)(l _ p)O(wf)w(w?)qk(Wf)+k(w§)'
The terms involving p and (1 - p) do not create any difficulty since
o(w) + o(wey) = o(w!) + o(w$) and (W) + c(wep) = e(wl) + c(w$).
Recalling that ¢ > 1, we only need to check that k(w®) + k(wes) >

k(wl) + k(w$). This inequality follows by studying whether both end-
points of f are already connected or not in wjg, (e, s}- O

Remark 4.16 (Square-root trick). Let us mention an important
implication of the FKG inequality, called the square-root trick. Let A
and B be two increasing events. Then,

max {¢  o(A), ¢, (B)}21-(1-6; o(AuB)'. (4.11)

This trick will be very useful since (4.11) improves the standard bound

max {¢5  5(A), ¢, (B)} 2365 c(AUB).

We now turn to two important applications of the FKG inequality.
4.4.3 Stochastic ordering of random-cluster measures

Corollary 4.17 (Comparison in p). Fiz boundary conditions & and g > 1.

For any p1 < po, (i)f)Z’q’G stochastically dominates ¢1§)1,q,G'

This corollary legitimates the intuition that the larger p is, the more edges
are open.

Proof. An easy computation implies the existence of K > 0 such that for
every random variable X,

65, (X)) =¢85 G(XY)/K

o(w)
Y(w) = (pz/(l—pz)) ,

p1/(1-p1)
Plugging X =1, we find K = qzﬁfh 0.¢(Y). Now, Y >0 is increasing (recall
that p; < ps), so that if X is also assumed to be increasing, the FKG
inequality implies

ﬁbf,z’q,G(X) = ¢§1’Q’G(XY)/¢§1’Q’G(Y) 2 Qngl,q,G(X)'

where
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Remark 4.18. The previous result about stochastic ordering between
random-cluster measures can in fact be extended as follows [Gri06,
Theorem (3.21)]: if ¢ < g2 and then qbfn n.G 18

13
p2,92,G"

p1 < P2
a1(1-p1) = q2(1-p2)’
stochastically dominated by ¢

4.4.4 Comparison between boundary conditions

Let £ and ¥ be two boundary conditions. We say that £ < ¢ if any
two vertices wired in £ are wired in . In other words, the partition
corresponding to 1 is coarser than the one corresponding to £.

Corollary 4.19 (Comparison between boundary conditions). Fiz p
[0,1] and ¢ > 1. For any boundary conditions & < 1 and any increasing
event A,

d)th,G(A) < ¢;ob,q,G(A)' (4.12)

Proof. Consider boundary conditions ¢ corresponding to the partition
Viu---uV, and construct a new graph by adding, for each i, edges between
vertices of V;. Call this new graph Gy and the set of additional edges E
(we have E = Eg, ~ E¢). Now, the domain Markov property implies
O () = B 46,(lw(e)=0,Vee E)
¢v () = 6540, Clwle)=1,VeeE).

Using the FKG inequality twice, we obtain

Srac(A) € 546 (A) < &, o(A)

for any increasing event A depending on edges in E¢g only. O

Let us take some time to discuss in detail some applications of the
comparison between boundary conditions. We start by the easiest
observation and we go towards harder and harder corollaries, adding more
and more steps in the reasoning. These arguments will be used repeatedly
in the book. The easiest corollary is the following.

Corollary 4.20. Let p € [0,1], ¢ > 1 and G a finite graph. For any
increasing event A and any boundary conditions &,

(bg,q,G(A) < ¢§,q,G(A) < ¢,1;,Q7G(A)- (4.13)

We sometimes say that for the stochastic order, the free and the wired
boundary conditions are extremal.
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Proof. The definition of the ordering implies immediately that 0 < £ < 1.
]

Combined with the domain Markov property, the comparison between
boundary conditions will allow us to decouple events as follows.

Corollary 4.21. Letpe[0,1], ¢ > 1, a finite graph G and £ some boundary
conditions on G. Let G1 and Gg be two subgraphs of G with disjoint sets
of edges. Then, for any increasing events A and B depending on edges of
G1 and G4 respectively,

B 0. (A 4 6, (B) <05 (AnB) <), 0, (A ., (B).

Proof. We treat the free boundary conditions. The wired boundary
conditions are handled similarly.
Let us first look at the conditional expectation (;52 . o(B|A). The event

A depends on edges in Gy only so that it can be seen as a subset A of
{0,1}Fe>Ee: | By partitioning A into events

Ey ={w(e) =v(e),Ve ¢ Eg,} c {0, 1}EG7

where ¢ € A (the event E; corresponds to fixing the configuration outside
G4 to be equal to 1), we obtain

05 qo(BlA) = Y 65 o(BIEL)E, , o(By|A)
PeA

= z ¢§%‘1an (B)¢f),q,G(Ew|A)

PeA

2 ‘bg,q,Gz(B) Z~ ¢f),q7G(E¢|A) = ¢2,q,G2 (B)
PeA

We used the domain Markov property in the second line, the comparison
between boundary conditions in the third, and the fact that A is
partitioned into the events E, for 1 € A in the last equality.

By exchanging the roles of A and B, one gets gbfkq o(A|B) > ¢27q7G1 (A).
Setting B to be the full state-space {0,1}¥¢ in this inequality gives

d);iq,G(A) 2 ¢27q,G1(A)- (4.14)

Therefore

¢ c(ANB) =¢5  (A)e5, o(BIA)2 ¢, 6 (D)), ¢, (B).
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Ezxample. Let A be an increasing event depending on edges in F' c G only.
By applying the previous corollary (more precisely (4.14)), we find

(bg,q,F(A) < ¢10)7q,G(A) and qj)]l),q,F(A) 2 (b;),q,G(A)' (415)

The use of the Markov property and the comparison between boundary
conditions sometimes requires to “push boundary conditions away”. We
illustrate this reasoning with the following fundamental example (note how
intuitive the statement is).

Lemma 4.22. Letpe [0,1], ¢ > 1, k < n and arbitrary boundary conditions
& on OA,,. For any increasing event A depending on edges in Ay only,

&5 oa, (A[OA, > 0M,) <60, (A).

Proof. Let C be the set of dual self-avoiding circuits v = {yo ~ 71 ~
o~ Ym ~ Yo} on A% surrounding Ay. Define 7 to be the subgraph of A,
surrounded by v € C 2. Dual circuits in C are naturally ordered via the
following order relation: 7; is “more exterior” than v, if 73 is included in

Y1-
On the event {OAy </ O\, }, define T to be the random-variable given

by the outermost dual-open circuit in C. Partition {0A, </ 0A,} into
the events {I" = v} for v € C to obtain

&5 gn, (A|OAL > M) = 3 65 x (AN{D =~} 0Ak /> OA)
~eC

= Z(:; B gn, (AT =7) g5 o (T = |0k > OA,).
~ye
For « € C, the event {I' = v} is measurable with respect to the edges in
E, \ E5 only. Indeed, I' = v if all the dual-edges of v are open in w* and
if any other self-avoiding circuit which is more exterior that v contains at
least one closed dual-edge in w*.

The fact that {I' = v} is measurable with respect to edges in Ex, \ Ex
implies that the configuration inside 7 follows the law of a random-cluster
model with some boundary conditions which we can identify easily: since
conditionally on {T" = v}, all dual-edges of v are open in w*, the boundary
conditions on the primal graph 7 are free (all edges connecting a vertex of
the boundary of 7 to a vertex outside 7 are closed in w). As a consequence,
one may rewrite

65 oa (A0 =7) =) —(A) <60, (A),

where the inequality is due to the example following Corollary 4.21 applied
to F =% and G = A,,.

2The graph 7 is composed of the vertices and edges in the finite component of R?\+,
when + is considered as a piecewise linear curve in the plane.
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Altogether, we find

B gn, (AlONE > 000) < 3 60 4 (A5 o (T =] 9y > OA,)
veC

=30 ,a, (A). (4.16)
In the last equality we used the fact that the sets {I' = v} for v € C
partition the set {OAg </ OA,}. mi

We will be using the strategy of the last proof quite often. Rather
than including all the details, we will say that we are conditioning on the
outermost closed circuit satisfying a certain condition (we will sometimes
do it with the outermost open circuit but it works the same).

In the previous argument, A and {OA; </ OA,} are depending on a
disjoint set of edges but we only used the fact that on its intersection with
{T" = v}, the set A depends on edges in 7 only. We will sometimes use the
previous argument for events that do not depend on disjoint edges a priori
but that satisfy this weaker condition instead. The following lemma will
both illustrate one important example and be useful several times in the
book.

Lemma 4.23. Let pe[0,1],¢>1 and 1<k <n,

¢2,q,1\n (O <> 8Ak) < Zk 72m4 ae{g??[}é,m] ¢27q7[07m]2 (a <~ b) .
m= be{m}x[0,m]

The interest of this lemma lies in the fact that on the right-hand side, a
and b are on the boundary of a graph with free boundary conditions (these
events will be easier to control, see later in the book).

Proof. For x = (x1,22), define |z]e = max{|z1], |z2|}.

Define C to be the connected component of the origin. Consider the
event that a and b are two vertices in C maximizing the | - ||oo-distance
between each other. Since these vertices are at maximal distance, they
can be placed on the two opposite sides of a square box A in such a way
that C is included in this box. Let Apax(a,b, A) the event that a and b are
connected in A and that their cluster is contained in A.

We now wish to estimate the probability of Amax(a,b,A). Let A* be
the dual discrete domain associated to A 2. Let C be the set of dual self-
avoiding circuits v ={v0 ~y1 ~ - ~ Ym ~ Y0} on A* surrounding a and b.
As before, we denote by 7 the interior of ~.

3Recall that it is the subgraph of (Z2)* composed of dual-edges whose end-points
correspond to faces touching A (they can be included in A or simply share an edge with
it).
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On the event C, there exists v € C which is dual-open®*, and a and b are
connected in 7. As before, we may condition on the outermost dual-open
circuit I' in C. We deduce as in the last proof that

¢f,’q’An(a —binFy|T=7v)= (2527(1’;(& > bin7)
< ¢27q,A(a «—bin7)

< ¢2,q,1\(a A b)

and following the same two lines as in (8.20) (meaning that we partition
Amax(a,b, A) into the events {T' =~}), we find

&5 o . (Amax(a,0,8)) < 60 1 (a <> b)

and therefore

B, Ama(@ 1A € | wutss  Spafomp (00, (417
be{m}x[0,m]

where m = |a - b co-

We may now use the fact that if 0 is connected to distance k, there exist
a and b at distance m > k of each others and a box A having a and b on
opposite sides such that Apax(a,b, A) occurs. Let us bound the number
of choices for a, b and A.

For a fixed m > k, there are |A,,| = (2m +1)? choices for a (since a must
be at distance smaller or equal to m from the origin). Then a must be on
the boundary of A and there are therefore |0A| = 4m choices for A. The
number of choices for b is bounded by m + 1 (it must be on the opposite
sides of A). Therefore, for fixed m we can bound the number of possible
triples (a,b, A) by 4m(2m+1)?(m+1) < 72m*. We have been very wasteful
in the previous reasoning and the bound on this number could be improved
greatly but this will be irrelevant for applications.

Overall, (4.17) and a union bound gives

0 4 0
@ (0 <> OAL) < mZ;k 2m ae{él}lxa[)é,m] Po,mp2 (@< b).
B be{m}x[0,m]

4Note that this is true even when A = A,, since free boundary conditions can be seen
as dual-wired boundary conditions on A}, and that therefore OA}, provides us with a
dual self-avoiding circuit in C which is dual-open. A similar reasoning applies when A
only shares some sides with Ay,.
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4.5 Infinite-volume measures and phase
transition.

4.5.1 Definition of infinite-volume measures

The definition of an infinite-volume random-cluster measure is not direct.
Indeed, one cannot count the number of open or closed edges on (Z? E)
since they could be (and would be) infinite. We thus define infinite-volume
measures indirectly: they are the measures which coincide, when restricted
to a finite box, with random-cluster measures in finite volume.

Definition 4.24. Let p € [0,1] and ¢ > 0. A probability measure
¢ on {0,1} is called an infinite-volume random-cluster measure with
parameters p and q if for every finite graph G and any configuration

€e{0,1}5 e,

d(wipe =nlw(e) =&(e) Ve ¢ Ea) =65 o(n) . Yne{0,1}79, (4.18)
where £ are the boundary conditions induced by the configuration &.

Remark 4.25. Note that the conditional probability on the left of
(4.18) is not properly defined for any &, since {w(e) = £(e) : e ¢ Eg}
has probability 0, but this formula still determines the random variable
#(wg; = N|FeBe) (in particular because it depends on the partition
induced by £ only, and that there are only finitely many such partitions).

Remark 4.26. Many properties of these infinite-volume measures can be
deduced from measures in finite volume thanks to (4.18). Often, we will
use a result in finite volume and then pass to the limit. When passing to
the limit is straightforward, we shall not mention it.

Proving the existence of an infinite-volume measure is not very difficult:
one may take a sequence of measures on A, and take a sub-sequential
limit (the space of probability measures is compact). Nevertheless,
this construction is not very explicit and we prefer the following one.
The domain Markov property and the comparison between boundary
conditions allow us to construct two interesting infinite-volume measures
when ¢ > 1.

Proposition 4.27. Let ¢ > 1. There exist two (possibly equal)
infinite-volume random-cluster measures ¢g,q and ¢;,q, called the infinite-
volume random-cluster measures with free and wired boundary conditions
respectively, such that for any event A depending on a finite number of

edges,

7’11_{20 ¢;,q,AH(A) = ¢11),q(A) and T}I_I)Iolo ¢27q7An(A) = ¢g7q(A)
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Proof. We deal with the case of free boundary conditions. Wired
boundary conditions are treated similarly. Fix an increasing event A
depending on edges in Ay only. Applying (4.15) to F' = A,, and G = A4,
we find that for any n > N,

27(17/\71,-#1 (A) 2 ¢27Q7A7L (A)

We deduce that (qbg,q’ A, (A))nx0 is increasing, and therefore converges to
a certain value P(A) as n tends to infinity.
Since the ¢2’ q.A,,"probability of an event B depending on finitely many
edges can be written by inclusion-exclusion as a linear combination of the
v probability of increasing events, taking the same linear combination

P,q,An”
defines a natural value P(B) for which

par, (B) — P(B).

The fact that (¢27q7 A, )nz0 are probability measures implies that the
function P (which is a priori defined on the set of events depending on
finitely many edges) can be extended into a probability measure on Fp.

We denote this measure by ¢2,q. O

The free and wired infinite-volume measures have special properties that
we describe now. Let 7, : {0,1}¥ — {0,1}* defined by

T.w({a,b}) =w({a+x,b+2}) V{a,b}eE.

Let 7,A = {we {0,1}E: 7,we A}. An event A is translational-invariant if
for any x € Z2, 7,A = A. A measure u is invariant under translations if
w(rzA) = u(A) for any event A.

Theorem 4.28. Fiz p€[0,1] and ¢ > 0. The measures (b;q and ¢2,q are
invariant under translations and any translational-invariant event A has
probability 0 or 1.

The second property is called ergodicity of the measure.

Proof. Let us treat the case of d);’q. Let A be an increasing event
depending on finitely many edges and z € Z? which is a neighbor of the
origin (this will imply the result for every x € Z? by successive applications
of this result). We have

¢;),q(A) = 7}1_{1;10 (72511)7(1,/\" (A) = 7}1_1320 d);),q,‘rmAn (TZEA)
Now, Ap-1 € 7, Ay, € Apyq and therefore (4.15) implies that

¢11)yQ7An+1 (TwA) < ¢;t17,q,TwAn(TwA) < ¢;,q,/\”,1 (TGJA)
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and thus
lim ¢11,)q’T$A” (1:4) = ¢11,)q(T$A).

n—oo

We conclude that ¢ (A) = ¢, ,(7:A) for any increasing event depending
on finitely many edges. Since the increasing events depending on finitely
many edges span the o-algebra of measurable events, we obtain that gb}l,’q
is invariant under translations.

Since any (translation-invariant) events can be approximated by events
depending on finitely many edges, the ergodicity follows from the fact®
that for any events A and B depending on finitely many edges,

I 6} ,(A07.B) = 9},,(4)9},,(B).
Observe that by inclusion-exclusion, it is sufficient to prove the equivalent
result for A and B increasing and depending on finitely many edges. Let
us give ourselves these two increasing events A and B depending on edges
in Ay only, and z € Z?. The FKG inequality implies that

Op.g(ANTB) 2 ¢, ((A)dy, (7o B) = by, o (A) &y, 4 (B).

In the other direction, the comparison between boundary conditions
implies that for |z| > 2N,

¢119,q(A N7, B) < ¢;,q,A|sz (A)¢117,q,‘rm/\‘z‘/2 (1:B) = ¢;1;,q,A‘1,|/2 (A)(bglw,q,/\‘w‘m (B).

In the equality, we used the invariance under translation. The result follows
by taking |x| to infinity.

The case of ¢2’q follows by taking A and B decreasing instead of
increasing. ]

The construction of ¢11,’q and ¢2’q can be performed with many other
sequences of measures, as explained previously. It could also be possible
to see infinite-volume measures existing intrinsically, in the sense that they
are not limits of random-cluster measures in finite volume. We conclude
this section by discussing uniqueness criteria for these infinite-volume
measures.

Proposition 4.29. Let pe[0,1] and g€ (0,00). If gi)zlw = ¢V . then there

p.q’
exists a unique infinite-volume measure with parameters p and q.

5Let us briefly justify this classical fact. Let C' be an event which is invariant under
translation. Let € > 0 and A be an event depending on finitely many edges such that
qﬁ;l,’q(AAC) < e. We deduce that

by 4(C) =), (C72C) = ¢}, ((ANTLA)+O(e) — ¢, ,(A)? +0(e) = ¢ ,(C)>+0(e),

where the limit means z — oco. Letting € tend to 0 gives us that ¢11,‘q(C) = ¢11)’q(0)2
and therefore qb;‘q(C) € {0,1}.
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Proof. Let ¢,, be an infinite-volume measure. Equation (4.18) and

the comparison between boundary conditions implies that (bg’ o, (A) <

bp.q(A) < (z)zlnq,An (A) for any n > N and any increasing event A depending
on edges in Ay only. Taking the limit as n tends to infinity, we find

B0 4 (A) < bpg(A) <@ (A).

Now if ¢, , = ¢) ,, we deduce that ¢) (A) = ¢p4(A) = ¢, (A). Since
increasing events depending on finitely many edges generate the o-algebra,
we obtain that (i)?w =¢pqg = zlw' O

The following theorem shows that the set of edge-weights for which
uniqueness fails is somehow small.

Theorem 4.30. For g > 1, the set Dy of edge-weight p for which
uniqueness fails is at most countable.

The proof is based on the differentiability of the free energy.

Lemma 4.31. There exists a quantity, called the free energy, such that

f(pa q) = Jlm IOg [Zﬁ,q,/\n]’

~oo |Ep, |

where the convergence holds uniformly in the choice of boundary conditions

3

Proof. We will simplify the proof and present it only for the subsequence
of boxes of size 2"". The general case follows using the dyadic decomposition
of n. Define

1
fS(paQ) = |EA | log [Zg,q,/\n]'
Now,
1
L= T PO

we{0,1}7A2n

Z po(w)(l _p)c(w)qk1 (wh)+tkg(wh)

\%

wE{O,l}EA2n
(Z;,q,/\n )4’

where ki(w!), ka2(w!), k3(w!) and kq(w') are the numbers of clusters
(counted with wired boundary conditions) in the graphs Wirp—mA
WirpomyAn Wi —nyAn and Wi myAn-

Hence, the sequence (f.(p,q))nso is increasing and converges to a limit
denoted by f(p,q).

n?
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Now, consider boundary conditions £. Since
E(w®) < k(w') < k(w®) + [0A,],

taking the logarithm and letting n go to infinity implies the convergence
to the same limit. ]

Proof of Theorem 4.30. We will use the variable 7 defined by
m(p) = log[p/(1 - p)]. Also set pr = ;5. We set f(m,q) and fs(m,q)
for f(pr,q) —log(1+e™) and f5(px,q) —log(1l+e™). When differentiating

Fra)= ——log( X @)
B we{0,1}FAn
in 7, we find
1
Oxf5(m,q) = > 6 a, (w(e)=1)
|E n| eeA,,

which is increasing in p. As a consequence, ffl(w,q) is convex, and
therefore its limit f(m,q) also is. This immediately implies that f(m,q) is
differentiable except for at most countably many points.

Let us now prove that ¢) (w(e) =1) =¢, (w(e) =1) for values of 7

for which f(m,q) is diffgrentlable. Since f!(m,q) is convex, differentiable
in 7 and increasing to f(m,q), we deduce that

lim f(7T+EQ) f(ﬂ' q) - lim 1 Z ¢1 (w(e) =1)

A
exo0 S n—>00 |EA2n| e€Epyn Py Ran

= bp, g(w(e) = 1).

The first equality is due to a general fact about convex functions, and the
second equality to the invariance under translations and the convergence
of (;Sp g Ay © ¢117mq' Similarly, one may prove that f°(x,q) is decreasing

to f(m,q) and therefore

f(r-e Q) f(r, Q) _

E\O

B q(W(e) =1).

Putting these two facts together, we obtain that at any point of
differentiability in 7 of f(7,q),

Opq(W(e)=1) = ,(w(e)=1). (4.19)
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We are close to the end of the proof. We need to prove that (4.19)
implies that the infinite volume measure is unique at p,. Proposition 4.29
shows that it is sufficient to prove that ¢) = ¢, . Recall that ¢)
1
PrsQAn
coupling P,, with marginals ¢2W,Q,An and d)]lo,r,q.An such that P, (w1 <wsq) =

:0,An

is stochastically dominated by ¢ In other words, there exists a

1. By passing to the limit we obtain a coupling P with marginals ¢gmq

and (bzljmq. Let us consider an increasing event A depending on a finite set
FE of edges. We find

0< ¢y o(A)=¢) (A)=P(weAandw ¢A)
<P(Jec E:wa(e) =1 and wi(e) =0)

< %P(wg(e) =1 and wi(e) =0)

= ZEQS;W,q(w(e) =1)-¢% (w(e)=0)=0.

Since ¢;,,,,q(A) = qﬁgmq(A) for any increasing event A depending on finitely

many edges, we deduce the claim. O

Remark 4.32. It will sometimes be convenient to work in an infinite
subgraph G of Z2. Let ¢ be some boundary conditions for G. We define
the random-cluster measure in G with boundary conditions £ on dG, wired
at infinity as the monotone limit

¢g° =lime% , | (4.20)

where the boundary conditions &,, are wired on the boundary intersecting
OA,,, and defined by £ on the rest of the boundary. We define similarly
the measure qb(éf with free boundary conditions at infinity.

Remark 4.33. One example of infinite set that will come back several
times in this book is the strip S,, = Z x [0,n]. The finite energy property
(Proposition 4.4) implies that for any p < 1, there exists ¢ = ¢(p) > 0 such
that each vertical segment {k} x [0,n] (k € Z) is composed of closed edges
only with probability larger or equal to ¢, and this independently of the
state of the other edges. We easily deduce that there is no infinite cluster
in S,, almost surely, independently of p < 1 and of the boundary conditions.
Also, gf = gbéf for any boundary conditions &.

4.5.2 Critical point

We are now in a position to discuss the phase transition of the random-
cluster model.
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Theorem 4.34. There exists a critical point p. € [0,1] such that:
e Forp < p., any infinite-volume measure has no infinite cluster almost
surely.
e Forp > p., any infinite-volume measure has an infinite cluster almost
surely.

Proof. Let us define
pe=inf{pe[0,1]: D (0« o0) > 0}.

Since the event 0 < oo is increasing, we deduce that ¢27q(0 < 00) >0 for
any p > p.. Ergodicity implies that

¢g,q (there exists an infinite cluster) = 1.

Furthermore, Proposition 4.29 implies that this claim is true for any
infinite-volume measure, since qﬁg’q is the smallest among all of them.

On the other hand, let p < p.. There exists p < pg < p. such that there
is a unique infinite-volume measure at po (since the set D, is at most
countable). We deduce that for any infinite-volume measure ¢, , and any
zeZ?

Gpq(T < 00) < ¢11))q(x > 00) < qbll,mq(x > 00) = ¢207q(a¢ < 00)=0

by uniqueness of the measure at pg and pg < p.. The claim follows by
taking the union over all z € Z2. O

Remark 4.35. In order to complete the picture of the existence of a phase
transition, we should prove that p. lies strictly between 0 and 1. The
most elementary argument would be an extension of the famous Peierls
argument [Pei36]. Since we will compute the critical value explicitly in
the next chapter, and since the Peierls argument will be presented in its
original context (the Ising model) in Section 7.5.3, we do not spend more
time on it now.

We do not resist the pleasure of presenting one of the most beautiful
arguments in probability theory, namely the Burton-Keane argument. Let
e NuU{oo}. Define & to be the event that there exist exactly ¢ distinct
infinite clusters.

Proposition 4.36 (Uniqueness of the infinite cluster [BKS89]). Fiz
p€[0,1] and g > 1. For any £ > 2, we have that qSIl,’q(é'g) = qﬁg’q(&) =0.

In other words, either there is no infinite cluster almost surely, or there
is a unique infinite cluster almost surely.
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Proof. We present the proof in the case of £ = 0. The case of £ =1 is
treated similarly.

Step 1: proof of ¢ [E,]=0 for 2<£<oo. Let {>2. Let F, be the
event that the /¢ infinite clusters intersect A,. Fix N large enough that
qu[}-}v] > %(ﬁg’q[&]. Since Fy depends on edges outside Ay only, the
finite-energy property (Proposition 4.4) implies that
#° [Fnn{w(e)=1,YeeAn}]> 5 2,q[c‘:g].

p,q

Any configuration in the event on the left contains exactly one infinite
cluster since all the vertices in Ay are connected. Therefore,

Spgl€1]2 50p €],

Ergodicity implies that ¢ ,[£,] and ¢ [£1] are equal to 0 or 1, therefore
0 18] - 0.
p.a

Step 2: proof of ¢9 [E.]=0. Assume that ¢ [Ee]> 0 and consider
N >0 large enough that

¢2’q[three distinct infinite clusters intersect the box Ayx] > 0.

The finite-energy property (Proposition 4.4) implies that ¢2’q[CT0] > 0,
where CTy is the following event:

e all vertices in Ay are connected to each other in Ay,

e if C is the cluster of 0, then C n (Z? \ Ay) contains at least three

distinct infinite connected components.
A vertex x € (2N + 1)Zd is called a coarse trifurcation if 7,CTy =: CT,
occurs. By invariance under translation, ¢27q[CT,;] = g)q[CTo].
Fix n > N. The set T of coarse trifurcations in A,, has a natural

structure of forest F constructed inductively as follows.

Step 1: At time 0, all the vertices in T" are unexplored.

Step 2: If there does not exist any unexplored vertex in T left, the
algorithm terminates. Otherwise, pick an unexplored vertex
t € T and mark it explored (by this we mean that it is not
considered as an unexplored vertex anymore). Go to Step 3.

Step 3: Consider the cluster C; of vertices z € Z% connected to t in
A,,. This cluster decomposes into k > 3 disjoint connected
components of Z% \ (z + Ay) denoted by ¢V ... .C*). For
i=1...k, do the following

— if there exists a vertex z € C(Y n 9A,, and there exists an
open path in A, going from x to ¢ and not passing at
distance N from a coarse-trifurcation in C n (T \ {t}),
then add the vertex x to F together with the edge {t,z}.
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— if there is no such vertex, then there must be a coarse-
trifurcation s connected by an open path not passing at
distance N from a trifurcation in 9 n (T'\ {t,s}). If s
is not already a vertex of F, add it. Then, add the edge
{t, s}.

Step 4: Go to Step 2.

The graph obtained is a forest (due to the structure of coarse-trifurcations).
Each coarse-trifurcation corresponds to a vertex of the forest of degree at
least three. Thus, the number of coarse-trifurcations must be smaller than
the number of leaves N of the forest. Taking the expected number of
coarse-trifurcations, we find

0 @en+1)%
¢p’q[CT0]W S p,q[N]' (421)
Yet, leaves are vertices of dA,,, thus
¢qu[./\/] <8n

which gives

5,[CTol _ 5,IV]

0<
(2N +1)2 7~ (2n+1)?

— 0 asn— oo.

This contradicts ¢ ,[CTo] > 0 and therefore ¢0 ,[€s] > 0. The claim
follows. =

Remark 4.37. The original Burton-Keane argument does not invoke
the notion of coarse trifurcation, but simply trifurcation (which would
correspond to N = 0). There is a tiny difficulty when working with
trifurcations (some rewiring construction) that we avoid when working
with coarse-trifurcations, at the cost of a slight loss in elegance.

4.5.3 The inequality p. > p.q

Overall, the existence of a critical point is not completely direct.
Nevertheless, it is now a classical fact which is well understood in many
models. The computation of the critical point on the other hand is a
much harder task and the existence of a nice formula for p.(¢) is not even
obvious in general. For the random-cluster model on the square lattice, it is
nevertheless natural to conjecture that the critical point satisfies p; = psq-

Let us start by a lower bound for the critical value which can be derived
using an elegant argument (due to Zhang in the case of percolation) based
on the uniqueness of the infinite cluster
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Proposition 4.38. For q > 1, there exists almost surely no infinite cluster
at psa(q) for the infinite-volume measure with free boundary conditions. As

a consequence, Psa(q) < pe(q).

Proof. Let ¢ « 1. Assume that ¢?
enough that

peasg(0 > 00) > 0 and choose n large

pgdq(A —o0)>1-¢c.

The integer n exists since the infinite cluster exists almost surely (therefore
the quantity on the left tends to 1 as n tends to infinity).

Let Ay (resp. Arights Atop and Apottom) be the events that {-n} x
[-n,n] (resp. {n}x[-n,n], [-n,n]x{n} and [-n,n]x{-n}) are connected
to infinity in the complement of A,,. By symmetry,

¢gsd7q(Aleft U Aright) = ¢25d,q(14top u Abottom)

and
¢2Sd7q(Aleft) = ¢2Sd7q(Aright)-
We also find that

(Aleft u Arlght u Atop U Abottom) = (A <~ OO) >1-e.

Ped q Pad q

We can thus invoke the square-root trick (4.11) twice to obtain that

g(Alefe) 21 -¢ s,

psd»

As a consequence,
0 1/4
(bpsd,q(Aleft N Apigne) > 1 -2¢ /4,

We now use that p?; = psq. Note that the dual measure stochastically
dominates the primal one since the dual measure of gbp 40 is gbp a 6, In
and AbOttom be the events that [-(n+3),n+4]x{n+3}
and [-(n-1),n+3]x{-(n+3)} are dual-connected to infinity using edges
outside E} = {e* : e € Ej,}. Following the same argument as for the
primal model, we find that

particular, let Atop

Psd q(Atop n Agottom) >1- 251/4'
Putting all these facts together, we obtain

* 1/4
Psd 11(141‘510t n A”ght n Atop n Abottom) >1-4e / .

60ne can easily see that the duality relation between free and wired boundary
conditions extends to infinite volume by looking at measures on A, and letting n go to
infinity
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Figure 4.2: In this configuration, two infinite clusters (in bold) coexist.

Now, Let B be the event that every dual-edge in E} is open in w”.
The events B and Ajefs N Aright N At*op N A} iiom depend on disjoint sets.

The finite-energy property (Proposition 4.4) implies that

0 * *
psd,q(B n Aleft n Aright n Atop n Abottom) >0,

see Fig. 4.2. But this last event is contained in the event that there
are two disjoint infinite clusters, which we excluded, thus leading to a
contradiction. O

Remark 4.39. The much more difficult inequality p. < psq will be proved
in Chapter 5.

Let us conclude this chapter by a useful corollary.

Corollary 4.40. Fix q > 1. The unique edge-weight p € [0,1] for which
there can exist distinct infinite-volume measures is psqa(q)-

Remark 4.41. From now on, when p # psq(q), the unique infinite-volume
measure with parameters (p,q) is denoted by ¢, ;. This measure can be
equivalently thought of as (bg}q or ¢117’q.
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Proof. By Proposition 4.29, we only need to prove that ¢2’q = (;Szl,’q. Fix
P < psq and an increasing event A depending on a finite number of edges
(all included in the box of size say k). For N > n > k, Lemma 4.22 (in fact
a trivial modification of it) implies that

¢]1),q,AN (A n {aAk <_/_) 8ATL}) < ¢2,q,]\n (A)¢;,q,AN (6A]€ (_/—> 8An)

Letting IV tends to infinity, we find that

8L (AN {OA, > 0M,) <60 x (A)o) (OAg <> ON,).

Since p < psa(q) < pe(q) (by Proposition 4.38), the term on the right tends
to ¢y ,(A) as n tends to infinity. The left-hand side tends to ¢} ,(A).
Therefore, we have ¢}D’q(A) < gbg’q(A). Since the other inequality is trivial
by stochastic domination, we find that ¢11),  (A) = ¢2, 4(A) for any increasing
event A depending on finitely many edges. Since these events generate the
whole algebra of measurable events, we obtain that (b}g’q = ¢27q.

For p > psq, we use that the dual measures of ¢11>,q and ¢>qu are
respectively ¢g*7q and ¢;*7 4+ Since these two measures are equal, we deduce
that qﬁ}w = d)g’q in this case as well. O



Chapter 5

RSW theory for the
random-cluster model

with g >1

Motivated by the fact that critical exponents of the random-cluster model
may be obtained by studying fractal properties of the critical phase (see
the introduction for more details), we now focus on the global geometry of
big clusters in a large box. Obviously, keeping track of all long open paths
in a box would be inefficient, and we are therefore looking for a better
way of encoding the information. In the nineties, Aizenman suggested to
consider only the information that some subdomains €2 with four points
a, b, c and d on their boundary contain “an open path from the arc ab
to the arc cd staying in 7 or not. If one possesses this information for a
sufficiently large family of subdomains (for instance, one may look at those
which are roughly of the size of the box), one understands the geometry
of the big clusters fairly well.

This (vague) discussion motivates our interest in so-called crossing
events. For simplicity, we will restrict our attention to subdomains which
have a rectangular shape (we will treat more general shapes in Chapter 10).

Definition 5.1. A rectangle R is a graph of the form [a,b] x [¢,d]. For a
rectangle R = [a,b] x [¢,d], let C,(R) denote the event that there exists an
open path from top to bottom in R, i.e. from [a,b] x {¢} to [a,b] x {d}.
Such a path is called a wvertical (open) crossing of the rectangle.

Similarly, define C,(R) to be the event that there exists an open path
from left to right in R. Such a path is called an horizontal (open) crossing

between the left and the right sides.

94
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When the configuration is supercritical (p > p.), one may easily check
that most rectangles are crossed vertically and horizontally provided that
they are big enough! (the infinite cluster will then visit the rectangle
with large probability). On the contrary, when the model is subcritical
(p < pc), one may prove (it is the object of Theorem 5.18) that the largest
cluster in a box of size n is of size O(logn) with large probability. In
particular, the probability that a rectangle of the size of the box is crossed
vertically or horizontally is very small (see Remark 5.20). Thus, the phase
at p = p. seems to be of specific interest for crossing events. We will see
in this chapter that in such case, the probability of crossing for rectangles
remains bounded away from 0 and 1 provided that the aspect ratio of these
rectangles remains bounded away from 0 and oo. Note that in our case,
pe is expected to be pgq.

The most important result of this chapter will be a proof that for p = pgg
and « > 0, the probability of C,([0,an] x [0,n]) remains bounded away
from 0 or 1 uniformly in n. This result extends the Russo-Seymour-
Welsh (RSW) theory available for Bernoulli percolation. This theory
started with the articles [Rus78] and [SW78] on percolation (also see the
more recent approaches of Bollobas and Riordan [BR06a, BR10, BRO6c]).
Nevertheless, all known approaches are based on independence. In the
random-cluster model with ¢ > 1, the dependence inherent in the model
forces us to develop new arguments. In particular, specific boundary
conditions will be easier to handle and we will start by periodic boundary
conditions. Later in the chapter, we will treat general boundary conditions.

The chapter is organized as follows. Section 5.1 is devoted to the
development of the RSW theory for periodic boundary conditions. In
Section 5.2, we present the most important application of this theory: the
determination of the critical value p. = \/q/(1+/q). In Section 5.3, we
show exponential decay of correlations in the subcritical phase. Section 5.4
presents a more general version of the RSW theory. This improved theory
represents a milestone in the theory of the critical random-cluster model
for ¢ > 1 and one important application is directly presented in Section 5.5.

Remark 5.2. The Russo-Seymour-Welsh theory usually refers to a
specific aspect of the study of probabilities of crossings: namely the
fact that the probability of crossing vertically a rectangle of the form
[0,n] x [0,an] with a > 0 can be expressed in terms of the probability
of crossing vertically the rectangle [0,n] x [0, 8n] with 8 < « in such a way
that if the later remains bounded away from 0 in n, so does the former.
In this book, we will allow ourselves some latitude and simply refer to the
Russo-Seymour-Welsh theorem as being the fact that crossing probabilities
remain bounded away from 0 and 1 provided that « is fixed.

1 And also that their aspect ratio is not to small or too big, see Remark 5.20.
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5.1 RSW theory for periodic boundary
conditions

The following theorem states that, at the self-dual point, the probability of
crossing a rectangle horizontally is bounded away from 0 uniformly in the
sizes of both the rectangle and the torus provided that the aspect ratio of
the rectangle remains constant. The size of the ambient torus is denoted
by m.

Theorem 5.3 (Beffara, Duminil-Copin [BDC12a]). Let o > 1 and g > 1.
There exists c(a) >0 such that for every m > an >0,

c(a) < qbgf;q’m(ch([o,an] x[0,n])) <1-c(a). (5.1)

By invariance under rotations, we obtain similar bounds for crossings from
bottom to top.

The periodic boundary conditions are not helping the existence of a dual-
open crossing from top to bottom that would be preventing the existence
of an open crossing from left to right, in the sense that the dual model also
has periodic boundary conditions?. Therefore, it is natural to expect such
a result to hold at least for a square shape (this statement will in fact be
easy to prove, see Lemma 5.7). The difficult part of the proof will be to
extend this result to aspect ratio o # 1.

Remark 5.4. Note that even for a = 1, the above result would not
necessarily be true when working with free boundary conditions for
example, since the dual model would have wired boundary conditions,
and it could be that the existence of a dual-open crossing from top to
bottom would be much more likely than the existence of a open crossing
from left to right (even if v << 1). We will discuss this phenomenon in the
next chapters.

Theorem 5.3 implies a similar result for the infinite-volume random-
cluster measure with wired boundary conditions?.

Corollary 5.5. Let a > 1 and q > 1; there exists c(a) > 0 such that for
everyn > 1,

p.aralCr([0,an] x [0,])] > e(@). (5.2)

2 As least when working with the balanced model, see Section 4.3.2.

3Note that in this case also, the dual model has free boundary conditions, and
therefore the probability that there exists a dual crossing is a priori smaller than the
probability of primal crossings.
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Proof. Let a > 1 and m > 2an > 0. Using the invariance under
translations of ¢b® . and comparison between boundary conditions, we
have

¢1175dyQ7Am,/2 [Ch([O,an] x [O,n])] > qﬁ;gd’qm[ch([o,an] x [O,n])] > c(a).
When m goes to infinity, we find

3.0l Cr([0,an] x [0,])] > e(a).
O

We now focus on the proof of Theorem 5.3 and we work on the torus of
size m. For technical reasons, it will be convenient to rotate the lattice
in this torus by m/4 for the reminder of this section. In such case,
the graph [0, an]x [0,n] is then the intersection of the rotated lattice with
the rectangle [0, an] x [0,n] (when seen as a subset of R?). The definition
of the events Cj, and C, is extended to this context (we still go from left
to right, and from top to bottom). We will prove the following result.

Proposition 5.6. Let ¢ > 1. There exists ¢ > 0 such that for every
m > %n >0,
per (Ch([O7 gn] X [O,n])) >c. (5.3)

Dsa»q,m

Let us explain how this result implies Theorem 5.3.

Proof of Theorem 5.3. We use Proposition 5.6. Let us emphasize once
again that in the statement and also in this proof, the lattice is rotated by
w/4. Let R=T([0,n]x[0,an]), where T is the composition of the rotation
of angle 7/4 and the translation of vector (3,0), see Figure 5.1. Define
the following rectangles:

Ry =[5 G+ D5 G+ D5
Ri =14 G+ x G+ 5. G+ 5],

for j € [0,]4v/2c) + 4], where |2 denotes the integer part of z. If every
rectangle R;L is crossed horizontally, and every rectangle R} is crossed
vertically, then T'([0,an] x [0,n]) is crossed in the long direction. The
FKG inequality and Proposition 5.6 provide us with a lower bound on the
crossing probability.

Now, the graph T([0,an] x [0,n]) is isomorphic to the rectangle
[0,an] x [0,n] when the lattice is not rotated. This concludes the proof.
mi

The proof of Proposition 5.6 begins with a lemma, which corresponds
to the existence of ¢(1) and is based on the self-duality of the (balanced)
random-cluster measures on the torus. This lemma is the starting point
for any attempt to obtain bounds on crossing probabilities.
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Figure 5.1: A combination of crossings in smaller rectangles creating a
crossing of a very long rectangle.

Lemma 5.7. Let g > 1, there exists ¢(1) = ¢(1,q) > 0 such that for every
m>n>1, ¢b (Ch([O,n]2))2c(1).

Psd,q,m

Proof. We will use the balanced random-cluster measure Ngf; q,m On the
torus of size m. Note that the dual of the subgraph of Z? induced by [0,n]?
is the subgraph of (Z?)* induced by [0,7]? (the latter graph is isomorphic
to the former), see Figure 5.2. If there is no open crossing from left to
right in [0,7n]?, there exists necessarily a dual-open crossing from top to
bottom in the dual configuration. Hence, the complement of Cp,([0,7]?) is
the event C([0,n]?) that there exists a vertical dual-open dual path from
top to bottom in [0,7]? (this dual-open path prevents the existence of an

horizontal open crossing), thus yielding

Opnan (Cr([0:0]%) + 655, 4. (C([0,7]%)) = 1.

Using the duality property for periodic_boundary conditions and the
symmetry of the lattice, the probability ¢P** . (C([0,n]?)) is equal to

7 Psd»q,
Deds (Ch([0,n]?)), giving

prer n(C([0,n])) = 1/2.
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Figure 5.2: The square [0,n]? and its dual. The event Cp([0,n]?) is
occurring. If the right edge e is turned to closed, then C; ([0,7]?) occurs.

Using the fact that the Radon-Nykodym derivative of the random-cluster
model with respect to the balanced random-cluster model is bounded by
a constant depending on ¢ only, the result follows. O

The only major difficulty is now to prove that rectangles of aspect ratio

« are crossed in the horizontal direction — with probability uniformly
bounded away from 0 — for a = % There are many ways of proving this

in the case of percolation. Nevertheless, these strategies always involve
independence in a crucial way. In our case, independence fails, thus a new
argument is needed. The main idea is to invoke self-duality in order to
force the existence of crossings, even in the case where boundary conditions
could look disadvantageous. In order to do that, we introduce the following
family of domains, which are in some sense nice symmetric domains.
Define the line d := {(x,y) : * = —/2/4}. The orthogonal symmetry o4
with respect to this line maps e'™/*Z? to '™/*(Z?)*. Let ~; and 75 be two
paths on e'™/*Z? satisfying the following Hypothesis () (see Figure 5.3):
e v, remains on the left of d and ~» remains on the right;
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free on this arc

Figure 5.3: Two paths 71 and s satisfying Hypothesis (x) and the graph
G(71,72)-

e 7 begins at 0 and 7; begins on a vertex of e’™*Z? nd’, where
& = {(2,y) 7 = —/32}:
e v and 04(72) do not intersect (as curves in the plane);
e 71 and o4(72) end at two vertices (one primal and one dual) which
are at distance \/5/ 2 from each other.
Note that o4(v1) and o4(72) are paths on e™/*(Z?)*. The definition
extends trivially via translation, so that the pair (y1,72) is said to satisfy
Hypothesis () if one of its translations does.

When following the paths in counter-clockwise order, one can create
a circuit by linking by a straight line the end points of v; and o4(72),
the start points of c4(v2) and 79, the end points of 7o and c4(v1), and
the start points of o4(v1) and ~;. Constructed like that, the circuit
(71,04(72),72,04(71)) surrounds a set of vertices. Define the graph
G(71,7v2) composed of the vertices that are surrounded by the circuit
(71,04(72),72,04(71)), and of edges that remain entirely within the circuit
(boundary included).

The mized boundary conditions on this graph are wired on ~; (all
the edges are pairwise connected), wired on 75, and free elsewhere.
The measure on G(v1,72) with parameters (psq,q) and mixed boundary
conditions is denoted by ¢,_, 4,41,4. OF more simply ¢, ~,.

Lemma 5.8. For any pair (y1,72) satisfying Hypothesis (%), the following
estimate holds:

1

Gy e (V1 € 72) 2 ?qg)

where 1 <> 3 means that y1 and v2 are connected inside G(v1,72).
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Proof. On the one hand, if v; and v are not connected in w, o4(v1) and
o4(72) must be connected by a dual path in w* (this event corresponds to
c4(71) <= c4(72) in the dual model). Hence,

L=y 7 (1 <= 72) +0a* &), ., (71 <= 72), (5.4)

where o4 * (¢3, ,) denotes the image under o4 of the dual measure of
®~1,~-- This measure lies on G(71,72) as well and has parameters (psq, q)-

As explained in Section 4.3.1, the dual boundary conditions of the mixed
boundary conditions wired on y; and y,, and free elsewhere are wired
on 1 U~y and free elsewhere (observe that we went to the dual model
and then used the reflection o4). It is very important to notice that the
boundary conditions are not exactly the mixed one, since v; and v, are
wired together. Nevertheless, the Radon-Nikodym derivative of oq * ¢, .,
with respect to ¢, ,, is easy to bound. Indeed, for any configuration w,
the number of clusters can differ only by 1 when counted in oq * ¢, ., or
G~y 4o SO that the ratio of partition functions belongs to [1/q, q]. Therefore,
the ratio of probabilities of the configuration w remains between 1/¢* and
¢®. This estimate extends to events by summing over all configurations.
Therefore,

oa* @), 5, (71 <= 72) < q2¢71772 (11 <= 72).

When plugging this inequality into (5.4), we obtain

By (V1 < V2) + Py o (71 > 72) 2 1

which implies the claim. |

Remark 5.9. The most important example (on the rotated lattice)
of a symmetric domain is the rotated version of a square (it has a ¢
shape). When rotating back the shape and the lattice, we obtain a
“standard” square with wired/free/wired/free boundary conditions (i.e.
mixed boundary conditions) and we thus obtain the following useful
inequality on the square lattice: for every n > 1,

S0z (Cr([0,2]%) 2 (5.5)

1+¢2
We are now in a position to prove Proposition 5.6.
Proof of Proposition 5.6. The proof goes as follows: we start with

creating two paths crossing square boxes, and we then prove that they are
connected with good probability.
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Step 1: setting of the proof. Consider the rectangle R = [0,3n/2] x
[0,n] which is the union of the rectangles Ry = [0,n] x [0,n] and
Ry = [n/2,3n/2] x [0,n], see Figure 5.4. Let A be the event defined by
the following conditions:

e R; and Ry are both crossed horizontally (these events have
probability at least ¢(1) to occur, using Lemma 5.7);

e [n/2,n]x{0} is connected inside Ry to the top side of Ry (this event
has probability greater than ¢(1)/2 to occur using symmetry and
Lemma 5.7).

Employing the FKG inequality, we deduce that

c(1)®

per (A) 2 2

Psd,q,m

(5.6)

When A occurs, define I'y to be the top-most open self-avoiding path
crossing R; horizontally, and T'y the right-most open self-avoiding path
crossing Ry from [n/2,n] x {0} to the top side. Note that this path is
automatically connected by an open path to the right-hand side of Ry —
which is the same as the right-most side of R. In particular, if I'; and
I's are connected, then there exists a horizontal crossing of R. In the
following, I'1 and I'y are shown to be connected with good probability.

Step 2: the reflection argument. Assume first that I'; = 7; and
'y = 9, and that they do not intersect. Let = be the vertex at the right
end of v; (it is the unique vertex in 4; which is on the right side of Ry). We
wish to define a set Go(v1,72) similar to those considered in Lemma 5.8.
Apply the following “surgical procedure” (see Figure 5.4 to help visualize):

e First, define the symmetric paths o4(71) and o4(y2) of 11 and ~s
with respect to the line d := {(z,y) : z = n - /2/4}.

e Then, parametrize the path o4(v1) by the number of steps (along
the path) from the starting point o4(x) and define 4; c 41 so that
c4(71) is the part of g4(71) between the beginning of the path and
the first time it intersects «2. As before, the paths are considered as
curves of the plane. Denote the intersection point of the two curves
by z. Note that «; and ~o do not intersect, which forces o4(y1) and
2 to do.

e From this, parametrize the path v, by the distance to its “starting
point” on [2,n]x {0} and set y to be the last visited vertex in e'% Z?
before the intersection z. Define 45 to be the part of 72 between the
last point intersecting {n} x [0,n] before y and y itself.
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it

Figure 5.4: The light gray area denotes the edges of R on which the event
{T'y =1} n {2 = 2} depend. The dark gray is the domain Go(71,92).
All the paths involved in the construction are depicted. Note that dashed
curves are “virtual paths” of the dual lattice obtained by the reflection oy:
they are not necessarily dual open.

e Paths 41 and A, satisfy Hypothesis (x) so that the graph G(51,72)
can be defined.

e Construct a sub-graph Go(91,72) of G(71,72) as follows: the
edges are given by the edges of €™/*Z? included in the connected
component of G(%1,92) \ (71 U72) (i.e. G(A1,%2) minus the set
~1 U"y2) containing d (it is the connected component which contains
x - (0,e), where € > 0 is a very small number), and the vertices are
given by their endpoints.

Step 3: conditional probability estimate. Still assuming that v,
and v do not intersect, we would like to estimate the probability of 1
and 79 being connected by a path knowing that I'y =+, and I'y = 5. The
very important fact here is that {I'y = v;} n {T's = 72} is measurable in
terms of edges above or on ; and on the right of or on 5. In particular,
the event is measurable in terms of edges outside G(71,72) and edges in
~v1 and 2 (This is the same argument as the outermost dual-circuit in
the proof of Corollary 4.21). Therefore, the configuration in the domain
follows a random-cluster model with specific boundary conditions.

The boundary of Go(71,72) can be split into several sub-arcs of various
types (see Figure 5.4): some are sub-arcs of 71 or <2, while the others
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are (adjacent to) sub-arcs of their symmetric images o4(7y1) and o4(7y2).
The conditioning on I'y = 73 and 'y = 72 ensures that the edges along
the sub-arcs of the first type are open; the connections along the others
depend on the configuration outside Go(41,72) in a much more intricate
way, but in any case the boundary conditions imposed on the configuration
inside G(31,72) are larger than the mixed boundary conditions. Notice,
for instance by looking at Fig. 5.4, that any boundary conditions dominate
the free one and that 4; and 45 are two sub-arcs of the first type (they
are then wired). Thus, the measure restricted to Go(91,92) stochastically
dominates the restriction of ¢, 5, to Go(¥1,72).

From these observations, we deduce that for any increasing event B
depending only on edges in Go(1,92),

gj;,q,m(Blrl =M, FQ = 72) 2 (b’:/l,’?z (B) (57)

In particular, this inequality can be applied to {71 < 2 in Go(51,72)}-
If 41 and A, are connected in G(41,72), then 71 and 2 are connected
in Go(71,72). The first event is of ¢s, 5,-probability at least 1/(1 + ¢?)
(Lemma 5.8), thus implying

per

bonam (71 < 72/l =71,T2 =92) > ¢35, 5, (11 < 72 in Go(91,72))

- 1
2t o) 25 (68)

Step 5: conclusion of the proof. Note the following obvious fact: if
71 and 75 intersect, the conditional probability that I'; and I's intersect,
knowing I'y = 71 and T’y = 5 is equal to 1 — in particular, it is greater
than 1/(1 + ¢?). Now,

boram(Ch(R)) 2 00 (Cu(R) 0 A)

Psd,q;m Psd;

per m({T1 < T} nA)

Psd,q,m

E:,q,m( gz,q,m(rl e F2|F1’F2)1A)
Ce(1)®

1
> per
T 1+ 7 %pam(4) 2 2(1+q)?

where the first two inequalities are due to inclusion of events, the third
one to the definition of conditional expectation, and the fourth and fifth
ones, to (5.8) and (5.6) respectively. O
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5.2 Application 1I: critical point of the
random-cluster model

5.2.1 Statement of the theorem

The RSW theory for periodic boundary conditions has a very important
consequence: it enables us to compute the critical value of the random-
cluster model.

Theorem 5.10 (Beffara, Duminil-Copin [BDC12al]). Let ¢ > 1. The
critical point p. = pc(q) for the random-cluster model with cluster-weight q
on the square lattice satisfies

Va
1+./q

Pe = psa(q) =

A rigorous derivation of the critical point was previously known in three
cases. For ¢ =1, the model is simply bond percolation, proved by Kesten
in 1980 [Kes80] to be critical at p.(1) = 1/2. Onsager derived the critical
temperature of the Ising model in 1944 [Ons44]. One can actually couple
realizations of the Ising and random-cluster models to relate their critical
points, see Chapter 7, so that the ¢ = 2 case follows from Onsager’s result.
For modern proofs in that case, see [AKN87] or Chapter 11. Finally, for
sufficiently large ¢, a proof is known based on the fact that the random-
cluster model exhibits a first order phase transition; see [LMMS*91, KS82]
(the proofs are valid for ¢ larger than 25.72). Let us mention that
physicists derived the critical temperature for the Potts models with ¢ > 4
in 1978, using non-geometric arguments based on analytic properties of
the Hamiltonian [HKW78], and that we will present an alternative proof
for this special case in Section 6.3.

Now, a few words on the method of proofs. The first ingredient is the
RSW theory for periodic boundary conditions. The second ingredient is
a collection of sharp threshold theorems, which were originally introduced
for product measures.

5.2.2 Sharp threshold for boolean functions

Let us start by presenting the sharp threshold theorems. We wish to
understand the behavior of the function p = ¢, (A) for an increasing
event A (different from @ and {0,1}%%). This increasing function is equal
to 0 at p=0 and to 1 at p = 1, and we are interested in the range of p
for which its value is between ¢ and 1 — ¢ for some positive e. Under mild

conditions on A, the width will be bounded from above in terms of the
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size of the underlying graph, which is known as a sharp threshold behavior.
The proof of this fact is based on differential inequalities.

Historically, the general theory of sharp thresholds was first developed
by Bourgain, Kahn, Kalai, Katznelson and Linial [BKK*92] (see also
[Fri04, FK96, KS06]) in the case of product measures. In lattice models
such as percolation, these results have been used (see [BR06a, BRO6b]) via
a differential equality known as Russo’s formula (see [Gri99, Rus81]). Both
sharp threshold theory and Russo’s formula were later extended to random-
cluster measures with g > 1, see references below. These arguments being
not totally standard, we remind the readers of the classical results and
refer them to [Gri06] for general statements. Except for Theorem 5.13,
the proofs are quite short so that it is natural to include them. The proofs
are directly extracted from Grimmett’s monograph [Gri06].

Intuitively, the derivative of gzﬁf)’ q’G(A) with respect to p is governed
by the influence of edges switching from closed to open. The following
definition is therefore natural in this setting. The (conditional) influence
on A of the edge e € Eg, denoted by I4(e), is defined as

La(e) =65, , (Alw(e) = 1) - 65, o(Alw(e) = 0).

Proposition 5.11. Let G be a finite graph, ¢ > 1 and € > 0; there exists
¢ = c(q,€) > 0 such that for any p € [e,1 -], any boundary conditions &,
and any increasing event A,

d
%@%,%G(A)Zc > Ia(e).

eeEq

Proof. Let A be an increasing event. The key step is the following
inequality which can be obtained by differentiating with respect to p (for
details of the computation see [Gri06, Theorem (2.46)]):

d
%(ﬁf},q,G(A)_ (1 ) EEZ:G[ p,9,G (1Aw(e)) p7qG[ w(e)]o qG(A)]
(5.9)

A similar differential formula is actually true for any random variable X,
but this fact will not be used in the proof. Note that, by definition of
IA(e)v

¢fv,q,G(1Aw(e)) p q, G(A)¢p q, G(w(e)) IA(e)(Z)p q, G(w(e))[l - ¢i,q,G(w(e))]

so that (5.9) becomes

d
d7p¢§’q’G(A) =

s B 0 a1 6 () a0

5 #5 . c(w@)[1-¢5, c(we)]
By p(1-p)

I4(e) (5.10)
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from which the claim follows since the term

S g (@(@)[1-0; , o(w(e))]

(5.11)

p(1-p)
is bounded away from 0 uniformly in p € [¢,1 —¢] and e € Eg when ¢ is
fixed thanks to the finite-energy property (Proposition 4.4). |

Remark 5.12. When ¢ = 1, (5.10) corresponds to Russo’s formula.
Indeed, let ¢, = d) 1.g- The influence can be rewritten as

La(e) = ¢p(14,wp(e) =1) 3 ¢p(A,1wf;) =0)

_(WieAdwc g Aw(e)=1) dpweeAw(e)=1) ¢p(weeAwle)=0)
D D 1-p
=¢p(w’ e A we ¢ A).

In the last line, we used that w(e) is independent of the events w® € A and
we € A, and the independence of the measure. Furthermore, the inequality
is an equality since (5.11) equals 1. The event {w® € A,w, ¢ A} is usually
called e is pivotal for A. We thus obtain

7¢p(A) = > ¢p(e is pivotal for A).
ecA

There has been an extensive study of the largest influence in the case of
product measures. It was initiated in [BKK*92]. The following theorem
is a special case of the generalization to positively-correlated measures.

Theorem 5.13 (Graham, Grimmett [GG06, GG11]). Let G be a finite
graph, ¢ > 1 and € > 0 as well as boundary conditions £. There exists a
constant ¢ = ¢(q,€) > 0 such that the following holds. For every p € [e,1-¢]
and every increasing event A,

log |Eg|
|Eg|

There is a particularly efficient way of using Proposition 5.11 together
with Theorem 5.13. In the case of a translation-invariant event on a torus
of size n, horizontal (resp. vertical) edges play symmetric roles, so that the
influence is the same for all the edges of a given orientation. In particular,
Proposition 5.11 together with Theorem 5.13 provide us with the following
differential inequality:

max {IA(e) tee€ Eg} > C(ﬁf]’qjg(A)(l - ¢§,q,G(A))

Theorem 5.14. Let g > 1 and e > 0. There exists a constant ¢ = ¢(q,€) >0
such that the following holds. For every p € [e,1-¢], everyn > 1 and every
increasing translation-invariant event A on T,

d
o pan(A) 2 (605, (A) (1 - 6. (A)) logn.
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The presence of P (A)(1-¢P< (A)) should not be a surprise. When

p.a,n p.a;n
the probability of the event A becomes close to 0 or 1, the lower bound
on the derivative cannot be large (since the derivative is small), which one

can see since ¢b% (A) or 1-¢b%  (A) is small.

For a non-empty increasing event A, the previous inequality can be
integrated between two parameters p; < pa (we recognize the derivative of

log(x/(1-1))) to obtain

glerq n(A) Ezearq n(A) C(;Dz p1)
Effq, (4) Eﬁfq, (4)
If qbgffq’n(A) is assumed to stay bounded away from 0 uniformly in n > 1,

we deduce the existence of ¢’ > 0 such that

r ! —c(p2-p1)
berg.n(A) 21— cn PP, (5.12)
This inequality will be instrumental in the next section. In conclusion, one
may keep in mind that probabilities of nontrivial (meaning different from
@ and {0,1}F™ ) symmetric increasing events undergo a sharp threshold
when p is varied from 0 to 1.

5.2.3 The proof of Theorem 5.10

We adapt the method developed first by Bollobas and Riordan [BRO0Ga,
BRO6b] in the case of Bernoulli percolation. Let us sketch the main steps
of the proof first. We first argue that crossing probabilities tend to 1
(as n tends to infinity) when p > ps4. In order to see that, consider the
translational-invariant event that some rectangle of T,, with width n/2 and
height a?n (with o > 1) is crossed vertically. At p = pyq, the probability
of this event is known to be bounded away from 0 uniformly in the size
of the torus (thanks to Theorem 5.3). Therefore, Theorem 5.14 can be
applied to conclude that the probability goes to 1 when p > psq (there is
also an explicit lower bound on the probability). It is then an easy step
to deduce that the probability of crossing vertically a particular rectangle
with width n and height an also tends to 1. Note that in order to go from
some rectangle to a particular one, we will need to change the aspect-ratio
of rectangles we are considering (see the proof for more details).

Theorem 5.10 is then proved by constructing a path from 0 to infinity
when p > psq, which is usually done by combining crossings of rectangles.
There is a major difficulty in doing such a construction: one needs
to transform estimates in the torus into estimates in the whole plane.
One solution is to replace the periodic boundary conditions by wired
boundary conditions. The path construction is a little tricky since it
must propagate wired boundary conditions through the construction (see
Proposition 5.17); it does not follow the standard lines.
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We now implement the program sketched above. We start with proving
that crossings of long rectangles exist with very high probability when

P > Psd-
Lemma 5.15. Leta>1, ¢>1 and p > psq. There exist g9 = £9(p,q, ) >0
and c¢o = co(p,q, ) >0 such that for every n >1

90 o (Co([0,n] x [0,am])) 2 1~ con ™", (5.13)
Proof. The proof will make it clear that it is sufficient to treat the case
of integer «, we therefore assume that « is a positive integer (not equal to
1). Let B be the event that there exists a vertical crossing of a rectangle
with dimensions (n/2,a?n) in the torus of size a?n. This event is invariant
under translations and satisfies

G e (B) 20T o (Co([0,1/2] % [0,0n])) 2 e(207)

Psd,q,a%n Psd»q,0%n

uniformly in n. Since B is increasing, Theorem 5.14 (more precisely (5.12))
can be applied to deduce that for any p > psg, there exist € = €(p, ¢, @) and
¢ = c¢(p,q, ) such that

P, (B)>1-cn". (5.14)

pP,q,x°n
If B holds, one of the 2a® rectangles
[in/2,in/2 +n] x [jan, (j + Dan], (i,5)€{0,...,20> =1} x{0,...,a -1}

must be crossed from top to bottom. Denote these events by A;; — they
are translates of C,([0,n] x [0,an]). We find

¢§,eqr,a2n(B) =1- ¢Ei1r,a2n(Bc) <1- (b;zlj,e;,a%b( m A?j)

]
<1- H (;Sg,eqr,Och(A?j)

,J
2c
=1 (16 (€o(10,m] < [0,an]) ]

The FKG inequality was used in the second line (the reader may recognize
the implementation of the “square-root trick” mentioned earlier). Plugging
(5.14) into the previous inequality, we deduce

3

HPe (CU([O,n] x [O7om])) >1- (cn‘e)l/(Za?’).

p,q,a2n
The claim follows by setting ¢g := M 2)* and g := e/(2a3). o
Let K > 1 and n > 1; define the annulus

Afl( = AK“"” AN AKn.
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An open circuit in an annulus is an open path which surrounds the origin.
Denote by AX the event that there exists an open circuit surrounding the
origin and contained in AX together with an open path from this circuit
to the boundary of Agn+2, see Figure 5.5. The following lemma shows that
the probability of AX goes to 1, provided that p > psq and that boundary

conditions are wired on Agn+2.

Agenea

Figure 5.5: The event AX. The gray area is the part of Z? delimited by the
outermost open self-avoiding circuit in AZX. The configuration inside this
outermost open self-avoiding circuit (namely the gray area) stochastically
dominates a random-cluster configuration with wired boundary conditions
on the boundary of the box. The combination of events AX constructs a
path from the origin to infinity.

Lemma 5.16. Let K > 1, g>1 andp > psq. There exist ¢; = ¢1(p,q, K) >0
and 1 = e1(p,q, K) > 0 such that for every n>1,

Opqicnea (AR ) 2 1= cre™™ ™,
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Proof. First, observe that AX occurs whenever the following events
occur simultaneously:

e The following rectangles are crossed vertically:
Ry = [K™, K™ x [-K™ K1,
Ry = [-K™' —K™] x [-K™, K™
e The following rectangles are crossed horizontally:
Ry = [-K"" K" < [K", K™,
Ry=[-K™1 K™ x [-K™, K™,
Rs = [-K""? K" x[-K",K"].

Using the comparison between periodic boundary conditions and wired
boundary conditions on JAgn+2, the previous lemma implies that the
probability of each of these events is greater than 1 — ¢(K™)™¢ with
c=co(p,g,K') and € = g9(p,q, K'), where K' = max{K? 2K /(K - 1)}.
Using the FKG inequality, we obtain

Bpguacnea (A ) 2 (1= e(K")7%)°,

The claim follows by setting c; := 5c and €; :=clog K. O

We wish to prove that the probability of the intersection of events
AE for n > 0 is of positive probability when p > pyq. So far, we only
know that there is an open circuit with very high probability when we
consider the random-cluster measure with wired boundary conditions in a
slightly larger box. In order to prove the result, assume the existence of
a large circuit. Then, we iteratively condition on events .AnK_k, k>0. By
conditioning “from the outside to the inside”, there exists an outermost
open self-avoiding circuit in Aff_k .1 that surrounds Aff_k at every step
k. Using comparison between boundary conditions, the measure in Affﬁ &
stochastically dominates the measure in AX , , with wired boundary
conditions. In other words, we keep track of advantageous boundary
conditions. Note that the reasoning, while reminiscent of Kesten’s
construction of an infinite path for percolation, is not standard.

Let p > psq and ¢ > 1. Recall that ¢, , is the unique infinite-volume

measure on Z2.

Proposition 5.17. Let K > 1, g>1 and p > psq.- There exist c,c1,e1 >0
(depending on p, q and K ) such that for every N > 1,

qbp,q( N A,If) >c H (1-c1e®™) > 0.
n>N n=N
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We will only use N =1 in order to prove Theorem 5.10. Nevertheless,
the more general statement with arbitrary N will be useful in the next
section.

Proof. Let K >1,q>1, p>psqg and N > 1. For every n > 1, we know
that

n n—1
Spal () AF) = 0pal AT ) T opa AW 1 <m). (515)

Let N < k < n. We now wish to estimate the probability of AKX
conditionally on AJK for k+1 < j < n. In order to do so, we use a
“conditioning on the outermost circuit” argument (we refer to Section 4.4.4
for more details on this argument). This time, the circuits are primal
instead of dual, and the boundary conditions that we will use to make the
comparison are the wired ones. Let us spell the whole argument.

Conditionally on .Af , k+1 < j <n, there exists an open self-avoiding
circuit in the annulus A§+1- Consider the outermost such circuit, denoted
by I'. Conditionally on I" = =, the configuration in the inner part 7 of
the box Agr+2 has the law of a random-cluster configuration with wired
boundary condition. In particular, the conditional probability that there
exists a circuit in AkK connected to 7 is greater than the probability that
there exists a circuit in Af connected to the boundary of A grx+2 with wired
boundary conditions. Therefore, we obtain that almost surely

¢p,q(AkK|~Aijk +1<j<n)= ¢p,q(¢p,q(AIIc<|F)|A§<,kf +1<5¢< 71)
2 ¢Pa‘1(¢zlz,q,K’“2 (AD))

>1-cre®tF

where Lemma 5.16 was harnessed in the last inequality.

For p = p.q4, consider the event AX on Z2?. Thanks to Corollary 5.5,
its probability is bounded away from 0 uniformly in n. Since the event is
increasing, there exists ¢ = ¢(K) > 0 such that

bpg(AX) = b (A2 4L (AK)>c

for any n > N and p > psg. Plugging the two estimates into (5.15), we
obtain

n n-1 0o
¢p,q( m AkK) >cC H (1 —Clefslk) >c H (1 _ Clefslk).
k=N k=N k=N

Letting n go to infinity concludes the proof. O
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Proof of Theorem 5.10. The bound p. > psq is provided by Zhang’s
argument (Proposition 4.38). For p > psq, fix K > 1. Applying
Proposition 5.17 with NV =1, we find

0p.a(0 = ) 2 ey () AX) >0

n>1

so that p is supercritical. The constant ¢ > 0 is due to the fact that Ag-
is required to contain open edges only, and therefore ¢ > 0 exists using the
finite-energy property (Proposition 4.4). Therefore p > p.. for every p > psq
and we deduce p. < psq. O

5.3 Application II: exponential decay in the
subcritical phase

In this section, we study the subcritical and supercritical phases. In the
subcritical phase, the probability for two vertices x and y to be connected
by an open path is proved to decay exponentially fast with respect to the
distance between x and y. In the supercritical phase, the same behavior
holds in the dual model since p. = psq. This phenomenon is known as a
sharp phase transition.

Theorem 5.18 (Beffara, Duminil-Copin [BDC12a]). Let ¢ > 1. For any
p < pe(q), there exists c = c(p,q) >0 such that for any z,y € Z2,

Bp.q(x = y) <e vl (5.16)

Remark 5.19. Theorem 5.18 has important consequences. Over the last
twenty years, a deep understanding of the subcritical regime was developed
under the hypothesis that probabilities of connection between two vertices
decay exponentially fast in the distance between them. Unfortunately,
this assumption was known only for small p. The result above justifies
this assumption in the whole subcritical regime. We refer to [Gri06] for
more details on potential applications of Theorem 5.18.

Remark 5.20. Going back for a moment to crossing probabilities, one sees
that in the subcritical phase p < p., the probability of crossing vertically
R = [0,n] x [0,an] decays exponentially fast in n. In fact, the largest
cluster in R can be proved (simply use the union bound) to be smaller
than C'logn, where C = C(p) depends on « and the constant ¢ of the
theorem only. In the reverse direction, the probability of not crossing
vertically the rectangle R for p > p. is exactly the probability of crossing
horizontally the dual graph of R in the dual configuration. Since the dual
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model is subcritical, this probability decays exponentially fast. In other
words, the probability of crossing vertically R tends to 1 exponentially
fast.

Remark 5.21. The previous result has been extended to more general
planar random-cluster models. More precisely, it is proved in [DCM13a]
that the phase transition is sharp: correlations decay exponentially fast in
the subcritical phase.

The proof runs as follows. Combining the fact that the crossing
probabilities go to 0 when p < psq with a very general differential inequality
(see the proposition below), we deduce that the cluster-size at the origin
has finite moments of any order. It is then a classical step to deduce
exponential decay using a general result on the greedy lattice animals
model, see [CGGK93, GK94] for details.

Consider a configuration w as a vertex of the graph {0,1}¥¢. For
A c{0,1}Fc let H4(w) be the graph distance between the configuration
w and A. This quantity is called the Hamming distance of w to A. Another
way of seeing the Hamming distance is simply to say that it is the minimum
number of edges that must be changed on w in order to be in A. For a set
A c{0,1}F¢ | the Hamming distance can also be seen as a random variable
Hy.

Proposition 5.22. Let ¢ > 1 and G be a finite graph. For any random-
cluster measure d)i 0.G with p € (0,1) and any increasing event A,

d
jp¢§,q,G(A) > 465, (A)d5 4 o(Ha), (5.17)
where Ha(w) is the Hamming distance between w and A.

Proof. Define |w| to be the number of open edges in the configuration,
i.e. simply the sum over e € Fg of random variables w(e). With this
notation, one can rewrite (5.9) as

d 1
e =[G (eltn) - 65, (D4, (D)

(1-p)
1

= gy [Bac (el Ha)1a) =65, o (lel + Ha)65, . o (4)

68 g o (Hala) + 65, o(HA)G , o(4)]
1

2 mébi,q,G(HA)éb;q,G(A)-

To obtain the second line, simply add and subtract the same quantities.
In order to go from the second line to the third, remark two things: in
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the second line, the third term equals 0 (when A occurs, the Hamming
distance to A is 0), and the sum of the first two terms is positive thanks to
the FKG inequality (indeed, it is easy to check that |w|+ H 4 is increasing).
The claim follows since p(1-p) < 1/4. i

This proposition has an interesting reformulation: integrating the
formula (5.17) between p; and py > p1, we obtain

85, 0c(A) <85 o(A) exp[-4(p2-p1)dS, , o (Ha)] (5.18)

(we used that Hj4 is a decreasing random variable). If one can prove that
the typical value of H 4 is sufficiently large, for instance because A occurs
with small probability, then one can obtain good bounds for the probability
of A.

Remark 5.23. The inequalities (5.17) and (5.18) hold in infinite-volume
provided that A depends on finitely many edges by taking the limit of
inequalities in finite volume (we implicitly use the fact that H4 depends
on the same edges as A).

Proof of Theorem 5.18. Let z be a vertex of Z2, and let C, be the
cluster of x. Its cardinality is denoted by |C,|. We first prove that |C,| has
finite moments of any order at p < p.. Then we deduce that the probability
of {|C| > n} decays exponentially fast in n for p’ < p by proving that the
expected Hamming distance is of order n at p. The proof of this second
step is extracted from [Gri06].

Step 1: finite moments for |C;|. Using the invariance under
translations, we may assume without loss of generality that = = 0. Let
d >0 and p < psq; we wish to prove that

p,q([Col?) < co. (5.19)

In order to do so, let py := (p + psq)/2 and denote by H,, the Hamming
distance to {0 <— 0A,,} (recall that H,(w) is the graph distance between
w and {0 <— 9A,} in {0,1}®). In this specific case, H,, is simply the
minimal number of closed edges that must be crossed in order to go from
0 to OA,,. Let

K := exp[p1 —p] >1

2d+1
From Proposition 5.17 applied to the (supercritical) dual model, the
probability of N,sn(AX)* is larger than c[I% (1 - cie™1™) > 0 (where
(AKY* is the occurrence of AX in the dual model). Hence, there exists
N = N(p1,q,a) sufficiently large such that

¢p1,q( ﬁ (-Aﬁ()*) 2 %

n>N
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On this event, H,, is greater than (logn/log K) — N since there is at least
one closed circuit in each annulus AF with k > N (thus increasing the
Hamming distance by 1). We obtain

logn ) O logn
H,) > -N >
1) > (1255 =)oy 0 A" )

for n sufficiently large. Then, since {0 «<— JA,,} depends on finitely many
edges, (5.18) and Remark 5.23 imply

Bpq(0 > OA,) < by, 4(0 > ON) exp[ = A(p1 = p)bp, o (Hn) ] < 0~ D
(5.20)
for n sufficiently large.
Now, for = > 0, let u(z) = inf{k > 0 : |Ax| > 2} and observe that
u(z) =O(y/z) as x tends to infinity. Therefore,

¢p,q(|C0|d) = z:ld)p,qﬂcow 2 n] = Z:l¢p,q[|co| > nl/d]

< Z Qﬁp,q[o <~ aAu(nud)]

n>1

<1+ Y u(ntd) QD ¢ 0 3 QD) ¢ o

n>2 n>1

where the constant C is universal. The first inequality is due to the
fact that Cy cannot be included in the box of radius u(n'/?) -1 if it has
cardinality n'/?.

Step 2: exponential decay. Let p < p.. From the first inequality of
(5.18) (and Remark 5.23) applied to p’ < p, it is sufficient to prove that
there exists ¢ > 0 such that

Gpq(Hp)2en, ¥Yn>0

in order to prove that ¢, ,(D,,) decays exponentially. It is thus enough
to prove that there exists ¢ > 0 such that,

H
liminf = > ¢) = 1.
(bp,q( lrrLllgol n C)
Consider a (not necessarily open) self-avoiding path v going from the origin
to the boundary of the box of size n. The number T'(v) of closed edges
divided by n along this path can be bounded from below by the following
quantity:

-1
1+T(y) 1+T() 1« 1 1

> > — > — Cz .
n FERErP A P

zey
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We obtained the second inequality by noticing that the number of closed
edges in v is larger than the number of distinct clusters intersecting -y
(if C denotes such a cluster, we have that 1 > . |C| ' 1.ec). The last
inequality is due to Jensen’s inequality. Since H,, can be rewritten as the
infimum of T'(7y) on paths going from 0 to the boundary of the box, we

obtain
1+H, . 1

n
~: 0<—>8A,L ’y| §y|
This inequality comes in handy for the following reason: it translates
the problem of bounding H,, from below into a last-passage percolation
problem. Roughly speaking, the last-passage percolation model is defined
as follows. A random variable w,, also called weight, is associated to every
vertex of Z? and the goal is to maximize the average of weights -+ Pl >

(5.21)

zey W
along a certain family of subsets of Z?. This type of problems is classmal
in the case of iid weights on Z?. In particular, if w, has finite moments
of sufficiently high order, then the maximal average of weights is bounded
uniformly. Here, the subsets on which we maximize the average of weights
are the self-avoiding walks from 0 to 9A,. The weights are w, = |C.| and
therefore the distribution of weights has finite moments of any order (since
P < Pe, this fact follows from Step 1). If the weights would be iid, it would
exactly mean that the Hamming distance is linear in n. Unfortunately,
the weight distribution is correlated. In order to circumvent this difficulty,
we will compare these weights with iid weights.

We proceed in two steps. First, we replace these highly correlated
weights by weights which are expressed in terms of iid weights. Let
(éZ)ZEAn be a family of independent subsets of Z? distributed as C,. We
claim that (|C.|).ea,, is stochastically dominated by the family (M,).ea,
defined as

M, :=sup{|C,|: y € Z* such that C, contains z}.

Let vq,vs,... be a deterministic ordering of Z2. Given the random family
(é )zen,, » we shall construct a family (D, ).ea, having the same joint law
as (C.)zen,, and satisfying the following condition: for each z, there exists
y such that D, c C First, set D,, = C,,. Given Dy, Dy,, ..., D,
define £ = ULy Dy,. If vyy1 € E, set D, ., = D,, for some j such that
Uny1 € Dy, If vpy1 ¢ E, proceed as follows. Let 0.F be the set of edges
of Z? having exactly one end-vertex in E. A (random) subset F of C,, _,
may be found in such a way that F' has the conditional law of C,, ,, given
that all edges in O.F are closed; now set D,, ., = F'. The domain Markov
property and the positive association can be used to show that the law of
Cy,,., depends only on 0. F, and is stochastically dominated by the law of
the cluster in the bulk without any conditioning. The required stochastic
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domination follows accordingly. In particular, |C,| < M, and M, has finite
moments. From the previous stochastic domination, we get that almost

surely
sup [C.] < sup M..
~:0<>0A,, |’Y| ; ~:0<dA,, |’Y| z;

The second step is now to replace M, by random variables that are really
independent. The trick is to enlarge the set of subsets of Z2? on which

the average of weights is maximized. Namely, Lemma 2 of [FN93] can be
harnessed to show that

Z M, <2 S 1 Z C. (5.22)

sup
'7| zey \1"|>n ze'y

Y:0-0A,

almost surely, where the second supremum is over all finite connected
graphs I" of cardinality larger than n that contain the origin (also called
lattice animals). Since the |C.|?> are now independent and have finite
moments of any order at p by Step 1, the main result of [CGGK93, GK94]
guarantees that there exists C' > 0 such that

2¢p, q( lim sup sup Z IC.|* < ) (5.23)
n—oo |F >n ze’y

Putting (5.23) and (5.22) in (5.21) implies that liminf H,,/n > 1/C almost

surely, which concludes the proof. O

5.4 Strong RSW theory

5.4.1 Statement

The RSW theory for periodic boundary conditions enables us to compute
the critical value of the random-cluster model, yet it provides us with a
rather weak understanding of the critical regime. One of the weaknesses of
the previous crossing estimates is that they deal with periodic boundary
conditions which are somehow balanced between the primal and dual
model. It will be important for applications to understand what happens
for more general boundary conditions®. In this section, we show that
the fact that Theorem 5.3 holds for more general boundary conditions
is equivalent to several other conditions which are easier to check. The
following theorem is very important, yet we would advise the reader to skip
the technical proof in a first reading and to come back to it afterwards.

4In fact, an equivalent of Theorem 5.3 will not be true in general for arbitrary
boundary conditions (we will discuss for which value of ¢ it is in Section 6.2).
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Theorem 5.24 (Duminil-Copin, Sidoravicius, Tassion [DCST13]). Let
q>1. The following assertions are equivalent :

P1 (Absence of infinite cluster at criticality) (bll,c,q (0 «— o00) = 0.

P2 ('bgcvq = d);cvq'

P3 (Infinite susceptibility) X°(pe,q) = Z qbgmq (0 «— ) = oo.

reZ?

P4 (Sub-exponential decay for free boundary conditions)

o1 0
7}1_{130 —logg, (0« 0A,)=0.

P5 (RSW) Let a> 0. There exists ¢y >0 such that for alln>1 and any
boundary conditions &,

1< B5 L (artynp[onzn] (Cr([0,an] x [0,])) < 1-c1.

The previous theorem does not show that these conditions are all
satisfied, but that they are equivalent. In fact, whether the conditions
are satisfied or not will depend on the value of ¢, see Section 6.2 for a
more detailed discussion.

The previous result was previously known in a few cases:

e Bernoulli percolation (random-cluster model with ¢ = 1). In such case
P2 is obviously satisfied. Furthermore, Russo [Rus78] proved that
P1, P3 and P4 are all true (and therefore equivalent). Finally, P5
was proved by Russo [Rus78] and Seymour-Welsh [SW78].

e Random-cluster model with ¢ = 2. This model is directly related to
the Ising model as we will see in Chapter 7. Therefore, all of these
properties can be proved to be true using the following results on the
Ising model: Onsager proved that the critical Ising measure is unique
and that the phase transition is continuous in [Ons44], thus implying
P1 and P2. Properties P3 and P4 follow from Simon’s correlation
inequality for the Ising model [Sim80]. Property P5 was proved in
[DCHN11] using a proof specific to the Ising model. Interestingly, in
the Ising case each property is derived independently and no direct
equivalence was known previously.

e Random-cluster model with q > 25.72. In this case, none of the
above properties are satisfied, as proved by using the Pirogov-Sinai
technology [LMRS6].

Remark 5.25. P4=P1 implies that whenever there is an infinite cluster
for the wired boundary conditions, correlations decay exponentially fast
at criticality for free boundary conditions.
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Before presenting the proof of this theorem, let us discuss alternative
conditions which could replace the conditions P1-P5.

Proposition 5.26. Let g > 1. The following properties are equivalent:
P1 (Absence of infinite cluster at criticality) gb]lgmq (0 «— o0) =0.

P1’ (Continuous phase transition) lim ¢, , (0 < o) = 0.
pNpe D

Note that the (almost sure) absence of an infinite-cluster for ¢, follows
from Zhang’s argument (Proposition 4.38) but that it does not imply the
continuity of the phase transition nor the (almost sure) absence of an
infinite-cluster for gzﬁlljc’q. In order to prove Proposition 5.26, we start with
a simple lemma, which is very useful.

Lemma 5.27. The weak limits as p » p. and p N p. of ¢pq are
respectively ¢2C,q and gbzl)c’q, Furthermore, for every increasing event A
depending on finitely many edges,

26,(](14) =sup ¢, ¢(A4) and gbfl)c,q(A) = piilpfc Op.q(A4).

P<pc

Proof. First observe that the supremum and the infimum are in fact
limits by monotonicity in p. Now, the second part of the lemma implies
the first one, since increasing events depending on finitely many edges
generate the whole o-algebra.

Let us therefore focus on the second part of the statement. Assume that
A depends on the state of edges in Ay only. We have

pC q(A) - bup ¢Pc q,Ap (A) = Sup sup djp q,A"( )
nzk p<pc

= sup bup% ., (4) = sup ¢pq(A) sup ¢ q(A).
P<pe n>k P<pc
In the first and fourth inequalities, we used the convergence of finite-
volume measures to the infinite-volume measure and the comparison
between boundary conditions (to show that the limit is in fact a
supremum). The third equality is due to the continuity in p in finite volume
(everything is even analytic in such case). The last equality follows from
the uniqueness of the infinite-volume measure (Corollary 4.40). Similarly,

(b;’qu(A) = lnf é;cﬂLAn (A) = inf gnf ¢117C7Q7An (A)

= inf inf q5p7q7An(A) = 1nf ¢pq(A) = mf ¢pq( ).

P>pe n>k
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Remark 5.28. The second part of the lemma extends to many events
depending on infinitely many edges. We will see examples in the next
proofs.

Proof of Proposition 5.26. We only need to check that

lim ¢, , (0« o0) =¢, , (0« o0).

PNPe Perq

The previous lemma used in the third equality implies
pli\r;lc $pq (0 00) = Z}?pfc 71116% ¢pq (0= 0A,) = Tl}glé;gpf bp.q (0= 0A,)

S inf 6}, (0 08,) = 9}, (0 o).

Proposition 5.29. Let g > 1. The following properties are equivalent:
P2 ¢)  =¢,

Deyq Pcyq”

P2’ The infinite-volume measure at p. and q is unique.

This proposition is a direct reformulation of Proposition 4.29.

Remark 5.30. P1 together with P3 have an interesting consequence in
terms of the order of the phase transition for the so-called Potts model. We
do not enter in the details here since we have not introduced this model
but let us briefly mention that properties P1 and P3 are respectively
equivalent to the continuity and the non-differentiability with respect to
the magnetic field h of the Potts model free energy at (8 = fS.,h = 0).
Therefore, these properties mean that the phase transition of the Potts
model is of second order.

Let us now turn to P4 which can be understood in terms of the so-called
correlation length.

Lemma 5.31. Let ¢ >1 and p <p.. Then, the quantity

E(p.a) = (- 1im L1og6,,[(0,0) = (n.0)]) "

is well-defined and £(p,q) € (0,00).

The quantity £(p,q) is called the correlation length (see Chapter 11 for
more details).
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Proof. Let p<p.. For every n,m >0, the FKG inequality implies that

$p,q[(0,0) <= (n+m,0)] > ¢, 4[(0,0) «— (n,0) and (n,0) < (n+m,0)]
2 ¢P7q[(070) — (n70)] : (bp,q[(oao) > (m,O)].

Fekete’s lemma (for a supermultiplicative sequence) implies that
&(p,q) € (0,00] is well defined. Furthermore,

$pa[(0,0) = (n,0)] < exp[-n/é(p,q)]. (5.24)

Finally, Theorem 5.18 forces £(p, q) < oo. O

Proposition 5.32. Let q > 1. The following properties are equivalent:

P4 (sub-exponential decay for free boundary conditions)

lim Llog¢) (0« 0A,)=0.

P4’ (vanishing mass-gap) &(p,q) tends to +oo as p 7 p.(q).

Proof. Let us first assume that P4 is not satisfied. In such case, there
exists ¢ > 0 such that

lim L log ¢}, ((0,0) < (n,0)) < lim Lloge) , (0« 0A,)

< lim Lloggy , (0« dA,) = —c<O.

In particular, £(p, q) < % for any p < p. and P4’ is not satisfied as well.

Let us now assume that P4’ is not satisfied and that £(p,q) < M for
every p < p.. In such case,

Pp..q[(0,0) < (n,0)] = sup Fp..ql(0,0) <= (n,0) in Ay

= sup sup gbp,q[(0,0) «— (n,0) in Ak]
k>n p<pec

= sup sup ¢p7q[(0,0) <« (n,0) in Ak]
P<pc k>n
= sup ¢ 4[(0,0) < (n,0)]
P<pe
< sup e MEPa) < gT/M
P<pe

In the second line we used Lemma 5.27 and in the last (5.24).
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Now, take x € A,, and assume without loss of generality that the first
coordinate of x is equal to n. The FKG inequality and an orthogonal
reflection with respect to d = {(x1,22) : 1 =n} imply that

Opeql0 > 2] = 0 o[0 = 2]y [z (20,0)]

<y, [0 (20,0)] < /M, (5.25)
from which we deduce that
60, 410 <> BN, ] < |9, Je M.
As a consequence, P4’ is not satisfied. 0

The properties P1-P4 (and their equivalent formulations) are classical
definitions describing continuous phase transitions and are believed to be
equivalent for many natural models, even though it is a priori unclear how
this can be proved in a robust way. Now that we have an interpretation
for properties P1-P4, let us explain why Property P5 is of particular
interest: it provides an equivalent to Theorem 5.3 uniform in boundary
conditions. The uniformity with respect to boundary conditions is crucial
for applications, especially when trying to decouple events, see e.g.
Section 5.5.

Before diving into the proof, let us mention two equivalent formulations
of P5. For z € R?, define A, (z) to be the event that there exists an
open circuit (i.e. an open path vy ~ vq ~ -+ ~ v ~ vg) in the annulus
2+ (Agp N Ay) surrounding z. Also define A, = A, (0).

Proposition 5.33. The following propositions are equivalent;

P5 For any o > 0, there exists ¢c; = ¢1(«) > 0 such that for all n > 2
and for all boundary conditions & on the boundary of [-n, (a+1)n]x
[-n,2n], we have

1< 9y, g gartynl(-nizn (Cr([0,an] x[0,n])) €1 -1,

P5’ There exists co >0 such that for all n > 2,

Bpesahansi, (An) 2 2.

P5” For any R > 2, there exists cs = cs(R) >0 such that for all n > 2,

(bgcyquRn (-An) > C3.

Proof. The proof of P5’=P5” is obvious by comparison between
boundary conditions. In order to prove P5=P5’ consider the four
rectangles
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[4n/3,5n/3] x [-5n/3,5n/3],
[-5n/3,-4n/3] x [-5n/3,5n/3],
[-5n/3,5n/3] x [4n/3,5n/3],
[-5n/3,5n/3] x [-5n/3,-4n/3].

Rq:
Ry:
Rgl
Ry:

If the intersection of C,,(R1), C,(R2), Cr(R3) and Cp(R4) occurs, then A,
occurs. In particular, the FKG inequality and the comparison between
boundary conditions implies that ¢ can be chosen to be equal to ¢; (10)%.

Let us now turn to the proof of P5” =P5. We start by the lower bound.
Fix some R > 2 as in P5” and the corresponding c3 > 0. Let a > 0. For
n > 4R, the intersection of the events A, 2r)[(j| %, 5)] forj =0,...,[ R
is included in Cp,([0,an] x [0,n]). The FKG inequality implies

d)gc7q,[—n,(a+1)n]><[—n,2n] (Cn([0,an] x[0,n])) > C;-R[a]‘
By comparison between boundary conditions, we obtain the lower bound
for every &.

The upper bound may be obtained from this lower bound as follows.
By comparison between boundary conditions once again, it is sufficient
to prove the bound for the wired boundary conditions. In such case,
the complement of Cp,([0,an] x [0,n]) is the event that the rectangle
[%,an - %] X [—%, %] is crossed from top to bottom by a dual-open dual-
path. Since the dual of the wired boundary conditions are the free ones,
the boundary conditions for the dual measure are free. We can now harness
P5” for the dual model to construct a dual-open dual-path from top to
bottom with probability bounded away from 0. This finishes the proof. O

Remark 5.34. The restriction on boundary conditions being at distance
n from the rectangle can be relaxed in the following way: if P5 holds, then
for any a > 0 and € > 0, there exists ¢ = ¢(a,e) > 0 such that for every
n>1,
cs ¢f}c,q,[—sn,(a+5)n]x[—5n,(1+6)n] (Ch([o’ Oé’fl] x [0’ n])) <l-e

(Simply follow the same proof as above to obtain this result.) It is natural
to ask why boundary conditions are fixed at distance en of the rectangle
[0,an] x [0,n] and not simply on the boundary. It may in fact be the case
that P5 holds but that crossing probabilities of rectangles [0, an] x [0,7]
with free boundary conditions on their boundary converge to zero as n
tends to infinity. Such a phenomenon does not occur for 1 < ¢ < 4 as shown
in [DCST13] (for such values of ¢, the crossing probabilities on rectangles
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with free boundary conditions directly on the boundary are bounded away
from O uniformly in n provided that the aspect ratio remains bounded
away from 0 and 1) but is expected to occur for ¢ = 4. In conclusion,
we will always work with boundary conditions at “macroscopic distance”
from the boundary.

5.4.2 Proof of Theorem 5.24

We now dive into the proof. Once again, we advise to skip this part during
the first reading. In this section, ¢ > 1 is fixed and p = p.(¢). In order to
lighten the notation, we drop the reference to p and ¢ and simply write
quG instead of (/)fjc (@,0.G" Note that ¢! is the infinite-volume measure with
wired boundary conditions at criticality. We will also use the following

notation: the event that A and B are connected by an open path included
in C will be denoted by A <> B.

Preliminaries: easy implications

In order to isolate the hard part of the proof, let us start by checking the
four “simple” implications P1=P2, P2=P3, P3=P4 and P5=P1.

Property P1 implies P2: The proof of this fact follows from the proof of
Corollary 4.40 since the only assumption used there was ¢! (0 <> o0) = 0.

Property P2 implies P3: If P2 holds,

(2n+1)¢% (0 < 0A,) = (2n+1) ¢' (0 < IA,,)
> > ¢ (x> (z+0A,))

ze{0}x[-n,n]
> ¢ (Co([-n,n] x[0,n])) 2 ¢,
where ¢ > 0 is a constant independent of n. The first equality is due to

the uniqueness of the infinite-volume measure given by P2 and the second
inequality by Corollary 5.5. This leads to

C

0(0 «— 0(0 «— OA
X 02 00k 2 5

As a consequence, Y. #° (0 < ) = 0o and P3 holds true.

TeZ?
Property P3 implies P4: Assume that P4 does not hold. In this proof,
we recall the dependency in p and ¢ when p # p.(¢q). In such case, there
exists ¢ > 0 such that

= lim Llog[g, , (0 < (1,0))] 2 lim —log[6, , (0« OA,)] > ¢
n ] n—oo n ’

n—oo
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for any p < p.. Thus, (5.24) implies that ¢, , (0 <= (n,0)) < e™" uniformly
in 7 and p < p.. Lemma 5.27 thus leads to ¢° (0 «— (n,0)) < ™" for every
n > 1. Now, (5.25) implies that for every x = (21, 22) € Z?,

¢° (0« 2) < /0 (0 < (2] w0, 0)) < e Nl
where |z]o = max{|z1],|2s|}. Summing over every x € Z? gives

> 87 (0 ) <oo

reZ?
and thus P3 does not hold.

Property P5 implies P1: Recall that P5 implies P5’. We now prove a
slightly stronger result which obviously implies P1 and will be useful later
in the proof.

Lemma 5.35. Property P5’ implies that there exists € > 0 such that for
anyn>1,
o' (0« OA,) <ns.

Proof. Let k be such that 2¥ < n < 251, Also define the annuli
Aj =Agi N Agj-1_q for j > 1. We have

k )
¢1 (O «—> 81\”) < H ¢1 (81\2]‘1 <i> 81\2]‘
j=1

M {0hps < aAgi})
i>j

k A,
<[1é4, (aAijl — aAQJ-) .
j=1

In the second line, we used the fact that the event upon which we condition
depends only on edges outside of Ay; together with the comparison between
boundary conditions (Corollary 4.21).

Now, the complement of {9Agj-1 SR OMy;} is the event that there
exists a dual-open circuit in A} surrounding the origin. Property P5’
implies® that this dual-open circuit exists with probability larger than or
equal to ¢ > 0 independently of n > 1. This implies that

k
¢! (0« 9A,) <[J(1-¢) = (1- )" < (1 - c)loen/1os2,
j=1

log(1-c)

The proof follows by setting € = — Tog2

5There is a slight technical issue here: the annulus AJ*. is not really of the form

Aoy N A, for some n. Nevertheless, it contains a translation of Agp \Aps1 forn =27"1-1.
Now, the open circuit constructed in the proof of P5=P5’ is contained in Ag, \ Api1
and therefore there exists an open circuit in A2, N Ap41 surrounding the origin with
probability bounded away from 0.
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Remark 5.36. The proof of the previous lemma illustrates the need for
bounds which are uniform with respect to boundary conditions. Indeed, it
could be the case that the ¢'-probability of an open path from the inner
to the outer sides of A; is bounded away from 1, but conditioning on the
existence of paths in each annulus A; (for i < j) could favor open edges
drastically, and imply that the probability of the event under consideration
is close to 1.

The only remaining implication to prove is P4 implies P5. Recall from
Proposition 5.33 that P5 is equivalent to P5” and we therefore rather
choose to prove that P4 implies P5” when R = 8. The proof follows two
steps. First, we prove that either P5” holds or ¢°(0 < 9A,,) tends to 0
stretched-exponentially fast. We then prove that in the second case, the
speed of convergence is actually exponential.

Proposition 5.37. Exactly one of these two cases occurs:
: 0
1. }lrég Phy, (An) > 0.
2. There exists o> 0 such that for any n>1,

¢° (0 < OA,,) < exp(—n®).

First, consider the strip G = Zx [-n,3n], and the boundary conditions &
defined to be wired on R x {3n}, and free on R x {-n}. Recall that in this

case, qﬁé’f and (b%’5 are equal, and we thus write ¢ for this measure.

strip
Lemma 5.38. For all k > 1, there exists a constant ¢ = c¢(k) > 0 such that,
foralln>1,

¢strip (Ch([_kn? kn] x [07 QTL])) 2C. (526)

Proof. Fix n,k > 1. We will assume that n is divisible by 9 (one may
adapt the argument for general values of n). By duality, the complement
of Cp([-kn,kn] x [0,2n]) is the event C,;(R*) that there exits a vertical
dual-open dual crossing in R* := [-kn+ %, kn- %] x [—%, 2n+ %] Therefore,
either (5.26) is true for ¢ =1/2, or

(rbstrip (C;(R*)) 2 1/2

We assume that we are in this second situation for the rest of the proof.
The dual of the measure on the strip with free boundary conditions on
the bottom and wired on the top is the measure on the strip with free
boundary conditions on the top and wired on the bottom. This measure
is the image of @srip under the orthogonal reflection with respect to the
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horizontal line Rx{n-} composed with a translation by the vector (%,0).
We thus obtain that

Pstrip (Co([=kn, kn] x [0,2n])) 2 dgiyip, (Co([=kn, kn - 1] x [-1,2n]))
= bsirip (C (R7)) 2 1/2.

Partitioning the segment [—kn, kn] into the union of 18k segments of length
A:=n/9 (note that X is an integer), the union bound gives us

¢strip (I — Rx {2TL}) 2 C1, (527)

1 —
36k
where I = [4X,5)] x {0}. For future reference, let us also introduce the
segment J = [6A,7TA] x {0}.

Define the rectangle R = [0,9A] x [0,2n]. When the event estimated in
equation (5.27) is realized, there exists an open path in R connecting I to
the union of the top, left and right boundaries of R. Using the reflection
with respect to the vertical line {3} x R, we find that at least one of the
two following inequalities occurs:

Case 1: Py, (I R [0,n] x {2n}) >c1/3.

Case 2 ¢, (I L {0y < [o, 2n]) > 1/3.

A TN o

Figure 5.6: The construction in Case 1 with the two paths I'; and I's and
the domain 2 between the two paths. On the right, a combination of paths
creating a long path from left to right.
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Proof of (5.26) in Case 1: Consider the event that there exist

(i) an open path from I to the top of [0,2n]? contained in [0,2n]?,
(ii) an open path from J to the top of [0,2n]? contained in [0,2n]?,
(iii) an open path connecting these two paths in [0, 2n].

Each path in (i) and (ii) exists with probability larger than ¢;/3 (since
R and (2),0) + R are included in [0,2n]?). Furthermore, let T'; be the
left-most path satisfying (i) and Iy the right-most path satisfying (ii);
see Fig. 5.6. The subgraph of [0,2n]? between I'; and I'y is denoted by
Q. Conditioning on I'y and I's, the boundary conditions on §2 are wired
on I'1 and I's, and dominate the free boundary conditions on the rest of
0f). Following an argument close to those described in Section 4.4.4, we
deduce that boundary conditions on €2 stochastically dominate boundary
conditions induced by wired boundary conditions on the left and right
sides of the box [0,2n]?, and free on the top and bottom sides. As a
consequence of (5.5), conditionally on I'y and T's, there exists an open
path in Q connecting T'; to I'y with probability larger than 1/(1 +¢?). In
conclusion,

[0,2n]?

2
Pstrip (I — J) > Pyyip (1), (i) and (iii) occur) > (C—l) !

X —.
3 (1+¢?)
(5.28)
For z = j\, where j € {-9k-5,...,9k—6}, define the translate of the event

considered in (5.28):

z+[0,2n]?

Az =(z+1) (z+J).

If A, occurs for every such x, we obtain an open crossing from left to right
in [-kn,kn] x[0,2n]. The FKG inequality implies that this happens with

C2
probability larger than (9(17+lq2))
Proof of (5.26) in Case 2: Define the rectangle R’ = [4\,9\] x [0, 2n].
Note that in Case 2, J is connected to one side of [2A,11A] x [0, 2n] with
probability bounded from below by ¢;/3, hence the same is true for R’
(since [2X,11A] x [0,2n] is wider than R’). Consider the event that there
exist

(i) an open path from I to the right side of R contained in R,
(ii) an open path from J to the left side of R’ contained in R,
(iii) an open path connecting these two paths in [0,2n].

The first path occurs with probability larger than ¢;/3, and the second
one with probability larger than c;/6 (there exists a path to one of the
sides with probability at least ¢;/3, and therefore by symmetry in R’ to
the left side with probability larger than ¢1/6). By the FKG inequality,
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the event that both (i) and (ii) occur has probability larger than c?/18. We
now wish to prove that conditionally on (i) and (ii) occurring, the event
(iii) occurs with good probability.

Define the segments K (y,z) = {4\} x [y, 2] for y < z < 0o. They are all
subsegments of the vertical line of first coordinate equal to 4.

Consider the right-most open path I'y satisfying (ii). It intersects the
segment K (0,2n) at a unique point with second coordinate denoted by y.
Also consider the left-most open path I's satisfying (i). Either I'; and T
intersect, or they do not. In the first case, we are already done since (iii)
automatically occurs. In the second, we consider the subpath I's of T’y
from I to the first intersection with K (y,2n) (this intersection must exist
since T’y goes to the right side of R’). Let us now show that I'y and T's are
connected with good probability. Note the similarity with the construction
in Proposition 5.6 with symmetric domains, except that the lattice is not
rotated here. The proof is therefore slightly more technical and we choose
to isolate it from the rest of the argument.

Claim: There exists co > 0 such that for any possible realizations v1 and
v2 of I'y and I's,

R
Dstrip (71 72 ‘ Py=m,T2= Wz) 2 (2. (5.29)

Proof of the Claim. Fig. 5.7 should be very helpful in order to follow this
proof. Construct the subgraph Q “between v; and 5" formally delimited
by:

e the arc vy,

e the segment [0,n] x {0},

e the arc v,

e the segment K (y+ 1,2n) excluded (the vertices on this segment are

not part of the domain).

We wish to compare  (left of Fig. 5.7) to a reference domain D (center
of Fig. 5.7) defined as the upper half-plane minus the edges intersecting
{4)\ - %} x (y,00). Define the boundary conditions mix on D by:

e wired boundary conditions on K (y,c0) and A := (—oco0,4A] x {0};

e wired boundary conditions at infinity (See Remark 4.32 for more

details on what is meant by wired boundary conditions at infinity);

e free boundary conditions elsewhere.
The boundary conditions on 2 inherited by the conditioning I'; = y; and
I's = 72 dominate wired on 7; and 79, and free elsewhere. Thus, we deduce
that

Q : D
Pstrip (71 2 |Ty=7,T2 = 72) >¢p™ (K(y, ) «—> A) . (5.30)

As mentioned above, the domain D is not exactly a symmetric domain
but it is still very close to being one. Consider the domain D (see on the
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right of Fig. 5.7) obtained from D by the reflection with respect to the
vertical line d = {(4\ - }l,y) :y € R} and a translation by (%, %) Let
B = (—00,4\ - 1] x {0}. Define the boundary conditions miz on D as
e wired boundary conditions on K (y + 1,00) U B (it is very important
that the two arcs are wired together);
e free boundary conditions at infinity;
e free boundary conditions elsewhere.

Figure 5.7: Left. The domain 2. We depicted the part of the domain with
free boundary conditions by putting dual wired boundary conditions on
the associated dual arcs. The wired boundary conditions are depicted in
bold. The rectangles R and R’ are also specified (R’ is in dashed). Center.
The domain D. We depicted the domain 2 in white. The existence of an
open path between K (y,o0) and A implies the existence of an open path
between 1 and 7, in D (between the two crossings). Right. The domain
D with one path from K (y+1,00) to B. The pre image of this path by the
reflection mapping D onto D is a dual-path in D preventing the existence
of an open path from K(y, o) to A.

Using duality, we find that
. D . >
op™ (K(y, 00) «f> A) =95 (K(y +1,00) > B)
and thus

i (K(y, o) 2> A) ¥ g (K(y +1,00) <L B) -1, (5.31)
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Define the miz’ boundary conditions on D as wired boundary conditions
on K(y+1,00) U B (the two arcs are once again wired together) and free
elsewhere (they correspond to the boundary conditions miz on D). The
comparison between boundary conditions and the fact that D c D lead to

rmx(K(y+1 oo)<—>B)<¢m‘x ( (v ,oo)&A). (5.32)

The boundary conditions for the probability on the right can be compared
to the boundary conditions miz. First, one may wire the vertices (4\,y)
and (4\,y + 1) together, and the vertices (4A —1,0) and (4X,0) together,
which increases the probability of an open path between K(y,o0) and A.
Second, one may unwire the arcs B and K (y+1, o0), paying a multiplicative
cost of ¢2. Using the previous inequality and the comparison between the
boundary conditions described in this paragraph, we deduce

B (K(y7 )<—>A) <@ op™ (K(y,OO) <£>A)-

Putting this inequality in (5.32) and then in (5.31), and finally using (5.30),
we find that

mix D 1
¢str1p(71(—)72|F1_713F2_72)>¢ (K(yam)&)A)Z

1+¢2

It follows from (5.29) and the probabilities of (i) and (ii) that

1 c
X —.
1+¢% 18

Pstrip (I «— J)

Here again, 18k translations of the event above guarantee the occurrence

of an open crossing from left to right in [—-kn,kn] x [0,2n]. This occurs
2

with probability larger than (18(1 v )18k thanks to the FKG inequality

again. m]

In the next lemma, we consider horizontal crossings in rectangular
shaped Dobrushin domains with free boundary conditions on the bottom
and wired elsewhere.

Lemma 5.39. For all k > 0 and ¢ > 4/3, there exists a constant
c=c(k,l) >0 such that for all n >0,

P (Ch ([~kn, kn] x [0,n])) = ¢ (5.33)

with D = [-kn,kn] x [0,4n], and ¢‘Bb is the random-cluster measure
with Dobrushin boundary conditions on (D,a,b) where a = (=kn,0) and
b= (kn,0).
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Proof. For ¢ = 4/3, the result follows directly from Lemma 5.38 since
the boundary conditions on q%’b stochastically dominate wired boundary
conditions on the top of the strip Z x [0, 4?”], and free on the bottom, and
therefore there exists an horizontal crossing of the rectangle [-kn, kn] x
[5,n] with probability bounded away from 0.

Now assume that the result holds for ¢ and let us prove it for ¢+ 1/3.
By comparison between boundary conditions in [~kn, kn]x[Z,¢n+ %], we
know that

05" (Ch([=kn,kn] x [§.%51)) 2 e(k, 0).

Conditioning on the highest such crossing, the boundary conditions below
this crossing stochastically dominate the Dobrushin boundary conditions
in [-kn,kn] x [0, 4?”] with a = (—kn,0) and b = (kn,0). An application of
the case £ = % enables us to set c¢(k, + %) =c(k,0)c(k, %)

The proof follows from the fact that the probability in (5.33) is
decreasing in /. O

Lemma 5.40. There exists a constant C < oo such that, for alln > 1,

Bnen (A7) SC R, (An)?. (5.34)

Proof. Define z; = (£5n,0). If Ay, occurs, the boundary conditions on
A7, stochastically dominate the wired boundary conditions on Asg, due
to the existence of the open circuit in A4y, N A7, (simply apply the same
proof as for free boundary conditions in P1=P2 above). The use of the
RSW theorem from Section 5.1 (Corollary 5.5) thus implies the existence
of a constant ¢; >0 such that, for all n,

d)(z)\sg" [An(z+) n An(z—)|~A7n] 2 ¢}\56n [An(z+) n An(z—)] 2C1. (5-35)

It directly implies that for all n,

¢0A56n [A"(Z+) n An(z—)] 2 Cl¢(/)x56n [-A7n] (536)

Now, examine the domain D = [-56n,56n] x [2n,56n] and define
a = (-56m,2n) and b = (56n,2n). Under ¢%,,[|A.(24) n A, (2-)], the
boundary conditions on D are stochastically dominated by wired boundary

conditions on the bottom and free boundary conditions on the other sides.
Let C;(R}) be the event that

R’ :=[-56n-1,56n+1]x[2n+1,3n-1]
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contains a dual-open dual-path from left to right. As a consequence,
Lemma 5.39 applied® to k = 57 and £ = 55 implies that

ORso [Ch (R2)

An(2) 0 A (20)] 2 65 (Ch (R)) 2 02 (5.37)

for some universal constant ¢y > 0 independent of n. Similarly,

Heon (Ch (B2)

An(21) nAn(z_)) > ¢, (5.38)

where C; (R) is the event that

R} :=[-56n-%,56n + 3] x [-3n+ %,2n - 1]
contains a dual-open dual-path from left to right. Define the event B,
illustrated on Fig. 5.8, which is the intersection of the events A, (zy),
A (22), C (RY), and C;;, (RZ). Equations (5.36), (5.37) and (5.38) lead to
the estimate

¢?\56n (B”) 2 03(/!)9\56” (-A7n) s (539)

where c3 > 0 is a positive constant independent of n.

Assume B,, occurs and define I'; to be the top-most horizontal dual-
crossing of R} and I'; to be the lowest horizontal dual-crossing of RX. Note
that these paths are dual paths. Let 2 be the set of vertices in [-3n,3n]?
below I'; and above I';. Exactly as in the proof of Lemma 5.38, when
conditioning on I'y, I'y and everything outside €2, the boundary conditions
inside 2 are dual-wired on I'; and I's, and dominated by wired elsewhere.
The dual measure inside €2 therefore dominates the restriction to 2 of the
dual measure on [-3n + %,371 - %]2 with dual-wired boundary conditions
on {£(3n-3)} x [-3n + 3,3n - 3] and dual-free boundary conditions on
[-3n+1,3n- 1] x {(3n- })}. Using (5.5), we find

1
Prgen (Cn | Bn) 2 i

where C, = {I'; <> D'y in [-3n,3n]%} (here in [-3n,3n]? means in the
subgraph of (Z?)* induced by dual-vertices in [-3n,3n]? when seen as a
subset of R?). Similar inequalities hold for the events

D, = {I'y <> 'y in [-13n,-7n] x [-3n,3n]},

En = {1 <= Dy in [Tn,13n] x [-3n,3n]}.

6Morally, one may think that taking k = 56 and £ = 54 is sufficient. Nevertheless, the
rectangle R} is of length 112n + 1 and width n—1 and not 112n and n, thus explaining
why it is necessary to pick k =57 and £ = 55.
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Figure 5.8: Primal open crossings are in bold, dual-open are in plain. The
events Ay (z:), An(2-) and the existence of the dual horizontal crossings
of R} and R” form B,. Conditionally on B, I'y and I'; are connected in
Q by a dual-open path with probability larger than 1/(1 +¢?).

The FKG inequality thus implies

1
0
¢A56n (C” n Dn n gn |Bn) 2 m (540)
which, together with (5.39), leads to
c:
¢?\56n (B” n C” n D” n g") 2 W¢?\5Gn ("47") ' (541)

The event estimated in (5.41) implies in particular the existence of dual
circuits in z, + Ag, and z_ + Ag, disconnecting z; + Ag, from z_ + Asy,.
Writing F,, for the event that such dual circuits exist and using the
comparison between boundary conditions one last time (more precisely
a “conditioning on the outermost dual-circuit” argument), we obtain

R (An)? =02y, (An(22)) 6%, 14, (An(22))
2 ¢(/)\56n (An(2-) [ An(24) 0 F) (15?\56” (An(ze) | Fn) ¢9\56n (Fn)
= ¢()\56n, (An(z-) nAn(z4) N Fr)

C
* (T gy s (A7)

This inequality implies the claim. O
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Proof of Proposition 5.37. Obviously the cases 1 and 2 cannot occur
simultaneously. Suppose that the first case does not occur and let us prove
that the second does.

For alln > 1, set u,, = C’gb?\gn (A,), where C is defined as in Lemma, 5.40.
With this notation, Lemma 5.40 implies that us, < u2 for any n > 1 and

therefore .

Uy < Usy (5.42)

no =
for any positive k£ > 0 and ng > 1. Now, if liTILriioro}f ¢10Xgn (A,) =0, then we

may pick ng such that u,, < 1. By (5.42), there exists ¢; > 0 such that for
all n of the form n = 7 n,,

Up < exp (—cin'*® 2/1°g7) . (5.43)

n

Fix n = 7%ny and consider 7 <m < n. The FKG inequality and the
comparison between boundary conditions imply that

0 0 _ 1/2
¢[0,m]2 ((Ovp) — (mve)) < (d’[—m,m]x[o,m] (( m7€) «— (mvg)))

< (4, (€n([-20,20] x [0,m]) )"

1/56 -
< (¢9\sn (An) ) <exp (—c2n10g 2/log 7) _

In the first inequality, we used that if (0,p) <— (m,f) and (-m,¢) <
(0,p), then (-m,£) «— (m,£). In the second inequality, we have used
that if (x,£) «— (2 +2m,{) occur for z = 2mj with j € {-7,...,7}, then
Cr([-2n,2n] x [0,m]) occurs. Finally in the third inequality we combined
four crossings as in the proof of P5=P5’. Lemma 4.23 implies the claim.
i

Theorem 5.24 follows directly from Proposition 5.37 and the following
proposition:

Proposition 5.41. If there exists a >0 such that for alln > 1,
6" (0« A,,) < exp(-n®),

then there ezists ¢ >0 such that for alln > 1,
#° (0 «— OA,,) < exp(—cn).

We start by a lemma. Let n > 1 and 0 € [-1,1]. Define the tilted strip
in direction 6:

S(n,0)={(z,y) eZ*:0<y -0z <n}.
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Write ¢;Z;’i:) for the random-cluster measure on the tilted strip S(n,0)
with wired boundary conditions on the top side and free on the bottom
side”.

We will also consider a truncated version of the tilted strip S(n,#). For
m > 0, consider the truncated tilted strip

S(n,m,0) =5S(n,0)nA,,.

We will always assume that Om € N and we will always see S(n,m,0) as a
Dobrushin domain with a = (-m,—0m) and b = (m,0m). Write ¢‘§’(bn,m,9)
for the random-cluster measure with Dobrushin boundary conditions on
(S(n,m,0),a,b), i.e. free on the bottom side and wired on the other sides.

For simplicity, we will call the bottom side of the strip or the truncated
strip the free arc, and the rest of the boundary the wired arc.

Lemma 5.42. For allm>n>1 and 0 €[-1,1],

1

0 ired > —.
(0 «— wired arc) -

B 0) (5.44)
Proof. Fix n >0 and 0 € [-1,1]. Let us work in the strip S(2n,6).
From now on, we drop the dependence in n and 6 and write for instance
S = 8(2n,0) and S(m) = S(n,m,0). Beware that there is a slightly
confusing notation here: the height of the strip is 2n while the one of
the truncated strip is n.

For x € S, define the translate S;(m) =z + S(m) of S(m). We extend
the definition of wired and free arcs to this context. Let A(z) be the event
that x is connected to the wired arc of S;(m) and every open path from a
vertex y ¢ Sz (m) to x intersects the wired arc (of S;(m)). In other words,
no open path starting from x “exits” S, (m) through the free arc (i.e. the
bottom side).

We consider the random function ' : N — [0, 2n] defined by

F(k):=min{¢: (k,¢) is connected to the top side of S} —0k.  (5.45)

Recall that ém e N. Therefore, F' can take only the 2nm + 1 following
values:

{o, L, ... 2nm=l on}

On the event {F(0) < n}, there must exist k € {-nm?,...,nm?} such that
F(k) <n and F(k") > F(k) for every |k’ - k| < m. Otherwise, if there is
no such k, then there exists a sequence 0 = ko, ..., kpm with |ki1 — ki <m
and 0 < F'(ki4+1) < F(k;). But this provides nm + 1 distinct values for F,
all smaller or equal to n and strictly larger than 0, which is contradictory.

"The boundary conditions at infinity are irrelevant since the tilted strip is essentially
a one-dimensional graph (this is the same argument as for ¢g,ip before).
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Now, for k satisfying F'(k) <n and F(k') > F(k) for every |k’ — k| <m,
the event A((k, F'(k))) is realized. In conclusion, if F'(0) < n, then there
exists x € S(n,nm?,0) such that A(z) is realized and the union bound
shows the existence of z in the bottom half S(n,0) of S such that

¢ (F(0)<n) ¢57" (F(0) <n)
|S(n,nm?,0)| n(2nm?2 + 1)

o5 (A)) 2

Consider the interface between the open cluster connected to the top side
of the box and the dual-open cluster dual-connected to the bottom side.
By duality, this interface intersects {0} x [0,n] with probability larger or
equal to 1/2. Thus, ¢ (F(0) <n) > % and therefore

o5 (A@)) 2

5n2m2

In order to conclude, we simply need to prove that
By (0« wired arc of §(m)) 2 5™ (A(2)). (5.46)

First, observe that since x is contained in the bottom half S(n,8) of S,
the set S(m) is entirely included in S. Second, since there is no open
path containing x and exiting S;(m) by the free arc, there exists a lowest
dual-open path in S;(m), denoted by I'*, preventing the existence of
such a path, see Fig. 5.9. Let Q be the set of vertices of S;(m) above
['*. The law of the random-cluster on (2 is dominated by the law of wq,
where w is sampled according to a random-cluster model on S, (m) with
Dobrushin boundary conditions. If A(x) occurs, then conditionally on T'*,
x is connected to the wired arc of S, (m) by an open path contained in €.
Thus,

¢~ (@ «— wired arc of S;(m)[I'™) < ¢as;§(m)

(x &, wired arc of Sx(m))
< ¢g»b(m) ( <— wired arc of S,(m))
= ¢as’(bm) (0 «— wired arc of S(m)).

We omitted a few lines to get the first inequality since we applied such a
reasoning already several times in this chapter. The equality follows from
invariance under translations. Since the previous bound is uniform in the
possible realizations of I'*, we deduce (5.46) and the result follows readily.
O

The next lemma will be used recursively in the proof of Proposition 5.41.

Lemma 5.43. Assume that there exists o >0 such that for alln > 1,

#° (0« OA,,) < exp(-n®).
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Then for e >0 small enough, there exists a constant C < oo such that for
anyn>1, any ue {-n} x[-n,n] and any v e {n} x [-n,n],

PR (u0) <™ g" (0 IN)  +CnS S 3% (0 < OAL) ¢° (0 Ay).

k,0>n®
k+0=2n

y=~0x+2n_---

Figure 5.9: The event A(z) and the lowest dual-path I'*.

Proof. Fix e>0. Let us translate the box A,, in such a way that u = —v;
the new box is denoted by A,. Let us also introduce A’ to be the dual
graph of the Dobrushin domain A,, (recall that it is the subgraph of (Z?)*
induced by faces touching An) Define the set

D={ze A, d(z,[u,v]) < n®}

(here [u,v] denotes the segment between v and v and the distance is the
Euclidean distance between a point and a set). As illustrated in Fig. 5.10,
we consider the sets D_ and D, of points z € A,, lying respectively below

An _ .
and above D. On {u < v}, define I'" and T'* to be respectively the
lowest and highest open (non-necessarily self-avoiding) paths connecting u
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Figure 5.10: Left. The regions D, D_ and D,. Note that 0 is not
necessarily at the center of A,. Right. The situation before closing the

edges surrounding z when G,(z) and {z + (3, 3) <5 9A%Y occurs. The
dual-open paths are depicted in dash lines.

A, - . . .
to v. The event {u «— v} is included in the union of the following three
sub-events:

£ = {uds vy nD, 2o, (5.47)
£ = {udm vy M n D+ o), (5.48)
£={udm o} n{T* c D, UD}n{T"cD_uD}. (5.49)

In the rest of the proof, we will bound separately ¢0 (€-) (and therefore

(5+) by symmetry) and gbo (&), hence the two terms on the right-
hand side of the inequality in the statement.

Estimation of gb% (£.). For ze€ D, nZ?, let G,(z) be the event that:

e u is connected to v in A,,,

e zeI' and d(z, [u,v]) = max d(2,[u,v]).
z'el'-ND,

Note that

= U Gu(2). (5.50)

zeDy

Conditionally on I'", what is above I'" follows a random-cluster measure
with wired boundary conditions on I'" and free on 9A,. Thus, by
comparison between boundary conditions and Lemma 5.42 (with m = n
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and 6 = $2=72, where u = (u1,u2) and v = (v1,v2)), we find that

63 (2+(1/2,1/2) <> 0k, (5.51)

1
Gn(2)) 2 TR
When both G, (2) and {z+(1/2,1/2) <= OA%} occur, closing the four dual
edges surrounding the vertex z disconnects I'” into two paths separated
by dual-open circuits (see Fig. 5.10). The respective | - [oo-end-to-end
distances ¢ and k of these paths satisfy k + £ > 2n — 2.

Using the comparison between boundary conditions once-again, we find

03 (Ga(2)) <52n)" 6% (Gn(2) n{z+(1/2,1/2) <5 0A})  (5.52)

<i*2”4 > (ueutdhg) ¢’ (v v+ OA) . (5.53)

k,2n’
k+4=2n-2
The finite-energy property (Proposition 4.4) is used in the second line to
close the edges around z. Summing over all possible z € D, gives

¢3 (E)<Cm® 3 ¢ (0 9AL) ¢° (0= IA,).
X

The finite-energy property (Proposition 4.4) once again implies that
#° (0 <> OAy1) > cd® (0 <> OA,)
for any r > 0 and thus

$3 (E-)<Con® 37 6°(0 < 0Ag)¢° (0 < 9A,). (5.54)
k,2n®
k+0=2n
Estimation of QSO (€). First, we wish to justify that conditionally on the
occurrence of &, there exists an open path between u and v which is staying
in D with probability close to 1. To see this, remark that any open path
between w and v must lie in the region 2 between I'” and I'* (see Fig. 5.11).
Furthermore, conditioning on I'* and I'", the boundary conditions on 2 are
wired. In particular, the configuration in 2 stochastically dominates the
restriction to €2 of a configuration @ sampled according to a random-cluster
measure with wired boundary conditions at infinity. Since I'* and '~ are
already open, v and v are connected in D if there exists an open path in
w from left to right in D. The complement of this event is included in the
event that a dual-vertex of D* is dual-connected to distance n® of itself in
@. The ¢'-probability of this event can thus be bounded by |D|exp(-n®¢)
thanks to the assumption made on connection probabilities. We deduce

6%, (w2 0) > (1= IDlesp(-n"))65 (©). (5.55)
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Now, consider the set of edges E of D intersecting the line {%} x R. Also
define w_ and w, to be respectively the highest point of D* and the lowest
point of D} with first coordinate equal to 1. Let F be the event that

e all the edges of E are closed,

e w_ and w, are dual-connected to A% in D* and D? respectively.

Consider the event u <2 v and modify the configuration by closing all
edges in E. The finite-energy property (Proposition 4.4) implies that

¢?~\" (Frn{ueou+dA,}n{veov+0A,1}) (5.56)

2
0 D 2/2n° 1
2¢An(u<—>v)xc X(5(2n)4) ,

where the term ¢2V2"" is a uniform lower bound for the probability that
all edges in E are closed (a simple computation involving the Euclidean
distance shows that there are less than 2¢/2n° edges in F), and [5(2n)*)] 7
comes from the estimate
1
5(2n)4
1
Z JE—
5(2n)4

and

v

0 * x . *
?%,, (w, «— JA] in D

D
U <~—>v

q&%n (w+ < 9A; in D}

=)

U v
implied by Lemma 5.42. Overall, (5.55) and (5.56) give us

(&)< ¢} (Fr{ueou+dh}n{vev+dd,1}).  (557)

We are almost done (we only need to bound the right-hand side of the
previous inequality by a constant times ¢° (0 < 8An)2). In order to do
so, note that the event F forces the existence of a dual path disconnecting
the cluster of u and the cluster of v (see Fig. 5.11). Conditioning on the
cluster of v and its boundary, the boundary conditions in what remains
are stochastically dominated by free boundary conditions at infinity, and
we deduce (by the the same strategy that we already used several times)
that

QS/Q\” (Frn{ueu+oA,}n{veov+0A,-1})
<80 (0 OAL) 6° (0 <> DA, 1) < %¢0 (0 < OA,)?,

where once again we used insertion tolerance in the last inequality. The
claim follows readily from this inequality and (5.57). ]

Remark 5.44. The previous lemma implies that qb?o 2n]2 (u « v) is
bounded by the right hand-side of (5.47) for any v and v on two opposite
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Figure 5.11: Left. The domain 2 between I'_ and I',. Inside, a dual
cluster C* preventing the existence of an open path from u to v in D. Since
we assumed that connection probabilities decay as a stretched exponential,
this cluster exists with very small probability. Right. Splitting the open
path from u to v in two pieces.

sides of [0,2n]?. Let us argue that ¢ ,, ;12(u’ < v') is also bounded by
a universal constant C' times the right-hand side of (5.47) uniformly on u’
and v’ on opposite sides of [0,2n — 1], Indeed, the comparison between
boundary conditions shows that

Blo.an112 (0 V") G g2 (' < v in [0,2n - 17%).

Now let u and v be two neighbors of v’ and v’ on opposite sides of [0, 2n]>.
The finite-energy property (Proposition 4.4) implies that

¢)?072n—1]2(u, <)< C¢([)o,2n]2(u <)

and we may apply the previous lemma.

Proof of Proposition 5.41. Assume that there exists a > 0 such that
#° (0 < OA,,) < exp(-n®) (5.58)
for any n > 0. Fix € < 8 < « to be chosen later. Set

an = e ¢ (0 > OA,,).
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Lemma 4.23 applied to 2n and Lemma 5.43 (more precisely Remark 5.44)
imply that there exists Cs > 0 such that

Gon < 6(271)’3 Z 03m4(60m5¢0(0 PN aAm)Q

m2n

+CmS Y 670 OAL)E (0 < OA,))
A>m®
li'c+€>:2m
< 6(2n)ﬁ Z 03m4(60m56—2mﬁq3n+0m6 Z e_(kﬁ+£ﬁ)qqu)

m>n k,0>m*
k+0=2m

(s 00)e 5 G (o s ont 3 00

m>n k,0>m*
k+£>2n k+0=2m

IN

<Oy max qxqe,
k. l>n

k+0>2n

where C; < oo is a constant independent of n. The constant C' was
introduced in Lemma 5.43. The existence of Cy follows from a simple
computation using € < 8 and the fact that 8 <1 and &, >n® imply

e—(k5+€5) < e-(k+e)ﬁe-cmsﬂ

for some constant ¢y >0 8

Let us now come back to the proof. The finite-energy property implies
the existence of c¢3 € (0,00) such that c3qr < qr+1 < gqr/cs for any
k > 0. Using this fact, the previous inequality immediately extends to
odd integers and there exists C5 < oo such that

Gn < C5 max qrqe.
k,0>n®

k+é>n

Since we do not know a priori that (g,) is decreasing unfortunately, we
need to include the following technical trick. Set Q,, = Cs max{g,, : m >n}.
For this definition, we still get

Q@n < max QrQy.

k,0>n
k+e2n

We are now in a position to conclude. The assumption implies that (@)
tends to zero. Pick ng such that @, < 1 for n > n§. Since (Qn)nzo 18

8Let us make a small remark before proceeding forward with the proof. It was crucial
to keep the division in the inequality of Lemma 5.43 between a term k = £ = m with a
stretched exponential penalty C’3m460mE , and the general term k+¢ = 2m, for which we
have only a polynomial penalty Czm*CmS. If we would have replaced the polynomial
bound by a stretched exponential one for every k& and ¢, the values of k or £ close to n®
would have created difficulties since the correction would have been of the order of the
largest of the two terms.



Chapter 5. RSW theory for the random-cluster model with ¢ > 1 145

decreasing, the maximum of Q) is not reached for k£ > n or £ > n and we
obtain that for n > ng,

Qn < max QrQe.

n>k£>n*
k+i2n

We can now proceed by induction to prove that for n > ng,

Qn <exp(-cqn) where c¢q:= max -1log(Q,)>0.
ng<nng

We therefore conclude that

8 (04 0A,) < exp(n®)Qu < exp(n”) - - exp(-can).
5

5.5 Applications of the strong RSW theory
to spatial mixing

The bound P5 on crossing probabilities enables us to study the spatial
mixing properties at criticality. One may decouple events which are
depending on edges in different areas of the space, and therefore
compensate for the lack of independence. The next theorem illustrates
this fact. It will be used in many occasions in the reminder of this book.

Theorem 5.45 (Polynomial ratio weak mixing under condition P5). Fiz
q > 1 such that Property P5 of Theorem 5.24 is satisfied. There exists
a > 0 such that for any 2k < n and for any event A depending only on
edges in Ay,

k «@
65 e (D=5, D] (2) 6 0 () 659)
uniformly in boundary conditions & and .

Together with the Domain Markov property, this result implies the
following inequality for 2k <m < n (with n possibly infinite),

k «
66 (A0 B) =65 ()65, (B < () 5 gn, ()65, (B).

where the boundary conditions & are arbitrary, A is an event depending
on edges of Ay only, and B is an event depending on edges of A,, \ A,,.
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Remark 5.46. For p # p.(q), estimates of this type (with an exponential
speed of convergence instead of polynomial) can be established by using
the rate of spatial decay for the influence of a single vertex [Ale98]. At
criticality, the correlation between distant events does not boil down to
correlations between points and a finer argument must be harnessed.
Crossing-probability estimates which are uniform in boundary conditions
are the key in order to prove such results.

Remark 5.47. We will see several specific applications of this theorem
in the next chapters. The most striking consequence is the fact that
the dependence on boundary conditions can be forgotten as long as
the boundary conditions are sufficiently distant from the set of edges
determining whether the events under consideration are satisfied or not.
For instance, it allows us to state several theorems in infinite volume,
keeping in mind that most of these results possess natural counterparts in
finite volume by using the fact that

Cd)pc,q (A) < ¢Ec’q7A2n (A) < C¢pc,q (A)

for any event A depending on edges in A, only, and any boundary
conditions £ on dAy, (the constants ¢ and C' are universal).

The proof of Theorem 5.45 is based on the following lemma.

Lemma 5.48. Let k < n and & arbitrary boundary conditions on OA,,.
There exist two couplings P and Q on configurations (we,w1) with the
following properties:

o we and wi have respective laws qﬁf) oA and QS]l)C -

o P-almost surely, if wi contains a dual-open dual-circuit in Ay ~ A}
and I'* is the outermost such circuit, then I'* is also closed in we,
and furthermore w1 and we coincide inside I'*.

e Q-almost surely, if we contains an open circuit in A, NAy and T is the
outermost such circuit, then I' is also open in wy, and furthermore
w1 and we coincide inside T

Proof. Holley’s criterion provides us with a monotonic coupling between
gbfgmq’ A, and d’;loc,q, A, - Nevertheless, this coupling does not necessarily
satisfy the required property. Let us construct another coupling via an
explicit construction. We start by explaining how to sample qbf)mq, A,
The Domain Markov property enables us to construct a configuration as
follows. Consider uniform random variables U, on [0,1] for every edge
e. Choose an edge e; and declare it open if U., is smaller or equal

to ¢1€c,q,/\n (w(e1) =1). Choose another edge es and set it to open if
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U, < d)zi,qAn (w(e2) = 1w(er)). We iterate this procedure for every edge.
Also note that we can stop the procedure after a certain number of edges
and sample the rest of the edges according to the right conditional law.
The domain Markov property guarantees that the measure thus obtained
is gbfgm - Note that the choice of the next edge can be random, as long
as it depends only on the state of edges discovered so far.

Of course, the previous construction is useless for one measure, but it
becomes interesting if we consider two measures: one may sample both
configurations based on the same random variables U, with a specific way
of choosing the next edges. Let us now describe the way we are choosing
the edges:

o Construction of P: After ¢ steps, the edge e;r1 € Ep, \ Ep, is chosen
in such a way that it has one end-point connected to dA, by an
open path in wy, until it is not possible anymore. Then sample all
remaining edges at once according to the correct conditional law.
If there is a closed circuit surrounding Ay in wj, then there was
a time t such that at time t + 1, no undiscovered edges had an
end-point which was connected to the boundary in w;. Since this
procedure guarantees that w; > w¢, no such edges were connected to
the boundary in we as well. Therefore, the configuration sampled
inside the remaining domain is a random-cluster model with free
boundary conditions in both cases. In particular, both configurations
coincide in Ay.

o Construction of Q: After ¢ steps, the edge e;+1 € Ea, \ Ey, is chosen
in such a way that one end-point of e}, ; is dual-connected to 9A;, by
a dual-open path in wg , until it is not possible anymore. Then sample
all remaining edges according to the correct conditional law. If there
is an open circuit surrounding Ay in we, then there was a first time
t such that the open circuit was discovered at time ¢. Once again,
w1 > we and this circuit is also open in w;. Then, the configuration
inside the connected component of Ay in A, \ {e1,ea,...,e;} will
be sampled according to a random-cluster configuration with wired
boundary conditions. In particular, both configurations coincide in
Ay

Proof of Theorem 5.45. It is clearly sufficient to prove that there exists
a > 0 such that

k (6%
65 rn (D= 0ha, (D] < () 0, (1)
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for any event A depending on edges in Ag. Let E be the event that there
exists a dual-open dual-circuit in w¢ included in A7~ Aj. We deduce

&5 o, (A)2 ¢M A, (ANE)=Q[uwe e ANE] > Q[w € An E]
pc,q, (AOE)>(1_(]€/") )prc,q, (A)

where in the third inequality, we used the fact that if w; belongs to An E,
then w; and therefore we belong to E. Since w; and we coincide in Ay,
then we € A. The existence of « in the last inequality follows exactly as in
the proof of Lemma 5.35 from Property P5’ applied in concentric annuli
Apgint N Apoi with 0 < i <logy(n/k).

Reciprocally, if F' denotes the event that there is an open circuit in
A, N Ag, we find

by an, (A) 20 pm,m (ANF)=Plw; e AnF]>Plwg e AnF]
g, (ANEF) 2 (1= (K[n)™)ey 5, (A)

where once again, we used in the third inequality that if we € An F, then
wy is in F, and since w; and wg then coincide on Ay, we get that w; € A.
The last inequality is due to P5’ once again. O



Chapter 6

Parafermions in the
random-cluster model

Critical random-cluster models exhibit a rich variety of behaviours
depending on the value of g. Exact computations can be performed (see
[Bax89]), and despite the fact that they do not lead to fully rigorous
mathematical proofs, they do provide insight and conjectures on the
behavior of these models at and near criticality. For instance, the random-
cluster phase transition is conjectured to be of first order for q > 4
and second order for ¢ < 4. In the latter case, the so-called scaling
limit is expected to be conformally invariant (see the second part of the
manuscript for additional details). Despite Baxter’s computations, very
little of the behavior of the model is rigorously understood. In particular,
the question of the order of the phase transition is far from being solved.

In order to understand the phase transition in random-cluster models,
we introduce the so-called parafermionic observables and we study
them in depth. The observable was first introduced in [FK80] before
being rediscovered in [RC06, Smi06]. For random-cluster models with
parameter g € [0,4], these observables are vertex operators that are (anti)-
holomorphic parafermions of fractional spin o € [0,1].

6.1 The parafermionic observable

The parafermionic observable is defined in terms of the Temperley-Lieb
representation of the random-cluster model (also called the fully packed
loop O(n)-model on the square lattice) in Dobrushin domains with
Dobrushin boundary conditions.

149
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Figure 6.1: The configuration w with its dual configuration w*.

6.1.1 Loop representation of the random-cluster
model

We start by defining the loop-configuration associated to a percolation-
configuration. Fix a Dobrushin domain (2, a,b) and consider a configu-
ration w € {0,1}72 together with its dual-configuration w* € {0,1}Fe*. As
suggested in the section on planar duality (Section 4.3.1), we define the
Dobrushin boundary conditions by taking the edges (between endpoints)
of Oy, to be open, and the dual-edges of 07, to be dual-open.

Through every vertex of the medial graph Q° of Q passes either an open
bond of Q or a dual open bond of Q*. Draw self-avoiding loops on Q°
as follows: a loop arriving at a vertex of the medial lattice always makes
a +7/2 turn so as not to cross the open or dual open bond through this
vertex, see Fig. 6.2. The loop representation contains loops together with
a self-avoiding path going from a® to b°, see Fig. 6.2. This curve is called
the exploration path and is denoted by ~.

Remark 6.1. The loops correspond to the interfaces separating clusters
from dual clusters, and the exploration path corresponds to the interface
between the cluster connected to 9y, and the dual cluster connected to
b
The loop representation of the random-cluster model is a well-known
representation. It allows to map the random-cluster model to a so-called
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o
[ ]

®
oIo
. °
o o-7-0-%-0

| = e

0O-F-0-%-0-%-0-%-0-%-0-%-0 o---o

0-F-0---0-%7-0-%-0-%-0

Figure 6.2: The loop representation associated to the primal and dual
configurations in the previous picture. The exploration path is drawn in
bold.

ice-type model (we refer to [Bax89, Chapter 10] for more details on the
subject). We will not use this fact here, but simply the fact that the
probability of a configuration is conveniently rewritten in terms of the
number of loops.

Fix

x=2x(p,q) =

p
Va(1-p)

Proposition 6.2. Let (Q,a,b) be a Dobrushin domain. Let p € (0,1) and
q > 0. For any configuration w,

xo(w) \/az(w)

a,b
/ _ Ve 1
¢p_’q,Q (w) Z(Qva’) b7p)q), (6 )

where £(w) is the number of loops in the loop configuration associated to
w and Z(Q,a,b,p,q) is a normalizing constant.

In particular, when p = psq = p., we obtain that x = 1 and the probability
of a configuration is expressed in terms of the number of loops only.
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Proof. Let w* be the dual configuration of w. The dual of ¢pq9 is

0% .. Recall that

p,q,Q( w) = 7(172)) k(W) and (bp o Q*(W*) _ Zl* (&()o(w*)qk(w*),

where Z and Z* are normalizing constants and k(w) and k(w*) denote the
number of clusters with Dobrushin boundary conditions. We thus obtain

qu(w) = qu( ) d)p qQ*(w*)
_ 1 ( p )O(w)qk(w)( p* )O(W )qk(w*)
ZZ*\1-p 1-p*

. . )
1 ( D )O(” )“’(‘”)(p(l-p )) FEHR)

ZZ*\1-p* (1-p)p
_ 1 (P(l—P*))O(w) JF) k()2
(1-p)p*
where we have set
72 _ 77"

Pl (L= P

Note that Z does not depend on the configuration since o(w)+o(w*) = |Eq)|.
Now, the definition of p* gives that

S AN—
(1-p)(1-p*)
which implies
p 1-p” P P _ .2

1-p p*  1-p(1-p)g
We can also check that £(w) = k(w) + k(w*) — 2. Altogether, this implies

1
a,b 2 _ 20(w) L(w)
w == .
o(w) - q

6.1.2 Definition of the parafermionic observable

We are now in a position to define the parafermionic observable.
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Definition 6.3. The winding Wr(e,e’) of a curve I' (on the medial lattice)
between two medial-edges e and e’ of the medial graph is the total signed
rotation in radians that the curve makes from the mid-point of the edge
e to that of the edge e’ (see Fig. 6.3). By convention, if I" does not go
through e’, we set Wr(e,e’) = 0.

For a curve drawn on the medial lattice, the winding can be computed
in a very simple way: it corresponds to the number of Z-turns on the left
minus the number of Z-turns on the right times 7/2.

Definition 6.4 (Smirnov [Smil0]). Consider a Dobrushin domain
(92,a,b). The edge parafermionic observable F = F(p,q,,a,b) is defined
for any medial edge e € Eqo by

F(e) - ¢;:Z,Q [ei"w”(e’eb)leey],

where + is the exploration path and o is given by the relation sin(om/2) =

V2.

Remark 6.5. Note that o is real for g < 4, and belongs to 1+ iR for ¢ > 4.
For g € [0, 4], o has the physical interpretation of a spin, which is fractional
in general, hence the name parafermionic (fermions have half-integer spin
while bosons have integer spin, there are no particles with fractional spin,
but the use of such fractional spins at a theoretical level has been very
fruitful in physics). For ¢ > 4, ¢ is not real anymore and does not have
any physical interpretation. Also note that for ¢ =2, o = 1/2 corresponds
to the spin of a fermion. For this reason, we will speak of the fermionic
observable in this special case.

Remark 6.6. We will sometimes work with the wvertex parafermionic
observable which is defined as follows. For a medial-vertex v € Vo N\ 9Vio
(v has four neighboring medial-vertices in Q°), set

F(v) = % S F([uv)).

u~v

6.1.3 Contour integrals of the edge-parafermionic
observable

The parafermionic observable satisfies a very specific property at criticality
regarding contour integrals.

Let (£2,a,b) be a Dobrushin domain. One may define a dual (©2°)* of
Q° in the following way: the vertex set of (2°)* is Vo U V= and the edges
of the dual connect nearest vertices together. We extend the definitions
available for other graphs to this context.
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Definition 6.7. A discrete contourC is a finite sequence zg ~ 21 ~ -+ ~ 2, =
20 in (92°)* such that the path (2p,...,2,) is edge-avoiding. The discrete
contour integral of the parafermionic observable F' along C is defined by

n-1

}é F(2)dz =) (zi+s1 — z0)F ([zizin]"),

1=0

where the z; are considered as complex numbers and [z;z;41]* denotes the
edge of Q° intersecting [2;2;41] in its center.

Theorem 6.8 (Vanishing contour integrals). Let (2,a,b) be a Dobrushin
domain, ¢ >0 and p = p.. For any discrete contour C of (Q,a,b),

&é; F(z)dz=0.

Remark 6.9. The fact that discrete contour integrals vanish seems to
be close to a well-known property of holomorphic functions: their contour
integrals vanish. Nevertheless, one should be slightly careful when drawing
such a parallel: the edge-observable is defined on edges, and should rather
be understood as the discretization of a form than as the discretization of
a function (the function is the vertex-observable itself). As a form, the
fact that these discrete contour integrals vanish should be interpreted as
the discretization of the property of being closed.

The following lemma will be important for the proof of Theorem 6.8.

Lemma 6.10. Let (2,a,b) be a Dobrushin domain, p € [0,1] and q > 0.
Consider v € Vgo with four incident medial edges A, B, C and D indezed
in counter-clockwise order in such a way that A and C are pointing towards
v (the two others are pointing away). Then,

F(A)-F(C) = i°[F(B)-F(D)], (6.2)

iom/2 o
where a = a(p, q) € [0,27) is given by the relation P = W.

When p = p., @ =0 and the relation (6.2) can be understood as the fact
that the discrete contour integral along the small square surrounding v
is zero. The previous theorem thus follows by summing the relation (6.2)
over vertices of Q° enclosed by C (in other words faces of (2°)* surrounded
by C). We use the fact that C does not surround any boundary point of
Q°. This follows from the fact that Q° can be seen as a simply connected
domain of R? as explained in Chapter 3. In particular, its complement is
a connected graph.
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Proof. Assume that v € Vo corresponds to a vertical edge of 2. The
case of an horizontal edge can be treated in a similar fashion.

Let s be the involution (on the space of configurations) switching the
state open or closed of the edge of 2 associated to v. Let e be an edge of
Q° and let

o = B () Ve

be the contribution of the configuration w to F'(e). With this notation,
F(e) =Y, e,. Since s is an involution, the following relation holds:

F(e) = % > [ew + es(w)].
To prove (6.2), it is thus sufficient to show that
Ay, + As(w) -C, - Cs(w) = eia(p)’i[Bw + Bs(w) -D, - Ds(w)] (63)

for any configuration w.

from e,

to e

Figure 6.3: Left. The neighborhood of v for two associated configurations
w and s(w). Right. Three examples for the winding: it is respectively
equal to 27, 0 and 0.

There are three possible cases:

Case 1. No edge incident to v belongs to y(w). Then, none of these edges
is incident y(s(w)) either. For any e incident to v, e, and e, equal
0 and (6.3) trivially holds.

Case 2. Two edges incident to v belong to v(w), see Fig. 6.3. Since
~ and the medial lattice possess a natural orientation, vy(w) enters
through either A or C and leaves through B or D. Assume that v(w)
enters through the edge A and leaves through the edge D (i.e. that
the primal edge corresponding to v is open). It is then possible to
compute the contributions for w and s(w) of all the edges adjacent
to v in terms of A,. Indeed,

e Since s(w) has one less open edge and one less loop, we find
o(s(w L(s(w w)— l(w)-1
qu(s(w))—— (s( ))\/—(()) Zxo()l\/a()

ﬁ@bz Z,Q (w).
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e Windings of the curve can be expressed using the winding at
A. For instance, W) (B, ep) = Wy ) (A, ep) — /2.

The other cases are treated similarly. The contributions are given in
the following table.

configuration | A C B D
w A, 0 0 SECTE
s(w) A, eizﬂr A, e—iaﬂ'/2 A, eiO'7T/2 Ay

Using the identity e'"™/2—e7197/2 = j /g, we deduce (6.3) by summing
(with the right weight) the contributions of all the edges incident to
.

Case 3. The four edges incident to v belong to y(w). Then only two of
these edges belong to v(s(w)) and the computation is similar to Case
2 with s(w) instead of w.

In conclusion, (6.3) is always satisfied and the claim is proved. ]

6.1.4 Boundary values

On the boundary, the complex argument of the observable can be
computed explicitly using the fact that the curve cannot wind around
a boundary point without exiting the domain.

Contrarily to 0, and 9, which are sets of vertices and dual-vertices
respectively, we remind the reader that 03, and 07, are seen as sets of
oriented medial-edges, and therefore as curves in the plane. In particular,
one may consider their winding.

Lemma 6.11 (Boundary conditions). Let (Q,a,b) be a Dobrushin
domain, p € [0,1] and q > 0.

o For x € 0 and e € 03, bordering x,
F(e) = exp[ioWae, (e,5)]- 957 o (¥ <> ha) -
o Forwued,, and e € 0y, bordering u,

F(e) = explioWae (e, ep)] '¢)Z:Z,Q (u <> 8;,,) .
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Proof. We prove the result for x € 045. The proof for u € 9;, follows the
same lines. Since y(w) is the interface between the open cluster connected
to Opq and the dual open cluster connected to 9, « is connected to Opq if
and only if e is on the exploration path. Therefore,

b b
D (T 0pa) =07 o (e€7).

The edge e being on the boundary, the winding of the curve is deterministic
and equal to Waob(e, ep), we find

a, icWao (e,ep)
F(e) :¢p’Z’Q (e 93, L% 1667)

icWyo (e,ep) ,a,b
=e e ha(ee)
icWao (e.0) ,ab

= ab ?
€ (bp,q,Q

(.23 «—> 8ba) .

6.1.5 Interpretation as a Boundary Value Problem

Let us now make a small detour and a big leap of faith. We wish to
study the possible scaling limits of these observables at criticality. Fix
0<q<4, p=p.(q) and a simply connected domain 2 with two points on
its boundary.

Let Fs be the wvertex parafermionic observable (see Remark 6.6)
inside (Qs,as,bs), where (Qs,as,bs) is a sequence of Dobrushin domains
approximating (2, a,b). Assume that properly renormalized, Fs converges
when § tends to zero to a continuous function f.

If the discrete contour integrals of the vertex-observable Fs would vanish,
it would imply that the contour integrals of f also vanish, thus implying by
Morera’s theorem that the function f is holomorphic. Unfortunately, we
do not know this result for the vertex-observable, but only for the edge-
observable. Therefore, this only implies that a certain discrete form is
“closed” !. Nevertheless, evidences suggest that the curl of the form given
by the edge-observable also vanishes in the scaling limit. It is therefore
natural to conjecture that f is holomorphic.

Now, the previous section shows that for any e € 9%, u 95, Fs(e) is
collinear with nv(e)™?, where:

1One may think that interpreting the edge-observable Fs as a discrete form rather
than a function is an unnecessary obstacle, and that Fs can be thought of as a function
on a different graph. This is indeed true: Fj is a function on the medial graph of Q°.
Nevertheless, the function thus obtained does not converge to a continuous function in
the scaling limit (for instance for ¢ = 2, the complex argument of the edge-observable
is not the same for edges with different orientations, see Chapter 9), and therefore this
interpretation does not provide us with an alternative way of dealing with the problem.
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e 77 is a complex number of modulus 1 which depends on the domain
only. This term is not important in the interpretation;
e v(e)™? equals
exp ( —icWae, (e, eb))
if e € 03,. The same definition holds for e on the path 9y , with
0p, replacing 0%, in the previous formula. The vector v(e)™ can be
interpreted as a discretization of the tangent vector to the boundary
to the power —o (recall that o € [0,1] for 0 < g <4).
(At the discrete level, we defined the vertex-observable only inside the
domain but one may in fact extend the definition fairly naturally to
boundary medial-vertices as well. We will discuss this question for the
fermionic observable in Chapter 9.)
In the continuum, the previous boundary conditions at the discrete level
suggest that the limit f “should” satisfy the following boundary conditions:

Im(fmv?) =0 on 09,

where v is the tangent vector, and be solution of the following Boundary
Value Problem (BVP)

f holomorphic on €2, continuous on Q@ and Im(f7r7) =0 on 9Q.

These BVPs are called Riemann-Hilbert BVP. In general, the previous
discussion seems hard to justify rigorously. Nevertheless, we will see in the
second part of this book that it is exactly what happens for ¢ = 2.

A natural way of trying to prove that Fjs, properly renormalized,
converges to the solution of the Riemann-Hilbert BVP would be to prove
that Fj is solution of a discretization of the Riemann-Hilbert BVP, and
the fact that the integrals along discrete contours of the observable vanish
(or equivalently that the equations (6.2) hold) seems to be a good starting
point to try to implement this strategy. Unfortunately, a simple counting
argument shows that the number of unknown variables determining Fj
is [Eqg| while the number of relations provided by (6.2) is only [Voql.
Therefore, the relations do not determine the observable completely (for
instance, (6.2) is not sufficient to compute the observable using the
boundary values only). In particular, Fs is not necessarily the unique
solution of the right discrete Riemann-Hilbert BVP.

We sometimes say that the equations given by (6.2) correspond to only
half of the discrete Cauchy-Riemann equations (see Chapter 8), and that
the other half becomes satisfied in the scaling limit. In the next chapters,
we will see that for ¢ = 2, one can extract more information from the
observables. It becomes determined by the equations given by (6.2) and
one may prove that Fj is indeed the unique solution of a discrete Riemann-
Hilbert BVP.
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6.1.6 Average behavior of the observable on the
boundary

As explained in the previous section, the observable is not determined
by the relations provided by (6.2) and the boundary conditions, and
therefore its behavior is unlikely to be understood completely using (6.2)
only. Nevertheless, a small miracle occurs and the average behavior on the
boundary of the domain can be understood quite well by using the fact
that the integral along the boundary is equal to zero. Let us describe this
now.

For x € Oyp, define N(z) to be the number of neighboring vertices of =
which are not in Q. We also set

1
W(zx) := N+l %:Wazb(e,eb),

where the sum runs over medial-edges e € 07, bordering the face
corresponding to z. Note that there are N(x) + 1 such medial-edges.
This quantity can thus be interpreted as the average winding on adjacent
medial-edges of 93, U 07,. In some sense, it is a discrete version of the
tangent vector to the boundary.

For u € 0, define N(u) to be the number of neighboring dual-vertices

of w which are not in . The quantity W (u) is defined as before, with 0y,
replacing 05, .

Corollary 6.12. Let (2,a,b) be a Dobrushin domain, q¢ >0 and p = pe.
Then

> 500 0 (@ Oa) = X 60057 o (1w 0

*
T€0qp uedy,

=1 eXp[i(U - 1)W82b (€a, eb)]v (64)
where 6, :=sin[(1-0)IN(z)]exp[i(c - 1)W (z)].

While the notations may be confusing, this statement will be extremely
useful when using the observable for ¢ # 2. The proof can be summarized
as follows: we integrate the edge parafermionic observable along the
outermost contour. Since this contour goes along the boundary, we may
factorize the winding terms using Lemma 6.11. We finish the proof by
grouping the medial-edges depending on which vertex of the boundary
they border.

Proof. Consider the set E of medial-edges of Eq. having only one end-
point in Q°\90°. Let E; be the set of medial-edges of F that are pointing
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towards a vertex of 2°\ 9Q°. Similarly, define E, to be the set of medial-
edges of F that are pointing away from a vertex of Q° \ 9Q°.

Now, consider the circuit C passing through the edges of F; and E,
orthogonally. Observe that this circuit goes around Q°. From Theorem 6.8,

we have
jg F(z)dz=0.

This can be rewritten as

Z e—iW(e,eb)F(e) _ Z e—iW(e,eh)F(e) = 0.
eeE; eeF,

Above, W (e, ey) denotes Wy (e,ep) or Wae (e, ep) depending on whether
eedy oreedy,.

Each vertex of Jyp (resp. dual-vertex of J;,) is bordered by exactly one
medial-edge in E;\ {e,} and one medial-edge in E, \ {ep}. We denote this
first medial-edge by e;(2) and the second by eo(x) (similarly e;(u) and
eo(u)). The expression of F' on the boundary (Lemma 6.11) thus implies
that

1— ei(crfl)W(ca,cb)

+ Z@: (ei(o—l)W(eo(w),ew - ei(o—l)W(e;(w),eb))05;;;1117Q (2 < Dpa)
T€ab

= ; (ei(a_l)W(eo(u)7eh) _ ei(o-_l)W(ei(u)veb))QSZ(’}?(LQ (u é a;b) . (6.5)
ue ba

We now wish to interpret terms in the parentheses. We do it for = € 94
only (u € 0;, can be handled similarly). First,

(VW (eo(@),60) _ gi(o-1W (ei(w).e0)

sin [(1 —0) W(eo(:p),eb);W(e;(w)7eb))] i(o-1) W(eo(x),eb)gw(ei(wxeb)] )

exp [

By construction, W (e, (x),ep) — W (ei(r),ep) = 5 N(x). Furthermore, one
may check by dividing between the cases where N(z) =2, 3 or 4, that

W(eo(z),ep) + W(ei(x),ep)
2

=Wi(z).

This concludes the proof. O

6.1.7 The special case g =4

The case ¢ = 4 is in-between the regime of o € [0,1] (namely ¢ € (0,4])
and o € 1 +iR (¢ >4). In particular, the parafermionic observable that we
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defined previously is degenerated and does not contain any information
for ¢ = 4: one may easily see that when o = 1, (6.2) merely says that the
exploration path is a curve, meaning that the number of entries to a vertex
is equal to the number of exits. It is therefore necessary to introduce a
slightly different observable.

Definition 6.13. Consider a Dobrushin domain (2,a,b) and p € [0,1].
The edge parafermionic observable F' = F(p, 4,8, a,b) for any medial edge
e € Eqo is defined by

F(e) = o o[Wy(e,ep)e™ (o)1, ]
where v is the exploration path.

Exactly as before, this parafermionic observable satisfies the following
properties (we do not necessarily assume that we are at criticality here).

Theorem 6.14. Fiz q = 4, p € [0,1], and let (Q,a,b) be a Dobrushin
domain.

o Let v e Vgo with four incident medial edges A, B, C' and D indexed
in counter-clockwise order in such a way that A and C are pointing
towards v (the two others are pointing away). Then,

—~ —~ = —~ nmTl-x
F(A)-F(C) = i[F(B)-F(D)] + ZEE[F(B)—F(D)]. (6.6)
o Forye0q and e € 03, bordering y,
Wao (e eb)

F(e) = Wae (e,ep)e qu(y<—>8ba)

and for w e Oy, and e € 0;, bordering u,

Wao (e eb)

F(e) = W (e.er)e ot o (u<0).

e Let p=p., for any discrete contour C of (,a,b),

jlgﬁ(z)dz =0

e Letp=p,

Z 5 d)Pcqu(xeaba)_ Z ¢p qQ(u(L)ac:b):W(?Zb(eaveb)v

2€0qp uedy,
(6.7)
where 6, = 5N (x).
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Proof. We only prove (6.6). The other claims are obtained by exactly
the same proofs as in the previous sections.

For this proof only, we will consider different values of ¢ < 4 and let
q tends to 4. For this reason, o can be equal to 1 or to the solution
o = o0(q) of sin(om/2) = \/q/2. Fix > 0. Denote the observable at

(p(q),q) = ( Wﬁq,q) with spin o € {1,0(¢q)} by F,,. Note that the

1+x

choice of p = p(¢q) is made in such a way that x is fixed.
For any ¢ < 4,

Foro@)(A) = Fuo@(C) = ie'*(®) [Fo0(a)(B) = Fy o) (D)]
Fy1(A) - Fy1(0) = i[Fy1(B) - Fy1(D)],

where a(q) was defined in Lemma 6.10. The first relation is due to the
case ¢ #+ 4, and the second follows readily from the fact that v is a curve
(it simply asserts that a curve entering through A or C' exits through B or
D). Now, since o(g) and «(q) tend to 1 and 0 as ¢ # 4, one may develop
the first equation in o — 1. The first order cancels thanks to the second
equation, and the second order gives the claim. O

6.2 Second order phase transition

In this section, we show that the conditions P1-P5 of Theorem 5.24 are all
satisfied when 1 < ¢ < 4. It answers partially Baxter’s conjecture [Bax73]
that P1-P5 if and only if ¢ < 4. The following theorems are extracted from
[DC12, DCST13]. The article [DCST13] also contains a partial result for
q > 4. We refer to the article itself for more details.

6.2.1 Statement of the theorem

Theorem 6.15 (Duminil-Copin [DC12]). Let 1< g <4, then
1 0
lim —log@, ,(0<«—0A,)=0.
n—oo N, ?

Theorem 6.15 together with Theorem 5.24 implies the following corollary.

Corollary 6.16 (Duminil-Copin, Sidoravicius, Tassion [DCST13]). Let
1<q<4. The following assertions are satisfied:

P1 ¢} (0> 00)=0.

P2 ¢gcaq = ('ZS]l)cvq'
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P3 \’(pe,q) = Y, 65 4 (0«— ) = 0.

reZ?

P4 lim tlogg, , (0« dA,)=0.
n—oo ?

P5 Let p>0. There exists ¢ >0 such that for alln > 2 and any boundary
conditions &,

c< gbf)c7q7[7n7(p+1)n]x[7n’2n] (Ch([0,pn] x[0,n])) <1-c.

Note that Theorem 6.15 implies the weakest property among P1-P5
(namely P4). This justifies the energy spent in the previous chapter to
prove Theorem 5.24.

6.2.2 Proof of Theorem 6.15

As for the proof of Theorem 5.2, the reader may skip the proof in a first
reading. The original proof of Theorem 6.15 can be found in [DC12].
However, we choose to present the streamlined proof of [DCST13]. In this
section, we fix 1 < g <4 and p = p.(q). The case ¢ = 4 follows the same
proof with the modified parafermionic observable. We therefore drop them
from the notations.

Set C, to be the slit domain obtained by removing from A,, the edges
between the vertices of {(0,%) : 0 < k <n}. We define Dobrushin boundary
conditions on C, to be wired on {(0,%) : 0 < k <n} and free elsewhere. For
simplicity, we now refer to {(0,%) : 0 < k < n} as the wired arc. The measure
on C,, with these boundary conditions is denoted qﬁ‘é‘;?r. Equivalently, one
may obtain d)‘é‘;br by taking gb?\n (-lw(e) =1:for all e in wired arc) and we
therefore think of C),, as the box A, with free boundary conditions and
{(0,k):0 <k <n} wired; see Fig. 6.5.

Lemma 6.17. There exists ¢ >0 such that for any n>1,

(b(éf;br ((0,-n) «— wired arc) > n—ib
The main estimate used in the proof of this lemma is provided by
Corollary 6.12 applied in a well-chosen domain. Then, we work a little
to compare boundary conditions in this domain to Dobrushin boundary
conditions in C,,. To exploit the whole power of Corollary 6.12, we will
consider a domain which is non-planar. Namely, let us introduce the
following graph U (see Fig. 6.4): the vertices are given by Z3 and the
edges by
o [(x1,29,23), (21,22 + 1,23)] for every a1, 29,23 € Z,
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Figure 6.4: The graph U.

o [(x1,22,23), (21 + 1,29,23)] for every x1, 2,23 € Z such that z1 # 0
or such that xy =0 and z5 >0,
e [(0,z2,23),(1,z2,25+1)] for every xo <0 and x3 € Z.
This graph is the universal cover of Z2 \ F, where F is the face centered
at (—%, —%) It can also be seen at Z? with a branching point at (—%, —%)
All definitions of dual and medial graphs extend to this context.

Proof. For n > 1, define
Uy = {(@1,22,23) € U: |a1], |z2| < n and |z3] < n°}.

We wish to apply Corollary 6.12 to (U,,0,0). Even if the domain is non-
planar, the proof works exactly in the same way and we get

. 3
> Ge ¢y, (x> 0)=1- e,
zedU,

To obtain this equality, we used that:
® Oy = 0U, and 0}, = @;
o W(eaaeb) = 377‘-;
e The Dobrushin boundary conditions with a = b = 0 are simply free
boundary conditions.
Since |0, | < 1, we immediately get that

> oy (0ez)>e (6.8)

zedU,

for some constant ¢; = ¢1(gq) > 0 independent of n.

We now wish to bootstrap this estimate to an estimate on C,. Let
us start by proving the following claim (observe that |rs3| < n® in the
statement).

Claim: There exists ca > 0 (independent of n) such that there exists
x = (11,29, 23) € OU, with |x3| <n’ and

C2
60, (0= z)2 .
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We will prove this fact by showing that vertices z with |z3| = n® have
very small probability of being connected to the origin and cannot therefore
account for much in (6.8).

Proof of the Claim. Let R be the dual graph of the subgraph of U
with vertex set Ry := [-n,n] x [0,n] x {0}, i.e. the graph with edge set
{e* :e e ER,} and vertex set given by the end-points of these edges. Note
that uniformly in the state of edges outside Ry, the boundary conditions
in Ry are stochastically dominated by wired boundary conditions on the
“bottom side” [-n,n]x {0} x {0} of Ry, and free elsewhere. Passing to the
dual model, we deduce that uniformly in the state of edges outside Ry,

QS?JH ((—%, -1.,0) < 0U in RS‘ edges outside Ro)
> el ( ~1,-3,0) <5 0U; in Ry,
where Dobrushin boundary conditions on Rj are dual-free on the bottom

and dual-wired everywhere else. Lemma 5.42 (with m =n and 6 = 0) thus
implies that

8%, ((-3.-1.0) <> aU;, in B

. 1
edges outside Ro) > vy (6.9)
The same is also true for R} = (0,0, k) + R} with |k| < n®.

If a vertex x = (w1, 22,23) € OU,, with x3 = n® is connected to (0,0,0),
then none of the dual vertices (—%, —%, k) are dual connected to 9U,, in
R}, for 0 < k < z3 (the symmetric holds for z3 = —n”). Equation (6.9)
applied |xz3] — 1 times implies that

1 |13|—1

0 PR —
o, (0= ) < (1- )
The probability is therefore exponentially small when |z3| = n°. Together
with (6.8), the previous inequality implies that for n large enough,

Z qS%n(Oex)z%.

2edUy:|x3|<n®

The claim follows directly from the union bound, provided that cs is chosen
small enough. o

Fix z given by the claim and rotate and translate vertically? U,, in such
a way that x = (x1,—n,0) for some 0 <z <n. Consider C,, as a subgraph
of U,. The boundary conditions on C,, induced by the free boundary

2Seen as a graph, U, is invariant by rotation by m/2 since the line where z3
“increases” is invisible from inside Uy,.
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conditions on U,, are dominated by the Dobrushin boundary conditions on
C,, defined above. Furthermore, the existence of an open path from x to
the origin implies the existence of a path from z to the wired arc in C,.
Thus, the claim implies that

PEP" (x> wired arc) > %. (6.10)

To conclude the proof, we need to obtain a lower bound for the
probability that the vertex (0,-n,0) itself is connected to the wired arc.
We use once again a “conditioning on the right-most and left-most paths
type argument”. Since we now work on a sub-domain of Z?, we drop the
third coordinate from the notation.

We may assume that z; > 0 and that the two vertices « = (21,-n) and
(-x1,-n) are connected to the wired arc. The FKG inequality implies that
this occurs with probability (£2)?. Consider the right-most open path from
(x1,-n) to the wired arc, and the left-most open path from (-z1,-n) to the
wired arc. Let S be the part of C,, between these two paths, see Fig. 6.5.
The boundary conditions in .S dominate the free boundary conditions on
the bottom of C,,, and wired elsewhere. Lemma 5.42 (applied to 2n, m =n
and 6 = 0) thus implies® that (0,-n) is connected to the wired arc with
probability larger than 20%. The claim follows by choosing ¢ small enough.
O

We are now in a position to prove Theorem 6.15.

Let 0y, be the set of vertices at distance 7 of the vertex (0,-n) in C,.
The reasoning is similar to the proof of Lemma 5.40 except that instead of
isolating primal circuits around z_ and z, from each others, we will isolate
the primal path from (0,-n) to 9, from the wired arc.

Proof of Theorem 6.15. Let R, := [1%,51—2] x [-n,n] and

Ry = [—51—27 —%] x [-n,n]. Define the three events £ = {(0,-n) < 0, },

Fright and Fiery that there exists a dual-open dual-path from bottom to
top in Rr*ight and Ry respectively.
Let C be the event that there exists a dual-open dual-path in the square

* L 5 15 1 3 1 1
R =[-T+3. % slx[-F+3.-%-3]
connecting a dual open path crossing R} from top to bottom to a dual

open path crossing Rr*ight from top to bottom.

3We use a comparison between boundary conditions. The reasoning is the same as
usual: we compare boundary conditions on S with the boundary conditions induced
by boundary conditions on A, with free boundary conditions on the bottom and wired
boundary conditions on the other sides.
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g

Cy

167

Figure 6.5: Top. The two paths connecting the wired arc to (x1,-n,0)
and (-z1,-n,0) (or simply (z1,-n) and (-z1,—n)) and the area S between

them. Bottom. The two dual-open paths in the long rectangles R

and Rj .

*
right
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Conditioning on Fiefy N Frighe N C, boundary conditions on R, are
dominated by free boundary conditions in the plane. Therefore

(b%? (0 - 8A%) dobr (8|‘7:left N ]:rlght n C) 2 ¢d0br (5 N ~7:left n ]:right n C) .
We now prove a lower bound on the term on the right:

dobr (6 n ﬁeft n ]:right n C)
dobr dobr dobr
)" (E) - e (Frets N Frigol€) - o, (CIE N Fiefe N Fright ) -

First, Lemma 6.17 implies that ¢f" (£) > -55.

Second, conditioned on everything on the left of { {¢ } x[-n, n], boundary
conditions on [ {5, n]x[-n,n] are dominated by wired boundary conditions
on the left side and free elsewhere. In particular, boundary conditions for
the dual model stochastically dominate free boundary conditions on the
left side and wired elsewhere. Lemma 5.39 implies that (debr (Frignt|€) > 2

and the same lower bound holds true for qbg‘lb (Frete| Fright N E). We obtain
dobr (j:left n ]:rlght|5) 2 C2

Third, we turn to (b‘éf:}“ (CIE N Fiefy N Fright)- Let S™ be the area of the
dual graph in R* between the right-most dual open path from top to
bottom in R:ight, and the left-most dual open path crossing from top to
bottom in R}, see Fig. 6.5. The boundary conditions for the dual model
on S* dominate dual-free boundary conditions on top and bottom, and
dual-wired elsewhere. The domain Markov property and the comparison
between boundary conditions imply that boundary conditions for the
dual model on S* dominate dual-free boundary conditions on top and
bottom sides of R*, and dual-wired on the two other sides. Therefore, the
probability of having a dual open path in S* crossing from left to right is
larger than 1/(1+ ¢?) thanks to (5.5). In particular,

1
dobr

ClE N Fets N Fright) > — .
QSC,,, ( | left rlght) 1 +q2
Putting everything together, we find that

1
1+q2

¢° (0« N j16) % ey

and indeed

lim —Llog (¢° (0 9A,)) =0.

n—oo
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6.3 Alternative computation of p. when q > 4

We conclude this chapter by providing an alternative derivation of the
critical point when ¢ > 4. While this result also follows from the previous
chapter, the technique gives (a little) more information on the critical
phase and is probably more robust.

Theorem 6.18 (Beffara, Duminil-Copin, Smirnov [BDCS12]). Let g > 4.
The critical point p. = p.(q) for the random-cluster model with parameter
q on the square lattice satisfies

N{
1+q

As mentioned above, when ¢ > 4, the spin variable ¢ involved in the
definition of the parafermionic observable becomes non-real, therefore it
does not have an immediate physical interpretation. However, this allows
us to write better estimates even in the absence of an interpretation

in terms of holomorphic functions and relate our observables to the
V4

1+/q’
is proved to behave like massive harmonic functions and to decay

exponentially fast with respect to the distance to the boundary of the
domain. Translated into connectivity properties, this implies a slightly
stronger theorem than Theorem 6.18, namely the sharpness of the phase
transition for ¢ > 4. It would be nice to obtain a similar computation of
pe based on the observable for 1 < ¢ <4 or even more so for ¢q < 4.

For o = (21, 22) € R?, define 2] e = max{|z1],|za|}.

DPc =DPsd =

the observable

connectivity properties of the model. For p +

Theorem 6.19. Let g > 4. For every p < psq, there exists ¢ = ¢(p,q) >0
such that for any u e 72,

(0 o) <crelvl~,

Once we have the exponential decay of correlations for p < psq,
Theorem 6.18 follows right away. Let us explain this quickly.

Proof of Theorem 6.18 assuming Theorem 6.19. Fix ¢ >4 and let
P < psq- Theorem 6.19 and the Borel-Cantelli lemma imply that 0 is not
connected to infinity almost surely and therefore p < p.. We deduce that
Pe 2 Psd 4

Let us now prove that psq > p.. For a dual vertex y € (Z?)*, let A(y)
be the event that there exists a dual-open circuit surrounding the origin

4Note that we could have used Zhang’s argument (Proposition 4.38) but once we
have exponential decay, this approach is quicker.
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and passing through y. Observe that on A(y), y is dual-connected to a
dual-vertex z at distance |y|leo of y.

For p > psq, the dual measure is a random-cluster measure with p* < psq.
Therefore

bp.q(AW)) <8lylexp [ - c(p”,q)[y]o ]

for any y € (Z?)*. The Borel-Cantelli lemma implies that almost surely
there are finitely many dual-circuits around the origin. As a consequence,
there is an infinite cluster almost surely and p > p.. We deduce p, < psq. O

Remark 6.20. The comparison between boundary conditions enables us

to extend the previous theorems to ¢ = 4. Indeed, for every p < T\/\%v
there exists (p,q) with ¢ >4 and p’ < 1}(% such that the random-cluster

measure ¢, . stochastically dominates the random-cluster measure ¢{ ,
(Remark 4.18). It follows from this stochastic domination that for any
ueZ?,

$pa(0 = u) <oy (0= u) <exp[ ~e(p',q) |ufw].

6.3.1 Proof of Theorem 6.19

Let (£,a,b) be a Dobrushin domain, p € [0,1] and ¢ > 4. With the
notations of Definition 6.4, we define the function F' by

F(e) =gy (W1, (6.11)

Observe that i(oc — 1) € R whenever ¢ > 4. Furthermore, (6.2) translates
into

F(A)+ F(C) - A(p)F(B) - A(p)F(D) =0, (6.12)
around any medial-vertex v € Vo with four incident medial-edges A, B,
C and D indexed in counter-clockwise order in such a way that A and C
are pointing towards v (the two others are pointing away). Above,

ei(o‘—l)7‘r/2 + .T(p)

Alp) = e m2g(p) + 1

4

Note that A(p) =1 if and only if p = 1}(%.

For a set E c Eq., 0.F denotes the set of medial-edges sharing exactly
one end-point with a medial-edge in E (in particular they are not in E).
Let Ej, be the set of medial-edges having two end-points in Q° \ 900°.

Proposition 6.21. Fiz g >4 and p < psq. Let (2°,a°,0°) be a Dobrushin
domain. There exists Cy = C1(p,q) < oo such that for any E c Fiy,

S Fe) < Y Fle).

eeF e€d. FE
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Proof. Since E c Ej,, the end-points of medial-edges in E are in
0° N 90Q°. We may therefore sum (6.12) over all end-points of edges in
E. Tt provides a weighted sum of F(e) (with coefficients denoted by ¢(e))
identical to zero:

Sc(e)F(e)+ > c(e)F(e)=0. (6.13)

el e€d. FE

For an edge e € F, F(e) appears in two identities (6.12), corresponding
to its two end-points. Since the edge e is pointing towards one of its
end-points and away from the other one, the coefficients will be -1
and A(p). Thus F(e) for e ¢ E will enter the sum with a coefficient
c(e) =1-A(p) # 0. For an edge e € d.F, F(e) will appear in exactly
one identity (corresponding to the end-point shared with an edge of F).
The coefficient will be —A(p) or 1, depending on the orientation of e with
respect to this end-point. In any case, F(e) will enter the sum with a
coefficient ¢(e) which is bounded. Since F(e) is positive for every e € Foo,
the proposition follows immediately by setting

max{l,A(p)}'

R Y]

For n,m > 0, consider the graph R(m,n) = [0,n] x [-m,m].

Lemma 6.22. Fiz q >4 and p < psq. There exists Cy = Cy(q) < oo such
that for any n,m >0,
>, F(e)<Oy,

e€0e Eint

where F is defined in the Dobrushin domain (R(m,n),0,0).

Proof. Let us start by recalling that Dobrushin boundary conditions on
(R(m,n),0,0) coincide with free boundary conditions.
Every edge e € O, Eiyt is on the boundary of R(m,n)°. Lemma 6.11 thus
implies that
F(e) = DIWe) gl [ 0],

where x is the vertex of 9R(m, n) bordered by e. Since -5 < W (e, ep) < 2,
we find that

Z F(e) < Cl Z ¢2,q,R(m,n) [‘/I" «— 0]

€€0e Fint zedR(m,n)

We wish to prove that the right hand side of the previous inequality
is bounded uniformly in m and n. We may now focus on p = pgq by
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monotonicity. We use Proposition 6.12 again to obtain:

. 37
§ O d’g,q,R(m,n) [x «— 0] =1-exp [1(0 - 1)72 ],
weaR(m,n)

where we used that da, = 9R(m,n), 95, =@ and W (eq,ep) = 2.
Above, §, is

0y = sin [(1 - cr)%N(x)] exp [i(o - l)W(:zz)]

which is positive since o € 1 + iR. Furthermore, we once again have

-2 < W(z) < 3, and therefore J, is bounded away from 0 and oo

uniformly in m and n. The claim follows readily. O

We are now in a position to prove our key corollary. For a graph 2, let
us introduce the following graphs constructed recursively. Let Q) := Q
and Q) = Q=D (9Q*-D for any k > 1. They can be seen as successive
“peelings” of 2, each step consisting in removing the boundary of the
existing graph. Let Ej := Eint[Q(k)].

Corollary 6.23. Let g >4 and p < psq. There exist C1,Cy > 0 such that
for any n,m >0,

> F(e)<Cila (o )k,

ecEy, 1+Cl

where F is defined in the Dobrushin domain (R(m,n),0,0).

Proof. Proposition 6.21 can be applied to Q(k) (with a = b be any point
on dNM) to give

S F(e) < 2 S E(e).

ecEy, 1+ C1 oep,Co. B,

Since B, U0, E), c Ei,_; and F(e) >0, this implies

S Fe) < 2 S E(e).

66Ek 1 + Ol CGEk,l

Using the previous bound iteratively, and Proposition 6.21 one last time
(in the second inequality), we find

k

3 F(e)g(lflcl)k 3 F(e)gcl(lflcl) S F(e).

eeEy, eeEing €€0c Eing

The claim follows by bounding the sum on the right-hand side by C5 using
Lemma 6.22. O

Define the strip S,, := [0,n] x Z of with n, and the half-plane HP = N x Z.
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Lemma 6.24. There exists c1 = c1(p,q) >0 such that for any v = (vi,vz)
with v € N,
Pp.qp(0 <= v) <exp[-cio1].

Proof. Let m and n in such a way that v € R(m,n). Apply Corollary 6.23
to R(m,n) and k to find (we use the notation of the corollary)

ZF@SQQ(Oly.

ceFy, 1 +Cl

Consider the orthogonal symmetry 7 with respect to d = {x = (21,22) :
x9 = 0}. Let v be the exploration path in (R(m,n),0,0) (i.e. starting
from 0). By symmetry, every configuration w such that e € v is mapped
by 7 to a configuration for which 7(e) € 4. Furthermore, the winding is
transformed from W, (e, ep) to %’T ~W.yy(7(e),ep). This gives that

Fe)+ F(r(e)) = ¢2,q,R<m,n) [(eua_l)w(e,eb) +ei(a-l)(%—w(e,eb)))lm]

> 2¢2’q’3(m,n)(e € ’y).

Let C be the cluster of the origin in R(m,n). Define oxC to be the
exterior boundary of C, i.e. the set of vertices of C connected by a path
in Z2 \ C to the boundary of R(m,n). The exploration path ~ is a loop
from 0 to 0 going around C. The exterior boundary OeyC lies directly on

its exterior. Let deo(x, F) denote the distance between x and the set F,
i.e. min{||z - y|e : y € F'}. We find

05 g tmomy (31 € DexiC : oo (1, OR(m,m)) 2 k) < g;¢g%RUmn¢eey)

C k:
SClCQ(lJrlC ) '
1

Letting m go to infinity and using the uniform bound above,

Ch )k

0 (ElueacxtC:doo(u,aSn)zk) SClC’2(1+Cl

P,q,Sn

Since there is no infinite cluster in S,, almost surely (see Remark 4.33),
the cluster C intersects {u € S, : deo(u,0S,) > k} if and only if OxtC
intersects {u €S, : doo(u,dS,) > k}. Hence, for v = (vy,vy) with vy >0,

¢2’q’§n(0 «— )< ¢2’q’gn(3u €C:deo(u,0S,) 2 v1)
= ¢27Q7Sn(3u € OoxtC : doo (1, 0Sy,) > v1)
o )Ul
1+ Cl '

sa@(
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The proof follows by letting n go to infinity and then by choosing
c1 = c1(p, ¢) > 0 small enough. O

The previous lemma implies that for any n > 0 and = € 9A,,,

89, (0 7) < exp[-cin].

Indeed, rotate the graph A,, in such a way that = (n,z3). The comparison
between boundary conditions in (n,0) — HP leads to

¢g,q,A"(0 «—>x)< ¢2,q,(n,o)-m(0 < 1) <exp[-cin]
thanks to Lemma 6.24. Now, Lemma 4.23 implies that for any k,

Fpgnn (0= OA) < 3 64m ac{0)x[0.m] Pafomy (4= D)

mzk be{m }x[0,m]
< 3 64m* exp(—c1m) < exp(—c2k), (6.14)
m2k

where co > 0 is chosen small enough but independent of k. In the
second inequality, we used the comparison between boundary conditions.
Theorem 6.19 thus follows by letting n tend to infinity.
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Chapter 7

Two-dimensional Ising
model

We now enter a new part of this book devoted to the Ising model. As
presented in the introduction, this model is one of the most famous models
of statistical physics. In this chapter, we study the basic properties of this
model.

Define the exterior boundary of a graph G by

ﬁeG:{x¢VGzEIy€VGs.t. xNy}.

7.1 Definition of the Ising model

7.1.1 Formal definition on the square lattice

The Ising model can be defined on any graph. However, we will once
more restrict ourselves to the square lattice. Let G be a finite subgraph of
72, the Ising model with free boundary conditions is a random assignment
o e {-1,1}V¢ of spins o, € {~1,+1} (or simply —/+), where o, denotes the
spin at the vertex x. The Hamiltonian of the Ising model is defined by

Hi(o) = - Y. a0y

[zy]eEc

The partition function of the model is

Zhe = Y, exp[-BHG(0)], (7.1)

where [ is the inverse temperature of the model. The Ising measure is the
Boltzmann measure with Hamiltonian H, é More precisely, the probability

177



178 Hugo Duminil-Copin

of a configuration o is equal to

pho(0) = ——exp[-8HE()]. (7.2)
8,G

Below, Mg,g will also denote the expectation with respect to Mg,c,“

Remark 7.1. In order to get the same definition as in the first chapter,
the constant 8 should be understood as 1/T, where T is the temperature.
For this reason, we will speak of high-temperature regime when ( is small,
and low-temperature regime when f is large.

Remark 7.2. More generally, the Ising model may be defined by the
Hamiltonian
Hi(0):=- Y Jay0a0y,
z,yeVa

where (Jy,y )z yez2 is a set of coupling constants, where (J,,,) is invariant
under translations, i.e. that J, = Jo,-, for any z and y. If J;, >0
for any = and y, the model is called ferromagnetic. If J,, = J if x ~y
and 0 otherwise, the model is called nearest neighbor, otherwise it is called
long-range. In this book, we focus on the nearest neighbor ferromagnetic
Ising model and we fix J =1 1.

For a graph G and 7 € {-1, +1}Zz, one may also define the Ising model
with 7 boundary conditions by the Hamiltonian

- Z 0.0y if oy =7;,Vr ¢ Vg,
Hi(o) = z~y and {z,y}nVe*o (7.3)
) otherwise.

Note that in this case the state space of spin configurations is formally
{-1, +1}Zz. However, since any configuration not corresponding to 7
outside of G has probability 0, the space is in direct correspondence with
{~1,+1}"¢. For this reason, we now consider this later set to be the state
space.

Remark 7.3. The boundary conditions 7 may be defined as an element
of {-1,+1}%% instead since other values outside Vg are not relevant.
The approach consisting in considering 7 € {-1, 1}Z2 is sometimes more
convenient, in particular when taking the limit (as n tends to infinity)
of uj 4, for a fixed 7. Furthermore, this choice is more consistent with
the general theory of so-called Gibbs measures and long-range models.
Nevertheless, we will sometimes allow ourself some latitude and simply
specify the boundary conditions on J.G.

IMultiplying all the coupling constants by the same multiplicative constant boils
down to changing (.
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Similarly to the random-cluster case, several boundary conditions will
be of particular importance in our study:

e free boundary conditions: defined above.

e + and — boundary conditions: the measure with boundary conditions
7, = +1 for all z € Z? (resp. 7, = —1 for all z € Z?) is denoted by O
(resp. 115 ),

e Dobrushin (or domain-wall) boundary conditions: assume G is a
discrete domain. Assume that 9.G can be divided into two x-
connected paths d_ and 9, when going around it (z and y are *-
neighbors if |z — y||e = 1 and each vertex has eight neighbors). The
Dobrushin boundary conditions are defined to be — on J_ and +
on 0,. The Dobrushin boundary conditions force the existence of
macroscopic interfaces in the model between the — cluster connected
to 0_ and the + cluster connected to 0,.

7.2 General properties

7.2.1 Dobrushin-Lanford-Ruelle property

Similarly to the random-cluster case, the Ising model satisfies a strong
form of domain Markov property, called the DLR conditions; see
[Geoll]. Roughly speaking, this condition asserts that the Ising measure
conditioned on the configuration outside of a graph F' is equal to the Ising
measure with boundary conditions inherited from the conditioning. In
particular, the Ising measure only keeps memory of the nearest neighbors.

Proposition 7.4. Let F c G two finite subgraphs of Z*. Let T € {~1, 1}Z2
and B>0. Then

,LLE7(;(O'|VF = 77|crx =7y :Vz e Vg VF) = upr(n) , VYne{-1, 1}VF.

Proof. The proof of this statement is left as an exercise. It is very similar
to the proof of the Markov property for random-cluster models. O

7.2.2 Positive association of the Ising model

The set {~1,1}"V¢ is equipped with a partial order: o < o’ if for any z € Vg,
oy <ol A random variable X is increasing if o < ¢’ implies X (¢) < X (¢').
An event A is increasing if 14 is increasing. It is equivalent to the fact
that A is stable by the action of switching some spins from -1 to 1.
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Theorem 7.5 (FKG inequality). Let G be a finite graph, T be boundary
conditions and B > 0. For any two increasing events A and B,

tpa(AnB) > ppa(A)uga(B).

Proof. In this proof only, we set o(z) instead of o,. We use the FKG
lattice condition (4.8) once again, but applied to vertices this time. Let
o be a configuration, and e and f two vertices. Set o¢/, o, fs aj‘i and ag’
to be the configurations agreeing with o away from e and f, and such
that (o(e),o(f)) = (1,1), (-1,-1), (1,-1) and (-1,1) respectively. The
following inequality would imply criterion (4.8) immediately:

HG(0) + H (o) < HE(ol) + HE(0%), (7.4)

Let us prove this inequality now. When e and f are not adjacent, the two
sides of (7.4) are equal. When e and f are adjacent, we see that the left-
hand term of (7.4) corresponds to configurations with o(e) = o(f), while
the right-hand term corresponds to configurations with o(e) # o(f). In
particular, the left-hand side is indeed smaller than the right-hand one. O

As before, the FKG inequality implies the following comparison between
boundary conditions.

Theorem 7.6. Let G be a finite graph and 8 > 0. For boundary conditions
71 < 79 and an increasing event A,

5 () < G (4). (75)

Exactly as in the case of measures on {0,1}¥¢, we say that e
stochastically dominates py' o if pg o(A) < pgo(A) for any increasing
event A. In this language, the + boundary conditions are the largest ones
in the sense of stochastic ordering, while — are the smallest.

Proof. We prove that HZ (o) + HZ (0cf) < HE (ol) + HZ(0%)
following the same reasoning as above. We leave the proof as an exercise. O

7.3 FK-Ising model and Edwards-Sokal cou-
pling

The Ising model can be coupled to the random-cluster model with cluster-
weight ¢ = 2. For this reason, the ¢ = 2 random-cluster model will from now
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on be called FK-Ising. We now present this coupling, called the Edwards-
Sokal coupling, along with some consequences for the Ising model.

Let G be a finite graph and let w be a configuration of open and closed
edges on G. A spin configuration o can be constructed on the graph G as
follows:

e Assign independently to each cluster of w a “cluster-spin” 1 or -1
with probability 1/2;
e Define the spin o, of a vertex to be equal to the cluster-spin of its
cluster.
Note that all vertices in the same cluster of w receive the same spin, but
that clusters of pluses (or minuses) in ¢ can be much bigger than the
original clusters of w.

Proposition 7.7 (Edwards-Sokal coupling [ES88]). Let p € (0,1) and G
a finite graph. If the configuration w is distributed according to a random-
cluster measure with parameters (p,2) and free boundary conditions, then
the spin configuration o is distributed according to an Ising measure with
inverse temperature 8 = —% In(1-p) and free boundary conditions.

Proof. Consider a finite graph G, and let p € (0,1). Consider a
measure P on pairs (w, o), where w is a random-cluster configuration with
free boundary conditions and ¢ is the corresponding spin-configuration
constructed as explained above. Then, for (w, o), we have:

1 o(w c(w w —k(w
Pl(w,0)] = ZTP( )(1 - p)c(@Igk(@) . g=h(w) _
»,2,G

(1)),

p,2,G
Now, we construct another measure P on pairs of percolation and spin
configurations as follows. Let 6 be a spin-configuration distributed
according to an Ising model with inverse temperature 3 satisfying e™2% =
1 - p and free boundary conditions. We deduce @ from & by closing
all edges between neighboring vertices with different spins, and by
independently opening edges between neighboring vertices with same spins
with probability p. Then, for any (@, 7),

@)@ (1 - ) Eelo@)r(@) (@) (1 - p)e(@)
P[(@,5)] = 7 = 7

where r(5) is the number of edges between vertices with different spins,
and Z is a normalizing constant.

To prove that the two measures are the same, we therefore need to
check that the two previous measures are in fact defined on the same set
of “admissible” pairs of configurations (this would imply that Z = Z]?’Q’G
and that the probabilities of each configuration is the same). But the two
spaces of configurations are obviously the same since if ¢ has been obtained
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from w, then w can be obtained from o via the second procedure described
above, and the same is true in the reverse direction for & and &.

This implies that P = P and the marginals of P are the random-cluster
model with parameters (p,2) and the Ising model at inverse-temperature
B3, which is the claim. O

The coupling gives a randomized procedure to obtain an Ising
configuration from an FK-Ising configuration (it suffices to assign random
spins). The proof of Proposition 7.7 also provides a randomized procedure
to obtain an FK-Ising configuration from an Ising configuration. This
observation was used by Swendsen-Wang to create a fast algorithm to
sample the Ising model [SW87].

If one considers wired boundary conditions for the random-cluster, the
Edwards-Sokal coupling provides us with an Ising configuration with +1
boundary conditions if we assign cluster-spins uniformly to each clusters,
except for the clusters touching the boundary that automatically receive
a cluster-spin +1. This extends to other boundary conditions.

Proposition 7.8 (Edwards-Sokal coupling [ES88]). Let p € (0,1) and G
a finite graph. If the configuration w is distributed according to a random-
cluster measure with parameters (p,2) and wired boundary conditions, then
the spin configuration o is distributed according to an Ising measure with
inverse temperature (3 = —% In(1 -p) and + boundary conditions.

The Edwards-Sokal coupling provides us with a dictionary between
correlation properties of the Ising model and connectivity properties of
the FK-Ising percolation?. Indeed, two vertices which are connected in the
random-cluster configuration must have the same spin, while vertices which
are not have independent spins. Let us give two examples of applications
of this fact (we will see many more applications of this coupling in the
next sections).

Proposition 7.9. Fiz p € (0,1), G a finite graph and § = —%ln(l -p).
For any x,y € G,

NE,G[%] = ¢,1;,2,G(95‘—’8G)7

£
Nﬁ,G[Ua:Uy] = ¢2,2,G(~T‘—’y)~

Proof. Let us treat the first case. Let P be the coupling between ME,G
and ¢;7q7G and F the expectation with respect to P. We find

1 cloz] = Eloalizgpocy] + Eloalizaocy] = P(z < 0G) = ¢, ,(0 < 0G).

2The FK-Ising model is called a geometric representation of the Ising model due to
the fact that correlations are encoded in terms of geometric properties of percolation
configurations.
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In the second equality, we used that conditionally on z <> G, the average
spin is 0, while conditionally on = < 0G, it is 1. The second case can be
treated similarly. ]

7.4 Planar Gibbs measures and phase
transition

Let us start by defining infinite-volume measures (also called Gibbs
measures). See [VEFS93, Section 2.3.2] for details on Gibbs measures.

Definition 7.10 (Gibbs measure). Let 8> 0. A measure p on {-1, 1}22
is called an Ising Gibbs measure at inverse-temperature [ if for any finite
graph G and any configuration 7 on Z?,

(o, =n|os =1 : Vo ¢ Va) =g a(n) , Yne{-1,1}"°.

Remark 7.11. Note that the previous conditioning is not really defined
since the probability of o, = 7, for any z ¢ Vz is a priori zero but there is
no difficulty in making sense of this degenerated conditioning (for instance,
one may condition on o, = 7, for any z € .G only).

The domain Markov property and the comparison between boundary
conditions allow us to construct Gibbs measures.

Proposition 7.12. There exist three Gibbs measures ME: g and ,ufﬁ, called
the Gibbs measures with +, — and free boundary conditions respectively,
such that for any event A depending on a finite number of vertices,

Tim pify (A) = 5(A)
Tim 15, (A) = 15(A) ,

Tim gy, (A) = iy (A)

Proof. The proof may be performed using the comparison between
boundary conditions, but we prefer to use the Edwards-Sokal coupling
since it illustrates the fact that the coupling extends to the infinite-
volume context. Precisely, define the measure ug obtained by assigning

spins uniformly to the clusters of qbg’% where f = —%log(l -p). It is

then straightforward to deduce the convergence of ,uf% A, o ,ug from the

convergence of ¢g_27 A, tO ¢272 and the fact that conditionally on the

random-cluster configuration w, the cluster-spin configuration follows a
product measure on clusters of w.
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Similarly, ,u;g and fp15 can be constructed by considering (;511,’2 and
assigning spins uniformly except that the infinite cluster (if it exists)
receives spin +1 in the first case, and —1 in the second one. O

The measures /fé, pg and pfﬂ are invariant under translations.
Furthermore, /LE and pg are ergodic but ,ug is not necessarily, as can be
seen from the fact that in the Edwards-Sokal coupling in infinite volume,
the infinite cluster could receive a spin 1 or a spin —1. In fact, ug can be
proved to be equal to %(MEﬂJZg), and it is therefore ergodic only if yif = 5.
Let us also mention that x5 and ME are extremal for the stochastic ordering

2
between measures on {-1,+1}%".

The Ising model in infinite-volume exhibits a phase transition at some
critical inverse temperature (., above which a spontaneous magnetization
appears.

Theorem 7.13. There exists (. € (0,00) such that:
o for any B< B, 5o0] =0,
o for any B> B, 15[a0] > 0.

Furthermore, f3. = 3 log(1 + V?2).

Proof of Theorem 7.13. Proposition 7.9 immediately implies that
Be = —% In[1-p.(2)] by passing to the infinite-volume. Then, Theorem 5.10
applied to ¢ = 2 concludes the proof. O

The problem of identifying the critical value of the Ising model is
more than fifty years old. Summarizing, Kramers and Wannier identified
(without proof) the critical temperature where a phase transition occurs,
separating an ordered from a disordered phase, using planar duality
[KW4la, KW41b]. Kaufman and Onsager [Ons44, KO50] computed the
free energy of the model, paving the way to an analytic derivation of its
critical temperature. Later, Aizenman, Barsky and Ferndndez [ABF87]
found a computation of the critical temperature based on differential
inequalities. Here, we use yet another method since we invoke the
determination of the critical value of the FK-Ising model provided in
Chapter 5.

Remark 7.14. One may use the (very useful) Griffiths-Kelly-Sherman
inequality [Gri67, KS68] to prove the existence of 8.. This inequality
asserts that for any graph G, any 8 > 0 and any two sets A, B of vertices
of G,

HE,G[UA] 2

0,
ME,G[UAUB] 2 ME,G[UA]ME,G[UBL
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where 04 = [1,c4 0v- The second inequality may be used to prove that the
derivative with respect to 3 of MEVG[UQ] is positive:

T356(00) = 5 156(0020,) =5 o0 020) 20

Observe that, similarly to the random-cluster model, one could construct
(a priori) many Gibbs measures and their classification is thus non trivial.
Even though we will not use these facts in the future, let us describe
planar Gibbs measures, starting from the high-temperature regime, then
the critical regime and then the low-temperature regime.

Proposition 7.15. When 8 < B., there is a unique infinite-volume
measure.

Proof. Let p such that 8 = —%log(l —p). There is no infinite-cluster
for (;511),2 and therefore 5 and pg are constructed from ¢11,72 in the same
way. We deduce that ,u;; = pg and by a proof similar to the one of
Proposition 4.29, this implies that there exists a unique infinite-volume
measure. |

For general models the classification at criticality is a priori much more
difficult than in the high-temperature regime. For the Ising model, this
is not the case and it turns out that there exists a unique Gibbs measure
at criticality. The result goes back to Onsager [Ons44] (we also proved
it in this book: simply use the Edwards-Sokal coupling together with
Property P2 of Corollary 6.16). We do not resist the temptation to present
a beautiful elementary proof due to W. Werner [Wer09].

Proposition 7.16. On Z2, there exists a unique Gibbs measure at ..

Let us outline the proof first. We play with the Edwards-Sokal coupling
between Ising and FK-Ising models. We wish to prove that “E’c =g, In
order to do so, we first use Zhang’s argument (Proposition 4.38) to show
that there is no infinite cluster at criticality almost surely. The core of the
proof will be to prove that the measure u%r is ergodic. Since it is symmetric
with respect to flipping all spins, it implies that ufﬂc does not possess any
infinite-clusters of pluses or minuses. In particular, there exists ,ugc—almost
surely an infinite number of + and — circuits (more precisely *-connected
circuits). This last fact can then be used to show that uj < ,ugc < g,

Proof. (sketch) Let us prove that uj = pz . In such case, the
comparison between the boundary conditions implies that the critical
Gibbs measure is unique. First, there is no infinite cluster for (i)%c_’2 thanks
to Proposition 4.38. The core of the proof consists in proving that this
property implies that ,ugc is ergodic.
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Claim: the measure ugc 18 ergodic.

Proof of the Claim. Let A and B be two events depending on two sets
of vertices V' and W. We consider the coupling P between u _and gf)
Let « with |z| > 2n. Assume that V and W are included in A We ﬁnd

ugc(AﬁTwB) =P(AnT.B)

= E(P(A N T$B|Fn)1{l—‘” exists})
+ P(An7,Bn{Tl, doesnot exist}),

where I',, is the union of the two outer-most dual-circuits in Ap 2 ~ Ay
and 7, (A2 N Ap) respectively. Since ngmQ(O < 00) =0, the second term
tends to zero as x and then n tend to infinity. The conditional probability
inside the first term is given by

P(An7,.B[ly) = w0, (Aup, x, (B),

where O,, and X,, are the connected component of 0 and z in Z2~\T,,. The
convergence of MfﬁC7On and '“530, x, to ,ufﬁc thus implies that the first term
(and therefore the sum of the two) satisfies

Illim 1, (AnT,B) = piy (A)u (B).
<o

The symmetry of ugc under flips of all spins -1/ + 1 together with its
ergodicity implies

ufﬂc(EI an infinite-cluster of +) = Mfﬂc(EI an infinite-cluster of —) € {0,1}

and therefore both are equal to zero.

Say that two vertices x = (z1,22) and y = (y1,y2) are *-neighbors if
|z1 —y1] £ 1 and |xg —ya| < 1. A x-circuit is a path v, ..., v, = vg such that
v; and v;41 are x-neighbors for every 0 < ¢ < n. Since there is no infinite
cluster, there exists an infinite number of disjoint pluses and minuses *-
circuits surrounding the origin. We can now apply the same strategy as
in the proof of Corollary 4.40. One may for instance use a “conditioning
on the outer-most *-connected circuit of pluses argument” to prove that
,u;;c < “,fBC' Doing the same with minuses, we can prove that ,ufﬂc <pg,- In
conclusion, '“Z'C < pg, and therefore ,uzgc = Hg, (we already mentioned that

M, < Hp,)- O

The classification when 8 > . is more interesting and more difficult.
The space of infinite-volume measures is an interval with two extremal
measures jf and fig.
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Theorem 7.17 (Aizenman, Higuchi [Aiz80, Hig81]). Fiz 8> B.. The set
of Gibbs measures with inverse-temperature [ is given by

{Auh+ (1= Npz:Ae(0,1]}.

Remark 7.18. This result is no longer true in higher dimensions, as shown
by [Dob72] (also see [vB75]). Indeed, consider boxes with + boundary
conditions on the upper half-space and — boundary conditions on the
lower half-space. These boundary conditions imply the existence of a
surface between + and —. In dimensions 3 and higher and at very high
5, this surface does not fluctuate much and it is possible to prove that the
infinite measure constructed by nested sequences of such boxes contains
a hyper-surface passing through the origin with positive probability. This
rules out the possibility of the measure being translationally invariant
in the vertical direction. Since Gibbs measures with + or — boundary
conditions are invariant under translations, this measure is not a linear
combination of them. In 2D, the corresponding construction (+ on the
upper half-plane and — on the lower half-plane) does not lead to the same
contradiction. Indeed, in such case, the interface can be proved to have
Gaussian fluctuations [CIV03]. As a consequence, it passes through the
origin with probability tending to 0 as n tends to infinity.

By studying interfaces in more detail, Coquille and Velenik provided
a new proof of the Aizenman-Higuchi result [CV12]. This result was
extended to so-called Potts models in [CDCIV12] (see the antepenultimate
chapter for a definition of Potts models).

7.5 High and low temperature expansions
and Kramers-Wannier duality

7.5.1 High temperature expansion

The high temperature expansion of the Ising model is a graphical
representation introduced by van der Waerden [vdW41]. It is based on
the following identity (which is true since 0,0, € {-1,+1}):

P29 = cosh(B) + 0,0, sinh(B) = cosh(B) [1 + tanh(B)o,0,].  (7.6)

For A c Vg, let £5(A) be the set of subgraphs w of G such that:
e every vertex v € Vg \ A is the end-point of an even number of edges
of w,

e every vertex v € A is the end-point of an odd number of edges of w.
Note that if |A| is odd, £g(A) is empty. The set E¢(@) =: £ is simply the
set of even subgraphs of G. For w € £5(A), we set |w| for the number of
edges in w.

Recall that 04 = [T e 0x-



188 Hugo Duminil-Copin

Proposition 7.19. Let G be a finite graph, 8 >0, and A c Vg. We find
Z5 o =26l cosh(B)Fel 3 tanh(B) (7.7)
weEG
and

> tanh(B)"!

we€g (A)

> tanh(g)"!

wESG

npaloal = ; (7.8)

Proof. Let us start with the partition function. We know

Zya = > [T &=
oe{-1,1}VG {z,y}eEqg

= cosh(pB)Pe! > [T [1+tanh(B)o,0,]

oe{-1,1}Vc {z,y}eEq

= cosh(p)Fe! > > tanh(3)! [ o0y

oe{-1,1}VG wcEg e={z,y}ew
= cosh(p)/Fe! > tanh(3)! > [T ooy
wcEg oe{-1,1}VG e={z,y}ew

where we used (7.6) in the second equality. Notice that
2|VG| if we 5G
H Og0y = .
oe{-1,1}VG e={z,y}ew 0 otherwise

and the formula for the partition function follows.
Let us now treat the second case. It is sufficient to prove that

> oaePHc(@) - 2Vl cosh ()Pl > tanh ().
oe{-1,1}Vc weEq(A)

The first lines of the computation for the partition function are exactly
the same, and we end up with:

3 o gePHG()
oe{-1,1}Ve

= cosh(3)!P¢! > tanh(3)! oooa J] ow0y

wcEq oe{-1,1}Ve e={z,y}ew

Notice that

2Vel if we Eg(A)
ce{-1,1}Vc  e={zy}ew 0 otherwise

and the formula follows. |



Chapter 7. Two-dimensional Ising model 189

Remark 7.20. The same can be done for any boundary conditions. Let us
mention the case of + boundary conditions. Let § be an additional vertex
not in GG, sometimes called the ghost verter, and connect every vertex of
0G to 0 to obtain the graph Gs. Then,

Z5 G =2Vl cosh(B)Fesl S tanh(B)-!

W€5G5
(beware of the fact that it is 2 to the power V| and not |Vi;|) and

tanh(3)!
. weEgs (A)UEG 5 (Au{d})
o4l = . 7.9
H’ﬁ,G[ A] Z tanh(ﬁ)“”‘ ( )

w€5G5

Note that in the second formula, either Eg, (A) or Eg, (AU {d}) is empty
depending whether |A| is odd or even. This representation using the ghost
vertex is also very useful when working with an external field.

Remark 7.21. Several other representations of the Ising model have been
introduced over the years. For instance, a representation exploiting the
expansion

) k
Bogoy _ (6U$0.y)
€ v = Z k!
k=0

instead of (7.6) was proposed by Aizenman in [Aiz82]. This representation,
called the random current representation, has been used to study the Ising
model above 4 dimensions. It was also the main ingredient in the proof of
[ABF87]. Recently, it was used to prove that the transition of the three
dimensional Ising model is continuous [ADCS13].

7.5.2 The low temperature expansion

The low temperature expansion of the Ising model is a graphical
representation on the dual lattice. The representation consists in drawing
the contours (living on (Z?)*) between clusters of spin 1 and clusters of
spin —1. More precisely, let w(o) € {0,1}Fc* be the family of contours
associated to o defined for every dual-edge e* by
(0o = {1 if oy # 'ay (here e = [zy]),
0  otherwise.

Observe that the construction is bijective®, one may reconstruct the spins
(once we know boundary conditions) from the contour configuration.

3More precisely, it is one-to-one for any boundary conditions 7, but it is two-to-one
for free boundary conditions due to the symmetry +1/ - 1.
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For a contour configuration w, we set |w| for the number of dual-edges
in w (we sometimes speak of the total length of the contours).

The probability of a contour configuration can be easily expressed
in terms of the total lengths of the contours. Indeed, recall that the
probability of a configuration o is proportional to e ##&(?) . Now, Hi(o) =
2n(o) — |Eg|, where n(c) is the number of pairs of neighboring vertices
with different spins. By construction, each edge e whose end-points have
different spins in ¢ is in direct correspondence with an edge e* in w(o), thus
n(o) = |w(o)|. In conclusion, the probability of a contour configuration w
is simply proportional to 281,

Ezample 1 (+ boundary conditions). In this case, the contours use edges of
G* only, where here the dual graph contains dual vertices corresponding to
faces of Z? adjacent to G (for discrete domains, this definition corresponds
to the definition of the dual graph introduced in Chapter 3). Furthermore,
a family of contours is an even subgraph of G*. Let Eg+ be the set of even
subgraphs of G*. We obtain easily

7% = BlEax| Z -2B|w| d L alo) = 76_%'0)(0)' (7.10)
B8,G = € & ar /’(‘ﬁ,G g)= 28w .
weEgx Z €
weEgx

Ezample 2 (Dobrushin boundary conditions). Assume that spins are —1 on
0-, and +1 on 9, (recall the definition of d_ and 9, from the beginning of
this chapter). Then, families of contours are composed of loops together
with one interface running between the two edges of (Z?)* separating 0_
from O,. If one adds the two endpoints denoted u and v of these two edges,
we simply obtain that the set of families of contours is Eg+yqu,vy ({1, v}),
where the notation extends the notation of the previous section to the dual
lattice. Furthermore,

=2BJw (o)
obpr €
Mg,g (U) = e,2ﬁ|w| (711)

we€gxyu,vy ({u,0})

and

Z3°5" = ePlFe] 3 (728 )"“‘ . (7.12)
we€gxy(u, vy ({usv})

Ezample 3. For general boundary conditions, the contours live on the
edges of G*, with possibly additional dual-edges of (Z?)* corresponding
to edges where the boundary conditions switch from 1 to —1 or vice-versa.
In other words, the contours leave on {e* :e € Egua.c}-

Remark 7.22. We are now in a position to expose the Kramers-Wannier
argumentation [KW4la, KW41b]. It is based on the fact that the high
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and low temperature expansions are clearly related to each other, with the
drawback that they live on different graphs.

If 3* is set to satisfy tanh(5*) = €728, then for every graph G, (7.7) and
(7.10) give that

2lVe+l cosh(g*) Fe |Z;§’G = eB‘EélZE*’G* . (7.13)

Physicists expect that the critical point corresponds exactly to the unique
point for which the so-called free energy is not analytic in 8. The free
energy is defined by the formula

1
VA,

n

. 1
log[Z5 4, ] = lim. V| log[Zf ., ]-

£(8) = lim

The fact that f is well-defined follows from the same sub-multiplicative
arguments as in the proof of Lemma 4.31 and the fact that the two limits
are equal is due to the fact that for

ZE,A(U)

Zf

o~ 2B10An] ¢
5.4, (9)

< (2810

(only interactions on the boundary change).
Now, (7.13) and |Ep: |~ 2|V4,, | imply that

F(8%) =f(B) +1log2 + 2logcosh(8*) - 2.

If 57 + ., there would be at least two such singularities at 5. and 8. Thus,
B. should be equal to 5, which implies S. = %ln(l +1/2). Of course, the
mathematical justification that there exists a unique singularity requires
some work (which was absent from the original work in [KW41a, KW41b]).

7.5.3 Peierls argument

Since we are almost there anyway, let us mention Peierls argument,
which rigorously proves that . € (0,00). It harnesses the low and
high temperature expansions and is of great historical significance.
Interestingly, this argument has been generalized to many models,
including the random-cluster model. In particular, the (omitted) direct
proof that the critical value of the random-cluster model p.(q) is not equal
to 0 or 1 (Theorem 4.34) follows a similar argument.

Proposition 7.23 (Peierls argument [Pei36]). The critical inverse
temperature 3. on the square lattice is strictly positive and finite.
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Proof. Let us prove that 3, is finite. We wish to estimate 1§ ;[o0] when
B is very large. Since

ps.gloo] =1-2up gloo = 1],

it is sufficient to show that uj g[oo = ~1] < 1/2 uniformly in the graph
G. The observation is that {og = —1} is included in the event that there
exists a circuit in the low-temperature expansion surrounding 0. Thus,
if £L5+ denotes the subset of configurations in g« containing one self-
avoiding loop surrounding 0 and Lg+ the set of self-avoiding circuits on
G™ surrounding 0, the low-temperature expansion gives that

D e 2Bl

weEL gx _ & B
:UE,G[UO = —1] < Gi_wlwl < Z e 2Bl < Z n4n€ 28n < 1/2
Z € yeL gx n=1
weE gx

for B large enough. We used the fact that, when removing a prescribed
loop, the weighted sum over all possible even graphs avoiding this loop is
smaller than the one without this constraint and therefore

D efzﬁlwlg( > eﬂﬁlv\)( 3 67213|w|)

weEL g« YeL gx weEgx

and in the third inequality the fact that the number of paths of length n
surrounding the origin is smaller than n4".

The inequality 0 < B, can be obtained using the high-temperature
expansion instead of the low-temperature one. Indeed, the second formula
of (7.9) applied to A = {0} implies that

> tanh(8)!

£c,({0,6 S
weEa,s ({0,6}) o< 3 tanh(B8)! < Z [4tanh(B)]"
> tanh(B) YeSAW (0,6) n=d

UJEEGa

ME,G[UOJ =

where d is the distance from the origin to G and SAW(0,0) is the set
of self-avoiding walks on G from the origin to the ghost vertex §. When
B is small enough, this last term decays exponentially fast as d tends to
infinity and the proof is finished.

Note that we used a reasoning similar to what is above: any
configuration in £g,({0,0}) is the union of a self-avoiding walk from the
origin to 6 plus an even subgraph in £g,, and when removing the walk, the
weighted sum over all possible even graphs avoiding this walk is smaller
than without this constraint. Altogether, this justifies that indeed
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Y tanh(®)<( Y tann(®))( 3 tanh(s)+).

wea;({0,6}) ~YeSAW(0,5) weEays

Remark 7.24. Observe that we used the low-temperature expansion to
prove that ,ug(ao) > 0 for low temperatures, and the high-temperature
to prove that ME(UO) = 0 for high temperatures. This justifies the
denomination of low and high temperature expansions, even though these
expansions may be used for any inverse-temperature (for instance we will
use this fact at criticality in the following section).

7.5.4 Spin fermionic observable in discrete domains
with two marked points

Let Q° be a medial discrete domain and let ©® and v° be two medial-
vertices of Q°. Let Qu {u®,v°} be the graph obtained from the primal
graph Q by adding the vertices ©® and v°® and replacing the original edges
passing through these medial-vertices by mid-edges emanating from w°
and v°; see Fig. 7.1. Define the following subset of configurations on this
new graph:

gQ(uov 'UQ) = gQU{u%W}({uO}A{UQ})a

where A denotes the symmetric difference. While the definition of
Ea(u®,v°) involves the graph Q U {u®,v°}, we will use the vocabulary
of the original graph ) by saying that the edges incident to «® and v°® are
half-edges.

Remark 7.25. The configurations in gg(u°7v°) can be expressed fairly
simply in terms of the high temperature expansion on 2. They contain two
half-edges (possibly joining to make a full edge if u® = v°) that one may
remove to obtain configurations entering into the framework of the high-
temperature expansion. In particular, the configurations are composed of
edge-avoiding loops together with a non-self-crossing path from u® to v°.

Let |w| be the total length of a configuration w € Eq(u®,v®). It is equal
to the number of edges in the configuration when removing the two half-
edges starting from «® and v°® plus 1. In other words, it is simply the total
length of the contours (since half-edges count for 1/2 instead of 1).

The winding Wr(u®,v°) of a curve I' between two medial vertices u°
and v°® of the medial graph is the total signed rotation in radians that
the curve makes from u°® to v®. With these notations, we can define the
spin-Ising fermionic observable.
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Figure 7.1: An example of a collection of contours in Eqe (u®,v°) on a
simply connected domain.

Definition 7.26 (Smirnov [Smi06]). Let ©° be a discrete domain and let
u® and v° be two distinct medial vertices on 9€2°. The spin-Ising fermionic
observable at a third medial vertex z° is defined by

S e M@ (gl
weEq (u®,2°)

Z e % v(w)(uo»vo)(\/ﬁ_ 1)IWI7

we€q (u®,v°)

FQoyuo;Uo (Zo) =

where y(w) is any non-self-crossing path in w going from «° to z° (or from
u® to v°).

Remark 7.27. While there may be several choices for the path v(w),
the quantity e~ 3 Wa@ (") does not depend on the choice of a non-self-
crossing path.

Remark 7.28. Fermionic observables in the Ising model are older than
parafermionic observables for the random-cluster model. They essentially
go back to Kaufman-Onsager. They also appeared in several works
from Sato, Miwa, Jimbo [SMJ78, SMJ79a, SMJ79b, SMJ79¢c, SMJ&0].
Nevertheless, the study of Boundary Value Problem, which will eventually
lead to conformal invariance, was only performed recently by Smirnov, see
Chapter 9.
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Remark 7.29. Since the weights of edges are critical (recall that V2-1-=
e~28), the Kramers-Wannier duality has a enlightening interpretation
here. The high-temperature expansion can be thought of as the low-
temperature expansion of an Ising model on the dual graph with specific
boundary conditions. Let us expand on this. Assume for a moment
that «® and v°® are on the boundary of 2° and extend configurations in
Ea(u®,v°) by adding the two missing half-edges adjacent to u® and v°
(they are connecting u® and v°® to the end-points u and v of the primal
edges associated to them that are not in ). Applying Kramers-Wannier
duality, the denominator thus corresponds exactly to the low-temperature
expansion of an Ising model on the dual graph with Dobrushin boundary
conditions. This will be crucial in order to connect the behavior of the
spin fermionic observable to the geometry of interfaces (see Fig. 7.2).

Remark 7.30. Let us mention that the numerator of the observable has
also an interpretation using directly the high-temperature expansion. In
fact, it can be shown that it corresponds to the high-temperature expansion
of the partition function of an Ising model with a disorder operator at z°.
More precisely, this operator introduces a monodromy at z°: every time
one turns around z°, the spins are reversed. Equivalently, it boils down
to reversing the correlation constants J to —J along an arbitrary simple
curve from z° to the boundary of the domain.
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Figure 7.2: The Ising configuration on 2* corresponding to configurations
in Eo(u®,v®). We also depicted the vertices u and v.



Chapter 8

Discrete complex analysis
on graphs

Complex analysis is the study of harmonic and holomorphic functions
in complex domains. In this chapter, we shall discuss how to discretize
harmonic and holomorphic functions, and what are the properties of these
discretizations (it is inspired by [DCS12al).

Since we are aiming at a description of discrete structures that converge
to continuum ones, we will work with discrete approximations of the square
lattice. We use the notations and terminology introduced in Chapter 3.
In particular, Q, Q* and ° always denote discrete domains or Dobrushin
domains except otherwise mentioned. Since we discuss complex analysis,
we will also work with complex coordinates and variables.

This presentation of discrete holomorphicity will be somewhat
biased: it will mostly focus on the relation between discrete
harmonicity /holomorphic maps and discrete Boundary Value Problems
(BVPs). Let us explain the reasons behind this deliberate choice. In
Chapter 6, we saw that parafermionic observables possess properties that
are shared by holomorphic maps. Furthermore, the boundary conditions
of these parafermionic observables suggest that their scaling limit is the
solution of Riemann-Hilbert BV Ps:

f is holomorphic on 2, continuous on Q, and Im(fv?) =0 on 912,

where v is the tangent vector on the boundary. For general values of
q, proving that the parafermionic observables converge in the scaling
limit seems to be an Herculean task. Nevertheless, discrete complex
analysis offers us a framework and a strategy to justify such a convergence:
if a parafermionic observable could be proved to be the solution of a
relevant discretization of a Riemann-Hilbert BVP, then its convergence

196
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in the scaling limit could follow from abstract results on so-called discrete
harmonic/holomorphic maps. This fact alone is a compelling motivation
for studying discrete complex analysis from the point of view of BVPs.

We will start with a discussion of discrete harmonic functions and their
relation to the Dirichlet problem, which is the easiest discrete BVP to make
sense of and to solve. Then, we will define discrete holomorphic functions.
We will study these objects very succinctly for the following reason: the
notion of discrete holomorphicity will not be strong enough to enable us
to study discrete Riemann-Hilbert BVPs. We will therefore quickly move
to a notion of discrete holomorphicity introduced by Smirnov, called s-
holomorphicity, which enables us to treat a special case of Riemann-Hilbert
BVP.

This chapter must be understood as a toolbox for what will follow. In
the next chapter, we will show that the strategy outlined above works in
a special case : the fermionic observable (for ¢ = 2 random-cluster model
or for the Ising model) will be proved to be s-holomorphic and the theory
developed in this chapter will be harnessed to prove convergence of these
two observables in the scaling limit.

In this chapter, we identify a graph and its set of vertices (for instance
Qs will mean Vo ).

8.1 Discrete harmonic functions and discrete
Dirichlet BVP

We refer to [Law05] for a deeper or more broader study on discrete
harmonic functions and their link to random walks.

8.1.1 Definition and connection with random walks

In this section, €25 denotes a discrete domain or a Dobrushin domain.
Consider the operator As defined as follows. For f: Qs - R and z in
Qs \ 0Qg, set

Asf() = D [fw) - F@)]

y~x

Definition 8.1. A function h: Qs — R is discrete harmonic (resp. discrete
superharmonic, discrete subharmonic) at x if Ash(z) =0 (resp. <0, >0).
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8.1.2 The discrete Dirichlet BVP for harmonic
functions

For a function g : 095 — C, a (harmonic) solution of the Dirichlet
Boundary Value Problem on s with boundary conditions g is given by
a function h : 5 — C which is discrete harmonic on Q4 \ 9Qs and equal to
g on 0%)s.

Theorem 8.2. Consider a discrete domain Q5 and a function g : 0Qs — R.
There exists a unique solution to the discrete Dirichlet BVP on Qs with
boundary conditions g.

In order to prove this theorem, we will need the two following important
facts.

Lemma 8.3 (maximum principle). Let h: Qs — R be discrete harmonic
on Qs N\ 00s. Then,

max{h(z):x € Qs} =max{h(z) : z € INs}.

Proof. Let m=max{h(z):2eQs} and let U ={x e Qs: f(x) =m}. Let
2 eUN0Qs. Then m = h(zx) = i ¥~z M(y) and therefore h(y) = m for any
neighbor y of x. This observation implies that U n 995 # @, which is the
claim. O

Consider the simple random walk (X,,) on 6Z2, i.e. the Markov process
on vertices defined by jumping at each time step on one of the nearest
neighbors with equal probability. For a graph s, let 7 be the hitting time
of 895.

Lemma 8.4 (connection with random walks). A function h: Qs - R is
discrete harmonic on Qs 0Q;s if and only if for any x € Q5N 0Qs, hM(Xyar)
s a martingale for the simple random walk starting from x.

Proof. Let x € Qs 095 and (X,,) be the simple random walk starting
from z, then E[h(X1)] = h(z) is equivalent to Ash(xz) = 0. This implies
the claim readily. O

Proof of Theorem 8.2. Let us start with the uniqueness. Consider
two solutions hy; and ho of the BVP. Then, h; — hy is a solution of
a discrete Dirichlet BVP with boundary conditions 0. The maximum
principle applied to hy — he and ho — h; implies that hy = hg. Let us
now turn to the existence. Consider the function

f(.%‘) = Ew[g(XT)]a
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where under E,, (X,,) is a simple random walk starting at x, and 7 is
still the hitting time of 9)s. By definition, this function is equal to g on
the boundary. Since it can easily be seen to be harmonic on Qs \ 95, we
obtain a solution. O

Ezxample 1. A discrete harmonic function is the solution of the Dirichlet
BVP Wlth g= f‘aﬂé .

Ezxample 2. The discrete harmonic measure of y € 9)s is the solution of
the Dirichlet BVP with g(x) = 1 if z = y and 0 otherwise. Equivalently,
Hq,(z,y) is the probability that a simple random walk starting from z
reaches 0€)s at y.

Let us mention the following formula involving the discrete harmonic
measure.

Proposition 8.5. For any function h: Qs - R harmonic on Qs \ 095,

ho= % hy)Ha,(y).
yedQs

Proof. Note that

h— Z h(y)Hﬂa ('7 y)

yeBQ(;

is harmonic in Qs \ 9€Qs. Since it vanishes on 925, the uniqueness of the
Dirichlet BVP implies that it is equal to 0 everywhere, hence the claim. O

8.1.3 Derivative estimates and compactness criteria

For general functions, a control on the gradient provides regularity
estimates on the function itself. It is a well-known fact that harmonic
functions satisfy the reverse property: controlling the function allows us
to control the gradient. The following lemma shows that the same is true
for discrete harmonic functions. Recall that d(z, F) = inf{|z — y|,y € F'}.

Proposition 8.6. There exists C'> 0 such that, for any discrete harmonic
function h: Qs - R and any two neighboring vertices x and y in Qs,

sup{|h(z)|: z € Qg}.

@) =kl < 8 = 7oy

(8.1)



200 Hugo Duminil-Copin

Proof. Let z,y € Q5 Let 2r = d(x,6Z*> ~ Qs) > 0, so that
Us = (z + [-r,7]?) n §Z? is included in 5. Lemma 8.4 implies that for
any two neighboring vertices x and y of (s,

h(x) - h(y) = E[h(X,) - h(Y;)], (8.2)

where (X,,) and (Y,,) are two simple random walks starting respectively
at  and y, and 7 and 7’ are the hitting times of OUs. Note that we have
some flexibility on the choice of the coupling P (only the marginals are
determined). Consider the following coupling of (X,,) and (¥,): (X,) is
a simple random walk and (Y},) is constructed as follows,

e if X7 =y, then Y,, = X,,;; for n>0,

e if X7 #y, then Y,, = 0(X,,41), where o is the orthogonal symmetry
with respect to the perpendicular bisector ¢ of the segment [X;y]
until X, .1 reaches £. As soon as it does, set Y, = X, .1 for all
subsequent steps.

It is easy to check that (Y;,) is also a simple random walk starting at y.
Moreover, we have

1) = h)] < BJIRC) = (Yo )lLx ey, ] <2( sup h(2)]) P(X, = Y:)

Using the definition of the coupling, the probability on the right is known:
it is equal to the probability that (X,,) does not touch ¢ before exiting Us.
Since Uy is of radius r/§ for the graph distance, the gambler ruin implies
that the probability on the right-hand side is smaller than <*§ (with ¢; < oo
being a universal constant independent of ¢). We deduce that

) -] <2 sup 10) 26 < 2(sup (2]) o
2€0Us T 2€Qs r
O

The following proposition will be very useful. Recall that functions on
Qs are implicitly extended to the faces of {25 (we denote the union of faces
by ﬁ(;)

Proposition 8.7. A family (hs)sso of discrete harmonic functions on the
graphs Qs is precompact for the uniform topology on compact subsets of Q)
if one of the following properties holds:

(1) (hs)sso is uniformly bounded on any compact subset of €2,

(2) for any compact subset K of Q, there exists M = M(K) > 0 such
that for any § >0

6> Y |hs(z)? < M.
zeKs

The first condition corresponds to be bounded in the L°-norm, the

second in the L2-norm.
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Proof. Let us prove that the proposition holds under the first hypothesis
and then that the second hypothesis implies the first one. Let K be a
compact subset of 2. We now assume that dp > 0 is such that K c Q.
We are faced with a family of continuous maps hs : K — C indexed by
d < dg. Let 2r =d(K,Q°) > 0.

Condition (1) We aim to apply the Arzela-Ascoli theorem. It is sufficient to
prove that functions hs are uniformly Lipschitz since by assumption they
are uniformly bounded on any compact subset of 2 and therefore on K.
Proposition 8.6 (or more precisely the before last displayed inequality in
its proof) shows that |hs(z)-hs(y)| < Ckd for any two neighbors z,y € K,
where

supso sup {|hs(2)|: 2z € Q5 with d(z, K) <r}
2r ’

implying that |hs(z) - hs(y)| € 20k |z —y| for any x,y € K5 (not necessarily
neighbors). The Arzeld-Ascoli theorem concludes the proof.

Ck = C

Condition (2) Assume now that the second hypothesis holds, and let us
prove that (hs)sso is bounded on K. Consider x € K. Now,

T . T r
%mln{(SQ Y s k<t <0 Y |he(w)P,
yedA? yeUs

where Ai = x + dAy is the rescaled version of the box of size k centered

around x. Using the second hypothesis, the right-hand side is bounded

and there exists k := k(z) such that 5z <k <% and

d Z |h5(y)|2 < 2M/7”‘7
yedA?

where M < oo is provided by the assumption. Proposition 8.5 implies

hs(x) = 3 hs(y)Hps (2,y) (8.3)
yeaAi

for every z € Us. Using the Cauchy-Schwarz inequality, we find
2

> ha(y)HAg (z,y)
ye@Ai

hs(x)?

IN

1
5% IWE || 5 X Haglew?| < 2mpr-c2
yE@A‘; yEBAi

where C' is a uniform constant. The last inequality used the fact that
Hys (z,y) < C4 for some C = C(r) >0, which is a very easy estimate that

one may obtain using random walks®. O

10Observe that the harmonic measure is smaller than the harmonic measure in the
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8.1.4 Convergence to the continuum Dirichlet BVP

Discrete harmonic functions on square lattices of smaller and smaller mesh
size were studied in a number of papers in the early twentieth century (see
e.g. [PW23, Bou26, Lus26]), culminating in the seminal work of Courant,
Friedrichs and Lewy [CFL28]. In this article, solutions to the Dirichlet
problem for a discretization of an elliptic operator were shown to converge
to the solution of the analogous continuous problem as the mesh of the
lattice tends to zero. We discuss this result here.

Let us now turn to the convergence result of [CFL28]. We start by a
lemma.

Lemma 8.8. Let Q be a domain of the plane and (05) be a sequence
of discrete approzimation converging in the Carathéodory sense to €.
Let (hs)sso be a family of discrete harmonic functions on Qs converging
uniformly on any compact subset of Q2 to a function h. Then, h is harmonic
in Q.

Proof. Let (hs) be a sequence of discrete harmonic functions on Qs
converging to h. Via Propositions 8.6 and 8.7, (3[hs(- + &) — hs])s>0
is precompact and we may extract sub-sequential limits. Note that the
limiting object is continuous. Since J,h is the only possible sub-sequential
limit?, (%[h5(~+6)—h5])5>0 converges. Similarly, one can prove convergence
of discrete derivatives of any order. In particular, %Agh(s converges to
[Ozzh + Oyyh] = Ah. Since the first term is equal to 0, the second also
vanishes and h is harmonic. O

We state the result of [CFL28] in the specific context that will be
useful in this book. Namely, we consider a Dirichlet BVP with possible
singularities at two points on the boundary of a simply connected domain.

Theorem 8.9. Let Q) be a discrete domain with two points a and b on
its boundary. Let f be a bounded continuous function on O \ {a,b}.
We consider a sequence of Dobrushin domains (Qs,as,bs) converging to
(Q,a,b) in the Carathéodory sense. Let fs : 0Qs — R be a sequence
of uniformly bounded functions converging uniformly away from a and b

strip [0k, dk] x (6Z). Now in this strip, one may check that the probability of hitting
the top side at y is equal to the probability that X = y for a simple random walk
X in 6Z, where N is the sum of M iid geometric random variables of mean 1/2,
where M is distributed as the first hitting time of {-k, k} for an independent random
walk on Z. Tt is well-known that M/k? tends to the random-variable with density
F@) = \/%t’?’/z exp(-1/t?), and the result thus follows easily from the local central-
limit theorem. The details are left as an exercise.
2To see that, integrate it between z and z + (g,0) and let € tend to 0.
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to f. Let hs be the unique discrete harmonic function on Qs such that
(h§)\895 = fg. Then

hs — h when 6 - 0

uniformly on compact subsets of Q, where h: Q~ {a,b} - R is the unique
continuous function which is harmonic on Q and equal to f on OQ\ {a,b}.

Proof. Since (f5)s-0 is uniformly bounded by some constant M, the
minimum and maximum principles imply that (hs)sso is bounded by M.
Therefore, the family (%) is precompact (Proposition 8.7). Let & be a sub-
sequential limit. Necessarily, h is harmonic inside the domain (Lemma 8.8)
and bounded. To prove that h = h, it suffices to show that h can be
continuously extended to the boundary by f.

Let z € 90~ {a,b} and € > 0. There exists R > 0 such that for § small
enough,

|[fs(2") = fs(x)| <e for every 2’ € 805 n Q(x, R),
where Q(z,R) =z + [-R, R]?. For r < R and y € Q(z,7), we have
lhs(y) - f5(@)| = E[fs(X7) - fs(z)]

for X a random walk starting at ¢, and 7 its hitting time of the boundary.
Decomposing between walks exiting the domain inside Q(x, R) and others,
we find

|h(5(y) - fg(ﬂf)| e+ 2MP[XT ¢ Q(I7R)]

Lemma 8.10 below guarantees that P[X, ¢ Q(z,R)] < (r/R)“ for some
independent constant « > 0. Taking r = R(€/2M)1/°‘ and letting 6 go to
0, we obtain |h(y) — f(x)| < 2¢ for every y € Q(x,r). i

Lemma 8.10 (weak Beurling’s estimate). There exists o > 0 such that for
any 0 <7< % and any curve 7 inside D := {z : 2| < 1} from {z:|z| =1} to
{z:|z] = r}, the probability that a random walk on Ds starting at 0 exits
Ds without crossing 7y is smaller than r® uniformly in § > 0.

Proof. There exists ¢ > 0 such that for any annulus A, := {z: 2 < |2| <
2z}, with r <z < %, the random walk trajectory has a probability larger
than ¢ > 0 of closing a loop around the origin while crossing this annulus.
In this case, the trajectory necessarily intersects 7. Since the random walk
trajectory must cross roughly log, 7 annuli of the form As-», and that at
each step it has a probability at least ¢ > 0 of closing a circuit, the result
follows with « = —logy[1 - ¢]. i
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8.1.5 Discrete Green functions

This paragraph concludes the section by mentioning the important
example of discrete Green functions. While slightly technical, the following
propositions will be useful to the study of s-holomorphic maps. The proof
may be skipped during a first reading.

For y € Q5 \ 0Qs, let Ga,(-,y) be the discrete Green function in the
domain s with singularity at y, i.e. the unique function on 2s such that
e its Laplacian on Qs \ €5 equals 0 except at y, where it equals 1,

e Gq,(-,y) vanishes on the boundary 0€s.
The quantity —Gg, (z,y) is the expected number of visits at x of a random
walk started at y and stopped at the first time it reaches the boundary.
Equivalently, it is also the number of visits at y of a random walk started
at x stopped at the first time it reaches the boundary.
Green functions are very convenient, in particular because of the Riesz
representation formula.

Proposition 8.11 (Riesz representation formula). Let f : Q5 - C be a
(non-necessarily harmonic) function vanishing on 9Qs. We have

f= 2 Asf)Ga,(.y).

yeQs\0Qs

Proof. Note that f - ¥, co, 00, Asf(¥)Ga,(y) is harmonic and
vanishes on the boundary. Hence, it equals 0 everywhere. O

Finally, a regularity estimate on discrete Green functions will be needed.
This proposition is slightly technical. In the following, aQs = [~a,a]?>nJdZ>

and Vf(z) = (f(z+0) - f(2), f(z +id) - f(x)).

Proposition 8.12. There exists C' > 0 such that for any § >0 and y € 9Qs,

Z |va9Q5(may)| < 06 Z G9Q§(m7y)'
TeQs zeQs

Proof. In the proof, Cq,...,Cs denote universal constants. We divide
the proof into two cases depending whether y € 9Qs \ 3Qs or y € 3Qs.

Case 1: y € 9Qs ~ 3Qs. Using random walks, one can easily show that
there exists C7 > 0 such that

1

C, GQQa (l‘, y) < GQQ& (xlv y) < CngQé (xa y)
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for every z, 2" € 2Qs (we leave this as an exercise®). Using Proposition 8.6,
we deduce

Z IV2Gog, (z,y)| < Z C20 max Gog, (z,y) < C1C26 Z Gog, (z,y)
z€Qs zeQs 2€2Qs zeQs

which is the claim for y € 9Qs \ 3Qs.

Case 2: y€3Qs. We know that the random walk spends an expected time
of C3/6% in the box 3Qs before exiting it. Using the fact that Gog, (x,y)
is the number of visits of = for a random walk starting at y (and stopped
on the boundary) and summing over x, we deduce

> Gogy(z,y) 2 Cs/5%.
zeQs

Therefore, it suffices to prove that Y ,.o, |[VGoq,(x,y)| < Cufd. Let
Gsz2(x,+) be the Green function in the whole plane, i.e. the function
with Laplacian equal to 1 for y = x and 0 otherwise, normalized so that
Gszz2(x,x) = 0, and with sub-linear growth at infinity. This function has
been widely studied. In particular, it was proved in [MW40] that

1 - 0
GéZ2(IIf7y):WIH(|$5y|)+C5+O(|x_y|).

Now, Gsz2 (-, y)-Gog, (-, y) —% In (%) is harmonic in 9Q)5. Furthermore, the
boundary conditions (on 09Qs) on both Gy, (-, ) and Gszz2 (-, y)— % In (%)

3This is a special application of the discrete Harnack’s principle. Let us sketch a
proof of this fact based on the random walk itself. Set 2 < XA < 3. Let Hs be the union
of the top and bottom sides of AQs. Similarly, define Vs to be the union of the left and
right sides of AQs. Also, denote by S the rectangle with same height as AQ and same
width as 3Q, which has the same center as Q. Recall that since Ggq; (-, ) is harmonic
on A\Qjs, we get

Gog, (m,y) = > Gog,(2,y)Hag, (@, 2).
zeHg

Without loss of generality, one may assume that L := Y evs Gogs(z,y) 2
Yser; Goqy (2,y). Now, we previously showed that Hyg; (@, 2) < Cd and therefore

Goqgs(z,y) < Co Z Goq;(2,y) <2C6L.
2ed(AQs)

In the other direction, use the harmonicity in S5. Since Gog;(2,¥) is positive for every
z, we find that
G9Q5 (ﬁ?,y) 2 Z G9Q5 (z7y)H55 (CL’,Z).
zeHs

A simple computation involving random walks (similar to the argument leading to
Hyxq;(z,2) < Cd) shows that there exists ¢ > 0 such that for any = € 2Qs and any
z € Hs, Hgy(x,2) 2 ¢d. We deduce that Gog,(x,y) = cdL. In conclusion, we always
have cdL < Ggq, (x,y) < COL and the claim follows with C1 = C/c.
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are bounded (the first one is 0, the second is tending to C5 as J tends to
0). Therefore, Proposition 8.6 implies

Z |VI(G622(xay)_G9Q5('r,y))| < C’651/62 = C’6/6
zeQs

(We used the fact that the gradients in = of Gszz(z,y) — Gog, (z,y) and
Gszz (2, y) — Gog, (x,y) — %log(%) are obviously the same.) Moreover, the
asymptotic of Gsz2(-,y) leads to

> [VaGoz (x,y)| < C7/6.
zeQs

Summing the two inequalities, the result follows readily. O

8.2 Discrete holomorphic functions

Historically, discrete holomorphic functions appeared implicitly in
Kirchhoff’s work [Kir47] in which a graph is modeled as an electric network.
Besides the original work of Kirchhoff, one of the first notable applications
of discrete holomorphic functions is perhaps the famous article [BSST40]
of Brooks, Smith, Stone and Tutte, where discrete holomorphic functions
were used to construct tilings of rectangles by squares. We now define
discrete holomorphic functions in a more modern fashion.

8.2.1 Isaacs’s definition of discrete holomorphic
functions

Discrete holomorphic functions distinctively appeared for the first time in
the papers [Isadl, Isa52] of Isaacs, where he proposed two definitions®.
Both definitions ask for a discrete version of the Cauchy-Riemann
equations 0;o F' = 10, F or equivalently that the zZ-derivative is 0. We will
be working with Isaacs’s second definition (although the theories based
on both definitions are almost the same). The definition involves the
following discretization of the 9 = %(aw +10,) operator. For convenience,
we will consider discrete holomorphic functions on the medial lattice
(more precisely on the medial lattice of a discrete domain or a Dobrushin
domain). For a complex valued function f on Qf, and for « € Qs U Qj,
define

0 f(x) = [fE)-FW)] + 5[F(N)-F(9)]

4Isaacs called such functions “mono-diffric” functions.
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where S, E, N and W denote the four vertices of Q0§ adjacent to the medial
vertex z indexed in the obvious way (N, E, S and W stand for cardinal
directions).

Definition 8.13. A function f : Qf — C is discrete holomorphic if
O0sf(z) = 0 for every z € Q5 U Q5. The equation Jsf(z) = 0 is called
the discrete Cauchy-Riemann equation at x.

Remark 8.14. In Kirchhoff’s work, every edge of the graph {25 is seen as
bearing a unit resistor and for u ~ v, F(u,v) is the current from u to v.
The first and the second Kirchhoff’s laws of electricity can be restated as

e the sum of currents flowing from a vertex is zero ¥,.,, F'(u,v) =0,
e the sum of the currents around a closed contour g ~ 1 ~ +++ ~vx = Yo
is zero: Zle F(vi-1,7v:) =0.

For a second, let us consider an orientation of the lattice §Z2 isomorphic
to the one of the medial lattice (namely counterclockwise around black
faces when 072 is colored in a chessboard way). For a medial vertex x
associated to an oriented edge e, define f(z) = eF(e), where e is seen as a
complex number. The function f is then discrete holomorphic on €.

The theory of discrete holomorphic functions starts pretty much like the
usual complex analysis.

Proposition 8.15. Discrete holomorphic functions f,g: Q5 - C satisfy
the following properties:

o \f + g is discrete holomorphic for any X\, u € C.

e Re(f) and Im(f) are harmonic functions for the appropriate
modification of the discrete Laplacian.

e Discrete contour integrals vanish.

e If the family (fs) of discrete holomorphic functions on Qs converge
uniformly on every compact subset of Q) to f, then f is holomorphic.

Proof. The first claim is obvious. Let us now turn to the second. Let
v € Q5. Let nw, ne, se and sw be the four nearest neighbors of v in
(6Z2)° and n, e, s and w the next nearest neighbors at distance & of v
(the previous indexation refers once again to cardinal directions). Assume
that these eight medial vertices are in 3. Then, the Cauchy-Riemann
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equation applied to the four faces bordered by v gives that
Af)s= (£ - 1) + 1) = F@1+ L) - 1))+ [ () - F(0)])

= i(f(ne) - f(n’UJ) + [f(se) - f(ne)] + [f(sw) _ f(se)]

+[f(nw) - f(sw)])
=0.

Therefore, f is A-harmonic (the operator A is a modified Laplacian on
Q3).

For the third property, we first recall the definition of discrete contours
and discrete observables. It is slightly different from the definition in
Section 6.1.3 since we are dealing with functions on vertices rather than
edges. Let C be a self-avoiding polygon zg ~ 21 ~ -+ ~ 2z, = 29 on €5 (or
Q). We then define

51% f(2)dz = Ef('%gzlﬂ)(zwl - 2i). (8.4)

Observe that there are two types of contours (primal and dual). The
Cauchy-Riemann equation Jsf(z) can be thought of as the fact that the
integral along the discrete contour formed by the four medial vertices
around the face = equals 0. Exactly as in Chapter 6, the fact that Qf
is simply connected implies that any discrete contour vanishes. The last
property is a trivial application of Morera theorem: f is continuous and
its contour integrals vanish. O

Remark 8.16. We only need the Cauchy-Riemann equations for every
x € 5 to obtain that the integrals along dual discrete contours vanish, or
for every x € Q5 to obtain this result for primal discrete contours.

Remark 8.17. Unfortunately, the product of two discrete holomorphic
functions is no longer discrete holomorphic in general: while restrictions
of 1, z, and 2% to the square lattice are discrete holomorphic, the higher
powers are not. This makes the theory of discrete holomorphic functions
significantly harder than the usual complex analysis, since one cannot
transpose proofs from continuum to discrete in a straightforward way.

8.2.2 Discrete Dirichlet and Neumann BVP for
discrete holomorphic maps

In this section, we prefer working with Qs U Q} instead of (6Z%)°. Note
that §Z2U(8Z2)* is a translate of (6Z2)° and therefore one may generalize
the definition of discrete holomorphicity to this graph in an obvious way.
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A function f: Qs uQj - C is a (discrete holomorphic) solution to the
Dirichlet BVP on 25 u QF with boundary conditions g : 9§2s - C if f
is discrete holomorphic and f = g on 0€)5. Note that we fix boundary
conditions on 9{25 only.

Proposition 8.18. Let Qs be a discrete domain. For any g : 0Qs5 - C,
there exists a solution f to the Dirichlet BVP on Qs u 5. Furthermore,
the solution is unique up to the addition of a constant to f‘Q;,

Proof. Let Hqi, Hs : Q5 —> R be the harmonic maps on Qs \ 95 which
are the harmonic solutions of the Dirichlet BVP with boundary condition
Re(g) and Im(g). We set fio, = Hi +iHy. Let v € Qf and ¢ € C°. Set
f(v) = ¢. For w ~ v, there is one value A so that the Cauchy-Riemann
equation is satisfied around % (v +w). We set f(w) = A. Iterating this
procedure, one can construct f on any dual-vertex of €25 which can be
connected by a sequence of dual edges to v. Since €15 is a discrete domain,
(25 is connected and we therefore constructed flﬂg everywhere. O

Remark 8.19. When g is real valued, fio, takes its values in R.
Furthermore, if ¢ € iR, then f‘Qg takes its values in iR. In such cases, fio;
and f‘Q; are discrete versions of two harmonic conjugates in the continuum.
For this reason, we will often restrict our attention to boundary conditions
g which are real valued. More generally, discrete holomorphic maps are
often decomposed into their real and imaginary parts, leaving respectively
on s and Q5.

Remark 8.20. Interestingly, when boundary conditions are constant on a
portion of 0€2s, then the “dual boundary conditions” on 0§25 are Neumann,
in the sense that the discrete normal derivative of the function on 5 is
zero. This duality between Dirichlet and Neumann BVP is very useful in
the continuum, and can be exploited in the discrete world as well. We will
not focus on this here, since we aim for the solution of more complicated
BVPs.

8.3 Riemann-Hilbert BVP and s-holomor-
phic functions
We are now trying to solve a particular form of so-called Riemann-Hilbert

BVPs. These continuum problems can be stated as follows: look for a
continuous function f:€) - C such that

f is holomorphic on 2 and Im[fu1/2] =0 on 012,

5The existence of the additive constant comes from the freedom in the choice of
ceC.
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where v is the tangent to 02 viewed as a unit complex number (in order
to define properly this tangent for rough domains, simply use conformal
invariance to map the domain to a smooth domain). Also observe that v
and -v do not play symmetric roles here. Therefore, it will be important
to specify the direction along which the tangent vector is considered. In
general, we may also introduce complex singularities on the boundary or
inside the domain.
In this book, we restrict our attention to the following three BVPs:

BVP; In a simply connected domain 2 with two points a and b on its
boundary,

e the tangent vectors are oriented from a to b on the boundary
arcs Oy and Oy,

e f has a singularity at a and b,

° Im(fzy f?) =1, where x € 9, and y € Oy, are two other fixed
points®.

BVP;, In a simply connected domain €2 with two points u and v on its
boundary,

e the tangent vectors are oriented counterclockwise along the
boundary,
e f has a singularity at u € 052,

o f(v)=1.
BVPj3 In a simply connected domain €2 with a point z inside the domain,

e the tangent vectors are oriented counterclockwise on the
boundary,
e f has a complex singularity at x € 2 with complex residue 1.

Remark 8.21. In the continuum, the solutions to these problems are not
hard to find. Let us illustrate this fact with the example of a solution f to
BVP;. The method for finding the solution is relevant for what will be
next. The function H =Im( [~ f?) is the imaginary part of a holomorphic
map on 2, and it is therefore harmonic. Now, on the boundary, f? is
collinear to the complex conjugate of the tangent vector, and therefore H
is constant on dup, and dy,e. Since Im( [ f2) = H(y) - H(x) = 1, we obtain
that if H = 0 on g, then H = 1 on Oyq. Therefore, f = /¢, where ¢
is any holomorphic map on  with imaginary part H. Interestingly, ¢
can be easily checked to be given by a conformal map from €2 to the strip
R x [0,1], sending a to —co and b to oo.

As explained in the previous sections, there are difficulties when dealing
with the square of a discrete holomorphic function, and this will make

6The choice of  and y is irrelevant here.
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the study of discrete versions of these Riemann-Hilbert BVP much more
intricate (since it seems that introducing the primitive of the square of the
solution is convenient). In order to overcome this difficulty, we introduce s-
holomorphic functions (for spin-holomorphic). This notion was developed
in [Smil0, CS11, CS12].

8.3.1 Definition of s-holomorphic functions

In this section, s-holomorphic functions are defined on vertices of the
medial graph of a discrete domain or a Dobrushin domain. For any edge
e of the medial lattice (the edge e being oriented, it can be thought of
as a complex number), the real line passing through the origin and /e is
denoted by ¢(e) (the choice of the square root is irrelevant since we will be
looking at projections on lines only). The different lines associated with
medial edges on (0Z2)° are ¢'™/°R, e ™/SR, e ¥7/5R and e /PR, see
Fig. 8.1. For a line ¢, define

Py(z) = oRe(az) = 3 (z + o’T),
where « is any unit vector collinear to /.

Definition 8.22 (Smirnov). A function f: Q5 - C is s-holomorphic if for
any edge e = [zy] of Qf, we have

Pé(e) [f(:l?)] = Pﬁ(e)[f(y)]

Remark 8.23. The definition differs slightly from the definition in [Smil0]
where the lattice was rotated by /4.

Let us first confirm that the notion of s-holomorphicity is stronger than
the notion of discrete holomorphicity.

Proposition 8.24. Any s-holomorphic function f : Q5 - C is discrete
holomorphic on Q.

Proof. Let f:Qf - C be a s-holomorphic function. Let v be a vertex
of 6Z% U (6Z*)* corresponding to a face of 3. Assume that v € 6Z?, the
case v € (6Z2)* is similar. We wish to show that s f(v) =0. Let N, W, S
and E be the four medial-vertices around v as illustrated in Fig. 8.1, and
let us write one relation provided by the s-holomorphicity, for instance

P insr[f(E)] = P eimsr[f(5)]:

Expressed in terms of f and its complex conjugate f only, the previous
equality becomes

F(E)+e ™ F(E) = f(S)+e™f(S).
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Doing the same with the three other relations, we find

F(8) +ie” ™ f(S) FOW) +ie” ™ W),
JW) =™ f(W) F(N) = e ™ (N),
FIN) —ie ™ E(N) = f(E)-ie" ™" f(E).

Multiplying the second identity by —i, the third by -1, the fourth by 4,
and then summing the four identities, we obtain

0=1-0)[f(E) - f(W)+if(N)-if(S)]=2(1-i)0sf(v)

which is exactly the discrete Cauchy-Riemann equation around wv. O

8.3.2 Discrete primitive of f?2

Let us now show that the imaginary part of primitives of the square of
s-holomorphic functions are well-defined.

Theorem 8.25. Let f: Q5 — C be an s-holomorphic function on 5, then
there exists a unique (up to additive constant) function H : Q5 u Q5 - C
such that

H®)-Hw) = V25 [Polf @] (= V20 [P )] )

for every edge e = [xy] of Q1§ bordered by b e Qs and w € Q. Furthermore,
for two neighboring vertices by, bs € Q5, with v being the medial vertex at
the center of [b1ba],

H(b1) - H(by) = Im[f(v)*- (b1 -b2)], (8.5)

the same relation holding for vertices of Q5.

The last relation legitimizes the fact that H is an analogue of Im ( [°f 2).

Proof. Set the value of H to be ¢ € R at some vertex by (or dual vertex).
The uniqueness of H is straightforward since €23 is connected, the value of
H at z € Q5 u 25 is simply the sum of increments along an arbitrary path
from by to x.

To obtain the existence, construct the value at some point by summing
increments along an arbitrary path from by to this point. The only thing
to check is that the value obtained does not depend on the path chosen to
define it. Since the domain is the union of all the faces of (6Z2)° within
it, it is sufficient to check it for elementary “square” contours around each
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S

Figure 8.1: The different directions of the lines ¢(e) for medial edges
around a black face.

medial vertex v (these are the simplest closed contours). Therefore, we
need to prove that

|Pi(ne) (1}) | _|Pi(se) f(’l} | +|P€(sw) (U) | |P€(nw) (U)” (86)

where nw, ne, se and sw are the four medial edges with end-point v,
indexed once again according to cardinal directions. Note that £(ne) and
L(sw) (resp. (se) and ¢(nw)) are orthogonal. Hence, (8.6) follows from

P O + P @I =10 . (87
= [Pusey LE)]|” + [Perany [F ()]

Let us now turn to (8.5). Let by ~ by be two neighboring vertices of {25
and v the medial-vertex associated to [biba]. Let w be one of the dual-
vertices in 25 adjacent to both b; and by (there may be only one of them
in QF if b; and by are on the boundary). Let e; and e2 be the two medial
edges bordered by b; and w, and by and w respectively. We find

H(br) = H(b2) = V26 |Pegeyy [F ()] = [Pages LF ()] ]

= [(Varrw) + Var ) - (Ve @) + Vai)’]
1 - -

= 5[ @) + e f @) + F )P~ eaf (v)* — e f(0)2 - |F ()]
1 -

= 5[ (e = e2)f (0)* + (2 = e2) ()]

= %[(61 - bz)f(v)2 _m] _ Im[f(v)2 (b = b2)].

In the second equality, we used the fact that \‘} le1| and \[ =les]. O

Even if the primitive of a discrete holomorphic map is discrete
holomorphic and thus discrete harmonic, this is not the case of the
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primitive of the square of a discrete holomorphic map. Nonetheless, s-
holomorphicity implies that H satisfies subharmonic and superharmonic
properties. More precisely, denote by H® and H° the restrictions of
H:Q;uQ; - C to Qs (black faces) and Qj (white faces) respectively.
Let A® and A° be the nearest-neighbor discrete Laplacian for functions on
Qs and Qf respectively.

Proposition 8.26. If f: Q5 — C is s-holomorphic, then H® and H° are
respectively subharmonic for A* on Qs \ 0Qs and superharmonic for A°
on Q5 N 09Q5.

Proof. Let us focus on H* (the proof for H° follows the same lines). Let
B be a vertex of Qs \0Qs. Let N, E, S and W be the four medial-vertices
adjacent to B (once again the letters refer to cardinal directions). Also set

—e sPa syl (E)] = ei%Pg( esplf(S)],
b=e"' SPe( swplf(S)]=e™ SPe([sw [f(W)],
c=¢’ SPZ([WN [f(W)]=e” 8Pz( wap L (N)],
d=¢¥'5 Pypn ey [F(N)] = €5 Pug ).

Note that a, b, ¢ and d are real. With these definitions, we may rewrite

f(N), f(E), f(S) and f(W) as follows:

f(BE) =V2i(e737/3d + e /%q),
£(8) = V2i(e¥™Pa - /%),
FW) = V2i(e" - 7o),
F(N) = V2i(e™Be - /%),

By definition of A® and (8.5), we find

L] L] 6 . .
A*H*(B) = Im[f(E)* = if(8)* = f(W)* +if(N)?]
_ _gIm[(e—&'ﬂ'/Sd 4 e—iTr/Sa)Q 4 i(eSiw/Sa _ 65i7r/8b)2
_ (eiﬂ/Sb _ 6231'71'/80)2 _ i(e—iﬂ/SC _ eiTr/Sd)2]
= 6[a2 +b2+ 2+ d? —\/§(ab+bc+cd—ad)].
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On the other hand, let us compute

F(E) = PSP+ [F(W) = F(N)P =207+ 70— ¥ Pa+ 77/
+ 2|e”/8b BB T8 em/sd|2
=2(d+V2a-b)*+2(b-V2c+d)?
=4(a® + 0>+ + d*) - 4v/2(ab + be + cd - ad).

In conclusion,
ANTH*(B) = 6| f(E) = f(S) +6f(W) = F(N) 20 (8.8)
and the claim follows. O

Similarly, we could have chosen the term |f(S)~f(W)[*+|f(N)-f(E)?
to find

AATH*(B) = 8| £(S) = F(W)[? + 8If(N) - F(B)* > 0. (8.9)

8.3.3 Precompactness for s-holomorphic maps

We plan to study BVPs. In order to do so, and for the same reason as for
harmonic functions, we will need a pre compactness result. This technical
theorem will be very important in the next sections. One may skip the
proof during a first reading. Below, () denotes a square, and 9@ denotes
the square of same center, but 9 times bigger.

Theorem 8.27 (Precompactness for s-holomorphic maps). Let @ c
such that 9Q c Q. Let (fs)s-0 be a family of s-holomorphic maps on 2
and (Hy)ss0 be the corresponding functions defined in the previous section.
If (Hs)s>0 is uniformly bounded on 9Q, then (fs)sso is a precompact family
of functions” on Q.

Proof. Color the vertices of (6Z2)° in black and white in a chessboard
way (medial vertices corresponding to vertical primal edges are all colored
the same, and the same for horizontal edges). The sets of black and white
vertices are denoted by (6Z2)¢ and (6Z2)¢ respectively.

Since fs is s-holomorphic, it is also holomorphic and therefore harmonic
for the modified Laplacian on 2§, which corresponds to the standard
Laplacian on (6Z2)2. Imagine for a moment that the family of functions
(fs) satisfies the second property of Proposition 8.7. In such case,
Proposition 8.7 implies that the restrictions f; of functions f5 to 5 n
(6Z2)¢ form a precompact family of functions.

"Recall that the functions fs are extended to the faces of ;.
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Let us now use the s-holomorphicity to deduce that (fs)sso itself is
precompact. Let x € QF n (6Z%)2. Denote the north-east and south-west
neighboring vertices of = in (§Z%) by y and z. The s-holomorphicity
shows that

fé('r) = Pé(ry)(fts(x)) + PZ(wz)(fé('r))
= Pé(my)(f5(y)) + PZ(rz)(f(S(z))
= fs(y) + O(Ifs(2) - FsW)). (8.10)

where we used the fact ¢(zy) and ¢(xzz) are orthogonal to each others.
The previous paragraph implies that we may extract a sub-sequence (f5 )n
converging uniformly on every compact subset of 2 when seen as a function
of Q% n (8Z%);. The relation (8.10) implies that (fs,) itself converges
uniformly on every compact subset of .

Therefore, we would be done if we could prove the second property of
Proposition 8.7.

Fix § > 0. When jumping over a medial-vertex v, the function Hj
changes by dRe(f#(v)) or 6Im(fZ(v)) depending on the direction (vertical
or horizontal), so that

&3 ) = 6 X VH @) + 6 Y [VH(2)] (8.11)
veQs IEQ«S zeQ;

where VH(xz) = (Hy(x +0) — Hy(x), Hy(z +i0) — H3(x)), and VHj is
defined similarly for Hj. It follows that it is enough to prove uniform
boundedness of the right-hand side in (8.11). We only treat the sum
involving Hy, the other sum can be handled similarly.

Write H§ = S5+ Rs where Ss is a harmonic function with same boundary
conditions on 99Q)s as Hy. In order to prove that the sum of |VHj| on Q5
is bounded by C/d, we deal separately with |V.Ss| and |[VRs|. First,

C
|V55(:r)|< -1 025( sup |S(5(m)|) —
xEQth 6

C( sup |H5<x)) G
0 \2e890s 5’

026( sup |S5(z)|)

QJEQ(S 07689@5

where in the first inequality we used derivative estimates (Proposition 8.6),
in the first equality the maximum principle for S5 (to show that the
supremum is reached on the boundary), and in the second the fact that Ss
and Hj share the same boundary conditions on 9Q)s. The last inequality
comes from the fact that H; remains bounded uniformly in J.

Second, let us treat |VRs|. This function is subharmonic since Sy is
harmonic and H} is subharmonic (Proposition 8.26). Recall that Ggog, (-, y)
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is the Green function in 9Qs with singularity at y. Since Rjs equals 0 on
the boundary, Proposition 8.11 implies

Rs(x) = %ARa(y)GgQa(%y)a (8.12)
ye9Qs

thus giving

VR5($) = Z ARé(y)vaQQs ('ray)
ye9Qs

Therefore,

Y VE@)| = Y| Y AR()V.Gog, ()|

zeQs zeQs  ye9Qs

Z ARé(y) Z |VzG9Q5($7y)|
ye9Qs T€Qs

Y. ARs(y) C50 Y. Gogs(z,y)
ye9Qs zeQs

= Cs56 ) ), ARs(y)Goqs(z,y)
zeQs ye9IQs

= 05(5 Z R(s(ﬂ?) = 06/5
zeQs

IN

IA

The second line uses the fact that ARs > 0, the third Proposition 8.12, the
fifth Proposition 8.11 again, and the last equality the fact that Qs contains
of order 1/8? sites and the fact that Rs is bounded uniformly in & (since
Hs and Ss are).

Thus, § ¥ cq, |VH;S| is uniformly bounded. Since the same result holds
for H3, we obtain the second condition of Proposition 8.7 and we are
done. O

8.3.4 Discrete version of BVP;,

Let us now study the discretization of the problem BVP;. We work with
Dobrushin domains (25, ag,bs). For a medial vertex x € 992§ (or rather a
prime end z), we define the tangent vector v(z) as e + €', where e and €’
are the two medial edges of 07, U 0y, incident to x.

We say that fs satisfies the discrete Riemann-Hilbert BVP; if
e f5 is s-holomorphic in Qf,
o for any € 90 \ {a2, b3}, Im[ f(z)v(x)?] =0,

o Pye)fs(bs)] = \/%75, where e, is defined as in Chapter 3.

Remark 8.28. Note that the renormalization is not exactly the same as in
the continuum formulation, but we will prove that the two normalizations
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are equivalent as 0 tends to 0. Also observe v(x) is defined for vertices
and that the definition is slightly simpler than in Section 6.1.5: the reason
is that we are interested in the complex argument modulo 7 of (e +¢’)/2.
This quantity does not depend on the choice of the argument of e + €’
modulo 27, while it does for (e+e’)? in general. Therefore, in this context
we may use e+ ¢’ to define v(z) but not for other random-cluster models.

The goal of this section is to prove the following result.

Theorem 8.29 (Smirnov [Smil0]). Let Q be a simply connected domain
with two points a and b on its boundary. Assume that (25,a3,b5) is a
family of Dobrushin domains converging to (2, a,b) in the Carathéodory
sense. Consider fs to be the solution of the discrete BVPq on (5, a5,05).
Then (fs)ss0 converges uniformly on (2,a,b) to \/@', where ¢ is any
conformal map from Q to R x (0,1) mapping a to —oo and b to oc.

Remark 8.30. Since /@’ is the solution of the continuum version of
BVP,, we simply wish to prove that the solution of the discrete BVP
converges to the solution of its continuum counterpart. In order to prove
this result, we mimic the continuum story and prove first the convergence
of the discrete version of Im( [~ f?), namely Hj.

In this section, let fs be a solution of BVP; and Hjs be given by
Theorem 8.25 with Hs(bs) = 1.

Lemma 8.31. The function Hs equals 0 on 0, and 1 on Oy,.

Proof. We first prove that Hj is constant on dp,. Let B and B’ be two
adjacent consecutive sites of Jpq, and = the medial-edge in the middle of
the edge [BB’]. Note that z is on the boundary. Since fs(z) is parallel
to v(z)"1/2, (8.5) implies that Hg(B) = H3(B'). Hence, H} is constant
along the arc. Since Hy(bs) =1, the result follows readily.

Similarly, Hy is constant on the arc 0,,. Moreover, the dual white face
bs € 0, bordering bs (see Fig. 3.6) satisfies

Hy(b5) = H3(bs) = V20| Py, [f(b5)]> = 1-1 = 0. (8.13)

In the second equality, we used the normalization hypothesis (recall that
les| = §/7/2). Therefore HZ =0 on 97, O

Our goal is now to prove the following result. Let H be the solution of
the Dirichlet BVP with g =0 on 94, and 1 on 9,,. We would like to prove
that the function Hs converges to H uniformly away from a and b. To
get an intuition that this should be the case, observe that a subharmonic
function in a domain is smaller than the harmonic function with the same
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boundary conditions. Therefore, H® is smaller than the harmonic function
h* solving the same BVP. Similarly H* is bigger (since it is superharmonic)
than the harmonic function h° solving the same BVP. Moreover, H®(b) is
larger than H°(w) for two neighboring faces. Hence, if H* and H® are
close to each other on the boundary, then they are sandwiched between
two harmonic functions h®* and h° which are close to each other. This
motivates us to understand the BVPs for H®* and H°. The previous lemma
provides us with part of the answer (namely boundary values for Hy on
Obe and for Hy on 0;,), but it is not clear how to obtain the relevant
boundary values for H§ on 0,5 and Hj for 0;,. For this reason, we use
the so-called boundary trick introduced in [CS12] and extend the functions
outside 25 U Q5.

Construct the following extension of the graph . First, a vertex x € 0,
can be seen as a prime-end of the domain 4 very much like medial vertices
on 02° may be seen as prime-ends of the domain Qf. In particular, the
degree of boundary vertices seen as prime-ends is smaller than 4. Add all
the edges incident to these vertices which are not already in Eq, together
with their endpoints. We will consider all endpoints as forming different
vertices of a new graph®. The set composed of these vertices is denoted
Oup. Consider Qg = Qs U Dyp. Similarly, construct gga and Qg

Definition 8.32. Let ﬁg be the function on Qg equal to H§ on Q5 and 0
on Jgp. Let Hg be the function on ﬁg equal to Hy on 25 and 1 on Op,.

Define (X}),», to be the continuous-time random walk on Qs that jumps
with rate 1 on adjacent vertices, ezcept for the vertices on Dy onto which
it jumps with rate p = 2/(v/2+1). Let (X}),,, denote the continuous-time
random walk on ﬁg that jumps with rate 1 on neighbor vertices, except
for the dual-vertices on J;, onto which it jumps with rate p = 2/(v/2 + 1).
Let A® and A° be the generators of X; and X7 .

One may prefer working with the discrete time random walks (X )ns0
and (X )nso induced by the continuous-time random walks above. In
such case, (X )ns0 jumps equally likely on each neighbor in s, but
with probability # time smaller on neighbors in Dap. Then for any
X € Qg AN 6@;,

A*f(x) = Y Po(XT =) [f(y) - f(2)].

Yy~

__We are now in a position to tackle the boundary problem on the arc
Oqp and 0;,. Before diving into the proof, let us make a small comment
by taking the example of H 5- The difficulty of the BVP does not lie in

8 A vertex of Z? could correspond to the end-points of different such edges, and for
this reason we keep a clear distinction between the different end-points.
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Figure 8.2: Extend Qf by adding one extra layers of medial faces, and
extend the functions Hj on these new medial faces. On the right, the
indexation of faces and edges for the proof of Lemma 8.35.

determining boundary conditions since H’g equal 1 on Oy, and 0 on alb,
but rather in explaining the connection between these boundary conditions
(more precisely those on 5,11,) and the values of ﬁg on Q5 ~ 9Qs. The most
obvious connection would be that ﬁg would be subharmonic on Qg N 8@5.
This is not quite the case, but we can in fact show that ﬁg is subharmonic
for a modified Laplacian. A similar observation holds true for ﬁg.

Proposition 8.33. If f5: Q5 — C is s-holomorphic, then ﬁg and ﬁg are

res;zgctive@ subharmonic for A® on Qs ~ Qs and superharmonic for A°
on Q5 \ 095

Proof. Let us treat the case of vertices in Q5. Dual vertices are treated
similarly. Since we already treated vertices in (25 \ 0,5, We only need to
look at a vertex B € dy,. For ease of exposition, we will assume that B is
incident to three edges in (25, the vertex of 5ab being below B (other cases
can be handled similarly). Denote by By, By, Bg and Bg the black faces
adjacent to B, see Figure 8.2. We claim that

A*H}(B) = jj!jiwgwm + H3(By) + H(Br)] + - 3\5/:2/51{5(35) ~Hy(B)
>0.

Recall that Hy(Bg) = 0 by construction, and we therefore need to prove
that

ATH;(B) = 62:5\/\/§§

In order to do that, let us denote by e, es,e3,e4 the four medial edges
around the medial-vertex x between B and Bg, indexed in clockwise order,

[H5(Bw) + H;(Bn) + H5(Bg)] - H5(B) 2 0. (8.14)
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with e; and es along B, and e3 and e4 along Bg (see Figure 8.2) — note
that ez and e, are not edges of 3, but of (§Z?)° \ Q3.

-1/2

Now, since f5(z) is proportional to v(z)™"/*, a small computation gives

Puten L5 )1P = |(tam 5 )™/ o )]

_2-V2
e x
W \/—| 2en) [ f5 ()]
2-V2 1
2+V2 V26
We could have chosen the medial edge e4 instead of e3 and we would have

obtained the same result. If ffg denotes the function defined by f{g = Hy
on B, By, By and Bg, and by

H;5(B).

5
+¢§

Then, H 5 satisfies the same relation of Theorem 8.25 for e3 and ey, as inside
the domain. Since fs verifies the same local equations, the computation
performed in Proposition 8.26 applies at B (with Hy instead of Hs), and
we deduce

H3(Bs) = V28|Py(ey)[ f5(2)]]* = =——=H3(B). (8.15)

AH;(B) = i[ﬁg(BW)+ﬁ5(BN>+H5(BE>+I?5(BS)]—F13(B> >0. (8.16)

Using (8.15), this inequality can be rewritten as

6 +5v/2
4(2+2)

and the claim (8.14) follows. o

LUH3(Bw) + H(By) + H3 (Br)] - Hy(B)20.  (8.17)

Proof of Theorem 8.29. Since ﬁg is sub-harmonic for A® and has
boundary conditions 0 on 5,11,7 and 1 on 9y, it is thus smaller than the
A°*-harmonic function h§ with the same boundary conditions. Since h§
converges to the solution H of the continuum Dirichlet BVP with boundary
condition 0 on 9y and 1 on O, (one may use Theorem 8.9, or more
precisely a trivial modification of it involving the modified Laplacian on
the boundary), we therefore deduce that

limsup Hy < H.
50
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Now, H 5 is super-harmonic for A° and has boundary conditions 0 on 9,
and 1 on J;,. It is thus larger than the A°-harmonic function h§ with the
same boundary conditions. In particular, h§ converges to H, and therefore

liminf Hy > H.
6—0

But by construction, H°(W) is smaller than H*(B) for any neighbor B
of W. Therefore,

H <liminf H§ <liminf Hy < H
6—0 6—0

and the same holds true for the limsup. Therefore, both Hj and Hj
converge to H.

Now, let @ c © such that 9Q c © (recall the definition of 9Q from
Theorem 8.27). Since Hs converges uniformly to a continuous function H,
the family Hjy is bounded uniformly in § > 0. Theorem 8.27 thus implies
that (f5)s>0 is a precompact family of s-holomorphic maps on Q.

Let (fs, )nen be a convergent subsequence and denote its limit by f.
Note that f is holomorphic as limit of discrete holomorphic functions
(Proposition 8.15). Furthermore, for two points z and y in 2, we have:

Y&
Hs, (ys,) - Hs, (vs,) = Im ( f
xT

7.1z
5n
where x5, and ys;, denote the closest points to z and y in 5, . On the
one hand, the convergence of (fs, )nen being uniform on any compact
subset of 2, the right hand side converges to Im ([, f(z)?dz). On the
other hand, the left hand side converges to Im(¢(y) — ¢(x)), where ¢
is a conformal map with Im(¢) = H. Since both H(y) - H(z) and
Im ([zy f(z)zdz) are harmonic functions of y, there exists C' € R such that
o(y)-o(x)=C+ fry f(2)?%dz for every x,y € Q. We deduce that f equals
V/@'. Since this is true for any convergent subsequence, we find that f;s
tends to /@'.

It only remains to notice that a conformal map ¢ such that Im(¢) = H
is exactly a conformal map from © to R x (0,1) mapping a to —oo and b
to oo. This can be done as follows. Fix a conformal map ® from €2 to
R x (0,1) mapping a to —oco and b to co. The function H o &1 is solution
of the Dirichlet problem on R x (0,1) with boundary condition 1 on the
top and 0 on the bottom. Therefore, (H o ®~1)(2) = Im(2) which leads to
H(z") =Im(®(z")) for any z’ € Q. In particular, ¢ — ® is holomorphic and
Im(¢ — @) = 0. The combination of these two facts implies that ¢ — ® is a
constant function equal to a real number, which is the claim. O
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8.3.5 Discrete version of BVP,

Let Qf be a discrete domain and uj, v be two medial vertices on the
boundary of Q5. We define the tangent vector as in the previous section
(it goes counterclockwise around the boundary). The function f5: Q5 - C
satisfies the discrete BVPy if

e fs is s-holomorphic on Qf \ {u§},
o Im(f5(2)v(2)Y?) =0 for any z € 9 ~ {ug},
o f5(vg)=1.

The two following definitions correspond to the fact that the domain
(respectively discrete domain) looks like the upper half-plane in a
neighborhood of v (respectively vy). A domain (2 is flat near v if there
exists € > 0 such that

[~&,e] % (0,e] = (v + Q) N [-¢,¢]*.
In the discrete level, 25 is flat near vy if there exists € > 0 such that

(0Z2)° n[-e,e] x [0,¢] = (-v$ - (%,0) + Q) n[-e,e]?

Theorem 8.34 (Chelkak, Smirnov [CS12]). Let Q be a simply connected
domain with two marked points u and v on its boundary, the boundary being
flat in a neighborhood of v. Let 25 be a family of discrete simply connected
domains with ug and vy two medial-vertices on its boundary. We assume
that (QF,u3,vs5) converges to (2, u,v) in the Carathéodory sense, and that
the boundary of 05 is flat near vy. Let f5 be the s-holomorphic solution
of BVPy in Q5 with u§ and vy, then

) - L() when § —
fs() = () hen 6 - 0

uniformly on every compact subset of Q, where v is any conformal map
from Q to the upper half-plane H, mapping u to co and v to 0.

We will also consider the discrete primitive Hgs of fg provided by
Theorem 8.25, with the condition that it is equal to 0 at some w € 9€j.

One can check exactly as in Lemma 8.31 that H5 = 0 on 0€25. Observe
that superharmonicity implies H5 > 0 everywhere. As before, we extend {25
by adding one layer 9 except that we do not add the other end-point of the
edge passing through uj (since anyway the function is not s-holomorphic
at ug). We set Hy =0 on d. The same computation as in Proposition 8.33
implies that Hj is A®-subharmonic on Qs \ {us}, where us is the vertex
of Q5 bordered by uj.
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We therefore understand the boundary conditions of Hj and Hj.
Nevertheless, one may check that H® does not remain bounded in a
neighborhood of u (see below for a proof), and we cannot use the
precompactness criterion provided by Theorem 8.27 directly. We therefore
start by proving precompactness of fs and Hs with our bare hands.

Lemma 8.35. The family of functions (Hs) and (fs) are precompact on
any square Q such that 9Q c ).

Let us first describe the proof heuristically. We wish to prove that Hj
is uniformly bounded away from u. If the value of HJ is equal to M at
some point By, then subharmonicity shows that it must be larger than M
on some arc 7y from By to us (see the definition of us few lines above).
Furthermore, H§ > 0 on the boundary. Therefore, if H; was harmonic,
we would deduce that Hj would be larger than M times the harmonic
measure of the arc v in . Applying this observation to the vertex B next
to v, we would deduce that /25|Fs(vg)|? = Hy(B) is larger than M times
the harmonic measure of v seen from B. The facts that the domain near
v contains a rectangular box and that the arc v is of macroscopic length
imply that the harmonic measure of the arc seen from B would be larger
than ¢d. This would be contradictory with the value of Fs(vy).

Unfortunately, Hj is not exactly harmonic and one must use Hg. This
renders the proof slightly more cumbersome. In particular, one has to
compare the value of H§ and Hj at neighboring vertices.

Proof. We present the argument succinctly. Let € > 0. We wish to prove
that (Hs) is uniformly bounded outside a ball of radius € > 0 around u. If
this fact can be verified for every € > 0, this will imply the result directly,
since by Theorem 8.27, (f5) would be precompact and thus (Hys) also.

In order to prove this boundedness, consider By € 25 at distance larger
than € from w and set Hj(By) =t M. By subharmonicity and the fact
that the boundary conditions of Hj are 0 on d, we find that there exists a
sequence vy of vertices us = B,, ~ Bj,—1 ~--+ ~ By ~ By such that

Hj3(us) > Hy(Bp-1) 22 Hy(B1) > H;(Bo) > M.
First, let us assume the claim below:

Claim: There exists c1 > 0 such that HZ(W) > c1Hy(B) for any adjacent
medial-faces B and W ¢ 0925 .

Let T be the set of dual vertices bordering the path v. We deduce from
the claim that H{(W') > ¢c1 M for all W e T' \ 0.

Since Hjy is equal to zero on 99 and is larger than c¢cM on I,
superharmonicity implies that

H;(Wo) > > H5(W)Ho: (Wo, W) > c; MHq: (W, T),
Wel'
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where the first inequality is due to superharmonicity and Proposition 8.5,
and in the second Hq:(Wo,T') denotes the harmonic measure of the set
I seen from W, (it is the probability that a random walk on 2} starting
from Wy hits I' before reaching 9€5).
Now, the set I' is of macroscopic length &, therefore there exists
o = ca(€) > 0 such that
HQE(‘/’ F) > o0, (818)

where V e Q5 \ 0} is a dual-vertex nearest to v5. In order to see that
(8.18) is satisfied, observe that I" has “length larger than €”, which shows
the existence of c3 = c3(g) > 0 such that Ho:(Wo,I') > c3 for any Wy
at Euclidean distance £ from the boundary. Furthermore, the harmonic
measure seen from V of the set of dual-vertices at Euclidean distance e
from the boundary is at least c4d (this follows from the gambler’s ruin and
the fact that the neighborhood of v§ in Qf contains a rectangle of size
0(1/6)). Combining these two facts together yields the existence of ¢z > 0
in (8.18).
Now, (8.18) implies

V20 = V20| f3(v3)” = Hy(B) > Hy(V) > ex MHq (V,T) 2 c1 M - 39,

where B is the vertex of €25 adjacent to wvj. This implies that
M < \/2/(cicz) and H® (and therefore H°) is indeed bounded. In
conclusion, we only need to prove the claim.

Proof of the Claim. In this proof, we use > for “much larger than” and
~ for “approximatively equal to” (i.e. the difference of the left and right
terms is much smaller than each one of them).

We recommend that the reader takes a look at Fig. 8.2. Consider a
dual-vertex W ¢ 0€25 and a vertex B € {25 which are adjacent and such
that Hj(B) » H5(W). Let v and w be the end-points of the medial edge
between B and W and set e = [vw]. Also set Wi and W5 to be the dual-
vertices such that v and w are the centers of [WW7] and [WWs], and ey
and es for the two medial-edges between B and W; and Wh.

First, observe that superharmonicity and Hy > 0 imply that

Hy(W)2 3 > Hy(W')2 Hy (W)
W'~W

for any W' ~ W. Therefore, we also have that Hg(W;) « Hg(B) and
H5(Ws) «< H3(B). In such case,
V26| Pyey (f5(0))* & HF (B) » V26| Puey (f5(0))I. (8.19)

In particular, the absolute value of the projections of fs(v) on £(e;) and
£(e) are very close to each other and therefore f5(v) approximately belongs
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to one of the bisectors of £(e1) and £(e). Similarly, fs(w) approximately
belongs to one of the bisectors of £(e) and £(ez2). In particular, f5(v) and
fs(w) have very different complex arguments.

Thus, we find that 6|f5;(v) — f5(w)[? is of the order of §|fs(v)|?, which
itself is of the order of H3(B) by (8.19). Since Hg(W') > 0 for W' ~ W,
(8.8) applied to H° gives us that

H§(W) > =A°HF(W) 2 8|f5(v) = fs(w)[* > cs H3 (B)

for a universal constant ¢4 > 0. In particular, Hg(W) cannot be much
smaller than Hj(B) to begin with and we get the claim. Note that we
did not work with constants and used > and ~ instead, but in a language
with constants, the argument gives the existence of ¢; > 0 as claimed. ¢

O

We now wish to prove that the solution to the discrete version of
BVP, converges to the solution to the continuum version of BVPs, i.e.
V' [Y'(v). In order to do that, we prove that any sub-sequential limit
of (fs) is equal to /uy’ for some constant p > 0. We then prove that

p=1/¢"(v).

Proof of Theorem 8.34. Once again, the proof is presented completely
but succinetly. Since (fs5)ss0 and (Hy)ss0 form two precompact families
(the precompactness of (Hj)ss0 follows from the one of (fs)s-0), consider a
subsequence (f5, , Hs, ) converging to (f, H). The function H is harmonic
as limit of subharmonic and superharmonic functions. Since Hy equals
0 on the boundary and is superharmonic, it implies that Hj is larger or
equal to 0 everywhere and therefore H >0 in (.

Let us now show that H is continuous on Q \ {u} and is equal to 0
on 02\ {u}. The function ﬁg is equal to 0 on & and is subharmonic.
Let z € © be such that d(z,00) « 2d := d(z,u) and let Zs be the vertex
of Qs closest to z. Also, consider A to be the connected component of
z+[~d,d]? in Q containing z. The weak Beurling estimate (Lemma 8.10)
together with the fact that Hj is smaller than the harmonic function with
the same boundary conditions on dAs imply that

d(z,ag))"

H3(Z5) < max{H2(B) : B e 9As} ( !

Since H*® is uniformly bounded (as § — 0) away from w, this implies
that H(z) < C’(d(z%‘?m)a for some constant C' > 0 depending on the
distance d only. Letting z tend to the boundary, we obtain that H <0 on
00\ {u}. Since we already have H > 0, we find that H =0 on 0 \ {u}.
Furthermore, the previous displayed equation implies that H tends to 0
when approaching z.
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Overall, H is a positive harmonic function on 2 which is continuous
on Q\ {u} and equal to 0 on the boundary. Let 1 be a conformal map
from  to H mapping v to oo and v to the origin. We now claim that the
properties listed above imply that H = pIm(v)) (this implies that f = \/uy’
by the same argument as in BVP;) for some p > 0.

Claim: If H satisfies the properties listed above, then there exists p > 0
such that H = uIm(v), where v is a conformal map from Q to H mapping
u to oo and v to 0.

Proof of the Claim. This fact is classical in complex analysis: it
follows from the fact that positive harmonic functions in the disk can be
represented as integrals of the Poisson kernel against a positive measure
on the boundary® which can be understood as a version of Proposition 8.5
in the continuum. Let us provide a few more details. When working in
Q, this theorem asserts that a positive harmonic function h on € can be
represented as

W)= [ Paly.a)dv(),

where v is a measure on the boundary and Pq(,-) is the Poisson kernel
in Q, i.e. that Po(-,z) is the imaginary part of a certain conformal map
from Q to H mapping = to infinity (as it stands, the function Pq(-,z) is
defined up to multiplication by a positive constant but this is irrelevant to
the argument).

The fact that H is equal to 0 on the boundary except at u implies that
the only possibility for the measure v is that it is proportional to a Dirac
mass at u, and the value > 0 depends on this constant of proportionality.
o

90ne may also avoid the use of the Poisson kernel by doing the following proof. Note
that by conformal invariance, we may assume that Q = H, u = c0 and v = 0. In the
proof, OH = R U {oo}.

If H is bounded in a neighborhood of oo, then H is bounded on the whole domain
H. Since it is equal to 0 on OH \ {oo}, this implies that H = 0 and we set p = 0.

If H is unbounded, let ¥ : H - C be an holomorphic map with Im(¥) = H. The set
W(H) is included in H since H > 0. Since H = 0 on the boundary except at infinity, we
also get that U(OR) c R.

The Cauchy-Riemann equation implies that the z-derivative of Re(¥) is equal to
the y-derivative of Im(¥) = H and is therefore larger or equal to 0 since H > 0 (the
fact that the derivative is well defined on the boundary follows easily from the Schwarz
reflection principle for instance). We deduce that Im(¥) is increasing when going
counter-clockwise along 9H.

Now, ¥(H) is unbounded since H is unbounded. Thus ¥(9H) = RuU {co} = H.

A slight extension of the principle of corresponding boundaries (here we do not have
that the function is strictly increasing on the boundary but simply increasing), see e.g.
[Lan99, Theorem 4.3], implies that ¥ is a conformal map from H to H sending oo to oo.
By adding a constant in R to H, we may fix the image of 0 to be 0 and therefore ¥ is
an homothety.
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Fix 1 such that f = /ui)’. In order to conclude the proof, we now
need to show that p = 1/¢'(v) by studying the behavior near v. Let
R(a,¢e) = (-¢g,e) x(a, &) with 0 € @ « € « 1. The assumption on 2 enables
us to choose € > 0 so small that R(0,e) c Q. We divide the boundary of
OR(0,¢)s into three pieces: the bottom side d;, the part dy intersecting
OR(a,€), and the rest of the boundary 93 (made of two vertical segments).

Subtract the constant /u’(v) from the function fs5 and consider the
function Hys constructed from the s-holomorphic function fs -/ ' (v) via
Theorem 8.25. We wish to prove that Hj is small.

Since I:Ig is subharmonic, we find that

H3(Bo)< > Hs(B)Hg,(Bo,B), (8.20)
BedR(0,e)5

where we remind the reader that Hq, (-,-) denotes the harmonic measure
in Q5. The gambler’s ruin together with traditional estimates on exit
probabilities gives us that Hg, (Bo, 02) < ¢1d/e, and Hg, (B, d3) < caad/e.

The boundary conditions of Hy are not difficult to estimate. First, Hg
equals 0 on d;. Second, at fixed a we deduce from the uniform convergence
of fs that

() — T | [ (Vb (@) - /' () e | = o(1in(2)) = o(e)

on R(a,¢), where o(t) means that the term tends to 0 as ¢ tends to 0.
Finally, note that Hjs is also uniformly bounded by a constant c3 > 0 on
OR(«,e) and therefore the boundary conditions are uniformly bounded on
0Os.

Altogether, by distinguishing in (8.20) between the three parts 0y, Ja
and J3 of the boundary, we find that

H3(Bo) <0+0(e)-c1/e + c3 - cadarfe = (cro(1) + cac3 <),

where the term o(1) tends to zero as € tends to 0. This implies that

o 2 rre a
|F5(v5)—\/m/)’(v)’ = H5(Bo) <c1o(1) +cac3 .
When §, and then « and € tend to 0, we obtain that 1 = lims_o F5(v§) =

' (v). This implies that p =1/ (v). O

8.3.6 Discrete version of BVP;

We will sometimes be facing s-holomorphic functions with singularities,
i.e. medial-vertices inside €25 where the function is not s-holomorphic. We
briefly explain how the problem of discrete singularities can be addressed.
We refer to [HS11] and [Hon10a] for a complete study of this case and we
focus on BVP3 as an example. Let 5 be a discrete domain.
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Definition 8.36. Let z§ € Qf and f5: Q5 \ {z§} - C. We say that fs has
a simple pole at z§ with discrete residue p if

e f5 is s-holomorphic on Qf \ {z§}.

e There exists A € C such that the function fs satisfies:

Pyens) M = Poens)[fs(NE)],

Press) M = Pues) [fs(SE)],
Pyeryw) [N +271] = Pyepy) [fs(NW)],
Pyesy) A +2mp] = Pyiegy ) [fs(SW)],

where NE, NW, SW and SE are the medial vertices adjacent to
x5, and eNg, enw, eng and egg are the medial edges between x§
and NE, NW, SW and SE respectively (once again the indexation
refers to cardinal directions).

The function fs can be thought of as a s-holomorphic function on a
graph where the medial-vertex x§ is split into two end-points z* and z~ of
degree 2, with fs(z*) = X and fs5(z7) = A + 2. With this interpretation,
one may easily check that the integrals along discrete contours (see (8.4)
for the definition of the integral of a discrete contour) surrounding the
singularity x§ are equal to 2mip. Indeed, one may check this fact by
looking at the contour composed of the vertical medial-edge passing by z™*
and coming back by 7. Then, the integral equals i(\ + 27 u) — i\ = 2mwip.
Any other contour integral can be obtained by adding integrals of contours
not surrounding the singularity which are therefore equal to 0.

The definition above thus corresponds to a discrete version of residues.
In particular, if 41 = 0, then one may extend fs at 2§ by setting fs(z5) = A.

In the continuum, singularities are usually removed by subtracting
Green functions. In the discrete context, we will do the same and it is
therefore necessary to introduce a discrete s-holomorphic Green function.
Discrete holomorphic Green functions were already constructed in [Ken00,
Proposition 10] using dimers. Namely, consider the function of (¢,s) € Z?
defined by

c L S Ry
07 >t = f f .. .
[0, (s 1)) 472 Jo 0o 2isin(0) +2sin(¢) ¢

and set C[z1,22] = C[0,22 — z1]. Kenyon studied the asymptotic of this
function and proved that it is discrete holomorphic. The functions C'(-, z)
are not s-holomorphic but relevant linear combinations of them are, as
noticed by Hongler and Smirnov in [HS11].

Definition 8.37 (s-holomorphic Green function). For any z§ # 22 on
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(072)°, we set Gy(x2,23) = G(%, %), where
G(x,z) = 4m cos (%) ¢'8 (Co(2x +1,22) + Co(22 - 1,22))

.3
+ 47rsin(%) e "8 (Co(2x-1,22) + Co(2x +1,22)) .

The fact that the formula is explicit allows us to derive the convergence
of this Green function from the convergence result of Kenyon.

Proposition 8.38. Let x # z, then
1
Gs(z3,25) — ——  when § —>0
z—x

uniformly on any compact subset of C~ {x}.

We are now in a position to state and solve BVP3. Let z§ € QF. The
function f5:Qf§ — C satisfies the discrete BVP3 if
e f5 is s-holomorphic on Qf \ {z3},
o Im(f5(2)v(2)Y?) =0 for any z € 9Q,
o fs5 has a singularity at «§ with residue 1.

In the following statement, we extend the notion of Carathéodory
convergence to a simply-connected domain 2 with a marked point x inside.
A sequence of domains (23, z§) converges to (£2, ) if the conformal map
gs : D~ QF (here Qf is seen as a subdomain of the plane as explained in
Chapter 3) with g5(0) = 2§ and g5(0) > 0 converges on every compact of
D to the conformal map ¢: D~ Q with ¢g(0) =z and ¢'(0) > 0.

Theorem 8.39 (Hongler, Smirnov [HS11]). Let Q be a simply connected
domain with a marked point x inside Q). Consider a family of discrete
simply connected domains Q5 with x5 a medial-vertez in Q5. We assume
that (Q25,x5) converges to (2, x) in the Carathéodory sense. Let fs be the
s-holomorphic solution of BVP3, then fs —gs can be extended at x5 and
the extension satisfies that

4 (= L—i L ifz+x
G VTR 55 -1) - = 22w

-i¢'(x) otherwise

6=

when § — 0

uniformly on every compact subset of 2, where ¢ is the unique conformal
map from  to the unit disk D, with ¢(x) =0 and ¢'(z) > 0.
Since G itself converges to 1/(z —x), the previous theorem implies that

fﬁmm((ﬂl))

uniformly on every compact subset of Q~\ {z}.
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Proof. (sketch) By linearity the discrete residue of hs := fs — G is 0.
Therefore, this function can be extended to an s-holomorphic on Q5. As a
consequence, h; is solving a Riemann-Hilbert BVP which is a discretization
of the BVP

h holomorphic on 2 and Im[(h + g)y1/2] =0 on 02

with g = 1/(z — x). Since Gs converges to —— when ¢ tends to zero, a

trivial extension of Theorem 8.27 implies that hs is precompact on every

compact subset of 2. One may then show that any sub-sequential limit

of hs tends to a solution of the Riemann-Hilbert BVP listed above. This

part of the proof, which is omitted, is the most technical one of course.
We conclude by checking that

hao(2) = V¢ (2)v ¢,(Z)(¢(12) _i) B (zix)

is the unique holomorphic solution of the Riemann-Hilbert BVP above
with ¢ = 1/(z — ). Solutions of continuous Riemann-Hilbert BVP of
this kind are classically unique: simply subtract two solutions to obtain
a solution with g = 0, and then use the fact that the imaginary part of
the primitive of the square is harmonic and constant on the boundary
(it is thus constant everywhere and the square-root of the derivative is
equal to 0). We therefore focus on the fact that hq , is indeed a solution.
Obviously, it is holomorphic inside 2. Since solutions to this Riemann-
Hilbert BVP are conformally covariant (with covariance exponent 1/2), it
is in fact sufficient to check that hq , is a solution for =0 and Q@ =D. We
then have ¢(2) = z and therefore at z = ¢!, we have that v(z) =iel? and

Im(\/m\/m(ﬁ - i)u(z)l/z) = Irll(ei7r/4e_19/2 + e_i”/4eie/2) =0.

Therefore, hp o is indeed a solution of the BVP when 2 =D and z =0 and
the result follows. O




Chapter 9

Conformal invariance of
the FK-Ising and Ising
models

There are many different definitions of conformal invariance for a model.
For instance, one may speak of conformal invariance of interfaces.
Alternatively, conformal invariance can also refer to the fact that relevant
observables of the model are conformally covariant in the scaling limit. In
this chapter, we explore these different aspects of the conformal invariance
of the Ising and FK-Ising models. We only deal with critical models and
we therefore fix p = p.(2) and B = B. in the whole chapter.

The chapter is organized as follows. The two first sections are devoted
to the proof of conformal invariance of interfaces. This proof follows a
program whose scope exceeds the case of the Ising and FK Ising model.
The program proceeds in two main steps.

1. First, one proves that a certain observable of the model is conformally
invariant in the scaling limit. In order to do so, we show that the
observable is solution of a certain discrete BVP, and we harness the
theory of discrete holomorphic functions to prove that the solution
of this discrete BVP problem converges as the mesh size tends to 0
to the solution of its continuum counterpart.

2. Second, we show that the conformal invariance of this observable
is sufficient to prove conformal invariance of interfaces or other
measurable quantities of the scaling limit.

The last section presents a brief summary of other Ising properties which
have been proved to be conformally invariant in the last few years.

Before starting, let us recall the definition of a conformally covariant
family of functions.

232
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Definition 9.1. A family of functions Fg4,...q4, : € = C indexed by
simply connected domains with marked points ay, . .., a, € Q is conformally
covariant if there exist a, &', 81,81, - .., B1,, Bn > 0 such that for any domain
Q and any conformal map ¢ :  — C (i.e. holomorphic and one-to-one),
for every z € (Q,

Fp@)p(ar) o itan) (0(2)) -
= ()2 (2) - (a1) 19 (a1) P4 (@) P (an )P0 - Fay,oan (2)-

If a=p=p]=-=pn=p, =0, the family is said to be conformally
nvariant.

Ezxample. An archetype of a conformally covariant family of functions is
the solution to boundary problems such as Dirichlet or Riemann-Hilbert
BVPs.

9.1 Conformal invariance of the Ising and
FK-Ising fermionic observables

A family of observables for random-cluster models with general cluster-
weights ¢ were introduced in Chapter 6. It was argued that the scaling
limits of these observables should be holomorphic when ¢ € [0,4].
The boundary conditions can be determined and correspond to discrete
Riemann-Hilbert BVPs. It provides a good hint that the scaling-limit of
the observable is conformally covariant. Unfortunately, the observables
are not entirely determined by their boundary conditions and the local
relations that they satisfy and it is therefore not possible at the moment
to prove the convergence to a conformally covariant family of functions.

When ¢ = 2 (the case of FK-Ising), the fermionic observable satisfies
specific additional integrability properties that allow us to prove its
s-holomorphicity. The Ising model is also conformally invariant in this
sense: the conformally covariant observable is the fermionic observable
introduced in Chapter 7. We now discuss these two cases.

9.1.1 Convergence of the FK fermionic observable

In this section, we consider a simply connected domain 2 with two marked
points a and b on its boundary. We will work with discretizations of this
Dobrushin domain. For (£23,a3,b3), define the vertex fermionic observable
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by

53 F([w) if v e Q2 \ 902,

u~v
2
—— > F([uv if vedNs,
5 T F([w) ;
where Fs([uv]) is the edge fermionic observable at the edge [uv] defined
in Chapter 6.

Fs(v) = F(Q3,a3,b5,pe,2,v) =

Theorem 9.2 (Smirnov [Smil0]). Let (2,a,b) be a simply connected
domain with two marked points on its boundary. Let (2,a5,b5) be a
family of Dobrushin domains converging to (2,a,b) in the Carathéodory
sense. Let Fs(v) be the vertex fermionic observable in (Q25,a5,b5). We
have

1
——F5(- () when d -0 9.1
N 5() = Vo'() - (9.1)
uniformly on any compact subset of Q, where ¢ is any conformal map from
Q to the strip R x (0,1) mapping a to —oo and b to co.

Recall the definition of e, from Chapter 3 and note that |2ep| = v/26.
Therefore, when rotating the lattice as in [Smil0], we find the original
formulation back.

We aim at proving that \/%Tng is a s-holomorphic solution of BVP;.
The key ingredient is the fact that the spin o takes the special value 1/2.
This enables us to determine the complex argument (modulo 7) of the
observable.

Beware of the fact that Fjs is the vertex fermionic observable. We will
use the same notation for the edge fermionic observable Fs(e) defined on
the edges of Q3.

Lemma 9.3. For an edge e € 3, ﬁF(s(e) belongs to £(e).

Proof. The winding W, .)(e,ep) at an edge e can only take its value in
the set W +27Z where W is the winding at e of an arbitrary oriented path
going from e to e,. Therefore, the winding weight !V~ (€:¢0)/2 inyolved
in the definition of Fs(e) is always equal to V/2 or —e"/2 ergo Fs(e) is
proportional to /2. Since \/%elwﬂ belongs to £(e) for any e, so does
\/%HF(;(S). O
We are now in a position to prove s-holomorphicity.

Proposition 9.4. The vwvertex fermionic observable \/%Fg s

s-holomorphic.
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Proof. Consider a medial vertex v € Qf \ 95 first. Four medial vertices
are adjacent to v. We index them by NW, NE, SE and SW (the notation
refers to cardinal directions once more). Write 0 = 1/2 = 1 - 0. When
rewriting (6.2) of Lemma 6.10 by setting 1/2 =1 - o, we find

F5(NW) + F(s(SE) = F(;(NE) + F(;(SW)

and therefore
Fg(NW) + Fg(SE) = Fg(NE) + F(;(SW)
The previous equation and the definition of the vertex fermionic observable

imply

Fg(v 2 Z Fg( uv]) Fg(NW) +F5(SE) Fg(NE) +F5(SW)
Using Lemma 9.3, ﬁFg(NW) and ﬁF(g(SE) belong to ((NW)
and ¢(SE) (they are in particular orthogonal to each other), so that
(and similarly

for other edges). Therefore, for a medial edge e = [zy], \/%Fg(e) is the
projection of \/%EF(;(I) and \/%EFg(y) with respect to f(e). A direct

consequence is that the two projections are equal, a fact which implies
that the vertex fermionic observable is s-holomorphic.

Let us now treat the case of v € 9Q5. We assume without loss of
generality that v € 95, and we set x to be the primal-vertex bordered by
v. Let e and €’ be the two medial edges of 2§ incident to v. Lemma 6.11
implies that

gebme )= [3Wez, (e:e)] - 650

[ Wae, (¢, eb)] pcb2Q

We deduce that

Pyey(Fs5(v)) = [Pe(e (Fs(e)) + Pyey(Fs(e' ))]

2
f
T2y f

Zj/i was introduced in order to have this property.)
If e = [vw], we deduce that

Pyey(F5(v)) = Fs(e) = Pyey(Fs(w)),

where in the second equality we have used the fact that w belongs
to Qf N 093 (and we can therefore apply what we proved previously).
A similar statement can be proved for ¢/, and we deduce that Fj is
s-holomorphic at v, thus concluding the proof. O

[F5(6)+cos( )Fg(e)] Fs(e).

(The normalization
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Proof of Theorem 9.2. The previous proposition shows that J%Tng
is s-holomorphic. By construction, the exploration path must go through
ep so that Fs(ep) = 1. Furthermore, we know from the previous proof that

\/%Fg(eb) is the projection of ﬁFg(bE) on £(ep), so that

1y )] Fy(en) -

1
Py .
Z( b) [ / / eb /2eb

Finally, consider a medial vertex v e 005 \ {aj, b3} incident to two medial
edges e and €’ of Q5. Assume that v € 9%, (the case of v € 9, can be
treated similarly). Lemma 6.11 once more shows that

LFé(v) 1
oy V2, 2+ f
_ %@b : +2\/§(e§W3:b(e,€b) L o2Wes, (¢ ’eb))¢?1657,l;i,2[e €]
_ 1 4cos(m/8) ei(Wao (e.e0)+Woe (e, e)) Pl Tee .
V2ep 2+ \/5 et
1/2

[F(;(e) + Fg(e )]

In particular, \/%Fg(’lj) is collinear with v, '“ (recall the definition from

Section 8.3.4).

Overall, \/%Fg satisfies BVP;. Theorem 8.29 guarantees the
convergence of \/%F‘; towards /@', where ¢ is the conformal map from
Q to R x (0,1) mapping a to —oo and b to co. This gives us the result. O

9.1.2 Convergence of the spin fermionic observable

Let us turn our attention to the spin fermionic observable. Recall that €
is flat near v if there exists € > 0 such that

v+ [-£,e]x(0,e] =Qn (v + [-¢,£]?).

Theorem 9.5 (Chelkak, Smirnov [CS12]). Let Q be a simply connected
domain with two marked points u and v on its boundary; we assume that
the boundary is flat in a neighborhood of v. Let Q05 be a family of discrete
domains with two medial-vertices us and vy on their boundary. We assume
that (Q5,us,v§) converges to (Q u,v) in the Carathéodory sense and that
the boundary of Q5 is flat near vy. Let Fs = FQo o0 be the fermionic spin
observable defined in Chapter 7, then

¥'()
P! (v)

F5(-) - when 6 — 0 (9.2)
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uniformly on every compact subset of ), where 1 is any conformal map
from Q to the upper half-plane H, mapping u to co and v to 0.

Proof. We wish to prove that Fj is the solution of BVP5. Theorem 8.34
will then imply the result immediately. Recall the definition of v(z) from
Section 8.3.4.

Let us prove that for § > 0,

e Fj is s-holomorphic on €,
o Re(F5(2)v(2)Y?) =0 for any z € 902 ~ {ug},
[ ] F5 (Ug) =1.

The third condition is guaranteed by the normalization. The second
condition follows from considerations close to the case of the FK-Ising
model. Indeed, any interface ending at xz§ € 0§25 has the same winding
denoted by W(x3) (once again, no curve can wind around the boundary
before arriving at a boundary vertex). Since this winding does not
depend on the loop-configuration in gg(ug,mg), the complex argument
of the observable is equal to —$[W(z§) - W(vs)] modulo 7. Now,
the flatness condition implies that v§ is the medical-vertex south of a
boundary vertex. The second condition then follows from the fact that
v(x) M2 = e 2 [WED-WE] i this case.

Let us now prove the first condition. Let x and y be two adjacent medial-
vertices connected by the medial-edge e = [zy]. Let B be the vertex of
Qs bordering the medial-edge e. Let us further assume that x and y are
the vertices respectively south and east of B (other cases may be handled
similarly). Set x, and y, for the contribution of w to Fs(z) and Fs(y).
We wish to prove that

> Puey(@e) = Y Puey(y)- (9.3)

The curve y(w) finishes at z,, or at y,, so that w cannot contribute to both
Fs(x) and Fs(y) at the same time. Thus, it is sufficient to partition the
set of configurations into pairs of configurations (w,w’), one contributing
to x, the other one to y, such that Py)(2w) = Pye) (yur)-

There are six types of pairs that one can create depending on what vy(w)
does, where y(w) denotes any non-self-crossing path from u§ to . In each
case of the following list, there is a trivial way of associating configurations
in the two sets; see Fig. 9.1 for more details. Cases Cla and Clb (resp.
C3a and C3b) can be obtained from each other by exchanging the roles of
x and y.

Cla  — 7(w) reaches z before B and stops, and there is a loop going
through B but not through .
— v(w) reaches x and then y in one step (more precisely there is
a choice of v(w) doing so).
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Figure 9.1: The different possible cases in the proof of Theorem 9.5: w is
depicted at the top, and w’ at the bottom of each case.

Clb  — v(w) reaches y before B and stops, and there is a loop going
through B but not through .
— ~(w) reaches y and then x in one step (more precisely there is
a choice of v(w) doing so).

C2  — 7(w) reaches B first and then makes a half-step to finish at x.
— ~(w) reaches B first and then makes a half-step to finish at y.

C3a  — 7(w) reaches y before B and stops, and there is a loop in w
passing by B and .
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— v(w) reaches y, B, then leaves before coming back to x.

C3b  — v(w) reaches x before B and stops, and there is a loop in w
passing by B and y.
— v(w) reaches x, B, then leaves before coming back to y.

C4  — ~(w) reaches B before reaching  and then goes around before
coming back to y.

— v(w) reaches B before reaching y and then goes around before
coming back to x.

Now, the formule for z,, and ¥, enable us to express ¥, in terms of x,, in
each case (very much in the same way as for random-cluster models). We
obtain the following table for y, in terms of x,. Moreover, the argument
modulo 7 of contributions z,, is known in each case since the orientation
of e is known and vj is a boundary medial-vertex south of a vertex in
the domain. When projecting on e"™/3R, the result follows (we use that

tan(7/8) =+/2 -1 in Cases 1(a) and 1(b)).

config. | Case1(a) | Casel(b) | Case2 | Case3(a) | Case3(b) | Case4
Yor %xw ez;ri To e—iﬂ'/4xw 63i7r/4xw 63”/4%, 6_5”/4xw
arg T,
mod 7 /2 0 0 /2 /2 /2
O

9.2 Conformal invariance of interfaces

Let us now discuss conformal invariance of interfaces. Before starting
proving the convergence of interfaces in the FK-Ising and the Ising models,
we would like to identify a family of curves which would be a natural
candidate for the scaling limit of such interfaces.

Recall that a domain is a simply connected open set not equal to C.
We will consider families of random curves (I'(q q,4)) indexed by domains
with two marked points a and b on their boundaries. The curves T'(q 4 1)
are random non-self-crossing continuous curves in  parametrized in such
a way that they start at a and end at b. Recall the following two notions.

Definition 9.6 (Conformal invariance). A family of random non-self-
crossing continuous curves 7(q,q.), going from a to b and contained in
2, indexed by simply connected domains with two marked points on the
boundary (£2,a,b) is conformally invariant if for any (£, a,b) and any
conformal map ¢ : Q - C,

Y (V(Q,a,b)) has the same law as vy (), v(a),v(b))-
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The domain Markov property (for random-cluster models) and the DLR
condition (for Ising or other spin models) imply that interfaces in lattice
models naturally satisfy the following property.

Definition 9.7 (Domain Markov property). A family of random
continuous curves I'(q 4 p), going from a to b and contained in 2, indexed
by simply connected domains with two marked points on the boundary
(Q,a,b), satisfies the domain Markov property if for every (€,a,b) and
every t > 0, the law of the curve I'(q 4 3 [£, 00) conditionally on I'(q 4 5[0, ]
is the same as the law of I'(q, r, 1), where {); is the connected component
of Q \T[0,¢] having b on its boundary.

As discussed in the introduction, Schramm proposed a natural
candidate for the possible conformally invariant families of non-self-
crossing continuous curves satisfying the domain Markov property, called
the Schramm-Loewner Evolution (SLE). These random curves are indexed
by a parameter « > 0 and we usually write SLE(k) for the Schramm-
Loewner Evolution with parameter k.

Remark 9.8. There exist different kinds of SLE. The curve can go from
boundary point to boundary point (in this case it is called chordal) or
from a boundary point to a point inside the domain (in this case it is
called radial). The curve can also have driving points (we then speak of
SLE(k,p)). In this book, we will only deal with chordal SLEs.

One of the first and most fundamental models for which convergence to
SLE is known is site percolation on the triangular lattice [Smi01, Smi05,
CNO07] (in such case it converges to SLE(6)). In [LSW11], loop-erased
random walks were shown to converge to SLE(2). In [SS05], an ad-hoc
model, called the harmonic explorer, was shown to converge to SLE(4).

In the next sections, we will show that the interfaces of the FK-Ising
and Ising model converge to SLE(16/3) and SLE(3) respectively but let
us start first by briefly describing SLEs.

9.2.1 A crash-course on Schramm-Loewner Evolution

In this section, several non-trivial concepts about Loewner chains are used
and we refer to [Law05] for details. We do not aim for completeness
(see [Law05, Wer04, Wer05] for deeper expositions). We simply introduce
notions needed in the next sections. We first explain how a curve between
two points on the boundary of a domain can be encoded via a real function,
called the driving process. We then explain how the procedure can be
reversed. Finally, we define the Schramm—Loewner Evolution.
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From curves in domains to the driving process. Set H to be the
upper half-plane R x (0, 00). Fix a compact set K c H such that H = H\ K
is simply connected. Riemann’s mapping theorem guarantees the existence
of a conformal map from H onto H. Moreover, there are a priori three
real degrees of freedom in the choice of the conformal map, so that it is
possible to fix its asymptotic behavior as z goes to oo. Let gx be the
unique conformal map from H onto H such that

g (z) = z+9 +O(i2).
z z
The proof of the existence of this map is not completely obvious and
requires Schwarz’s reflection principle. The constant C is called the
h-capacity of K (it acts like a capacity: it is increasing in K and the
h-capacity of AK is A? times the h-capacity of K).

There is a natural way to parametrize certain continuous non-self-
crossing curves I': R, — H with I'(0) = 0 and with I'(s) going to co when
s = oo. For every s, let Hg be the connected component of H \ T'[0, s]
containing co. We denote by K the hull created by T'[0,s], i.e. the
compact set H\ H,. By construction, K, has a certain h-capacity C,. The
continuity of the curve guarantees that Cs grows continuously, so that it is
possible to parametrize the curve via a time-change s(t) in such a way that
Cy(1y = 2t. This parametrization is called the h-capacity parametrization.

From now on, we will assume that the parametrization is the h-capacity,
and reflect this by using the letter t for the time parameter from now on.

Remark 9.9. In general, the previous time change is not a proper
parametrization. For instance, the h-capacity is not necessarily increasing
since any part of the curve “hidden from co” will not make the h-capacity
grow. It might also be the case that ¢ does not go to infinity along the
curve (e.g. if I' “crawls” along the boundary of the domain).

With this notation, the curve can be encoded via the family of conformal
maps ¢; := gk, from H; to H, in such a way that

2t 1
gt(Z) =+ — +O(7)
z z
Under mild conditions, the infinitesimal evolution of the family (g;) implies
the existence of a continuous real valued function W; such that for every
t and z € Hy,

2
gi(2) =Wy
The function W; is called the driving function of I'.  The typical
required hypothesis for W to be well-defined is the following Local Growth
Condition:

Orgi(2) = (9.4)



242 Hugo Duminil-Copin

For any t > 0 and for any € > 0, there exists § > 0 such that for any
0 < s <t, the diameter of gs(Ksis ~ Ks) is smaller than €.

This condition is always satisfied in the case of continuous curves (in
general, Loewner chains can be defined for families of growing hulls, see
[Law05] for additional details).

From a driving function to curves. It is important to notice that the
procedure to obtain W from - is reversible under mild assumptions on the
driving function: if a continuous function (W;)sq is given, it is possible
to reconstruct H; as the set of points z for which the differential equation
(9.4) with initial condition z admits a solution defined on [0,¢]. We then
set Ky = H\ Hy. The family of hulls (K)o is said to be the Loewner
Evolution with driving function (W) 0.

So far, we did not refer to any curve in this reverse construction. If
there exists a parametrized curve (I'¢)so such that for any ¢ > 0, Hy is
the connected component of H \ T'[0,¢] containing oo, the Loewner chain
(K)¢s0 is said to be generated by a curve. In such case, (T'(t))sso is called
the trace of (Kt)so0-

A general necessary and sufficient condition for a parametrized family of
growing hulls in (€, a,b) to be the time-change of the trace of a Loewner
chain is:

(C1) Its h-capacity is continuous;
(C2) Its h-capacity is strictly increasing;
(C3) The hull satisfies the Local Growth Condition.

The Schramm-Loewner Evolution. We are now in a position to
define Schramm-Loewner Evolutions:

Definition 9.10 (SLE in the upper half-plane). The Schramm-Loewner
Evolution in H with parameter x > 0 is the (random) Loewner chain with
driving process W; := \/kB;, where B; is a standard Brownian motion.

Loewner chains in other domains are defined using conformal maps.

Definition 9.11 (SLE in a general domain). Fix a domain Q with two
points a and b on the boundary and assume it has a nice boundary
(for instance a Jordan curve). The Schramm-Loewner evolution with
parameter k > 0 in (£2, a, b) is the image of the Schramm-TLoewner evolution
in the upper half-plane by a conformal map! from H onto £ mapping 0 to
a and oo to b.

1The scaling properties of Brownian motion ensure that the definition does not
depend on the choice of the conformal map involved; equivalently, the definition is
consistent in the case Q2 = H.
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Defined as such, SLE is only a random family of growing hulls, but the
Loewner chain can in fact be shown to be generated by a curve (see [RS05]
for k # 8 and [LSW11] for x = 8).

Let us conclude this section by mentioning the following result from
Schramm [Sch00] which justifies why SLE traces arise in planar statistical
physics. Interfaces in lattice models usually satisfy the domain Markov
property, due for instance to the DLR condition or the domain Markov
property of the lattice model itself. Therefore, the following result justifies
SLE processes as the only natural candidates? for such scaling limits.

Theorem 9.12 (Schramm [Sch00]). Ewery family of random curves
F(an_’b) which

e is conformally invariant,

e satisfies the domain Markov property,

e satisfies that 'y 0,00) s scale invariant,
is the trace of a Schramm-—Loewner evolution with a certain parameter
K €[0,00).

Remark 9.13. It is formally not necessary to assume scale invariance of
the curve in the case of the upper-half plane, because it can be seen as
a particular case of conformal invariance; we keep it nevertheless in the
previous statement because it is potentially easier, while still informative,
to prove.

9.2.2 Statements of conformal invariance for FK-Ising
interfaces

We are now in a position to state the theorem of conformal invariance for
interfaces of the FK-Ising and Ising models. Let us start by the former.
Let X be the set of continuous parametrized curves and d be the distance
on X defined for 1 : I - C and 75 : J — C by

d(y1,72) = min  sup  |y(pi(t)) = y2(p2(8))],
©1:[0,1]=>T te[0,1]

p2:[0,1]>J

where the minimization is over increasing bijective functions p; and @a.
Note that I and J can be equal to R, u{oo}. The topology on (X, d) gives
rise to a notion of weak convergence for random curves on X.

Recall that we are at criticality, i.e. p=p.(2).

2In fact, this is a bit of an exaggeration: some variants of SLE can also rise as scaling
limits of interfaces.
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Theorem 9.14 (Chelkak, Duminil-Copin, Hongler, Kemppainen, Smirnov
[CDCH*13]). Let Q be a simply connected domain with two marked points
a and b on its boundary. Let (Q5,as,bs) be a family of Dobrushin domains
converging to (,a,b) in the Carathéodory sense. The exploration path
s of the critical FK-Ising model with Dobrushin boundary conditions in
(Qs,as,bs) converges weakly to SLE(16/3) as 6 — 0.

The strategy to prove that a family of parametrized curves converges to
SLE(x) follows two steps:

e First, we prove that the family (7s) is tight for the weak convergence.

e Second, we identify the possible sub-sequential limits.
This second step is based on the fermionic observable. More precisely,
imagine for a moment that a sub-sequential limit v can be parametrized
by a Loewner chain, and that its driving process is given by W. We will
show that the fermionic observable may be seen as a martingale for the
exploration process, a fact which implies that its limit is a martingale for
~. This martingale property, together with It6’s formula, will allow us
to prove that W; and W32 - st are martingales (where k equals 16/3 for
the FK-Ising model). Lévy’s theorem thus implies that W; = \/kB;. This
identifies SLE(k) as being the only possible sub-sequential limit, which
proves that (vs) converges to SLE(k).

In order to apply the second step it is crucial to have a strong notion
of tightness in the first step to ensure that any sub-sequential limit can
be parametrized by its h-capacity in such a way that a driving process
is well-defined and continuous. This first step can be performed for any
critical random-cluster model with 1 < ¢ <4 and is based on Property P5
of Corollary 6.16. We present it here.

9.2.3 Sub-sequential limits of critical random-cluster
interfaces are Loewner chains for 1 <qg<4

Since the result is valid for any random-cluster model with ¢ € [1,4], we
state it in this degree of generality. One may skip this section altogether
and simply assume that the following informal statement is known. We will
consider convergence for the metric space (X,d) and therefore tightness
with respect to this topology.

Pseudo-theorem. The family of exploration paths (7s) is tight and
any sub-sequential limit can be properly parametrized as a Loewner chain
(generated by a curve) with continuous driving process.

The precise version of this pseudo-theorem is the following much more
technical result. We include it for completeness but this may be skipped in
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a first reading. The proof itself is based on the strong form of the Russo-
Seymour-Welsh theorem proved in the previous chapters and on a highly
non-trivial result of Kemppainen and Smirnov [KS12].

Theorem 9.15 (Duminil-Copin, Sidoravicius, Tassion [DCST13]). Fiz
1<qg<4, p=pq) and a simply connected domain Q with two marked
points on its boundary a and b. Let (Qs,as5,b5) be a sequence of Dobrushin
domains converging in the Carathéodory sense towards (2,a,b). Define
s to be the exploration path in (Qs,as,bs) with Dobrushin boundary
conditions. Then, the family (vs) is tight and any sub-sequential limit
v satisfies the following properties:

R1 v is almost surely a continuous non-intersecting curve from a to b
staying in Q.

R2 For any parametrization v : [0,1] — Ry, b is a simple point, in the
sense that v(t) = b implies t = 1. Furthermore, almost surely v(t) is
on the boundary of QN ~[0,t] for any t € [0,1].

R3 Let ® be a conformal map from € to the wupper half-plane
H sending a to 0 and b to oo. For any parametrization
v:[0,1] = Ry, the h-capacity of the hull K, of ®(v[0,s]) tends to
oo when s approaches 1. Furthermore, if (K)o denotes (Ks)se[o,l]
parametrized by h-capacity, then (I?t)tzo is a Loewner chain with a
driving process (Wi)i0 which is a-Hdolder for any o < 1/2 almost
surely. Furthermore, there exists € > 0 such that for any t > 0,
E[exp(eW;/v/t)] < 0.

Condition R3 guarantees that any sub-sequential limit can be parametrized
by its h-capacity and is obtained by the Loewner Evolution with a certain
continuous driving process. It also shows that the convergence of driving
processes is equivalent to the weak convergence in (X,d). Finally, R2
guarantees that the Loewner chain is generated by a curve.

Proof. In order to prove Theorem 9.15, [KS12] shows that we only need
to check the condition G2 defined now. Consider a fixed domain (£, a,b)
and a parametrized continuous curve I' from a to b in Q. A connected set
C is said to disconnect T'(¢) from b if it disconnects a neighborhood of T'(¢)
from a neighborhood of b in Q N T[0,¢].

Fig. 9.2 will help the reader here. For any annulus A = A(z,r, R) :=
z+ (Ar~Ay), let A; be the subset of 2 satisfying A := @ if 9(z + A,) n
I(2~T[0,t]) = @, and otherwise

L ANT[0,¢] such that the connected component of z
¢ in ANT[0,t] does not disconnect I'(¢) from b in Q \T[0,¢]

Consider the exploration path vs; as a continuous curve from a§ to b
parametrized in such a way that it goes along one medial vertex in time
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1 (in particular, after time n the path explored n medial-vertices). For
simplicity, once the path reaches b3, it remains at bj for any subsequent
time (and therefore 7s is a curve parametrized by positive real numbers).

Condition G2. There exists C <1 such that for any (vs) in (Qs,as,bs),
for any stopping time 7 and any annulus A = A(z,r,R) with 0 < Cr < R,

P (’}/5[7', o] makes a crossing of A contained in A 75[0,7']) < %

pe(q),q,92s
where a crossing is a portion of the path connecting the inner and outer
parts of A.

We now prove this condition. Let A(z,7, R) and A, as defined above.
We can fix a realization of 75[0, 7], and work in the slit Dobrushin domain
(Qs5 ~7v5[0,7], cs,bs) (see the next paragraph for a precise definition of a
slit domain?).

See A, as the union of connected components of the Dobrushin domain

§ seen as an open domain of R? minus the path ~5[0,7]. We denote
generically a connected component by C (we see it as a subset of R?).

The connected components can be divided into three classes:

e OC intersects both 0%,. and 0y, .;
5768 ()
¢ OC intersects 0, .. but not 8;% be'
e JC intersects 0% ;. but not dy ..
576 576
In fact, there cannot be any connected component of the first type. Indeed,
let us assume that such a connected component C does exist. Let v be a
self-avoiding path in C going from 8{%63 to ngbg. Topologically, ¢ and
bs must be on two different sides of v in Q2 \ v. But this means that C
disconnects c§(= vs(7)) from bs, and therefore that C is not part of A,
which is contradictory.

We can therefore safely assume that the connected components are either
of the second or third types. We now come back to the interpretation in
terms of graphs.

Let S be the subgraph of €, given by the union of the connected
components (seen as primal graphs this time) of the second type (see
Fig. 9.2). This set is a subset of A,. Furthermore, the boundary
conditions induced by the conditioning on 5[0, 7] are wired on 95\ 9A,.
Therefore, conditioned on 5[0, 7] and the configuration outside A(z,r, R),
the configuration w in S stochastically dominates wl’ s, where w’ follows the
law of a random-cluster model in A(z,r, R) with free boundary conditions
(we faced similar argument before in this book and we therefore omit the

3We apologize for sending the reader to a forthcoming paragraph, but some readers
will have skipped this part of the book and we preferred to define this object in a more
central part of the book.
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details). In particular, if there exists an open circuit in w’ surrounding
z+ A, in A(z,7,R), then the restriction of this path to S is also open
in w and it disconnects z + A, from z + OAr in S. In particular, the
exploration path ~s[7, 00| cannot cross A, inside S since this would require
the existence of a dual-open path from the outer to the inner part of A..

Property P5’ of Corollary 6.16 implies that this open circuit exists in w’
with probability larger than a constant ¢ > 0 not depending on §, and that
therefore 5[, 00] cannot cross A, inside S with probability larger than ¢
uniformly on the configuration outside A..

Let now S™ be the subgraph of €2 given by the union of the connected
components (seen as dual graphs) of the third type. The same reasoning
for the dual model implies that with probability ¢ > 0, the exploration path
5|7, 00] cannot cross A, inside S*.

Altogether, ~s[7,00] cannot cross A, with probability c?>. Now,
Proposition 5.33 shows that ¢ can be taken to be equal to 1 - (1 -
co)1o82(R/M1 - Since R/r > C, we can guarantee that ¢® > 1/2 by choosing
C large enough. O

9.2.4 Convergence of FK-Ising interfaces to SLE(16/3)

We are now ready to implement the last step of our program and prove
Theorem 9.14.

Let us first start by proving that the observable may be seen as a
martingale. In order to do so, let us introduce the notion of slit domain.
Fig. 9.2 may give a good idea of what it is.

Fix a Dobrushin domain (s, as,bs) and consider the exploration path
~s in the loop representation on 5. The path ~s can be seen as a random
parametrized curve (the parametrization being simply given by the number
of steps along the curve between a medial-vertex in s and aj).

Definition 9.16. The slit domain Qs~v5[0,n] is defined as the subdomain
of Qs constructed by removing all the primal edges crossed by 7s[0,n]
and by keeping only the connected component of the remaining graph
containing bs. It is seen as a Dobrushin domain by fixing the points c;
and bs, where cs is the vertex of 6Z2 bordered by the last medial edge of

5[0, n].

One may associate a dual Dobrushin domain to Q5 \ v5[0,n]. The
marked point is then cjf, where c§ is the dual-vertex of (6Z*)* bordered
by the last medial edge of v5[0,n]. It is worth mentioning that the
construction is symmetric for the dual Dobrushin domain: the dual of
the slit domain Q5 \ v[0,n] is simply the subgraph of Qj obtained by
removing the dual-edges crossed by the curve.
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Figure 9.2: In this picture, ¢t or 7 are equal to n. The dashed area is
a connected component of A \ v5[0,n] which is disconnecting vs(n) from
by, or equivalently c¢; from b5, and which is therefore not in A;. The
black parts are not included in the slit domain since they correspond to
connected components that are not containing b§. Conditioning on 5[0, n]
induces Dobrushin boundary conditions in the new domain. The dark grey
area is S and the light-gray S*. We depicted a blocking open path in S
and a dual-open path in each connected component of S*.

Remark 9.17. The notation 5 \ v5[0,n] could be somewhat misleading
since Qs is a subset of §Z% and 75[0,n] is a path of medial edges.
Nevertheless, we allow ourselves some latitude here since we find this
notation both concise and intuitive.

If one starts with Dobrushin boundary conditions on (€5, as,bs), then
conditionally on ~5[0,n] the law of the configuration inside Qs \ 5[0, n]
is a FK-Ising model with wired boundary conditions on 0Op,., and free
elsewhere. This comes from the fact that the exploration path 75[0,n]
“slides between open edges and dual-open dual-edges” and therefore the
edges on its left must be open and the dual-edges on its right dual-open.
This implies that the arc 0,,., must be wired (and therefore Op,, is since
Opsas Was already wired to start with) and the dual arc Oczar is dual-wired.
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Remark 9.18. Dobrushin domains of the type (5 \ 5[0, 1], as, bs) have

specific properties: agé_(n)bo is self-touching on the right but not on the left
5

and Op, s (n) is self-touching on the left but not on the right. In other words,
)

all doubly-visited vertices on the medial boundary are pinched points and

there is no doubly-visited vertex corresponding to two prime-ends.

We are now in a position to state the martingale-property of the
observable.

Lemma 9.19. Let § >0. The random variable

1
)
Mn(z) = \/2—617F95\’Ys[0771],75(n)7b5 (Z)

is a martingale with respect to (F,) where F, is the o-algebra generated
by 5[0, n].

Proof. The fact that conditionally on 7s[0,n], the law in the slit
domain Qs \ v5[0,n] is a FK-Ising model with Dobrushin boundary
e%iW'Yg(zvbg)

conditions implies that M2 (z) is the random variable ﬁ 1.cy,

conditionally on F,,, therefore it is automatically a closed martingale. O

Proposition 9.20. Any sub-sequential limit of (vs)s>o0 which is a Loewner
chain with has a continuous driving process (more precisely satisfying
Property R3 of Theorem 9.15) is the Schramm-Loewner Evolution with
parameter k = 16/3.

Proof. Consider a sub-sequential limit v in the domain (£2,a,b) which
is a Loewner chain. Let ¢ be a map from (9, a,b) to (H,0,00). Our goal
is to prove that 4 = ¢(vy) is a SLE(16/3) in the upper half-plane.

Since « is assumed to be a Loewner chain, 4 is a growing hull from 0
to oo parametrized by its h-capacity. Let W; be its continuous driving
process. Also define g; to be the conformal map from H\5[0,¢] to H such
that g;(2) = 2+ 2t/z + O(1/2?) when z goes to .

Fix 2z’ € Q. For § > 0, recall that M?(2') is a martingale for v5. Since the
martingale is bounded, the stopping time theorem implies that M2 (z') is
a martingale with respect to F.,, where 7; is the first time at which ¢(~s)
has an h-capacity larger than . Now, we use that Mft (2") converges in the
scaling limit thanks to Theorem 9.14. Since the convergence is uniform?,
My(2") = limg_g Mft(z’) is a martingale with respect to G;, where G; is

40ne would have every right to be troubled by this claim. Hopefully, the doubts
should vanish when reading the paragraph ten lines below.
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the o-algebra generated by the curve 4 up to the first time its h-capacity
exceeds t. By definition, this time is ¢, and G; is the o-algebra generated
by 5[0, ¢].

Recall that M;(z") is related to ¢(z') via the conformal map from
H \ 4[0,t] to R x (0,1), normalized to send 4; to —oo and oo to co. This
last map is exactly %ln(gt - W;). Setting z = ¢(z"), we obtain that

VAM; = RM() = V(@) ST - \‘ O 09)

is a martingale.

Formally, the previous reasoning is not quite rigorous. Indeed, in order
to apply Theorem 9.14, one needs 2’ and the hull of [0, 7¢], or equivalently
z and the hull of 4[0,¢] to be well apart. For this reason, we only obtain
that M7, is a martingale for Gir,, where o is the hitting time of the
boundary of the ball of size R < |z| by the curve 7.

Recall that, when z goes to infinity,

g:(2) = +—+O( ) and g;(z) = 1—%4—0( ) (9.6)

Thus, for s < t,
\/7_TE[ t/\o’|g.s/\0]

~ 1-2(trn0)/22+0(1/23)
_El 2=Wire +2(tn0) /2 +0O(1/22) |QSM]

_ L 1 Lo 2 3
- IE[1+ S Winalz+ 5 (Wi, = 16(t n0)) [2* + O (1/=°) | gsm]
1

VE

Taking s =t yields

N \}_(1+ Wing 2+~ (3W;U— (SAU))/Z2+0(1/Z3)).

Since Mf,, is a martingale, E[M{. |Gsro] = MZ,,. Therefore, terms in
the previous asymptotic development can be matched together by letting

z tend to infinity so that

(1 * %E[Ww\gw]/z + %E[?,WEM ~16(t A 0)|Gsns]/2> + O (1/23)) ,

16
E[Wino|Gsno] = Wins  and E[Wt%\a_?(t/\aﬂgsM] me (5/\0)-

Since the identification only uses the fact that z tends to inﬁnity, one can
now let R go to infinity (and thus o go to infinity as Well) to obtain

E[W|Gs]=W, and E[W;-18G,]=W?- 18

S
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(Note that the integrability condition E[exp(eW;/\/t)] < co was necessary
to justify passing to the limit here.) Since W4 is continuous, Lévy’s theorem

implies that W; =/ 13—63,5 where By is a standard Brownian motion.

In conclusion, v is the image by ¢! of the Schramm-Loewner Evolution
with parameter x = 16/3 in the upper half-plane. This is exactly the
definition of the Schramm-Loewner Evolution with parameter x = 16/3 in
the domain (€, a,b). o

Proof of Theorem 9.14. Theorem 9.15 applied to ¢ = 2 implies
that the family (vs) is tight for the weak convergence in (X,d) and
that any sub-sequential limit can be parametrized by a Loewner chain
with continuous driving process. Proposition 9.20 implies that any sub-
sequential limit is SLE(16/3), and therefore the sequence (5) converges
weakly to SLE(16/3). mi

9.2.5 Convergence to SLE(3) for Ising interfaces

Let €5 be a medial discrete domain with two boundary medial-vertices
uj and vy. We consider the critical Ising model on Qj with Dobrushin
boundary conditions defined as follows. As seen in Chapter 7 (one may
look at Remark 7.29 and Fig. 7.2), the boundary 0 is naturally divided
by ug and vj into two arcs 0- and 0, when going along 0} counter-
clockwise®. Fix the spins of the vertices to be +1 on 9, and -1 on 0_.

Now that we have the Ising measure, we define the interface. The path
s is constructed as follows. It starts from uj, lies on the primal lattice and
turns at every vertex of )5 in such a way that it has always dual vertices
with spin —1 on its left and +1 on its right. If there is an indetermination
when arriving at a vertex (when going counterclockwise around this vertex,
spins could be +1, -1, +1 and -1), turn left. The process thus obtained is
the interface between spins +1 *-connected® to 9, and spins —1 connected
to J-.

Theorem 9.21 (Chelkak, Duminil-Copin, Hongler, Kemppainen, Smirnov
[CDCH*13]). Let Q) be a simply connected domain with two marked points
u and v on its boundary. We assume that the boundary of ) is flat near v.
Let Q5 be a family of discrete domains with u§ and v§ on its boundary. We
assume that (QF,ug,v§) converges to (Q,u,v) in the Carathéodory sense
and that the boundary of QF is flat near vy. Then, the interface vs of the
critical Ising model on Q5 with Dobrushin boundary conditions converges
weakly to SLE(3) in Q from u to v.

5We refer the reader to the construction (presented in Chapter 7) of Dobrushin
boundary conditions on 9.2 when the Ising model is considered on the primal lattice.
This is the relevant adaptation to the dual graph.

60nce again, two vertices are x-neighbors if they are at | - ||o-distance 1.
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Remark 9.22. The choice of turning left when there is an indetermination
was arbitrary. One may equivalently turn right when there is an
indetermination and obtain a different interface 7s. This would correspond
to the interface between spins 1 connected to d; and spins —1 x-connected
to J_. In the scaling limit, s also converges weakly to SLE(3). Now, the
SLE(3) is almost surely a simple curve (see e.g. [Law05]) and therefore in
the scaling limit, vs and 75 converge to the same parametrized curve. This
yields the fact that in the scaling limit, the standard notion of connectivity
and the x-connectivity are equivalent for the Ising model.

An equivalent of Theorem 9.21 can also be proved using the same
argument as in the proof of Theorem 9.14, except that the condition G2
follows from the following result.

Proposition 9.23. Let &, be the event that there exists a circuit of vertices
with spins +1 in the annulus Ag, N~ Ay, surrounding the origin. Then there
exists ¢ >0 such that for any n>1,

15, Ay [En] 2 €.

Proof. We use the Edwards-Sokal coupling P between the Ising measure
with -1 boundary conditions and the FK-Ising measure with wired
boundary conditions obtained by assigning random cluster-spins to clusters
except for the clusters touching dA,, or dAg, which automatically receive
cluster-spin —1.

Divide the annulus Ag, N A, into three annuli A; = Ao, N A,
As = Ay N Ao, and Az = Ag, N Ay, Let F,, be the event that A,
and As contains dual-open dual-circuits surrounding the origin, and A,
contains an open circuit surrounding the origin. Property P5’ for crossing
probabilities in the critical FK-Ising model shows the existence of ¢; > 0
such that

¢117c,2,A8n\An [fn] 2c1

for every m > 1. Now, the Edwards-Sokal coupling guarantees that
conditionally on a configuration in F,,, the cluster of the primal circuit
in Ay receives spin +1 with probability 1/2 (since it is not connected to
the boundary). This implies that

'u/;c,ASn\An [5”] 2 01/2.

O

We now turn our attention to the spin fermionic observable. We prove
that it is a martingale for the curve. Before stating the lemma, let us write
a few things in more detail. Assume we work in (5, u$,vs). The curve 5
lives on s, except the half-edges at its beginning and its end (therefore
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the starting and ending points are medial-vertices). Let us parametrize
the curve in such a way that at time n, the curve contains n vertices on it
(in such case it contains n + 1 medial-vertices).

As before, we define slit domains. We work directly with medial discrete
domains Qf with two marked points u§ and v§ and a curve v5[0,n]. For
such a domain, the slit domain Q3 \ ~45[0,n] is obtained in three steps:

1. Remove all the vertices of Qs visited by v5[0,n] and all the edges
emanating from these vertices;

2. Take the medial graph of each connected component of the new
graph;

3. Keep the connected component containing vs.

One may see by trying to construct slit domains on Fig. 7.2 that the
definition corresponds to the intuition of removing the curve v5[0,n].

Lemma 9.24. Consider the critical Ising model on (QF,ug,v§) with
Dobrushin boundary conditions. Let s be the interface defined above. For
any z € 3, the spin fermionic observable M(z) = Fng(;[o,n],%(n),vg(Z)
is a martingale with respect to (F,), where F,, be the o-algebra generated
by 75[0,7n].

The proof is slightly more intricate than for the FK-Ising model due
to the lack of a direct interpretation of the observable in terms of the
expectation of a random variable. For this reason, we need to work slightly
more but the philosophy is still the same.

Proof. Let ,ug;” be the critical Ising measure with Dobrushin boundary
conditions on €25. In this proof, we work mostly on the medial lattice and
we therefore drop the subscript § and the superscript ¢.

It is sufficient to check that M, (z) has the martingale property when
v = v(w) makes one step ;. In this case Fy is the trivial o-algebra, so
that we wish to prove that

Ng;v [FQ\[U"/l],%,v(Z)] = Fouw(2). (9.7)

Set v =t x and Z and Z, for the partition functions of the Ising model with
Dobrushin boundary conditions on Q0§ with marked points v and v, and in
Qs \ [uz] with marked points 2 and v. The high-temperature expansion
described in Chapter 7 implies that
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Zugt (m=2)=(V2-1)2,
3 eiaWr(@2) (/3 - 1)l

il wegﬂ\[uz](zvz)
(\/5_ 1)6Z2W-Y(I,’U)
FQ\[ux],x,v(Z)

» e~ iEWau2) (/3 1)'“"1{w1:x}

ei%W.y(u,v) we€q (u,z)

FQ\[ux],a:,v(Z)

In the third equality, we used the fact that EQ\[UI] (x,z) is in bijection
with configurations of &y (u, z) such that v; = 2. There is still a difference
of weight of \/2 — 1 between two associated configurations that explains
the disappearance of v/2 — 1 between the second and the third line. Thus,
weE(u,z) e_i%WW (u2) (\/5 - 1)‘WI1{71=1}
E_i%WW(u’U)Z ’

u,v Z
/L,g; (’71 = SC) FQ\[ua:],a:,v(z) =

The same holds for all possible first steps. Summing over all possibilities,
we obtain (9.7) (on the right, we indeed obtain Fg 4, (#), and on the left,
the expectation of Fo[uy,],y:,0(2))- O

We then prove the equivalent of Proposition 9.20 by expanding
V' [Y(v) instead of /¢'. If a sub-sequential limit is a Loewner chain
with continuous driving process W;, the development implies that W; and
W72 - 3t are martingales for the curve. This implies that W; = V3B, and
therefore this sub-sequential limit is SLE(3). The theorem follows.

Remark 9.25. Slit discrete domains Qf\v;5[0, n] have a specific structure:
the boundary 9 is self-touching on the left but not on the right. In other
words, doubly-visited medial vertices are all corresponding to two prime
ends and there is no pinched vertices.

9.3 The energy and spin fields

From a physics point of view, the scaling limit of the Ising model
corresponds to a minimal model of Conformal Field Theory with central
charge ¢ = 1/2. Let us discuss two so-called primary fields: the energy
field and the spin field. The n-point correlations of these two fields
were computed in the full plane in recent years (see [BdT10, BdT11]
for the energy field, and [Dubll] for the spin field). We wish to discuss
these fields in simply connected domains (in particular their conformal
covariance structure). We focus on + boundary conditions, but free
boundary conditions and more general boundary conditions can be treated
(at the cost of additional technical difficulties in the latter).
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9.3.1 Energy field

Before stating the theorem, let us recall what the Pfaffian of a matrix is.
For an anti-symmetric matrix A € Mo, (C), set

1 n
Plaff(A) = o 3 sen(0) [T Ao(zj1).0025),
j=1

: O'ESQn

where Ss,, is the set of permutations of the set {1,...,2n}, and sgn(o)
denotes the signature of the permutation . This definition makes sense
for any matrix. In the case of complex valued entries, we can simply check
that

Pfaff(A)? = det(A).

For 2n distinct points 1, ..., 29, in C, define the matrix
1 o
if ¢+ 7,
K(xy,29,...,20,);; =1 %75
( )i 0 otherwise.

The energy density at an edge e = [xy] is given by the formula’

€e = g — 050y.
The value ? is determined by the fact that in infinite volume,

pp.(0g0y) = g

For a € Q, let e(a’) be an edge having a® for an endpoint (there are a
priori four edges like that, but the choice of the edge is irrelevant).

Theorem 9.26 (Hongler [Honl0a]). Let Q2 be a simply connected domain

and ai,...,a, € Q. Consider a sequence of simply connected domains

Qs with marked points al,...,a2 converging to (Q,ai1,...,a,) in the

Carathéodory sense®. Then,

. 1
o Wﬂﬁc,m [eeqaty  €etas)] = (€ar €an ),
where (4, €a,, ) Satisfies

(€ar++€an)a = ¢ (a1)l+ 19" (an) (€ p(ar) + Ep(an) Jo()

7One may wonder why we do not defined ¢, as g + 020y instead of g - 020y to
avoid some unpleasant signs: the reason is that we wish to keep the physical intuition
of an energy.

81n this context, the Carathéodory convergence corresponds to the fact that (Qs, a‘ls)

converges to (©,a1), and af —> a; for any 2 <7< n.
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for any simply connected domain 2, any a1, ...,a, € Q, and any conformal
map ¢ on S.

Furthermore, for the upper half-plane, we possess the following explicit
formula:

(€ay €ay ) = ﬁ -Pfaff[K(al, .. .,an,@,...,aﬁ)],

where K is the matriz defined above.

Observe that the answer does not depend on the choice of the orientation
of e(a‘s). The result can also be obtained for more general boundary
conditions, and for points on the boundary of smooth domains. Let us
mention that for n =1, we find the following formula.

Corollary 9.27 (Hongler, Smirnov [HS11]). Let 2 be a simply connected
domain and a € Q. Then

_¥(@)

™

(511)(2 =

where ¢ is the conformal map from Q to the unit disk D={zeC:|z| <1}
sending a to 0 and such that ¢'(a) > 0.

We will not prove the theorem, but we will sketch the proof of
Corollary 9.27. We refer to the original articles for more details. Our
goal is to highlight the fact that the different steps of the proof are similar
to the proof of conformal invariance of the spin fermionic observable.

Proof. For simplicity, the Ising model itself will lie on the dual graph
and we are interested in the energy-density for the dual-edge [xy] passing
through the medial-vertex aj. We assume that the dual-edge is vertical.
So far, we considered observables depending on a point u§ on the
boundary of a domain, but we could allow more flexibility and move ug
inside the domain: we define the fermionic observable Fﬂgyag(zg) by

Y e W@ (o - 1)l

UJGEQ(S (a§,23)

> (V21

WGSQS

: < <
if 25 # a3,

Fas as(25) =

> (V2-1)M

weSQJ:eéw

> (V2-1)¥

w€895

if z5 = a3.

(9.8)
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The edge e is the primal edge passing through ag. The choice of the value
of the observable at z§ = aj will be justified by the next paragraphs.

The function Foe 4o can be shown to be s-holomorphic on 5~ {ag} (the
argument is similar to the proof of Theorem 9.5). Now, by computing the
local contributions of the function near aj, the function can be shown
to have a singularity at aj with discrete residue ﬁ Furthermore,
—2miFqe o satisfies some Riemann-Hilbert boundary conditions and
therefore —2miFqs 4o satisfies BVP3.

Thus, Theorem 8.39 implies that %ﬂ_iFﬂg,ag -Gas (-,a$) can be extended
at ay into a s-holomorphic function. Some tedious computations
of the projections around the singularity show that we must set
G(x3,23) = -i(2 + V/2)7/2 in order to extend the function correctly.

The uniform convergence guaranteed by Theorem 8.39 applied to z§ = aj
implies that

1

1 o 2+\/§ i i o 1 /
5 Fagas(a) - =71 = 5[ Fog a3 (a9) = 55Ci(a3,05)] — —'(a).

We now translate this convergence into a result for the energy-density. The

expectation of the energy-density® e(ag) = g - 040y can be expressed
in terms of the existence or not of the edge e via the low-temperature
expansion of the Ising model on the dual graph. Indeed, if o, = 0y, the
edge e separating the two vertices is not present in the low-temperature

expansion and thus

> (V2-1)M
welqyiedw

Ky (0o =)= > (V2-1)-l = Fog.a5(a5)

weggé
which in turn implies that

V2 V2

MEC,Qg [e(ag)] = 5 MEC,QE [020y] = > (QMﬂc,szg(Ux =oy)-1)
2+/2
= ~2(Fag g (a5) - =),
Hence, the previous convergence result implies the result. O

The general results follow after introducing a similar fermionic ob-
servable Fs depending on 2n medial vertices (a$)s, (b)s,-- -, (ad)s, (b%)s
which can be expressed in terms of

MEC,QE [e(ais)e(ans)]

9Recall that in this proof the Ising model is defined on the dual graph so that the
V2

formula e(ag) = *5* — 0goy corresponds exactly to the definition of the energy-density

of the dual-edge passing through a§.
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when taking (a;s)® and (b;5)° two medial vertices which are neighbors
of a;. The fermionic observable can then be proved to satisfy recursive
relations (in terms of ay,...,a,) which are also satisfied by Pfaffians'C.
This implies that the n-point energy correlation also satisfy these relations.
These recursive formulas allow a drastic simplification: it is in fact
sufficient to treat the case n = 2. For this case, technicalities arise but the
general philosophy is the same: one proves that the observable is solution of
a discrete Riemann-Hilbert BVP. Its convergence in the scaling limit then
follows from the convergence of solutions of a discrete Riemann-Hilbert
BVP to its continuum counterpart.

9.3.2 Spin-spin correlations

In the past paragraph, we explored the case of the energy density of the
Ising model. We now focus on other important quantities, namely the
spin-spin correlations. Let C' = 21/6 exp[-2¢’(~1)] be a (lattice-dependent)
constant.

Theorem 9.28 (Chelkak, Hongler, Izyurov [CHI12]). Let Q be a
simply connected domain and ai,...,a, € Q. Consider a sequence of
simply connected domains s with marked points a’f, ...,ad converging to

n
(Q,a1,...,a,). Then,

. 1 + k
iy i oo ong ] = e
where (0q, - 0q, ) satisfies

(Gar Tan o = [0 (@) 7816 (an) 3 (Tp(ar) Toanm) Vo)

for any simply connected domain 2, and a1, ...,ay, €S2, and any conformal
map ¢ on S).

The general form of (——)q was predicted by means of Conformal Field
Theory in [BG87]. The method of [CHI12] gives another formula (which
is slightly less explicit). At the moment, there is no direct proof that the
two formulas coincide though it can be checked in several situations. For
instance, when n =1 or 2, its value can be computed.

0et us quote these formulas for completeness: For a matrix A in Mz, (C) and
g ke {1,...,2n}, let A7F be the matrix of Ma,_2(C) obtained by removing the j-th
and k-th lines and columns. We have

Pfaff(A) = 3" (-1)? A1 Pfaff(A7h).

i=1
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Theorem 9.29 (Chelkak, Hongler, Izyurov [CHI12]). Let Q2 be a simply
connected domain and a,b e ). Then,

(0a)o = ¢'(a)'/* and

(0a0b)q = (Ua>Q(0b)Q[1 _ ¢~ 2alab)] Y

where ¢ is the unique conformal map from  to the unit disk D with
d(a) =0 and ¢'(a) >0, and where dq is the hyperbolic metric on €.

Let us highlight one important aspect of the proof of this theorem (we
also refer to [Hon10b] for another summary of the strategy). For a function
f:607Z% — C, let us introduce the following modified discrete gradient

Vf(a)=(f(a+(8,0)) - f(a), f(a+(5,-6)) - f(a)).

For a function f : R? — C, we define the equivalent notion in the
continuum Vf(a) = ((9: + 0y) f(a), (05 - 9y) f(a)), where 9, and 9, are

the directional derivatives in the first and second coordinates.

Proposition 9.30. With the same notation and assumptions as in

Theorem 9.28, we find

1 (va‘ls MEMQ(; (Ua‘lsaag "'Uai)

lim =V log(og. 0as ... 04 Ya.
550 \/55 /IJEmQé(Ua‘;Ua "'o'afl) ) ai g( a10as an>Q

5

Then, one may integrate the relation to obtain the ratio for correlations
of n points at macroscopic distances from each other. Interestingly,
Proposition 9.30 does not give the result directly since it provides
information on the ratio only. It is therefore necessary to identify
the multiplicative normalization. More formally the result implies the
existence of a sequence (p,(£2,0))ns>1 such that

pn(Qv 5) : /U‘EC,Q(; (Ua‘lsgag cee O'af,i) - <0a1 s Uan)Q?

and we need to identify p, (£2,d). In order to do so, one uses a result by
McCoy and Wu to conclude. Let us focus on the n = 2 case first. The
RSW theorem for the FK-Ising model easily implies (exercise) that when
a1 and ay are merged together

/36 )1/4

p2(Qv 6)(‘7&1 Oasq >Q ~ ,UIEDQ(; (Ual Uag) ~ HB,,672 (Ual Uag) ~ 02 ( |CL1 _ Cl2|

where the sign ~ means that the ratio tends as § — 0 to a term which
itself tends to 1 as a; tends to as. The last ~ comes from the classical
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computation of the critical two-point Ising function from McCoy and Wu
[MW73]. This gives p2(2,0) = C?(v/26)Y/1. Note that the constant C
defined above appears because of this asymptotics. In order to deduce
the general n > 2 cases, observe that the RSW theorem implies that when
sending a, to the boundary of €,

MEC,QO» (Cay0an10a,) ~ NEC,Q(; (CarOa,s )NEC,Q(S (0a,)-

In fact, one may also prove directly that when a,, tends to the boundary,

(O'al " Oa, o ~ (04, Oay,_1 >Q(‘7an )a-

This implies that p,(2,6) ~ p1(Q,0)pn-1(2,0) ~ p1(2,)™ and the result
follows from the computation of ps(€2,9).

In order to prove Proposition 9.30, Chelkak, Hongler and Izyurov use
fermionic observables once again. Let us focus on the n =1 case. We will
not go through the whole discussion yet again. Let us simply mention that
the observable considered here is a modification of the standard observable.
Let us define it for completeness.

Let a € Q*. Consider the double cover Q of the graph Q with a
ramification at a constructed as follows. Let Us be the graph U introduced
in Chapter 6 quotiented by the equivalence relation z = (21, x2,23) ~y =
(y1,92,y3) if ©1 = y1, 22 = y2 and x3 - y3 is even. Then,

Q={x=(21,20,23) € (@a+Us) : (x1,72) € N},

where a is chosen in such a way that the branching point is at a instead
of (—%, —%) Each vertex of € has a natural projection onto €2, and every

path on © has a natural lift on Q.

One may consider the high-temperature expansion on 2. Recall that
Ea(u®, 2°) denotes the set of loop configurations with one path v(w) from
u® to z°. Recall that the decomposition in loops and one path is not
unique.

For w e E(u®,z°) and Z € Q one of the two medial-vertices with
projection z°, define:

e /(w) to be the number of loops of w that have a non-trivial lift
on , meaning that when drawn on Q, they start and end at two
different points (note that these two points necessarily have the same
projection onto );

e s(w,z) to be 1 if v(w) ends on z, and —1 if it ends on the other
medial-vertex of Q with projection equal to z°.



Chapter 9. Conformal invariance of FK-Ising/lsing models 261

Definition 9.31. Let 2 be a discrete domain with a € Q*. Let u°® and 2°
two medial vertices of Q°. The spinor observable at Zz (with projection z°)
is defined by

Fosau(Z) = 3 e*%iWww)(U"»Z(’)(_1)€(w)s(w’g)(\/§ — 1),

we€a (u®,2°)

where v(w) is a non-self-crossing self-avoiding path in w going from «° to

z°.

Note that the observable changes sign when changing sheet (in this
respect it behaves like \/z —a). Also observe that while we proved that
e~ 25 (#*2°) oes not depend on the choice of y(w), it is unclear whether
(1)) s(w, Z) also does. We refer to [CT12] for a proof of this fact.

This observable can also be proved to be s-holomorphic on the lattice.
The convergence in the scaling limit follows from considerations of
Riemann-Hilbert BVPs once again.

9.3.3 Magnetization field

The physics approach to scaling limits deals with so-called fields. Let us
describe some of the recent mathematical results in this direction. We
discuss the specific case of the primary field called the magnetization field
(sometimes, it is also called the spin field).

At the discrete level (i.e. on ), the following field!! encodes the
quantitative information given by the spins

Oq, = §15/8 Z 020z,

ZEQ5

where §, is the Dirac mass at x. For any ¢ > 0, the field g, can be seen
as a random function. Nevertheless, when § — 0, this random function
becomes rougher and rougher. Therefore, we prefer to think of ®q, as a
random distribution. The space of distributions will be the Sobolev space
H3(Q) with the norm | - |4-s. For those who were not born close to
Sobolev spaces, we recall the definition of this space and this norm for
Q2 =[0,1]°. For any k,/ €N, define

ere(x,y) = 2sin(krz) sin(lry).

This family of functions forms an orthogonal basis of C*([0,1]% R)
endowed with the L?-norm. Any function f € C*([0,1]%,R) admits a

11 The normalization by §15/8 is connected to the fact that there are 0(1/682) vertices
in Qs and that the magnetization of each vertex is of order §/8 (one should be careful
for vertices close to the boundary, but this technical issue can be easily handled).
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unique decomposition in this basis:

f(x,y) = Zak,l “epe(T,y).

ket
We define H?([0,1]?) as the closure of C*([0,1]%,R) under the norm

[ £l = (K +)%ai .
k¢

The space H3([0,1]?) of distributions on [0,1]? is defined as the dual of
H3. The norm on this space is defined by the operator norm

@l =sup {[(@, /)] = f €C=([0,1",R) such that |l <1}.

For general simply connected domains, one may partition the domain into
squares.

The following theorem has been proved in [CGN12, CGN13]. The
convergence in law is in the space of distributions H™3(2) with the
topology induced by the norm | - [4-3.

Theorem 9.32 (Camia, Garban, Newman [CGN12, CGN13]). Let Q be a
simply connected domain. Consider a sequence of simply connected graphs
Qs converging to Q). The sequence (Pq,) converges (as § - 0) in law to a
conformally covariant random distribution ®g.

Furthermore, ®q is conformally covariant in the following sense: for
any conformal map 1 : Q - C and for any f € C*(¢¥(Q2),R),

(@a o™, f) = (Bycay, [W]"/8 f).

Remark 9.33. The n-point correlations of the spin field are given by
the n-point correlations of Theorem 9.28. The conformal covariance shows
that the model is not Gaussian and is therefore different from the infamous
Gaussian Free Field (see [She07] for instance).



Chapter 10

Crossing probabilities for
the critical FK-Ising
model

This chapter and the next one are more specialized and non-experts may
be willing to skip them. Nevertheless, they are self-contained and can be
read after having followed the previous chapters of this book.

The present chapter is devoted to bounds on crossing probabilities
in topological rectangles in the critical FK-Ising model. We already
encountered slightly weaker bounds for standard rectangles (i.e. of the
form [0,n] x [0,m]) in Chapter 5. In this chapter, we will extend these
bounds to possibly fractal domains and to boundary conditions which are
directly on the boundary of the topological rectangle (in opposition to
the results in Chapter 5 which were restricted to boundary conditions
at “macroscopic distance”). We start by illustrating an approach for
bounding crossing probabilities from above and below which is based on
discrete holomorphicity by gtreating the case of standard rectangles. In a
second time, we will use this approach to derive the improved result for
general topological rectangles. In order to illustrate how useful this last
result is, we will study arm-events in the last section of this chapter.

In this chapter, we fix ¢ =2 and p = p.(2) and we drop the dependency

on p and q = 2 in the measure. For instance, d)i (2),2,9 will be denoted by
0%-

263
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10.1 RSW theory via discrete holomorphic-
ity
10.1.1 Statement of the theorem

Recall that a rectangle R is a subgraph of Z? of the form [0,n] x [0,m]
for n,m > 0, or a translation of one of these graphs. Also recall that the
event that there exists a vertical crossing in R, i.e. an open path from the
bottom side [0,n] x {0} to the top side [0,n] x {m}, is denoted by C,(R).

Theorem 10.1 (Duminil-Copin, Hongler, Nolin [DCHN11]). Let g ¢
(0,00). There exists ¢c1 = c1(B) > 0 such that for any rectangle R with
side lengths n and fn and any boundary condition & on OR,

¢ < ¢§2(CU(R)) <1l-a.

This theorem is an improvement (for ¢ = 2) of Property P5 of
Corollary 6.16 since boundary conditions are now allowed to be taken
directly on the boundary of the domain. The proof is based on the
fermionic observable which is used to express macroscopic quantities such
as connection probabilities in terms of discrete harmonic measures.

Let (2, a,b) be a Dobrushin domain. Recall the construction of (X?),,,
and (X?)eo on ) from Chapter 8. For B € Q, let HM,(B) denote the
probability that the random walk X; starting from B hits 0y, before
hitting d,p. Similarly, for W € O, let HM, (W) denote the probability
that the random walk X starting from W hits 07, before hitting gga
Note that there is no extra difficulty in defining these quantities for infinite
discrete domains as well.

For simplicity, we will often refer to d,, and O, as being the free and
wired arcs respectively.

Proposition 10.2 (uniform comparability). Let (Q,a,b) be a discrete
Dobrushin domain. Let B € Oqp and W € Q* \ 0., adjacent to B. Then we
have

VHM, (W) < ¢4°(B «— wired arc) < /JHM,(B). (10.1)

Proof. Let e € 07, bordering B. Now consider the fermionic observable
F in the domain (2, a,b) and the function H associated to it. The study
of its boundary conditions (Lemma 6.11) implies that

|F(e)| = (z)?l’b(B <« wired arc).

By definition of H, we have |F(e)[*> = H*(B) and H°(W) = |F(e)]* -
|F(e? < |F(e)|?, where ¢’ is the medial edge between B and
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W: it is therefore sufficient to recall that H*(B) < HM,(B) and
H°(W) > HM, (W). o

The inequalities (10.1) will allow us to use a second-moment method
on the number of pairs of connected vertices. Before implementing this
second-moment method, we provide bounds on the harmonic measures
HM, and HM, in specific domains that will be used in the proof of
Theorem 10.1.

10.1.2 Some estimates on the harmonic measures
HM, and HM,

Consider only Dobrushin domains (2, a,b) that contain the origin on the
free arc, and are subsets of the medial lattice H®, where H = {(z1,22) €
72,25 > 0} denotes the upper half plane. In this case, § is said to be a
Dobrushin H-domain. For the following estimates on harmonic measures,
the Dobrushin domains that are considered can also be infinite. We are
interested in the harmonic measure of the wired arc seen from the origin.
Let Wy be a dual vertex of Q* \ 8}, adjacent to the origin. We first prove
a lower bound on the harmonic measure. For that, introduce, for k € Z
and n > 0, the segments

In(k) = {k} x[0,n] (={(k,j):0<j<n}).

Lemma 10.3. There exists a constant co > 0 such that for any Dobrushin
H-domain (2, a,b), we have

HMJW@Z%, (10.2)

provided that, in Q, the segment l,(~k) disconnects the intersection of the
free arc with the upper half-plane from the origin (see Figure 10.1).

Proof. The arc lx(—k) disconnects the origin from the part of the free
arc that lies in the upper half-plane. Let us thus consider the connected
component of Q \ I (—k) that contains the origin. Boundary conditions
along [ (-k) are free. In this new Dobrushin domain g, the harmonic
measure of the wired arc is smaller than the harmonic measure of the wired
arc in the original domain 2. On the other hand, the harmonic measure of
the wired arc in €} is larger than the harmonic measure of the wired arc in
the slit domain (H ~ I (-k), (-k, k), 00), which has respectively wired and
free boundary conditions to the left and to the right of (=%, k) (see Figure
10.1). Estimating this harmonic measure is relatively straightforward and
we leave this task as an exercise. O
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Figure 10.1: The two domains involved in the proof of Lemma 10.3.
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Upper bounds on the harmonic measures are now derived. Estimates
of two different types will be needed. The first one takes into account
the distance between the origin and the wired arc, while the second one
requires the existence of a segment [, (k) disconnecting the wired arc from
the origin (still inside the domain).

Lemma 10.4. There exist constants cz,cq > 0 such that for any Dobrushin
H-domain (2, a,b),
e if d1(0) denotes the graph distance between the origin and the wired

are,
HM,(0) < 10.3

< 5% (10.3)

e and if the segment 1, (k) disconnects the wired arc from the origin

inside €2,
n
HM,(0) <cs—. 10.4
ORpe (104)

Proof. Let us first consider (10.3). For d = d;(0), define the Dobrushin
domain (By, (-d,0), (d,0)), where By is the set of vertices in H at a graph
distance at most d from the origin (it has a ¢ shape; see Figure 10.2).
The harmonic measure of the wired arc in (Q,a,b) is smaller than the
harmonic measure of the wired arc in this new domain By, and, as before,
this harmonic measure is easy to estimate.

Let us now turn to (10.4). Since l,,(k) disconnects the wired arc from the
origin, the harmonic measure of the wired arc is smaller than the harmonic
measure of [,,(k) inside 2, and this harmonic measure is smaller than it is
in the domain H \ I,,(k) with wired boundary conditions on the left side
of 1,,(k) — right side if k& <0 (see Figure 10.2). Once again, the estimates
are easy to perform in this domain. O

10.1.3 Proof of Theorem 10.1

We now prove Theorem 10.1. The main step is to prove the uniform
lower bound for rectangles of bounded aspect ratio with free boundary
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Figure 10.2: The two different upper bounds (10.3) and (10.4) of Lemma
10.4.

conditions. We then use monotonicity to compare boundary conditions
and obtain the desired result. In the case of free boundary conditions, the
proof relies on a second moment estimate on the number N of pairs of
vertices (z,u), on the top and bottom sides of the rectangle respectively,
that are connected by an open path.

The organization of this section follows the second-moment estimate
strategy. In Proposition 10.5, we first prove a lower bound on the
probability of a connection from a given vertex on the bottom side of
a rectangle to a given vertex on the top side. This estimate gives a lower
bound on the expectation of N. Then, Proposition 10.6 provides an upper
bound on the probability that two vertices on the bottom side of a rectangle
are connected to the top side. This proposition is the core of the proof:
it provides the right bound for the second moment of N. We conclude
this section and the proof of Theorem 10.1 by using the second moment
estimate method.

We start by a lower bound on crossing probabilities. Let us introduce
the definition of RZ:

R = [-Bn, Bn] x [0,2n]. (10.5)

Let 0, R? (resp. O_RP) be the top side [-fBn,Bn] x {2n} (resp. bottom
side [-fn, n] x {0}) of the rectangle R®. We begin with a lower bound
on connection probabilities.

Proposition 10.5 (connection probability for one point on the bottom
side). Let 8 > 0, there exists a constant ¢ = ¢(8) > 0 such that for any

n>1,
C
¢j’%g (v < u)> - (10.6)
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for all x = (21,0) € O_RZ, u = (u1,2n) € 0, R, satisfying |x1],|ui| < Bn/2.

Proof. The probability that = and u are connected in the rectangle
with free boundary conditions can be written as the probability that x
is connected to the wired arc in (RS, u,u) (where the wired arc consists of

a single vertex). Proposition 10.2 gives that qi)(l)%ﬁ (z < u) > /HM,(W,).
Since x and u are at distance 4n/2 from the left and right sides of RY, the
lower bound HM, (W) > <% on the harmonic measure imply the result.
This last estimate follows from standard results on simple random walks
(gambler’s ruin type estimates). We leave this proof as an exercise. ]

We now study the probability that two boundary points on the bottom
side of Rﬁ are connected to the top side, with boundary conditions wired
on the top side and free on the other sides.

Proposition 10.6 (connection probability for two points on the bottom
side). There exists a constant ¢ > 0 such that for any rectangle RT’BL and any
two points x,y on the bottom side &Rg,

¢ (2, y «— wired arc) < é, (10.7)
n oo

where a,, and b, denote respectively the top-left and top-right corners of
the rectangle RE.

The proof is based on the following lemma, which is a strong form of
the so-called half-plane one-arm probability estimate. For z on the bottom
side of R® and k > 1, denote by By () the box centered at x of radius k
for the graph distance.

Lemma 10.7. There exists a constant c5 > 0 such that for any box Rﬁ,
any  on the bottom side O_RZ and any k >0,

gb‘;{g’b" (Bi(z) <> wired arc) < 05\/Z. (10.8)
s n

Proof. Consider n,k,3 > 0, and the box R? with one point = € 9_RP.
The inequality (10.8) becomes trivial if k > n, so we can assume that k < n.
For any choice of 8’ > 3, the monotonicity between boundary conditions
implies that the probability that By (x) is connected to the wired arc &ng
in (R?,a,,b,) is smaller than the probability that By (z) is connected to
the wired arc in the Dobrushin domain (Rﬁ’, Cn,dr ), where ¢, and d,, are
the bottom-left and bottom-right corners of Rﬁl. From now on, replace g
by 3 +2, and consider the new domain (R?,c,,d,).
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Figure 10.3: The Dobrushin domain (R?, c,,d,), together with the
exploration path up to time T

Since we are working in a Dobrushin domain, we may consider the
exploration path, denoted ~, which goes from ¢, to d;. Let T denote
the hitting time — for « naturally parametrized by the number of steps
from ¢? — of the set of medial edges bordering the vertices of By (x); set
T = oo if the exploration path never reaches this set, so that B(x) is
connected to the wired arc if and only if T < co. Our goal is to bound
rj)R"B 4 (T < 00) from above.

The right-most vertex of By (z) will be denoted by z until the end of
this proof (note that it is in RS thanks to the new choice of 3). Consider
now the event {z < wired arc}. By conditioning on the curve up to time
T (and on the event {By(z) < wired arc}), we obtain

¢n

e (2 & wired arc) = ¢ [17<o - 057 4 (2 & wired arc|~[0, T)]

RS RY

: T),dn
= quRZ " [17<o0 ~¢Zz(ﬁ ) (0. T](z < wired arc)],
where the second inequality used the domain Markov property and the fact
that it is sufficient for z to be connected to the wired arc in the new domain
(since it is then automatically connected to the wired arc of the original
domain). Note that we used the notation for slit domains introduced in
Definition 9.16 when writing R? \ v[0,T].

On the one hand, since z is at a distance at least n from the wired
arc in R? (thanks to the new choice of 8 again), Proposition 10.2 can be
combined with Item (10.3) of Lemma 10.4 to obtain

Cnyd . C3
"5 (2 <> wired arc) < —.
ot )< %
On the other hand, if v(7T') can be written as v(T) = z + (-r,7), with
0 < r <k, then the arc z + [,.(-r) disconnects the free arc from z in the
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Figure 10.4: This picture presents the different steps in the proof of
Proposition 10.6: we first (1) condition on ~[0,7,] and use the uniform
estimate (10.3) of Lemma 10.4, then (2) condition on [0, T)+1] and use
the estimate (10.4) of Lemma 10.4, in order to (3) conclude with Lemma
10.7.

domain R? \ ~4[0,T7], while if v(T) = z + (-r,2k — ), with k +1 < r < 2k,
then the arc z + [,.(—r) still disconnects the free arc from z. Using once
again Proposition 10.2, this time with Lemma 10.3, we obtain that a.s.

o
VT V2k

This estimate being uniform in the realization of v[0,7'], we obtain

¢’Y(T) ydn

R0 T](z < wired arc) >

c;lkqﬁgﬁ;:dn (T <o)< (Z);”édn (z < wired arc) < %’
which implies the desired claim (10.8). -

Proof of Proposition 10.6. Let us take two vertices « and y on &Rﬁ.
As in the previous proof, the larger the (3, the larger the corresponding
probability. Hence, 5 can be chosen in such a way that there are no
“boundary effects”. In order to prove the estimate, we express the event
considered in terms of the exploration path 7 in the Dobrushin domain R/
with a being the bottom-left corner and b the bottom-right one. If z and
y are connected to the wired arc, v must go through two boundary edges
which are adjacent to x and y, which we denote by e, and e,. Notice that
e, has to be discovered by « before e, is.
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Now, define T, to be the hitting time of e,, and T} to be the hitting
time of Bak (y)°, for k < K = |logy |z — y|] — where |-] is the integer part
of a real number. If the exploration path does not cross this ball before
hitting e,, set T} = co. With these definitions, the probability that e, and
ey are both on « can be expressed as

an,b

qﬁR”B "(x,y < wired arc) = gi) "(eq, €y €7)

_ quan, n ey 677Tx < 007Tk+1 <Tk = OO)

= 3 6 et Lrcoe 657 ey €400, T])], (10.9)

where the third equality is obtained by conditioning on the exploration
path up to time 7;,. Recall that e, belongs to y if and only if y is connected
to the wired arc. Moreover, if {Ty = o},  is at a distance at least 2* from
the wired arc in the slit domain R? \ v[0,7,]. Hence, the domain Markov
property together with (10.3) from Lemma 10.4 and Proposition 10.2 give
that, on {T} = oo},

¢?§b” (ey ev[0,T]) = fb 0T ] (y < wired arc) < \/_ a.s.

By plugging this uniform estimate into (10.9), and removing the condition
on T}, = oo in the first indicator, we obtain

Apbn LS C3
¢ " (exrey €7) < >

An b 5 QA by
2 75 O [ 03" (T < 0 (0. T )]

R}

where we conditioned on the path up to time Ty,;. Now, e, belongs to
v if and only if z is connected to the wired arc. Assuming {Tj.+1 < o0},
the vertical segment connecting v(Tk:1) to Z — of length at most 2¢*!
— disconnects the wired arc from z in the domain R? \ 4[0,T}41]. For
k+1 < K, this vertical segment is at distance at least %|sc - y| from z.
Applying the domain Markov property and item (10.4) of Lemma 10.4, we
deduce that, for k+1 < K, on {Tk+1 < 00},

an, n Tr+1),bn s
Rﬁ (T, < 00 |7[0,Tks1]) = ¢;([3\I€"/E37Tk+l]($ > wired arc) < 2cy4
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Making use of this uniform bound, we obtain
an,bn :
¢R§ (z,y < wired arc)
\/2k+1 aR%’n(T < 00)
2c3¢4 gba"’ "(Tre1 <00) + 2c3——o———
Z V2w -y B : V2E-T
< \/_030405 Z NG 2c3c5
|z - ylf Vn2K-T

Si
Vnle =yl

using also Lemma 10.7 (twice) for the second inequality. m]

IN

We are now in a position to prove our result.
Proof of Theorem 10.1. Fix >0 and n > 0.

Step 1: lower bound for free boundary conditions. Let NN, be
the number of connected pairs (x,u), with z € _R?, and u € 9, R2. The
expected value of this quantity is equal to

¢(1)%§ [Nn] = Z ¢Rﬁ(90 < u).

ued; R
T€D_ RB

Proposition 10.5 directly provides the following lower bound on the
expectation by summing over the (8n)? pairs of points (x,u) far enough
from the corners, i.e. satisfying the condition of the proposition:

O [Nn] 2 ca(B)n

for some ¢(3) > 0.

On the other hand, if  and u (resp. y and v) are pair-wise connected,
then they are also connected to the horizontal line Z x {n} which is
(vertically) at the middle of R?. Moreover, the comparison between
boundary conditions implies that the probability — in RP with free
boundary conditions — that = and y are connected to this line is smaller
than the probability of this event in the rectangle of half height with wired
boundary conditions on the top side. In the following, assume without
loss of generality that n is even! and set m = n/2, so that the previous
rectangle is Rff, and define a,, and b,, as before. Using the comparison
between boundary conditions, and also the symmetry of the lattice, we get

A ybm am; m

(33 cuyov)o s (z,y < wired arc) (b (@, v < wired arc),

1The argument may be adapted to the case of odd integers.
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where @ and v are the projections on the real axis of v and v. Summing
the bound provided by Proposition 10.6 on all vertices =,y € d_R? and
u,v € 0, R?, we obtain

mn?
0 2 2 2
B [N;]<erm® <em
n

for some constant ¢; > 0. Now, by the Cauchy-Schwarz inequality,

0 B\ _ 40 ) 2 ¢?%§[N”]2
¢RQ(CU(Rn))_¢R5(Nn>0)_¢3g[(1]\fn>0) ] 2 0 [N2]
REL

> c6(B)?fer
(since (15?25 [N,] = ¢(1)%ﬁ [Nn1n,50]). We have thus reached the claim.

Step 2: lower and upper bounds for general boundary conditions.

As already shown in Chapter 5, the lower bound that was previously proved

for free boundary conditions actually implies the lower bound for any

boundary conditions & by using the ordering between boundary conditions.
For the upper bound, use duality to find that

$5(Co(R)) < $(Co(R)) = 1= ¢ (Ch(R*)) < 1-c1, (10.10)

where the notation C;(R*) is used for the existence of a horizontal dual
crossing in the dual rectangle R* is as usual the dual graph of R (note
that the invariance by 7/2-rotations was implicitly used). This fact implies
Theorem 10.1 readily.

|

Remark 10.8. As a by-product of our proofs, one can also obtain the
value of the critical exponent for the boundary magnetization in the Ising
model, near a free horizontal boundary arc, and the corresponding one-arm
half-plane exponent for the FK-Ising model.

Indeed, consider the rectangle R, = [-n,n] x [0,n]. There exist strictly
positive constants ¢; and ¢ such that for the boundary conditions dobr
free on the bottom and wired everywhere else, one has

ein 2 < gb%‘ibr(() < wired arc) < an_l/Q,

uniformly over all n. This translates via the Edwards-Sokal coupling into
the following inequality for the Ising model: for every n > 1,

en M2 < uén [00los = 1,Va € 9" R, ] < con™ /2.
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10.2 RSW in general topological rectangle

We now extend crossing estimates to a more general class of domains.
Such crossing probabilities bounds, uniform with respect to the boundary
conditions, have been obtained in standard rectangles in Theorem 10.1. In
this section, the crossing bounds are proved to hold in general topological
rectangles with general boundary conditions, and are independent of the
local geometry of the boundary. This generalization is needed when dealing
with domains generated by random interfaces (which usually have fractal
scaling limits).

Definition 10.9. A topological rectangle is given by (€, a,b,c,d), where
Q is a discrete domain and a, b, ¢ and d are four boundary vertices on 0f2
found in counterclockwise order. For two points z,y € 02, we denote by
(xy) c 09 the counterclockwise arc of 9 from x to y (including x and y).
We will frequently identify x € 9Q with the arc (xx).

Before going further, we need an equivalent of the aspect ratio between
the width and the height of a standard rectangle that we could apply for
topological rectangles to measure “how flat they are”. We use the extremal
length defined as follows. Recall that the medial graph Q° of a discrete
domain €2 may be seen as a subdomain of C by adding small patches around
pinched points. Furthermore, a, b, ¢ and d are naturally associated to four
medial vertices a®, b°, ¢® and d° of 9Q° (for instance, every vertex is
bordered by two medial-vertices in 0€2°; pick the second one when going
in counterclockwise order. If a = b say, then pick a® to be the first of
the two medial-vertices bordering a, and b® to be the second one). Let
us denote by £q [(ad), (¢d)] the standard extremal length between (a°b®)
and (¢®d®) in Q°, i.e.

to[(ab), (cd)]
2
(inf{f,y pldz| : v rectifiable path from (a®b®) to (¢°d®) in Q°})

" Jor pdady |
where the supremum is taken over measurable functions p : Q° — R,
and |dz| denotes the Euclidean element of length. Informally speaking,
lo[(adb),(cd)] measures the distance between (ab) and (ed) from a
conformal invariance point of view. The notion was introduced by Ahlfors
and Beurling in a more general context and we refer to [Ahl73] for its
basic properties. Also, some reader will have encountered the inverse of
the extremal length which is sometimes called the modulus of the rectangle.

Given a topological rectangle (Q,a,b,¢,d), let {(ab) < (cd)} be the

event that there is an open path in Q between (ab) and (cd). We are now
in a position to state the theorem.
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Theorem 10.10 (Chelkak, Duminil-Copin, Hongler [CDCH12]). Let
M > 0. There exists ¢ = ¢(M) > 0 such that for any boundary conditions
¢ and for any topological rectangle (Q,a,b,c,d) with Lo [(ab),(cd)] €
[ M],

c< o8 [(ab) < (ed)] <1 -ec.

The condition above is a conformally invariant version of the condition
that the aspect ratio of rectangles remains bounded away from 0 and 1.

In the rest of this chapter, for two functions f and g, f X g means that
cg < f <Cg, where ¢ >0 and C > 0 are universal constants (we will precise
each time on what they depend).

10.2.1 More involved discrete complex analysis

In the previous section, we use the comparison between discrete harmonic
measures and the probability that a vertex on the free arc is connected
to the wired arc. This relation is not restricted to standard rectangles of
the form [0,n] x [0,m], and we now wish to exploit this comparison for
more general domains. In order to do so, we need a few technical results on
harmonic measures that we list below (this section should be understood as
a toolbox). These results were obtained in [Chell] from discrete complex
analysis considerations.

Before starting, let us change slightly the notation for harmonic
measures to be more coherent with [Chell]. For two vertices x and y of
a discrete domain Q, let Z¢, [x,y] be the partition function of the random
walks (X?) (introduced in Chapter 8) on € from x to y, killed when
reaching dQ U {y}. In other words,

Z [z, y] = IF’[(X;L) starting from x hits y before 3@] =HM,(z),

where HM,(z) is taken in the Dobrushin domain (Q,y,y). For two
boundary arcs (ab) and (cd) ¢ 9Q and x € 9Q, define Z¢ [z, (cd)] :=

Lye(eay 26 [2,y] and Zg [(ab) , (ed)] = Tae(ar) 28 [#, (cd)].-

It is time to list several important properties of Z¢,. The first one yields
that whenever the extremal length is of order 1, then so are the partition
functions of (X)) under consideration.

Theorem 10.11 ([Chell]). Let M > 1. For any topological rectangle
(Q,a,b,¢,d), the following properties are equivalent:

1. Lo [(ab),(cd)] =1,

2. Lo [(be), (da)] =1,

3. Z& [(ab), (cd)] =1,

4. 2 [(be), (da)] x 1,
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where the constants in X never depend on (2, a,b,c,d) but simply on the
constants in other <.

We now describe factorization properties of these partition functions
(or equivalently of discrete harmonic measures). While in the continuum
the results below are rather easy to derive (for instance using conformal
invariance and explicit expressions in the upper half-plane), obtaining
them at the discrete level requires a much more delicate analysis.

Theorem 10.12 ([Chell)). For any topological rectangle (Q,a,b,c,d), we
have

Z$ [a,b] Z2 [a, c]
Z¢ [b,c] ’

Zo [a, (be)] = \

Z§ [a,d]) Zg [b, c]
Z¢ [a,b]) Z8 [c,d])’

if  taf(ab),(cd)] <M,

Zg [(ab) , (cd)] = \
(10.11)

where the constants in X are universal in the first equality, and depend on
M only in the second.

We now focus on the notion of separator. If (Q2,a,b, ¢,d) is a topological
rectangle, a separating curve between (ab) and (cd) is a self-avoiding
discrete path T’ in Q separating (ab) from (cd). Let Q[T, (ab)] be the
union of I with the connected component of Q \ T" containing (ab).

Theorem 10.13 ([Chell]). Let M > 1. There existse = (M) € (0,1) such
that for any topological rectangle (2, a,b, ¢,d) with Z¢, [(ab) , (cd)] < M and
any e ¢ [ 2ol ] ]

YK€ - JE

and (cd) with

Zorr aby1 [(@0) ;T1- Zor (cayy [T (ed)] = 26, [(ab) , (ed)] (10.12)

, there exists a separating curve T' c Q between (ab)

and
Zorr eay [T (ed)] € [ek, K], (10.13)
where the constants in X depend on M only.

A separating curve satisfying the first part of (10.12) will be called
a separator. Informally speaking, separators are discrete curves that
separate domains in two pieces in a “good” manner from the harmonic
measure point of view: the product of partition functions of random walks
in the two pieces is of the same order as the partition function of random
walks in the original domain.

We will also need the following corollary, which yields that a topological
rectangle can be split in “fair” shares.
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Corollary 10.14. Let M > 1. For any topological rectangle (2, a,b,c,d)
with M~ < Lo [(ab), (cd)] < M, there exists a separating curve I' c Q
between (ab) and (cd) such that

Carr (ab)] [(ab) , T] < Lopr (cay) [(cd) , '] < Lo [(ab) , (cd)],

where the constants in X depend on M only.

Proof. By 1. = 3. of Theorem 10.11, we have that Zg [(ab), (cd)] x 1
(where the constant depends on M only). Applying Theorem 10.13 with
k =¢ =¢(M), we obtain a simple curve I' separating (ab) from (cd) with

Zor vy [(@d) T = Zapr (eay) [T, (ed) ] = Zg [(ab) , (cd)],

where the constants in < depend on M only. We then get the result by
applying 3. = 1. of Theorem 10.11 in Q[T, (¢d)] and Q[T (ab)]. i

10.2.2 Proof of Theorem 10.10

Before presenting the proof of Theorem 10.10, we need two more lemmata.
Recall from Proposition 10.2 that for a Dobrushin domain (£2,a,b) and

ce€ aab;
B0 (e o Bhe) < VHML(c) =/ Z8 ¢, (ba)] (10.14)

(the second equality is just the translation between the notations from
Chapters 6 and 8 and the notations of this section). This fact can be
extended to the following context. Let gzﬁglb)’(c‘d) be the FK-Ising measure
with wired boundary conditions on (ab) and (cd), and free elsewhere. To
avoid confusion, we now use the notation gbgl % for the Dobrushin boundary
conditions in the domain (£2,a,b) instead of ¢g’b (this could indeed be
confused with gzbgzaa)’(bb) ).

Lemma 10.15. For any M > 0, there exists C1 = C1(M) > 0 such that
for any topological rectangle (2, a,b,c,d) with Z& [(ab), (ed)] < M,

gb),(cd) [(ab) < (cd)] < C1\/Zg [(ab) , (cd)].

Proof. (sketch) The proof follows the ideas of the proof of [CS12,
Theorem 6.1], where the above crossing probability is computed in the
scaling limit. We only sketch it here and refer to [CDCH12] for precisions.

Fix a topological rectangle (£2,a,b,c,d) and consider the critical FK-
Ising model with wired boundary conditions on (ab) and (cd) and free
elsewhere. In [CS12, Proof of Theorem 6.1], two discrete holomorphic
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observables I} and Fy are introduced in this context. Furthermore,
Chelkak and Smirnov showed that there exists a unique linear combination
F of Fy and F3, and a unique x € R such that a discrete version H of
Im([” F?) satisfies the following boundary conditions:

H=0on (da), H=1on (cd) and H =#ron (ab),, U (bc)

ext ext ?

where (ab),,, and (bc),,, denote the set of vertices of 0 adjacent to (ab)
and (bc) respectively.

This discrete function H is A®-subharmonic on Q \ ((cd) u (da)).
Furthermore, the constant x is shown to be in one-to-one correspondence
with the quantity gf)gb)’@d) [(ab) < (cd)]; from [CS12, Formula 6.6], we

get in particular that

Vi x oG D [(ab) < (cd)], (10.15)

where the constants in < are universal.

By construction of H (see [CS12, Proof of Theorem 6.1]), we have that
H(w) = & for some dual vertex on the dual arc (ac)* adjacent to the vertex
b. Since H (b) - H(w) = |F(e)> > 0, where e is the medial edge bordering
b and w, we find

ext

0=H(w) -k < HOb) -k < (1-k) 28 [b, (cd)] - w28 [b, (da)].

In the second equality, we used the fact that H — x is A®-subharmonic on
Q and the boundary conditions of H — k. This leads to

. Zal ()]
= 7 [0, (do)]

Using the factorization result for the harmonic measure (Proposition
10.12), we obtain that

L Za[b(cd)] \} 25, [0.¢) 23, [b.d] 23 [d,a] J 25 [.d) Z3,[b.]
* 2, [0.(da)] "\ Zgy[e.d] 25 [0.d] Zg [b.0] ~ \ Zgy[0.5] 23, [c.d]

In the second X, we use that Z8 [a,b] x Z& [b,a] for two vertices a and b
on the boundary?. Using the assumption Z§ [(ab),(cd)] < M, we get by

2Observe that the ratio Zg[a,b]/Z&[b,a] is not equal to 1 but to
Gﬁ\{b} (a,a)/Gﬁ\{a} (b,b), where G is the Green function defined in Chapter 8. The
Green function Gﬁ\{b}(a, a) is equal to the number of visits of a before reaching b for
a random walk starting from a in Q. If a is on the boundary, one may easily see that
this expected number of visits is bounded uniformly in the shape of the domain (every

excursion away from a has positive probability of hitting the boundary before coming
back).
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Theorem 10.12 that

\} 7 [a,d) 73 [b,c]
Z3 [a,b] Z [c,d]

k< < 23, [(ab) . (cd)].

Hence, (10.15) implies the existence of C; = C1 (M) < oo such that

o5 D [(ab) < (ed)] 2 v/ < C1v/ 28 [(ab) , (cd)].

This leads to the following lemma.

Lemma 10.16. Let M > 1. There exists Cy = Co(M) > 0 such that for
any (R, a,b, ¢, d) with Z[(ab), (cd)] < M,

Zgla, (cd)1Z8[b, (cd)]
Z5l(ab), (ed)]

5D (a o (ed),b o (cd)) < Cz\j

Proof. Constants in x depend on M only. Note that Z8[a,(cd)] <
Za[(ab), (ed)] <€ M. Fix e = (M) € (0,1/3) as given by Theorem 10.13.
Then we have two cases:

Case 1: Zy[a, (cd)] > S Z8[(ab), (cd)] or Zg[b, (cd)] > < Z8[(ab), (cd)].

Suppose we are in the first case (the other case is handled similarly).
Theorem 10.12 and (10.14) imply that

5D (abe (cd)) < oGP (b (cd)) <\/Za[b, (cd)]

M Zga, (cd)]Z3 b, (cd)]

&2 Zyl(ab), (cd)]

Case 2: Z3]a, (cd)] < %Z{l[(ab), (cd)] and Z3[b, (cd)] < %Z{Z[(ab), (cd)].

Set k= 1775 [(ab),(cd)]. Note that  is smaller than ¢ and larger
than Z8[a, (cd)]/e and Z3[b, (cd)]/e. By Theorem 10.13 applied to « in
(2,a,a,c,d), there exists a separator I', between a and (cd) such that

62 (] (] E (]
S Za1(ah). ()] < ZalT,(ed)] € - Z8[(ab), ()] (10.16)
Doing the same in (£2,b,b,¢,d), there exists a separator I', of b and (cd)
such that

2
S Z5[(ab), ()] < Za[Th, (cd)] < - Z3[(ab), (ed)].  (10.17)
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Set Q, = Q[a,T,] and Qp = Q[b,T]. Note that the two separators do not
intersect otherwise their union would separate the whole arc (ab) from
(ed), which is contradictory since 2¢/M < 1 and

Zo[Pa Uy, (ed)] < Z5,[Ta, (cd)] + 25, [Te, (cd)] < %'Zé[(ab%(cd)]

We are thus facing the following topological picture: the two arcs ',
and T', are not intersecting and are separating a, b and (cd). Let T' be the
arc composed of the arcs I'y, I’y and (ab). Wiring I', we find:

cd T',(cd
§7ab o (ed)] < oo Taob [b o Tlogip [0« (cd))

Let us deal with the first term on the right-side. Using (10.14) and the
fact that T, is a separator between a and (cd), we obtain

a, (cd)] < Zyla, (cd)]

¢Q [a = Ta] Z' Fa,(cd) - m’

where in the last inequality we used (10.16). Similarly:

Z5[b, (cd)]

P[0 Tol < O\l 2ol ]

For the last term, Proposition 10.15 gives that

\/Z' o e [Ls (ed)]
V(1 + 520) Z8 [ (ab), (cd)],

where in the second inequality we used the fact that I' is included in the
union of (ab), I', and TI'y, and the two inequalities (10.16) and (10.17).
Putting everything together we find

D Zala. (ed)) Z2[b. (ed)]
o lo? (d”gw Zal(ab). (cd)]

T, (cd)
Q[F,(cd)][F < (cd)]

IN

IA

Proof of Theorem 10.10. Let M > 1. Once again, constants in x
depend only on M > 0. Fix a domain (,a,b,c,d) with o[(ab), (cd)] €
[M~, M]. The monotonicity allows us to treat free boundary conditions
in order to get a uniform lower bound. As usual, obtaining an upper
bound for the probability of a crossing (ab) <— (cd) on  is equivalent to
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obtaining a lower bound for the probability of a crossing (be)* < (da)*
for the critical FK-Ising model on 2* by duality. Indeed, it is enough to
bound from below the probability ¢%.[(bc)* < (da)*] of a crossing from
(bc)” to (da)™ in Q* (by a constant depending on M only). Theorem 10.11
implies that whenever £q[(ab), (ed)] is of order 1, £o[(be), (da)] is of order
one, and it is easy to check that £o«[(ab)*, (cd)*] is then also of order 1.
In conclusion, the lower bound for the dual model follows from the lower
bound for the primal one, and it implies the upper bound of Theorem 10.10.

We now focus on the proof of the lower bound. In order to do so, we
use a second-moment estimate on the random variable

N = > 3 ¢luev] Loy (10.18)
ue(ab) ve(ed)

Step 1: First moment of N. Proposition 10.2 implies

¢alN] = 3 3 dalue]? > >, HMo(wt),

ue(ab) ve(ed) we(ab)* te(cd)*

where HM, (w, t) is the A°-harmonic measure of w seen from ¢ in Q* as
defined in Chapter 8.

We now wish to prove that the right-hand side is of order 1. We only
sketch the proof since the details are slightly tedious: one has to switch
between several domains with extremal lengths of order 1.

The quantity HM,(-,-) may be seen as HM,(,-) in the dual graph Q*
obtained by putting dual-vertices in the middle of every face of € (then
the extension of Q* is exactly Q*). We have already mentioned that when
lq[(ab),(cd)] is of order 1, so is £q«[(ab)*, (cd)*]. Tt is then easy to check
that the extremal length remains of order 1 in the slightly different dual
graph " mentioned just before. Theorem 10.11 thus implies that

> HM, (w,t) x 1.
we(ab)* te(ed)”

In conclusion, we find the existence of ¢; = ¢1(M) > 0 such that

O[N] 2 ci.
Step 2: Second moment of N. Corollary 10.14 applied in (Q,a,b,c,d)
gives a separator I' c 2 between (ab) and (cd) splitting € in two parts of

comparable sizes (in terms of harmonic measure):

Z8[(ab),T] = Z8[T, (cd)] = Z8[(ab), (cd)] = 1. (10.19)
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We find:
PO[N?T= > > golue v]ed[u o v ]e[u < v, < 0]

wu,ve(ab) u’,v'e(cd)

< Y Y ¢alueTleglu’ < T

w,ve(ab) v’ ,v'e(cd)

¢alv < Tgg[v" < T1og[u,u’ < T, v, 0" < T1.

Let 1 = Q[T, (ab)] and Q5 = Q[T (ed)]. Wiring the arc T, the right-hand
side factorizes into the product of two terms

Sa, = > ¢, [ueTlgh, [ve Tleg, [u,v < T,
w,ve(ab)

So, = % éu,[u o TIeh, [ o Tlg, [u', v < T
u’,v'e(ed)

Assume for a moment that we possess the bounds
S, <CZ[(ab),T??  and S, <CZ[T,(cd)]*?.  (10.20)

They imply, thanks to the definition of separators,

2 <ot zal(ab), (cd) P2 < C" MBI,

(10.21)

3o [N?] < (Z3[(ab),T]- Z§ [T, (cd)])

The last inequality follows from Theorem 10.11. The end of the proof is
split into two steps: in the first one we prove (10.20), and in the last step
we implement the second-moment argument.

Step 3: Let us prove the two estimates in (10.20). We only show the
first one, since the second one is handled similarly. Using (10.14) and then
Lemma 10.16, we find

So, = 3. ¢g,[u oy, [ve gy, [u,v < T]

u,ve(ab)
Z8(u, 1) Zg (v,T)
u,ve(ab) Z;z[(u’l)),].—‘]

C

IN

Now, for any sequence of positive real numbers (uy)ns0, and « > 0, a
comparison between series and integral implies

a-1 o
Zuk(zk:u]) < 1(Zuk) . (10.22)
k=1 i=1 @ \k=1

Say that u < v if v and v are found in this order when going along
the arc (ab) in the counterclockwise order. Recall that Zg[(uv),T'] =
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Yae(uv) Za[z,T']. Therefore, (10.22) implies in this case that

Z4u, T Z8[v,T] < 9 Z{[u, T Z8[v,T]
u,ve(ab) ZS')[(U’U),F] - u<ve(ab) Zé[(uv)’rl]
L] Z' [U7F]
=2 Z3[v, T 1l -
ve%z:b) Q[ ]ue%z:v) ZS')[(U’U),F]
< 2 Zo[v. T/ Zg[(av),T]
ve(ab)
< Y Zo[v. T/ Z[(ab),T]
ve(ab) F
< Z[(ab), T2,

thus giving (10.20).

Step 4: We finish the proof by implementing the second-moment esti-
mate to obtain a lower bound on crossing probabilities with free boundary
conditions. By the Cauchy-Schwarz inequality,

0 0 0 2 ¢o[N]?
9o ((ab) < (cd)) = ¢Q(N >0) = ¢o[(1n>0)?] > =5 57 26
Pa[N?]
where we used the two first steps to show the existence of ¢ = ¢(M) > 0.
This concludes the proof. O

10.3 Applications to arm exponents

To quantify connectivity properties at p., we introduce the notion of arm-
event. In this section, we describe one application to arm-events of the
previous theorem on crossing probabilities.

Below, ¢ denotes the unique infinite-volume measure at ¢ = 2 and
p = pe(2). Recall that A, = [-n,n]? and define A,(z) = z+A,. In
this section, A} is seen as the dual graph of discrete domain A,, (dual-
vertices correspond to the centers of faces of Z? touching A,,, and dual-
edges connect nearest neighbors).

Definition 10.17. An arm crossing the annulus Ay ~ A,, is either a self-
avoiding path in Ay \ A, from JA,, to IAN or a self-avoiding dual-open
path in A% N AY_; from OA, to OAY.

Fix a configuration w. An arm is said to be of type 1 if it is composed
of open edges in w only. An arm is said to be of type 0 if it is composed of
open dual-edges in w* only. Note that an arm of type 1 is defined on Z?
while an arm of type 0 is defined on (Z?)*.
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Definition 10.18. Fix a sequence ¢ € {0,1}7 and n < N. Let A,(n, N) be
the event that j mutually edge-avoiding arms crossing the annulus Ay \ A,
of respective types o1, ...,0; can be found in the counterclockwise order.

For instance, Aj(n,N) is the one-arm event corresponding to the
existence of an open path from the inner to the outer boundaries of Ay \A,,.
For an example of Ajp19(n, N), see Fig. 10.5.

Proposition 10.19. For any o, there exist B, >0 and v, >0 such that
(n/N)P < ¢[As(n,N)] < (n/N)™.

Let us remark that the proof of this proposition applies mutatis mutandis
to any random-cluster model with 1 < ¢ < 4.

Proof. (sketch) The upper bound has been treated in Lemma 5.35 since
Ay(n,N) is either included in A;(n, N) or Ag(n,N), so that one can take
&(o,q) =&(1,q) > 0. For the complementary bound, fix o of length j and
n < N. Consider the cones

{(TCOS(@) rsin(f)):r >0 and 6 ¢ [27”, 2”(2?1)]},
where 0 <4 < 2j. Let & be the event that there exists an arm of type o;
crossing Ay N A, which is included in C;. Observe that

S A
SENE +i <z]2(N) ,

where ¢; = ¢1(j) > 0. The existence of ¢; is guaranteed by successive
applications of Theorem 10.1 in the following topological rectangles for k
between |log,(n)| and |logy(N)]:
o Ty :=C;n (Agrs2 N Agr) are crossed from “inner to outer boundary “
(i.e. from OAgr to OAgrs2);
o Sk :=Cin(Agear N Agr) are crossed between the two sides of Sy (the
sides shared with 9C;).
At the end, we find

o[ Aa(n. )] 29[ €] 2 (N)j

1<J

Remark 10.20. Note that the conditioning on &y for i’ < ¢ enforces
boundary conditions on Cy for £ < 2i — 1. In particular, these boundary
conditions remain bounded away from Cj, thus allowing us to apply P5
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of Theorem 5.24 instead of Theorem 10.1 for 1 < ¢ < 4. For ¢ = 2, this
requirement is not necessary, since the boundary conditions are allowed
to be right on the boundary of £:. As a consequence, one may simply
consider j cones instead of 2j5. We chose to expose the proof like this to
illustrate that the result is not specific to ¢ = 2.

It is natural to predict that there exists &, € (0, 00) such that
S[As(n,N)] = (n/N)s+o0),

where o(1) is a quantity converging to 0 as n/N goes to 0. The quantity
&, is called a critical arm-exponent. Predictions from physics provide us
with exact conjectures for these exponents, but except in special cases,
even the existence of this exponent is unknown mathematically®.

Remark 10.21. Before going further, let us mention that the probability
of arm-events does not really depend on the boundary conditions. Indeed,
Corollary 6.16 together with Theorem 5.45 imply that there exist ¢,C >0
such that for any n < N and any boundary conditions on 9Asy,

cp[As(n, N)] < 65, [As(n,N)] < CH[As(n,N)]. (10.23)

From now on, we will state all results in infinite-volume directly.

10.3.1 Quasi-multiplicativity and localization

The following statements yield two important properties of arm-events.
These properties are crucial when working with probabilities of arm-events.
Let us start by the so-called “quasi-multiplicativity property”.

Theorem 10.22 (Quasi-multiplicativity). Fiz a sequence o. There exist
c=c(c)>0 and C =C(0) < oo such that

C(;S[Aa(nl,ng)](b[Ag(nz,ng)] < ¢[Aa(n1,n3)] < C¢[Ao(n17n2):|¢|:A<7(n27n3):|

for every ny < ny <ng.

The second property is the following “localization of arms”. Let § > 0;
for a sequence o of length j, consider 2j points x1,x2,...,22; found in
clockwise order on the boundary of A,,, with the additional condition that
|zk+1 — zx| > dn for any k < 25 and |zg; — 21| > dn. Similarly, consider 2j
points y1, . ..,y2; found in clockwise order on the boundary of Ay, with the
additional condition that |yr.1 —yx| > 6N for any k < 2j and |y2; —y1| > N.
The sequence of intervals (I, = [Tor-1,Z2k])re; and (Ji = [Y2k-1,Y2k] ) k<)
are called d-well separated landing sequences.

3For ¢ =2, £ as well as £101...1 and £101...10 (With respectively 2n — 1 and 2n arms)
can be computed using SLE(16/3).
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Let AL7(n, N) be the event that A,(n, N) occurs but that in addition
to this, the arms can be chosen in such a way that the k-th arm goes from
I to Jg.

Theorem 10.23. Let o be a sequence. For any 6 > 0 there exists
C = C(0) < oo such that, for any 2n < N and any choice of 6-well-separated
landing sequences I,J at radii n and N,

#[AL7 (n, N)] < ¢[ A (n, N)] < Co[AL7 (n, N)].

The theorem asserts that forcing arms to start and finish in some
prescribed areas of the boundary does not cost more than a bounded
multiplicative constant to the probability.

10.3.2 Proofs of Theorems 10.22 and 10.23

In this section we sketch the proof of Theorem 10.22. At the heart of
the proof is the notion of well-separated arms. In words, well-separated
arms are arms whose end-points are at macroscopic distance (we also add
the technical condition that they extend slightly outside the boxes, see
Fig. 10.5). In what is next, let x; and y; be the end-points* of the arm
v, on the inner and outer boundary respectively. The paths ~1,...,v; are
said to be well-separated if

e points yy are at distance larger than 26 N from each others,

e points xy are at distance larger than 26n from each others,

e for every k, yi is op-connected to distance N of OAy in Asn (yk),

o for every k, xy is oi-connected to distance dn of 9A,, in Asp (xk).
Let A*P(n,N) be the event that A,(n,N) holds true and there exist
arms realizing A, (n, N) which are §-well-separated. Note that while the
notation does not suggest it, the event depends on §.

Most of this section will be devoted to the following result yielding that

forcing the arm to be well-separated changes the probability by a bounded
multiplicative constant only.

Theorem 10.24. Fiz o and é > 0 small enough. There exists C = C(o) >0
such that for every n < N,

B[ AP (n, N)] < [ Ay (n, N)] < CH[AZP (n, N)].

This theorem is classical in the theory of percolation. It has been proved
several times. Theorem 10.10 will exactly be the tool required to adapt the

4Since an arm is self-avoiding, z; and y;, are uniquely defined. Furthermore, 3, and
Yk are on the primal graph if the path is of type 1, and on the dual graph it is of type
0.
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usd | [yip e+ 0Ny

8\7\ 8A\N

Figure 10.5: On the left, the four-arm event Ajpi0(n, N). On the right,
the event AJ;},(n, N) with well-separated arms. Note that these arms are
not at macroscopic distance of each other inside the domain, but only at
their end-points.

proofs valid for percolation to the context of the FK-Ising model. Since
the proof for percolation can be found in the literature and since this proof
is a modification of it, we will only sketch it here. In what follows, we keep
the notation < introduced in the previous section.

Before doing so, let us mention that this theorem is extremely useful. For
instance, Theorems 10.22 and 10.23 follow classically from it. We illustrate
this fact by proving Theorem 10.22 (the derivation of Theorem 10.23 is left
to the reader).

Proof of Theorem 10.22 (sketch). There exists ¢ > 0 such that for
n1 <ng <Nn3g:

¢[As(n1,m3)]

(;S[Aa(nl,ng)lAg(Qng,ng)] -¢[Ag(2n2,n3)]
< ¢[Ag(n1,n2)|Ag(2n2,n3)] -¢[Ag(2n2,n3)]
¢[As(n1,n2) ] 9[As(2n2,n3)]

gf)[AC, (nq, ng)] . qS[Af,eP(QnQ, TLg)]

< ch[AU(nl, ng)] . qS[Ag(ng, ng)],

where in the third line we used the domain Markov property and (10.23),
in the fourth, Theorem 10.24, and in the fifth, the following claim:

)

)(C
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Claim: There exists ¢ >0 such that for any n < N,
qﬁ[AU (n, N)] > caS[Affp(Qn, N)]

Proof of the Claim. We only sketch the proof. Condition on the well-
separated arms reaching OAs,,. Let z; be the end-points of the paths and
consider j thin rectangles of length n and width 4nd, with one of the short
edges centered on z;, for 1 <4 < j.

Theorem 10.10 implies that there exists a path of type o; in each of
these rectangles from 0As, to A, with positive probability. Furthermore,
the end-points x; are o;-connected to distance 2dn in A, thanks to the
conditioning on AP (2n, N). The two paths are therefore connected to
the path of type o; from z; to distance 2d0n with positive probability, thus
giving the claim. o

Now, there exists ¢ > 0 such that

(;S[Aa(nl, n3)] > qb[Af,ep(nl,nQ) N AXP(2ng,n3) N Ay (01, Tlg)]
> c1¢[ AXP(n1,m2) N ASP (202, n3) |

P[AXP (n1,m2)] - P[ASP (202, n3) ]

(b[Ao(nl, ng)] . ¢[AU(2TLQ, ng)]

¢[As(n1,n2)] - ¢[As(n2,n3)].

I¢ X

v

Once again, in the second line, we used the fact that well-separated arms
can be glued together in the annulus Ag,, N A,,,. The proof is similar to the
proof of the claim, where the thin rectangles are replaced by thin disjoint
tubes (of “width” éngy) going around z; to y; for every 1<i < j. O

We now sketch the proof of Theorem 10.24. Let us start with the
following two lemmata.

Lemma 10.25. For any € > 0, there exists T > 0 such that for any n >0
and any boundary conditions &,

q’)i%\ A [there exist T disjoint arms crossing Ao, \ An] <e.

Proof. If T arms are crossing from the inner to the outer sides,
then T/4 arms are actually crossing one of the following rectangles:
[-2n,2n] x [n,2n], [-2n,2n] x [-2n,-n], [n,2n] x [-2n,2n] and
[-2n,-n] x [-2n,2n]. It is thus sufficient to show that for ¢ > 0, there
exists T' > 0 such that the probability of T' disjoint vertical crossings of
[0,4n]x[0,n] is bounded by & uniformly in n and the boundary conditions.
In fact, we only need to prove that conditionally on the existence of k
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crossings, the existence of another crossing is bounded from above by some
constant ¢ < 1, since the probability of T' crossings is then bounded by ¢7.

In order to prove this statement, condition on the k-th left-most crossing
Y- Assume without loss of generality that ~y; is a dual crossing. Construct
a subdomain of [0,4n] x [0,n] by considering the connected component of
[0,4n] x [0,n] \ v containing {4n} x [0,n]. The configuration in € is a
random-cluster configuration with boundary conditions £ on the outside
and free elsewhere (i.e. on the arc bordering the dual arc «;). Now,
Theorem 10.10 implies that €2 is crossed from left to right by a primal and a
dual crossing with probability bounded from below by a universal constant.
Indeed, cut the domain € into two domains ©Q; = Q2n[0,4n] x [0,n/2] and
Qo = Qn[0,4n] x [n/2,n] and assume §; is horizontally crossed and o
is horizontally dual crossed. This prevents the existence of an additional
vertical crossing or dual crossing, therefore implying the claim. O

Remark 10.26. The previous proof harnesses Theorem 10.10 in a crucial
way, the left boundary of €2 being possibly very rough. Crossing estimates
for standard rectangles (even with uniform boundary conditions) would
not have been strong enough.

Let 6 >0 and n > 1. Define B,, to be the event that for some j > 1, the
annulus Ag,, \ A, is crossed by disjoint arms v1,...,7; of type o1,...,0;
but there is no é-well-separated arms 71, ...,7; of type o1,...,0; such that
i is in the o;-cluster of v; for every i < j (o;-cluster means primal cluster
if 0; =1 and dual cluster otherwise).

Lemma 10.27. Let € > 0. There exists § >0 such that ¢(B,,) <€ for any
n>1.

Proof. Consider T large enough so that there exist more than 7" disjoint
arms of As, \ A, with probability less than . From now on, we assume
that there are at most T disjoint arms crossing the annulus.

Fix § > 0 such that uniformly in any subdomain D c A, \ As, and any
boundary conditions on 9D, there is no crossing from dAg, to dA, in D
with probability 1 —¢ °. The existence of § > 0 can be proved easily using
Theorem 10.10.

We may therefore assume that no arm ends at distance less than dn of
a corner of As, N A, with probability 1 — 8z. This enables us to restrict
our attention to vertical crossings in the rectangle [-2n,2n] x [n,2n] for
instance.

5Note that this claim is slightly stronger than simply the fact that the annulus is not
crossed. Indeed, even if the crossing is forced to remain in D, the boundary conditions
on 0D could help the existence of a crossing.
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Figure 10.6: The construction of open and closed paths extending the
crossing and preventing other crossings from finishing close to the path.

Now, condition on the left-most crossing v of R,, = [-2n, 2n]x[n,2n] and
set y to be the ending point of v on the top. Without loss of generality, let
us assume that the crossing is of type 1. As before, construct the domain
) to be the connected component of the right side of R, in R, \ 7.

For k > 1, let Ag = Age,,(y) N\ Asre1,(y). We can assume with probability
1 -¢/T that no vertical crossing lands at distance 6n of y by making the
following construction:

e (2N A; contains an open path disconnecting y from the right-side of
Ry;
e (0N A; contains a dual-open path disconnecting y from the right-side
of R,,.
By choosing ¢ > 0 small enough, Theorem 10.10 shows that the paths in
this construction exist with probability 1 —&/T > 0 independent of the
shape of Q.

We may also show that 7 can be extended to the top of A; by
constructing a path in A; \ (R, \ ) from v to the top of A; (this occurs
once again with probability ¢ > 0 independently of Q2 and the configuration
outside A;). Therefore, the probability that there exists 4 < j < k such that
this happens is larger than 1 - (1 - ¢)*™3. We find that with probability
1-¢/T - (1-c)*3 the path v can be modified into a self-avoiding crossing
which is well-separated (on the outside) from any crossing on the right of
it by a distance at least (6 — §%)n and that this crossing is extended to
distance at least 6% above its end-point. We may choose k large enough
that the previous probability is larger than 1-2¢/T. One may also do the
same for the inner boundary. Iterating the construction 7T times, we find
that ¢(B,,) < 12¢ with 6* as a distance of separation. O

Proof of Theorem 10.24 (sketch). The lower bound ¢[ A%P(n, N)] <
#[Ay(n, N)] is straightforward. Let L and K be such that 4¥71 < n < 4%
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and 45+ < N < 4K+2,

Recall the definition of By and choose § small enough that ¢(By) < e
(the existence of such § is guaranteed by Lemma 10.27). Set By, = Boy.
We may decompose the event A, (n, N) with respect to the smallest and
largest scales at which the event Bg occurs. We find

¢[As(n,N)] )

< Z QS[BLH-“ﬂBg,lﬂBEﬂAJ(22z,22k+1)ﬂB;ﬂBkJrlﬂ“-ﬂBK].
L<t<k<K

Since the annuli Aj2r \ Ag2r-1 are separated by macroscopic areas, we can
use (10.23) repeatedly to find the existence of C' > 0 such that

¢(As(n,N))
< Y CFTEOGIBL] g B 1oL B 0 Ap (27,275 0 B[ Brar 10 Bi ]

L<l<k<K

< 3 (Ce)NTEOGIBE n AL (27,27 n By

L<l<k<K
Now, we see that
Bg A AU(Q%; 22k+1) A Bz c A‘sjep(22€’22k+1)-

Furthermore, the construction used in the proof of Proposition 10.19 can
easily be adapted to show that

¢[Azep(22€’22k+l)] < ClaK—L—(k—€)¢[Azep(n7N)]

for some universal constant o > 1 and C; = C1(4) > 0. Altogether, we find
that

#[As(n,N)] < ¢[AZP(n,N)]C1 > (Cea)N D < Cup[AFP (n, N)]

L<l<k<K

provided that € > 0 is small enough, which can be guaranteed by taking
small enough. The constant C5 depends on ¢ only. |

10.3.3 Universal exponents

Theorem 10.28. For every 1 <n< N,

n

o[ Aronio(n, N)] = (N) . ¢[Ato(n, N)] %7 ¢[Ato1(n, N)] = (%) ;

where A (n, N) is the existence of j arms crossing Ay \ A, and contained
in the upper-half plane H = Z x N.
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Proof. (sketch) We only give a sketch of the proof of the
first statement; the others are derived from similar arguments
(actually the arguments are slightly simpler). By quasi-multiplicativity
(Theorem 10.22), we only need to show that gb[Alono(O,N)] x N2

Lower bound. Fix N > 0. Consider the following construction: assume
that there exists a dual-open dual-path crossing [-2N,2N] x [-N,0]
horizontally and an open path crossing [-2N,2N] x [0, N] horizontally.
This happens with probability bounded from below by ¢; > 0 not
depending on N. By conditioning on the lowest open self-avoiding
path T' crossing horizontally, the configuration in the domain €2 above
I' is a random-cluster configuration with wired boundary conditions on
I' and undetermined boundary conditions on the other three sides (i.e.
o0n 6A2N).

Assume that [-N,0] x [-2N,2N] is crossed vertically by an open path
staying in €2, and that [%, N- %] x[-2N + %, 2N - %] is crossed vertically by
a dual-open path staying in 2*. The probability of this event is once again
bounded from below uniformly in N and €2 thanks to Theorem 10.10. Here
again, uniform crossing estimates for standard rectangles would not have
been sufficiently strong to imply this result.

Summarizing, all these events occur with probability larger than co > 0.
Moreover, the existence of all these crossings implies the existence of a
vertex in Ay with five arms emanating from it, since one may observe
that [-N, N] x [-2N,2N] is crossed by both a primal and a dual vertical
crossing, and that there exists x on I' at the interface between two such
crossings. Such an x has five arms emanating from it and going to distance
at least N%. The union bound implies

N?¢[A10110(0, N)] > ca.

Upper bound. Recall that it suffices to show the upper bound for chosen
landing sequences thanks to Theorem 10.23. Consider the event A, see
Fig. 10.7, that five mutually edge-avoiding arms ~1,...,7s of respective
types 10110 are in such a way that

e 7 starts at « and finishes on {N} x
11
202
e 73 starts at « and finishes on {-N} x

[M

\ZM\ZQ\Z
+

|z,
N[

e o starts at x + (

4
) and finishes on [-
[-

T
=2z |
M~ NI

e 4 starts at z and finishes on [-5, £']x
o s starts at z + (1,1) and finishes on {N + 3} x[-5 + 3, -5 + 1].

6The path I" provides us with two primal paths going from z to the boundary. Since
I is the lowest crossing of [-V,0]x[-2N,2N], there is an additional dual crossing below
T". Finally, since x is at the interface between a primal and a dual crossing above I", we
obtain the two additional paths. Since z is in Ay and that arms connect  and Ay,
we deduce that these arms extend to distance at least N.
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Figure 10.7: Only one vertex per box can satisfy the following topological
picture.

One may easily show using the same techniques as in the previous section
that ¢[A,] < #[A10110(0, N)] for every x € Ayjp. In particular,

N?¢[A10110(0, N)] < Y. ¢[A,]< 1.

zeA N2

The last inequality is due to the fact that the events A, are disjoint
(topologically no two vertices in Ay can satisfy the events in question). O

This result has an interesting corollary.
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Corollary 10.29. There exist a > 0 and ¢,C > 0 such that for every
0<n<N,

n

2+
¢[Ar01010(n, N)] < C (N) ;

n 2-a
d)[AlOlO(naN)] ZC(N) .
The “six-arm” event Ajgip10(n, N) is related to the property R2 in
Theorem 9.15. The “four-arm event” Ajg19(n, N) is important for the
existence of so-called pivotal vertices (see Chapter 11).

Proof. (sketch) Fix n< N, we have

¢[Aro1010(n, N) | = [ A1o1010(n, N) 0 {A,, <> [-N,N]x {-N}}].

The fact that no arm finishes on [-N, N] x {-N} enables us to condition
on five arms as follows. Start by conditioning on the two lowest primal
open arms. This discovers two primal arms and one dual arm below them.
Above these primal arms, condition on the two “lowest” dual arms starting
from the origin (meaning the first one discovered when going respectively
clockwise and counter-clockwise). It can be shown that the probability
of the sixth arm in the undiscovered area is smaller than the probability
of gb?\N [Ao(n,N )] uniformly in the five arms on which we conditioned.
Therefore,

o[ Aro1010(n, N) 0 {A, <> [-N,N] x {-N}}]
< ¢(/)\N [Ao(ﬂ, N)]¢[A10101(n7 N)]

The result follows from Theorem 10.28. O



Chapter 11

The FK-Ising model away
from criticality

Similarly to the previous chapter, this one is devoted to a deeper study of
the FK-Ising model and is aimed at specialists.

It is now time to leave the critical regime of the FK-Ising model to
explore the off-critical regime. More precisely, we discuss two a priori
different notions of “correlation length”. We then study their behavior
when p approaches criticality. After a small detour where we present
a monotone coupling for random-cluster configurations, we discuss the
violation of a classical scaling relation valid for Bernoulli percolation.

In this section, we fix ¢ =2 and we drop it from the notations.

11.1 Correlation length of the Ising model

Theorem 5.18 implies that correlations decay exponentially when p < p,,
but at which speed? In this section, we answer this question by computing
the correlation length

1
&p(x) = —[711_210 % log ¢, (0 «— n:v)]

Recall that Lemma 5.31 implies that this quantity is well defined.

11.1.1 Short proof of exponential decay of correlations

We start by providing an alternative proof of Theorem 5.18 (in the special
case of ¢ =2) based on the fermionic observable. Let p < p..

295
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Consider the FK-Ising model on the strip Sy of height £ > 0 with wired
boundary conditions on the bottom and free boundary conditions on the
top. In what follows, F' denotes the edge fermionic observable in this
Dobrushin domain. As before, one should not be alerted by the fact
that the domain is infinite. Indeed, one may easily define the fermionic
observable by taking the limit as n — oo of the observable in domains
[-n,n] x [0,¢] with a = (n,0) and b(-n,0).

Define e to be medial-edge bordering (0,%) on the north-west side.
Label some of the medial-edges around (0,%) and (0,k + 1) as e, ex+1, €,
e, e’ f and f’ as shown in Figure 11.1.

€k+1f
(0,k+1)
e e o1 !
€L f/
0.k)e

Figure 11.1: The labeling of medial-edges around €3 and €1 used in Step
1.

Proposition 6.10 and Lemma 9.3 have a very important consequence:
around a medial-vertex, the value of the (edge) fermionic observable on
one medial-edge can be expressed in terms of its values on any two other
medial-edges. For instance, (6.2) can be projected around vy orthogonally
to F(f), so that a relation is obtained between projections of F(e), F(e')
and F(eg+1). Moreover, the complex argument (modulo 7) of F' is known
(Lemma 9.3) for each edge so that the relation between projections can be
written as a relation between F(e), F'(e') and F(eg+1) themselves. Doing
the same with vy, we find two relations

e P () = cos(m/4 - a)F(eps1) - cos(m/d+a)e ™PF(e'),  (11.1)
efi”/4F(e) = cos(m/4 + a)F(ey) — cos(m/4 - Oé)e*iW/QF(e”)_ (11.2)

The invariance (in the strip) under horizontal translations gives
F(e')=F("). (11.3)

Moreover, the symmetry under the orthogonal symmetry with respect to
the imaginary axis implies that

F(e) =e™*F(e) = e ™A (). (11.4)

(Indeed, if for a configuration w, e belongs to v and the winding is equal to
W, in the reflected configuration w’, e’ belongs to v(w') and the winding
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is equal to m/2 - W.) Plugging (11.3) and (11.4) into (11.1) and (11.2)
leads to

Flep) = i/ 1+ cos(m/4+ ) F(e)

cos(m/4 - )
[1+cos(m/4+ a)]cos(m/4+ )

B [1+cos(m/4-a)]cos(nm/4- a)F(ek) =c1F(ex),

where a = a(p) was defined in (6.2) and ¢; = ¢;(p) > 0 is a universal
constant. Remember that a(p) > 0 since p < p, so that the multiplicative
constant is less than 1. Using Lemma 6.11 and the previous equality
inductively, we find that for every £ >0,

posr [(0,0) < Z] = |F(e)| = ¢i|F(er)] < ef, (11.5)
where S’O‘g is the FK-Ising measure in S, with Dobrushin boundary

conditions. The last inequality is due to the fact that the observable has
complex modulus less than 1.

The comparison between boundary conditions implies that for any £ >0
and v € OAy,

¢27A2 (O e U) < QS(’}?éﬁzr[(O’g) - Z] < eXp[—clé].

We may once again use Lemma 4.23 (more precisely the steps in (6.14))
to conclude the proof.

11.1.2 Correlation length of the FK-Ising model

The computation of the correlation length of the FK-Ising model is known
for a long time thanks to the Ising model. In [MW73], McCoy and Wu
derived a closed formula for the correlation length of the Ising model which
leads to an explicit formula for the correlation length of the FK-Ising model
using the Edwards-Sokal coupling. Nevertheless, in a recent paper [Mes06],
Messikh raised a surprising new connection between the Ising model and
random walks by noticing that this formula is connected to large deviations
estimates for the simple random walk. In the following, we exhibit what
we believe to be the first derivation of the correlation length based on this
connection with the simple random walk.

In order to state the connection between the correlation length of
the FK-Ising model and random walks, we introduce the massive Green
function G,,, defined in the bulk as

Gm(m, y) = IE:D[ Z%)mnlx,ﬁy],

where m < 1 and E® is the law of a simple random walk starting at x.
This quantity can be interpreted as the expected number of visits to y for
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a random walk starting from z and killed at each step with probability
1-m. It is very convenient to encode the large deviations behavior of the
simple random walk.

We are now in a position to state the main result of this section.

Theorem 11.1 (Beffara, Duminil-Copin [BDC12b]). For p < p. and any

T e,
=il

£P>2(x) = [7}21010 _% log Gcos[2a(p)](0anx)] (116)

where a(p) is defined in Lemma 6.10.

The behavior of the simple random walk is very well understood. In
particular, one can compute the right-hand side of (11.6) explicitly (we
refer to standard text books on large deviations). Furthermore, the
Edwards-Sokal coupling together with the previous theorem leads to the
following consequence for the Ising model (we omit the details).

Corollary 11.2. Let 8 < 5. and let pug denote the (unique) infinite-volume
Ising measure at inverse temperature B; fix a = (a1,as) € Z*. Then,

Tg(a) = 711_{210—% In (ug[o(0)o(na)]) = ajarcsinh sa; + asarcsinh sag,

where s solves the equation

V1+(sa1)2 +/1+ (sa)2 =sinh 283 +

1
sinh 283"

This result is exactly the formula found by McCoy and Wu. The
quantity 73(a) is called the inverse correlation length of the Ising model
in direction a and is equal to 1 divided by the so-called correlation length
of the Ising model (which is itself equal to £,gy(a) by the Edwards-Sokal
coupling).

The interpretation in terms of random walks has a neat corollary. The
convergence of random walks to Brownian motion and the isotropy of the
latter imply that the Wulff shape (see [DKS92] for details on this beautiful
object)

Ws = {zeC: (elu) < m(u),u e U},

of the 2D Ising model becomes (when properly rescaled) a Euclidean ball
when approaching criticality. Indeed, the mass m tends to zero and the
massive Green function thus converges to the Green function itself. This
isotropy (as 8 # 3.) of the Wulff shape can be thought of as a glimpse of
conformal invariance. More precisely, for every a € C, one may expand the
equation defining s in 8 - . to find that s ~ 4|8 - 3.|/|a| as S tends to G..



Chapter 11. The FK-Ising model away from criticality 299

Inserting this asymptotic in the formula for the inverse correlation length
leads to the following result.

Corollary 11.3. For z € C, if 73(z) denotes the quantity defined in the
previous corollary,

Jim (;f(_’z;) = 4)z|. (11.7)

Before diving into the actual proof, here is a short outline of the strategy.
Exponential decay in the strip was already shown in the previous section:
it is an essentially one-dimensional computation. We now aim to refine
it into a two-dimensional version for correlations between two points 0
and a in the bulk, and once again the observable is used in a crucial way.
The basic step, namely obtaining local linear relations between the values
of the observable, is the same, although it is complicated by the lack of
translation invariance. The point is that the relations thus obtained will
be interpreted as follows: the observable is also massive harmonic when
p # pc (see Lemma 11.4 below). Since Gy, (x,y) is massive harmonic in the
variable x for every x # y, it is possible to compare both quantities.

While the strategy is fairly clear, some technical issues appear very
quickly. The main problem is that we are interested in correlations in the
bulk. The observable can be defined directly in the bulk (see below) but
it only provides us with a lower bound on the correlations. In order to
obtain an upper bound, we have to introduce an “artificial” domain (that
will be T'(a) below), which needs to have two features: the observable in
it can be well estimated, and at the same time correlations inside it have
comparable probabilities to correlations in the bulk.

There is a natural recipe to construct such a domain: the second
condition is in fact equivalent to impose that the Wulff shape centered
at 0 and having a on its boundary is contained in the domain in the
neighborhood of a. From convexity, it is then natural to construct T'(a)
as the whole plane minus two wedges, one with vertex at 0 and the other
with vertex at a.

The proof is rather tedious since one needs to deal with the behavior
of the observable on the boundary of the domain T'(a). This was also an
issue in the proof of conformal invariance (in which case the domains are
even more general). At criticality, the difficulty was overcome by working
with the discrete primitive H of F2. Unfortunately, there is no nice
equivalent of H to work with away from criticality. The solution is to use a
representation of F' in terms of a massive random walk. This representation
extends to the boundary and allows us to control the behavior of F
everywhere.

The proof may be skipped during a first reading.
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Proof. Let p < p.. Without loss of generality, consider a = (a;,az) € Z>
satisfying as > a1 > 0. In this proof, a vertex u € Z will sometimes
be identified with the unique medial-vertex e, pointing north-west and
bordering w. In other words F'(u) and {u € v} should be understood as
F(e,) and {e, € v}. We will also index the neighbors of U by N, W, S
and F (the indices refer to the cardinal directions).

The lower bound. Consider the observable F' in the bulk defined as
follows: for every edge e # e,

F(e):= ¢2 (eéwv(e,eo)lm) ) (11.8)

where v is the unique loop passing through eg. The fact that F' is defined
even though we are working on an infinite graph is justified by the fact
that p < p.. Note that F' is not well defined at ey. Indeed, ey can be
thought of as the start of the loop 7 or its end. In other words, F is
multi-valued at eg, with value 1 or -1. Proposition 6.10 can be extended
to this context following a very similar proof, but taking into account that
F is multi-valued at eg. More precisely, let eg = [zy]. Around any vertex
v ¢ {z,y} the relation in Proposition 6.10 still holds; besides,

F(se) +1=¢ P [F(sw)+ F(ne)] ifv=y,

F(sw) + F(ne) =P [-1+ F(se)] ifv=uz,
where the ne (resp. se, sw) is the medial-edge at v pointing to the north-
east (resp. south-east, south-west). In other words, the statement of
Proposition 6.10 still formally holds if the convention becomes F'(eg) = 1
when considering the relation around z, and F'(eg) = —1 when considering

the relation around y.
Let us now show that F' is massive harmonic.

Lemma 11.4. Let p < psq and consider the observable F in the bulk. For
any verter X not equal to 0, we have

cos 2«

A F(X) = [F(W) + F(S)+ F(E) + F(N)] ~F(X) = 0,

where W, S, E and N are the four neighbors of X.

Proof. Consider a vertex X inside the domain and recall that X is
identified with the corresponding medial-edge of the medial lattice pointing
north-west. Index the edges around X in the same way as in Case 1 of
Figure 11.2. By considering the six equations corresponding to vertices
that end one of the edges ey, ..., eg, the following linear system can be
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obtained:

N e12

er € €5 e

W ei X ea F
eg €2 ez €10

e S

F(X)+F(er) =
F(eg) + F(e1) =
F(S)+ F(e2) =
F(es3) + Fea) =
F(E)+ F(es) =
F(€6)+F(612) =

W e1 X ex FE
€8 ez e3 €10

e S

[eBEC I CIRCERECINe]

@ [F(e1) + F(es)],

* [Fe2) + F(W)],
* [F(eg) + F(e3)],
“ [F(e10) + F(X)],
@ [F(eq) + Fen)],
@ [F(es) + F(N)].

er
W er
es €2

€9

€6

€3

es €2

€9

301

€6
X ¢4 E

€3 €10

Figure 11.2: Indexation of the edges around vertices in the different cases.

Lemma 9.3 identifies the complex arguments modulo 7 of F for different
edges (F(e) belongs to e /3R, ¢™/BR, 3™/3R or e”™/*R depending on the
direction). For an edge e, set f(e) = /eF(e). By projecting orthogonally
to the F(y;), i=1...6, the system becomes:

f(X)
f(er)
f(es)
f(X)
f(es)
f(es)

By adding (2) to (3), (5) to (6) and (1) to (4), we find

cos(m/d=a)[f(W) + f(5)]
fee) + fes) = cos(n/4+a)[f(E)+f(N)]
2f(X) = cos(n/4+a)[f(es)+ fler)]
+cos(m/4 - a)[f(es) + f(ea)]

f(es)+ f(er)

cos(m/4+a)f(er)
cos(m/4+a)f(e2)
cos(m/d-a)f(S)
cos(m/4+a)f(e3)
cos(m/d+a)f(F)
— cos(m/4 - ) f(es)

Plugging (7) and (8) into (9) leads to
2f(X) =cos(m/d+a)cos(m/4d-a)[f(W)+ f(S)+ f(E)+ f(N)].

The edges X, ..., N are pointing in the same direction so the previous
equality becomes an equality with F' in place of f (use Lemma 9.3 one
more time). A simple trigonometric identity then leads to the claim. O

+ 4+ o+ o+ + o+

cos(m/4—a)f(es) (1)
cos(mfd—-a)f(W) (2)
—cos(m/4+a)f(ex) (3)
cos(m/d-a)f(es) (4)
cos(m/d-a)f(es) (5)
cos(m/d+a)f(N) (6)

(7)
(®)

(9)

Define the Markov process with generator A,, which one can see either
as a branching process or as the random walk of a massive particle. We
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choose the latter interpretation and write this process (X,,m,) where
X, is a random walk with jump probabilities defined in terms of A,
— the proportionality between jump probabilities is the same as the
proportionality between coefficients — and m,, is the mass associated to
this random walk. The law of the random walk starting at x is denoted
P*. Note that the mass of the walk decays by a factor cos2a at each step.

Denote by 7 the hitting time of 0. The last lemma translates into the
following formula for any a and any t,

F(a) = E*[F(Xons )minr]- (11.9)

The sequence (F(Xi)m:)i<r is obviously uniformly integrable (it is
bounded deterministically by 1), so that (11.9) can be improved to

F(a) = E*[F(X,)m,]. (11.10)

Equation (11.10) together with Lemma 11.5 below gives

#0(0 < a) > ¢Y(eqa €7) 2 |F(a)| > ﬁawsza(om,

which implies the lower bound.

Lemma 11.5. There exists ¢ >0 such that, for every a in the upper-right
quadrant,

@ c
|E [F(XT)mT]| > HGCOSQQ((LG’)'

Proof. Recall that F/(X,) is equal to 1 or -1 depending on the last step
taken by the walk before reaching 0. Let us rewrite E*[F (X, )m,] as

E[m", X, € {W,S}] - E[m", X,_1 € {N, E}].

Now, let d be the line y = —2 and let T' be the time of the last visit! of d
by the walk before time 7 (set T = oo if it does not exist). On the event
that X;_1 = W or S, this time is finite, and reflecting the part of the path
between T and 7 across A, produces a path from a to 0 with X, 1 = F
or N. This transformation is one-to-one, so summing over all paths, we
obtain

E'lm™"1x _ew,sy] - B [m 1x vy ] = -Em 1x (N B} 1{T=00}]

which in turn is equal to —E*[m”1{7_w}]. General arguments of large
deviation theory imply that E*[m”1{p_oy] 2 ﬁGCOSQQ(O,a) for some

universal constant c. O

11t is not a stopping time.
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]L+

Case 3: vertical part of LT (w)

Qm==0===0

=m0 == =0 = =0 === == =0 == =0 == =0
Case 4: vertex we< @

Case 2: horizontal part of LT (w)

Case 1: inside vertices

Figure 11.3: The set T'(w). The different cases listed in the definition of
the Laplacian are also depicted.

The upper bound. Assume that 0 is connected to a in the bulk. We
first show how to reduce the problem to estimations of correlations for
points on the boundary of domains.

For every u = (u1,uz) and v = (v1,v2) two vertices of Z2, write u < v if
w1 < v and ug < vo. This relation is a partial ordering of Z2. Consider the
following sets

L*(u)={reZ?:u<x} and L ={reZ?:2<0};

and
T(u) =Z*~ (L*(u) uL").

In the following, L*(u) and L~ will denote the boundaries of T'(u) near
L*(u) and L~ respectively, see Figure 11.3. The measure with wired
boundary conditions on L.~ and free boundary conditions on L*(u) is
denoted @7 (y)-

Assume that a is connected to 0 in the bulk. By conditioning on the site
w that maximizes the partial <-ordering in the cluster of 0 2, we obtain
the following:

dp(a=0) < Y dpey(w < L7) < Csla| max  or(u)(w <L)
w>a w>a,|lw|<c3|a
(11.11)

for c¢3 and C3 two large universal constants. The existence of c3 is given
by the fact that the two-point function decays exponentially fast: a priori
estimates on the correlation length show that the maximum above cannot
be reached at any w which is much further away from the origin than a,

2Tt is the same reasoning as in Lemma 4.23. Note that w may be non unique, in
such case, we choose one such site, for instance by taking the minimal one for the
lexicographical ordering.
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and even that the sum of the corresponding probabilities is actually of a
smaller order than the remaining terms. Summarizing, it is sufficient to
estimate the probability of the right-hand side of (11.11).
Observe that w is on the free arc of T'(w), so that, using Lemma 6.11,
we find
¢T(w)(w < L7) = |F(w), (11.12)

where F' is the observable in the infinite Dobrushin domain T'(w) (the
winding is fixed in such a way that it equals 0 at e,,). Now, similarly to
Lemma 11.4, F satisfies local relations in the domain T'(w):

Lemma 11.6. The observable F satisfies A F = 0 for every vertex not
on the wired arc, where the massive Laplacian A, on T(w) is defined by
the following relations: for all g: T(w) » R, (g+ Ang)(X) is equal to:

CcoS 2«

[g(W) +g(S)+g(E) +g(N)] inside the domain;

5= [g(W) +9(5)] + cos(] + a)g(E)
1+cos(§ - )
c22[g(W) +g(S)] + cos(§ +a)g(N)
1 +cos(§ —a)
=522 (o) +.9(S)] + cos(f - )g(E) + g(N)]

2 ;
with N, E, S and W being the four neighbors of X.

on hor. part of L*(w);

on vert. part of L*(w);

Proof. When the vertex is inside the domain, the proof is the same as in
Lemma 11.4. For boundary vertices, a similar computation can be done.
For instance, consider Case 2 in Fig. 11.2. Equations (3) and (7) in the
proof of Lemma 11.4 are preserved. Furthermore, Lemma 6.11 implies
that

F(X) = f(e1) = o) (X < L7)
and similarly f(eq) = f(E) (where f is still as defined in the proof of

Lemma 11.4). Plugging all these equations together, we obtain the second
equality. The other cases are handled similarly. ]

Now, we aim to use a representation with massive random walks similar
to the proof of the lower bound for free boundary conditions. One technical
point is the fact that, if we do it naively, the mass at w is larger than 1.
This could a priori prevent (F(X;)m;); from being uniformly integrable.
Therefore, the behavior at w needs to be treated separately. Denote by 71
the hitting time (for ¢ > 0) of w, and by 7 the hitting time of L~. Since
the masses are smaller than 1, except at w, (F'(X;)m¢)t<rar, is uniformly
integrable and we can apply the stopping theorem to obtain:

F(w) = EY[F(Xonr )Mrar | = B [F (X7 )mr 1oy o [FEY[F (X )M 1rer |
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Since X, = w, the previous formula can be rewritten as

F(w) = BEX)me e ]
) 1_Ew(’r’/L7'1:l7'1<’r) '

(11.13)

When w goes to infinity in a prescribed direction, [1 - E* (mr 15 <r)]
converges to the analytic function h:[0,1] > R, p—» 1 -E*(m,,) (since
the function is translation-invariant). The function h is not equal to 0
when p = 0, implying that it is equal to 0 for a discrete set P of points. In
particular, for p ¢ P, the first term in the right hand side stays bounded by
a constant Cy = Cy(p) < oo when w goes to infinity. Recalling that [F| < 1
and that the mass is smaller than 1 except at w, (11.13) becomes

[F'(w)] < C4|Ew [F(X‘r)mTlT<T1]| <EY[m:1r<r,]
<Cy Z Em[(COS 2a)T17<7—11{(Xt) avoids L*(w)}] <Cy Z GcosQa(ny)
(11.14)

where the last inequality is due to the release of the conditioning on
avoiding L*(w).
Finally, it only remains to bound the right hand side. From (11.14), we
deduce
|F(w)] € Cs|w|Geos24 (0, w), (11.15)

where the existence of C5 is due to the exponential decay of Geosaa(:,-)
and the fact that Geos2a(0,2) < Geos24 (0, w) whenever w < z. We deduce
from (11.11), (11.12) and (11.15) that

¢, (0 < a) < C3C5al® max G (0,w) < Cgla*Grn (0, a).
W<a,|W|ew<cs|a|oo

Taking the logarithm and passing to the limit, the claim is obtained for

all p < p. not in the discrete set P. The result follows for every p using the

fact that the correlation length is increasing in p. O

11.2 Characteristic length of the FK-Ising
model

Beyond the understanding of the critical and non-critical phases (which
was the subject of previous chapters and the previous section respectively),
the principal goal of statistical physics is to study the phase transition
itself, and in particular the behavior of macroscopic properties such as the
density of the infinite-cluster for p > p. near the critical point.

It is wusually possible to relate the critical regime to these
thermodynamical properties via the study of the so-called near-critical
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regime. This regime was investigated in [Kes87] in the case of percolation.
Many works followed afterward, culminating in a good understanding of
near-critical phenomena in Bernoulli percolation [GPS10, NW09, GPS13].
The goal of this section is to discuss the near-critical regime in the random-
cluster case, and more precisely in the FK-Ising case.

11.2.1 Definition of the characteristic length

Informally, the near-critical regime is the study of the FK-Ising model of
edge-parameter p in the box of size L when (p, L) goes to (p., o). Consider
L = L(p) and let p # p.. Note that, on the one hand, if L(p) goes to oo
too slowly, the configuration in the box of size L will look critical. On
the other hand, if L(p) goes to oo (from above) too quickly, the random-
cluster model will look supercritical. The typical scale L(p) separating
these two regimes is called the characteristic length, also called finite-size
scaling correlation length or simply correlation length (which is unfortunate
since a priori it is not defined as the correlation length introduced in the
previous section).

Let us define the characteristic length more formally. As illustrated
before, the critical regime is often characterized by the fact that crossing
probabilities remain bounded away from 0 and 1 (at least for continuous
phase transitions). It is therefore natural to introduce the following
definition.

Definition 11.7 (Characteristic length). Fix p >0 and & > 0. Define

inf {n>0: R, (Cu(Rn)) <} if p < pe,

Lpe(p) =
g inf{n>0:¢ 5 (Co(Ry))21-¢} ifp>pe,

where R, = [0,n] x [0, pn].

Theorem 10.1 shows that for € < ¢1(p) (where ¢; is given by the theorem),
L, (p) tends to infinity as p tends to p.. Furthermore, we have

e< qu,’R"(CU(Rn) <l-¢

for any n < L, .(p) and any boundary conditions £ on OR,,. In some way,
this justifies the fact that the configuration resembles the critical one below

Lp,a (p)

Remark 11.8. The notion of characteristic length can be useful for
any random-cluster model with 1 < ¢ < 4. For Bernoulli percolation
(¢ = 1), Smirnov and Werner [SWO01] showed that L,.(p) was behaving
like |p— %|—4/3+o(1).
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Remark 11.9. The characteristic length is expected to be 