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Chapter 1

Introduction

Let β be a braid with closure β̂ a link. The canonical Seifert surface of β
constructed by Seifert’s algorithm resolves each crossing of β̂

Figure 1.1: Resolving an overcrossing and an undercrossing.

to produce a collection of disjoint, oriented, simple, planar circles called
Seifert circles. Each Seifert circle bounds a planar disc and we may push
the planar disks vertically to make them disjoint. Attaching a twisted
band between the Seifert circles for each resolution of a crossing, with
the twist matching the type of the crossing, then produces the canonical
Seifert surface of β̂, which is a closed orientable surface of genus g ≥ 0 with
boundary β̂.

377



378 Christopher Palmer

Figure 1.2: A Seifert surface produced by Seifert’s algorithm.

Choosing an ordered basis {[γi]}2g
i=1 of H1(Σ;Z), with each basis homol-

ogy class [γi] represented by simple, closed curve γi ⊂ Σ, we may push
each γi in the positive normal direction to produce a simple closed curve
γ+i which lies in S3 −Σ. The Seifert form V ∶ H1(Σ;Z) ×H1(Σ;Z) → Z is
the bilinear form determined on the basis homology classes by the linking
numbers Lk(γi, γ+j ).

Two n-strand braids β,β′ may be concatenated to produce an n-strand
ββ′. The effect of the concatenation of braids is a gluing of Seifert sur-
faces along parts of their boundaries. The Mayer-Vietoris sequence then
provides an obstruction for the Seifert form to be additive under the con-
catenation of braids. This suggests that one could try to find a chain level
Seifert form, expressed in terms of partial linking numbers, which is addi-
tive on the chain level under the concatenation of braids and descends to
the Seifert form on the homology level.

Banchoff [3] gave a combinatorial linking formula for two disjoint space
polygons expressed in terms of partial linking numbers of pairs of edges as
follows. Let X = {X0,X1, . . . ,Xm−1} respectively Y = {Y0, Y1, . . . , Yn−1}
be a set of points in general position in R3. For a unit vector ξ ∈ S2

let pξ ∶ R3 → P denote the projection map from R3 onto the plane
P orthogonal to ξ. A vector ξ ∈ S2 in called general for X and Y if
the projections pξ(X), pξ(Y ) ⊂ R2 are in general position. For a vector
ξ ∈ S2 which is general for X and Y , define Ci,j(X,Y, ξ) to be the sign of
Pξ(Yj+1 − Yj) × Pξ(Xi+1 −Xi).(Xi − Yj) if there are interior points Xi of
the edge XiXi+1 and Yj of the edge YjYj+1 such that pξ(Xi) = pξ(Yj) and
define Ci,j(X,Y, ξ) to be zero otherwise.

The linking number of two space polygons is then expressible as the sum
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of the partial linking numbers of all edge pairs.

Theorem [3, p.1176-1177] For disjoint polygonal knots X,Y ⊂ R3 the
value

C(X,Y, ξ) = ∑
0⩽i⩽m−1
0⩽j⩽n−1

Ci,j(X,Y, ξ) ∈ Z

is independent of the choice of general vector ξ ∈ S2. The linking number
of the polygonal knots determined by X and Y is the average value of
C(X,Y, ξ), that is

Lk(X,Y ) = 1
4π ∫ξ∈S2

C(X,Y, ξ)dω = 1
4π ∑

0⩽i⩽m−1
0⩽j⩽n−1

∫
ξ∈S2

Ci,j(X,Y, ξ)dω ∈ Z

where ω is the volume form on S2. Moreover this integral may be ex-
pressed in terms of dihedral angles of tetrahedra.

The closure of an n-strand braid with `-crossings arises as the trace
of ` 0-surgeries on a disjoint union of n circles. Ranicki [16] applied the
algebraic theory of surgery to the geometric surgeries to obtain a chain level
formula which is defined inductively in terms of Seifert graphs. The Seifert
graph of a braid β is the 1-dimensional CW-complex X(β) constructed
from the canonical Seifert surface of β by collapsing each Seifert disc to a
point and collapsing each twisted band to its core. If β is an n-strand braid
with `-crossings then the Seifert graph X(β) has ` 1-cells and n 0-cells and
has a cellular chain complex of the form

d ∶ C1(X(β);Z) ≅ Z` → C0(X(β);Z) ≅ Zn

where d is a signed incidence matrix. If β′ is another n-strand braid with
`′ crossings then the Seifert graph X(β′) has a cellular chain complex of
the form

d′ ∶ C1(X(β′);Z) ≅ Z`
′
→ C0(X(β′);Z) ≅ Zn.

The Seifert graph of the concatenated braid ββ′ is a CW-complex which
can be formed from the Seifert graphs of β,β′ by identifying the 0-cells so
that X(ββ′) has (` + `′) 1-cells, n 0-cells and a cellular chain complex of
the form

d′′ = ( d d′ ) ∶ C1(X(ββ′);Z) ≅ Z` ⊕Z`
′
→ C0(X(ββ′);Z) ≅ Zn.

Ranicki defined the canonical generalised Seifert matrices of the elementary
regular n-strand braids σi, σ−1

i to be the 1 × 1 matrices

ψσi = ( 1 ) , ψσ−1
i
= ( −1 )
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and inductively defined the generalised Seifert matrix of the concatenated
braid ββ′ to be the matrix

ψββ′ = ( ψβ −d∗χd′
0 ψβ′

) ∶ C1(X(ββ′);Z) ×C1(X(ββ′);Z) → Z

where χ is the lower triangular n×n matrix with ones below the diagonal.

Theorem [16, p.37-38] Let β,β′ be regular n-strand braids. The
generalised Seifert matrix

ψββ′ ∶ C1(X(ββ′);Z) ×C1(X(ββ′);Z) → Z

induces the Seifert form of ββ′

ψββ′ ∶H1(X(ββ′);Z) ×H1(X(ββ′);Z) → Z.

Motivated by the space polygon linking formula of Banchoff [3] and the
surgery-theoretic linking formula of Ranicki [16] we construct a new chain
level Seifert form. Following a suggestion of Étienne Ghys, to each braid β
we associate a 1-dimensional simplicial complex K(β) called a fence. The
fence of an elementary n-strand braid σ±1

i with a single crossing between
strand i and strand i + 1 is the oriented 1-dimensional simplicial complex
K(β) with 2n 0-simplices and (n + 1) 1-simplices as shown below

Figure 1.3: The fences associated to the elementary n-strand braids σ±1
i .

The fence of a regular n-strand braid β = β1β2 . . . β` with ` crossings
is the concatenation of the fences of the elementary braids from left to
right and there is a natural embedding of the fence of β into the canonical
Seifert surface of β.
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Figure 1.4: The embedding of the fence K(β) in to the canonical Seifert surface
for β̂.

By examining how a fence links with itself when it is pushed in the
positive normal direction to the canonical Seifert surface

Figure 1.5: Pushing part of the fences in the positive normal direction.

we can associate to each fence a Z[ 1
2 ]-valued bilinear form λβ ∶

C1(K(β);Z) ×C1(K(β);Z) → Z[ 1
2 ] which encodes partial self-linking in-

formation. This descends to the Seifert form of β on the homology level:

Theorem 6. The embedding K(β) ↪ Σ is a homotopy equivalence
inducing an isomorphism H1(K(β);Z) ≅ H1(Σ;Z) with a commutative
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diagram

H1(K(β);Z) ×H1(K(β);Z)

≅
��

[λβ] // Z ⊂ Z[ 1
2 ]

H1(Σ;Z) ×H1(Σ;Z)

V

44

Moreover, this chain level Seifert form is additive under the concatena-
tion of braids:

Theorem 7. Let β = β1β2 . . . β` be a braid where each βi is an elementary
braid. The chain level pairing λβ ∶ C1(K(β);Z)×C1(K(β);Z) → Z[ 1

2 ] can
be represented by a block diagonal matrix

⎛
⎜⎜⎜
⎝

λβ1 0 . . . 0
0 λβ2 . . . 0
⋮ ⋮ ⋮
0 0 . . . λβ`

⎞
⎟⎟⎟
⎠

We then compare our model to Banchoff’s and Ranicki’s. Our model has
the advantage that the partial linking numbers are Z[ 1

2 ]-valued and not R-
valued as in Banchoff’s model. Moreover, the concatenation behaviour in
our model is additive and gives an instant chain level Seifert form whereas
Ranicki’s model is inductively defined.

Propositions 5, 6. Our model is chain equivalent to Banchoff’s com-
binatorial model for the linking number of two space polygons and chain
equivalent to Ranicki’s surgery-theoretic chain level Seifert pairing model.

We give two applications of this chain level Seifert form to the isotopy
of braids and to the signature of braids.

Two n-strand braids β,β′ are isotopic if β can be continuously deformed
to β′ through a family of n-strand braids. Isotopy is an equivalence relation
on the set of n-strand braids and the set of isotopy classes form a group
Bn called the n-strand braid group. Artin [2] showed that there is a
presentation of the braid group Bn with generators the elementary n-
strand braids σ1, σ2, . . . , σn−1 and relations of the form

σiσj = σjσi for ∣i−j∣ ⩾ 2, σiσjσi = σjσiσj for ∣i−j∣ = 1, σiσ
−1
i = σ−1

i σi = 1.
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We define the chain level Seifert pair (λβ , dβ) of a braid β and two
equivalence relations, called A and Â-equivalence, such that:

Propositions 8, 10. The A-equivalence class of the chain level Seifert pair
of an n-strand braid β is a complete isotopy invariant. The Â-equivalence
class of the chain level Seifert pair of an n-strand geometric braid β is an
isotopy invariant of the closure β̂ inside the solid torus.

The A-equivalence relation yields a universal representation of the braid
group and the Â-equivalence relation yields a representation of the braid
group modulo conjugacy:

Theorems 10, 11. Let n ⩾ 2 and denote by Fn the free group on the set
of elementary n-strand braids {σ1, σ2, . . . , σn−1} and denote by Bn denote
the braid group. The map

(λ, d) ∶ Fn → {chain level Seifert pairs}, β ↦ (λβ , dβ)

is a bijection such that words β,β′ ∈ Fn differ by the relations in the braid
group if and only if the chain level Seifert pairs (λβ , dβ), (λβ′ , dβ) are A-
equivalent. Moreover two words β,β′ ∈ Bn are conjugate if and only if the
chain level Seifert pairs (λβ , dβ), (λβ′ , dβ) are Â-equivalent. This induces
an isomorphism of groups

(λ, d) ∶ Bn →
{chain level Seifert pairs}

A − equivalence
, [β] ↦ [(λβ , dβ)]

and descends to a bijection

(λ, d) ∶ Bn
conjugacy

→ {chain level Seifert pairs}
Â − equivalence

, [β] ↦ [(λβ , dβ)]

such that there is a commutative diagram

Fn {chain level Seifert pairs}

Bn
{chain level Seifert pairs}

A−equivalence

Bn
conjugacy

{chain level Seifert pairs}
Â−equivalence

(λ,d)
≅

(λ,d)
≅

(λ,d)
≅

For a unit complex number ω ≠ 1 the ω-signature of a braid β
with Seifert matrix V is the signature σω(β) of the hermitian form
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(H1(Σ;Z), (1 − ω)V + (1 − ω)V t). We can express the ω-signature of a
braid in terms of its chain level Seifert pair:

Theorem 12. Let β be a braid with chain level Seifert pair (λβ , dβ) and
let ω ≠ 1 be a unit complex number. The ω-signature of β is the signature
of the hermitian pair

(C1(K(β);C) ⊕C0(K(β);C),( (1 − ω)λβ + (1 − ω)λtβ dtβ
dβ 0 ))

so that
σω(β) = σ (( (1 − ω)λβ + (1 − ω)λtβ dtβ

dβ 0 )) .

This paper is organised as follows.

In chapters 2 to 4 we introduce the basic operations one can perform
on braids such as concatenation, taking the closure, performing an isotopy
and constructing a Seifert form from a canonical Seifert surface.

In chapter 5 we define the 1-dimensional simplicial complex K(β) and
the Z[ 1

2 ]-valued bilinear form λβ ∶ C1(K(β);Z) × C1(K(β);Z) → Z[ 1
2 ].

We show that there is an embedding of K(β) ↪ Σ with image a deforma-
tion retract of the canonical Seifert surface Σ of β̂ constructed by Seifert’s
algorithm. In chapter 6 we examine how the image K(β) is pushed along
the positive normal to the Seifert surface to show that λβ descends to the
Seifert form on the homology level. In chapter 7 we show that the bilinear
form λβ is additive under the concatenation of braids and in chapter 8 we
compare our chain level Seifert form to the space polygon linking model
of Banchoff and the surgery-theoretic Seifert form of Ranicki.

In chapter 9 we define the A and Â-equivalence relations and use the
chain level Seifert pair (λβ , dβ) of a braid β to produce a representation of
the braid group and of the braid group modulo conjugacy and in chapter
10 we construct a chain level formula for the ω-signature of a braid.



Chapter 2

Links and linking
numbers

Definition 1. An n-component link is an embedding L ∶ ⊔nS1 ↪ S3

of n disjoint, piecewise smooth, simple, closed curves. A knot is a one-
component link. Let P ⊂ R3 be a 2-dimensional subspace of R3 and
let p ∶ R3 → P be the orthogonal projection map onto P . We say that
p ∶ R3 → R is a regular projection of a link L if for each x ∈ P the
intersection p−1(x)∩L consists of at most two points, in which case the link
diagram is the image p(L) ⊂ P with the over and under crossings recorded.
An oriented link is a link for which each connected component has been
given an orientation and this is recorded on a link diagram by a choice of
arrow on each component of the link diagram. Two links L,L′ are ambient
isotopic if there is a homotopy of orientation preserving homeomorphisms
ft ∶ ⊔nS1 ↪ S3 with (0 ≤ t ≤ 1)such that f0 is the identity and f1(L) = L′.

We will abuse the terminology in the standard way, with the word ’link’
sometimes referring to the embedding and sometimes referring to the image
of the embedding.

Example 1. Regular projections of an oriented trefoil knot and oriented
Hopf link.

385
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Figure 2.1: Projections of the trefoil knot and Hopf link.

The linking number of two knots is an important numerical invariant in
knot theory and may be defined in any of the following ways.
Definition 2. Let J,K be two disjoint oriented knots in S3.
(i) The knot J ⊂ S3 − K induces a homology class [J] ∈ H1(S3 − K)

in the complement of K. Since H1(S3 − K) ≅ Z is infinite cyclic,
fixing a generator γ ∈ H1(S3 − K) we may write [J] = nγ with
Lk1(J,K) = n ∈ Z.

(ii) Let p ∶ R3 → P be a regular projection of the link J ⊔K ⊂ R3. The
linking number is half the sum of the signed crossings Lk1(J,K) =
1
2 ∑x∈p(J)∩p(K) εx ∈ Z where each crossing x ∈ p(J)∩p(K) is assigned
a sign εx = ±1 as follows

Figure 2.2: The signs associated to an overcrossing and an undercrossing.

(iii) The knots J and K induce 1-cycles J,K ∈ C1(S3;Z). Since
H1(S3;Z) = 0 we may choose a 2-chain Σ ∈ C2(S3;Z) such that
∂Σ = J . The cap product Σ ∩ K ∈ C0(S3;Z) is a 0-cycle which
induces a well defined homology class [Σ∩K] ∈H0(S3;Z) ≅ Z which
determines Lk2(J,K) ∈ Z.

(iv) Orienting S1 × S1 and S2, the linking number Lk2(J,K) ∈ Z is the
degree of the Gauss map

f ∶ S1 × S1 → S2; f(u, v) = J(u) −K(v)
∥J(u) −K(v)∥

.
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(v) The linking number Lk3(J,K) is the Gauss integral

1
4π ∫J ∫K

(x′ − x)(dydz′ − dzdy′) + (y′ − y)(dzdx′ − dxdz′) + (z′ − z)(dxdy′ − dydx′)
[(x′ − x)2 + (y′ − y)2 + (z′ − z)2]3/2

∈ Z

Theorem 1. [18, p.132-135]. The above definitions of linking numbers
agree (up to sign) and the linking number is an ambient isotopy invariant.



Chapter 3

Seifert surfaces and
Seifert matrices of links

Definition 3. A Seifert surface for an oriented link L is a compact
oriented surface Σ ⊂ S3 with oriented boundary ∂Σ = L such that the
normal bundle νΣ⊂S3 is trivial.

Seifert’s algorithm [20] produces a Seifert surface for an oriented link
L in the following way. Fix a regular projection of L and resolve each
crossing as shown below.

Figure 3.1: Resolving an overcrossing and an undercrossing.

Doing so produces a collection of disjoint, oriented, simple, planar circles
called Seifert circles. Each Seifert circle bounds a planar disc. If some of
the discs are not disjoint, because the corresponding Seifert circles are
nested, we may push some the discs in a direction perpendicular to the
plane to make them disjoint. We then attach a twisted band between the
Seifert circles for each resolution of crossing with the twist matching the
type of the crossing.

Example 2. Seifert surfaces for an oriented trefoil knot and oriented Hopf
link constructed by Seifert’s algorithm. We have labelled the Seifert circles

388
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to keep track of them when we move the discs they bound.

Figure 3.2: Seifert’s algorithm performed on a trefoil knot and Hopf link.

A link has many regular projections so the Seifert surfaces constructed
by Seifert’s algorithm are highly non-unique. A Seifert surface for a link
is however unique up to a certain relation called S-equivalence.

Definition 4. Two compact surfaces with boundary (Σ1, ∂Σ1) and
(Σ2, ∂Σ2) are S-equivalent if (Σ2, ∂Σ2) can be obtained from (Σ1, ∂Σ1)
by a combination of ambient isotopy and adding or subtracting finitely
many handles by ambient surgery.

Theorem 2. [11, Lemma 5.2.4] Any two Seifert surfaces of a link L are
S-equivalent.

Let L be an oriented link with Seifert surface Σ of genus g. Then
H1(Σ;Z) is a f.g. free abelian group of rank 2g. Choose a basis {[γi]}2g

i=1
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of H1(Σ;Z) with each basis homology classes [γi] represented by simple,
closed curve γi ⊂ Σ. Use the triviality of the normal bundle νΣ⊂S3 to
define a small bi-collar Σ × [−1,1] of Σ ⊂ S3 and for each 1 ⩽ i ⩽ n define
γ+i = γi ×{1} ⊂ Σ× [−1,1] to be the simple, closed curve in S3 obtained by
pushing γi in the positive normal direction to Σ.

Definition 5. The Seifert matrix of Σ with respect to this bi-collar and
this choice of basis is the 2g × 2g matrix V defined by

Vi,j = Lk(γi, γ+j ), (1 ⩽ i, j ⩽ 2g)

and the Seifert form of Σ is the bilinear form

V ∶H1(Σ;Z) ×H1(Σ;Z) → Z.

The ambiguity in the choice of Seifert surface for a link means that the
Seifert matrix of a link is only unique up to an algebraic S-equivalence
relation.

Definition 6. Two n × n integral matrices are S-equivalent if one can be
transformed into the other by a finite sequence of the following operations:

(i) V ↦ PV P t with P integral and unimodular.

(ii) V ↦ (
V ξ 0

0
0

0 1
0 0

)

(iii) V ↦
⎛
⎝
V 0 0
ξ
0

0 0
1 0

⎞
⎠
.

Theorem 3. [14, Theorem 3.1] The S-equivalence class of the Seifert
matrix of a link is an isotopy invariant.

In chapters 5 and 6 we will develop a chain level lift of the Seifert matrix
for a link which can be expressed as the closure of a braid. In chapter 9
we will develop equivalence relations, called A- and Â-equivalence, such
that the A-equivalence class of the chain level lift is an isotopy invariant
of the braid and the Â-equivalence class of the chain level lift is an isotopy
invariant of the closure of the braid.



Chapter 4

Regular braids, geometric
braids and closures

We are particularly interested in those links which can be written as the
closure of a braid.

Definition 7. For 1 ⩽ i ⩽ n − 1 the elementary n-strand braid σi is the
n-strand braid of polygonal arcs with a single crossing of strand i over
strand i + 1 and no crossings between any other pairs of adjacent stands
and the elementary n-strand braid σ−1

i is the n-strand braid with a single
crossing of strand i under strand i+ 1 and no crossings between any other
pairs of adjacent strands. The trivial n-strand braid 1 is the n-strand braid
of polygonal arcs with no crossings.

Figure 4.1: The elementary n-strand braids.

A regular n-strand braid β = β1β2 . . . β` is the concatenation from left
to right of finitely many elementary n-strand braids and trivial n-strand
braids.

391
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Regular braids are combinatorial models for geometric braids.
Definition 8. Let n ⩾ 1. A geometric n-strand braid β with permutation
σ ∈ Sn of the set {1,2, . . . , n} is an embedding

β ∶ {1,2, . . . , n} × [0,1] ↪ R2 × [0,1]; (k, t) ↦ β(k, t)

such that

β(k,0) = (k,0,0) ∈ R2 × {0} (1 ⩽ k ⩽ n)
β(k,1) = (σ(k),0,1) ∈ R2 × {1} (1 ⩽ k ⩽ n)

and each composition

[0,1]
β(k,−)
ÐÐÐ→ R2 × [0,1]

projection
ÐÐÐÐÐÐÐ→ [0,1] (1 ⩽ k ⩽ n)

is a homeomorphism.
Example 3. A geometric 4-strand braid with permutation σ = (123)(4) ∈
S4

Figure 4.2: A 4-strand braid.

Definition 9. The concatenation of geometric n-strand braids β with
permutation σ ∈ Sn and β′ with permutation σ′ ∈ Sn is the geometric
n-strand braid

ββ′ ∶ {1,2, . . . , n} × [0,1] ↪ R2 × [0,1]

with permutation σσ′ ∈ Sn defined by

ββ′(k, t) = { β′(k,2t) if 0 ⩽ t ⩽ 1
2

β(k,2t − 1) if 1
2 ⩽ t ⩽ 1.



Seifert matrices of braids with applications to isotopy and signatures 393

Definition 10. Two geometric n-strand braids β,β′ are isotopic if there
exists a family of geometric n-strand braids

βs ∶ {1,2, . . . , n} × [0,1] ↪ R2 × [0,1] (s ∈ [0,1])

such that β0 = β and β1 = β′ and each function

{1,2, . . . , n} × [0,1] × [0,1] → R2 × [0,1]; (k, t, s) ↦ βs(k, t) (1 ⩽ k ⩽ n)

is continuous.

Lemma 1. Isotopy of geometric n-strand braids is an equivalence relation.
The set of isotopy classes of geometric n-strand braids is a group with:

(i) The composition of the isotopy classes [β], [β′] of geometric n-strand
braids β,β′ equal to the isotopy class [ββ′] of the geometric n-strand
braid ββ′.

(ii) The identity element equal to the isotopy class of the geometric n-
strand braid

{1,2, . . . , n} × [0,1] ↪ R2 × [0,1]; (k, t) ↦ (k,0, t)

(iii) The inverse of the isotopy class [β] of a geometric n-strand braid β

β ∶ {1,2, . . . , n} × [0,1] ↪ R2, (k, t) ↦ β(k, t)

equal to the isotopy class of the geometric n-strand braid

{1,2, . . . , n} × [0,1] ↪ R2, (k, t) ↦ β(k,1 − t).

Regular braids can be used to give a presentation of the braid group.

Theorem 4. [2] Each geometric n-strand braid is isotopic to a regular
n-strand braid so that the braid group Bn of isotopy classes of geometric
n-strand braids has a presentation

⟨σ1, σ2, . . . , σn−1∣σiσj = σjσi for ∣i − j∣ ⩾ 2, σiσjσi = σjσiσj for ∣i − j∣ = 1⟩.

In particular, two geometric n-strand braids β,β′ are isotopic if and only
if they are isotopic to regular n-strand braids determined by braid words
β,β′ from the alphabet {σ1, σ2, . . . , σn−1, σ

−1
1 , σ−1

2 , . . . , σ−1
n−1} such that β′

can be obtained from β by applying finitely many of the relations

(i) σiσ−1
i = σ−1

i σi = 1

(ii) σiσj = σjσi for ∣i − j∣ ⩾ 2

(iii) σiσjσi = σjσiσj for ∣i − j∣ = 1.
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Every braid β determines a link β̂ by a closure operation.

Proposition 1. [9, p.18] Let U ⊂ R2 be an open disc containing the set
of points {(1,0), (2,0), . . . , (n,0)}.

(i) Any geometric n-strand braid

β ∶ {1,2, . . . , n} × [0,1] ↪ R2 × [0,1]

is isotopic to a geometric n-strand braid

β′ ∶ {1,2, . . . , n} × [0,1] ↪ U × [0,1] ↪ R2 × [0,1]

with image contained in U × [0,1].

(ii) Any two geometric n-strand braids which are isotopic in R2 × [0,1]
and have image in U × [0,1] are isotopic in U × [0,1].

(iii) The quotient map

D2 × [0,1] →D2 × S1 = D2 × [0,1]
(x,0) ∼ (x,1)

sends a geometric n-strand braid β′ contained in U × [0,1] ⊂ D2 ×
[0,1] ⊂ R2 × [0,1] to a canonically oriented link β̂ contained in
U × S1 ⊂D2 × S1.

(iv) Given a geometric n-strand braid β, the isotopy class of the link β̂ in
D2×S1 relative to the boundary S1×S1 depends only on the isotopy
class of β.

Definition 11. The closure of a regular n-strand braid β is the isotopy
class of the link β̂ formed from any geometric n-strand braid isotopic to
the regular n-strand braid β.

Proposition 1 ensures that the closure operation is well-defined. It is
often convenient to picture the closure of a braid, which is oriented from
left to right, as follows

Figure 4.3: The closure of a braid.
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Theorem 5. [1] Every oriented link in S3 is isotopic to the closure of a
regular braid.

The choice of such a braid is highly non-canonical. However, by
Markov’s theorem [12] any two such braids (with the same braid axis)
differ only by a braid isotopy and a finite number of braid stabilisations
and destabilisations.

Figure 4.4: The stabilisation and destabilisation operations.



Chapter 5

Pushing fences

Definition 12. The fence of the elementary n-strand braid σ±1
i with

a single crossing between strand i and strand i + 1 is the oriented 1-
dimensional simplicial complex K(β) with 2n 0-simplices and (n + 1) 1-
simplices as shown below. The fence of the trivial n-strand braid 1 is the
0-dimensional simplicial complex K(1) with n 0-simplices as shown below.

Figure 5.1: The fences associated to the elementary braids σ±1
i and the trivial

braid.

The fence of a regular n-strand braid β = β1β2 . . . β` is the concatenation
of the fences K(β1),K(β2), . . . ,K(β`) from left to right so that
K(β1β2 . . . β`) = ∪`i=1K(βi) where K(βi) intersects K(βi+1) in the right
hand vertex set of K(βi) and the left hand vertex set of K(βi+1).

Example 4. The 3-strand braid β = σ1σ1σ2σ
−1
1 σ2

396
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Figure 5.2: The braid σ1σ1σ2σ
−1
1 σ2.

has the fence

Figure 5.3: The fence K(σ1σ1σ2σ
−1
1 σ2).

Proposition 2. For a regular braid β with closure β̂ let Σ be the canonical
Seifert surface of β̂ constructed by Seifert’s algorithm. There is an inclusion
K(β) ↪ Σ which is a homotopy equivalence.
Proof. Suppose that β = β1β2 . . . β` is a regular n-strand braid with ` cross-
ings where each βi is an elementary n-strand braid . The orientation of
the n strands of the braid from left to right induces an orientation of the
link β̂ in a natural way. Seifert’s algorithm resolves the ` crossings of β̂
to produce n Seifert circles. The Seifert circles may be labelled 1,2, . . . , n,
stacked one below the other with 1 at the top and n at the bottom and
then filled in with discs. For each 1 ⩽ k ⩽ ` we then attach a twisted band
between the Seifert circles corresponding the crossing encoded by βk. The
order in which the bands are attached from left to right is determined by
the order in the braid word β1β2 . . . β`.

Firstly suppose that Σ is connected. A deformation retraction of Σ onto
an embedding of K(β) is obtained by pushing the left and right most
parts of the discs to meet the ends of K(β) and then contracting each
of the twisted bands to its central vertical core and contracting each of
the discs to a part of its horizontal diameter. The inclusion K(β) ↪ Σ
is a homotopy inverse. The reader should try to visualise this in the case
β = σ1σ1σ2σ

−1
1 σ2.
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Figure 5.4: The inclusion of K(β) into Σ.

Now suppose that Σ = Σ1⊔Σ2⊔. . .⊔Σk is disconnected with k connected
components. It is then possible to write β = β′1⊔β′2⊔ . . .⊔β′k for sub-braids
β′i ⊂ β such that Σi is the connected Seifert surface for the closure of the
braid β′i. Similarly we may write K(β) = K(β′1) ⊔ K(β′2) ⊔ . . .K(β′k).
It follows from the connected case that the inclusion K(βi) ↪ Σi is
a homotopy equivalence and the inclusion K(β) ↪ Σ is a homotopy
equivalence.

Definition 13. For a regular n-strand braid β with a fence K(β) define
a bilinear form λβ ∶ C1(K(β);Z)×C1(K(β);Z) → Z[ 1

2 ] with values on the
basis oriented 1-simplices as follows:

λβ(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
2 if if x = y =↓= a vertical simplex corresponding to a σi
1
2 if x = y =↓= a vertical simplex corresponding to a σ−1

i

1
2 if (x, y) = (→, ↓) are adjacent simplices meeting like

1
2 if (x, y) = (↓,→) are adjacent simplices meeting like

0 otherwise.

Example 5. If the 1-simplices in the fence K(β) from Example 1 are
labelled as follows
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Figure 5.5: Labelled 1-simplices in the fence K(σ1σ1σ2σ
−1
1 σ2).

then C1(K(β);Z) = Z⟨e1, e2, . . . , e24⟩ and for pairs of basis elements
(x, y) ∈ {e1, e2 . . . , e24}2 we have

λβ(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 if (x, y) ∈ {(e1, e2), (e2, e3), (e5, e6), (e6, e7)(e9, e10),

(e10, e11), (e14, e15), (e15, e15), (e15, e16),
(e17, e18), (e18, e19), (e22, e23), (e23, e24)}

− 1
2 if (x, y) ∈ {(e2, e2), (e6, e6), (e10, e10), (e18, e18),

(e23, e23)}

0 otherwise.

The motivation for the chain level pairing λβ ∶ C1(K(β);Z) ×
C1(K(β);Z) → Z[ 1

2 ] is as follows. Let β = σi be the elementary n-strand
braid with a single crossing of strand i over strand i+1. The Seifert surface
for β̂ consists of a disjoint union of n disks, stacked one above the other
with a single twisted band attached from disc i to disc i + 1. Smooth the
corners of Σ and choose the positive normal direction to the smoothed
Seifert surface to be in the upwards direction. Let Ki be the embedded
part of K between disc i and disc i + 1. If K+

i is obtained by pushing Ki

in the direction of the positive normal, then ’reversing’ the embeddings
produces disjoint simplicial complexes with crossings of the following type

Figure 5.6: Pushing Ki in the normal direction.
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The twist in the diagram refers to the direction of the twist in the
attached band and the resulting twist of the positive normal vector to the
Seifert surface along the vertical part of the red curve. In the case β = σ−1

i

we obtain crossings of the type

Figure 5.7: Pushing Ki in the normal direction.

Recall that from Definition 2 that the linking number of the components
of a two component oriented link may be computed as one half of the sum of
the signed crossings between one component and the other. The crossings
above define a pairing λ ∶ C1(Ki;Z)×C1(K+

i ;Z) → Z[ 1
2 ]. Since Ki and K+

i

are simplicially isomorphic we may equivalently think of this as a pairing
λ ∶ C1(Ki;Z) ×C1(Ki;Z) → Z[ 1

2 ] which is given by

λ(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
2 if if x = y =↓= a vertical simplex corresponding to a σi
1
2 if x = y =↓= a vertical simplex corresponding to a σ−1

i

1
2 if (x, y) = (→, ↓) are adjacent simplices meeting like

1
2 if (x, y) = (↓,→) are adjacent simplices meeting like

0 otherwise.



Chapter 6

Descending to homology

We now show that the chain level formula gives the Seifert form on the
homology level.

Theorem 6. Let β be a braid with Seifert surface Σ constructed by
Seifert’s algorithm and Seifert form V ∶ H1(Σ;Z) × H1(Σ;Z) → Z. If
K is the fence of β then inclusion K ↪ Σ induces an isomorphism
H1(K;Z) ≅H1(Σ;Z) with a commutative diagram

H1(K;Z) ×H1(K;Z)

≅
��

[λ] // Z ⊂ Z[ 1
2 ]

H1(Σ;Z) ×H1(Σ;Z)

V

55

Proof. Suppose that β = β1β2 . . . β` is a regular n-strand braid with `
crossings where each βi is an elementary n-strand braid. Proposition 2
implies that there is an inclusion K ↪ Σ which is a homotopy equivalence
and hence H(K;Z) ≅ H(Σ;Z). Suppose that Σ has k connected
components. For 1 ⩽ i ⩽ n−1 let li denote the number of crossings between
strand i and strand i + 1. By [6, Lemma 3.1] we may write

b1(K;Z) = b1(Σ;Z) =
n−1
∑
i=1

(li − 1) = l − k + n

and Collins shows that there is a basis of H1(Σ;Z) with one basis element
for each pair of consecutive crossings between adjacent strands. More
explicitly, a pair of consecutive crossings between strand i and strand i+1

401
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Figure 6.1: A pair of consecutive crossings between strand i and strand i + 1.

determines a 1-cycle, shown in red below as an embedded polygonal circle
oriented in the clockwise direction, in the part of Σ which is created by
attaching to two Seifert disc two twisted bands corresponding to the two
crossings between the same strands.

Figure 6.2: The 1-cycle.

The cycles may be labelled c1, c2, . . . , c`−n+k ∈ Z1(Σ;Z) according to their
positions from left to right along the braid diagram. The set of homology
classes [c1], [c2], . . . , [c`−n+k] is then a basis for H1(Σ). The cycles
c1, c2, . . . , c`−n+k ∈ Z1(Σ;Z) induce cycles c′1, c

′
2, . . . ,c

′
`−n+k ∈ Z1(K;Z)

giving a basis [c′1], [c′2], . . . , [c′`−n+k] of H1(K;Z). The homology class
[c′i] ∈ H1(K;Z) maps to the homology class [ci] ∈ H1(Σ;Z) under the
isomorphism H1(K;Z) ≅ H1(Σ;Z) induced by the inclusion K ↪ Σ. If
c+j is the push of the cycle cj in the positive normal to Σ then it suffices
to show that λ(c′i, c′j) = Lk(ci, c+j ) for 1 ⩽ i, j ⩽ ` − n + k. Note that since
the linking number Lk(ci, c+j ) is always an integer and H1(K;Z) is a free
abelian group this implies that λ ∶ H1(K;Z) ×H1(K;Z) → Z[ 1

2 ] factors
through a map H1(K;Z) × H1(K;Z) → Z. The proof now proceeds by
cases.
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Diagonal Entries: Suppose that i = j. The diagram below shows ci in
red and its push off c+i in blue

Figure 6.3: The cycle ci and its pushoff c+i .

so that the self-linking numbers are given by

Lk(ci, c+i ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1 if both crossings correspond to a σi
1 if both crossings correspond to a σ−1

i

0 otherwise.

The cycle ci ∈ Z1(Σ;Z) corresponds to a cycle c′i ∈ Z1(K;Z) which may be
written as c′i = −e1 + (∑s+2

p=2 ep) − (∑2s+2
p=s+3 ep) as in the diagram

Figure 6.4: Labelled 1-simplices in the cycle c′i.

It follows that

λ(c′i, c′i) = λ(−e1,−e1) + λ(es+1, es+2) + λ(es+2, es+2) + λ(es+2,−es+3)

= λ(e1, e1) +
1
2
+ λ(es+2, es+2) −

1
2

= λ(e1, e1) + λ(es+2, es+2)

and hence

λ(c′i, c′i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1 if both crossings correspond to a σi
1 if both crossings correspond to a σ−1

i

0 otherwise.
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Non-Diagonal Entries: Suppose that 1 ⩽ i < j ⩽ ` − n + k. . Let the
cycle c′i be written as in the diagonal case and let the cycle c′j be written
as c′j = −f1 + (∑t+2

q=2 fq) − (∑2t+2
i=t+3 fq) as in the diagram

Figure 6.5: Labelled 1-simplices in the cycle c′j .

Let E = {ep}2s+2
p=1 and F = {fq}2t+2

q=1 . It is enough to consider the five
cases of the relative positions of the cycles as in [6, Section 3.3]:

1. Either E ∩ F = {es′ , es′+1, . . . , es′′} = {ft+3, ft+4, . . . , f2t+2} for some
2 < s′ < s′′ < s + 1 with es′ = f2t+2 and es′′ = ft+3 as in

Figure 6.6: The cycles c′i and c′j .

or E ∩ F = {e2, e3, . . . , es+1} = {ft′ , ft′+1, . . . , ft′′} for some t + 3 < t′ <
t′′ < 2t + 2 with e2 = ft′′ and es+1 = ft′ as in
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Figure 6.7: The cycles c′i and c′j .

so that in the first case

λ(c′i, c′j) = 0

λ(c′j , c′i) = λ(−f1, es′−1) + λ(ft+2, es′′) = −
1
2
+ 1

2
= 0

and in the second case

λ(c′i, c′j) = 0

λ(c′j , c′i) = λ(−ft′′+1,−e1) + λ(−ft′ , es+2) =
1
2
− 1

2
= 0.

The push-off c+j of cj in relation to ci is given in the first (respectively
second) case by

Figure 6.8: The cycles c+j and ci.

and in either case Lk(ci, c+j ) = 0. The push-off c+i of ci in relation to
cj is given in the first (respectively second) case by
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Figure 6.9: The cycles c+i and cj .

and in either case Lk(cj , c+i ) = 0.

2. In this case E and F are disjoint as in

Figure 6.10: The cycles c′i and c′j .

so it is immediate that λ(c′i, c′j) = λ(c′j , c′i) = 0. The push-off c+j of cj
in relation to ci (respectively the push-off c+i of ci in relation to cj)
is given by

so that Lk(cj , c+i ) = Lk(c+i , cj) = 0.

3. In this case E ∩ F = {es+2} = {f1} as in
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Figure 6.11: The cycles c′i and c′j .

and it follows that

λ(c′i, c′j) = λ(es+1,−f1) + λ(es+2,−f1) = −
1
2
− λ(f1, f1)

and hence

λ(c′i, c′j) =
⎧⎪⎪⎨⎪⎪⎩

0 if f1 corresponds to a σi
−1 if f1 corresponds to a σ−1

i .

The push-off c+j of cj in relation to ci is given in the first (respectively
second) case by

Figure 6.12: The cycles c+j and ci.

so that

Lk(ci, c+j ) =
⎧⎪⎪⎨⎪⎪⎩

0 if f1 corresponds to a σi
−1 if f1 corresponds to a σ−1

i .

Similarly

λ(c′j , c′i) = λ(−f1, es+2) + λ(−f1,−es+3) = −λ(f1, f1) +
1
2

and hence

λ(c′j , c′i) =
⎧⎪⎪⎨⎪⎪⎩

1 if f1 corresponds to a σi
0 if f1 corresponds to a σ−1

i .
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The push-off c+i of ci in relation to cj is given in the first (respectively
second case) by

Figure 6.13: The cycles c+i and cj .

so that

Lk(cj , c+i ) =
⎧⎪⎪⎨⎪⎪⎩

1 if f1corresponds to a σi
0 if f1 corresponds to a σ−1

i .

4. In this case E and F are disjoint as in

Figure 6.14: The cycles c′i and c′j .

so it is immediate that λ(c′i, c′j) = λ(c′j , c′i) = 0. The push-off c+j in
relation to ci and c+i in relation to cj are given by the similar figures
as in case 2 and it follows that Lk(cj , c+i ) = Lk(c+i , cj) = 0.

5. Either E ∩ F = {es+3, es+4, . . . , es′} = {f2, f3, . . . , ft′} for some s + 3 ⩽
s′ < 2s + 2 and 2 ⩽ t′ < t + 1 with es′ = f2 and es+3 = ft′ as in
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Figure 6.15: The cycles c′i and c′j .

or E ∩ F = {es′ , es′+1, . . . , es+1} = {ft′ , ft′+1, . . . , f2t+2} for some
2 < s′ ⩽ s + 1 and some t + 3 < t′ ⩽ 2t + 2 with es′ = f2t+2 and
es+1 = ft′ as in

Figure 6.16: The cycles c′i and c′j .

In the first case

λ(c′i, c′j) = λ(es+2, ft′−1) + λ(−es′+1,−f1) =
1
2
+ 1

2
= 1

λ(c′j , c′i) = −λ(ft′ , es+2) = 0.

and in the second case

λ(c′i, c′j) = 0

λ(c′j , c′i) = λ(−f1, es′−1) + λ(−ft′ , es+2) = −
1
2
− 1

2
= −1

The push-off c+j of cj in relation to ci is given in the first (respectively
second case) by
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Figure 6.17: The cycles c+j and ci.

so that

Lk(ci, c+j ) =
⎧⎪⎪⎨⎪⎪⎩

1 in the first case
0 in the second case.

The push-off c+i of ci in relation to cj is given in the first (respectively
second) case by

Figure 6.18: The cycles c+i and cj .

so that

Lk(cj , c+i ) =
⎧⎪⎪⎨⎪⎪⎩

0 in the first case
−1 in the second case.

This motivates the following definition.

Definition 14. The chain level Seifert pair of a regular n-strand braid β
is the pair (λβ , dβ) defined by

(λβ ∶ C1(K(β);Z)×C1(K(β);Z) → Z[1
2
], dβ ∶ C1(K(β);Z) → C0(K(β);Z))

Corollary 1. A regular n-strand braid β with chain level Seifert pair
(λβ , dβ) has Seifert form

λβ ∶ ker(dβ) × ker(dβ) → Z ⊂ Z[1
2
].



Seifert matrices of braids with applications to isotopy and signatures 411

Proof. The fence K(β) is a 1-dimensional simplicial complex and hence

H1(Σ) ≅H1(K(β)) = ker(dβ ∶ C1(K(β);Z) → C0(K(β);Z))

Example 6. The 2-strand braid β = σ1σ1σ1 with closure β̂ the trefoil
knot has the fence

Figure 6.19: The fence K(σ1σ1σ1).

so that C1(K(β);Z) is a free abelian group of rank 9 with a basis
{e1, e2, . . . , e9}. The bilinear pairing λβ ∶ C1(K(β);Z) × C1(K(β);Z) →
Z[ 1

2 ] is represented with respect to the ordered basis (e1, e2, . . . , e9) by the
upper triangular matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1
2 0 0 0 0 0 0 0

0 −1
2

1
2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 1

2 0 0 0 0
0 0 0 0 − 1

2
1
2 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

2 0
0 0 0 0 0 0 0 − 1

2
1
2

0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

If γ = e4 + e5 − e6 − e2 and δ = e7 + e8 − e9 − e5 then

H1(K(β);Z) = ker(dβ ∶ C1(K(β);Z) → C0(K(β);Z)

is a free abelian group of rank 2 with a basis {γ, δ}. One then checks that
the Seifert matrix with respect to the ordered basis (γ, δ) of H1(K(β);Z)
is given by

( −1 0
1 −1 )

as usual.



Chapter 7

The effect of
concatenation

We now examine the effect of the concatenation of braids on Seifert surfaces
and fences to obtain an inductive formula for the chain level pairing
λβ ∶ C1(K(β);Z) × C1(K(β);Z) → Z[ 1

2 ]. We first construct the Seifert
surface of a closure of a braid in a way which mirrors more closely the
decomposition of a braid into a concatenation of elementary braids.

Definition 15. The open Seifert surface Σσ±1
i

of the elementary n-strand
braid σ±1

i with a single crossing between strand i and strand i + 1 is the
disjoint union of a single twisted band and n − 1 line segments, stacked
vertically one above the other, as shown below

Figure 7.1: The open Seifert surfaces associated to the elementary braids σ±1
i .

The open Seifert surface Σβ of a regular n-strand braid β = β1β2 . . . β` is
the concatenation of the open Seifert surfaces Σβ1 ,Σβ2 , . . . ,Σβ` from left
to right so that Σβ = ∪`i=1Σβi where Σβi intersects Σβi+1 in the right hand
part of Σβi and the left hand part of Σβi+1 as shown below

412
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Figure 7.2: The concatenation of open Seifert surfaces associated to two adjacent
elementary braids.

The closure Σ̂β of the open Seifert surface of a regular n-strand braid
β = β1β2 . . . β` is the union of the open Seifert surface Σβ with n horizontal
discs as shown in the diagram below

Figure 7.3: The closure of an open Seifert surface.

Proposition 3. Let β be a regular n-strand braid. The closure of the open
Seifert surface for β is the Seifert surface for the closure of β constructed
by Seifert’s algorithm, that is Σ̂β = Σβ̂ .

Proof. By induction on the length of the braid.

In order to obtain an inductive formula for the chain level pairing
λβ ∶ C1(K(β);Z) × C1(K(β);Z) → Z[ 1

2 ] we first consider the effect of
concatenating a braid β with an elementary braid βi.

Proposition 4. Let β be a regular n-strand braid with ` crossings and
fence K. Let βi be an elementary n-strand braid with a single crossing
between strand i and strand i + 1. Define an (n + 1) × (n + 1)-matrix λβi
by
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(λβi)j,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
2 if j = k = i and βi = σi
1
2 if j = k = i and βi = σ−1

i
1
2 if j = i and k = i + 1
1
2 if j = i + 1 and k = i + 2
0 otherwise.

Then the chain level Seifert pairing for ββi is represented by the matrix

λββi = ( λβ 0
0 λβi

) .

Proof. The fence K(βi) is a simplicial complex with n 0-simplices, n-
horizontal simplices and a single vertical 1-simplex as shown below.
With respect to the ordered basis (f1, f2 . . . , fn+1), the pairing λβi ∶
C1(K(βi);Z) ×C1(K(βi);Z) → R is represented by the (n + 1) × (n + 1)-
matrix λβi with

(λβi)j,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
2 if j = k = i and βi = σi
1
2 if j = k = i and βi = σ−1

i
1
2 if j = i and k = i + 1
1
2 if j = i + 1 and k = i + 2
0 otherwise.

Suppose that we have a matrix representation λβ ∶ C1(K(β);Z) ×
C1(K(β);Z) → R with respected to an ordered basis eK(β) of C1(K(β);Z).
The fence K(ββi) of ββi is obtained from K(β) by the fence K(βi) as
follows

Figure 7.4: The fences of β, βi and ββi.

Here the red simplices are simplices added to K(β) and the 1-simplices
of K(β) and K(βi) are disjoint. This gives an ordered basis eK(ββi) =
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(ek, f1, f2, . . . , fn+1) of C1(K(ββi);Z) and it follows that with respect to
eK(ββi) that the pairing λββi ∶ C1(K(ββi);Z) ×C1(K(ββi);Z) → Z[ 1

2 ] is
represented by the block diagonal matrix

λββi = ( λβ 0
0 λβi

)

as required.

Theorem 7. Let β = β1β2 . . . β` be a regular n-strand braid with `
crossings, where each βi is an elementary n-strand braid with a single
crossing between strand ji and ji+1. The chain level pairing λβ ∶
C1(K(β);Z)×C1(K(β);Z) → Z[ 1

2 ] can be represented by a block diagonal
matrix

⎛
⎜⎜⎜
⎝

λβ1 0 . . . 0
0 λβ2 . . . 0
⋮ ⋮ ⋮
0 0 . . . λβ`

⎞
⎟⎟⎟
⎠

where

(λβi)j,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
2 if j = k = ji and βi = σji
1
2 if j = k = ji and βi = σ−1

ji
1
2 if j = ji and k = ji + 1
1
2 if j = ji + 1 and k = ji + 2
0 otherwise.

Proof. By the definition of the concatenation of fences we may write
K(β) = ∪`i=1K(βi). Since K(βi) intersects K(βi+1) in a set of 0-simplices
then C1(K(β);Z) = ⊕`i=1C1(K(βi);Z). The proof follows induction on the
number ` of crossings in the braid with the concatenation formula from
Proposition 4.



Chapter 8

Comparison with other
models

We now show that this model of a chain level Seifert pairing is chain equiv-
alent to Banchoff’s formula for the linking number of two space polygons
and Ranicki’s surgery-theoretic chain level linking formula.

Motivated by the Gauss map in Definition 2, Banchoff [3] gave a
combinatorial linking formula for two disjoint space polygons expressed
in terms of the partial linking numbers of pairs of edges as follows.

Definition 16. Let X = {X0,X1, . . . ,Xm−1} respectively Y =
{Y0, Y1, . . . , Yn−1} be a set of points in general position in R3.

(i) For a unit vector ξ ∈ S2 let pξ ∶ R3 → P denote the projection map
from R3 onto the plane P orthogonal to ξ. A vector ξ ∈ S2 in called
general for X and Y if the projections pξ(X), pξ(Y ) ⊂ R2 are in
general position.

(ii) For a vector ξ ∈ S2 which is general for X and Y , define Ci,j(X,Y, ξ)
to be the sign of Pξ(Yj+1 − Yj) ×Pξ(Xi+1 −Xi).(Xi − Yj) if there are
interior points Xi of the edge XiXi+1 and Yj of the edge YjYj+1 such
that pξ(Xi) = pξ(Yj) and define Ci,j(X,Y, ξ) to be zero otherwise

The linking number of two space polygons is then expressible as the sum
of partial linking numbers of all edge pairs.

Theorem 8. [3, p.1176-1177] For disjoint polygonal knots X,Y ⊂ R3 the
value

C(X,Y, ξ) = ∑
0⩽i⩽m−1
0⩽j⩽n−1

Ci,j(X,Y, ξ) ∈ Z

416
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is independent of the choice of general vector ξ ∈ S2. The linking number
of the polygonal knots determined by X and Y is the average value of
C(X,Y, ξ), that is

Lk(X,Y ) = 1
4π ∫ξ∈S2

C(X,Y, ξ)dω = 1
4π ∑

0⩽i⩽m−1
0⩽j⩽n−1

∫
ξ∈S2

Ci,j(X,Y, ξ)dω ∈ Z

where ω is the volume form on S2. Moreover this integral may be expressed
in terms of dihedral angles of tetrahedra.

Ranicki gave an alternative chain level formula in terms of the Seifert
graph. The Seifert graph of a braid records which strands of the braid
cross but not whether the crossings and over-crossings or under-crossings.

Definition 17. The Seifert graph of a braid β is the 1-dimensional CW-
complex X(β) constructed from the canonical Seifert surface of β by
collapsing each Seifert disc to a point and collapsing each twisted band
to its core.

If β is an n-strand braid with `-crossings then the Seifert graph X(β′)
has ` 1-cells and n 0-cells and has a cellular chain complex of the form

d ∶ C1(X(β);Z) ≅ Z` → C0(X(β);Z) ≅ Zn.

If β′ is another n-strand braid with `′ crossings then the Seifert graph
X(β′) has a cellular chain complex of the form

d′ ∶ C1(X(β′);Z) ≅ Z`
′
→ C0(X(β′);Z) ≅ Zn.

The Seifert graph of the concatenated braid ββ′ is a CW-complex which
can be formed from the Seifert graphs of β and β′ by identifying the 0-cells
in pairs so that X(ββ′) has (` + `′) 1-cells, n 0-cells and a cellular chain
complex of the form

d′′ = ( d d′ ) ∶ C1(X(ββ′);Z) ≅ Z` ⊕Z`
′
→ C0(X(ββ′);Z) ≅ Zn.

The closure of an n-strand geometric braid with `-crossings arises as the
trace of ` 0-surgeries on a disjoint union of n circles. Ranicki applied the
algebraic theory of surgery to the geometric surgeries to obtain a formula
which is defined inductively.

Definition 18.

(i) The canonical generalised Seifert matrices of the elementary regular
n-strand braids σi, σ−1

i are the 1 × 1 matrices

ψσi = ( 1 ) , ψσ−1
i
= ( −1 ) .
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(ii) Let β,β′ be regular n-strand braids and let χ be the lower triangular
n × n matrix with ones below the diagonal. The generalised Seifert
matrix for the concatenated braid ββ′ is the inductively defined
matrix

ψββ′ = ( ψβ −d∗χd′
0 ψβ′

) ∶ C1(X(ββ′);Z) ×C1(X(ββ′);Z) → Z

Theorem 9. [16, p.37-38] Let β,β′ be regular n-strand braids. The
generalised Seifert matrix

ψββ′ ∶ C1(X(ββ′);Z) ×C1(X(ββ′);Z) → Z

induces the Seifert form of ββ′

ψββ′ ∶H1(X(ββ′);Z) ×H1(X(ββ′);Z) → Z

on the homology level.

The equivalences of Banchoff’s and Ranicki’s models to the model we
developed are both established via the following lemma.

Lemma 2. Let C and D be Z-module chain complexes with C finitely
generated free and concentrated in dimensions 0 and 1 and D concentrated
in dimensions 1 and 2. If H0(C) is torsion free then the morphism

H0(HomZ(C,D)) → HomZ(H1(C),H1(D)); f ↦ f∗

is an isomorphism, that is any two chain maps f, g ∶ C → D are chain
homotopic if and only if f∗ = g∗ ∶H1(C) →H1(D).

Proof. Any Z-module homomorphism f ∶ C1 → D1 fits into the
commutative diagram

0 // 0

��

// C1
dC //

f

��

// C0

��

// 0

0 // D2
dD

// D1 // 0 // 0

so that there is an one-to-one correspondence between chain maps f ∶ C →
D and Z-module homomorphisms f ∶ C1 → D1. It is then enough to show
that if f, f ′ ∶ C → D are chain maps satisfying f∗ = f ′∗ ∶ H∗(C) → H∗(D)
then there is chain homotopy ∆ ∶ f ≃ f ′ ∶ C → D. We can clearly
choose ∆r = 0 ∶ Cr → Dr+1 if r ≠ 0,1 and it then suffices to construct
Z-module homomorphisms ∆0 ∶ C0 → D1 and ∆1 ∶ C1 → D2 such that
f − f ′ = ∆0dC + dD∆1 ∶ C1 →D1.
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The Z-module im(dC) ⊂ C0 is a submodule of a finitely generated free
Z-module and hence is also finitely generated free. Choose a basis {xi}mi=1
of im(dC) and for each xi choose a point zi ∈ C1 such that dC(zi) = xi.
The short exact sequence

0→ im(dC) → C0 →H0(C) → 0

splits since H0(C) is f.g. free and hence there is an isomorphism C0 ≅
im(dC) ⊕H0(C). The Z-module homomorphism g ∶ im(dC) → D1 defined
by g(xi) = (f − f ′)(zi) induces a Z-module homomorphism

∆0 = (g,0) ∶ im(dC) ⊕H0(C) →D1.

The Z-module homomorphism s ∶ im(dC) → C1 defined by s(xi) = zi
satisfies dCs = idim(dC) and hence provides a splitting of the short exact
sequence

0→ ker(dC) → C1 → im(dC) → 0

and induces an isomorphism im(dC) ⊕ ker(dC) → C1. The Z-module
ker(dC) ⊂ C1 is also finitely generated free and so choose a basis {yj}nj=1
of ker(dC). By assumption

(f − f ′)∗ = 0 ∶H1(C) = ker(dC) →H1(D) = D1

im(dD)

and hence for each basis element yj we may choose an element wj ∈D2 such
that (f − f ′)(yj) = dD(wj). The Z-module homomorphism f ∶ ker(dC) →
D2 defined by f(yj) = wj induces a Z-module homomorphism ∆1 = (0, f) ∶
im(dC) ⊕ ker(dC) → D2. For element c = (∑mi=1 λizi,∑

n
j=1 µjyj) ∈ C1 it

follows that

∆0dC(c) = ∆0(
m

∑
i=1
λixi,0) =

m

∑
i=1
λig(xi) =

m

∑
i=1

(f − f ′)(zi) = (f − f ′)(
m

∑
i=1
λizi)

and

dD∆1(c) = dDf(
n

∑
j=1

µjyj) =
n

∑
j=1

µjdDf(yj) =
n

∑
j=1

µjdD(wj)

=
n

∑
j=1

µj(f − f ′)(yj) = (f − f ′)(
n

∑
j=1

µjyj)

and hence (∆0dC + dD∆1)(c) = (f − f ′)(c) as required.

Proposition 5. Our model is chain homotopy equivalent to Banchoff’s
model.
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Proof. Let X = {X0,X1, . . . ,Xm−1} respectively Y = {Y0, Y1, . . . , Yn−1}
be a set of points in general position in R3. The set of vertices X
respectively Y determines an oriented one-dimensional simplicial complex
X respectively Y in R3 with positively oriented edges {ei =XiXi+1∣0 ⩽ i ⩽
m− 1} respectively {fj = YjYj+1∣0 ⩽ j ⩽ n− 1} where Xm =X0 respectively
Yn = Y0. By [3, p.1176-1177] the linking number of the space polygons X
and Y is given by

Lk(X,Y ) = 1
4π ∑

0⩽i⩽m−1
0⩽j⩽n−1

∫
ξ∈S2

Ci,j(X,Y, ξ)dω ∈ Z

where ω is the volume form on S2. For basis elements ei, fj the associated
integral 1

4π ∫ξ∈S2 Ci,j(X,Y, ξ)dω is in general a real number and not an
integer. Banchoff’s formula induces a bilinear pairing

µ ∶ C1(X;Z) ×C1(Y ;Z) → R

⎛
⎝

m−1
∑
i=0

aiei,
n−1
∑
j=0

bjfj
⎞
⎠
↦ 1

4π ∑
0⩽i⩽m−1
0⩽j⩽n−1

aibj ∫
ξ∈S2

Ci,j(X,Y, ξ)dω.

which has adjoint a Z-module homomorphism

µ ∶ C1(X;Z) → HomZ(C1(Y ;Z),R) = C1(Y ;R).

Since X and Y are 1-dimensional simplicial complexes this is the same as
a chain map µ ∶ C∗(X;Z) → C2−∗(Y ;R) by Lemma 2.

Now consider the special case whereX =K and Y =K+ whereK =K(β)
is the fence for a braid β and K+ is its push off in the positive normal
direction. This yields a chain map µ ∶ C∗(K;Z) → C2−∗(K+;R). Recall
that the simplicial complexes K+ and K are simplicially isomorphic and
the bilinear form λ ∶ C1(K;Z) ×C1(K;Z) → Z[ 1

2 ] may be considered as a
bilinear form λ ∶ C1(K;Z) ×C1(K+;Z) → Z[ 1

2 ] ⊂ R. As above, this yields
a chain map λ ∶ C∗(K;Z) → C2−∗(K+;R). Both λ and µ compute linking
numbers when we pass to homology, that is

[λ] = [µ] ∶H∗(K;Z) →H2−∗(K+;Z) →H2−∗(K+;R).

By the universal coefficients theorem there is an isomorphism

H2−∗(K+;R) ≅ HomZ(H2−∗(K+;Z),R)

and the inclusion Z ⊂ R induces a monomorphism

HomZ(H2−∗(K+;Z),Z) ↪ HomZ(H2−∗(K+;Z),R).
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It follows that there is a factorisation

[λ] = [µ] ∶H∗(K;Z) → HomZ(H2−∗(K+;Z),Z) ↪ HomZ(H2−∗(K+;Z),R)

with both maps admitting the same factorisation through
HomZ(H2−∗(K+;Z),Z). By Lemma 2 there is a chain homotopy λ ≃ µ ∶
C∗(K;Z) → C2−∗(K+;R) so that the models are the same up to chain
homotopy.

Our model has the advantage over Banchoff’s in that the averaged partial
linking numbers are Z[ 1

2 ]-valued and not R-valued.

Proposition 6. Our model is chain homotopy equivalent to Ranicki’s
model.

Proof. Let β be a braid with Seifert graph X and fence K. We work with
the opposite orientations to Ranicki, so the differential d ∶ C1(X;Z) →
C0(X;Z) is the negative of the differential Ranicki uses. This does not
effect the definition of a generalised Seifert matrix [16, p.37-38]. Ranicki
also chooses the opposite positive normal direction when defining linking
numbers. This implies that the canonical generalised Seifert 1 × 1 for the
elementary n-strands braids σi and σ−1

i are defined in our situation by
ψσi = ( −1 ) and ψσ−1

i
= ( 1 ).

The Seifert graph X =X(β) can be produced from the fence K =K(β)
by individually collapsing each horizontal row of simplices to a point so
that the quotient map q ∶ K → X is a homotopy equivalence. The chain
map q ∶ C(K;Z) → C(X;Z) of cellular chain complexes is then a chain
homotopy equivalence. The diagram

H1(K;Z) ×H1(K;Z)

q∗×q∗ ≅

��

[λ] // Z ⊂ R

H1(X;Z) ×H1(X;Z)

[ψ]

77

is commutative since both [λ] and [µ] compute the Seifert matrix of the
Seifert surface of the link β̂. This is implies that

[λ] = [q−1ψq] ∶H∗(K;Z) →H2−∗(K;Z) ↪H2−∗(K;R)

where as before the injection H2−∗(K;Z) ↪H2−∗(K;R) is induced by the
inclusion Z ⊂ R and the universal coefficients theorem. By Lemma 2 there
is a chain homotopy

λ ≃ q−1ψq ∶ C∗(K;Z) → C2−∗(K;R)

giving a chain homotopy equivalence to Ranicki’s model.
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Our model has the advantage over Ranicki’s model in that the
concatenation behaviour is additive and gives an instant chain level Seifert
form whereas Ranicki’s model is inductively defined.



Chapter 9

Isotopy of braids and
their closures

We first examine the effect of isotopy on the chain level Seifert pair
(λβ , dβ), firstly by an isotopy of β and secondly by an isotopy of its closure
β̂ in the solid torus D2 × S1.

Definition 19. Two square matrices with entries in 1
2Z ⊂ R are A-

equivalent if one can be transformed into the other by a finite sequence of
A-operations defined as follows:

(i)
⎛
⎜⎜⎜
⎝

A 0 0 0
0 λσi 0 0
0 0 λσj 0
0 0 0 B

⎞
⎟⎟⎟
⎠
↦

⎛
⎜⎜⎜
⎝

A 0 0 0
0 λσj 0 0
0 0 λσi 0
0 0 0 B

⎞
⎟⎟⎟
⎠
with ∣i − j∣ ⩾ 2

⎛
⎜⎜⎜⎜
⎝

A 0 0 0
0 λσ−1

i
0 0

0 0 λσ−1
j

0
0 0 0 B

⎞
⎟⎟⎟⎟
⎠

↦

⎛
⎜⎜⎜⎜
⎝

A 0 0 0
0 λσ−1

j
0 0

0 0 λσ−1
i

0
0 0 0 B

⎞
⎟⎟⎟⎟
⎠

with ∣i − j∣ ⩾ 2

(ii)

⎛
⎜⎜⎜⎜⎜
⎝

A 0 0 0 0
0 λσi 0 0 0
0 0 λσj 0 0
0 0 0 λσi 0
0 0 0 0 B

⎞
⎟⎟⎟⎟⎟
⎠

↦

⎛
⎜⎜⎜⎜⎜
⎝

A 0 0 0 0
0 λσj 0 0 0
0 0 λσi 0 0
0 0 0 λσj 0
0 0 0 0 B

⎞
⎟⎟⎟⎟⎟
⎠

with ∣i −

j∣ = 1

423



424 Christopher Palmer

⎛
⎜⎜⎜⎜⎜⎜
⎝

A 0 0 0 0
0 λσ−1

i
0 0 0

0 0 λσ−1
j

0 0
0 0 0 λσ−1

i
0

0 0 0 0 B

⎞
⎟⎟⎟⎟⎟⎟
⎠

↦

⎛
⎜⎜⎜⎜⎜⎜
⎝

A 0 0 0 0
0 λσ−1

j
0 0 0

0 0 λσ−1
i

0 0
0 0 0 λσ−1

j
0

0 0 0 0 B

⎞
⎟⎟⎟⎟⎟⎟
⎠

with ∣i − j∣ = 1

(iii) ( A 0
0 B

) ↦
⎛
⎜⎜⎜
⎝

A 0 0 0
0 λσi 0 0
0 0 λσ−1

i
0

0 0 0 B

⎞
⎟⎟⎟
⎠

( A 0
0 B

) ↦
⎛
⎜⎜⎜
⎝

A 0 0 0
0 λσ−1

i
0 0

0 0 λσi 0
0 0 0 B

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

A 0 0 0
0 λσ−1

i
0 0

0 0 λσ−1
i

0
0 0 0 B

⎞
⎟⎟⎟
⎠
↦ ( A 0

0 B
)

⎛
⎜⎜⎜
⎝

A 0 0 0
0 λσi 0 0
0 0 λσ−1

i
0

0 0 0 B

⎞
⎟⎟⎟
⎠
↦ ( A 0

0 B
)

We now examine the effect of an A-operation on the chain level Seifert
pair (λβ , dβ) of a braid β. Once we write β as a concatenation of
elementary braids then the effect of an A-operation on λβ is clear from
Theorem 7. It then remains examine the effect of an A-operation on the
differential dβ . We first give a matrix representation for the differential
dβi of an elementary n-strand braid and then examine the effect of
concatenation on the differential.
Lemma 3. The elementary n-strand braid βi has a fence K(βi) with
differential

dβi ∶ C1(K(βi);Z) → C0(K(βi);Z)
represented by the (n + 1) × 2n matrix

(dβi)j,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 1 ⩽ k ⩽ i and j = n + k
−1 if 1 ⩽ k ⩽ i and j = i

1 if k = i + 1 and j = n + i + 1
−1 if k = i + 1 and j = n + i

1 if i + 2 ⩽ k ⩽ n + 1 and j = n + k − 1
−1 if i + 2 ⩽ k ⩽ n + 1 and j = n + k − 2
0 otherwise.
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Proof. This is the representation with respect to the ordered bases
(f1, f2, . . . , fn+1) of C1(K(βi);Z) and (v1, v2, . . . , v2n) of C0(K(βi);Z) as
shown below

Lemma 4. Let βiβj be the concatenation of two elementary n-strand
braids βi and βj with fences K(βi) and K(βj).

(i) The decompositions

K(βi) = (K(βi) ∖K(βj)) ⊔ (K(βi) ∩K(βj))
K(βj) = (K(βi) ∩K(βj)) ⊔ (K(βj) ∖K(βi))

imply that the differentials

dβ ∶ C1(K(βi);Z) → C0(K(βi);Z)
dβ′ ∶ C1(K(βj);Z) → C0(K(βj);Z)

may be written as

( d′βi
d′′βi

) ∶ C1(K(βi);Z) → C0(K(βi) ∖K(βj);Z) ⊕C0(K(βi) ∩K(βj);Z)

(
d′βj
d′′βj

) ∶ C1(K(βj);Z) → C0(K(βi) ∩K(βj);Z) ⊕C0(K(βj) ∖K(βi);Z)

where (n+1)×2n-matrix representation of dβi from Lemma 3 induces
(n + 1) × n-matrix representations of d′βi and d

′′
βi

with

(d′βi)k,l = (dβi)k,l, (d′′βi)k,l = (dβi)n+k,l (1 ⩽ k ⩽ n,1 ⩽ l ⩽ n + 1)

and similarly for dβj and d′βj , d
′′
βj
.
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(ii) The decomposition

K(βi)∪K(βj) = (K(βi)∖K(βj))⊔(K(βi)∩K(βj))⊔(K(βj)∖K(βi))

implies that the regular n-strand braid with two crossings βiβj has
a fence K(βiβj) with differential

dβiβj ∶ C1(K(βiβj);Z) → C0(K(βiβj);Z)

has a block decomposition

⎛
⎜
⎝

d′βi 0
d′′βi d′βj
0 d′′βi

⎞
⎟
⎠
∶ C1(K(βi);Z) ⊕C1(K(β′j);Z) →

C0(K(βi) ∖K(βj);Z)
⊕ C0(K(βi) ∩K(βj);Z)
⊕ C0(K(βj) ∖K(βi);Z).

Proof. The simplicial complexes K(βi),K(βj) ⊂ K(βiβj) intersect in a
0-dimensional simplicial complex so that

C0(K(βi);Z) = C0(K(βi) ∖K(βj);Z) ⊕C0(K(βi) ∩K(βj);Z)
C0(K(βj);Z) = C0(K(βi) ∩K(βj);Z) ⊕C0(K(βj) ∖K(βi);Z)

C0(K(βiβj);Z) = C0(K(βi) ∖K(βj);Z) ⊕C0(K(βi) ∩K(βj);Z)
⊕C0(K(βj) ∖K(βi);Z)

C1(K(βiβj);Z) = C1(K(βi);Z) ⊕C1(K(βj);Z)

from which the decomposition of the differentials is clear.

This decomposition may be extended to a concatenation of elementary
braids.

Proposition 7. Let β = β1β2 . . . β` be a regular n-strand braid with
` crossings where each βi is an elementary n-strand braid. The
decompositions

K(βi) = (K(βi) ∖K(βi+1)) ⊔ (K(βi) ∩K(βi+1))
K(βi+1) = (K(βi) ∩K(βi+1)) ⊔ (K(βi+1) ∖K(βi))

imply that the differentials

dβi ∶ C1(K(βi);Z) → C0(K(βi);Z)
dβi+1 ∶ C1(K(βi+1);Z) → C0(K(βi+1);Z)
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may be written as

( d′βi
d′′βi

) ∶ C1(K(βi);Z) → C0(K(βi) ∖K(βi+1);Z)

⊕C0(K(βi) ∩K(βi+1);Z)

( d′βi+1

d′′βi+1

) ∶ C1(K(βi+1);Z) → C0(K(βi) ∩K(βi+1);Z)

⊕C0(K(βi+1) ∖K(βi);Z).

The decomposition

K(β) =
`

⋃
i=1
K(βi)

=(K(β1) ∖K(β2)) ⊔ (⊔`−1
i=1 (K(βi) ∩K(βi+1))) ⊔ (K(β`) ∖K(β`−1))

implies β has a fence K(β) with differential

dβ ∶ C1(K(β);Z) → C0(K(β);Z)

which has a block decomposition

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

d′β1 0 . . . 0 0
d′′β1 d′β2 . . . 0 0
0 d′′β2 . . . 0 0
⋮ ⋮ ⋮ ⋮

0 0 . . . d′β`−1 0
0 0 . . . d′′β`−1 d′β`
0 0 . . . 0 d′′β`

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∶
n
⊕
i=1
C1(K(βi);Z) →

C0(K(β1) ∖K(β2))

⊕(
`−1
⊕
i=1
C0(K(βi) ∩K(βi+1);Z))

⊕C0(K(β`) ∖K(β`−1)).

Proof. Follows by induction on ` with the base case ` = 2 given by Lemma
4 and the equality

C0(K(βi) ∖K(βi+1);Z) = C0(K(βi−1) ∩K(βi);Z) (2 ⩽ i ⩽ ` − 1).

Corollary 2. The elementary n-strand braid relations

(i) σiσj = σjσi for ∣i − j∣ ⩾ 2

(ii) σiσjσi = σjσiσj for ∣i − j∣ = 1

(iii) σiσ−1
i = σ−1

i σi = 1

have the effect of replacing the differentials
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(i)
⎛
⎜
⎝

d′σi 0
d′′σi d′σj
0 d′′σj

⎞
⎟
⎠
∶ C1(K(σiσj);Z) → C0(K(σiσj);Z)

respectively

⎛
⎜⎜⎜
⎝

d′
σ−1
i

0
d′′
σ−1
i

d′
σ−1
j

0 d′′
σ−1
j

⎞
⎟⎟⎟
⎠
∶ C1(K(σ−1

i σ
−1
j );Z) → C0(K(σ−1

i σ
−1
j );Z)

(ii)
⎛
⎜⎜⎜
⎝

d′σi 0 0
d′′σi d′σj 0
0 d′′σj d′σi
0 0 d′′σi

⎞
⎟⎟⎟
⎠
∶ C1(K(σiσjσi);Z) → C0(K(σiσjσi);Z)

respectively

⎛
⎜⎜⎜⎜⎜
⎝

d′
σ−1
i

0 0
d′′
σ−1
i

d′
σ−1
j

0
0 d′′

σ−1
j

d′
σ−1
i

0 0 d′′
σ−1
i

⎞
⎟⎟⎟⎟⎟
⎠

∶ C1(K(σ−1
i σ

−1
j σ

−1
i );Z) → C0(K(σ−1

i σ
−1
j σ

−1
i );Z)

(iii)
⎛
⎜⎜
⎝

d′σi 0
d′′σi d′

σ−1
i

0 d′′
σ−1
i

⎞
⎟⎟
⎠
∶ C1(K(σiσ−1

i );Z) → C0(K(σiσ−1
i );Z)

and

⎛
⎜⎜
⎝

d′
σ−1
i

0
d′′
σ−1
i

d′σi
0 d′′σi

⎞
⎟⎟
⎠
∶ C1(K(σ−1

i σi);Z) → C0(K(σ−1
i σi);Z)

by the differentials

(i)
⎛
⎜
⎝

d′σj 0
d′′σj d′σi
0 d′′σi

⎞
⎟
⎠
∶ C1(K(σjσi);Z) → C0(K(σjσi);Z)

respectively

⎛
⎜⎜⎜
⎝

d′
σ−1
j

0
d′′
σ−1
j

d′
σ−1
i

0 d′′
σ−1
i

⎞
⎟⎟⎟
⎠
∶ C1(K(σ−1

j σ
−1
i );Z) → C0(K(σ−1

j σ
−1
i );Z)
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(ii)

⎛
⎜⎜⎜⎜
⎝

d′σj 0 0
d′′σj d′σi 0
0 d′′σi d′σj
0 0 d′′σj

⎞
⎟⎟⎟⎟
⎠

∶ C1(K(σjσiσj);Z) → C0(K(σjσiσj);Z)

respectively

⎛
⎜⎜⎜⎜⎜⎜
⎝

d′
σ−1
j

0 0
d′′
σ−1
j

d′
σ−1
i

0
0 d′′

σ−1
i

d′
σ−1
j

0 0 d′′
σ−1
j

⎞
⎟⎟⎟⎟⎟⎟
⎠

∶ C1(K(σ−1
j σ

−1
i σ

−1
j );Z) → C0(K(σ−1

j σ
−1
i σ

−1
j );Z)

(iii) 0 ∶ C1(K(1);Z) = 0→ C0(K(1);Z)

Definition 20. Let β and β′ be regular n-strand braids. The chain level
Seifert pairs (λβ , dβ) and (λβ′ , dβ′) are A-equivalent if there exists a finite
sequence of A-operations which transforms both λβ to λβ′ and dβ to dβ′ .

Proposition 8. The A-equivalence class of the chain level Seifert pair of
an n-strand geometric braid β is an isotopy invariant.

Proof. Two geometric n-strand braids β,β′ are isotopic if and only if they
are isotopic to regular n-strand braids determined by braid words β,β′
from the alphabet {σ±1

1 , σ±1
2 , . . . , σ±1

n−1} such that β′ can be obtained from
β by applying finitely many of the relations

(i) σiσj = σjσi for ∣i − j∣ ⩾ 2

(ii) σiσjσi = σjσiσj for ∣i − j∣ = 1

(iii) σiσ−1
i = σ−1

i σi = 1

and their inverses. By Theorem 7 and Proposition 7, these relations and
their inverses correspond to transformations (i)-(iii) in the definition of
A-equivalence of a chain level Seifert pair.

The isotopy invariance of the A-equivalence class of the chain level
Seifert pair of a braid yields a universal representation of the braid group.

Theorem 10. Let n ⩾ 2 and denote by Fn the free group on the set of
elementary n-strand braids {σ1, σ2, . . . , σn−1} and denote by Bn denote the
braid group. The map

(λ, d) ∶ Fn → {chain level Seifert pairs}, β ↦ (λβ , dβ)

is a bijection which respects the concatenation of braid words such that
words β,β′ ∈ Fn differ by the relations in the braid group if and only if the
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chain level Seifert pairs (λβ , dβ), (λβ′ , dβ) are A-equivalent. This induces
a well defined bijection

(λ, d) ∶ Bn →
{chain level Seifert pairs}

A − equivalence
, [β] ↦ [(λβ , dβ)]

which is group homomorphism and which determines a commutative
diagram

Fn {chain level Seifert pairs}

Bn
{chain level Seifert pairs}

A−equivalence

(λ,d)
≅

(λ,d)
≅

where the vertical maps are quotient maps.

Proof. This follows from Corollary 2 and Proposition 8.

Example 7. Let β be the regular 4-strand braid with 8-crossings
represented by the braid word β = σ1σ3σ2σ1σ

−1
2 σ−1

1 σ−1
3 σ1. The sequence

of isotopies

σ1σ3σ2σ1σ
−1
2 σ−1

1 σ−1
3 σ1 = σ3σ1σ2σ1σ

−1
2 σ−1

1 σ−1
3 σ1

= σ3σ2σ1σ2σ
−1
2 σ−1

1 σ−1
3 σ1

= σ3σ2σ
−1
3 σ1

= σ2σ3σ
−1
3 σ1

= σ2σ1

arising from applying the relations of the braid group B4, implies that the
chain level Seifert pairing

λβ ∶ C1(K(β);Z) ×C1(K(β);Z) → Z[1
2
]

and differential
dβ ∶ C1(K(β);Z) → C0(K(β);Z)

is A-equivalent to the chain level pairing

λσ2σ1 = ( λσ2 0
0 λσ1

) ∶ (C1(K(σ2);Z) ⊕C1(K(σ1);Z))
×(C1(K(σ2);Z) ⊕C1(K(σ1);Z));Z) → Z[1

2
]

and differential

dσ2σ1 ∶ C1(K(σ2σ1);Z) → C0(K(σ2σ1);Z)
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We now construct a second equivalence relation which corresponds to
isotopy of the closure of a braid inside in the solid torus.

Definition 21. Two square real matrices with entries in 1
2Z ⊂ R are Â-

equivalent if one can be transformed into the other by a finite sequence of
Â-operations defined as follows:

(i) A-operations

(ii) A↦
⎛
⎜
⎝

λα 0 0
0 A 0
0 0 λα−1

⎞
⎟
⎠
for α an elementary n-strand braid

(iii)
⎛
⎜
⎝

λα 0 0
0 A 0
0 0 λα−1

⎞
⎟
⎠
↦ A for α an elementary n-strand braid

The Â-operations have the following effect on the differential of a fence.

Proposition 9. Let β = β1β2 . . . β` be a regular n-strand braid with `
crossings where each βi is an elementary n-strand braid and let α be an
elementary n-strand braid. The conjugacy transformation β ∈ Bn ↦ αβα−1

is such that if the fence K(β) has differential represented by the block
matrix as in Proposition 7

dβ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

d′β1
0 . . . 0 0

d′′β1
d′β2

. . . 0 0
0 d′′β2

. . . 0 0
⋮ ⋮ ⋮ ⋮
0 0 . . . d′β`−1

0
0 0 . . . d′′β`−1

d′β`
0 0 . . . 0 d′′β`

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∶ C1(K(β);Z) → C0(K(β);Z)

then the fence K(αβα−1) has differential represented by the block matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

d′α 0 0 . . . 0 0
d′′α d′β1

0 . . . 0 0
0 d′′β1

d′β2
. . . 0 0

0 0 d′′β2
. . . 0 0

⋮ ⋮ ⋮ d′β` 0
0 0 0 . . . d′′β` d′α−1

0 0 0 . . . 0 d′′α−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∶ C1(K(αβα−1);Z) → C0(K(αβα−1);Z)

wich will be denoted by dαβα−1 .

Proof. Follows from Proposition 7.
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Definition 22. Let β,β′ be regular n-strand braids. The chain level
Seifert pairs (λβ , dβ) and (λβ′ , dβ′) are Â-equivalent if there exists a finite
sequence of Â-operations which transforms both λβ to λβ′ and dβ to dβ′ .

Proposition 10. The Â-equivalence class of the chain level Seifert pair
of an n-strand geometric braid β is an isotopy invariant of the closure β̂
inside the solid torus.

Proof. By [9, Theorem 2.1] for any regular n-strand braids β,β′ ∈ Bn, the
closed braids β̂, β̂′ are isotopic in the solid torus if and only if β and β′ are
conjugate in Bn. The proof is then similar to the proof of Proposition 8
but now with the conjugacy of elements in the braid group corresponding
to operations (ii) and (iii) in the definition of Â-equivalence.

The isotopy invariance of the Â-equivalence class of the chain level
Seifert pair of a braid yields a representation of the quotient of the braid
group by the conjugacy relation.

Theorem 11. Let n ⩾ 2 and denote by Fn the free group on the set of
elementary n-strand braids {σ1, σ2, . . . , σn−1} and by let Bn denote the
braid group. The map

(λ, d) ∶ Fn → {chain level Seifert pairs}, β ↦ (λβ , dβ)

is a bijection such that conjugate words β,β′ ∈ Bn have chain level Seifert
pairs (λβ , dβ), (λβ′ , dβ) which are Â-equivalent. This induces a well-
defined bijection

(λ, d) ∶ Bn
conjugacy

→ {chain level Seifert pairs}
Â − equivalence

, [β] ↦ [(λβ , dβ)]

and determines a commutative diagram

Bn
{chain level Seifert pairs}

A−equivalence

Bn
conjugacy

{chain level Seifert pairs}
Â−equivalence

(λ,d)
≅

(λ,d)
≅

Moreover, words β,β′ ∈ Fn differ by the relations in the braid group plus
conjugacy if and only if the chain level Seifert pairs (λβ , dβ), (λβ′ , dβ) are
Â-equivalent so that there is commutative diagram
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Fn {chain level Seifert pairs}

Bn
conjugacy

{chain level Seifert pairs}
Â−equivalence

(λ,d)
≅

(λ,d)
≅

which factors as

Fn {chain level Seifert pairs}

Bn
{chain level Seifert pairs}

A−equivalence

Bn
conjugacy

{chain level Seifert pairs}
Â−equivalence

(λ,d)
≅

(λ,d)
≅

(λ,d)
≅

.

Proof. Follows from Theorem 10 and Proposition 10.



Chapter 10

ω-signatures of braids

We now use the chain level Seifert pair (λβ , dβ) of a braid β to give a chain
level combinatorial formula for the ω-signature of a braid.

Definition 23. If L is an oriented link with Seifert matrix V then the
signature of L is the signature σ(L) of the symmetric form (H1(Σ;Z), V +
V t). For a unit complex number ω ≠ 1 the ω-signature of L is the signature
σω(L) of the hermitian form (H1(Σ;C), (1 − ω)V + (1 − ω)V t).

The −1-signature of an oriented link is the same as its signature.

Proposition 11. [18, p.219] For an oriented link L and a unit complex
number ω ≠ 1 the value σω(L) does not depend on the choice of Seifert
surface for L.

The signature of a link may also be interpreted as the signature of a
4-manifold with boundary.

Proposition 12. [10] Let L ⊂ S3 be a link with Seifert surface Σ ⊂ S3 =
∂D4. Keeping the boundary of Σ fixed in S3, push Σ inside D4 to form a
new surface Σ′ with boundary L. IfW is the two-fold branched cover ofD4

branched along Σ′ then W is an oriented 4-manifold with boundary such
that ∂W is a 2-fold cover of S3 branched over L. Moreover, there exists
a choice of basis such that the intersection form on H2(W ) is represented
by the matrix V + V t so that σ(L) = σ(W ).

Definition 24. If β is braid and if ω ≠ 1 is a unit complex number then
the ω-signature of β is the ω-signature σω(β) of the oriented link β̂.

Example 8. From Example 6 the 2-strand braid β = σ1σ1σ1 with closure
β̂ the trefoil knot has Seifert matrix V and symmetrisation V + V t given
by

V = ( −1 0
1 −1 ) , V + V t = ( −2 1

1 −2 )

434
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so that σ(β) = −2.

Theorem 12. Let β be a braid with chain level Seifert pair (λβ , dβ) and
let ω ≠ 1 be a unit complex number. The ω-signature of β may be expressed
on the chain level as the signature of the hermitian form

(C1(K(β);C) ⊕C0(K(β);C),( (1 − ω)λβ + (1 − ω)λtβ dtβ
dβ 0 ))

so that
σω(β) = σ (( (1 − ω)λβ + (1 − ω)λtβ dtβ

dβ 0 )) .

Proof. The C-coefficients chain level Seifert pair λβ ∶ C1(K(β);C) ×
C1(K(β);C) → C determines a commutative diagram

0 C0(K(β);C)

C1(K(β);C) C1(K(β);C)

C0(K(β);C) 0

0

0 d∗β

(1−ω)λβ+(1−ω)λtβ

dβ

0

.

The algebraic lemma of [17, p.26] implies that the signature of the
hermitian form

(H1(K(β);C), (1 − ω)V + (1 − ω)V t)

is equal to the signature of the hermitian form

(C1(K(β);C) ⊕C0(K(β);C),( (1 − ω)λβ + (1 − ω)λtβ dtβ
dβ 0 ))

and hence

σω(β) = σ (( (1 − ω)λβ + (1 − ω)λtβ dtβ
dβ 0 )) .

This chain level formula shows that the signature of a braid is not
additive under the concatenation of braids.

Corollary 3. Let ω ≠ 1 be a unit complex number. The ω-signature
concatenation defect

σω(ββ′) − σω(β) − σω(β′)



436 Christopher Palmer

is equal to the difference in signature between the block matrix

⎛
⎜⎜⎜⎜⎜⎜
⎝

(1 − ω)λβ + (1 − ω)λtβ d′tβ d′′tβ 0 0
d′β 0 0 0 0
d′′β 0 0 0 d′β′
0 0 0 0 d′′β′
0 0 d′tβ′ d′′tβ′ (1 − ω)λβ′ + (1 − ω)λtβ′

⎞
⎟⎟⎟⎟⎟⎟
⎠

and the block matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(1 − ω)λβ + (1 − ω)λtβ d′tβ d′′tβ 0 0 0
d′β 0 0 0 0 0
d′′β 0 0 0 0 0
0 0 0 0 0 d′β′
0 0 0 0 0 d′′β′
0 0 0 d′tβ′ d′′tβ′ λβ′ + λtβ′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where we have decomposed the differential of K(ββ′) in terms of the
differentials of K(β) and K(β′) as in Proposition 7.

Proof. By Proposition 4 the chain level Seifert pairing for the
concatenation ββ′ is represented by the block diagonal matrix

λββ′ = ( λβ 0
0 λβ′

)

so that there is an equality of block matrices

( (1 − ω)λββ′ + (1 − ω)λtββ′ dtββ′
dββ′ 0 )

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

(1 − ω)λβ + (1 − ω)λtβ 0 d′tβ d′′tβ 0
0 λβ′ + λβ′ t 0 d′tβ′ d′′tβ′
d′β 0 0 0 0
d′′β d′β′ 0 0 0
0 d′′β′ 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

One can then perform identical row and column exchanges to find a
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congruence

⎛
⎜⎜⎜⎜⎜⎜
⎝

(1 − ω)λβ + (1 − ω)λtβ 0 d′tβ d′′tβ 0
0 (1 − ω)λβ′ + (1 − ω)λβ′ t 0 d′tβ′ d′′tβ′
d′β 0 0 0 0
d′′β d′β′ 0 0 0
0 d′′β′ 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

≃

⎛
⎜⎜⎜⎜⎜⎜
⎝

(1 − ω)λβ + (1 − ω)λtβ d′tβ d′′tβ 0 0
d′β 0 0 0
d′′β 0 0 0 d′β′
0 0 0 0 d′β′
0 0 d′tβ′ d′′tβ′ (1 − ω)λβ′ + (1 − ω)λtβ′

⎞
⎟⎟⎟⎟⎟⎟
⎠

so that by Theorem 12

σω(ββ′) = σ ( λββ′ + λtββ′ dtββ′
dββ′ 0 )

= σ

⎛
⎜⎜⎜⎜⎜⎜
⎝

(1 − ω)λβ + (1 − ω)λtβ d′tβ d′′tβ 0 0 0
d′β 0 0 0 0 0
d′′β 0 0 0 0 d′β′
0 0 0 0 0 d′β′
0 0 0 d′tβ′ d′′tβ′ λβ′ + λtβ′

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

On the other hand, there is an equality and congruence of block matrices

( (1 − ω)λβ′ + (1 − ω)λtβ′ dtβ′
dβ′ 0 ) =

⎛
⎜
⎝

(1 − ω)λβ′ + (1 − ω)λtβ′ d′tβ′ d′′tβ′
d′β′ 0 0
d′′β′ 0 0

⎞
⎟
⎠

≃
⎛
⎜
⎝

0 0 d′β′
0 0 d′β′
d′tβ′ d′′tβ′ λβ′ + λtβ′

⎞
⎟
⎠
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so that

σω(β) + σω(β′) = σω ( λβ + λtβ dtβ
dβ 0 ) + σ ( λβ′ + λtβ′ dtβ′

dβ′ 0 )

= σ
⎛
⎜⎜⎜
⎝

λβ + λtβ dtβ 0 0
dβ 0 0 0
0 0 λβ′ + λtβ′ dtβ′
0 0 dβ′ 0

⎞
⎟⎟⎟
⎠

= σ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λβ + λtβ d′tβ d′′tβ 0 0 0
d′β 0 0 0 0 0
d′′β 0 0 0 0 0
0 0 0 0 0 d′β′
0 0 0 0 0 d′β′
0 0 0 d′tβ′ d′′tβ′ λβ′ + λtβ′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.



Chapter 11

An open question

One would wish to find an elementary closed form expression for the ω-
signature concatenation defect, but this is not possible in general. In the
spirit of [10] Gambaudo and Ghys [8] constructed from n-strand braids
β,β′ an oriented, compact, connected 4-manifold M(β,β′) of signature
zero in such that way that M(β,β′) can be obtained by glueing three
oriented 4-manifold manifolds C(β),C(β′),C(ββ′) with signatures which
satisfy

σ(C(β)) = σ(β), σ(C(β′)) = σ(β′), σ(C(ββ′)) = σ(ββ′).

They extended this to an equivariant version for branched cyclic covers
where there is an action of Zk on M(β,β′),C(β),C(β′), C(ββ′) which
respects the decomposition of M(ββ′) and used an equivariant version
of Wall’s non-additivity theorem for the signature [21] to express the
ω-signature concatenation defect in terms of the Meyer cocycle and the
Burau-Squier hermitian representation of the braid group Bω ∶ B∞ →
Sp(∞,R). Bourrigan [4] gave a different proof using infinite cyclic covers.

Theorem 13. ([8, Theorem A], [4, Chapter V]). Let ω ≠ 1 be a root of
unity. The ω-signature of the concatenated braid ββ′ is related to the
ω-signature of the braids β,β′ by

σω(ββ′) = σω(β) − σω(β′) −Meyer(Bω(β),Bω(β′)).

This suggests the following:

Open question: Is it possible to use the chain level Seifert pair (λβ , dβ)
of a braid and the L-theory techniques of [15] to express the ω-signature
concatenation defect in terms of an L-theoretic analogue of the Meyer
cocycle?
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