

Quasimorphismes sur les groupes de tresses et forme de Blanchfield

Maxime Bourrigan

Résumé. Les signatures des entrelacs définissent des fonctions intéressantes sur les groupes de tresses. Jean-Marc Gambaudo et Étienne Ghys ont démontré un beau théorème reliant ces fonctions à la célèbre représentation de Burau.

L'objectif de ce travail est d'étendre le résultat de Gambaudo et Ghys à une « signature universelle » algébrique, la classe de Witt de la forme de Blanchfield.

Le résultat principal est une conséquence de généralisations de résultats topologiques classiques aux variétés munies d'un revêtement infini cyclique privilégié.

Abstract. The signatures of links define interesting maps on the braid groups. Jean-Marc Gambaudo and Étienne Ghys have shown a beautiful theorem connecting these functions and the celebrated Burau representation.

The purpose of this work is to extend Gambaudo and Ghys's result to an algebraic "universal signature", the Witt class of the Blanchfield form.

The main result comes from suitable generalisations of various classical topological results to manifolds equipped with a preferred infinite cyclic coverings.

Remerciements

Ce texte est une version très légèrement remaniée de ma thèse de doctorat, effectuée sous la direction d'Étienne Ghys, que je voudrais remercier (bien trop brièvement) pour son soutien. Merci également à Jean Barge, David Cimasoni et Andrew Ranicki pour l'intérêt qu'ils ont montré pour ce travail et pour leurs commentaires, qui l'ont amélioré.

Par rapport à ma thèse, les modifications principales concernent le lien entre mon approche et l'article [32] (cf. p. 280 et 367). Si j'ai pu éclaircir certains points qui restaient obscurs pour moi, c'est grâce à des discussions avec David Cimasoni et Anthony Conway à la suite de leur article [19]. Merci à eux!

Merci enfin au referee anonyme pour ses améliorations, et pour avoir détecté une erreur embarrassante.

Table des matières

1	Introduction			
	1.1	1.1 Groupes de tresses		
		1.1.1	Tresses et entrelacs	
		1.1.2	Le groupe de tresses comme groupe modulaire 270	
		1.1.3	Représentation de Burau	
	1.2	Quasi	morphismes	
		1.2.1	Généralités	
		1.2.2	Quasimorphismes et systèmes dynamiques 276	
		1.2.3	Résultats de Gambaudo et Ghys 277	
	1.3	Rappe	els topologiques	
		1.3.1	Signature des fibrés	
		1.3.2	Forme d'intersection, forme d'enlacement 283	
	1.4	Prései	ntation de la thèse	
2	Algèbre hermitienne			
	2.1	Group	pes de Witt hermitiens	
		2.1.1	Applications sesquilinéaires 292	
		2.1.2	Formes sesquilinéaires, formes de torsion 293	
		2.1.3	Groupes de Witt	
		2.1.4	Réduction sous-lagrangienne 298	
		2.1.5	L'homomorphisme $\partial: \mathbf{W}_{\varepsilon}(K) \to \mathbf{WT}_{\varepsilon}(A) \dots 301$	
	2.2	Group	oe de Witt des formes de Blanchfield 307	
		2.2.1	Décomposition en composantes primaires 308	
		2.2.2	Dévissage	
		2.2.3	Groupes de Witt des corps à involution k_p 311	
	2.3	Signat	tures	
		2.3.1	$\mathbf{WT}(\Lambda_{\mathbb{C}})$: signatures de Milnor	
		2.3.2	$\mathbf{W}(\mathbb{C}(t))$ et fonctions équilibrées : signatures de	
			Levine-Tristram	

3	Dualité de Poincaré dans les revêtements infinis cycliques 318					
	3.1	Forme d'intersection et forme d'enlacement				
	3.2	Dualité de Poincaré-Reidemeister	20			
		3.2.1 (Co)homologie des revêtements infinis cycliques 32	21			
		3.2.2 Forme d'intersection d'une J-variété de dimension				
		paire	23			
		3.2.3 Forme d'enlacement d'une J-variété de dimension				
		impaire				
		3.2.4 Signature de Blanchfield d'un entrelacs 32				
		3.2.5 Signatures d'un entrelacs	28			
	3.3	Représentation de Burau et forme de Squier	29			
		3.3.1 Représentation de Burau	29			
		3.3.2 Forme de Squier	33			
4	Théorème de Lannes-Latour 336					
	4.1	Énoncés	36			
	4.2	Preuve				
		4.2.1 Définition de l'isomorphisme ψ				
		4.2.2 Domaine de ψ				
		4.2.3 Image de ψ				
		$4.2.4$ ψ est une anti-isométrie				
5	Enlacement et suspension 345					
	5.1	Suspension $M(x)$ et signature de Blanchfield $\beta_x \dots 3^q$	45			
	5.2	Le fibré $W(x,y)$				
	5.3	Preuve de $-\partial \alpha_x = \beta_{xy} - \beta_x - \beta_y$				
		5.3.1 Ajout de $\partial_{-,\text{ext}}W(x,y)$				
		5.3.2 Ajout de $\partial_{-,\text{int}}W(x,y)$ et conclusion				
6	Coc	cycle de Meyer 35	55			
	6.1	· ·				
	6.2	Fibrés en surfaces sur le pantalon				
	6.3					
	6.4	Retour sur le théorème de Gambaudo et Ghys				
Bi	blios	graphy 37	70			

Chapitre 1

Introduction

1.1 Groupes de tresses

Le groupe de tresses B(n) a été introduit par Emil Artin ([2, 3]) en 1925 en relation avec la théorie des nœuds. Depuis, de multiples points de vue différents ont été découverts pour présenter et étudier ce groupe; cette richesse en est assurément un des intérêts principaux. On présente dans cette introduction le groupe B(n) sous trois aspects : comme groupe de tresses géométriques à isotopie près, comme groupe modulaire d'un disque percé et comme « discrétisation » du groupe des difféomorphismes du disque préservant l'aire. On pourra consulter [5, 22, 38] pour des introductions complémentaires et beaucoup plus exhaustives aux groupes de tresses.

1.1.1 Tresses et entrelacs

On note I l'intervalle [0,1] et on fixe une fois pour toutes un entier $n\geq 2$ et n points z_1,\ldots,z_n à l'intérieur du disque unité $D^2\subset\mathbb{R}^2$.

Définition. On appelle tresse géométrique à n brins tout sous-ensemble $b \subset D^2 \times I$ formé de n intervalles topologiques disjoints (les brins) tels que la projection sur le deuxième facteur $D^2 \times I \to I$ réalise un homéomorphisme entre chaque brin et I et que

$$\forall s \in \{0, 1\}, b \cap (D^2 \times \{s\}) = \{(z_i, s) \mid 1 \le i \le n\}.$$

La dernière condition permet d'empiler deux tresses géométriques pour obtenir une partie de $D^2 \times [0,2]$ qui donne, après une contraction de facteur 2 dans le deuxième facteur, une troisième tresse géométrique. Cela décrit une loi de composition interne sur l'ensemble des tresses géométriques, que l'on appelle concaténation.

Les tresses géométriques possèdent également une notion d'isotopie: on dira que deux tresses géométriques b et b' sont isotopes s'il existe une application continue

$$F: I \times (\{1, \dots, n\} \times I) \to D^2 \times I$$
$$(t, i, s) \mapsto F_t(i, s) = F(t, i, s)$$

telle que l'image de F_t soit une tresse géométrique b_t pour tout $t \in I$, avec $b_0 = b$ et $b_1 = b'$.

Définition. On appelle tresse à n brins toute classe d'isotopie de tresses géométriques à n brins.

La relation d'isotopie étant compatible avec la loi de concaténation, l'ensemble B(n) des tresses à n brins hérite d'une opération que l'on continue à appeler concaténation.

Théorème (Artin, cf. [2]). Muni de la loi de concaténation, l'ensemble B(n) des tresses à n brins forme un groupe donné par la présentation

$$B(n) \simeq \left\langle \sigma_1, \sigma_2, \dots, \sigma_{n-1} \middle| \begin{array}{cc} \sigma_i \sigma_j = \sigma_j \sigma_i & si \mid i-j \mid \geq 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & si \mid i-j \mid = 1 \end{array} \right\rangle.$$

Évidemment, l'élément neutre de B(n) est la tresse reliant chaque point $(z_i, 0)$ au point $(z_i, 1)$ par le brin vertical $\{z_i\} \times I$. L'inverse d'une tresse est simplement donné par son image miroir.

Notons que l'on a un morphisme surjectif évident perm : $B(n) \to \mathfrak{S}(n)$, que l'on peut définir topologiquement $(\tau = \operatorname{perm}(x) \text{ est la permutation de } \{1, \ldots, n\}$ telle que le brin issu de $(z_i, 0)$ aboutisse en $(z_{\tau(i)}, 1)$) ou algébriquement (si l'on rajoute les relations $\sigma_i^2 = 1$ à la présentation d'Artin, on obtient la présentation de Coxeter du groupe symétrique $\mathfrak{S}(n)$). Le noyau de ce morphisme est le sous-groupe des tresses pures

$$P(n) = \ker(\text{perm} : B(n) \to \mathfrak{S}(n)).$$

$$\sigma_i = \left[\begin{array}{c|c} i & i+1 \end{array}\right] \cdots \left[\begin{array}{c|c} i & i+1 \end{array}\right]$$

Figure 1.1 – Générateurs d'Artin

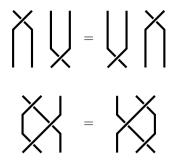


FIGURE 1.2 – Relations d'Artin

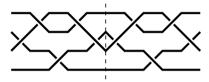


FIGURE 1.3 – Concaténation (triviale) d'une tresse et de son image miroir

Le lien essentiel entre les tresses et la théorie des nœuds se fait via l'opération de clôture d'une tresse. Si $x \in B(n)$, on peut joindre les points $(z_i, 0)$ aux points correspondants $(z_i, 1)$ par des courbes simples passant à l'extérieur de la boîte $D^2 \times S^1$ et ne s'emmêlant pas (cf. dessin ci-dessous ou [38, section 2.2] pour une définition plus formelle) pour obtenir à partir de x un entrelacs $\hat{x} \subset S^3$.

L'entrelacs \hat{x} vit naturellement dans un tore plein plongé de façon standard dans S^3 , et a pour nombre de composantes le nombre $|\operatorname{perm}(x)|$ de cycles intervenant dans la décomposition en cycles disjoints de la permutation associée.

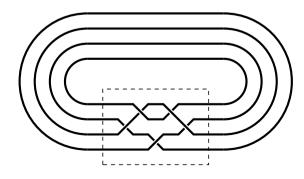


FIGURE 1.4 – Clôture d'une tresse

Bien que nous ne les utiliserons pas, citons les théorèmes cruciaux pour exploiter cette opération de clôture, dus respectivement à James Alexander et à Andréj Andréevič Márkov.

Théorème ([1]). Tout entrelacs de S^3 est équivalent à la clôture d'une tresse.

Théorème ([52]). Deux tresses ont des clôtures équivalentes si et seulement si l'on peut passer de l'une à l'autre par une suite finie de transformations appartenant à l'un des deux types suivants :

- conjugaison : $x \in B(n) \leftrightarrow yxy^{-1} \in B(n)$, pour un certain élément $y \in B(n)$;
- ajout ou suppression d'un brin : $x \in B(n) \leftrightarrow x\sigma_n^{\pm 1} \in B(n+1)$.

Pour finir cette section, introduisons une notation. Si $L \subset S^3$ est un entrelacs, on notera E(L) son ext'erieur, c'est à dire le complémentaire $E(L) = S^3 \setminus \mathscr{U}(L)$ d'un voisinage régulier $\mathscr{U}(L)$ de L. C'est une variété compacte de dimension 3, dont le bord est constitué de |L| tores T^2 (si L est un entrelacs, on note |L| son nombre de composantes connexes.)

Par dualité d'Alexander, les groupes d'homologie de cet extérieur sont aisément calculables : on a $H_0(E(L)) = \mathbb{Z}$, le premier groupe d'homologie est un groupe abélien libre $H_1(E(L)) = \mathbb{Z}^{|L|}$ dont on peut exhiber une base en choisissant pour chaque composante L_i de l'entrelacs L un méridien μ_i et, pour $q \geq 2$, $H_q(E(L)) = 0$.

1.1.2 Le groupe de tresses comme groupe modulaire

Le groupe de tresses B(n) peut être également vu comme le groupe des composantes connexes d'un groupe d'homéomorphismes ou de difféomorphismes du disque à n « perforations. » Par exemple, soit D^2 le disque unité fermé de \mathbb{C} et $\underline{z} = \{z_1, \ldots, z_n\}$ des points distincts dans l'intérieur de D^2 .

On définit alors les groupes d'homéomorphismes et de difféomorphismes correspondants :

$$\operatorname{Hom\'eo}(D^2,\underline{z}) = \left\{ f \in \operatorname{Hom\'eo}(D^2) \mid f_{\mid \partial D^2} = \operatorname{id}_{\partial D^2} \text{ et } f(\underline{z}) = \underline{z} \right\}$$
$$\operatorname{Diff}(D^2,\underline{z}) = \left\{ f \in \operatorname{Diff}(D^2) \mid f_{\mid \partial D^2} = \operatorname{id}_{\partial D^2} \text{ et } f(\underline{z}) = \underline{z} \right\}.$$

Remarquons que l'hypothèse sur le comportement de f au bord de D^2 entraı̂ne qu'il préserve l'orientation. Naturellement, on a une inclusion $\mathrm{Diff}(D^2,\underline{z})\subset\mathrm{Hom\'eo}(D^2,\underline{z})$ qui est une équivalence d'homotopie d'après un théorème d'Epstein ([25]).

Le groupe de tresses peut alors être vu comme un groupe modulaire.

Théorème (cf. [7, Chapter 4], [38, Theorem 1.33]). On a des isomorphismes

$$B(n) \simeq \pi_0 \operatorname{Hom\'eo}(D^2, \underline{z}) \simeq \pi_0 \operatorname{Diff}(D^2, \underline{z}).$$

La restriction d'un difféomorphisme (ou plutôt de sa classe d'isotopie) à \underline{z} fournit une nouvelle définition du morphisme perm : $B(n) \to \mathfrak{S}(n)$.

Afin de manipuler des variétés différentiables compactes, nous allons plutôt voir le groupe de tresses comme un groupe de difféomorphismes d'une surface compacte à bord.

Plus précisément, prenons n disques disjoints $D^2_{\text{int},i}$ contenus dans l'intérieur de D^2 centrés autour des (z_i) . On note $S^1_{\text{int},i}$ le bord de ce disque. On pose alors

$$D_n = \overline{D^2 \setminus \left(\bigsqcup_{i=1}^n D_{\mathrm{int},i}^2\right)}.$$

 D_n est donc une surface compacte à bord, dont le bord a une composante extérieure $S^1_{\text{ext}} = \partial D^2$ et n composantes intérieures $S^1_{\text{int},1}, \dots, S^1_{\text{int},n}$. Plus précisément, en orientant les (n+1) cercles constituant le bord de D_n dans le sens trigonométrique, le bord de la surface orientée D_n est

$$\partial D_n = S_{\text{ext}}^1 - S_{\text{int},1}^1 - \dots - S_{\text{int},n}^1.$$

On pourra noter $\partial_{\text{ext}} D_n = S_{\text{ext}}^1$ et $\partial_{\text{int}} D_n = \left(S_{\text{int},1}^1 \sqcup \cdots \sqcup S_{\text{int},n}^1 \right)$. On définit alors le groupe de difféomorphismes

$$\mathscr{D}_n = \left\{ f \in \text{Diff}(D_n) \,\middle|\, f_{|S^1_{\text{ext}}} = \text{id}_{S^1_{\text{ext}}} \right\}$$

fixant le bord extérieur mais agissant librement sur les composantes intérieures (évidemment, $\partial_{\text{int}}D_n$ doit être globalement préservé mais les éléments de \mathcal{D}_n peuvent en permuter les composantes).

Proposition. Le groupe de tresses B(n) s'identifie naturellement au groupe des composantes connexes $\pi_0 \mathcal{D}_n$.

Encore une fois, on obtient le morphisme perm : $B(n) \to \mathfrak{S}(n)$ en considérant l'action induite sur $\pi_0(\partial_{\mathrm{int}}D_n)$.

Dans la suite, on pourra donc considérer une tresse $x \in B(n)$ comme une classe d'équivalence de difféomorphismes $D_n \to D_n$. À titre d'illustration, rappelons la construction de la représentation d'Artin.

Soit $x \in B(n)$ une tresse et $h_x \in \mathcal{D}_n$ un difféomorphisme la représentant. Le difféomorphisme h_x induit alors un automorphisme

$$(h_x)_{\sharp}: \pi_1(D_n, 1) \to \pi_1(D_n, 1)$$

du groupe libre $\mathbb{L}_n = \pi_1(D_n, 1)$. Comme deux difféomorphismes isotopes induisent la même action sur le groupe fondamental, on obtient ainsi une représentation

$$Artin: B(n) \to Aut(\mathbb{L}_n),$$

dont un théorème d'Artin ([2], cf. également [38, Theorem 1.31]) nous garantit qu'elle est injective.

Dans ce travail, les tresses interviennent la plupart du temps via un procédé de suspension. Par exemple, un difféomorphisme $h_x\in \mathscr{D}_n$ admet une suspension

$$(D_n \times [0,1])/(x,1) \sim (f(x),0),$$

qui est un fibré sur le cercle $S^1 = [0,1]/(1 \sim 0)$ de fibre D_n et de monodromie h_x . Deux difféomorphismes isotopes fournissant des variétés homéomorphes (et même des fibrations isomorphes), la construction ne dépend pas du difféomorphisme h_x mais seulement de sa classe d'isotopie, c'est-à-dire de la tresse x. On notera donc simplement M(x) la variété obtenue, et on l'appellera suspension de la tresse x.

La variété M(x) est une variété compacte de dimension trois dont le bord se décompose de la façon suivante.

- Puisque h_x fixe point par point la composante extérieure S^1_{ext} de D_n , M(x) a une composante de bord extérieure $\partial_{\text{ext}} M(x) = S^1 \times S^1_{\text{ext}}$. Pour la même raison, les intervalles $\{z\} \times [0,1]$ ($z \in S^1_{\text{ext}}$) se referment et dessinent sur $\partial_{\text{ext}} M(x)$ un feuilletage par cercles transverses aux fibres.
- La partie intérieure du bord $\partial_{\text{int}}M(x)$ est obtenue par suspension de la restriction de h_x à $\partial_{\text{int}}D_n$. À homéomorphisme (ou isomorphisme de fibrations) près, cette surface ne dépend que de la permutation perm(x). Elle est en fait homéomorphe à |x| copies du tore T^2 , où |x| = |perm(x)| est le nombre de cycles intervenant dans la décomposition de perm(x) en cycles disjoints.

On voit d'ailleurs que la suspension M(x) de la tresse x est homéomorphe à l'extérieur de l'entrelacs \widehat{x} dans le tore plein $D^2 \times S^1$. Autrement dit, on peut obtenir l'extérieur $E(\widehat{x})$ de l'entrelacs $\widehat{x} \subset S^3$ en recollant un tore plein à M(x) le long du tore extérieur $\partial_{\rm ext} M(x)$, de telle sorte que les méridiens de ce nouveau tore plein coïncident avec le feuilletage tracé sur $\partial_{\rm ext} M(x)$.

1.1.3 Représentation de Burau

Le groupe de tresses possède une représentation linéaire sur l'anneau $\Lambda = \mathbb{Z}[t,t^{-1}]$ introduite par Werner Burau en 1936 ([13]). D'après la présentation d'Artin donnée à la section 1.1.1, la donnée d'une représentation linéaire de B(n) est équivalente à la donnée de (n-1) matrices inversibles S_1, \ldots, S_{n-1} vérifiant les relations d'Artin

$$|i-j| \ge 2 \Rightarrow S_i S_j = S_j S_i$$
 et $|i-j| = 1 \Rightarrow S_i S_j S_i = S_j S_i S_j$.

Burau introduit alors les matrices $n \times n$

$$S_i = I_{i-1} \oplus \begin{pmatrix} 1-t & t \\ 1 & 0 \end{pmatrix} \oplus I_{n-(i+1)},$$

et vérifie par un calcul direct qu'elles satisfont aux relations d'Artin (c'est évident pour la première et la vérification de la seconde nécessite un petit calcul sur des matrices 3×3 .) Par ailleurs, les matrices sont de déterminant -t et donc inversibles dès que t est inversible dans l'anneau des coefficients.

On obtient ainsi la représentation de Burau (non réduite)

$$\widetilde{\operatorname{Burau}}: B(n) \to \operatorname{GL}_n(\Lambda).$$

Remarquons que les relations du groupe de tresses étant symétriques, les transposées des matrices S_i définissent également une représentation de B(n).

La représentation de Burau fixe clairement le vecteur colonne $v={}^t(1,1,\ldots,1)$. On appelle en général représentation de Burau réduite la représentation induite sur le quotient $\Lambda^n/\Lambda \cdot v \simeq \Lambda^{n-1}$.

La représentation de Burau apparaît naturellement dans l'étude des groupes de tresses, indépendamment du point de vue adopté. On pourra par exemple consulter [22, Example 2.11] pour l'apparition de la représentation de Burau (non réduite) dans le contexte des actions des groupes de tresses sur les systèmes autodistributifs.

La question de la fidélité de la représentation de Burau, longtemps ouverte (et probablement partiellement motivée par le fait que Burau : $B(3) \to \operatorname{GL}_3(\Lambda)$ est bien fidèle) est maintenant en grande partie résolue : pour $n \geq 5$, la représentation de Burau de B(n) n'est pas fidèle ([60, 51, 6], cf. également [38, Chapter 3]). La question reste ouverte pour n = 4.

En 1984 (cf. [72]), Squier a démontré que la représentation de Burau préserve une forme hermitienne (par rapport à la conjugaison \mathbb{Z} -linéaire sur Λ envoyant t sur t^{-1}). Une telle forme hermitienne peut être donnée explicitement; par exemple, la forme sesquilinéaire donnée par la matrice

$$\Omega_n = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 - t & 1 & 0 & \dots & 0 \\ 1 - t & 1 - t & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 - t & 1 - t & 1 - t & \dots & 1 \end{pmatrix}$$

est préservée par la représentation de Burau (non réduite) $\widetilde{\operatorname{Burau}}: B(n) \to \operatorname{GL}_n(\Lambda)$ (cf. [38, Theorem 3.1]). On obtient ainsi une forme hermitienne (resp. antihermitienne) préservée par la matrice de Burau en considérant la matrice $\Omega_n + {}^t\overline{\Omega_n}$ (resp. $\Omega_n - {}^t\overline{\Omega_n}$).

En particulier, on remplaçant t par un nombre complexe ω de module 1, on obtient une représentation complexe

$$\widetilde{\mathrm{Burau}}_{\omega}: B(n) \to \mathrm{GL}_n(\mathbb{C}),$$

qui préserve une forme hermitienne (au sens usuel) sur \mathbb{C}^n . Pour $\omega=1$, il s'agit simplement de la représentation associée au morphisme perm : $B(n) \to \mathfrak{S}(n)$. Pour toutes les valeurs de ω à l'exception d'un nombre fini, cette forme hermitienne est non dégénérée. À conjugaison près, on pourra donc voir cette représentation de Burau comme une représentation à valeurs dans $U_{p,q}(\mathbb{C})$ (et donc dans $\operatorname{Sp}_{2n}(\mathbb{R})$).

On reviendra à la représentation de Burau et à la structure (anti)hermitienne associée avec un autre point de vue, plus topologique, à la section 3.3.

1.2 Quasimorphismes

1.2.1 Généralités

Soit Γ un groupe. On appelle *quasimorphisme* sur Γ une application $\varphi:\Gamma\to\mathbb{R}$ telle que

$$\exists C > 0 : \forall \gamma_1, \gamma_2 \in \Gamma, |\varphi(\gamma_1, \gamma_2) - \varphi(\gamma_1) - \varphi(\gamma_2)| \le C.$$

Si φ est un quasimorphisme, on note $\operatorname{d\acute{e}f}(\varphi)$ (et on appelle $\operatorname{d\acute{e}faut}$ du quasimorphisme) la borne inférieure des C qui conviennent.

Les fonctions bornées sur Γ et les morphismes $\Gamma \to \mathbb{R}$ sont des exemples de quasimorphismes. En outre, les quasimorphismes forment manifestement un sous-espace vectoriel $QM(\Gamma)$ de l'espace des fonctions à valeurs réelles définies sur Γ .

Un quasimorphisme φ est dit homogène si

$$\forall n \in \mathbb{Z}, \forall \gamma \in \Gamma, \varphi(\gamma^n) = n\varphi(\gamma).$$

On démontre alors facilement que si $\varphi:\Gamma\to\mathbb{R}$ est un quasimorphisme quelconque, la limite

$$\varphi_h: \gamma \mapsto \lim_{n \to \infty} \frac{\varphi(\gamma^n)}{n}$$

existe et définit un quasimorphisme homogène. En outre, φ_h est l'unique quasimorphisme homogène tel que $\varphi - \varphi_h$ soit une fonction bornée, ce qui identifie le sous-espace vectoriel $QMH(\Gamma) \subset QM(\Gamma)$ des quasimorphismes homogènes au quotient de $QM(\Gamma)$ par l'espace des fonctions bornées.

Les quasimorphismes homogènes reflètent des propriétés algébriques profondes du groupe Γ . Un des résultats les plus marquants dans cette

direction est le théorème de dualité de Bavard (cf. [12, 16]). Si γ est un élément du groupe dérivé $\Gamma' = [\Gamma, \Gamma]$, convenons de noter $\operatorname{cl}(\gamma)$ la longueur des commutateurs de γ , c'est-à-dire le nombre minimum de commutateurs dont γ soit le produit. Si γ_1 et γ_2 sont des éléments de Γ' , on a évidemment $\operatorname{cl}(\gamma_1\gamma_2) \leq \operatorname{cl}(\gamma_1) + \operatorname{cl}(\gamma_2)$, ce qui permet de définit la longueur stable des commutateurs

$$\operatorname{scl}(\gamma) = \lim_{n \to \infty} \frac{\operatorname{cl}(\gamma^n)}{n}.$$

Le théorème de Bavard affirme alors que longueur stable des commutateurs et quasimorphismes sont en dualité :

Théorème. Soit Γ un groupe et $\gamma \in \Gamma'$. Alors

$$\mathrm{scl}(\gamma) = \frac{1}{2} \sup_{\varphi \in \mathrm{QMH}(\Gamma) \backslash H^1(\Gamma; \mathbb{R})} \frac{|\varphi(\gamma)|}{\mathrm{def}(\varphi)}.$$

Par exemple, les quasimorphismes illustrent bien la différence entre $\mathrm{SL}_2(\mathbb{Z})$ (où ils sont abondants et permettent même, en un sens, de séparer tous les éléments, cf. [9, 61]) et $\mathrm{SL}_n(\mathbb{Z})$ pour $n \geq 3$ où la propriété de génération bornée (tout élément de $\mathrm{SL}_n(\mathbb{Z})$ s'écrit comme le produit d'un nombre borné de matrices élémentaires, [17]) montre que cl est bornée (et donc $\mathrm{scl} = 0$), ce qui implique l'absence de tout quasimorphisme homogène.

Les quasimorphismes s'inscrivent dans le cadre beaucoup plus général de la *cohomologie bornée :* vu la définition du cobord en cohomologie des groupes, il est manifeste que l'espace des cochaînes bornées forme un souscomplexe

$$C_b^*(\Gamma; A) \subset C^*(\Gamma; A) \qquad (A = \mathbb{Z}, \mathbb{R}).$$

La cohomologie bornée $H_b^*(\Gamma; A)$ est alors simplement la cohomologie de ce sous-complexe. L'article [37] contient beaucoup d'applications géométriques de cette notion (appliquée aux variétés plutôt qu'aux groupes).

L'étude des quasimorphismes sur Γ se ramène essentiellement à celle du deuxième groupe de cohomologie bornée. En effet, si φ est un quasimorphisme, l'application

$$d\varphi: (\gamma_1, \gamma_2) \mapsto \varphi(\gamma_1 \gamma_2) - \varphi(\gamma_1) - \varphi(\gamma_2)$$

est évidemment un cocycle (en cohomologie usuelle, c'est même un cobord!) borné. La classe de cohomologie bornée de cette application ne retient le quasimorphisme qu'à addition par les quasimorphismes « banals » près : en effet, les morphismes $\varphi \in H^1(\Gamma;A)$ vérifient par définition $d\varphi = 0$ et, si φ est une fonction bornée, on peut la considérer comme un 1-cocycle borné, ce qui entraîne que $[d\varphi] = 0$ dans $H^2_b(\Gamma;A)$. On peut même démontrer que cette remarque est, en un sens, optimale :

Proposition. L'application $\varphi \mapsto d\varphi$ s'inscrit dans une suite exacte

$$0 \to H^1(\Gamma; \mathbb{R}) \oplus \ell^{\infty}(\Gamma) \to \mathrm{QM}(\Gamma) \xrightarrow{\varphi \mapsto d\varphi} H^2_b(\Gamma; \mathbb{R}) \to H^2(\Gamma; \mathbb{R}),$$

où l'application $H_b^2(\Gamma;\mathbb{R}) \to H^2(\Gamma;\mathbb{R})$ est l'application induite en cohomologie par l'inclusion $C_b^2(\Gamma;\mathbb{R}) \subset C^2(\Gamma;\mathbb{R})$.

Autrement dit, l'espace $QMH(\Gamma)/H^1(\Gamma;\mathbb{R})$ des quasimorphismes homogènes non triviaux s'identifie au noyau de l'application canonique $H_b^2(\Gamma;\mathbb{R}) \to H^2(\Gamma;\mathbb{R})$.

1.2.2 Quasimorphismes et systèmes dynamiques

Un des exemples les plus anciens de quasimorphisme est le nombre de translation défini sur le revêtement universel

$$\widetilde{\operatorname{Hom\acute{e}o}}_+(S^1) = \{ f \in \operatorname{Hom\acute{e}o}_+(\mathbb{R}) \mid \forall t \in \mathbb{R}, f(t+1) = f(t) + 1 \}$$

du groupe $\operatorname{Hom\'eo}_+(S^1)$ des hom\'eomorphismes du cercle préservant l'orientation, défini par la formule

$$\tau(f) = \lim_{n \to \infty} \frac{f^n(0)}{n} \in \mathbb{R}.$$

Sa réduction modulo 1 définit l'invariant fondamental des homéomorphismes du cercle, le *nombre de rotation* introduit par Poincaré

rot : Homéo
$$_+(S^1) \to S^1$$
.

Le point de vue « borné » sur ces invariants est fertile : la classe de cohomologie bornée (cf. section précédente) correspondant au nombre de translation définit une classe de cohomologie bornée dans $H_b^2(\operatorname{Hom\'eo}_+(S^1);\mathbb{Z})$ dont on peut voir qu'elle est le rappel d'une classe

$$\mathfrak{e} \in H_b^2(\mathrm{Hom\acute{e}o}_+(S^1); \mathbb{Z}),$$

appelée classe d'Euler bornée. La classe d'Euler bornée généralise le nombre de rotation au sens où elle permet de classer à semiconjugaison près les actions d'un groupe discret Γ sur le cercle.

Théorème ([33, 34]). Soit Γ un groupe discret et

$$\rho_1, \rho_2: \Gamma \to \operatorname{Hom\'eo}_+(S^1)$$

deux actions continues sur le cercle. Alors ρ_1 et ρ_2 sont semiconjuguées si et seulement si $\rho_1^*(\mathfrak{e}) = \rho_2^*(\mathfrak{e})$ dans $H_b^2(\Gamma; \mathbb{Z})$.

À la suite de cet exemple unidimensionnel, de nombreux quasimorphismes ont été construits sur le groupe des difféomorphismes hamiltoniens de variétés symplectiques, au premier rang desquels les groupes de difféomorphismes préservant l'aire d'une surface compacte (Barge-Ghys [9], Entov-Polterovich [24], Gambaudo-Ghys [31], Py [63]...)

Une des motivations pour cette recherche provient des conjectures de Zimmer, selon lesquelles, par exemple, aucun réseau d'un groupe de Lie de rang réel ≥ 2 ne peut agir fidèlement sur une surface compacte en préservant une forme d'aire. Le résultat évoqué à la question précédente selon lequel aucun quasimorphisme non trivial n'existe sur $\mathrm{SL}_n(\mathbb{Z})$ pour $n \geq 3$ se généralise en fait considérablement (à d'autres groupes et à des résultats d'annulation de la cohomologie bornée, cf. [15]). Chaque construction de quasimorphisme sur le groupe des difféomorphismes hamiltoniens de surfaces fournit donc de nouvelles contraintes qu'un contre-exemple putatif à la conjecture de Zimmer devrait satisfaire. Voir [64] pour une introduction plus sérieuse à ce sujet.

1.2.3 Résultats de Gambaudo et Ghys

Dans une série d'articles ([29, 30, 31, 32]), Jean-Marc Gambaudo et Étienne Ghys ont étudié des invariants topologiques associés à des systèmes dynamiques (transformations de surfaces et champs de vecteurs en dimension 3). Un exemple de résultat illustre bien l'utilisation des tresses comme « discrétisation » des champs de vecteurs.

Dans cette section, on note $\mathscr G$ le groupe des difféomorphismes de classe C^∞ du disque D^2 coïncidant avec l'identité sur le bord et préservant l'aire.

Théorème ([31]). L'espace vectoriel $QMH(\mathcal{G})$ des quasimorphismes homogènes sur le groupe \mathcal{G} est de dimension infinie.

Pour démontrer ce résultat, Gambaudo et Ghys construisent une famille infinie de quasimorphismes et montrent par un calcul explicite (sur un type très particulier de difféomorphismes) que leurs homogénéïsés forment une famille libre. Dans cette section, nous allons nous contenter d'expliquer la méthode de construction de ces quasimorphismes.

L'ingrédient topologique essentiel est la notion de signature d'un entrelacs, cf. [67, 50].

Si $L \subset S^3$ est un entrelacs, on peut en trouver une surface de Seifert, c'est-à-dire une surface orientée F plongée dans S^3 telle que $\partial F = L$ ([27, 69]). L'orientation de F permet de définir, pour chaque courbe x tracée sur F, une courbe $i_+(x) \subset S^3 \setminus F$ obtenue en poussant x le long d'un petit champ de vecteurs transverse à F et induisant la bonne coorientation. L'application $i_+: H_1(F) \to H_1(S^3 \setminus F)$ induite par ce procédé est bien définie. On peut alors munir le premier groupe d'homologie $H_1(F)$ d'une

forme bilinéaire V (a priori ni symétrique ni antisymétrique), la $forme\ de$ Seifert

$$V([x], [y]) = \operatorname{Enl}(x, i_{+}(y)),$$

où Enl désigne la forme d'enlacement sur S^3 entre deux courbes fermées simples disjointes. La signature de L est alors la signature de la matrice symétrique $V+{}^tV$, signature dont on vérifie qu'elle ne dépend pas du choix de la surface de Seifert.

En particulier, on obtient via l'opération de clôture des tresses une fonction définie sur le groupe de tresses

$$sign: B(n) \to \mathbb{Z}$$
$$x \mapsto sign(\widehat{x}).$$

Dans le cas du groupe des tresses à deux brins (isomorphe à \mathbb{Z} puisque tout élément de B(2) s'écrit de façon unique σ_1^p pour un certain entier $p \in \mathbb{Z}$), on vérifie directement que cette fonction est

$$\operatorname{sign}: B(2) \to \mathbb{Z}$$

$$\sigma_1^p \mapsto \begin{cases} 1 - p & \text{si } p > 0; \\ 0 & \text{si } p = 0; \\ p - 1 & \text{si } p < 0. \end{cases}$$

L'idée de la construction est maintenant la suivante : si $g \in \mathcal{G}$ est un difféomorphisme du disque fixant le bord et préservant l'aire et que (g_t) est un isotopie joignant l'identité à g, on peut choisir n points x_1, \ldots, x_n dans le disque et considérer la trajectoire

$$[0,1] \to (D^2)^n$$

$$t \mapsto (g_t(x_1), \dots, g_t(x_n)).$$

On peut concaténer à cette trajectoire les applications $I \to (D^2)^n$ obtenues en reliant par un segment les points z_i aux points x_i (resp. les points $g(x_i)$ aux points z_i). Plus précisément, on considère l'application

$$t \mapsto \begin{cases} ((1-3t)z_i + 3tx_i)_{i=1}^n & \text{si } t \in \left[0, \frac{1}{3}\right]; \\ (g_{3t-1}(x_i))_{i=1}^n & \text{si } t \in \left[\frac{1}{3}, \frac{2}{3}\right]; \\ ((3-3t)g(x_i) + (3t-2)z_i)_{i=1}^n & \text{si } t \in \left[\frac{2}{3}, 1\right]. \end{cases}$$

Pour presque tout (x_1, \ldots, x_n) , les applications affines $t \mapsto (1 - 3t)z_i + 3tx_i$ et $t \mapsto (3-3t)g(x_i) + (3t-2)z_i$ prennent en tout t des valeurs distinctes et le graphe

$$\gamma_{(g_t)}(x_1,\ldots,x_n) \subset D^2 \times I$$

définit ainsi une tresse géométrique. Comme le groupe \mathscr{G} est contractile, le choix de l'isotopie (g_t) n'influence cette tresse géométrique qu'à isotopie près. On obtient donc une tresse bien définie

$$\gamma_q(x_1,\ldots,x_n) \in B(n)$$

pour presque tout n-uplet (x_1, \ldots, x_n) d'éléments de D^2 . Par construction, cette tresse est pure.

Théorème ([31]).

- Les applications sign : $B(n) \to \mathbb{Z}$ sont des quasimorphismes.
- Les applications

$$\mathfrak{sign}_n: g \mapsto \int \operatorname{sign}(\gamma_g(x_1, \dots, x_n)) dx_1 \cdots dx_n$$

définissent des quasimorphismes sur le groupe $\mathcal G$ des difféomorphismes du disque fixant le bord et préservant l'aire.

- Les quasimorphismes \mathfrak{sign}_n obtenus en homogénéisant sign_n forment une famille libre.

Le cas de \mathfrak{sign}_2 est spécial : on a vu que sign : $B(2) \to \mathbb{Z}$ était à distance bornée de $-\varepsilon$, où ε est l'isomorphisme $B(2) \to \mathbb{Z}$ envoyant σ_1 sur 1. L'interprétation topologique de cet isomorphisme est claire : si $x \in P(2)$ est une tresse pure, $\varepsilon(x)$ est le double du nombre d'enlacement entre les deux composantes de l'entrelacs \widehat{x} . Il s'ensuit que l'on peut définir le quasimorphisme homogène \mathfrak{sign}_2 en intégrant ce morphisme plutôt que la signature. On retrouve ainsi le morphisme de Calabi

$$\operatorname{Calabi} = -\frac{\mathfrak{sign}_2}{2}: \mathscr{G} \to \mathbb{R}$$

en tant que nombre d'enlacement moyen, une interprétation due à Albert Fathi.

Dans l'article suivant [32], les auteurs examinent plus particulièrement une famille de généralisations de la signature, les ω -signatures.

Leur définition est très proche : si $L \subset S^3$ est un entrelacs dont la forme de Seifert est représentée par une matrice V et que $\omega \in S^1$ est un nombre complexe de module 1, la matrice

$$(1-\omega)V + (1-\overline{\omega})^t V$$

est une matrice hermitienne. Sa signature est notée $\operatorname{sign}_{\omega}(L)$.

De même que pour la signature classique, cet invariant définit via la clôture des tresses une application

$$\operatorname{sign}_{\omega}: B(n) \to \mathbb{Z}.$$

Gambaudo et Ghys démontrent alors que cette application est un quasimorphisme et en exhibent même le cobord (borné) en fonction de la représentation de Burau spécifiée en $t=\omega$ dont nous avons vu à la section 1.1.3 qu'elle préservait une forme symplectique.

Théorème ([32]). Soit x et y deux éléments de B(n) et $\omega \in S^1$ une racine de l'unité d'ordre premier avec n. Alors

$$\operatorname{sign}_{\omega}(xy) - \operatorname{sign}_{\omega}(x) - \operatorname{sign}_{\omega}(y) = -\operatorname{Meyer}(\operatorname{Burau}_{\omega}(x), \operatorname{Burau}_{\omega}(y)),$$

où Meyer est le 2-cocycle sur le groupe symplectique défini à la section suivante (cf. également [9]).

Remarques. – Dans [32], le théorème est énoncé pour le groupe $B(\infty)$, limite inductive des groupes de tresses B(n). La forme ci-dessus provient de l'article [19].

Ce théorème a été généralisé au cas des enchevêtrements colorés (coloured tangles) par David Cimasoni et Anthony Conway ([19]). Les enchevêtrements sont aux variétés compactes à bord ce que les entrelacs sont aux variétés fermées : ils forment les morphismes d'une catégorie dont les objets sont les variétés (orientées) de dimension 0 (de telle sorte que les entrelacs correspondent au cas des endomorphismes de la variété vide). Dans ce cadre, la représentation de Burau est remplacée par un foncteur à valeurs dans une catégorie de correspondances lagrangiennes défini par Cimasoni et Vladimir Turaev ([20]).

1.3 Rappels topologiques

1.3.1 Signature des fibrés

Si W est une variété fermée et orientée de dimension 4m, le produit d'intersection des classes d'homologie définit une forme bilinéaire symétrique

$$H_{2m}(W;\mathbb{R}) \times H_{2m}(W;\mathbb{R}) \to \mathbb{R}.$$

Par dualité de Poincaré, cette forme est également équivalente à la forme

$$H^{2m}(W;\mathbb{R})\times H^{2m}(W;\mathbb{R})\to H^{4m}(W;\mathbb{R})\to \mathbb{R}$$

donnée par la structure multiplicative de l'anneau de cohomologie $H^*(W;\mathbb{R})$ (l'isomorphisme $H^{4m}(W;\mathbb{R}) \to \mathbb{R}$ est donné par l'orientation de la variété W).

La signature de cette forme d'intersection est alors un invariant du type d'homotopie de W, que l'on appelle la signature de W et que l'on note sign $W \in \mathbb{Z}$.

Si $W=W_1\times W_2$ est le produit de deux variétés orientées, la formule de Künneth permet de voir facilement que

$$\operatorname{sign} W = \begin{cases} \operatorname{sign} W_1 \cdot \operatorname{sign} W_2 & \text{si } \dim W_1 \text{ et } \dim W_2 \text{ sont des multiples de } 4; \\ 0 & \text{sinon.} \end{cases}$$

En 1957, Chern, Hirzebruch et Serre s'attaquèrent au calcul de la signature d'une variété obtenue comme espace total d'une fibration. Pour énoncer leur résultat, rappelons que si l'on a une fibration $E \to B$ de fibre F, la propriété de relèvement des chemins permet de définir une représentation de monodromie

$$\pi_1(B) \to \mathrm{GL}(H_*(F;\mathbb{R}))$$

du groupe fondamental de la base sur l'homologie de la fibre. Dans le cas d'un produit, l'action est triviale.

Théorème ([18]). Soit $p: E \to B$ une fibration entre variétés fermées et orientées. On suppose que la dimension de E est multiple de 4 et que l'action du groupe fondamental de B sur l'homologie de la fibre F est triviale. Alors

$$\operatorname{sign} E = \begin{cases} \operatorname{sign} F \cdot \operatorname{sign} B & si \operatorname{dim} F \text{ } et \operatorname{dim} B \text{ } sont \text{ } des \text{ } multiples \text{ } de \text{ } 4 \text{ } ; \\ 0 & sinon. \end{cases}$$

Esquissons la preuve.

Dans ce contexte, on sait ([71]) qu'il existe une suite spectrale (de Leray-Serre)

$$E_2^{p,q} = H^p(B; H^q(F; \mathbb{R})) \Longrightarrow H^{p+q}(E; \mathbb{R}).$$

Ici, le fait que la représentation de monodromie soit triviale se traduit par le fait que la deuxième page est simplement le produit tensoriel

$$E_2^{p,q} = H^p(B; \mathbb{R}) \otimes_{\mathbb{R}} H^q(F; \mathbb{R}).$$

La suite spectrale de cohomologie de Leray-Serre respecte la structure multiplicative de la cohomologie : on a sur $E_r^{*,*}$ des accouplements bilinéaires

$$E_r^{p,q} \times E_r^{s,t} \to E_r^{p+s,q+t}$$

pour lesquels la différentielle d_r est une dérivation (ce qui implique, en particulier, que la structure multiplicative se transmet à la page suivante). Pour la deuxième page $E_2^{*,*}$, la structure multiplicative est simplement celle induite des structures d'algèbre de $H^*(B;\mathbb{R})$ et $H^*(F;\mathbb{R})$.

Puisque B et F sont des variétés de dimension finie, $E_2^{p,q}$ est nul sauf pour un nombre fini d'indices (p,q). Cette propriété reste évidemment

vraie pour les pages ultérieures et implique que la suite spectrale dégénère en temps fini : il existe $N \geq 0$ tel que

$$E_N^{*,*} = E_{N+1}^{*,*} = \dots = E_{\infty}^{*,*}.$$

La structure multiplicative sur cette dernière page est alors compatible avec la structure d'algèbre de $H^*(E)$.

En particulier, les auteurs associent à chaque page $E_r^{*,*}$ de la suite spectrale une signature sign $E_r^{*,*} \in \mathbb{Z}$ de telle sorte que sign $E_\infty^{*,*}$ coïncide avec la signature de E.

Le point-clef est alors de comprendre l'effet du passage d'une page de la suite spectrale à la suivante (c'est-à-dire le passage de $E_r^{*,*}$ à sa cohomologie pour la différentielle d_r) du point de vue bilinéaire. Chern, Hirzebruch et Serre montrent alors que cette opération correspond à l'opération classique de réduction sous-lagrangienne que l'on résume dans la proposition suivante.

Proposition. Soit (E,q) un espace vectoriel réel muni d'une forme quadratique non dégénérée et $I \subset E$ un sous-espace vectoriel isotrope (i.e. tel que $I \subset I^{\perp}$). Alors q induit une forme quadratique non dégénérée q_I sur le quotient I^{\perp}/I . En outre, on a l'égalité des signatures sign $q = \text{sign } q_I$.

Grâce à cette opération (convenablement généralisée à la structure des pages $E_r^{*,*}$ grâce à la notion d'anneau de Poincaré), on obtient que la signature ne change pas au fur et à mesure que l'on tourne les pages de la suite spectrale :

$$sign E = sign E_{\infty}^{*,*} = \dots = sign E_r^{*,*} = sign E_{r-1}^{*,*} = \dots = sign E_2^{*,*}.$$

Or, grâce à l'hypothèse de trivialité de la monodromie, tout se passe à la deuxième page comme pour le produit $F \times B$, y compris du point de vue multiplicatif. On a donc obtenu le résultat

$$\begin{split} \operatorname{sign} E &= \operatorname{sign} E_2^{*,*} = \operatorname{sign} (F \times B) \\ &= \begin{cases} \operatorname{sign} F \cdot \operatorname{sign} B & \text{si } \dim F \text{ et } \dim B \text{ sont } \operatorname{des } \operatorname{multiples } \operatorname{de } 4\,; \\ 0 & \text{sinon.} \end{cases} \end{split}$$

À la fin des années 1960, Kodaira et Atiyah construisirent des exemples de variétés de dimension 4 fibrant sur des surfaces mais dont la signature n'est pas nulle, montrant du même coup que l'on ne pouvait pas se passer de l'hypothèse de trivialité de la représentation $\pi_1(B) \to \mathrm{GL}(H_*(F;\mathbb{R}))$ dans le théorème de Chern, Hirzebruch et Serre ([42, 4]).

Cela a conduit Meyer, en 1972, à déterminer la signature d'une variété de dimension 4m obtenue comme l'espace total d'une fibration (cf. [54]).

L'idée essentielle est de reprendre les arguments de [18] : dans cet article, l'hypothèse concernant la trivialité de la représentation de monodromie sert uniquement à comprendre la deuxième page de la suite spectrale

$$E_2^{p,q} = H^p(B; H^q(F; \mathbb{R}))$$

et à en calculer la signature (qui, comme on l'a vu, coïncide alors avec celle du fibré trivial).

Dans le contexte général, la représentation de monodromie permet de voir $H^*(F;\mathbb{R})$ comme un système local de coefficients défini sur la base B, et le groupe de cohomologie intervenant dans l'écriture de la deuxième page est à entendre en ce sens.

L'essentiel des arguments de la preuve du théorème de Chern, Hirzebruch et Serre s'applique alors directement, si ce n'est que cela démontre maintenant que la signature de E est la même que la signature de la page E_2^{**} , provenant de la structure multiplicative

$$\begin{split} E_2^{p,q} \times E_2^{s,t} &= H^p(B; H^q(F; \mathbb{R})) \times H^s(B; H^t(F; \mathbb{R})) \\ &\rightarrow H^{p+s}(B; H^q(F; \mathbb{R}) \otimes H^t(F; \mathbb{R})) \\ &\rightarrow H^{p+s}(B; H^{q+t}(F; \mathbb{R})) = E_2^{p+s,q+t}. \end{split}$$

En particulier, dans le cas d'une variété de dimension 4 fibrant sur une surface de genre au moins 1, disons

$$W \to F_h$$
,

(de fibre F_g), où F_k désigne une surface de genre k, la représentation de monodromie préserve automatiquement la forme d'intersection sur $H_1(F_g)$, qui est symplectique. On a donc en particulier une représentation

$$\rho: \pi_1(F_h) \to \operatorname{Sp}_{2g}(\mathbb{Z}).$$

Le résultat de Meyer se traduit alors dans ce cas par l'existence d'un 2-cocycle Meyer complètement explicite défini sur le groupe symplectique $\operatorname{Sp}_{2g}(\mathbb{R})$ et tel que la signature de W s'obtienne simplement par l'évaluation de Meyer contre la représentation ρ :

$$sign(W) = \langle Meyer, \rho_*([F_h]) \rangle.$$

Dans la formule précédente, $[F_h] \in H_2(\pi_1(F_h))$ désigne l'image de la classe fondamentale de F_h par l'isomorphisme naturel entre l'homologie de F_h et celle de son groupe fondamental.

1.3.2 Forme d'intersection, forme d'enlacement

Au cours de leur étude chirurgicale des sphères d'homologie, Barge, Lannes, Latour et Vogel ([11, 45]) démontrent un joli résultat reliant la forme d'intersection d'une variété à bord de dimension 4m et la forme d'enlacement sur son bord (cf. également [35, 36]). Pour pouvoir énoncer correctement ce résultat, commençons par donner quelques définitions.

Si X est une variété fermée orientée de dimension n, la dualité de Poincaré fournit un isomorphisme $H_p(X) \to H^{n-p}(X)$. Comme tout groupe abélien de type fini, les groupes d'homologie et de cohomologie de X se décomposent en une partie de torsion et un quotient libre. Évidemment, tout isomorphisme doit respecter cette filtration et la dualité de Poincaré fournit deux isomorphismes

$$TH_p(X) \simeq TH^{n-p}(X),$$

 $LH_p(X) \simeq LH^{n-p}(X),$

où les préfixes T et L désignent respectivement la partie de torsion et le quotient libre.

Le théorème des coefficients universels permet alors de transformer ces isomorphismes en structures quadratiques. En effet, on peut voir facilement que la suite exacte

$$0 \to \operatorname{Ext}(H_{n-p-1}(X); \mathbb{Z}) \to H^{n-p}(X) \to \operatorname{Hom}(H_{n-p}(X); \mathbb{Z}) \to 0$$

fournit en fait deux isomorphismes

$$TH^{n-p}(X) \simeq \operatorname{Ext}(H_{n-p-1}(X); \mathbb{Z}) \simeq (TH_{n-p-1}(X))^{\vee},$$

 $LH^{n-p}(X) \simeq LH_{n-p}(X)^{*},$

où, si T est un groupe abélien fini, T^{\vee} désigne son dual de Pontrâgin, c'est-à-dire le groupe $\operatorname{Hom}(T;\mathbb{Q}/\mathbb{Z})$, et M^* désigne le module dual $\operatorname{Hom}(M;\mathbb{Z})$. On voit alors apparaître deux formes bilinéaires non dégénérées, suivant la parité de dim X:

$$\dim X = 2k : LH_k(X) \to LH^k(X) \to LH_k(X)^*$$

$$\dim X = 2k+1 : TH_k(X) \to TH^{k+1}(X) \to TH_k(X)^{\vee}.$$

Dans les deux cas, le premier isomorphisme est donné par la dualité de Poincaré et le second par le théorème des coefficients universels.

Dans le cas de la dimension paire n=2k, on obtient ainsi une forme d'intersection non dégénérée

$$I_X: LH_k(X) \times LH_k(X) \to \mathbb{Z}.$$

Dans le cas où n est un multiple de 4, cette forme d'intersection est un raffinement de la forme évoquée à la section précédente, définie sur $H_k(X;\mathbb{R})$.

La contrepartie en dimension impaire n=2k+1 est la notion de forme d'enlacement

$$\operatorname{Enl}: TH_k(M) \times TH_k(M) \to \mathbb{Q}/\mathbb{Z}$$

définie par Herbert Seifert et dont on peut donner une définition géométrique comme suit. Si x et y sont des chaînes disjointes représentant des classes d'homologie [x] et $[y] \in TH_k(M)$, le fait que ces chaînes soient de torsion entraîne que l'on peut trouver une (k+1)-chaîne C en bonne position par rapport à y et un entier q tels que $\partial C = qx$. On vérifie alors que

$$\frac{1}{a}(C \cdot y) \in \mathbb{Q}$$

ne dépend que de x et y. En outre, si on remplace x et y par des chaînes homologues, le nombre rationnel ainsi défini ne peut être augmenté ou diminué que d'un entier. En particulier, le résidu modulo 1

$$\operatorname{Enl}([x],[y]) = \left[\frac{1}{q}(C \cdot y)\right]_1 \in \mathbb{Q}/\mathbb{Z}$$

est bien défini, et l'on peut vérifier qu'il définit une forme bilinéaire $(-1)^{k+1}$ -symétrique non dégénérée sur le groupe fini $TH_k(M)$.

Si X n'est plus supposée fermée, on peut continuer à définir des formes d'intersection et d'enlacement, soit par l'interprétation en terme d'intersections de chaînes, soit en utilisant le morphisme $j_*: H_*(X) \to H_*(X, \partial X)$ et la dualité de Poincaré-Lefschetz:

$$\dim X = 2k : LH_k(X) \to LH_k(X, \partial X) \to LH^k(X) \to LH_k(X)^*$$

$$\dim X = 2k+1 : TH_k(X) \to TH_k(X, \partial X) \to TH^{k+1}(X) \to TH_k(X)^\vee,$$

mais il n'y a plus de raison en général pour que les formes restent non dégénérées. On voit notamment que les classes d'homologie provenant du bord vont donner des éléments dans le noyau de ces formes.

Le résultat de Lannes et Latour dont nous aurons besoin traite du lien entre la forme d'intersection (a priori dégénérée) d'une variété compacte et orientée W de dimension 4m et la forme d'enlacement de son bord M.

Le lien entre ces deux invariants est exprimé dans le formalisme des groupes de Witt. Les groupes de Witt sont une construction très générale visant à capturer les propriétés stables des objets de l'algèbre bilinéaire. Le cas le plus classique, introduit par Witt lui-même dans [78] (cf. également [59, 43]), est celui des formes quadratiques sur un corps de caractéristique différente de 2. Toute forme quadratique (E,q) sur un K-espace vectoriel définit alors une classe [(E,q)] dans le groupe de Witt $\mathbf{W}(K)$, de telle sorte que si $I \subset E$ est un sous-espace vectoriel isotrope, la forme q et la forme q_I obtenue par réduction sous-lagrangienne sur I (cf. section précédente) définissent la même classe dans $\mathbf{W}(K)$. Groupe des formes

quadratiques « modulo réduction sous-lagrangienne », le groupe de Witt est une généralisation d'une grande souplesse de la notion de signature d'une forme quadratique (et, de fait, la signature usuelle des formes quadratiques réelles fournit un isomorphisme $\mathbf{W}(\mathbb{R}) \simeq \mathbb{Z}$).

Parallèlement au groupe de Witt des formes quadratiques rationnelles (dans lequel vit la classe $[I_W]$ de la forme d'intersection de W), Lannes et Latour considèrent également le groupe de Witt $\mathbf{WT}(\mathbb{Z})$ des formes d'enlacement : les éléments de ce groupe sont, à l'instar de la forme d'enlacement de M, des formes bilinéaires symétriques définies sur des groupes abéliens finis et à valeurs dans \mathbb{Q}/\mathbb{Z} , modulo une notion de réduction sous-lagrangienne adaptée.

En calquant les relations entre l'homologie de M et de W données par la suite exacte longue en homologie de la paire (W, M), les auteurs définissent alors un morphisme

$$\partial: \mathbf{W}(\mathbb{Q}) \to \mathbf{WT}(\mathbb{Z})$$

et démontrent que les classes de Witt des formes d'intersection et d'enlacement sont liées par la formule suivante, dans $\mathbf{WT}(\mathbb{Z})$:

$$\partial [I_W] + [\operatorname{Enl}_M] = 0.$$

Dans le cas particulier où M est une sphère d'homologie rationnelle, le résultat est dû à Barge, Lannes, Latour et Vogel ([11]).

Les groupes de Witt en présence sont riches : d'après le théorème de Hasse-Minkowski, la classification des formes quadratiques rationnelles se ramène à la classification des formes réelles d'une part et à celle des formes quadratiques p-adiques, pour tout nombre premier p (elle-même pouvant se ramener à l'étude des formes modulo p), d'autre part. Cela se traduit sur le groupe de Witt par un isomorphisme

$$\mathbf{W}(\mathbb{Q}) \simeq \mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z})^{\infty} \oplus (\mathbb{Z}/4\mathbb{Z})^{\infty},$$

la partie libre provenant simplement de la signature usuelle des formes quadratiques. Il est alors prouvé dans [11] que le morphisme $\partial : \mathbf{W}(\mathbb{Q}) \to \mathbf{WT}(\mathbb{Z})$ est surjectif, et que son noyau est précisément le facteur \mathbb{Z} .

1.4 Présentation de la thèse

Le but de la présente thèse est de généraliser le théorème de Gambaudo et Ghys énoncé à la fin de la section 1.2.3 en le plaçant dans le contexte des invariants (co)homologiques des revêtements infinis cycliques.

On a vu à la section 1.1.1 que l'homologie de l'extérieur d'un entrelacs est naturellement un Z-module libre engendré par les méridiens. En particulier, si l'entrelacs est orienté, il existe une unique application linéaire

$$H_1(E(L)) \to \mathbb{Z}$$

envoyant la classe d'homologie de tout méridien orienté sur 1. Autrement dit, si l'on note \mathbb{J} le groupe infini cyclique $\langle t \rangle$, il existe un unique morphisme

$$\varphi: \pi_1(E(L)) \to \mathbb{J}$$

envoyant la classe d'homotopie de tout méridien orienté sur t. Cela définit un revêtement infini cyclique canonique $\widetilde{E}(L)$ de l'extérieur E(L).

Convenablement généralisées, les structures bilinéaires portées par l'homologie des variétés compactes issues de la dualité de Poincaré s'étendent à ce cadre. L'action du groupe d'automorphismes $\mathbb{J}=\langle t \rangle$ du revêtement munit l'homologie $H_*(\widetilde{E}(L))$ d'une structure de Λ -module, où

$$\Lambda = \mathbb{Z}[\mathbb{J}] = \mathbb{Z}[t, t^{-1}],$$

est un anneau de polynômes de Laurent. On note $H_*(E(L); \Lambda)$ ce module. Pour plus de simplicité, on travaillera d'ailleurs plutôt avec la version rationnelle

$$\Lambda_{\mathbb{O}} = \mathbb{Q}[\mathbb{J}] = \mathbb{Q}[t, t^{-1}],$$

qui est un anneau principal.

Remarquons que ces anneaux, comme tous les anneaux de groupes, sont munis d'une involution linéaire étendant l'involution du groupe envoyant tout élément sur son inverse, que l'on appelle *conjugaison*. Ici, on a simplement $\overline{f}(t) = f(t^{-1})$.

L'équivalent dans ce contexte de la forme d'enlacement définie sur la partie de torsion du premier groupe d'homologie d'une variété de dimension 3 est la forme de Blanchfield. Il s'agit d'une forme hermitienne (par rapport à la conjugaison que l'on vient d'évoquer) définie sur la partie de torsion du premier groupe d'homologie $H_1(E(L); \Lambda_{\mathbb{Q}})$ à valeurs dans le quotient $S(\Lambda_{\mathbb{Q}}) = \mathbb{Q}(t)/\Lambda_{\mathbb{Q}}$.

Cette forme de Blanchfield définit une classe dans un groupe de Witt $\mathbf{WT}(\Lambda_{\mathbb{Q}})$ de formes hermitiennes définies sur des $\Lambda_{\mathbb{Q}}$ -modules de torsion et à valeurs dans $S(\Lambda_{\mathbb{Q}})$. Cette classe de Witt est un invariant de concordance de l'entrelacs L, et détermine en particulier presque toutes les ω -signatures de L, quand ω décrit les nombres complexes de module 1.

Plus précisément, le groupe de Witt $\mathbf{WT}(\Lambda_{\mathbb{Q}})$, qui est un des avatars du groupe de concordance algébrique (rationnel) est isomorphe à une somme directe

$$\mathbb{Z}^{\infty} \oplus (\mathbb{Z}/2)^{\infty} \oplus (\mathbb{Z}/4)^{\infty}$$
,

et la partie libre du groupe encode la fonction signature de Tristram-Levine, c'est-à-dire la classe de la fonction $\omega \mapsto \operatorname{sign}_{\omega}(L)$ modulo égalité en dehors d'un ensemble fini.

La première partie de cette thèse a pour but d'adapter à ce contexte les résultats de Lannes et Latour présentés à la section 1.3.2. Au chapitre 2, on introduit les différents types de groupes de Witt hermitiens qui

recueilleront les invariants de nos revêtements abéliens, au premier rang desquels la classe de Witt des formes de Blanchfield.

On explique notamment comment se calcule le groupe $\mathbf{WT}(\Lambda_{\mathbb{Q}})$, ainsi que la construction du morphisme

$$\partial: \mathbf{W}(\mathbb{Q}(t)) \to \mathbf{WT}(\Lambda_{\mathbb{Q}}),$$

amené à jouer le même rôle que le morphisme $\partial : \mathbf{W}(\mathbb{Q}) \to \mathbf{WT}(\mathbb{Z})$ dans le résultat de [45].

Le chapitre 3 explique comment une variété munie d'un revêtement infini cyclique privilégié (ce qu'on abrègera en \mathbb{J} -variété) porte des invariants bilinéaires analogues aux formes d'intersection et d'enlacement classiques en vertu d'une généralisation de la dualité de Poincaré. On y définira en particulier la forme de Blanchfield d'un entrelacs. Au passage, on en profite pour donner une présentation plus topologique de la représentation de Burau et de la forme (anti)hermitienne (de Squier) qu'elle préserve, à partir de la structure de \mathbb{J} -variété canonique de la surface D_n donnée par le morphisme

$$\varphi_{D_n}: \pi_1(D_n) = \mathbb{L}(\gamma_1, \dots, \gamma_n) \to \mathbb{J}$$

 $\gamma_i \mapsto t.$

Le chapitre 4 énonce et démontre alors l'équivalent du théorème de Lannes et Latour dans ce cadre : si W est une \mathbb{J} -variété à bord, la classe de Witt $\alpha_W \in \mathbf{W}(\mathbb{Q}(t))$ de sa forme d'intersection et la classe de Witt $\beta_M \in \mathbf{WT}(\Lambda_{\mathbb{Q}})$ de la forme d'enlacement de son bord $M = \partial W$ sont reliées par la formule (dans $\mathbf{WT}(\Lambda_{\mathbb{Q}})$).

$$\partial \alpha_W + \beta_M = 0.$$

L'objet des chapitres suivants est d'appliquer ces résultats généraux pour démontrer un analogue du théorème de Gambaudo et Ghys portant non plus sur les ω -signatures mais sur la classe de Witt de la forme de Blanchfield $\beta_x \in \mathbf{WT}(\Lambda_{\mathbb{Q}})$ associée à l'entrelacs \widehat{x} .

Théorème. Soit x et y des éléments de B(n). On a alors l'égalité suivante dans $\mathbf{WT}(\Lambda_{\mathbb{Q}})$:

$$\beta_{xy} - \beta_x - \beta_y = -\partial \text{Meyer}(\text{Burau}(x), \text{Burau}(y)).$$

Précisons un peu le sens de cette affirmation : on a vu à la section 1.1.3 que la représentation de Burau (réduite)

Burau :
$$B(n) \to \operatorname{GL}_{n-1}(\Lambda)$$
.

préservait une forme antihermitienne sur un Λ -module libre. Il est alors possible d'étendre la définition du cocycle de Meyer dans ce cadre et de définir un 2-cocycle (à valeurs dans $\mathbf{W}(\mathbb{Q}(t))$) sur le sous-groupe de

 $\mathrm{GL}_{n-1}(\Lambda)$ préservant la forme antihermitienne. C'est ce cocycle Meyer qui intervient dans l'énoncé.

Pour démontrer ce théorème, on utilise une construction de suspension : si x et y sont deux tresses (vues comme difféomorphismes de D_n à isotopie près), on peut former une fibration

$$W(x,y) \to P$$

sur le pantalon, de fibre D_n , dont la représentation de monodromie est exactement l'unique morphisme

$$\pi_1(P) = \mathbb{L}(a,b) \to \pi_0 \mathcal{D}_n = B(n)$$

envoyant a sur x et b sur y.

L'action de B(n) induite sur $\pi_1(D_n)$ (autrement dit, la représentation d'Artin) préservant la \mathbb{J} -structure φ_{D_n} , cette variété fibrée de dimension 4 est elle aussi munie d'une \mathbb{J} -structure. Fibrant en surfaces sur une surface, la variété W(x,y) est une variété de dimension 4 à bord et à coins. La partie la plus significative de son bord en est la partie verticale, c'est-à-dire la restriction du fibré au-dessus du bord du pantalon. On voit que cette partie

$$\partial_{\mid}W(x,y) = M(xy) - M(x) - M(y)$$

est la réunion disjointe des suspensions des tresses $x,\ y$ et (avec une orientation différente) xy.

Le but du chapitre 5 est alors d'analyser précisément la décomposition de $\partial W(x,y)$ donnée par les coins de W(x,y) pour en déduire, à l'aide de l'analogue du théorème de Lannes et Latour que l'on vient d'évoquer, l'égalité

$$\beta_{xy} - \beta_x - \beta_y = -\partial \alpha_{W(x,y)},$$

où $\alpha_{W(x,y)}=[I_{W(x,y)}]\in \mathbf{W}(\mathbb{Q}(t))$ est la classe de Witt de la forme d'intersection de la \mathbb{J} -variété W(x,y).

On s'est donc ramené au calcul de la classe de Witt de la forme d'intersection d'un fibré. Même dans ce contexte, la plupart des arguments de Chern-Hirzebruch-Serre et Meyer restent valables. Comme dans le cas classique, la signature du fibré ne dépend que de l'action du groupe fondamental de la base sur l'homologie de dimension moitié de la fibre et est donnée par un cocycle de nature symplectique. La fibre de W(x,y) étant précisément D_n , l'action du groupe fondamental de P sur l'homologie (à coefficients dans $\mathbb{Q}(t)$) de la fibre est donnée par les images de x et y par la représentation de Burau.

Les dimensions des variétés mises en jeu restant très petites, les isomorphismes donnés par la suite spectrale de Leray-Serre sont aisément décrits avec précision, ce qui permet en outre de donner de façon élémentaire une description explicite de la généralisation hermitienne

du cocycle de Meyer. On montre donc au chapitre 6 que la classe de Witt de $[I_{W(x,y)}]$ est Meyer(Burau(x), Burau(y)), où Meyer désigne cette généralisation. Cela conclut la preuve du théorème.

Remarque. Il peut être intéressant de rapprocher ce travail de l'article A link invariant with values in the Witt ring de Gaël Collinet et Pierre Guillot ([21]), qui adopte une approche en quelque sorte duale. Les auteurs partent ainsi d'une forme de la représentation de Burau sur un corps K

$$\rho: B(n) \to \mathrm{GL}_n(K),$$

et d'une généralisation adaptée du cocycle de Meyer pour définir une application $f: B(n) \to \mathbf{W}(K)$ par la formule (dans $\mathbf{W}(K)$)

$$f(xy) - f(x) - f(y) = \text{Meyer}(\rho(x), \rho(y)).$$

Ils arrivent ensuite à démontrer directement que cette application est invariante sous les opérations de Markov (cf. 1.1.1) et qu'elle définit donc un invariant d'entrelacs

$$\widehat{x} \mapsto \Theta(\widehat{x}) = f(x) \in \mathbf{W}(K).$$

La définition est suffisamment explicite pour permettre des calculs sur ordinateur.

Les auteurs retrouvent ainsi les différentes notions de signature d'un entrelacs et, dans le cas de la représentation de Burau à valeurs dans $\mathbb{Q}(t)$, un invariant à valeurs dans $\mathbf{W}(\mathbb{Q}(t))$ qui est a posteriori équivalent à la classe de Witt $[\beta_L]$ de la forme de Blanchfield.

Chapitre 2

Algèbre hermitienne

2.1 Groupes de Witt hermitiens

On appelle involution sur un anneau A tout morphisme de groupes additifs $\bar{\cdot}:A\to A$ tel que

$$\forall x \in A, \overline{\overline{x}} = x \text{ et } \forall x, y \in A, \overline{xy} = \overline{y} \overline{x}.$$

Si R est un anneau à involution et que π est un groupe, l'involution s'étend à la R-algèbre

$$R[\pi] = \left\{ \sum_{g \in \pi} a_g g \,\middle|\, (a_g)_{g \in \pi} \text{ famille presque nulle d'éléments de } R \right\}$$

du groupe par la formule

$$\overline{\sum_{g \in \pi} a_g g} = \sum_{g \in \pi} \overline{a_g} g^{-1}.$$

Le cas le plus important pour nous est celui du groupe infini cyclique (noté multiplicativement) $\mathbb{J} = \langle t \rangle$. On considèrera notamment la \mathbb{Z} -algèbre $\Lambda = \mathbb{Z}[\mathbb{J}] = \mathbb{Z}[t,t^{-1}]$ et, si F est un corps à involution (qui sera la plupart du temps le corps \mathbb{Q} des rationnels muni de l'involution identique et occasionnellement le corps \mathbb{C} des nombres complexes muni de la conjugaison complexe), la F-algèbre

$$\Lambda_F = F[\mathbb{J}] = F[t, t^{-1}].$$

Dans tous les cas, l'involution sur ces anneaux de polynômes de Laurent échange t et t^{-1} .

Dans toute la suite de cette section, on fixe un anneau (commutatif) **principal** A muni d'une involution $a \mapsto \overline{a}$ (ce qui inclut le cas des anneaux Λ_F mais exclut celui de Λ).

On note alors $K = \operatorname{Frac} A$ le corps des fractions de A, sur lequel l'involution $a \mapsto \overline{a}$ s'étend naturellement et S(A) le module quotient $\operatorname{Frac} A/A$.

On fixe également un élément inversible $\varepsilon \in A$ tel que $\overline{\varepsilon}\varepsilon = 1$.

Les constructions qui vont suivre sont des généralisations à ce cadre à involution des constructions présentes dans l'appendice de l'article [11] et des versions allégées de constructions classiques en L-théorie et en théorie algébrique de la chirurgie, cf. par exemple [65, 66].

En particulier, l'hypothèse de principalité de A nous permettra de travailler avec des A-modules libres, là où une théorie plus générale utilise des modules projectifs (cf. [11, Définition A.1.1] et la section 1 de [65]).

Si M et N sont des modules sur A, le groupe abélien $\operatorname{Hom}_A(M,N)$ des applications A-linéaires entre M et N est naturellement muni d'une structure de module sur A définie par $af=(m\mapsto af(m))$. On note alors $\overline{\operatorname{Hom}}_A(M,N)$ le groupe abélien $\operatorname{Hom}_A(M,N)$ muni de la structure de module sur A définie par $a\diamond f=(m\mapsto \overline{a}f(m))$ (noter l'involution). En particulier, on pose

$$M^* = \overline{\operatorname{Hom}}_A(M, A)$$
 et $M^{\vee} = \overline{\operatorname{Hom}}_A(M, S(A))$.

2.1.1 Applications sesquilinéaires

Définition (Applications sesquilinéaires). Soit M, M' et N trois modules sur A. Une application $\alpha: M \times M' \to N$ est dite sesquilinéaire (sur A) si elle est bilinéaire sur \mathbb{Z} et vérifie

$$\forall a, b \in A, \forall (m, m') \in M \times M', \alpha(ax, by) = \overline{a}b \alpha(x, y).$$

Une application sesquilinéaire $\alpha: M \times M' \to N$ définit alors une application linéaire (sur A) dite application linéaire adjointe

$$\underline{\alpha}:\begin{array}{ccc} M & \to & \overline{\operatorname{Hom}}_A(M',N) \\ x & \mapsto & (y \mapsto \alpha(x,y)) \end{array}$$

et la correspondance $\alpha \leftrightarrow \underline{\alpha}$ identifie l'ensemble des applications sesquilinéaires $M \times M' \to N$ à $\operatorname{Hom}_A(M, \overline{\operatorname{Hom}}_A(M', N))$. L'identification est naturellement un isomorphisme de A-modules.

Définition (Formes sesquilinéaires à valeurs dans N). Une forme sesquilinéaire à valeurs dans N est un couple (M, α) , où M est un module sur A et $\alpha: M \times M \to N$ est une application sesquilinéaire.

Définition (Morphismes). Soit (M,α) et (M',α') deux formes sesquilinéaires à valeurs dans N. Un morphisme $f:(M,\alpha)\to (M',\alpha')$ est une application A-linéaire $f:M\to M'$ telle que $\forall x,y\in M,\alpha'(f(x),f(y))=\alpha(x,y)$.

À partir de maintenant, on fixe un module N sur A muni d'une involution $n \mapsto \overline{n}$ compatible avec celle définie sur A, c'est à dire que

$$\forall a \in A, \forall n \in N, \overline{an} = \overline{a} \, \overline{n}.$$

Dans la pratique, N sera égal à A, K ou S(A) = K/A.

Définition (Formes sesquilinéaires ε -hermitiennes à valeurs dans N). Une forme sesquilinéaire (M,α) à valeurs dans N est dite ε -hermitienne si

$$\forall m_1, m_2 \in M, \alpha(m_1, m_2) = \varepsilon \overline{\alpha(m_2, m_1)}.$$

Une telle forme est dite non singulière si l'application adjointe $\underline{\alpha} \in \operatorname{Hom}_A(M, \overline{\operatorname{Hom}}_A(M, N))$ est injective et non dégénérée si $\underline{\alpha}$ est un isomorphisme.

Définition (Somme directe). Soit (M, α) , (M', α') deux formes sesquilinéaires à valeurs dans N. Leur somme directe (ou somme directe orthogonale) $(M, \alpha) \oplus (M', \alpha')$ est définie sur le module $M \oplus M'$ par la formule $((m_1, m'_1), (m_2, m'_2)) \mapsto \alpha(m_1, m_2) + \alpha'(m'_1, m'_2)$.

La somme directe de deux formes sesquilinéaires ε -hermitiennes à valeurs dans N reste évidemment ε -hermitienne.

Dans le cas où l'involution est triviale, on pourra employer « ε -symétrique » à la place de « ε -hermitienne. »

2.1.2 Formes sesquilinéaires, formes de torsion

Définition (Formes sesquilinéaires). Une forme sesquilinéaire est une forme (M, α) sesquilinéaire à valeurs dans A, où M est un A-module libre de type fini.

Définition (Formes de torsion). Une forme de torsion sur A est une forme (T, λ) sesquilinéaire à valeurs dans S(A), où T est un A-module de torsion et de type fini.

Les notions de morphismes de formes sesquilinéaires ou de torsion, de formes (sesquilinéaires ou de torsion) ε -hermitiennes, de non-singularité, de non-dégénérescence et de somme directe sont des spécialisations aux cas $N=A,\,N=S(A)$ des définitions de la section précédente.

^{1.} La terminologie n'est pas complètement fixée : on suit ici les définitions de [11] mais [41] appelle non singular ou regular les formes que nous appelons non dégénérées et nondegenerate celles que nous appelons non singulières.

Proposition. Une forme de torsion ε -hermitienne (T, λ) est non singulière si et seulement si elle est non dégénérée.

 $D\acute{e}monstration$. Tout d'abord, remarquons que si T est un A-module de torsion et de type fini, T et son dual sont (non canoniquement) isomorphes. C'est en effet déjà le cas pour un module cyclique C = A/a, où C^{\vee} s'identifie à

$$S(A)_{[a]} = \left\{ \theta \in S(A) \mid a\theta = 0 \right\} = \left\{ \left[\frac{b}{a} \right]_1 \mid b \in A \right\}.$$

Puisque T est une somme directe finie de tels modules, on a également $T^{\vee} \simeq T$.

Or, T est un A-module artinien. Tout morphisme injectif entre deux modules isomorphes à T est donc automatiquement un isomorphisme. Ce résultat, appliqué à $\lambda: T \to T^{\vee}$, prouve la proposition.

La restriction aux modules de type fini est justifiée par la proposition suivante.

Proposition.

- Soit M un A-module libre de type fini. On a alors un isomorphisme

$$\begin{array}{cccc} M & \rightarrow & M^{**} \\ m & \mapsto & \left(\operatorname{\acute{e}v}_m : \begin{array}{ccc} M^* & \rightarrow & A \\ f & \mapsto & \overline{f(m)}. \end{array} \right) \end{array}$$

- Soit T un A-module de torsion et de type fini. On a alors un isomorphisme

Démonstration. On vérifie sans difficulté que les conventions choisies pour les involutions rendent les deux applications bien définies et A-linéaires. La bijectivité de la première est alors une propriété classique d'algèbre linéaire (la $r\acute{e}fl\acute{e}xivit\acute{e}$) qui reste d'ailleurs valable pour un module projectif de type fini sur un anneau commutatif quelconque (cf. [14, chapitre II, § 2.7, corollaire 4 à la proposition 13]).

Pour la seconde, commençons par démontrer que le morphisme $T \to T^{\vee\vee}$ est injectif : soit $t \in T$ un élément non nul; il s'agit de montrer que év $_t: T^{\vee} \to S(A)$ n'est pas nul.

Le sous-module $C \subset T$ engendré par t est un module cyclique non trivial de la forme A/a, ce qui permet de construire une application A-linéaire non triviale $f_0: C \to S(A)$ envoyant t sur $\left[\frac{1}{a}\right]_1 \in S(A)$.

Comme A est principal, le critère de Baer entraı̂ne que S(A) est un module injectif (cf. [77, Corollary 2.3.2]) et l'application f_0 se prolonge donc en une application $f: T \to S(A)$ pour laquelle on a bien $\text{\'ev}_t(f) \neq 0$, ce qui démontre l'injectivité de $t \mapsto \text{\'ev}_t$.

On peut alors appliquer le même raisonnement qu'à la proposition précédente : T et $T^{\vee\vee}$ sont deux modules artiniens isomorphes, donc l'injectivité d'une application linéaire $T\to T^{\vee\vee}$ entraı̂ne automatiquement sa bijectivité.

Si M est un module libre de type fini sur A, la correspondance $\alpha \leftrightarrow \underline{\alpha}$ identifie les formes sesquilinéaires de module sous-jacent M et $\operatorname{Hom}_A(M,M^*)$. En utilisant l'identification $M \simeq M^{**}$ donnée par la proposition précédente, les applications linéaires $\underline{\alpha}$ et $\underline{\alpha}^*$ peuvent être toutes les deux vues comme des éléments de $\operatorname{Hom}_A(M,M^*)$ et α est ε -hermitienne si et seulement si $(\underline{\alpha})^* = \varepsilon \underline{\alpha}$. De même, si T est un module de torsion et de type fini sur A, la correspondance $\lambda \leftrightarrow \underline{\lambda}$ identifie les formes de torsion de module sous-jacent T et $\operatorname{Hom}(T,T^{\vee})$.

Remarque. La proposition précédente est un point-clef pour démontrer que la catégorie des A-modules libres (resp. de torsion) de type fini, munie de l'opération * (resp. \lor) est une *catégorie hermitienne* au sens de [68, § 7.2]. L'essentiel des constructions que nous allons présenter s'étend à ce cadre général.

Étant donné un A-module M et un élément $p \in A$, on définira

- $-\text{ sa partie de }p\text{-torsion }M_{[p]}=\left\{m\in M\,|\,p\cdot m=0\right\};$
- sa composante p-primaire $M_p = \{ m \in M \mid \exists n \ge 0 : p^n \cdot m = 0 \}.$

En particulier, comme A est principal, tout module T de torsion et de type fini se décompose en la somme directe de ses composantes p-primaires

$$T = \bigoplus_{p} T_{p},$$

où p décrit un système de représentants des éléments irréductibles de A à multiplication près par un élément inversible.

2.1.3 Groupes de Witt

Toute forme (resp. forme de torsion) ε -hermitienne (M, α) définit une notion d'orthogonalité : deux éléments m_1 et m_2 sont orthogonaux (ce que l'on note $m_1 \perp m_2$) si $\alpha(m_1, m_2) = 0$. Puisque (M, α) est ε -hermitienne, \perp est une relation symétrique. Si $N \subset M$ est un sous-module, son orthogonal est $N^{\perp} = \{m \in M \mid \forall n \in N, \alpha(m, n) = 0\}$.

Définitions.

- Soit (M,α) une forme ε -hermitienne ou une forme de torsion ε -hermitienne. Un lagrangien de (M,α) est un sous-module $L\subset M$ tel que $L=L^{\perp}$.
- Une telle forme est dite neutre (ou $m\acute{e}tabolique$) si elle admet un lagrangien.

Exemples.

- Soit L un module libre de type fini sur A. La formule $\alpha((x, f), (y, g)) = f(y) + \varepsilon \overline{g(x)}$ définit une forme ε -hermitienne sur le module $L \oplus L^*$. On l'appelle forme hyperbolique sur L et on la note $H_{\varepsilon}(L)$. Les facteurs L et L^* sont des lagrangiens de $H_{\varepsilon}(L)$.
- Soit L un module de type $\underline{\text{fini}}$ et de torsion sur A. La formule $\lambda((x,f),(y,g)) = f(y) + \varepsilon \overline{g(x)}$ définit une forme de torsion ε -hermitienne sur le module $L \oplus L^{\vee}$. On l'appelle forme hyperbolique de torsion sur L et on la note $HT_{\varepsilon}(L)$. Les facteurs L et L^{\vee} sont des lagrangiens de $HT_{\varepsilon}(L)$.
- On peut munir le groupe abélien $\mathbb{Z}/4$ (vu comme \mathbb{Z} -module de torsion et de type fini) d'une forme de torsion par la formule

$$([n]_4, [m]_4) \mapsto \left[\frac{nm}{4}\right]_1 \in \mathbb{Q}/\mathbb{Z}.$$

La forme symétrique de torsion ainsi définie est neutre (le sous-groupe $\{[0]_4, [2]_4\}$ est un lagrangien), mais elle n'est pas isomorphe à $HT(\mathbb{Z}/2)$: notamment, il n'existe qu'un seul lagrangien, et celui-ci n'est pas un facteur direct.

Remarque. Le phénomène illustré par le dernier exemple ne peut pas se produire dans le cas des modules libres : tout lagrangien d'une forme ε -hermitienne est automatiquement un facteur direct. En effet, si L est un lagrangien d'une forme ε -hermitienne $(M,\alpha),\ L=L^\perp$ est le noyau de l'application

$$\begin{array}{c} M \to L^* \\ m \mapsto \underline{\alpha}(m)_{|L}. \end{array}$$

Comme A est principal, le sous-module $L\subset M$ est un module libre de type fini, et il en va de même de son dual L^* . Noyau d'une application linéaire entre deux modules libres de type fini, le sous-module $L\subset M$ en est donc un facteur direct.

Définitions (Groupes de Witt).

- Soit $MW_{\varepsilon}(A)$ l'ensemble des classes d'isomorphisme de formes ε -hermitiennes non dégénérées sur A. Muni de l'opération de somme directe, c'est un monoïde.
- Soit $MWT_{\varepsilon}(A)$ l'ensemble des classes d'isomorphisme de formes de torsion ε -hermitiennes non dégénérées sur A. $(MWT_{\varepsilon}(A), \oplus)$ est un monoïde.
- Soit $NW_{\varepsilon}(A)$ (resp. $NWT_{\varepsilon}(A)$) l'ensemble des classes d'isomorphismes de formes (resp. formes de torsion) ε -hermitiennes non dégénérées neutres. C'est un sous-monoïde de $MW_{\varepsilon}(A)$ (resp. $MWT_{\varepsilon}(A)$.)
- Soit enfin $\mathbf{W}_{\varepsilon}(A)$ et $\mathbf{WT}_{\varepsilon}(A)$ les quotients correspondants :

$$\mathbf{W}_{\varepsilon}(A) = \frac{MW_{\varepsilon}(A)}{NW_{\varepsilon}(A)} \qquad \mathbf{WT}_{\varepsilon}(A) = \frac{MWT_{\varepsilon}(A)}{NWT_{\varepsilon}(A)}.$$

On rappelle que le quotient d'un monoïde (M, \oplus) par un sous-monoïde N est le quotient de M par la relation d'équivalence \sim définie par

$$m_1 \sim m_2 \Leftrightarrow \exists n_1, n_2 \in N : m_1 \oplus n_1 = m_2 \oplus n_2.$$

Comme la relation \sim est compatible avec la loi de M, le quotient $M/N=M/\sim$ hérite effectivement d'une structure de monoïde.

Proposition. L'opération de somme directe induit sur $\mathbf{W}(A)$ (resp. $\mathbf{WT}(A)$) une structure de groupe abélien. Le groupe ainsi obtenu est appelé groupe de Witt des formes (resp. formes de torsion) ε -hermitiennes sur A.

Démonstration. Soit (M, α) une forme ε-hermitienne non dégénérée. La forme opposée $(M, -\alpha)$ reste évidemment ε-hermitienne et non dégénérée. Soit $\Delta = \{(x, x) \mid x \in M\} \subset M \oplus M$.

Pour $(y, z) \in M \oplus M$, on a

$$\forall x \in M, (\alpha \oplus (-\alpha))((x,x),(y,z)) = 0 \Leftrightarrow \forall x \in M, \alpha(x,y-z) = 0 \Leftrightarrow y = z.$$

Autrement dit, la diagonale Δ est un lagrangien de $(M,\alpha) \oplus (M,-\alpha)$ qui est donc neutre. Toute forme ε -hermitienne non dégénérée admet donc un inverse modulo $NW_{\varepsilon}(A)$ et $\mathbf{W}(A)$ est donc bien un groupe.

Le cas de torsion est exactement identique.

Pour simplifier, on pourra omettre l'indice ε dans le cas $\varepsilon = 1$.

Exemples.

– Si K est un corps de caractéristique différente de 2 (muni de l'involution triviale), toute forme antisymétrique non dégénérée est équivalente à la forme symplectique standard sur K^{2n} , qui n'est autre que $H_{-1}(K^n)$. Toutes les formes antisymétriques sont donc neutres, ce qui entraı̂ne $\mathbf{W}_{-}(K) = 0$.

- Sur \mathbb{R} , une forme symétrique non dégénérée se décompose en formes de dimension $1: M \simeq p[1] \oplus q[-1]$. Le théorème d'inertie de Sylvester affirme que cette décomposition est unique; elle induit donc un isomorphisme de monoïdes $MW(\mathbb{R}) \simeq \mathbb{N}^2$. On vérifie aisément qu'une telle forme est neutre si et seulement si p = q donc la signature $M \mapsto p q$ est un isomorphisme $\mathbf{W}(\mathbb{R}) \simeq \mathbb{Z}$.
- De la même façon, si on munit \mathbb{C} de la conjugaison complexe, la classe de Witt d'une forme hermitienne est entièrement déterminée par sa signature, ce qui fournit un isomorphisme $\mathbf{W}(\mathbb{C}) \simeq \mathbb{Z}$.

Sur un corps à involution, il n'y a en fait qu'un groupe de Witt non trivial.

Proposition. Soit K un corps à involution de caractéristique $\neq 2$. On a un isomorphisme

$$\mathbf{W}_{\varepsilon}(K) \simeq \begin{cases} 0 & \text{si } \varepsilon = -1 \text{ et que l'involution est triviale.} \\ \mathbf{W}(K) & \text{sinon.} \end{cases}$$

Démonstration. Le premier cas provient de la classification des formes antisymétriques. En outre, si l'involution est triviale, $\varepsilon=\pm 1$ et la proposition est alors démontrée.

Pour le deuxième cas, remarquons que si $\eta \in K^{\times}$ et que μ est une forme ε -hermitienne, la forme ηq est $\eta \varepsilon/\overline{\eta}$ -hermitienne. La multiplication par η induit ainsi un isomorphisme $\mathbf{W}_{\varepsilon}(K) \simeq \mathbf{W}_{\varepsilon\eta/\overline{\eta}}(K)$. Il reste à démontrer que si l'involution est non triviale, on peut trouver $\eta \in K^{\times}$ tel que $\overline{\eta}/\eta = \varepsilon$ (c'est d'ailleurs un cas particulier du théorème 90 de Hilbert.)

Si l'involution est non triviale, on peut trouver $\alpha \in K$ tel que $\overline{\alpha} + \varepsilon \alpha = 0$ (si on avait $\forall \alpha \in K, \overline{\alpha} = -\varepsilon \alpha$, l'évaluation en $\alpha = 1$ impliquerait $\varepsilon = -1$ et $\overline{\cdot} = \mathrm{id}_K$). Si $\eta = (\overline{\alpha} + \varepsilon \alpha)^{-1}$, on a alors :

$$\frac{\overline{\eta}}{\eta} = \frac{\overline{\alpha} + \varepsilon \alpha}{\overline{\overline{\alpha} + \varepsilon \alpha}} = \frac{\overline{\alpha} + \varepsilon \alpha}{\alpha + \overline{\varepsilon} \cdot \overline{\alpha}} = \varepsilon \cdot \frac{\overline{\alpha} + \varepsilon \alpha}{\varepsilon \alpha + \varepsilon \overline{\varepsilon} \cdot \overline{\alpha}} = \varepsilon.$$

et la multiplication par η induit l'isomorphisme $\mathbf{W}_{\varepsilon}(K) \simeq \mathbf{W}(K)$ recherché.

2.1.4 Réduction sous-lagrangienne

Définition. Soit (M, α) une forme ε -hermitienne non dégénérée. Un sous-lagrangien de (M, α) est un facteur direct $L \subset M$ tel que $L \subset L^{\perp}$.

Proposition. Soit L un sous-lagrangien d'une forme ε -hermitienne non dégénérée (M,α) . La forme α induit sur le quotient L^{\perp}/L une forme ε -hermitienne non dégénérée α_L . On dira alors que la forme α_L est obtenue par réduction sous-lagrangienne de L.

Démonstration. Puisque L est un facteur direct, M/L est un module libre de type fini. En particulier, L^{\perp}/L , qui s'identifie à un sous-module de M/L, est également un module libre de type fini.

La réduction sous-lagrangienne s'obtient tautologiquement par la formule

$$\alpha_L([l_1^{\perp}]_L, [l_2^{\perp}]_L) = \alpha(l_1^{\perp}, l_2^{\perp}),$$

et est évidemment bien définie et ε -hermitienne. Il reste à montrer qu'elle est non dégénérée, c'est-à-dire que $\underline{\alpha}_L:L^\perp/L\to \left(L^\perp/L\right)^*$ est un isomorphisme.

Pour l'injectivité, commençons par démontrer que $(L^{\perp})^{\perp} = L$, l'inclusion $L \subset (L^{\perp})^{\perp}$ étant tautologique. Soit donc $x \notin L$. Comme L est un facteur direct, on peut trouver une forme linéaire $f: M \to A$ telle que $f_{|L} = 0$ et $f(x) \neq 0$. Par non-dégénérescence de α , il existe un élément $m \in M$ tel que $f = \underline{\alpha}(m)$. Les deux conditions sur f se traduisent en $m \in L^{\perp}$ et $\alpha(m, x) \neq 0$, ce qui entraı̂ne que $x \notin (L^{\perp})^{\perp}$.

Cela entraîne bien l'injectivité de $\underline{\alpha}_L$: si $[l^{\perp}]_L \in \ker \underline{\alpha}_L$, on a $l^{\perp} \in (L^{\perp})^{\perp}$, ce qui entraîne $l^{\perp} \in L$ et $[l^{\perp}]_L = 0$.

Pour démontrer la surjectivité, remarquons que, puisque L est libre et de type fini, il en va de même de L^* . L'orthogonal L^{\perp} est alors le noyau d'une application linéaire entre deux modules libres de type fini,

$$M \to L^*$$

 $m \mapsto \underline{\alpha}(m)_{|L},$

et est à ce titre un facteur direct de M. Fixons un supplémentaire S de L^{\perp} dans $M: M = S \oplus L^{\perp}$. On dispose en particulier d'une projection $\operatorname{pr}: M \to L^{\perp}$ parallèlement à S.

Soit donc $f:L^{\perp}/L\to A$ une forme linéaire. Par composition, on obtient une forme linéaire

$$\widetilde{f}: M \xrightarrow{\mathrm{pr}} L^{\perp} \to L^{\perp}/L \xrightarrow{f} A,$$

où la flèche du milieu est la surjection canonique. Par non-dégénérescence de α , il existe $m \in M$ tel que $\widetilde{f} = \underline{\alpha}(m)$. Puisque $L \subset \ker \widetilde{f}$, l'élément m appartient à L^{\perp} et l'on a pour tout $l^{\perp} \in L^{\perp}$

$$\alpha_L([m]_L, [l^{\perp}]_L) = \alpha(m, l^{\perp}) = \widetilde{f}(m) = f([m]_L),$$

ce qui démontre bien $f = \underline{\alpha}_L(m)$.

L'intérêt principal de la réduction sous-lagrangienne est qu'elle permet de trouver des formes équivalentes (au sens de Witt) à la forme de départ.

Proposition. Soit $L \subset (M,\alpha)$ un sous-lagrangien d'une forme ε -hermitienne non dégénérée et α_L la forme obtenue par réduction sous-lagrangienne de L. Les classes de Witt $[\alpha]$ et $[\alpha_L]$ dans $\mathbf{W}_{\varepsilon}(A)$ sont alors égales.

Démonstration. Il s'agit de démontrer que la forme $\alpha \oplus (-\alpha_L)$ définie sur $M \oplus (L^{\perp}/L)$ est neutre. Posons

$$H = \left\{ (l^{\perp}, [l^{\perp}]_L) \in M \oplus (L^{\perp}/L) \, \middle| \, l^{\perp} \in L^{\perp} \right\} \subset M \oplus (L^{\perp}/L).$$

Déterminons-en l'orthogonal. Soit $m \in M$ et $l^{\perp} \in L^{\perp}$.

$$\begin{split} (m,[l^{\perp}]_L) \in H^{\perp} &\Leftrightarrow \forall \lambda^{\perp} \in L^{\perp}, (\alpha \oplus (-\alpha_L))((m,[l^{\perp}]_L),(\lambda^{\perp},[\lambda^{\perp}]_L)) = 0 \\ &\Leftrightarrow \forall \lambda^{\perp} \in L^{\perp}, \alpha(m,\lambda^{\perp}) = \alpha_L([l^{\perp}],[\lambda^{\perp}]) \\ &\Leftrightarrow \forall \lambda^{\perp} \in L^{\perp}, \alpha(m,\lambda^{\perp}) = \alpha(l^{\perp},\lambda^{\perp}) \\ &\Leftrightarrow \forall \lambda^{\perp} \in L^{\perp}, \alpha(m-l^{\perp},\lambda^{\perp}) = 0 \\ &\Leftrightarrow m-l^{\perp} \in (L^{\perp})^{\perp}. \end{split}$$

On a vu dans la preuve précédente que $(L^{\perp})^{\perp} = L$. Il s'ensuit que $(m, [l^{\perp}]_L) \in H^{\perp}$ si et seulement si m est congru à l^{\perp} modulo L, c'est-à-dire si $(m, [l^{\perp}]_L) \in H$. Cela achève la preuve que $\alpha \oplus (-\alpha_L)$ est neutre, et donc que $[\alpha] = [\alpha_L]$ dans $\mathbf{W}_{\varepsilon}(A)$.

La réduction sous-lagrangienne s'applique également dans le cas de torsion. Il n'y a alors plus besoin d'imposer de contraintes sur les sous-lagrangiens.

Définition. Soit (T, λ) une forme de torsion ε -hermitienne non dégénérée. Un sous-lagrangien de (T, λ) est un sous-module $I \subset T$ tel que $I \subset I^{\perp}$.

Les propositions précédentes ont alors l'analogue suivant.

Proposition. Soit I un sous-lagrangien d'une forme ε -hermitienne de torsion non dégénérée (T,λ) . La forme λ induit sur le quotient I^{\perp}/I une forme de torsion ε -hermitienne non dégénérée λ_I . Les classes de Witt de λ et λ_I sont égales dans $\mathbf{WT}_{\varepsilon}(A)$.

Démonstration. Tout d'abord, I^{\perp}/I est évidement un module de torsion et de type fini. La réduction sous-lagrangienne est définie via la même formule que précédemment :

$$\lambda_I([i_1^{\perp}]_I, [i_2^{\perp}]_I) = \lambda(i_1^{\perp}, i_2^{\perp}),$$

mais la preuve de la non-dégénérescence de λ_I est un peu différente de celle de α_L . On s'appuie en fait sur des arguments assez semblables à ceux donnés à la section 2.1.2. On a notamment le résultat suivant.

Lemme. Soit V un A-module de torsion et de type fini et $v \in V$ un élément non nul. Alors il existe une application linéaire $f: V \to S(A)$ telle que $f(v) \neq 0$.

Démonstration du lemme. Comme à la section 2.1.2, le sous-module engendré par v est un module cyclique de la forme A/a, qui se plonge dans S(A). L'injectivité de S(A) permet alors de prolonger ce plongement en une application linéaire $V \to S(A)$.

Démontrons maintenant que $(I^{\perp})^{\perp} = I$. Soit $t \notin I$. D'après le lemme précédent, on peut construire une application linéaire $T/I \to S(A)$ n'annulant pas $[t]_I$. Par composition, on obtient donc une application linéaire $f: T \to S(A)$ telle que $f_{|I|} = 0$ et $f(t) \neq 0$. La non-dégénérescence de λ entraı̂ne donc l'existence d'un élément $\theta \in T$ tel que $f = \underline{\lambda}(\theta)$ et les propriétés $\theta \in I^{\perp}$ et $\lambda(\theta, t) \neq 0$ entraı̂nent que $t \notin (I^{\perp})^{\perp}$.

Comme dans la première partie de cette section, la relation $(I^{\perp})^{\perp} = I$ entraı̂ne que l'application $\underline{\lambda}_I : I^{\perp}/I \to (I^{\perp}/I)^{\vee}$ est injective. La forme λ est donc non singulière et donc, d'après la première proposition de la section 2.1.2, non dégénérée.

Une fois l'égalité $(I^{\perp})^{\perp} = I$ démontrée, la preuve de l'égalité des classes de Witt donnée dans le cadre des modules libres est parfaitement valable. \square

2.1.5 L'homomorphisme $\partial: W_{\varepsilon}(K) \to WT_{\varepsilon}(A)$

Soit (E, α) une forme ε -hermitienne non dégénérée sur le corps K. En particulier, E est un K-espace vectoriel de dimension finie.

Définitions.

- Un A-réseau (ou simplement réseau s'il n'y a pas d'ambiguïté) de E est un sous-A-module $M \subset E$ de type fini contenant une base de E.
- Un réseau $M \subset E$ est dit *entier* si pour tous $m_1, m_2 \in M$, on a $\alpha(m_1, m_2) \in A$.
- Si $M \subset E$ est un réseau, son dual est

$$M^{\sharp} = \{ e \in E \mid \forall m \in M, \alpha(e, m) \in A \}.$$

Remarques.

- Avec ces définitions, le réseau $M\subset E$ est entier si et seulement si $M\subset M^\sharp.$
- Le A-réseau M étant inclus dans E, c'est un module sans torsion. Puisqu'on l'a supposé de type fini, il est donc libre. Si M est un réseau entier, $(M, \alpha_{|M})$ est alors une forme ε -hermitienne non singulière : en effet, puisque M contient une base de E, un élément $x \in M$ orthogonal à tout M serait orthogonal à tout E, et la non-dégénérescence de α entraı̂ne x = 0. En revanche, (M, α) peut être dégénérée.

La terminologie de « dual » est justifiée par la proposition suivante.

Proposition. M^{\sharp} est un A-module et on a un isomorphisme

$$\begin{array}{ccc} M^{\sharp} & \to & M^{*} \\ m & \mapsto & \alpha(m, -). \end{array}$$

En particulier, M^{\sharp} est un réseau de E. On a $(M^{\sharp})^{\sharp} = M$.

Démonstration. Encore une fois, un élément de M^\sharp orthogonal à tout M serait dans le noyau de α : le morphisme est injectif. Montrons qu'il est également surjectif: soit $f:M\to A$ linéaire. On peut la considérer comme un élément de $\operatorname{Hom}_A(M,K)$ et donc comme la restriction à M d'une forme K-linéaire définie sur E. Par non-dégénérescence de α , il existe donc $e\in E$ tel que $f=\underline{\alpha}(e)$. Comme $f(M)\subset A$, on a en fait $e\in M^\sharp$, ce qui démontre que l'application linéaire est bien un isomorphisme.

Il reste à démontrer que $(M^{\sharp})^{\sharp} = M$. Soit donc $e \in E$ tel que $\forall m^{\sharp} \in M^{\sharp}, \alpha(e, m^{\sharp}) \in A$. Via l'isomorphisme $M^{\sharp} \simeq M^{*}$ que nous venons d'expliciter, la proposition de la section 2.1.2 se traduit en affirmant que le morphisme

$$\begin{array}{cccc} M & \to & & (M^{\sharp})^{*} \\ m & \mapsto & \left(\operatorname{\acute{e}v}_{m} : & M^{\sharp} & \to & A \\ & m^{\sharp} & \mapsto & \alpha(m, m^{\sharp}) \end{array} \right) \end{array}$$

est un isomorphisme.

En particulier, puisque l'application $\alpha(e, -)$ définit une application A-linéaire $M^{\sharp} \to A$, on peut trouver $m \in M$ tel que $\alpha(e, -) = \alpha(m, -)$ et la non-dégénérescence de α entraı̂ne que $e = m \in M$.

Remarques.

- Toute forme ε -hermitienne non dégénérée (E, α) sur K contient un réseau entier : si (e_1, \ldots, e_n) est une base de E et que $\kappa \in A \setminus \{0\}$ est tel que $\forall i, j, \kappa \alpha(e_i, e_j) \in A$, le A-module engendré par les κe_i convient.
- Soit (M, α) une forme ε -hermitienne non singulière (mais qui peut être dégénérée) sur A. Le module M étant libre, le morphisme canonique $i: M \to M_K = M \otimes_A K$ est injectif. En outre, i(M) contient clairement une base de M_K (la réduction au même dénominateur montre que tout élément de M_K s'écrit m/a avec $m \in i(M)$ et $a \in A \setminus \{0\}$). En identifiant M et i(M), on peut donc considérer M comme un A-réseau du K-espace vectoriel M_K .

Par extension des scalaires, l'application A-linéaire $\underline{\alpha}$ s'étend en une application linéaire

$$\underline{\alpha} \otimes 1_K : M_K = M \underset{A}{\otimes} K \to M^* \underset{A}{\otimes} K \simeq \overline{\operatorname{Hom}}_A(M, K)$$
$$\simeq \overline{\operatorname{Hom}}_K(M \underset{A}{\otimes} K, K)$$
$$= \overline{\operatorname{Hom}}_K(M_K, K).$$

Cette application linéaire est l'adjoint $\underline{\alpha}_K$ d'une forme sesquilinéaire α_K définie sur M_K et prolongeant (M, α) . En particulier, pour tous $m, n \in M$, $\alpha_K(m, n) = \alpha(m, n) \in A$.

En utilisant que tout élement m_K de M_K s'écrit même sous la forme m/a, où $m \in M$ et $a \in A \setminus \{0\}$, on voit que la forme α_K est non singulière (et donc, puisqu'elle est définie sur un K-espace vectoriel de dimension finie, non dégénérée).

Il est alors clair que si α est ε -hermitienne, il en sera de même pour α_K .

En résumé, toute forme ε -hermitienne non singulière (M,α) sur A se prolonge naturellement en une forme ε -hermitienne non dégénérée (M_K,α_K) sur K dont M est un réseau entier. C'est directement par cette construction que les formes sur K interviendront dans la suite.

Dans la suite de la section, (E, α) est une forme ε -hermitienne non dégénérée sur K et $M \subset E$ en est un A-réseau entier. Nous allons voir que ces données définissent naturellement une forme de torsion sur A.

Proposition.

- Le A-module $T = M^{\sharp}/M$ est de torsion et de type fini.
- La forme (E, α) induit sur ce quotient une forme de torsion ε -hermitienne et non dégénérée $\lambda: T \times T \to S(A) = K/A$:

$$\lambda([m_1^{\sharp}]_M,[m_2^{\sharp}]_M) = [\alpha_K(m_1^{\sharp},m_2^{\sharp})]_A.$$

Démonstration. Puisque M contient une base de E, la réduction au même dénominateur des coordonnées d'un vecteur dans une telle base prouve que tout élément de E s'écrit m/a avec $m \in M$ et $a \in A \setminus \{0\}$. En particulier, on a pour tout élément $m^{\sharp} \in M^{\sharp}$ l'existence de $a \in A \setminus \{0\}$ tel que $am^{\sharp} \in M$ ou autrement dit $a[m^{\sharp}]_M = 0$: le A-module $T = M^{\sharp}/M$ est donc de torsion. Quotient de M^{\sharp} , il est de type fini.

Si $n_1^{\sharp} \in M^{\sharp}$ est tel que $[n_1^{\sharp}]_M = [m_1^{\sharp}]$, on peut écrire $n_1^{\sharp} = m_1^{\sharp} + m_1$, avec $m_1 \in M$. On a donc $\alpha_K(n_1^{\sharp}, m_2^{\sharp}) = \alpha_K(m_1^{\sharp}, m_2^{\sharp}) + \alpha_K(m_1, m_2^{\sharp})$. Comme $\alpha_K(m_1, m_2^{\sharp}) \in A$, on a alors l'égalité dans S(A) $[\alpha_K(n_1^{\sharp}, m_2^{\sharp})]_A = [\alpha_K(m_1^{\sharp}, m_2^{\sharp})]_A$. La forme $\lambda : T \times T \to A$ est donc bien définie et ses caractères sesquilinéaire et ε -hermitien sont directement hérités de ceux de α_K .

Enfin, si $[m^{\sharp}]_M \in \ker \underline{\lambda}$, on a pour tout $n^{\sharp} \in M^{\sharp}$, $\alpha_K(m^{\sharp}, n^{\sharp}) \in A$ donc $m^{\sharp} \in (M^{\sharp})^{\sharp} = M$ et $[m^{\sharp}]_M = 0$: λ est non singulière et donc non dégénérée d'après la première proposition de la section 2.1.2.

Si la forme (E, α_K) est obtenue par extension des scalaires à partir d'une forme hermitienne non singulière (M, α) sur A, le réseau $M \subset E$ naturellement défini est entier et l'identification $M^{\sharp} \simeq M^*$ permet d'identifier le module T ainsi construit et le conoyau de l'application

adjointe $\underline{\alpha}: M \to M^*$. Pour cette raison, la forme de torsion (T,λ) sera toujours appelée le *conoyau* du réseau M. Comme le souligne cette appellation, (T,λ) dépend vraiment du choix du réseau et pas seulement de la forme $(E,\alpha) \in MW_{\varepsilon}(K)$. La suite de la section est consacrée à la preuve que sa classe de Witt $[(T,\lambda)] \in \mathbf{WT}_{\varepsilon}(A)$, elle, ne dépend que de (E,α) (en fait, de sa classe de Witt).

Lemme.

- La classe de Witt $[(T,\lambda)] \in \mathbf{WT}_{\varepsilon}(A)$ du conoyau de M ne dépend que de (E,α) , et pas du choix du réseau entier $M \subset E$.
- $Si(E,\alpha)$ est une forme ε -hermitienne neutre, E contient un réseau $M \subset E$ unimodulaire, c'est-à-dire tel que $M^{\sharp} = M$.

 $D\acute{e}monstration\ du\ lemme.$ Commençons par choisir un autre réseau entier $N\subset E.$ L'intersection $P=M\cap N$ est alors un troisième réseau entier de E tel que $P\subset M\subset M^\sharp\subset P^\sharp$. On va montrer que le conoyau de M s'obtient par réduction sous-lagrangienne du conoyau de P. En particulier, leurs classes de Witt seront égales (et, la situation étant symétrique, la classe de Witt du conoyau de N sera encore égale à cette classe commune).

Déterminons donc l'orthogonal (dans P^{\sharp}/P muni de la forme de torsion λ induite par α) du sous-module M/P:

$$\begin{split} (M/P)^{\perp} &= \left\{ [p^{\sharp}]_{P} \in P^{\sharp}/P \, \middle| \, \forall m \in M, \lambda([p^{\sharp}]_{P}, [m]_{P}) = 0 \right\} \\ &= \left\{ [p^{\sharp}]_{P} \in P^{\sharp}/P \, \middle| \, \forall m \in M, \alpha(p^{\sharp}, m) \in A \right\} \\ &= \left\{ [p^{\sharp}]_{P} \in P^{\sharp}/P \, \middle| \, p^{\sharp} \in M^{\sharp} \right\} \\ &= M^{\sharp}/P. \end{split}$$

La forme induite par réduction sous-lagrangienne sur le quotient $(M^{\sharp}/P)/(M/P) \simeq M^{\sharp}/M$ est alors bien celle définissant le conoyau de M.

Pour le deuxième point, commençons par remarquer qu'une forme ε -hermitienne neutre et non dégénérée sur un corps est la somme orthogonale de formes β de dimension 2 non dégénérées possédant un vecteur isotrope. Quitte à dilater les vecteurs de base, il existe une base (v_1,v_2) telle que $\beta(v_1,v_1)=0,\ \beta(v_1,v_2)=1$ et $\beta(v_2,v_2)=x\in K$ (avec $\overline{x}=\varepsilon x$). Si $\kappa\in K^\times$ est tel que $\overline{\kappa}=\kappa$ et $\kappa x\in A$ (et un tel κ existe nécessairement : si x=a/b avec $a,b\in A,\ \kappa=\overline{b}b$ convient), on obtient

$$\beta(v_1/\kappa, v_1/\kappa) = 0$$
 $\beta(v_1/\kappa, \kappa v_2) = 1$ $\beta(\kappa v_2, \kappa v_2) = \kappa^2 x$.

Un calcul direct montre alors que le A-module engendré par v_1/κ et κv_2 est unimodulaire. \Box

Le lemme conclut bien la construction : la première propriété montre que la classe de Witt $[(T,\lambda)] \in \mathbf{WT}_{\varepsilon}(A)$ est bien canoniquement associée à la

forme (E, α) et la deuxième entraı̂ne que cette classe est nulle si (E, α) est neutre. Puisque la construction respecte clairement les sommes directes, on obtient bien un morphisme de groupes :

$$\partial: \quad \mathbf{W}_{\varepsilon}(K) \rightarrow \quad \mathbf{WT}_{\varepsilon}(A)$$

 $[(E, \alpha)] \mapsto \quad [(T, \lambda)].$

Proposition. Le morphisme $i_*: \mathbf{W}_{\varepsilon}(A) \to \mathbf{W}_{\varepsilon}(K)$ induit par l'inclusion $i: A \hookrightarrow K$ s'insère dans une suite exacte

$$0 \to \mathbf{W}_{\varepsilon}(A) \xrightarrow{i_*} \mathbf{W}_{\varepsilon}(K) \xrightarrow{\partial} \mathbf{WT}_{\varepsilon}(A).$$

 $D\acute{e}monstration$. Soit (M,α) une forme hermitienne non dégénérée sur A. Le morphisme i_* associe à la classe de Witt de M celle de l'extension (M_K,α_K) . Supposons cette dernière neutre : il existe donc un sous-espace vectoriel $L\subset M_K$ tel que $L^\perp=L$. Il s'agit de montrer que M était déjà neutre ; nous allons montrer que $H=L\cap M$ en est un lagrangien.

Déjà, puisque tout élément de L est un multiple d'un élement de M, l'orthogonal de H pour α est simplement constitué des éléments de M orthogonaux (pour α_K) à L. Autrement dit, $H^{\perp} = M \cap L^{\perp} = M \cap L = H$. Le sous-module H est donc bien un lagrangien de M.

Si (M, α) est une forme hermitienne non dégénérée sur A et que M_K en est l'extension à K, le calcul de $\partial[\alpha]$ peut se faire à l'aide du réseau $M \subset M_K$. Mais par non-dégénérescence, son conoyau est nul. On a donc bien $\partial \circ i_* = 0$.

Soit maintenant (E,α) une forme hermitienne sur K telle que $\partial[\alpha]=0$: si $M\subset E$ est un réseau entier, son conoyau est donc une forme de torsion neutre. Pour montrer l'exactitude en $\mathbf{W}(K)$ de la suite exacte, il suffit de construire un autre réseau entier $N\subset E$ qui soit unimodulaire : E sera alors obtenu par extension des scalaires à partir de $(N,\alpha_{|N})$, ce qui impliquera $[\alpha]=i_*[\alpha_{|N}]\in \operatorname{im} i_*$. Pour ce faire, appelons λ la forme de torsion sur le conoyau $T=M^\sharp/M$ et $I\subset T$ un lagrangien pour λ . Soit $N\subset M^\sharp$ l'image réciproque de I par la surjection canonique $M^\sharp\to T$. Le module N étant compris entre les deux réseaux M et M^\sharp , il est luimême un réseau de E. En outre, c'est un réseau entier : si $n_1, n_2\in N$, $[\alpha(n_1,n_2)]_{S(A)}=\lambda([n_1]_T,[n_2]_T)=0$ car $[n_1]$ et $[n_2]$ appartiennent à I, isotrope pour λ . Il suffit maintenant de déterminer N^\sharp . Puisque N contient M, N^\sharp est inclus dans M^\sharp . En notant $\pi:M^\sharp\to T$ la surjection canonique, on a alors immédiatement $N^\sharp=\pi^{-1}[\pi[N]^\bot]=\pi^{-1}[I^\bot]=\pi^{-1}[I]=N$. \square

Comme on l'a dit au début de ce chapitre, le cas qui nous intéresse le plus directement est celui où A est l'anneau Λ_F des polynômes de Laurent sur un corps à involution F (typiquement $\mathbb Q$ ou $\mathbb C$). La suite exacte que l'on vient de construire est encore plus explicite dans ce cas, grâce au résultat suivant.

Proposition. Soit F un corps de caractéristique différente de 2. L'inclusion $\iota: F \hookrightarrow \Lambda_F$ induit alors un isomorphisme

$$\iota_*: \mathbf{W}(F) \to \mathbf{W}(\Lambda_F).$$

 $D\'{e}monstration$. Déjà, $\iota: F \to \Lambda_F$ a un inverse à gauche donné par le morphisme d'anneaux à involution

$$\begin{array}{cccc} \operatorname{\acute{e}v}_1: & \Lambda_F & \to & F \\ & p & \mapsto & p(1). \end{array}$$

Ce morphisme induit donc un morphisme de groupes $(\text{\'ev}_1)_* : \mathbf{W}(\Lambda_F) \to \mathbf{W}(F)$ tel que

$$(\operatorname{\acute{e}v}_1)_* \circ \iota_* = \operatorname{id}_{\mathbf{W}(F)}.$$

Pour démontrer que ι_* est un isomorphisme, il suffit par exemple de montrer que $(\text{\'ev}_1)_*$ est injective.

Soit donc (M,μ) une forme hermitienne non dégénérée sur Λ_F dont la classe de Witt appartient à $\ker(\operatorname{\acute{e}v}_1)_*$. Par hypothèse, on peut trouver $x\in M$ tel que $p=\mu(x,x)$ vérifie p(1)=0. On peut même sans perte de généralité supposer que x est primitif. La non-dégénérescence de la forme μ entraîne alors l'existence d'un élément $y\in M$ tel que $\mu(x,y)=1$. On a alors une décomposition $M=P\oplus P^\perp$, où P est le Λ_F -module libre de rang 2 maximal contenant x et y (qui contient a priori strictement le module engendré par x et y). Après tensorisation par F via le morphisme év₁, $(P,\mu_{|P})$ devient alors une forme hermitienne sur F dont une matrice est donnée par $\begin{pmatrix} 0 & 1 \\ 1 & \operatorname{\acute{e}v}_1(\mu(y,y)) \end{pmatrix}$, ce qui entraîne qu'elle est elle-même

neutre. On vient donc de démontrer que le noyau du morphisme (év₁)*:

 $\mathbf{W}(\Lambda_F) \to \mathbf{W}(F)$ est engendré par les classes des formes de rang 2. Considérons donc une telle forme hermitienne non dégénérée sur un Λ_F^2 , représentée par une matrice $A \in \mathrm{GL}_2(\Lambda_F)$. Quitte à effectuer un

changement de base par un élément de $\operatorname{GL}_2(F) \subset \operatorname{GL}_2(\Lambda_F)$, on peut même supposer que $A(1) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Ainsi, le déterminant de A est un polynôme de Laurent inversible dans Λ_F (car la forme est non dégénérée), invariant par l'involution (car la forme est hermitienne) et valant -1 en 1. La seule possibilité est donc dét A=-1. Cela entraîne que la forme hermitienne définie sur $F(t)^2$ par la matrice A est neutre (une forme hermitienne sur un espace vectoriel en caractéristique $\neq 2$ admet une base orthogonale; la condition sur le déterminant entraîne alors que l'on peut trouver une base dans laquelle ladite forme est représentée par une matrice de la forme diag(a, -a)). Elle possède donc un lagrangien $L \subset F(t)^2$ de dimension 1. L'intersection de L et de Λ_F^2 est alors un facteur direct de rang 1 de Λ_F^2 égal à son propre

orthogonal, ce qui entraı̂ne que la forme réprésentée par A sur Λ_F^2 était bien neutre, et conclut la preuve.

2.2 Groupe de Witt des formes de Blanchfield

Les formes de torsion sur l'anneau $\Lambda_{\mathbb{Q}}$, aussi appelées formes de Blanchfield, sont donc les formes hermitiennes

$$\beta: T \times T \to S(\Lambda_{\mathbb{Q}}) = \mathbb{Q}(t)/\Lambda_{\mathbb{Q}},$$

où T est un $\Lambda_{\mathbb{Q}}$ -module de torsion de type fini. Leur groupe de Witt $\mathbf{WT}(\Lambda_{\mathbb{Q}})$ est un des avatars du groupe de concordance algébrique (cf. [50]).

Le but de cette section est de décrire plus précisément $\mathbf{WT}(\Lambda_{\mathbb{Q}})$. Elle est très abondamment inspirée de [49].

Pour en décrire la structure algébrique, introduisons quelques notations. Dans l'anneau $\Lambda_{\mathbb{Q}}$, on notera $p \doteq q$ si les élements p et q sont associés; autrement dit :

$$p \doteq q \quad \Leftrightarrow \quad \exists u \in \Lambda_{\mathbb{O}}^{\times} = \left\{ rt^n \,\middle|\, r \in \mathbb{Q}^{\times}, n \in \mathbb{Z} \right\} \text{ tel que } p = uq.$$

Un polynôme de Laurent $p \in \Lambda_{\mathbb{Q}}$ sera dit symétrique si $p \doteq \overline{p}$ et asymétrique dans le cas contraire.

Si p est un polynôme symétrique non nul, l'anneau quotient $\Lambda_{\mathbb{Q}}/(p)$ hérite d'une involution induite par celle de $\Lambda_{\mathbb{Q}}$. Si le polynôme p est en outre irréductible, on obtient ainsi un corps de nombres à involution $k_p = \Lambda_{\mathbb{Q}}/(p)$. L'involution est non triviale, à l'exception des deux polynômes symétriques de degré un, à savoir $t \pm 1$, pour lesquels $k_p = \mathbb{Q}$, muni de l'involution triviale.

Proposition. Tout polynôme de Laurent symétrique et irréductible est associé à t+1, t-1, ou à un (unique) polynôme unitaire irréductible p de degré pair 2d tel que $p(t^{-1}) = t^{-2d}p(t)$.

Démonstration. Puisque $\Lambda_{\mathbb{Q}}^{\times}=\{ut^n\,|\,u\in\mathbb{Q}^{\times},n\in\mathbb{Z}\}$, un polynôme p de degré d est symétrique si et seulement s'il existe un rationnel $u\neq 0$ tel que $t^dp(t^{-1})=up(t)$. En appliquant à nouveau cette propriété, il vient $u^2=1$ donc $u=\pm 1$. Or, si u=-1, on obtient immédiatement p(1)=-p(1), d'où il vient que p est divisible par t-1. Puisqu'il est irréductible, il lui est même associé. Tout polynôme symétrique irréductible est donc associé à t-1 ou vérifie $p(t)=t^{\deg p}p(t^{-1})$.

Supposons maintenant que l'on soit dans ce deuxième cas. En appliquant la relation à t=-1, on voit que si deg p est impair, -1 est une racine de p et, pour les mêmes raisons que précédemment, p est associé à t+1. La proposition est donc démontrée.

On note désormais \mathscr{S}^* l'ensemble de ces polynômes de degré pair et $\mathscr{S} = \mathscr{S}^* \cup \{t \pm 1\}.$

La structure du groupe $\mathbf{WT}(\Lambda_{\mathbb{O}})$ est alors décrite par le théorème suivant.

Théorème.

- héorème.

 On a un isomorphisme $\mathbf{WT}(\Lambda_{\mathbb{Q}}) \simeq \bigoplus_{p \in \mathscr{S}^*} \mathbf{W}(k_p)$.
- En particulier, $\mathbf{WT}(\Lambda_{\mathbb{O}})$ est isomorphe à la somme directe $\mathbb{Z}^{\infty} \oplus$ $(\mathbb{Z}/2)^{\infty} \oplus (\mathbb{Z}/4)^{\infty}$.

La preuve du théorème, qui occupera le reste de la section, précisera la nature de ces isomorphismes.

2.2.1Décomposition en composantes primaires

Soit (T,λ) une forme de torsion sur l'anneau $\Lambda_{\mathbb{Q}}$. Ce dernier étant principal, T se décompose en la somme directe de des composantes pprimaires

$$T = \bigoplus_{p} T_{p}.$$

Les propriétés de cette décomposition par rapport à la forme de torsion λ sont résumées par la proposition suivante.

Proposition.

- $Si \ p \neq \overline{q}$, les sous-modules T_p et T_q sont orthogonaux pour la forme λ .
- Si p est asymétrique, la forme λ restreinte à $T_p \oplus T_{\overline{p}}$ est neutre.

Démonstration. Supposons $p \neq \overline{q}$ et soit maintenant $x \in T_p$ et $y \in T_q$. Soit $n \ge 0$ tel que $p^n x = q^n y = 0$. Les éléments p et \overline{q} étant irréductibles et non associés, on a $\Lambda_{\mathbb{Q}} = (p, \overline{q})$ et même $\Lambda_{\mathbb{Q}} = (p^n, \overline{q}^n)$. On peut donc trouver $f, g \in \Lambda_{\mathbb{O}}$ tels que $1 = fp^n + g\overline{q}^n$. Il vient alors

$$\lambda(x,y) = \lambda((fp^n + g\overline{q}^n)x, y) = \lambda(fp^n x, y) + \lambda(gx, q^n y) = 0,$$

ce qui démontre la première partie de la proposition.

D'après ce qui précède, si p n'est pas symétrique, le facteur direct $T_p \oplus T_{\overline{p}}$ est orthogonal à tous les autres T_q , $q \notin \{p, \overline{p}\}$. En particulier, la restriction de λ à $T_p \oplus T_{\overline{p}}$ reste non dégénérée. En outre, toujours d'après la première partie de la proposition, T_p et $T_{\overline{p}}$ sont isotropes pour λ . L'orthogonal de T_p est donc un sous- $\Lambda_{\mathbb{Q}}$ -module (et en particulier un sous- \mathbb{Q} -espace vectoriel) de $T_p \oplus T_{\overline{p}}$ contenant T_p . S'il était strictement plus grand que T_p , il rencontrerait $T_{\overline{p}}$. Or, un élément non nul de $T_p^{\perp} \cap T_{\overline{p}}$ serait orthogonal à la fois à T_p et à $T_{\overline{p}}$ et contredirait la non-dégénérescence de la restriction de λ à $T_p \oplus T_{\overline{p}}$. C'est donc impossible, ce qui entraı̂ne que $T_p = T_p^{\perp}$ est un lagrangien de $(T_p \oplus T_{\overline{p}}, \lambda_{|T_p \oplus T_{\overline{p}}})$.

Pour $p \in \mathscr{S}$, on a un sous-monoïde $MWT(\Lambda_{\mathbb{Q}}, p) \subset MWT(\Lambda_{\mathbb{Q}})$ constitué des formes (T, λ) pour lesquelles T est p-primaire. Le quotient $\mathbf{WT}(\Lambda_{\mathbb{Q}}, p)$ de ce monoïde par le sous-monoïde $NWT(\Lambda_{\mathbb{Q}}, p)$ constitué des formes neutres est un groupe, que l'on appellera groupe de Witt des formes de torsion p-primaires. On a naturellement un morphisme $\iota_p : \mathbf{WT}(\Lambda_{\mathbb{Q}}, p) \to \mathbf{WT}(\Lambda_{\mathbb{Q}})$.

Proposition. Les morphismes précedemment définis fournissent un isomorphisme

$$\iota = \bigoplus_{p \in \mathscr{S}} \iota_p : \bigoplus_{p \in \mathscr{S}} \mathbf{WT}(\Lambda_{\mathbb{Q}}, p) \to \mathbf{WT}(\Lambda_{\mathbb{Q}}).$$

 $D\acute{e}monstration$. Ce qui précède montre déjà que toute forme de torsion sur $\Lambda_{\mathbb{Q}}$ est équivalente au sens de Witt à une somme de formes portées par des modules p-primaires. Autrement dit, ι est surjectif. Il reste à en démontrer l'injectivité.

Le morphisme de groupes ι n'est rien d'autre que le morphisme induit par le morphisme de monoïdes

$$\bigoplus_{p \in \mathscr{S}} MWT(\Lambda_{\mathbb{Q}}, p) \to MWT(\Lambda_{\mathbb{Q}})$$

$$(T_p)_{p \in \mathscr{S}} \mapsto \bigoplus_{p \in \mathscr{S}} T_p.$$

Pour démontrer que ι est injectif, il suffit donc de montrer que si p_1,\ldots,p_n sont n éléments distincts de $\mathscr S$ et que (T_{p_i},λ_i) est une forme de torsion sur un module p_i -primaire, la neutralité de $T=\bigoplus_{i=1}^n T_{p_i}$ entraîne celle de tous les T_{p_i} . Soit donc $L\subset T$ un lagrangien. Sous-module d'un $\Lambda_{\mathbb Q}$ -module de torsion et de type fini, L hérite de ces propriétés. Par ailleurs, sa décomposition en composantes primaires s'écrit évidemment $L=\bigoplus_{i=1}^n L_{p_i}$, où $L_{p_i}=L\cap T_{p_i}$. Puisque les T_{p_i} sont deux à deux orthogonaux, l'orthogonal de L_{p_i} dans T_{p_i} est exactement l'intersection de T_{p_i} et de $L^\perp=L$, c'est-à-dire L_{p_i} lui-même. Pour tout i,L_{p_i} est donc un lagrangien de T_{p_i} , et on a donc bien démontré que ι est un isomorphisme. \square

2.2.2 Dévissage

Soit $p \in \mathscr{S}$. Considérons pour commencer une forme de torsion (T,λ) sur un module T de p-torsion. En particulier, on peut considérer T comme un $k_p = \Lambda_{\mathbb{Q}}/(p)$ -espace vectoriel. Pour tous $x,y \in T$, on a $p\lambda(x,y) = \lambda(x,py) = 0$: la forme λ prend ses valeurs dans le sous-groupe

$$S(\Lambda_{\mathbb{Q}})_{[p]} = \{\theta \in S(\Lambda_{\mathbb{Q}}) \mid p\theta = 0\} = \{[\theta]_1 \in S(\Lambda_{\mathbb{Q}}) \mid \theta \in \mathbb{Q}(t), p\theta \in \Lambda_{\mathbb{Q}}\}$$

qui s'identifie à k_p via l'isomorphisme $[f]_p \in k_p = \Lambda_{\mathbb{Q}}/(p) \mapsto \left[\frac{f}{p}\right]_1 \in S(\Lambda_{\mathbb{Q}}).$

Plus précisément, toute forme de torsion hermitienne μ définie sur un module T de p-torsion s'écrit

$$\forall x, y \in T, \mu(x, y) = \left[\frac{\widetilde{\mu}(x, y)}{p}\right]_1,$$

où $\widetilde{\mu}:T\times T\to k_p$ est une forme sesquilinéaire. Puisque μ est hermitienne, on a

$$\mu(y,x) = \overline{\mu(x,y)} \qquad \text{soit} \qquad \widetilde{\mu}(y,x) = \frac{p}{\overline{p}} \cdot \overline{\widetilde{\mu}(x,y)} :$$

 $\widetilde{\mu}$ est ainsi ε -hermitienne, où $\varepsilon \in k_p$ est la réduction dans k_p de l'élément $e \in \Lambda_{\mathbb{O}}^{\times}$ tel que $p = e\overline{p}$.

On peut donc considérer qu'une forme de torsion hermitienne sur un $\Lambda_{\mathbb{Q}}$ -module de type fini et de p-torsion est la même chose qu'une forme ε -hermitienne sur un k_p -espace vectoriel de dimension finie.

Proposition. L'inclusion $MW_{\varepsilon}(k_p) \subset MWT(\Lambda_{\mathbb{Q}}, p)$ fournie par l'identification précedente induit un isomorphisme $\mathbf{W}_{\varepsilon}(k_p) \to \mathbf{WT}(\Lambda_{\mathbb{Q}}, p)$.

Démonstration. Déjà, il est évident que l'identification entre formes de torsion hermitiennes sur un $\Lambda_{\mathbb{Q}}$ -module de type fini et de p-torsion et formes ε-hermitiennes sur un k_p -espace vectoriel de dimension finie identifie les deux notions de formes neutres. En particulier, l'inclusion $MW_{\varepsilon}(k_p) \to MWT(\Lambda_{\mathbb{Q}}, p)$ induit un morphisme de groupes injectif $\mathbf{W}_{\varepsilon}(k_p) \to \mathbf{WT}(\Lambda_{\mathbb{Q}}, p)$.

Il reste à en démontrer la surjectivité, c'est-à-dire que toute forme de torsion sur un $\Lambda_{\mathbb{Q}}$ -module de type fini p-primaire est équivalente au sens de Witt à un $\Lambda_{\mathbb{Q}}$ -module de type fini de p-torsion.

Soit donc $(T,\lambda) \in MWT(\Lambda_{\mathbb{Q}},p)$ et $n \geq 1$ tel que l'annulateur de T soit l'idéal engendré par p^n . On va démontrer que si $n \geq 2$, (T,λ) est équivalent au sens de Witt à une forme portée par un $\Lambda_{\mathbb{Q}}$ -module de type fini annulé par p^{n-1} . Le résultat sera alors obtenu par récurrence.

Supposons donc $n \geq 2$ et soit $L = p^{n-1}T \subset T$. Pour tous $x, y \in T$, on a $\lambda(p^{n-1}x, p^{n-1}y) = \lambda(p^{2n-2}x, y) = 0$ (car $n \geq 2$ implique $2n - 2 \geq n$): le sous-module $L \subset T$ est isotrope. On peut donc effectuer une réduction sous-lagrangienne sur L et T est équivalent au sens de Witt à $(L^{\perp}/L, \lambda_L)$, tautologiquement annulé par p^{n-1} .

Comme on l'a vu à la section 2.1.3, le groupe de Witt des formes hermitiennes $\mathbf{W}_{\varepsilon}(K)$ d'un corps à involution est isomorphe à $\mathbf{W}(K)$, à l'unique exception des formes antisymétriques, c'est-à-dire du cas où l'involution est triviale et où $\varepsilon = -1$.

Dans le cas des corps k_p , on a vu que l'involution n'était triviale que dans les deux cas $p = t \pm 1$. Dans ces deux cas, le résultat précédent fournit des isomorphismes

$$\mathbf{WT}(\Lambda_{\mathbb{Q}}, t+1) \simeq \mathbf{W}_{-}(\mathbb{Q}) = 0 \qquad \mathbf{WT}(\Lambda_{\mathbb{Q}}, t-1) \simeq \mathbf{W}_{-}(\mathbb{Q}) = 0.$$

On a donc en particulier construit un isomorphisme

$$\mathbf{WT}(\Lambda_{\mathbb{Q}}) \to \bigoplus_{p \in \mathscr{S}} \mathbf{WT}(\Lambda_{\mathbb{Q}}, p) \to \bigoplus_{p \in \mathscr{S}^*} \mathbf{W}(k_p).$$

Pour obtenir des renseignements plus précis sur $\mathbf{WT}(\Lambda_{\mathbb{Q}})$, il faut donc étudier les groupes de Witt des corps de nombres (à involution) k_p .

2.2.3 Groupes de Witt des corps à involution k_p

La classification des formes hermitiennes sur les corps de nombres k_p est due à Walther Landherr ([44]).

Les corps de nombres k_p sont munis d'une involution héritée de celle de $\Lambda_{\mathbb{Q}}$. À l'exception des cas $p=t\pm 1$, cette involution est non triviale et définit donc une extension quadratique $k_p/k_{p,0}$ sur le sous-corps fixe $k_{p,0}=\{z\in k_p\mid \overline{z}=z\}$. On note $\Omega(k_p)$ l'ensemble des paires de plongements conjugués $\rho:k_p\to\mathbb{C}$ tels que $\rho(\overline{z})=\overline{\rho(z)}$.

Notons que cet ensemble peut-être vide (c'est par exemple le cas si k_p est totalement réel ou à l'inverse si $k_{p,0}$ est totalement imaginaire).

Chaque plongement $\rho:(k_p,\bar{\cdot})\to (\mathbb{C},\bar{\cdot})$ permet d'étendre les scalaires et ainsi de voir une forme hermitienne h définie sur k_p comme une forme hermitienne complexe au sens classique ρ_*h . En particulier, il permet de définir un $indice\ I_\rho(h)\in\mathbb{N}$, défini comme la dimension maximale d'un sousespace sur lequel la restriction ρ_*h est définie négative. Il est alors évident que si $\overline{\rho}$ est le conjugué de ρ , $I_\rho(h)=I_{\overline{\rho}}(h)$. On a donc un invariant entier $I_\rho(h)$ pour chaque $\rho\in\Omega(k_p)$.

Enfin, si on note $N: k_p \to k_{p,0}$ l'application « norme » $z \mapsto \overline{z}z$, la classe dans $\Delta(k_p) = k_{p,0}^{\times}/N(k_p^{\times})$ du déterminant d'une matrice représentant la forme hermitienne h dans une certaine base est un invariant indépendant de la base choisie. Comme dans le cas quadratique, on l'appelle discriminant de h et on le note abusivement dét $h \in \Delta(k_p)$.

On est alors en mesure d'énoncer la classification des formes hermitiennes sur les corps de nombres.

Théorème (Landherr [44], cf. également [68, $\S 10.1$]).

- Le rang dim $h \in \mathbb{N}$, le discriminant dét $h \in \Delta(k_p)$ et les différents indices $I_{\rho}(h)$ pour $\rho \in \Omega(k_p)$ forment des invariants complets de la forme hermitienne q.
- Ces invariants peuvent prendre des valeurs arbitraires, pourvu que celles-ci restent soumises aux relations évidentes

$$\forall \rho \in \Omega(k_p), I_{\rho}(h) \leq \dim h \qquad \forall \rho \in \Omega(k_p), \operatorname{sign} \rho(\det h) = (-1)^{I_{\rho}(h)}.$$

Afin de reformuler ce théorème en un résultat sur le groupe de Witt $\mathbf{W}(k_p)$, remarquons que si l'on note $Q(k_p)$ l'ensemble $\mathbb{Z}/2 \times \Delta(k_p)$ muni

de la loi de groupe abélien

$$(e,\alpha) \oplus (e',\alpha') = (e+e',(-1)^{ee'}\alpha\alpha'),$$

on obtient une extension a priori non scindée

$$0 \to \Delta(k_p) \to Q(k_p) \to \mathbb{Z}/2 \to 0$$

et un morphisme surjectif de groupes (cf. [43, II.2])

$$\begin{array}{ccc} \mathbf{W}(k_p) & \to & Q(k_p) \\ [h] & \mapsto & \left([\dim h]_2, (-1)^{\dim h (\dim h - 1)/2} \right). \end{array}$$

Quitte à ajouter une forme hyperbolique de rang 2, un élément du noyau de ce morphisme est alors représenté par une forme hermitienne de dimension multiple de 4 et de déterminant 1.

Si h est une forme hermitienne de rang n sur k_p et $\rho \in \Omega(k_p)$, la forme hermitienne a pour indice $I_{\rho} \in \mathbb{N}$ et donc pour signature $\sigma_{\rho} = (n - I_{\rho}) - I_{\rho} = n - 2I_{\rho}$. Ces signatures fournissent alors des morphismes

$$\sigma_{\rho}: \mathbf{W}(k_p) \to \mathbb{Z} \qquad (\rho \in \Omega(k_p)).$$

Pour une forme de déterminant 1, la condition sign $\rho(\det h) = (-1)^{I_{\rho}(h)}$ entraîne que les indices I_{ρ} soient pairs. Les éléments du noyau du morphisme $\mathbf{W}(k_p) \to Q(k_p)$ ont donc des signatures multiples de 4 et, d'après le théorème de Landherr, tout s-uplet d'entiers multiples de 4 est représenté par une forme hermitienne de déterminant 1 et de rang multiple de 4 (où $s = |\Omega(k_p)|$).

On peut donc reformuler le théorème de Landherr sous la forme suivante.

Corollaire. Le groupe de Witt des formes hermitiennes sur k_p est une extension

$$0 \to (4\mathbb{Z})^s \to \mathbf{W}(k_p) \to Q(k_p) \to 0,$$

où $s = |\Omega(k_p)|$. En particulier, tout élément de torsion dans $\mathbf{W}(k_p)$ est de 4-torsion et la partie sans torsion de $\mathbf{W}(k_p)$ est un groupe libre de rang s.

2.3 Signatures

Les objets de nature hermitienne que nous allons utiliser dans cette thèse (classes de Witt dans $\mathbf{WT}(\Lambda_{\mathbb{Q}})$ ou $\mathbf{W}(\mathbb{Q}(t))$) seront des invariants associés à des objets topologiques (par exemple, à un entrelacs orienté $L \subset S^3$). Ces invariants « contiennent » un certain nombre d'invariants numériques classiques, qui sont souvent définis comme des signatures de formes quadratiques ou hermitiennes auxiliaires.

En général, ces signatures correspondent à l'information retenue par les invariants quand on considère les versions réelles ou complexes d'invariants rationnels (c'est-à-dire quand on ne garde des invariants que leur image par un morphisme du type $\mathbf{W}(\mathbb{Q}(t)) \to \mathbf{W}(\mathbb{C}(t))$ ou $\mathbf{WT}(\Lambda_{\mathbb{C}}) \to \mathbf{WT}(\Lambda_{\mathbb{C}})$).

Dans cette section, nous allons donc décrire les groupes de Witt hermitiens $\mathbf{W}(\mathbb{C}(t))$ et $\mathbf{WT}(\Lambda_{\mathbb{C}})$, ainsi que le morphisme $\partial: \mathbf{W}(\mathbb{C}(t)) \to$ $\mathbf{WT}(\Lambda_{\mathbb{C}})$. Encore une fois, tout ce qui suit est directement inspiré de [49].

2.3.1 $\operatorname{WT}(\Lambda_{\mathbb{C}})$: signatures de Milnor

Les méthodes de la section 2.2 s'appliquent directement au cas complexe. À multiplication par un inversible près, les polynômes irréductibles symétriques de $\Lambda_{\mathbb{C}}$ forment l'ensemble

$$\mathscr{S}_{\mathbb{C}} = \{ p_{\omega} \mid \omega \in S^1 \}, \quad \text{où} \quad p_{\omega}(t) = t - \omega.$$

On obtient alors comme à la section 2.2.1 une décomposition en composantes $p_{\omega}\text{-primaires}$

$$\mathbf{WT}(\Lambda_{\mathbb{C}}) = \bigoplus_{\omega \in S^1} \mathbf{WT}(\Lambda_{\mathbb{C}}, p_{\omega}).$$

Enfin, comme à la section 2.2.2, le fait que

$$p_{\omega} = t - \omega = -t\omega(t^{-1} - \omega^{-1}) = -t\omega\overline{p}_{\omega},$$

implique un isomorphisme entre la composante $\mathbf{WT}(\Lambda_{\mathbb{C}}, p_{\omega})$ et le groupe de Witt $\mathbf{W}_{-\omega^2}(\mathbb{C})$ des formes $(-\omega^2)$ -hermitiennes complexes. (Puisque p_{ω} est de degré 1, le corps $k_{p_{\omega}} = \Lambda_{\mathbb{C}}/(p_{\omega})$ est isomorphe à \mathbb{C} et $-t\omega$ s'y réduit en $-\omega^2$).

Or, le groupe $\mathbf{W}_{-\omega^2}(\mathbb{C})$ est isomorphe à $\mathbf{W}(\mathbb{C})$ (il suffit par exemple de multiplier une forme $(-\omega^2)$ -hermitienne par $i\overline{\omega}=-i\overline{\omega}$ pour obtenir une forme hermitienne). Ainsi, on obtient un morphisme « signature en $\omega \in S^1$. »

$$\sigma_{\omega}^{\mathrm{M}}: \mathbf{WT}(\Lambda_{\mathbb{C}}) \to \mathbf{WT}(\Lambda_{\mathbb{C}}, p_{\omega}) \xrightarrow{\simeq} \mathbf{W}_{\omega^{2}}(\mathbb{C}) \xrightarrow{-i\overline{\omega}} \mathbf{W}(\mathbb{C}) \xrightarrow{\mathrm{sign}} \mathbb{Z}.$$

En outre, la collection de ces signatures forme un invariant complet des classes de $\mathbf{WT}(\Lambda_{\mathbb{C}})$, au sens où l'on a un isomorphisme

$$\sigma^{\mathrm{M}} = \bigoplus_{\omega \in S^1} \sigma^{\mathrm{M}}_{\omega} : \mathbf{WT}(\Lambda_{\mathbb{C}}) \to \mathbb{Z}^{(S^1)},$$

où l'on a noté $\mathbb{Z}^{(S^1)}$ le groupe abélien libre sur S^1 (l'exposant M renvoie au fait que l'on obtient ainsi les signatures de Milnor d'un entrelacs, cf. 3.2.5).

2.3.2 $W(\mathbb{C}(t))$ et fonctions équilibrées : signatures de Levine-Tristram

On appelle fonction équilibrée une fonction $f:S^1\to\mathbb{Z}$ possédant un nombre fini de discontinuités et telle que

$$\forall \xi \in S^1, f(\xi) = \frac{f(\xi^-) + f(\xi^+)}{2},$$

la notation $f(\xi^{\pm})$ indiquant les limites de f à gauche et à droite en ξ , respectivement (pour l'orientation standard de $S^1 \subset \mathbb{C}$). On notera Éq (S^1) l'ensemble des fonctions équilibrées. On remarquera que la condition entraı̂ne que les valeurs de f en dehors de ses singularités ont toutes la même parité.

En particulier, pour tout $\xi \in S^1$, le nombre

$$\operatorname{saut}_\xi(f) = \frac{f(\xi^+) - f(\xi^-)}{2}$$

est toujours entier, et il est nul sauf aux points de discontinuité de f. On a donc une fonction

$$\begin{array}{ccc} \operatorname{saut} : \operatorname{\acute{E}q}(S^1) \to & \mathbb{Z}^{(S^1)} \\ f & \mapsto \left(\operatorname{saut}_{\xi}(f)\right)_{\xi \in S^1}. \end{array}$$

On vérifie directement que saut est un morphisme de groupes s'insérant dans une suite exacte

$$0 \to \mathbb{Z} \to \operatorname{\acute{E}q}(S^1) \xrightarrow{\operatorname{saut}} \mathbb{Z}^{(S^1)}.$$

Le premier morphisme est l'inclusion des fonctions constantes. Le morphisme saut n'est pas surjectif : son image est constituée des familles de somme nulle.

La propriété-clef des fonctions équilibrées est que deux fonctions $f,g\in \mathrm{\acute{E}q}(S^1)$ coı̈ncidant sur le complémentaire d'un ensemble fini sont en fait égales.

On va voir que cette propriété nous permet d'associer à tout classe de Witt $[\varphi] \in \mathbf{W}(\mathbb{C}(t))$ une signature $\sigma^{\mathrm{LT}}([\varphi]) \in \mathrm{\acute{E}q}(S^1)$.

Soit $[\varphi] \in \mathbf{W}(\mathbb{C}(t))$ une classe de Witt représentée par une forme hermitienne $\varphi: V \times V \to \mathbb{C}(t)$, où V est un $\mathbb{C}(t)$ -espace vectoriel de dimension finie. Soit $A \in M_{\dim V}(\mathbb{C}(t))$ une matrice hermitienne représentant φ . Si $\alpha \in S^1$, la matrice $A(\alpha)$ obtenue en remplaçant t par α est bien définie sauf pour un nombre fini de valeurs (les pôles des coefficients de A) et elle est dans ce cas une matrice hermitienne complexe de taille dim V. Par ailleurs, cette fonction est localement constante sauf

en les points $\alpha \in S^1$ tels que dét $A(\alpha) = 0$, qui sont également un nombre fini (ce sont des zéros de dét $A \in \mathbb{C}(t)^{\times}$).

Si on exclut l'union F de ces deux ensembles finis de points, on obtient ainsi une fonction localement constante $S^1 \setminus F \to \mathbb{Z}$. En outre, les valeurs prises par cette fonction sont toutes de la même parité (puisque la signature d'une forme hermitienne non dégénérée est toujours de la même parité que la dimension de l'espace vectoriel sous-jacent). En particulier, si $\xi \in F$, $(f(\xi^-) + f(\xi^+))/2$ est un nombre entier. Cette fonction se prolonge donc en une unique fonction équilibrée, que l'on notera provisoirement $\sigma^{\mathrm{LT}}(A) \in \mathrm{\acute{E}q}(S^1)$. (L'exposant évoque la signature de Levine-Tristram, cf. 3.2.5).

La fonction $\sigma^{\mathrm{LT}}(A) \in \mathrm{\acute{E}q}(S^1)$ ne dépend en fait pas du choix de la matrice A représentant φ . En effet, si $A,B \in M_{\dim V}(\mathbb{C}(t))$ sont deux choix différents de représentants, on peut trouver une matrice $P \in \mathrm{GL}_{\dim V}(\mathbb{C}(t))$ telle que

$$B = {}^{t}\overline{P}AP.$$

Hors des pôles des coefficients des différentes matrices en jeu, on a donc une égalité

$$B(\alpha) = {}^{t}\overline{P(\alpha)} A(\alpha) P(\alpha)$$

entre matrices complexes. En outre, dès que α n'annule pas la fraction rationnelle dét $P \in \mathbb{C}(t)^{\times}$, la matrice $P(\alpha)$ est une matrice inversible. Cela implique que les matrices hermitiennes $A(\alpha)$ et $B(\alpha)$ sont congruentes pour tout $\alpha \in S^1$ hors d'un ensemble fini. Les fonctions équilibrées $\sigma^{\mathrm{LT}}(A)$ et $\sigma^{\mathrm{LT}}(B)$ coïncident donc sur le complémentaire d'un ensemble fini, ce qui entraı̂ne $\sigma^{\mathrm{LT}}(A) = \sigma^{\mathrm{LT}}(B)$. La fonction $\sigma^{\mathrm{LT}}(A) \in \mathrm{\acute{E}q}(S^1)$ ne dépend donc que de la forme hermitienne φ .

Cela entraı̂ne directement que $\sigma^{\mathrm{LT}}(A)$ ne dépend même que de la classe de Witt de φ : par définition, la fonction signature d'une somme directe est égale à la somme des deux fonctions signature. Or, toute forme neutre sur $\mathbb{C}(t)$ est une somme de formes représentées par la matrice hermitienne

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

dont l'évaluation en tout $\alpha \in \mathbb{C}$ reste évidemment neutre.

Cela montre que cette construction définit un morphisme de groupes

$$\begin{array}{c} \sigma^{\mathrm{LT}}: \mathbf{W}(\mathbb{C}(t)) \to \ \mathrm{\acute{E}q}(S^1) \\ [\varphi] & \mapsto \sigma^{\mathrm{LT}}([\varphi]). \end{array}$$

On peut alors montrer que ce morphisme est un isomorphisme.

Théorème. Le morphisme $\sigma^{\mathrm{LT}}: \mathbf{W}(\mathbb{C}(t)) \to \mathrm{\acute{E}q}(S^1)$ est un isomorphisme de groupes.

Plus précisément, on a le diagramme commutatif suivant, dont les lignes sont exactes et les colonnes sont des isomorphismes.

Démonstration. La dernière proposition de la section 2.1 affirme que l'inclusion $\mathbb{C} \to \Lambda_{\mathbb{C}}$ induit un isomorphisme $\mathbf{W}(\mathbb{C}) \to \mathbf{W}(\Lambda_{\mathbb{C}})$. Concrètement, cela signifie que toute forme hermitienne sur $\Lambda_{\mathbb{C}}$ est représentée, à équivalence de Witt près, par une matrice hermitienne à coefficients complexes.

Par construction, une telle forme est envoyée par le morphisme σ^{LT} : $\mathbf{W}(\mathbb{C}(t)) \to \mathrm{\acute{E}q}(S^1)$ sur une fonction constante, égale à la signature usuelle de la matrice hermitienne complexe. On obtient bien ainsi un isomorphisme $\mathbf{W}(\Lambda_{\mathbb{C}}) \to \mathbb{Z}$ faisant commuter le carré de gauche du diagramme.

Pour achever de montrer que le diagramme est commutatif, il reste à montrer que pour toute forme hermitienne φ sur un $\mathbb{C}(t)$ -espace vectoriel, on a l'égalité

$$\sigma^{\mathrm{M}}(\partial[\varphi]) = \mathrm{saut}(\sigma^{\mathrm{LT}}[\varphi]).$$

Or, toute forme hermitienne sur un corps à involution se diagonalisant, le groupe de Witt de $\mathbb{C}(t)$ est engendré par les formes hermitiennes de dimension 1. Pour $f \in \mathbb{C}(t)$ tel que $\overline{f} = f$, convenons de noter $\langle f \rangle$ la forme hermitienne $(x,y) \in \mathbb{C}(t) \mapsto f\overline{x}y$. Pour tout $g \in \mathbb{C}(t)$, cette forme est isomorphe à $\langle f\overline{g}g \rangle$. Il s'ensuit que le groupe de Witt est engendré par les formes $\langle f \rangle$, où f décrit les éléments inversibles de $\Lambda_{\mathbb{C}}$.

Soit $\omega \in S^1$. Il s'agit donc de montrer que

$$\operatorname{saut}_{\omega}(\sigma^{\operatorname{LT}}[\langle f \rangle]) = \sigma^{\operatorname{M}}_{\omega}(\partial[\langle f \rangle]).$$

Quitte à multiplier f par une puissance de $p_{\omega}\overline{p_{\omega}}=-(\omega t)^{-1}p_{\omega}^2$, on peut même supposer que f est premier avec p_{ω} ou de la forme $p_{\omega}g$, avec $g\in\Lambda_{\mathbb{C}}$ premier avec p_{ω} et tel que $\overline{g}=-\omega tg$. Dans ce dernier cas, en particulier, $\overline{g(\omega)}=\overline{g}(\omega)=-\omega^2 g(\omega)$.

– Si f est premier avec p_{ω} , le conoyau $\Lambda_{\mathbb{C}}/(f)$ n'a pas de composante p_{ω} -primaire, et l'on a donc $\sigma^{\mathrm{M}}_{\omega}(\partial[\langle f \rangle]) = 0$. En outre, f ne possédant ni zéro ni pôle au voisinage de ω , on voit que la signature de $\langle f(\xi) \rangle$ est bien définie et constante au voisinage de ω . On a donc saut $_{\omega}$ $\left(\sigma^{\mathrm{LT}}[\langle f \rangle]\right) = 0$, et l'égalité est démontrée dans ce cas. – Si f est de la forme $p_{\omega}g$, avec g et p_{ω} premiers entre eux, le conoyau de $\langle f \rangle$ est isomorphe à la forme de torsion hermitienne

$$\begin{array}{ccc} \Lambda_{\mathbb{C}}/(p_{\omega}g) \times \Lambda_{\mathbb{C}}/(p_{\omega}g) \to & S(\Lambda_{\mathbb{C}}) \\ & ([a]_{p_{\omega}g}, [b]_{p_{\omega}g}) & \mapsto \left\lceil \frac{\overline{a}b}{p_{\omega}g} \right\rceil_{1}. \end{array}$$

La composante p_{ω} -primaire de ce module de torsion est le module cyclique engendré par $[g]_{p_{\omega}g}$. Ce module porte donc par restriction une forme isomorphe à

$$\begin{array}{ccc} \Lambda_{\mathbb{C}}/(p_{\omega}) \times \Lambda_{\mathbb{C}}/(p_{\omega}) \to & S(\Lambda_{\mathbb{C}}) \\ ([\alpha]_{p_{\omega}}, [\beta]_{p_{\omega}}) & \mapsto \left[\frac{\overline{\alpha g} \beta g}{p_{\omega} g}\right]_{1} = \left[\frac{\overline{g} \alpha \beta}{p_{\omega}}\right]_{1}. \end{array}$$

On obtient ainsi par dévissage la forme $(-\omega^2)$ -hermitienne complexe $\langle \overline{g}(\omega) \rangle$.

En résumé, $\sigma_{\omega}^{\mathrm{M}}(\partial[\langle p_{\omega}g\rangle])$ est le signe du réel $-i\overline{\omega}g(\omega)=i\omega g(\omega)$. Par ailleurs, au voisinage de $\omega\in S^1$, $\sigma_{\xi}^{\mathrm{LT}}[\langle p_{\omega}g\rangle]$ est simplement le signe du réel $p_{\omega}(\xi)g(\xi)$, qui change de signe en ω . Le saut saut ω ($\sigma^{\mathrm{LT}}[\langle p_{\omega}g\rangle]$) est donc simplement le signe de la dérivée de $\xi\in S^1\mapsto p_{\omega}(\xi)g(\xi)$ en ω , qui vaut $i\omega g(\omega)$.

On a donc bien

$$\begin{split} \mathrm{saut}_{\omega}(\sigma^{\mathrm{LT}}[\langle f \rangle]) &= \sigma^{\mathrm{M}}_{\omega}(\partial[\langle f \rangle]) \\ &= \begin{cases} 0 & \text{si } f \text{ est premier avec } p_{\omega} \\ \mathrm{signe}\left(i\omega g(\omega)\right) & \text{si } f = p_{\omega}g, \ g \text{ premier avec } p_{\omega} \end{cases} \end{split}$$

et le diagramme commute.

À ce stade, l'injectivité du morphisme $\sigma^{\mathrm{LT}}: \mathbf{W}(\mathbb{C}(t)) \to \mathrm{\acute{E}q}(S^1)$ résulte directement de l'injectivité des deux autres flèches verticales, par chasse au diagramme.

La surjectivité du morphisme σ^{LT} est élémentaire : étant donné deux points quelconques sur S^1 , il est facile de construire un polynôme trigonométrique réel f (vu comme un élément de $\Lambda_{\mathbb{C}}$ tel que $f=\overline{f}$) s'annulant précisément en ces deux points, et simplement. Grâce aux formes hermitiennes $\langle \pm f \rangle$ ainsi construites, on obtient ainsi dans $\mathrm{im}(\sigma^{\mathrm{LT}})$ toutes les fonctions équilibrées valant 1 sur un sous-arc ouvert de S^1 et -1 sur l'intérieur de son complémentaire. Ces fonctions et les fonctions constantes $\pm 1 = \sigma^{\mathrm{LT}}[\langle \pm 1 \rangle]$ engendrant $\mathrm{Éq}(S^1)$, on a bien démontré que $\sigma^{\mathrm{LT}} \colon \mathbf{W}(\mathbb{C}(t)) \to \mathrm{\acute{Eq}}(S^1)$ est un isomorphisme.

Chapitre 3

Dualité de Poincaré dans les revêtements infinis cycliques

On a rappelé dans l'introduction (section 1.3.2) comment la dualité de Poincaré sur une variété donnait naissance à des structures bilinéaires en dimension moitié.

Le but de ce chapitre est de rappeler l'interprétation géométrique de ces constructions et d'introduire leurs généralisations aux J-variétés, c'est-à-dire aux variétés munies d'un revêtement infini cyclique privilégié.

3.1 Forme d'intersection et forme d'enlacement

Dans le cas classique, la dualité de Poincaré fournit pour une variété W compacte, à bord, orientée et de dimension n des isomorphismes

$$H_i(W, \partial W) \simeq H^{n-i}(W)$$
 et $H_i(W) \simeq H^{n-i}(W, \partial W)$.

Le théorème des coefficients universels permet alors de transformer ces isomorphismes en accouplements bilinéaires, après avoir séparé les groupes d'homologie en une partie de torsion et un quotient libre.

Définitions.

 Soit E un A-module quelconque. On note TE la partie de torsion de E, c'est-à-dire le sous-module

$$TE = \left\{ x \in E \,|\, \exists a \in A \setminus \{0\} : ax = 0 \right\}.$$

– Par ailleurs, on note LE le quotient E/TE, c'est-à-dire le plus grand quotient sans torsion de E. Comme A est principal, si E est un module de type fini, LE est alors un module libre de rang fini, et la suite exacte $0 \to TE \to E \to LE \to 0$ est scindée.

Théorème (des coefficients universels). Pour tout complexe C de groupes abéliens, on a une suite exacte

$$0 \to \operatorname{Ext}_{\mathbb{Z}}(H_{i-1}(C), \mathbb{Z}) \to H^{i}(C) \to \operatorname{Hom}_{\mathbb{Z}}(H_{i}(C), \mathbb{Z}) \to 0.$$

En particulier, si les groupes d'homologie sont de type fini, cette suite induit deux isomorphismes

$$LH^{i}(C) \simeq (LH_{i}(C))^{*}$$
 et $TH^{i}(C) \simeq (TH_{i-1}(C))^{\vee}$.

Pour une variété sans bord, on obtient ainsi une forme ε -symétrique en dimension paire et une forme de torsion en dimension impaire.

Définition. Soit W une variété fermée et orientée de dimension n=2k. La composition

$$LH_k(W) \to LH^k(W) \to LH_k(W)^*$$

des isomorphismes donnés par la dualité de Poincaré et le théorème des coefficients universels définit une forme $(-1)^k$ -symétrique non dégénérée $(LH_k(W), I_W)$ appelée forme d'intersection de la variété W.

Définition. Soit M une variété fermée et orientée de dimension impaire n=2k-1. La composition

$$TH_{k-1}(M) \to TH^k(M) \to TH_{k-1}(M)^{\vee}$$

des isomorphismes donnés par la dualité de Poincaré et le théorème des coefficients universels définit une forme $(-1)^k$ -symétrique non dégénérée $(TH_{k-1}(M), L_M)$ appelée forme d'enlacement de la variété M.

Si la variété W de dimension n=2k a un bord, la composition

$$LH_k(W) \xrightarrow{Lj_*} LH_k(W, \partial W) \xrightarrow{\simeq} LH^k(W) \xrightarrow{\simeq} (LH_k(W))^*$$

continue à définir une forme $(-1)^k$ -symétrique sur $LH_k(W)$, mais cette forme peut être dégénérée : son noyau est $\ker(Lj_*) \supset \operatorname{im}(Li_* : LH_k(\partial W) \to LH_kW)$. On peut cependant régulariser la forme d'intersection définie sur le \mathbb{Q} -espace vectoriel $H_k(W;\mathbb{Q})$.

Définition. Soit W une variété compacte et orientée de dimension n=2k. La composition

$$H_k(W; \mathbb{Q}) \xrightarrow{j_*} H_k(W, \partial W; \mathbb{Q}) \xrightarrow{\simeq} H^k(W; \mathbb{Q}) \xrightarrow{\simeq} H_k(W; \mathbb{Q})^*$$

définit une forme $(-1)^k$ symétrique $I_W^{\mathbb{Q}}$ sur le \mathbb{Q} -espace vectoriel $H_k(W; \mathbb{Q})$, de noyau

$$\ker(j_*) = \operatorname{im}(i_* : H_k(\partial W; \mathbb{Q}) \to H_k(W; \mathbb{Q})).$$

Cette dernière induit donc une forme $(-1)^k$ -symétrique non dégénérée sur l'espace vectoriel quotient $H_k(W;\mathbb{Q})/\ker(j_*)$ ou, de manière équivalente, sur $\operatorname{im}(j_*)$, notée $\overline{I}_W^{\mathbb{Q}}$ et appelée forme d'intersection rationnelle (régularisée) de la variété W.

En petite dimension, ces formes bilinéaires ont les interprétations géométriques suivantes :

- Si W est une variété fermée de dimension 4, toute classe d'homologie dans H_2M est représentée par une surface plongée. Quitte à effectuer une petite modification, deux classes d'homologie sont alors représentées par deux surfaces plongées $S_1, S_2 \subset W$ transverses. L'intersection algébrique $S_1 \cdot S_2$ ne dépend alors que des classes $[S_1], [S_2] \in H_2W$ (et même que de leurs images ¹ dans LH_2W) et vaut $I_W([S_1], [S_2])$ (cf. [40]). La même chose vaut dans un cadre relatif.
- Si M est une variété fermée de dimension 3 et que $C_1, C_2 \subset M$ sont deux courbes disjointes dont les classes d'homologie $[C_1], [C_2] \in H_1M$ sont de torsion, on peut trouver $n \in \mathbb{N}$ et une 2-chaîne S de bord nC_1 . Si S et C_2 sont transverses, le nombre d'enlacement $\lambda_M([C_1], [C_2])$ est $\left[\frac{S \cdot C_2}{n}\right]_1 \in \mathbb{Q}/\mathbb{Z}$ (cf. [70, §77]).

3.2 Dualité de Poincaré-Reidemeister

Dans toute la suite, on appellera \mathbb{J} -variété tout couple (X,φ) , où X est une variété compacte orientée et $\varphi:\pi_1X\to\mathbb{J}$ est un morphisme de groupes (si X n'est pas connexe, on définit le groupe fondamental π_1X comme la somme directe des groupes fondamentaux des composantes connexes de X). Alternativement, on peut voir une \mathbb{J} -variété comme la donnée d'une variété munie d'une application (définie à homotopie près) $X\to B\mathbb{J}=S^1$.

Le morphisme φ et l'action régulière de $\mathbb J$ sur lui-même se composent pour fournir une action de $\pi_1(X)$ sur un ensemble discret infini. Via la correspondance entre ensembles munis d'une action de $\pi_1(X)$ et revêtements de X, cela donne un revêtement infini cyclique $p: \widetilde{X}_{\varphi} \to X$ de groupe d'automorphismes $\mathbb J$. Si φ est surjectif et X connexe, il s'agit simplement du revêtement galoisien associé au sous-groupe distingué $\ker \varphi \lhd \pi_1 X$; à l'opposé, si φ est le morphisme trivial, $\widetilde{X}_{\varphi} \to X$ est le revêtement infini cyclique trivial.

^{1.} D'après la dualité de Poincaré et le théorème des coefficients universels, $TH_2W \simeq TH^2W \simeq \operatorname{Hom}_{\mathbb{Z}}(TH_1W,\mathbb{Q}/\mathbb{Z})$; en particulier, H_2W est sans torsion quand W est simplement connexe.

On peut également voir le revêtement infini cyclique $\widetilde{X}_{\varphi} \to X$ comme le rappel par l'application (définie à homotopie près) $X \to B \mathbb{J} = S^1$ du revêtement universel $\mathbb{R} \to S^1$.

Si (X, φ) est une variété à bord, son bord hérite naturellement d'une structure de \mathbb{J} -variété grâce au morphisme composé

$$\pi_1(\partial X) \xrightarrow{\iota_*} \pi_1 X \xrightarrow{\varphi} \mathbb{J}.$$

Cela permet de parler naturellement de cobordisme entre J-variétés.

Remarque. Munies de la notion naturelle de morphismes (un morphisme $f:(X,\varphi)\to (Y,\psi)$ entre \mathbb{J} -variétés est simplement une application continue $f:X\to Y$ entre les variétés sous-jacentes telle que $\psi\circ f_*=\varphi$ et $f(\partial X)\subset\partial Y$), les \mathbb{J} -variétés forment une catégorie qu'il n'est pas difficile de munir d'une structure de *catégorie* à *cobordisme* au sens de [73]. Ses monoïdes de cobordisme sont alors les groupes de bordisme orienté

$$\Omega_*(BJ) = \Omega_*(S^1) = \pi_*(S^1 \land MSO) = \pi_{*-1}(MSO) = \Omega_{*-1}.$$

3.2.1 (Co)homologie des revêtements infinis cycliques

Soit (X, φ) une \mathbb{J} -variété. On va voir comment lui associer des modules d'homologie et de cohomologie sur les anneaux Λ et $\Lambda_{\mathbb{O}}$.

Commençons par munir X d'une triangulation finie Δ . Cette triangulation se relève, via p, en une triangulation $\widetilde{\Delta}$ de \widetilde{X}_{φ} , invariante sous l'action du groupe $\mathbb J$ d'automorphismes du revêtement. Le complexe des chaînes simpliciales $C_*^{\widetilde{\Delta}}(\widetilde{X}_{\varphi};\mathbb Z)$ est alors muni d'une structure de module sur Λ . Ce complexe pouvant être vu comme un complexe de chaînes simpliciales à valeurs dans un système local de coefficients sur X, on le note $C_*(X,\varphi;\Lambda)$ et on note son homologie $H_*(X,\varphi;\Lambda)$. On définit du même coup le complexe de $\Lambda_{\mathbb Q}$ -modules $C_*(X,\varphi;\Lambda_{\mathbb Q}) = C_*(X,\varphi;\Lambda) \otimes_{\Lambda} \Lambda_{\mathbb Q}$ et son homologie $H_*(X,\varphi;\Lambda_{\mathbb Q})$. Par définition, $C_*(X,\varphi;\Lambda)$ (resp. $C_*(X,\varphi;\Lambda_{\mathbb Q})$) est un complexe de Λ -modules (resp. $\Lambda_{\mathbb Q}$ -modules) libres de type fini.

Si X a un bord non vide, cette construction admet une version relative : le complexe des chaînes simpliciales de $\partial \widetilde{X}_{\varphi}$ est naturellement un sous-complexe de $C_*(X,\varphi;\Lambda)$ et l'on peut donc définir un complexe relatif $C_*(X,\partial X,\varphi;\Lambda)$ et son homologie $H_*(X,\partial X,\varphi;\Lambda)$ (évidemment, la même chose est vraie sur $\Lambda_{\mathbb{Q}}$).

La triangulation Δ définit une cellulation duale Δ' . De même que la triangulation Δ , la cellulation Δ' définit un complexe de Λ -modules libres de type fini $C'_*(X,\varphi;\Lambda) = C^{\widetilde{\Delta}'}_*(\widetilde{X}_{\varphi};\mathbb{Z})$ calculant l'homologie $H_*(X,\varphi;\Lambda)$ et un sous-complexe $C'_*(\partial X,\varphi;\Lambda) = C^{\widetilde{\Delta}'}_*(\partial \widetilde{X}_{\varphi};\mathbb{Z})$ associé au bord ∂X . On note naturellement $C'_*(X,\partial X,\varphi;\Lambda) = C^{\widetilde{\Delta}'}_*(\widetilde{X}_{\varphi},\partial \widetilde{X}_{\varphi};\mathbb{Z})$ leur quotient, qui calcule l'homologie relative $H_*(X,\partial X,\varphi;\Lambda)$.

Les complexes de chaînes $C_*(X, \varphi; \Lambda)$ et $C'_*(X, \partial X, \varphi; \Lambda)$ sont alors duaux. En effet, si on note $\langle \cdot, \cdot \rangle$ l'accouplement d'intersection usuel (à valeurs dans \mathbb{Z}) entre une chaîne de $C_q(X, \varphi; \Lambda)$ et une chaîne de $C'_{n-q}(X, \partial X, \varphi; \Lambda)$, les applications bilinéaires

$$\begin{split} \cdot : C_q(X,\varphi;\Lambda) \times C'_{n-q}(X,\partial X,\varphi;\Lambda) \to \Lambda \\ \alpha \cdot \beta &= \sum_{n \in \mathbb{Z}} \langle t^n \alpha, \beta \rangle t^n \end{split}$$

vérifient les propriétés suivantes, pour tous $\alpha \in C_q(X, \varphi; \Lambda)$, $\beta \in C'_{n-q}(X, \partial X, \varphi; \Lambda)$ et $a, b \in \Lambda$:

- (i) $(a\alpha) \cdot (b\beta) = \overline{a}b(\alpha \cdot \beta)$;
- (ii) $(\partial \alpha) \cdot \beta = (-1)^q \alpha \cdot (\partial \beta)$.

Dans la suite, on appellera produit de Reidemeister le produit \cdot ainsi défini. On peut alors énoncer la dualité de Poincaré-Reidemeister en suivant [56, Lemmas 1 & 2] et [47, Theorem (2.1)] :

Théorème (Dualité de Poincaré-Reidemeister). Les accouplements sesquilinéaires ci-dessus définissent un isomorphisme

$$\varphi: C_q(X, \partial X, \varphi; \Lambda) \to C'_{n-q}(X, \varphi; \Lambda)^* = \overline{\operatorname{Hom}}_{\Lambda}(C'_{n-q}(X; \Lambda), \Lambda).$$

Notons que la formule $(\partial \alpha) \cdot \beta = (-1)^q \alpha \cdot (\partial \beta)$ montre en outre que φ est un morphisme de chaînes. Ainsi, φ permet d'identifier le complexe de cochaînes $C^*(X, \partial X, \varphi; \Lambda)$ et $C'_{n-*}(X, \varphi; \Lambda)$. Puisque $C'_*(X, \varphi; \Lambda)$ calcule l'homologie $H_*(X, \varphi; \Lambda)$, on obtient ainsi une version de la dualité de Poincaré, sous la forme d'isomorphismes de Λ -modules

$$H^{q}(X, \partial X, \varphi; \Lambda) \simeq H_{n-q}(X, \varphi; \Lambda),$$

où par définition, $H^*(X,\varphi;\Lambda)$ (resp. $H^*(X,\partial X,\varphi;\Lambda)$) désigne la cohomologie du complexe de cochaînes dual $C^*(X,\varphi;\Lambda) = (C_*(X,\varphi;\Lambda))^*$.

Remarquons que $H_*(X, \varphi; \Lambda)$ et $H^*(X, \varphi; \Lambda)$ s'identifient canoniquement à l'homologie usuelle et à la cohomologie à support compact du revêtement \widetilde{X}_{φ} , toutes deux munies de la structure de Λ -module héritée de l'action du groupe d'automorphismes du revêtement.

On obtient de la même façon un isomorphisme analogue $H_q(X, \partial X, \varphi; \Lambda) \simeq H^{n-q}(X, \varphi; \Lambda)$ et même un diagramme commutatif

où les lignes sont les suites exactes longues de la paire $(X, \partial X)$ en homologie et en cohomologie et les flèches verticales sont les isomorphismes que l'on vient de définir.

Évidemment, ces isomorphismes restent v
rais sur l'anneau de coefficients $\Lambda_{\mathbb{O}}.$

Le théorème des coefficients universels utilisés dans la section précédente reste valable sur l'anneau principal $\Lambda_{\mathbb{Q}}$. On obtient donc des isomorphismes reliant la cohomologie du complexe de cochaînes $\operatorname{Hom}(C_*(X,\varphi;\Lambda_{\mathbb{Q}}),\Lambda_{\mathbb{Q}})$ aux $\Lambda_{\mathbb{Q}}$ -modules d'homologie $H_*(X,\varphi;\mathbb{Q})$. En prenant en compte l'involution dans la définition du complexe de cochaînes $C^*(X,\varphi;\Lambda_{\mathbb{Q}})=(C_*(X,\varphi;\Lambda_{\mathbb{Q}}))^*=\overline{\operatorname{Hom}}_{\Lambda_{\mathbb{Q}}}(C_*(X,\varphi;\Lambda_{\mathbb{Q}}),\Lambda_{\mathbb{Q}})$, on obtient des isomorphismes

$$LH^{q}(X,\varphi;\Lambda_{\mathbb{Q}}) \simeq \overline{\operatorname{Hom}}_{\Lambda_{\mathbb{Q}}}(LH_{q}(X,\varphi;\Lambda_{\mathbb{Q}}),\Lambda_{\mathbb{Q}}) = LH_{q}(X,\varphi;\Lambda_{\mathbb{Q}})^{*}$$
$$TH^{q}(X,\varphi;\Lambda_{\mathbb{Q}}) \simeq \overline{\operatorname{Hom}}_{\Lambda_{\mathbb{Q}}}(TH_{q-1}(X,\varphi;\Lambda_{\mathbb{Q}}),S(\Lambda_{\mathbb{Q}})) = TH_{q-1}(X,\varphi;\Lambda_{\mathbb{Q}})^{\vee}$$

qui vont nous permettre de transformer ces isomorphismes donnés par la dualité de Poincaré-Reidemeister en applications sesquilinéaires.

3.2.2 Forme d'intersection d'une J-variété de dimension paire

Soit (W, φ) une \mathbb{J} -variété fermée de dimension n = 2k. La composition

$$LH_k(W,\varphi;\Lambda_{\mathbb{Q}}) \to LH^k(W,\varphi;\Lambda_{\mathbb{Q}}) \to LH_k(W,\varphi;\Lambda_{\mathbb{Q}})^*$$

des isomorphismes donnés par (la partie libre de) la dualité de Poincaré-Reidemeister et le théorème des coefficients universels définit une forme $(-1)^k$ -hermitienne sur l'homologie de dimension moitié $H_k(W,\varphi;\Lambda_{\mathbb{Q}})$. On appelle forme d'intersection la forme $(-1)^k$ -hermitienne $(H_k(W,\varphi;\Lambda_{\mathbb{Q}}),I_W)$ ainsi obtenue.

Que ce soit par extension des scalaires ou en effectuant dès le départ la construction sur $\mathbb{Q}(t) = \operatorname{Frac} \Lambda_{\mathbb{Q}}$, on obtient également une forme d'intersection $(-1)^k$ -hermitienne sur le $\mathbb{Q}(t)$ -espace vectoriel $(H_k(W, \varphi; \mathbb{Q}(t)), I_W^{\mathbb{Q}(t)})$.

Si la J-variété a un bord, la composition

$$H_k(W,\varphi;\mathbb{Q}(t)) \xrightarrow{j_*} H_k(W,\partial W,\varphi;\mathbb{Q}(t)) \to H^k(W,\varphi;\mathbb{Q}(t)) \to H_k(W,\varphi;\mathbb{Q}(t))$$

fournit une forme $(-1)^k$ -hermitienne $I_W^{\mathbb{Q}(t)}$ sur le $\mathbb{Q}(t)$ -espace vectoriel $H_k(W,\varphi;\mathbb{Q}(t))$, de noyau

$$\ker(j_*: H_k(W, \varphi; \mathbb{Q}(t)) \to H_k(W, \partial W, \varphi; \mathbb{Q}(t)))$$

$$= \operatorname{im}(i_*: H_k(\partial W, \varphi; \mathbb{Q}(t)) \to H_k(W, \varphi; \mathbb{Q}(t))).$$

On obtient ainsi une forme $(-1)^k$ -hermitienne régularisée sur le $\mathbb{Q}(t)$ -espace vectoriel quotient $H_k(W,\varphi;\mathbb{Q}(t))/\ker(j_*)$ ou sur $\operatorname{im}(j_*)$, que l'on note $\overline{I}_W^{\mathbb{Q}(t)}$.

En dimension 4, l'interprétation géométrique donnée à la section 3.1 continue à être valable, pourvu que l'intersection algébrique des chaînes soit comprise au sens du produit de Reidemeister · à valeurs dans $\Lambda_{\mathbb{Q}}$ (ou $\mathbb{Q}(t)$) défini à la section 3.2 (le fait qu'une classe de cohomologie de degré 2 soit représentée par une surface plongée reste vrai dans une variété non compacte, ici \widetilde{W}_{φ}).

On note alors $\alpha_W \in \mathbf{W}(\mathbb{Q}(t))$ la classe de Witt de cette forme d'intersection.

3.2.3 Forme d'enlacement d'une J-variété de dimension impaire.

Soit (M,φ) une variété fermée de dimension n=2k+1. La composition

$$TH_k(M, \varphi; \Lambda_{\mathbb{O}}) \to TH^{k+1}(M, \varphi; \Lambda_{\mathbb{O}}) \to TH_k(M, \varphi; \Lambda_{\mathbb{O}})^{\vee}$$

des isomorphismes donnés par (la partie de torsion de) la dualité de Poincaré-Reidemeister et le théorème des coefficients universels fournit une forme de torsion $(-1)^{k+1}$ -hermitienne sur le $\Lambda_{\mathbb{Q}}$ -module de torsion $TH_k(M,\varphi;\Lambda_{\mathbb{Q}})$. On appelle forme d'enlacement de (M,φ) la forme de torsion $(TH_k(M,\varphi;\Lambda_{\mathbb{Q}}), \operatorname{Enl})$ ainsi obtenue.

De même que la forme d'enlacement d'une variété de dimension 3 (cf. section 3.1), la forme d'enlacement d'une \mathbb{J} -variété M de dimension 3 a une interprétation géométrique : si $C_1, C_2 \subset H_1(\widetilde{M}_\varphi; \mathbb{Q})$ sont deux courbes disjointes dont les classes d'homologie sont de $\Lambda_{\mathbb{Q}}$ -torsion, on peut prendre une 2-chaîne $S \subset \widetilde{M}_\varphi$ telle que $\partial S = fC_1$ (pour un élément non nul $f \in \Lambda_{\mathbb{Q}}$) et calculer l'intersection $S \cdot C_2 \in \Lambda_{\mathbb{Q}}$ à l'aide du produit · défini à la section 3.2. La valeur de la forme d'enlacement est alors donnée par la formule

$$\operatorname{Enl}_{(M,\varphi)}([C_1],[C_2]) = \left[\frac{S \cdot C_2}{f}\right]_1 \in S(\Lambda_{\mathbb{Q}}) = \mathbb{Q}(t)/\Lambda_{\mathbb{Q}}.$$

On note alors $\beta_M \in \mathbf{WT}(\Lambda_{\mathbb{Q}})$ la classe de Witt de cette forme d'enlacement.

Si la $\mathbb{J}\text{-variété}\ (M,\varphi)$ n'est plus supposée fermée, la composition

$$TH_k(M, \varphi; \mathbb{Q}) \xrightarrow{Tj_*} TH_k(M, \partial M, \varphi; \Lambda_{\mathbb{Q}}) \xrightarrow{\simeq} TH^{k+1}(M, \varphi; \Lambda_{\mathbb{Q}})$$

 $\xrightarrow{\simeq} TH_k(M, \varphi; \Lambda_{\mathbb{Q}})^{\vee},$

où les deux isomorphismes sont donnés par (la partie de torsion de) la dualité de Poincaré-Reidemeister et le théorème des coefficients universels,

fournit une forme $(-1)^k$ -hermitienne à valeurs dans $S(\Lambda_{\mathbb{Q}})$ sur le $\Lambda_{\mathbb{Q}}$ module de torsion $TH_k(M,\varphi;\Lambda_{\mathbb{Q}})$, de noyau $\ker(Tj_*)$. On continue à
appeler cette forme $(TH_1(M,\varphi;\Lambda_{\mathbb{Q}}),\operatorname{Enl}_{(M,\varphi)})$ forme d'enlacement de la \mathbb{J} variété (M,φ) . Dans le cas de la dimension 3, l'interprétation géométrique
reste valable.

Le morphisme Tj_* n'est rien d'autre que la restriction à $TH_1(M, \varphi; \mathbb{Q})$ du morphisme

$$j_*: H_1(M, \varphi; \Lambda_{\mathbb{O}}) \to H_1(M, \partial M, \varphi; \Lambda_{\mathbb{O}}).$$

La suite exacte longue associée à la paire $(\widetilde{M}_{\varphi}, \partial \widetilde{M}_{\varphi})$ nous assure que le noyau de ce morphisme n'est autre que l'image de $i_*: H_1(\partial M, \varphi; \Lambda_{\mathbb{Q}}) \to H_1(M, \varphi; \Lambda_{\mathbb{Q}})$. Le noyau de la forme d'enlacement de (M, φ) est donc

$$\ker(Tj_*) = \operatorname{im}(i_*: H_1(\partial M, \varphi; \Lambda_{\mathbb{Q}}) \to H_1(M, \varphi; \Lambda_{\mathbb{Q}})) \cap TH_1(M, \varphi; \Lambda_{\mathbb{Q}}).$$

Dans la suite, il sera commode de traiter le cas d'une forme d'enlacement dont le noyau est inclus dans la composante (t-1)-primaire du module de torsion. Cela motive les définitions suivantes.

Définition. Soit T un $\Lambda_{\mathbb{O}}$ -module de torsion et de type fini et

$$T = \bigoplus_{p} T_{p}$$

sa décomposition en composantes p-primaires. On définit alors

$$T_0 = \bigoplus_{p \neq t-1} T_p.$$

D'après la discussion de la section 2.2.1, la décomposition

$$TH_k(M, \varphi; \Lambda_{\mathbb{O}}) = TH_k(M, \varphi; \Lambda_{\mathbb{O}})_{t-1} \oplus TH_k(M, \varphi; \Lambda_{\mathbb{O}})_0$$

est orthogonale pour la forme d'enlacement Enl. On note Enl₀ la restriction de cette forme à $TH_k(M, \varphi; \Lambda_{\mathbb{Q}})_0$. Si cette forme est non dégénérée, on note $\beta_M \in \mathbf{WT}(\Lambda_{\mathbb{Q}})$ sa classe de Witt. Cette notation n'est pas contradictoire avec la précédence en vertu de la proposition suivante.

Proposition. Si la forme d'enlacement Enl défine sur $TH_k(M, \varphi; \Lambda_{\mathbb{Q}})$ est non dégénérée, les formes Enl et Enl₀ définissent la même classe de Witt.

Démonstration. Cela découle directement de la discussion de la section 2.2.1 et de la nullité (démontrée à la section 2.2.2) du groupe de Witt $\mathbf{WT}(\Lambda_{\mathbb{Q}}, t-1) \simeq \mathbf{W}_{-}(\mathbb{Q})$.

3.2.4 Signature de Blanchfield d'un entrelacs

Soit $L \subset S^3$ un entrelacs orienté à |L| composantes (on suppose également la sphère S^3 orientée). Par dualité d'Alexander, l'extérieur $E(L) = S^3 \setminus \mathcal{U}(L)$ de l'entrelacs a pour groupes d'homologie

$$H_0E(L) = \mathbb{Z}$$
 $H_1E(L) = \mathbb{Z}^{|L|}$ $H_qE(L) = 0$ pour $q \ge 2$,

les méridiens $m_1, \ldots, m_{|L|}$ des nœuds fournissant d'ailleurs une base de $H_1E(L)$. Cette base permet d'obtenir un morphisme

$$H_1E(L) = \mathbb{Z}[m_1] \oplus \cdots \oplus \mathbb{Z}[m_{|L|}] \quad \to \quad \mathbb{Z}$$
$$(n_1, \dots, n_{|L|}) \quad \mapsto \quad n_1 + \dots + n_{|L|}$$

et, par composition, un morphisme d'enlacement total

$$\varphi: \pi_1 E(L) \twoheadrightarrow \mathbb{J}.$$

Dans la suite, on considèrera toujours E(L) muni de la structure de \mathbb{J} -variété définie par ce morphisme et on omettra donc le φ dans la notation des groupes d'homologie à coefficients dans Λ et $\Lambda_{\mathbb{Q}}$.

En particulier, cette structure donne naissance à une forme d'enlacement Enl sur le module de torsion $TH_1(E(L); \Lambda_{\mathbb{Q}})$. Le bord de E(L) n'étant pas vide, cette forme peut être dégénérée. Cependant, nous allons voir que la forme Enl_0 définie à la section précédente l'est.

Proposition. Le noyau de la forme hermitienne $(TH_1(E(L); \Lambda_{\mathbb{Q}}), Enl)$ est inclus dans la composante (t-1)-primaire $TH_1(E(L); \Lambda_{\mathbb{Q}})_{t-1}$. En particulier, la forme $(TH_1(E(L); \Lambda_{\mathbb{Q}})_0, Enl_0)$ est non dégénérée.

On appelle alors signature de Blanchfield de l'entrelacs L la classe de Witt $\beta_L \in \mathbf{WT}(\Lambda_{\mathbb{Q}})$ de la forme de torsion hermitienne $(TH_1(E(L); \Lambda_{\mathbb{Q}})_0, \operatorname{Enl}_0)$.

 $D\acute{e}monstration.$ D'après la discussion de la section 3.2.3, le noyau de la forme Enl est

$$\begin{split} \ker \bigl(Tj_*: TH_1(E(L); \Lambda_{\mathbb{Q}}) &\to TH_1(E(L), \partial E(L); \Lambda_{\mathbb{Q}})\bigr) \\ &= TH_1(E(L); \Lambda_{\mathbb{Q}}) \cap \ker \left(j_*: H_1(E(L); \Lambda_{\mathbb{Q}}) \to H_1(E(L), \partial E(L); \Lambda_{\mathbb{Q}})\right) \\ &= TH_1(E(L); \Lambda_{\mathbb{Q}}) \cap \operatorname{im} \left(i_*: H_1(\partial E(L); \Lambda_{\mathbb{Q}}) \to H_1(E(L); \Lambda_{\mathbb{Q}})\right). \end{split}$$

Il convient donc d'analyser plus précisément l'homologie $H_1(\partial E(L); \Lambda_{\mathbb{Q}})$. Le bord $\partial E(L)$ de l'extérieur de L est constitué de |L| tores, chacun étant muni de la structure de \mathbb{J} -variété induite de celle de E(L). Chacun de ces tores $(T_j)_{j=1}^{|L|}$ a pour groupe fondamental le groupe abélien libre $\pi_1 T_j = \langle m_j, \ell_j \rangle$, où m_j est le méridien du nœud $k_j \subset L$ et ℓ_j le parallèle

de Seifert, c'est-à-dire la classe d'homotopie (bien définie à inversion près) définie par une surface de Seifert du nœud $k_j \subset S^3$ (surface qui peut a priori intersecter les autres composantes $k_{j'}$ mais qui n'intersecte pas k_j ; en particulier, l'enlacement de m_j et ℓ_j est nul). La structure de \mathbb{J} -variété sur $T_j \subset \partial E(L)$ est alors obtenue par le morphisme envoyant m_j sur t et ℓ_j sur 1.

Le revêtement infini cyclique \widetilde{T}_j est alors isomorphe au revêtement galoisien $\mathbb{R} \times S^1 \to S^1 \times S^1$: en particulier, le parallèle ℓ_j se relève en une courbe fermée essentielle $\widetilde{\ell}_j \subset \widetilde{T}_j$ et l'homologie est donnée par

$$H_0(T_j;\Lambda_{\mathbb{Q}}) = \underline{\mathbb{Q}} \qquad H_1(T_j;\Lambda_{\mathbb{Q}}) = \underline{\mathbb{Q}} \left[\widetilde{\ell_j} \right] \qquad H_q(T_j;\Lambda_{\mathbb{Q}}) = 0 \text{ pour } q \geq 2.$$

 $(\mathbb{Q} \text{ est simplement le } \Lambda_{\mathbb{Q}}\text{-module trivial }\mathbb{Q}.)$

On obtient donc $H_1(\partial E(L); \Lambda_{\mathbb{Q}}) = \underline{\mathbb{Q}}^{|L|}$. En particulier, ce $\Lambda_{\mathbb{Q}}$ -module est restreint à sa composante (t-1)-primaire. On en déduit donc

im
$$(i_*: H_1(\partial E(L); \Lambda_{\mathbb{Q}}) \to H_1(E(L); \Lambda_{\mathbb{Q}})) \subset TH_1(E(L); \Lambda_{\mathbb{Q}})_{t-1}$$

ce qui implique que le noyau de Enl est inclus dans $TH_1(E(L); \Lambda_{\mathbb{Q}})_{t-1}$ et donc que le noyau de sa restriction Enl_0 est trivial.

On vient donc de montrer que la forme de torsion $(TH_1(E(L); \Lambda_{\mathbb{Q}})_0, \operatorname{Enl}_0)$ est non singulière. D'après la proposition de la section 2.1.2, elle est donc non dégénérée.

Remarques.

– Dans le cas où les différentes composantes k_j de L bordent des surfaces de Seifert S_j disjointes, on dit que L est un entrelacs-bord. (Cette condition est strictement plus forte que la nullité des enlacements $\operatorname{Enl}(k_j, k_{j'})$ des composantes de L, cf. [67, section 5.E].) Dans ce cas, le morphisme $\pi_1 E(L) \to \mathbb{J}$ définissant la structure de \mathbb{J} -variété sur E(L) donne par composition un morphisme trivial

$$\pi_1 S_j \xrightarrow{\operatorname{inc}_*} \pi_1 E(L) \longrightarrow \mathbb{J}.$$

Il s'ensuit alors que la restriction du revêtement infini cyclique $E(L) \to E(L)$ aux surfaces de Seifert S_j est triviale : celles-ci se relèvent ainsi en des surfaces $\widetilde{S}_j \subset \widetilde{E}(L)$ qui bordent les relevés $\widetilde{\ell}_j$ des parallèles de Seifert. Le morphisme

$$i_*: \left(\bigoplus_{j=1}^{|L|} \underline{\mathbb{Q}}\left[\widetilde{\ell}_j\right] = H_1(\partial E(L); \Lambda_{\mathbb{Q}})\right) \to H_1(E(L); \Lambda_{\mathbb{Q}})$$

est alors trivial. La forme hermitienne $(TH_1(E(L); \Lambda_{\mathbb{Q}}), \text{Enl})$ est alors non dégénérée sans qu'il soit besoin de se restreindre à $TH_1(E(L); \Lambda_{\mathbb{Q}})_0$. Dans ce cas, comme remarqué à la fin de la section 3.2.3, on peut choisir à notre guise Enl ou Enl_0 pour définir la classe de Witt β_L .

Notons enfin que ce cas des entrelacs-bords contient celui des nœuds. – Puisque la multiplication par (t-1) y est inversible, le module $TH_1(E(L); \Lambda_{\mathbb{Q}})_0$ est naturellement muni d'une structure de $(t-1)^{-1}\Lambda_{\mathbb{Q}} = \mathbb{Q}[t, t^{-1}, (t-1)^{-1}]$ -module qui est isomorphe au localisé $(t-1)^{-1}TH_1(E(L); \Lambda_{\mathbb{Q}})$.

3.2.5 Signatures d'un entrelacs

Nous avons vu à la section 2.3 que la décomposition en composantes primaires et le dévissage permettaient de définir un isomorphisme

$$\sigma^{\mathrm{M}}:\mathbf{WT}(\Lambda_{\mathbb{C}})\to\mathbb{Z}^{(S^1)}.$$

Définition. Soit L un entrelacs. On appelle $signatures\ de\ Milnor\ de\ L$ les entiers

$$\sigma_{\omega}^{\mathrm{M}}(L) = \sigma_{\omega}^{\mathrm{M}}(\beta_L) \in \mathbb{Z}.$$

Le calcul de ces signatures peut se faire à l'aide de surfaces de Seifert. On a vu à la section 1.2.3 que le premier groupe d'homologie $H_1(F)$ d'une surface de Seifert de L portait une forme bilinéaire (a priori ni symétrique ni antisymétrique)

$$V([x],[y]) = \operatorname{Enl}(x, i_{+}(y)).$$

Une telle forme de Seifert dépend du choix de la surface de Seifert, qui n'est pas unique. En particulier, on peut toujours augmenter le genre d'une surface de Seifert en lui ajoutant des anses, une opération appelée stabilisation. Il s'avère en fait même que deux surfaces de Seifert admettent des stabilisations homéomorphes. Il est alors possible de définir une relation d'équivalence (appelée S-équivalence) entre formes de Seifert traduisant algébriquement ce procédé de stabilisation, de telle sorte que deux formes de Seifert d'un même entrelacs soient S-équivalentes. En particulier, tout invariant associé à une forme de Seifert et ne dépendant que de sa classe de S-équivalence définit un invariant d'entrelacs, cf. [67, 50].

Parmi ces invariants se trouvent les ω -signatures $(\operatorname{sign}_{\omega}(L))_{\omega \in S^1}$. Pour $\omega \in S^1$, $\operatorname{sign}_{\omega}(L)$ est simplement la signature $\operatorname{sign}_{\omega}(L)$ de la forme hermitienne complexe

$$(1-\omega)V + (1-\overline{\omega})^t V$$
,

dont on montre facilement qu'elle ne dépend que de la classe de Séquivalence de V.

Par ailleurs, la formule $(1-t)V + (1-t^{-1})^tV$ définit une forme hermitienne sur le $\mathbb{Q}(t)$ -espace vectoriel $H_1(F) \otimes_{\mathbb{Z}} \mathbb{Q}(t)$. La donnée de la classe de Witt de cette forme hermitienne est essentiellement équivalente à celle de β_L ([75], [39, §6], cf. également [49, Proposition 1]).

Théorème. On a l'égalité suivante, dans $\mathbf{WT}(\Lambda_{\mathbb{O}})$:

$$\beta_L = \partial [(1-t)V + (1-t^{-1})^t V],$$

 $où \partial: \mathbf{W}(\mathbb{Q}(t)) \to \mathbf{WT}(\Lambda_{\mathbb{Q}})$ est le morphisme construit à la section 2.1.5.

Évidemment, la fonction $\omega \mapsto \mathrm{sign}_\omega(L)$ coïncide alors avec la fonction équilibrée

$$\sigma^{\text{LT}}([(1-t)V + (1-t^{-1})^t V]) \in \text{\'Eq}(S^1)$$

sauf en un nombre fini de points. 2

En particulier, on a pour tout $\xi \in S^1$

$$\frac{\operatorname{sign}_{\xi_{+}}(L) - \operatorname{sign}_{\xi_{-}}(L)}{2} = \operatorname{saut}_{\xi}(\sigma^{\operatorname{LT}}(L)) = \sigma^{\operatorname{M}}_{\xi}(L).$$

Remarque. Bien que saut : Éq $(S^1) \to \mathbb{Z}^{(S^1)}$ ne soit pas injectif, les signatures de Milnor et de Levine-Tristram contiennent exactement la même information : comme 1 n'est pas un zéro du polynôme d'Alexander de L, on a $\sigma_1^{\mathrm{LT}}(L) = \mathrm{sign}_1(L) = 0$ donc $\sigma^{\mathrm{LT}}(L)$ est l'unique antécédent de $\sigma^{\mathrm{M}}(L)$ valant 0 au voisinage de 1.

3.3 Représentation de Burau et forme de Squier

Pour clore ce chapitre, voyons comment les idées de dualité de Poincaré dans les revêtements infinis cycliques permettent de retrouver la représentation de Burau et une forme antihermitienne qu'elle préserve, analogue à la forme (hermitienne) de Squier que nous avons présentée à la section 1.1.3.

3.3.1 Représentation de Burau

Le groupe fondamental de la surface à bord \mathcal{D}_n est isomorphe au groupe libre

$$\pi_1(D_n) = \mathbb{L}(\gamma_1, \dots, \gamma_n).$$

^{2.} Remarquons que certains auteurs appellent signature de Levine-Tristram la fonction $\omega \mapsto \sigma_{\omega}(L)$ et non pas la fonction équilibrée associée.

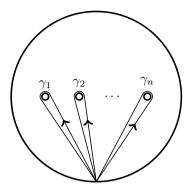


FIGURE 3.1 – Groupe fondamental de D_n

À ce titre, le groupe fondamental de D_n est naturellement muni d'un morphisme surjectif

$$\varphi: \pi_1(D_n) = \mathbb{L}(\gamma_1, \dots, \gamma_n) \to \mathbb{J}$$

 $\gamma_i \mapsto t,$

qui compte essentiellement l'enlacement d'une classe d'homotopie autour des n « perforations » du disque.

L'action du groupe de difféomorphismes \mathcal{D}_n sur le groupe fondamental de D_n se factorise par la représentation d'Artin

$$\operatorname{Artin}: B(n) = \pi_0(\mathscr{D}_n) \to \operatorname{Aut}(\pi_1(D_n))$$

que l'on peut déterminer explicitement : l'isomorphisme entre B(n) et $\pi_0(\mathcal{D}_n)$ envoie le générateur d'Artin σ_i sur un twist de Dehn permutant les i-ième et (i+1)-ième perforations. Son action sur le groupe fondamental de D_n est donc donné par la formule

$$\operatorname{Artin}(\sigma_i) \cdot \gamma_j = \begin{cases} \gamma_{i+1} & \text{si } j = i \\ \gamma_{i+1} \gamma_i \gamma_{i+1}^{-1} & \text{si } j = i+1 \\ \gamma_j & \text{dans les autres cas.} \end{cases}$$

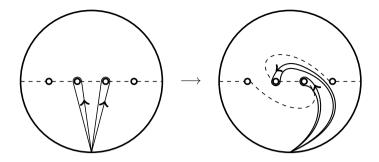


FIGURE 3.2 – Image de $\sigma_2 \in B(4)$ par la représentation d'Artin

La représentation d'Artin préserve donc la \mathbb{J} -structure donnée par le morphisme φ . Cela a pour conséquence que si $h_x \in \mathcal{D}_n$ est un représentant de $x \in B(n)$, on peut trouver un difféomorphisme $\widetilde{h}_x : \widetilde{D}_n \to \widetilde{D}_n$ relevant $h_x : D_n \to D_n$ et tel que h_x coïncide avec l'identité sur le bord extérieur $\partial_{\text{ext}} \widetilde{D}_n = \partial_{\text{ext}} D_n$. La classe d'isotopie du difféomorphisme \widetilde{h}_x ne dépend que de $x \in B(n)$.

Autrement dit, on a obtenu une action à isotopie près $B(n) \to \pi_0 \operatorname{Diff}(\widetilde{D_n}, \partial_{\operatorname{ext}} \widetilde{D_n})$. La représentation de Burau va être obtenue comme action induite en homologie. Pour représenter $\widetilde{D_n}$, on dessine n coupures dans D_n . Le revêtement infini cyclique est alors obtenu en recollant une infinité de copies de D_n (chacune correspondant à un feuillet du revêtement), que l'on appellera les étages de $\widetilde{D_n}$, et en identifiant à chaque étage la partie droite de chaque coupure avec la partie gauche de la coupure correspondante à l'étage supérieur.

En particulier, les générateurs γ_i de $\pi_1(D_n)$ se relèvent en des arcs a_i non fermés reliant le point-base p à son image tp par l'automorphisme de revêtement, un étage plus haut.

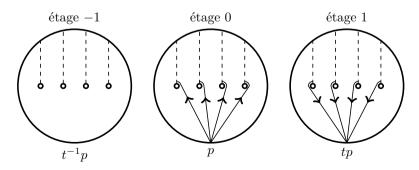


FIGURE 3.3 – $\widetilde{D_n}$ et les arcs a_i

De même que D_n se rétracte par déformation sur un bouquet de n cercles correspondant aux lacets γ_i , le revêtement \widetilde{D}_n se rétracte par déformation sur un graphe infini dont les arêtes correspondent aux arcs a_i et à leurs images par le groupe d'automorphismes \mathbb{J} et dont les sommets correspondent aux images de p par le même groupe.

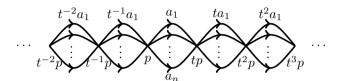


FIGURE 3.4 – Type d'homotopie de $\widetilde{D_n}$

On voit ainsi directement que le premier groupe d'homologie relatif $H_1(\widetilde{D_n}, \mathbb{J} \cdot p)$ est un Λ -module libre engendré par les $([a_i])_{i=1}^n$ et que le premier groupe d'homologie

$$H_1(D_n; \Lambda) = H_1(\widetilde{D_n})$$

est un Λ -module libre de rang n-1, engendré par exemple par les classes $([c_i])_{i=1}^{n-1}$, où c_i est le cycle a_i-a_n . L'action de B(n) sur ces deux groupes d'homologie donne les représentations de Burau (resp. non réduite et réduite).

On obtient ainsi l'expression de la représentation de Burau (non réduite) :

$$\widetilde{\operatorname{Burau}}(\sigma_i) \cdot [a_j] = \begin{cases} [a_{i+1}] & \text{si } j = i \\ [a_{i+1}] + t[a_i] - t[a_{i+1}] & \text{si } j = i+1 \\ [a_j] & \text{dans les autres cas.} \end{cases}$$

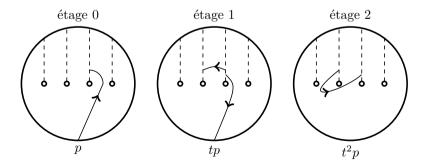


FIGURE 3.5 – $\widetilde{\text{Burau}}(\sigma_i) \cdot [a_{i+1}] = [a_{i+1}] + t[a_i] - t[a_{i+1}]$

En restriction au module obtenu par les classes $[c_j]$, on obtient

Pour
$$i < n - 1$$
, Burau $(\sigma_i) \cdot [c_j] = \begin{cases} [c_{i+1}] & \text{si } j = i \\ [c_{i+1}] + t[c_i] - t[c_{i+1}] & \text{si } j = i + 1 \\ [c_j] & \text{sinon.} \end{cases}$
Burau $(\sigma_{n-1}) \cdot [c_j] = \begin{cases} [c_j] - t[c_{n-1}] & \text{si } j \neq n - 1, \\ -t[c_{n-1}] & \text{si } j = n - 1. \end{cases}$

Remarques.

- À une permutation près, on obtient bien comme représentation de Burau non réduite celle donnée par les transposées des matrices S_i de la section 1.1.3.
- La construction topologique ayant permis d'obtenir la représentation de Burau (non réduite) à partir de la représentation d'Artin est un cas particulier d'une construction de théorie combinatoire des groupes, le calcul différentiel libre de Fox, cf. [28]

3.3.2 Forme de Squier

Maintenant que la représentation de Burau est identifiée à l'homologie

$$H_1(D_n; \Lambda) = H_1(\widetilde{D_n}) \simeq \Lambda^{n-1},$$

l'existence d'une structure bilinéaire préservée est une conséquence de ce qui précède. D'après la section 3.2.2, la partie libre $LH_1(D_n; \Lambda_{\mathbb{Q}})$ de l'homologie (rationnelle) du revêtement $\widetilde{D_n}$ est munie d'une forme d'intersection antihermitienne

$$LH_1(D_n; \Lambda_{\mathbb{Q}}) \xrightarrow{Lj_*} LH_1(D_n, \partial D_n; \Lambda_{\mathbb{Q}}) \to LH^1(D_n; \Lambda_{\mathbb{Q}}) \to LH_1(D_n; \Lambda_{\mathbb{Q}})^*$$

de noyau $\operatorname{im}(Lj_*)$.

Or, la suite exacte longue en homologie associée à la paire $(D_n, \partial D_n)$ s'écrit

$$\cdots \to H_1(\partial D_n; \Lambda_{\mathbb{Q}}) \xrightarrow{i_*} H_1(D_n; \Lambda_{\mathbb{Q}}) \xrightarrow{j_*} H_1(D_n, \partial D_n; \Lambda_{\mathbb{Q}}) \xrightarrow{\partial} H_0(\partial D_n; \Lambda_{\mathbb{Q}}) \to \cdots$$

En outre, le bord de D_n se décompose en :

- Une partie intérieure $\partial_{\text{int}}D_n = \bigsqcup_{i=1}^n S^1_{\text{int},i}$: sur chacun des n cercles qui la compose, la \mathbb{J} -structure de D_n se restreint en un isomorphisme $\pi_1(S_{\text{int},i}) \to \mathbb{J}$.
- Une partie extérieure $\partial_{\text{ext}} D_n = S_{\text{ext}}^1$ sur laquelle la \mathbb{J} -structure de D_n est un morphisme $\pi_1(S_{\text{ext}}^1) \to \mathbb{J}$ dont l'image est d'indice n.

Ainsi, le revêtement infini cyclique $\partial \widetilde{D}_n = \partial \widetilde{D}_n$ est constitué de 2n copies de \mathbb{R} . En particulier, $H_1(\partial D_n; \Lambda_{\mathbb{Q}}) = 0$ et le morphisme

 $j_*: H_1(D_n; \Lambda_{\mathbb{Q}}) \to H_1(D_n, \partial D_n; \Lambda_{\mathbb{Q}})$ est injectif. Le morphisme Lj_* induit sur les parties libres est alors lui aussi injectif, ce qui démontre que la forme d'intersection sur $H_1(D_n; \Lambda_{\mathbb{Q}}) = LH_1(D_n; \Lambda_{\mathbb{Q}}) \simeq \Lambda_{\mathbb{Q}}^{n-1}$ est non dégénérée.

Il suffit pour la déterminer explicitement de calculer les intersections (usuelles) entre les classes d'homologie $t^k[c_i]$ et $[c_j]$. On applique alors la définition du produit de Reidemeister donnée à la section 3.2.

On obtient alors que la forme d'intersection antihermitienne sur $H_1(D_n; \Lambda_{\mathbb{Q}})$ est donnée par

$$[c_i] \cdot [c_j] = \begin{cases} t^{-1} - 1 & \text{si } i < j \\ t^{-1} - t & \text{si } i = j \\ 1 - t & \text{si } i > j. \end{cases}$$

Par analogie avec la forme hermitienne introduite par Squier et présentée à la section 1.1.3, on appellera cette forme d'intersection la forme (antihermitienne) de Squier et on la notera Sq.

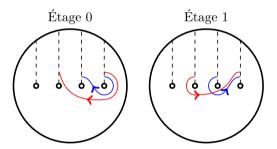


Figure 3.6 – Si $i < j, \langle c_i, c_j \rangle = -1$

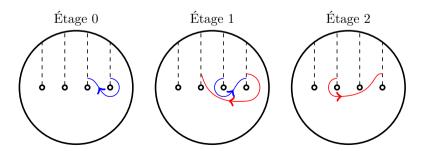


Figure 3.7 – Si $i < j, \langle tc_i, c_j \rangle = 0$

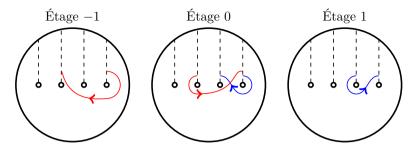


Figure 3.8 – Si i < j, $\langle t^{-1}c_i, c_j \rangle = 1$

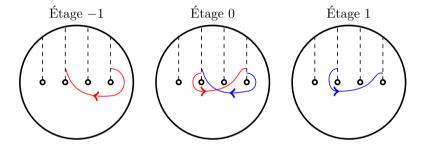


Figure 3.9 – Pour tout $i, \langle t^{-1}c_i, c_i \rangle = 1$

Chapitre 4

Analogue sur $\Lambda_{\mathbb Q}$ d'un théorème de Lannes et Latour

4.1 Énoncés

Nous avons défini à la section 3.1 la forme d'enlacement $(LH_{m-1}(M), L_M)$ d'une variété fermée de dimension 4m-1 et la forme d'intersection rationnelle $(H_{2m}(W;\mathbb{Q})/\ker(j_*), \overline{I}_W^{\mathbb{Q}})$ d'une variété compacte de dimension 4m, éventuellement à bord. Ces formes définissent des classes de Witt

$$[L_M] \in \mathbf{WT}(\mathbb{Z}) \qquad \left[\overline{I}_W^{\mathbb{Q}}\right] \in \mathbf{W}(\mathbb{Q}).$$

Le théorème de Lannes et Latour met alors en relation ces deux classes de Witt, à l'aide du morphisme $\partial: \mathbf{W}(\mathbb{Q}) \to \mathbf{WT}(\mathbb{Z})$ défini à la section 2.1.5. Il avait été démontré par Barge, Lannes, Latour et Vogel dans le cas où M est une sphère d'homologie rationnelle.

Théorème ([11], corollaire 4.5; [45], proposition 6.3). Soit W une variété compacte de dimension 4m et de bord M. Les classes de Witt $[L_M] \in \mathbf{WT}(\mathbb{Z})$ et $\left[\overline{I}_W^{\mathbb{Q}}\right] \in \mathbf{W}(\mathbb{Q})$ sont reliées par la formule

$$\partial \left[\overline{I}_W^{\mathbb{Q}} \right] + [L_M] = 0.$$

Le but de ce chapitre est de démontrer le théorème suivant, qui constitue un analogue du théorème de Lannes et Latour dans le cadre des J-variétés. Le rôle des formes d'intersection et d'enlacement est joué par les formes définies à la section 3.2.

Théorème. Soit W une \mathbb{J} -variété compacte de dimension 4m et de bord M. Les classes de Witt $\alpha_W \in \mathbf{W}(\mathbb{Q}(t))$ et $\beta_M \in \mathbf{WT}(\Lambda_{\mathbb{Q}})$ sont reliées par la formule

$$\partial \alpha_W + \beta_M = 0.$$

4.2 Preuve

Soit donc (W, φ) une \mathbb{J} -variété de dimension 4m à bord et (M, φ) son bord.

4.2.1 Définition de l'isomorphisme ψ

On a défini à la section 3.1 les modules TE et LE associés à un module E. L'image par une application linéaire d'un élément de torsion restant de torsion, les opérations T et L sont en fait des endofoncteurs de la catégorie \mathbf{Mod}_A , s'insérant naturellement dans une suite exacte

$$0 \to T \to \mathrm{id}_{\mathbf{Mod}_A} \to L \to 0.$$

En appliquant cette suite exacte à la suite exacte longue de la paire $(\widetilde{W}_{\varphi}, \widetilde{M}_{\varphi})$, on obtient un diagramme commutatif

$$\begin{array}{c} 0 \\ \downarrow \\ \cdots \longrightarrow TH_{2m}(W;\Lambda_{\mathbb{Q}}) \xrightarrow{Tj_*} TH_{2m}(W,M;\Lambda_{\mathbb{Q}}) \xrightarrow{T\delta} TH_{2m-1}(M;\Lambda_{\mathbb{Q}}) \xrightarrow{Ti_*} TH_{2m-1}(W;\Lambda_{\mathbb{Q}}) \longrightarrow \cdots \\ \downarrow \\ \cdots \longrightarrow H_{2m}(W;\Lambda_{\mathbb{Q}}) \xrightarrow{j_*} H_{2m}(W,M;\Lambda_{\mathbb{Q}}) \xrightarrow{\delta} H_{2m-1}(M;\Lambda_{\mathbb{Q}}) \xrightarrow{i_*} H_{2m-1}(W;\Lambda_{\mathbb{Q}}) \longrightarrow \cdots \\ \downarrow \\ \cdots \longrightarrow LH_{2m}(W;\Lambda_{\mathbb{Q}}) \xrightarrow{Lj_*} LH_{2m}(W,M;\Lambda_{\mathbb{Q}}) \xrightarrow{L\delta} LH_{2m-1}(M;\Lambda_{\mathbb{Q}}) \xrightarrow{Li_*} LH_{2m-1}(W;\Lambda_{\mathbb{Q}}) \longrightarrow \cdots \\ \downarrow \\ 0 & 0 & 0 & 0 \\ \end{array}$$

où la ligne du milieu est une suite exacte longue et les lignes du haut et du bas sont des complexes de chaînes.

Ce diagramme commutatif peut donc être vu comme une suite exacte courte de complexes différentiels dont l'un est acyclique. La suite exacte longue associée est donc simplement une suite d'isomorphismes. En particulier, on a un isomorphisme connectant

$$\psi : \ker(L\delta)/\operatorname{im}(Lj_*) \to \ker(Ti_*)/\operatorname{im}(T\delta).$$

On va démontrer que ψ est une anti-isométrie entre un représentant de la classe de Witt $\partial \alpha_W$ et un représentant de β_M .

L'interprétation géométrique de ψ s'obtient simplement en suivant la construction du morphisme connectant dans une suite exacte longue : une classe de $LH_{2m}(W,M;\Lambda_{\mathbb{Q}})$ est la classe de cohomologie (modulo torsion) d'un cycle relatif $(S,\partial S)\subset (W,M)$. Que cette classe appartienne à $\ker(L\delta)$ signifie que la classe de cohomologie $[\partial S]\in H_{2m-1}(M;\Lambda_{\mathbb{Q}})$ est de torsion. Le morphisme ψ est alors simplement celui qui associe $[\partial S]\in TH_{2m-1}(M;\Lambda_{\mathbb{Q}})$ (modulo $\operatorname{im}(T\delta)$) à $[(S,\partial S)]$ (modulo torsion et $\operatorname{im}(Lj_*)$).

4.2.2 Domaine de ψ

Les $\Lambda_{\mathbb{Q}}$ -modules $LH_{2m}(W; \Lambda_{\mathbb{Q}})$ et $LH_{2m}(W, M; \Lambda_{\mathbb{Q}})$ sont des $\Lambda_{\mathbb{Q}}$ -réseaux des $\mathbb{Q}(t)$ -espaces vectoriels $H_{2m}(W; \mathbb{Q}(t))$ et $H_{2m}(W, M; \mathbb{Q}(t))$. La dualité de Poincaré-Reidemeister et le théorème des coefficients universels fournissent un accouplement $\mathbb{Q}(t)$ -sesquilinéaire

$$\langle \cdot, \cdot \rangle_{\mathbb{Q}(t)} : H_{2m}(W, M; \mathbb{Q}(t)) \times H_{2m}(W; \mathbb{Q}(t)) \to \mathbb{Q}(t)$$

induisant un isomorphisme

$$H_{2m}(W, M; \mathbb{Q}(t)) \to H_{2m}(W; \mathbb{Q}(t))^*$$
.

Celui-ci se restreint un accouplement $\Lambda_{\mathbb{O}}$ -sesquilinéaire

$$\langle \cdot, \cdot \rangle : LH_{2m}(W, M; \Lambda_{\mathbb{Q}}) \times LH_{2m}(W; \Lambda_{\mathbb{Q}}) \to \Lambda_{\mathbb{Q}}$$

possédant la propriété analogue sur $\Lambda_{\mathbb{Q}}$.

Par ailleurs, l'application $Lj_*: LH_{2m}(W; \Lambda_{\mathbb{Q}}) \to LH_{2m}(W, M; \Lambda_{\mathbb{Q}})$ n'est rien d'autre que la restriction de l'application $j_*^{\mathbb{Q}(t)}: H_{2m}(W; \mathbb{Q}(t)) \to H_{2m}(W, M; \mathbb{Q}(t))$ au réseau $LH_{2m}(W; \Lambda_{\mathbb{Q}})$.

Avec ces notations, les formes d'intersection I_W et $I_W^{\mathbb{Q}(t)}$, définies respectivement sur $LH_{2m}(W; \Lambda_{\mathbb{Q}})$ et $H_{2m}(W; \mathbb{Q}(t))$ vérifient

$$\forall x, y \in LH_{2m}(W; \Lambda_{\mathbb{Q}}), \quad I_W(x, y) = \langle Lj_*(x), y \rangle$$

$$\forall x, y \in H_{2m}(W; \mathbb{Q}(t)), \quad I_W^{\mathbb{Q}(t)}(x, y) = \langle j_*^{\mathbb{Q}(t)}(x), y \rangle_{\mathbb{Q}(t)}.$$

Ces formules rendent clair le fait que le noyau de $I_W^{\mathbb{Q}(t)}$ est $\ker j_*^{\mathbb{Q}(t)}$ et que la forme régularisée $\overline{I}_W^{\mathbb{Q}(t)}$ peut se définir sur le $\mathbb{Q}(t)$ -espace vectoriel $\lim j_*^{\mathbb{Q}(t)} \simeq H_{2m}(W;\mathbb{Q}(t))/\ker j_*^{\mathbb{Q}(t)}$ par la formule

$$\forall x, y \in H_{2m}(W; \mathbb{Q}(t)),$$

$$\overline{I}_{W}^{\mathbb{Q}(t)}(j_{*}^{\mathbb{Q}(t)}(x), j_{*}^{\mathbb{Q}(t)}(y)) = \langle j_{*}^{\mathbb{Q}(t)}(x), y \rangle_{\mathbb{Q}(t)} = I_{W}^{\mathbb{Q}(t)}(x, y).$$

Le module $\operatorname{im}(Lj_*) = j_*^{\mathbb{Q}(t)}[LH_{2m}(W;\Lambda_{\mathbb{Q}})]$ est un réseau de $\operatorname{im}(j_*^{\mathbb{Q}(t)})$. Par ailleurs, puisque

$$\forall x, y \in LH_{2m}(W; \Lambda_{\mathbb{Q}}),$$

$$\overline{I}_{W}^{\mathbb{Q}(t)}(j_{*}^{\mathbb{Q}(t)}(x), j_{*}^{\mathbb{Q}(t)}(y)) = I_{W}^{\mathbb{Q}(t)}(x, y) = I_{W}(x, y) \in \Lambda_{\mathbb{D}},$$

c'est un réseau entier pour la forme $(\operatorname{im}(j_*^{\mathbb{Q}(t)}), \overline{I}_W^{\mathbb{Q}(t)})$.

Lemme. Le dual du réseau im (Lj_*) pour la forme $(im(j_*^{\mathbb{Q}(t)}), \overline{I}_W^{\mathbb{Q}(t)})$ est

$$\operatorname{im}(Lj_*)^{\sharp} = LH_{2m}(W, M; \Lambda_{\mathbb{Q}}) \cap \operatorname{im}(j_*^{\mathbb{Q}(t)}) = \ker(L\delta).$$

Démonstration du lemme. La deuxième égalité est claire : d'après la suite exacte longue de cohomologie, $\operatorname{im}(j_*^{\mathbb{Q}(t)}) = \ker(\delta^{\mathbb{Q}(t)})$ donc $LH_{2m}(W,M;\Lambda_{\mathbb{Q}})\cap\operatorname{im}(j_*^{\mathbb{Q}(t)})$ est le noyau de la restriction $\delta_{|LH_{2m}(W,M;\Lambda_{\mathbb{Q}})}^{\mathbb{Q}(t)} = L\delta$.

En outre, si $x \in LH_{2m}(W; \Lambda_{\mathbb{Q}})$ et que $y \in LH_{2m}(W, M; \Lambda_{\mathbb{Q}}) \cap \operatorname{im}(j_*^{\mathbb{Q}(t)})$, on a

$$\overline{I}_W^{\mathbb{Q}(t)}(Lj_*(x),y) = \overline{I}_W^{\mathbb{Q}(t)}(j_*^{\mathbb{Q}(t)}(x),y) = \langle x,y \rangle \in \Lambda_{\mathbb{Q}},$$

donc $LH_{2m}(W, M; \Lambda_{\mathbb{Q}}) \cap \operatorname{im}(j_*^{\mathbb{Q}(t)}) \subset \operatorname{im}(Lj_*)^{\sharp}$.

Réciproquement, soit $\xi \in \operatorname{im}(Lj_*)^{\sharp}$. Ce la signifie que ξ est un élément de $\operatorname{im}(j^{\mathbb{Q}(t)})$ tel que

$$\forall y \in LH_2(W; \Lambda_{\mathbb{Q}}), \overline{I}^{\mathbb{Q}(t)}(\xi, j^{\mathbb{Q}(t)}(y)) \in \Lambda_{\mathbb{Q}}.$$

Or, $\overline{I}^{\mathbb{Q}(t)}(\xi,j^{\mathbb{Q}(t)}(y))=\langle \xi,y\rangle_{\mathbb{Q}(t)}$. Cela entraı̂ne que $\langle \xi,-\rangle_{\mathbb{Q}(t)}$ est un élément de $LH_2(W;\Lambda_{\mathbb{Q}})^*$. Il existe donc un élément $x\in LH_2(W,M;\Lambda_{\mathbb{Q}})$ tel que

$$\forall y \in LH_2(W; \Lambda_{\mathbb{Q}}), \langle x, y \rangle = \langle x, y \rangle_{\mathbb{Q}(t)} = \langle \xi, y \rangle_{\mathbb{Q}(t)}.$$

Puisque $LH_2(W; \Lambda_{\mathbb{Q}})$ est un réseau de $H_2(W; \mathbb{Q}(t))$, la deuxième égalité est même valable pour $y \in H_2(W; \mathbb{Q}(t))$, et la non-dégénérescence du morphisme

$$H_2(W, M; \mathbb{Q}(t)) \to H_2(W; \mathbb{Q}(t))^*$$

associé à l'accouplement $\langle \cdot, \cdot \rangle_{\mathbb{Q}(t)}$ implique que $\xi = x$ et donc que $\xi \in LH_2(W, M; \Lambda_{\mathbb{Q}})$.

Le quotient $\ker(L\delta)/\operatorname{im}(Lj_*)$ est donc un quotient R^\sharp/R pour un certain réseau entier R de $(\operatorname{im}(j_*), \overline{I}_W^{\mathbb{Q}(t)})$. Muni de la forme induite par $\overline{I}_W^{\mathbb{Q}(t)}$, que l'on notera λ , il représente donc la classe de Witt $\partial \alpha_W \in \mathbf{WT}(\Lambda_{\mathbb{Q}})$.

4.2.3 Image de ψ

Le quotient $\ker(Ti_*)/\operatorname{im}(T\delta)$ est un sous-quotient du module de torsion $TH_{2m-1}(M;\Lambda_{\mathbb{Q}})$ sur lequel est définie la forme d'enlacement (non dégénérée) Enl_M de (M,φ) . Le but est de montrer que $\ker(Ti_*)/\operatorname{im}(T\delta)$ peut être obtenu à partir de ce dernier par réduction sous-lagrangienne.

La dualité de Poincaré-Reidemeister et le théorème des coefficients universels fournissent un diagramme commutatif au signe près

dont les lignes sont des complexes de chaînes et les flèches verticales sont des isomorphismes. Si l'on note $f: TH_{2m-1}(W; \Lambda_{\mathbb{Q}}) \to TH_{2m}(W, M; \Lambda_{\mathbb{Q}})$ l'isomorphisme de droite, on a donc pour tous $\xi \in TH_{2m-1}(M; \Lambda_{\mathbb{Q}})$, $y \in TH_{2m}(W, M; \Lambda_{\mathbb{Q}})$

$$\operatorname{Enl}_{M}(\xi, T\delta(y)) = \pm \left((T\delta)^{\vee} \circ \operatorname{\underline{Enl}}_{M}(\xi) \right) (y) = \pm \left(f \circ Ti_{*}(\xi) \right) (y).$$

En particulier, l'orthogonal de $\operatorname{im}(T\delta)$ pour la forme Enl_M est

$$\operatorname{im}(T\delta)^{\perp} = \ker(Ti_*) \supset \operatorname{im}(T\delta).$$

Le sous-module $\operatorname{im}(T\delta) \subset TH_{2m-1}(M;\Lambda_{\mathbb{Q}})$ est donc un sous-lagrangien de la forme Enl_M dont la réduction sous-lagrangienne est le quotient $\ker(Ti_*)/\operatorname{im}(T\delta)$, image de l'isomorphisme ψ . En particulier, ce quotient est muni d'une forme μ induite par Enl_M , dont la classe de Witt est $\beta_M \in \mathbf{WT}(\Lambda_{\mathbb{Q}})$.

4.2.4 ψ est une anti-isométrie

On a vu que le domaine et l'image de l'isomorphisme

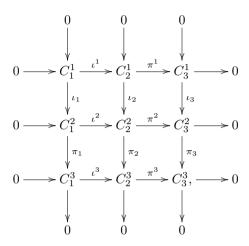
$$\psi: \ker(L\delta)/\operatorname{im}(Lj_*) \to \ker(Ti_*)/\operatorname{im}(T\delta)$$

sont tous deux munis d'une forme de torsion, formes que l'on a notées λ et μ , respectivement, et dont les classes de Witt sont $\partial \alpha_W$ et β_M . Pour démontrer le théorème, il suffit maintenant de montrer que

$$\forall x, y \in \ker(L\delta) / \operatorname{im}(Lj_*), \mu(\psi(x), \psi(y)) = -\lambda(x, y).$$

C'est une conséquence du résultat d'algèbre homologique suivant.

Lemme. (des neuf complexes) Soit $(C_q^p)_{1 \le p,q \le 3}$ neuf complexes différentiels, inclus dans un diagramme commutatif



dont les lignes et les colonnes sont exactes.

On obtient alors un diagramme commutatif infini de groupes d'homologie

où l'on a noté i (resp. j) les morphismes en homologie induits par les morphismes de chaîne ι (resp. π) et δ les morphismes connectants.

Alors les deux applications $\ker(H_kC_3^1 \to H_{k-1}C_1^2) \to \operatorname{coker}(H_kC_1^2 \to H_{k-1}C_1^2)$

 $H_k C_3^2$

$$f_{\rightarrow} = i^3 \circ (\delta_1)^{-1} \circ \delta^1$$
 et $f_{\downarrow} = j_2 \circ (j^2)^{-1} \circ i_3$

sont opposées.

 $D\acute{e}monstration~du~lemme.$ Commençons par préciser le sens des deux applications.

Si $z \in \ker(i_1 \circ \delta^1 = \delta^2 \circ i_3 : H_k C_3^1 \to H_{k-1} C_1^2)$, $\delta^1 z \in H_{k-1} C_1^1$ est dans $\ker(i_1 : H_{k-1} C_1^1 \to H_{k-1} C_2^1) = \operatorname{im}(\delta_1 : H_k C_1^3 \to H_{k-1} C_1^1)$. On peut en particulier en choisir un antécédent $y \in H_k C_1^3$. Comme un tel antécédent est défini modulo $\operatorname{im}(j_1 : H_k C_1^2 \to H_k C_1^3)$, l'image $i^3(y) \in H_k C_2^3$ est bien définie modulo $\operatorname{im}(i^3 \circ j_1 = j_2 \circ i^2)$. On pose alors

$$f_{\rightarrow}(x) = [i^3(y)]_{\mathrm{im}(i^3 \circ j)}.$$

En partant dans l'autre direction, on définit, mutatis mutandis, l'application f_{\downarrow} : $\ker(H_kC_3^1 \to H_{k-1}C_1^2) \to \operatorname{coker}(H_kC_1^2 \to H_kC_3^2)$.

Démontrons maintenant que ces deux applications sont bel et bien opposées.

Soit z un cycle de degré k dans C_3^1 . Par construction du morphisme connectant, $\delta^1[z]$ est la classe d'un élément $\xi \in C_1^1$ de degré k-1 tel que $\iota^1(\xi) = \partial y \in C_2^1$, où y est un π^1 -antécédent de z. Un tel élément ξ est en effet nécessairement un cycle.

Si on suppose que $[z] \in \ker(H_k C_3^1 \to H_{k-1} C_1^2)$, on a alors $i_1[\xi] = 0$, c'est-à-dire qu'il existe une chaîne $\Sigma \in C_1^2$ de degré k telle que $\iota_1(\xi) = \partial \Sigma$.

On a alors $\partial \pi_1(\Sigma) = \pi_1(\partial \Sigma) = \pi_1(\iota_1 \xi) = 0$, ce qui entraı̂ne que $\pi_1(\Sigma) \in C_1^3$ est un cycle de degré k. Par construction, $\delta_1[\pi_1 \Sigma] = [z]$ et l'on a donc $f_{\rightarrow}([z]) = i^3[\pi_1 \Sigma] = [\iota^3 \pi_1 \Sigma]$ modulo $\operatorname{im}(H_k C_1^2 \to H_k C_3^2)$. D'un autre côté, $\iota_2(y) - \iota^2(\Sigma)$ est à la fois un cycle (on a $\partial(\iota_2(y)) = \iota^2(\Sigma)$) est à la fois un cycle (on a $\partial(\iota_2(y)) = \iota^2(\Sigma)$) est à la fois un cycle (on a $\partial(\iota_2(y)) = \iota^2(\Sigma)$) est à la fois un cycle (on a $\partial(\iota_2(y)) = \iota^2(\Sigma)$) est à la fois un cycle (on a $\partial(\iota_2(y)) = \iota^2(\Sigma)$) est à la fois un cycle (on a $\partial(\iota_2(y)) = \iota^2(\Sigma)$) est à la fois un cycle (on a $\partial(\iota_2(y)) = \iota^2(\Sigma)$) est à la fois un cycle (on a $\partial(\iota_2(y)) = \iota^2(\Sigma)$) est à la fois un cycle (on a $\partial(\iota_2(y)) = \iota^2(\Sigma)$) est à la fois un cycle (on a $\partial(\iota_2(y)) = \iota^2(\Sigma)$) est à la fois un cycle (on a $\partial(\iota_2(y)) = \iota^2(\Sigma)$) est à la fois un cycle (on a $\partial(\iota_2(y)) = \iota^2(\Sigma)$) est à la fois un cycle (on a $\partial(\iota_2(y)) = \iota^2(\Sigma)$) est à la fois un cycle (on a $\partial(\iota_2(y)) = \iota^2(\Sigma)$) est à la fois un cycle (on a $\partial(\iota_2(y)) = \iota^2(\Sigma)$) est à la fois un cycle (on a $\partial(\iota_2(y)) = \iota^2(\Sigma)$) est à la fois un cycle (on a $\partial(\iota_2(y)) = \iota^2(\Sigma)$) est à la fois un cycle (on a $\partial(\iota_2(y)) = \iota^2(\Sigma)$) est à la fois un cycle (on a $\partial(\iota_2(y)) = \iota^2(\Sigma)$) est à la fois un cycle (on a $\partial(\iota_2(y)) = \iota^2(\Sigma)$) est à la fois un cycle (on a $\partial(\iota_2(y)) = \iota^2(\Sigma)$) est à la fois un cycle (on a $\partial(\iota_2(y)) = \iota^2(\Sigma)$) est à la fois un cycle (on a $\partial(\iota_2(y)) = \iota^2(\Sigma)$) est à la fois un cycle (on a $\partial(\iota_2(y)) = \iota^2(\Sigma)$) est à la fois un cycle (on a $\partial(\iota_2(y)) = \iota^2(\Sigma)$

D'un autre côté, $\iota_2(y) - \iota^2(\Sigma)$ est à la fois un cycle (on a $\partial(\iota_2(y)) = \iota_2 \circ \iota^1(\xi) = \iota^2 \circ \iota_1(\xi) = \partial \iota^2(\Sigma)$) et un π^2 -antécédent de $\iota_3(z)$, donc on a $\iota_3([z]) = j^2([\iota_2(y) - \iota^2(\Sigma)])$ et

$$f_{\downarrow}([z]) = j_2([\iota_2(y) - \iota^2(\Sigma)]) = -[\pi_2 \circ \iota^2(\Sigma)]$$

= $-[\iota^3 \circ \pi_1(\Sigma)] \text{ (mod im}(H_k C_1^2 \to H_k C_3^2)).$

On a donc bien démontré que $f_{\rightarrow} + f_{\downarrow} = 0$.

Pour appliquer le lemme précédent, nous allons donner des présentations différentes des formes de torsion λ et μ .

Tout d'abord, remarquons que la suite exacte courte $0 \to \Lambda_{\mathbb{Q}} \to \mathbb{Q}(t) \to S(\Lambda_{\mathbb{Q}}) \to 0$ induit une suite exacte longue en homologie

$$\cdots \to H_{2m}(M; \mathbb{Q}(t)) \xrightarrow{\pi_*} H_{2m}(M; S(\Lambda_{\mathbb{Q}}))$$
$$\xrightarrow{\delta} H_{2m-1}(M; \Lambda_{\mathbb{Q}}) \xrightarrow{\mathrm{inc}_*} H_{2m}(M; \mathbb{Q}(t)) \to \cdots$$

et des suites similaires pour les homologies de W et (W, M). On notera systématiquement inc $_*$ et π_* les morphismes induits par l'inclusion $\Lambda_{\mathbb{Q}} \subset \mathbb{Q}(t)$ et la réduction modulo 1, et δ les morphismes connectants.

La suite exacte longue montre que l'image de $\delta: H_{2m}(M; S(\Lambda_{\mathbb{Q}})) \to H_{2m-1}(M; \Lambda_{\mathbb{Q}})$) est précisément $TH_{2m-1}(M; \Lambda_{\mathbb{Q}})$. Concrètement, si $x \in TH_{2m-1}(M; \Lambda_{\mathbb{Q}})$ et $p \in \Lambda_{\mathbb{Q}} \setminus \{0\}$ est tel que p[M] = 0 dans $H_{2m-1}(M; \Lambda_{\mathbb{Q}})$, on peut trouver une (2m)-chaîne Σ telle que $\partial \Sigma = p[M]$. La chaîne modulo 1 $\left[\frac{\Sigma}{p}\right]_1$ est alors un cycle dont la classe d'homologie dans $H_{2m}(M; S(\Lambda_{\mathbb{Q}}))$ est un δ -antécédent de x.

Par ailleurs, comme $S(\Lambda_{\mathbb{Q}})$ est un $\Lambda_{\mathbb{Q}}$ -module injectif, on a $\operatorname{Ext}_{\Lambda_{\mathbb{Q}}}(H_{k-1}(M;\Lambda_{\mathbb{Q}});S(\Lambda_{\mathbb{Q}}))=0$ pour tout k, ce qui veut dire que le théorème des coefficients universels donne simplement

$$H^k(M; S(\Lambda_{\mathbb{Q}})) \simeq \overline{\operatorname{Hom}}_{\Lambda_{\mathbb{Q}}}(H_k(M; \Lambda_{\mathbb{Q}}); S(\Lambda_{\mathbb{Q}})).$$

La dualité de Poincaré donne donc directement un isomorphisme

$$H_{2m}(M; S(\Lambda_{\mathbb{Q}})) \simeq H^{2m-1}(M; S(\Lambda_{\mathbb{Q}})) \simeq \overline{\operatorname{Hom}}_{\Lambda_{\mathbb{Q}}}(H_{2m-1}(M; \Lambda_{\mathbb{Q}}); S(\Lambda_{\mathbb{Q}})).$$

En particulier, on obtient une nouvelle définition de la forme d'enlacement : si x et y sont des classes de $TH_{2m-1}(M; \Lambda_{\mathbb{Q}})$ et que $\Sigma \in H_{2m}(M; S(\Lambda_{\mathbb{Q}}))$ est un δ -antécédent de x, on a simplement $\operatorname{Enl}(x, y) = \Sigma \cdot y$, où · est l'accouplement défini par l'isomorphisme

$$H_{2m}(M; S(\Lambda_{\mathbb{Q}})) \simeq H^{2m-1}(M; S(\Lambda_{\mathbb{Q}})) \simeq \overline{\operatorname{Hom}}_{\Lambda_{\mathbb{Q}}}(H_{2m-1}(M; \Lambda_{\mathbb{Q}}); S(\Lambda_{\mathbb{Q}})).$$

Vu la construction des δ -antécédents de x donnée plus haut, cette définition est clairement équivalente à la précédente. Remarquons que $\Sigma \cdot y$ ne dépend pas du choix de Σ car deux tels choix diffèrent d'un élément de $H_{2m}(M;\mathbb{Q}(t))$ et que y est de torsion.

La stratégie est maintenant de démontrer que π est une anti-isométrie en appliquant le lemme des neuf complexes au diagramme commutatif

$$0 \longrightarrow C_*(M; \Lambda_{\mathbb{Q}}) \longrightarrow C_*(W; \Lambda_{\mathbb{Q}}) \longrightarrow C_*(W, M; \Lambda_{\mathbb{Q}}) \longrightarrow 0$$

$$\downarrow^{\mathrm{inc}_*} \qquad \downarrow^{\mathrm{inc}_*} \qquad \downarrow^{\mathrm{inc}_*}$$

$$0 \longrightarrow C_*(M; \mathbb{Q}(t)) \longrightarrow C_*(W; \mathbb{Q}(t)) \longrightarrow C_*(W, M; \mathbb{Q}(t)) \longrightarrow 0$$

$$\downarrow^{\pi_*} \qquad \downarrow^{\pi_*} \qquad \downarrow^{\pi_*}$$

$$0 \longrightarrow C_*(M; S(\Lambda_{\mathbb{Q}})) \longrightarrow C_*(W; S(\Lambda_{\mathbb{Q}})) \longrightarrow C_*(W, M; S(\Lambda_{\mathbb{Q}})). \longrightarrow 0$$

$$\downarrow^{\mathrm{inc}_*} \qquad \downarrow^{\mathrm{inc}_*} \qquad \downarrow^{\mathrm{inc}_*} \qquad \downarrow^{\mathrm{inc}_*}$$

$$0 \longrightarrow C_*(M; S(\Lambda_{\mathbb{Q}})) \longrightarrow C_*(W; S(\Lambda_{\mathbb{Q}})) \longrightarrow C_*(W, M; S(\Lambda_{\mathbb{Q}})). \longrightarrow 0$$

Soit $K = \ker(H_{2m}(W, M; \Lambda_{\mathbb{Q}}) \to H_{2m-1}(M; \mathbb{Q}(t)))$. C'est l'espace des classes d'homologie relatives $[S, \partial S]$ telles que $[\partial S]$ est de torsion. Notons

$$\llbracket \cdot \rrbracket : K \to \ker(L\delta) / \operatorname{im}(Lj_*)$$

le morphisme (surjectif) de réduction modulo $TH_{2m}(W, M; \Lambda_{\mathbb{Q}})$ et $\operatorname{im}(Lj_*)$.

Le lemme des neuf complexes affirme alors que deux applications

$$f_{\rightarrow}, f_{\downarrow}: K \rightarrow \operatorname{coker}(H_{2m}(M; \mathbb{Q}(t))) \rightarrow H_{2m}(W; S(\Lambda_{\mathbb{Q}}))$$

sont opposées.

À cause de la dualité de Poincaré et du théorème des coefficients universels sur $S(\Lambda_{\mathbb{Q}})$ déjà évoqués, remarquons que l'on a un isomorphisme

$$H_{2m}(W; S(\Lambda_{\mathbb{Q}})) \simeq H^{2m}(W, M; S(\Lambda_{\mathbb{Q}})) \simeq \overline{\operatorname{Hom}}_{\Lambda_{\mathbb{Q}}}(H_{2m}(W, M; \Lambda_{\mathbb{Q}}); S(\Lambda_{\mathbb{Q}})).$$

Via les identifications $\begin{cases} H_{2m}(M;S(\Lambda_{\mathbb{Q}})) \simeq \overline{\operatorname{Hom}}_{\Lambda_{\mathbb{Q}}}(H_{2m-1}(M;\Lambda_{\mathbb{Q}});S(\Lambda_{\mathbb{Q}})), \\ H_{2m}(W;S(\Lambda_{\mathbb{Q}})) \simeq \overline{\operatorname{Hom}}_{\Lambda_{\mathbb{Q}}}(H_{2m}(W,M;\Lambda_{\mathbb{Q}});S(\Lambda_{\mathbb{Q}})), \end{cases}$ le morphisme

$$\partial^\top: \overline{\operatorname{Hom}}_{\Lambda_{\mathbb{Q}}}(H_{2m-1}(M;\Lambda_{\mathbb{Q}});S(\Lambda_{\mathbb{Q}})) \to \overline{\operatorname{Hom}}_{\Lambda_{\mathbb{Q}}}(H_{2m}(W,M;\Lambda_{\mathbb{Q}});S(\Lambda_{\mathbb{Q}}))$$

induit par $\partial: H_{2m}(W,M;\Lambda_{\mathbb{Q}}) \to H_{2m-1}(M;\Lambda_{\mathbb{Q}})$ n'est autre que le morphisme

$$H_{2m}(M; S(\Lambda_{\mathbb{O}})) \to H_{2m}(W; S(\Lambda_{\mathbb{O}}))$$

induit par l'inclusion $M \to W$.

En particulier, tout élément de la restriction d'un élément de

$$H_{2m}(W; S(\Lambda_{\mathbb{Q}})) \simeq \overline{\operatorname{Hom}}_{\Lambda_{\mathbb{Q}}}(H_{2m}(W, M; \Lambda_{\mathbb{Q}}); S(\Lambda_{\mathbb{Q}}))$$

définit par composition un morphisme $K \to S(\Lambda_{\mathbb{Q}})$. Si cet élément est dans l'image de $H_{2m}(M; S(\Lambda_{\mathbb{Q}})) \to H_{2m}(W; S(\Lambda_{\mathbb{Q}}))$, le morphisme correspondant est nul.

Ainsi, toute application $f: K \to \operatorname{coker}(H_{2m}(M; \mathbb{Q}(t)) \to H_{2m}(W; S(\Lambda_{\mathbb{Q}}))$ définit un accouplement sesquilinéaire $\langle \cdot, \cdot \rangle_f : K \times K \to S(\Lambda_{\mathbb{Q}})$. En particulier, les deux accouplements associés à f_{\to} et f_{\downarrow} sont opposés.

Or, étant donné deux éléments x et y de K, on a

$$\begin{split} \langle x,y\rangle_{f_{\downarrow}} &= \left[\left\langle x,\left(j^{\mathbb{Q}(t)}\right)^{-1}(y)\right\rangle\right]_{1} = \lambda\left([\![x]\!],[\![y]\!]\right) \\ \langle x,y\rangle_{f_{\rightarrow}} &= \left(\partial^{\top}\delta^{-1}\partial x\right)\cdot y = \left(\delta^{-1}\partial x\right)\cdot\left(\partial y\right) = \mu\left(\psi\left([\![x]\!]\right),\psi\left([\![y]\!]\right)\right). \end{split}$$

En particulier, on a bien $\psi^*\mu = -\lambda$, et ψ est bien une anti-isométrie, ce qui démontre le théorème.

Chapitre 5

Enlacement et suspension

Soit $x, y \in B(n)$ deux tresses. Via l'opération de clôture, on peut donc considérer (au moins) trois entrelacs, \widehat{x} , \widehat{y} et \widehat{xy} . Le théorème de Gambaudo et Ghys ([32]) exprime pour toute racine de l'unité $\omega \in S^1$ d'ordre premier avec n la différence

$$\operatorname{sign}_{\omega}(xy) - \operatorname{sign}_{\omega}(x) - \operatorname{sign}_{\omega}(y)$$

entre les ω -signatures de ces entrelacs comme une évaluation du cocycle de Meyer sur les matrices $\operatorname{Burau}_{\omega}(x)$ et $\operatorname{Burau}_{\omega}(y)$.

Le but de ce chapitre est de donner plus généralement une interprétation topologique de l'expression correspondante pour la signature de Blanchfield β_x associée aux entrelacs. Nous y interprèterons la différence $\beta_{xy} - \beta_x - \beta_y \in \mathbf{WT}(\Lambda_{\mathbb{Q}})$ comme l'image par le morphisme $\partial: \mathbf{W}(\mathbb{Q}(t)) \to \mathbf{WT}(\Lambda_{\mathbb{Q}})$ de la forme d'intersection d'une \mathbb{J} -variété W(x,y) de dimension 4.

5.1 Suspension M(x) et signature de Blanchfield β_x

On a constaté au chapitre 3 que le noyau de la forme d'enlacement $(TH_1(E(L); \Lambda_{\mathbb{Q}}), \text{Enl})$ de l'extérieur d'un entrelacs était inclus dans la composante (t-1)-primaire de l'homologie, ce qui a permis d'associer une forme de Blanchfield régulière $(TH_1(E(L); \Lambda_{\mathbb{Q}})_0, \text{Enl}_0)$ et sa classe de Witt $\beta_L \in \mathbf{WT}(\Lambda_{\mathbb{Q}})$ à tout entrelacs $L \subset S^3$. En particulier, une tresse $x \in B(n)$ définit à son tour une classe de Witt

$$\beta_x = \beta_{\hat{x}} \in \mathbf{WT}(\Lambda_{\mathbb{Q}}).$$

Par ailleurs, comme on l'a signalé dans l'introduction (cf. section 1.1.2), la tresse x peut être vue comme la classe d'isotopie d'un difféomorphisme

 h_x du disque percé n fois D_n et définit à ce titre sa suspension

$$M(x) = (D_n \times [0,1])/(x,1) \sim (f(x),0),$$

fibré en D_n sur S^1 .

Le groupe fondamental de M(x) est inclus dans une suite exacte

$$\{1\} \to \pi_1(D_n) \to \pi_1(M(x)) \to \pi_1(S^1) \to \{1\}.$$

Comme nous considérons le groupe \mathscr{D}_n des difféomorphismes de D_n fixant point par point le bord extérieur S^1_{ext} , un point fixé sur S^1_{ext} trace une courbe fermée simple sur $\partial_{\mathrm{ext}} M(x)$. On obtient ainsi une section privilégiée $\mathbb{J} = \pi_1(S^1) \to \pi_1(M(x))$ de la suite exacte.

On peut ainsi décrire le groupe fondamental de M(x) comme un produit semi-direct

$$\pi_1(M(x)) \simeq \pi_1(D_n) \rtimes_x \mathbb{J},$$

où l'indice x signifie que l'action de $t \in \mathbb{J}$ par conjugaison sur $\pi_1(D_n)$ est le morphisme

$$(h_x)_{\sharp}:\pi_1(D_n)\to\pi_1(D_n)$$

induit par un représentant $h_x \in \mathcal{D}_n$ de x, c'est-à-dire l'automorphisme $\operatorname{Artin}(x) \in \operatorname{Aut} \mathbb{L}(\gamma_1, \dots, \gamma_n)$. En particulier, ce produit semi-direct préserve le morphisme

$$\varphi_{D_n}: \pi_1(D_n) = \mathbb{L}(\gamma_1, \dots, \gamma_n) \to \mathbb{J}$$

 $\gamma_i \mapsto t$

au sens où celui-ci s'étend en un morphisme bien défini

$$\varphi_{M(x)} : \pi_1(M(x)) = \mathbb{L}(\gamma_1, \dots, \gamma_n) \rtimes_x \mathbb{J} \to \mathbb{J}$$

$$\gamma_i \mapsto t$$

$$t \mapsto 1.$$

Ce morphisme munit la suspension M(x) d'une structure de \mathbb{J} -variété. Dans toute la suite, on considèrera M(x) avec cette structure et on omettra la mention du morphisme $\varphi_{M(x)}$ dans les groupes d'homologie à coefficients dans Λ et $\Lambda_{\mathbb{Q}}$.

On a également mentionné dans l'introduction le lien entre la suspension M(x) et l'extérieur $E(\widehat{x})$ de la clôture de $x: E(\widehat{x})$ s'obtient en recollant un tore plein le long du bord extérieur $\partial_{\text{ext}} M(x) \simeq S^1_{\text{ext}} \times S^1$ de M(x).

La structure de J-variété de $\partial_{\text{ext}} M(x)$ est simplement donnée par le morphisme

$$\pi_1(S^1 \times S^1_{\mathrm{ext}}) \xrightarrow{\mathrm{pr}_2} \pi_1(S^1_{\mathrm{ext}}) \to \mathbb{J},$$

le deuxième morphisme envoyant un générateur de $\pi_1(S_{\text{ext}}^1)$ sur t^n . Le revêtement infini cyclique correspondant est donc homéomorphe à n copies

de $\mathbb{R} \times S^1$, l'automorphisme de revêtement $t \in \mathbb{J}$ permutant cycliquement les n composantes. La puissance t^n agit dans chacune de ces composantes comme une translation le long du facteur \mathbb{R} , et donc trivialement en homologie.

On calcule alors sans difficulté l'homologie de la \mathbb{J} -surface $\partial_{\text{ext}}M(x)$:

- $H_0(\partial_{\text{ext}} M(x); \Lambda) \simeq \Lambda/(t^n 1);$
- $-H_1(\partial_{\text{ext}}M(x);\Lambda) \simeq \Lambda/(t^n-1)$, engendré par un relevé quelconque du cercle $*\times S^1$;
- Pour $p \geq 2$, $H_p(\partial_{\text{ext}} M(x); \Lambda) = 0$.

Ainsi, $H_1(\partial_{\text{ext}} M(x); \Lambda_{\mathbb{Q}}) = TH_1(\partial_{\text{ext}} M(x); \Lambda_{\mathbb{Q}}) \simeq \Lambda_{\mathbb{Q}}/(t^n - 1)$ est non trivial et n'est pas (t - 1)-primaire : il n'y a donc *a priori* pas de raison que la forme d'enlacement $(TH_1(M(x); \Lambda_{\mathbb{Q}})_0, \text{Enl}_0)$ soit régulière.

On voit également l'effet du recollement d'un tore plein $D^2 \times S^1$ sur M(x) pour obtenir $E(\widehat{x})$: au niveau du revêtement $\widetilde{M}(x)$, cela revient à coller n copies de $\mathbb{R} \times D^2$ de manière à tuer les classes d'homologie des relevés du cercle $* \times S^1$. Autrement dit, en homologie, le passage de M(x) à $E(\widehat{x})$ revient à régulariser la forme Enl_0 en quotientant par son noyau

$$\operatorname{im}(Ti_*: TH_1(\partial_{\operatorname{ext}}M(x); \Lambda_{\mathbb{Q}}) \to TH_1(M(x); \Lambda_{\mathbb{Q}}))$$

= $\operatorname{im}(i_*: H_1(\partial_{\operatorname{ext}}M(x); \Lambda_{\mathbb{Q}}) \to H_1(M(x); \Lambda_{\mathbb{Q}})).$

Outre ce bord extérieur, la variété M(x) a également un bord intérieur $\partial_{\text{int}}M(x)$, coïncidant avec le bord $\partial E(\widehat{x})$ de l'extérieur de \widehat{x} (et qui est donc homéomorphe à |x| tores). On peut cependant décrire cette partie plus explicitement : $\partial_{\text{int}}M(x)$ est naturellement l'espace total d'un fibré sur S^1 dont la fibre est homéomorphe à n cercles $(S^1_{\text{int},i})^n_{i=1}$.

De même que la variété M(x) obtenue en suspendant le difféomorphisme $h_x \in \mathcal{D}_n$ ne dépend de h_x qu'à isotopie près (c'est-à-dire ne dépend que de x), son bord intérieur $\partial_{\text{int}} M(x)$ ne dépend de la restriction $(h_x)_{|\partial_{\text{int}} D_n}$ qu'à isotopie près, c'est-à-dire que de la permutation $\text{perm}(x) \in \mathfrak{S}(n)$. On peut donc représenter $\partial_{\text{int}} D_n$ par n copies d'un même cercle S^1_{int} et choisir comme difféomorphisme de $\{1,\ldots,n\}\times S^1_{\text{int}}$ isotope à $(h_x)_{|\partial_{\text{int}} D_n}$ le représentant évident $(i,z)\mapsto (\text{perm}(x)(i),z)$. On obtient alors un homéomorphisme $\partial_{\text{int}} M(x)\simeq \mathscr{R}_x\times S^1_{\text{int}}$, où \mathscr{R}_x est le revêtement (à n feuillets et |x| composantes connexes) du cercle défini par la permutation perm(x).

5.2 Le fibré W(x,y)

Étant donné deux tresses x et y, représentées par deux difféomorphismes h_x et $h_y \in \mathcal{D}_n$, on peut construire leur suspension au-dessus du pantalon P.

Afin de fixer les notations, on note S_a^1 et S_b^1 les composantes de bord intérieures du pantalon P et S_{ab}^1 sa composante de bord extérieure. On

oriente P comme partie du plan et les trois composantes de son bord dans le sens trigonométrique, de telle sorte que $\partial P = S^1_{ab} - S^1_a - S^1_b$. Le groupe fondamental $\pi_1(P)$ est ainsi canoniquement isomorphe au groupe libre à deux générateurs $\mathbb{L}(a,b)$.

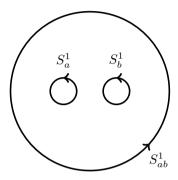


FIGURE 5.1 – Le pantalon P

On construit alors le fibré $W(x,y) \to P$ de fibre D_n et dont la représentation de monodromie est donnée par l'unique morphisme ρ : $\mathbb{L}(a,b) \to \mathcal{D}_n$ envoyant a sur h_x et b sur h_y : si \widetilde{P} est le revêtement universel de P (muni de l'action de $\pi_1(P)$), W(x,y) est la variété de dimension 4

$$W(x,y) = \left(\widetilde{P} \times D_n\right) / \sim,$$

où, pour tout $\gamma \in \pi_1(P)$, $(\gamma \cdot \widetilde{p}, z) \sim (\widetilde{p}, \rho(\gamma)(z))$.

De même que pour M(x), le fait que l'action de h_x et h_y sur le groupe fondamental de D_n préserve le morphisme $\varphi_{D_n}:\pi_1(D_n)\to \mathbb{J}$ montre qu'il existe un unique morphisme

$$\varphi_{W(x,y)}: \pi_1(W(x,y)) \simeq \pi_1(D_n) \rtimes_{x,y} \mathbb{L}(a,b) \to \mathbb{J}$$

se restreignant en φ_{D_n} sur le groupe fondamental de la fibre et envoyant a et b sur $1 \in \mathbb{J}$. Dans la suite, le fibré W(x,y) sera toujours muni de la structure de \mathbb{J} -variété induite par ce morphisme.

W(x,y) est l'espace total d'une fibration dont la base et la fibre sont des surfaces à bord. Il s'agit donc d'une variété à bord et à coins. Autrement dit, le bord $\partial W(x,y)$ se décompose en plusieurs sous-variétés (de dimension 3) elles-mêmes à bord, recollées le long de leur bord commun.

Plus précisément, on distinguera dans W(x,y) le bord vertical, obtenu en restreignant le fibré au-dessus de $\partial P = S^1_{ab} - S^1_a - S^1_b$ et le bord horizontal obtenu comme suspension des restrictions $(h_x)_{|\partial D_n}$, $(h_y)_{|\partial D_n}$ au-dessus du pantalon P. Décrivons cette décomposition de façon plus précise.

– Le bord vertical $\partial_{|}W(x,y)$ a trois composantes connexes, correspondant aux restrictions du fibré au-dessus des trois composantes de bord S_a^1 , S_b^1 et S_{ab}^1 du pantalon. Il s'agit de trois fibrés au-dessus du cercle de fibre D_n , données par les monodromies h_x , h_y et $h_x h_y \in \mathcal{D}_n$, respectivement. Autrement dit, chacune de ces trois composantes s'identifie à la suspension de la tresse correspondante. En tenant compte des orientations, on résume ce fait par l'égalité

$$\partial_{l}W(x,y) = M(xy) - M(x) - M(y).$$

- Le bord horizontal $\partial_-W(x,y)$ est l'espace total d'une fibration de base P et de fibre ∂D_n . À ce titre, il est opportun de séparer deux parties dans $\partial_-W(x,y)$, correspondant aux deux parties $\partial_{\text{int}}D_n$ et $\partial_{\text{ext}}D_n$:
 - Puisque les éléments de \mathscr{D}_n coïncident avec l'identité sur le bord extérieur $\partial_{\mathrm{ext}} D_n = S^1_{\mathrm{ext}}$, la partie extérieure $\partial_{-,\mathrm{ext}} W(x,y)$ est simplement un produit :

$$\partial_{-,\text{ext}}W(x,y) = P \times S^1_{\text{ext}}.$$

– La situation est plus compliquée pour la partie intérieure : $\partial_{-,\text{int}}W(x,y)$ est une fibration sur le pantalon dont la fibre est constituée de n cercles $S^1_{\text{int},i}$. Comme pour la description de $\partial_{\text{int}}M(x)$, on constate alors qu'à homéomorphisme près, cette variété de dimension 3 ne dépend des difféomorphismes restreints $(h_x)_{|\partial_{\text{int}}D_n}$ et $(h_y)_{|\partial_{\text{int}}D_n}$ qu'à isotopie près, c'est-à-dire qu'elle ne dépend que des permutations perm(x) et perm $(y) \in \mathfrak{S}(n)$. On a donc un homéomorphisme

$$\partial_{-,\mathrm{int}}W(x,y)\simeq\mathscr{R}_{x,y}\times S^1_{\mathrm{int}},$$

où $\mathcal{R}_{x,y}$ est le revêtement (à n feuillets) du pantalon défini par la représentation

$$\begin{array}{ccc} \pi_1(P) = \mathbb{L}(a,b) \to & \mathfrak{S}(n) \\ a & \mapsto \operatorname{perm}(x) \\ b & \mapsto \operatorname{perm}(y). \end{array}$$

On remarque d'ailleurs que le bord de la surface $\mathcal{R}_{x,y}$ s'identifie canoniquement à $\mathcal{R}_{xy} - \mathcal{R}_x - \mathcal{R}_y$, où \mathcal{R}_x est le revêtement du cercle à n feuillets défini par perm(x).

Ces parties du bord sont recollées le long de leurs composantes de bord, des surfaces fermées :

– $\partial_|W(x,y)=M(xy)-M(x)-M(y)$ et $\partial_{-,\text{ext}}W(x,y)=P\times S^1_{\text{ext}}$ sont recollés le long de

$$C_{\text{ext}} = (S_{ab}^1 \times S_{\text{ext}}^1) - (S_a^1 \times S_{\text{ext}}^1) - (S_b^1 \times S_{\text{ext}}^1).$$

 $-\partial_{|}W(x,y) = M(xy) - M(x) - M(y)$ et $\partial_{-,int}W(x,y) = \mathcal{R}_{x,y} \times S^{1}_{int}$ sont recollés le long de

$$C_{\text{int}} = (\mathscr{R}_{xy} \times S_{\text{int}}^1) - (\mathscr{R}_x \times S_{\text{int}}^1) - (\mathscr{R}_y \times S_{\text{int}}^1).$$

Cette surface $C_{\rm int} = \partial_{\rm int} M(xy) - \partial_{\rm int} M(x) - \partial_{\rm int} M(y)$ s'identifie également à $\partial E(\widehat{xy}) - \partial E(\widehat{x}) - \partial E(\widehat{y})$.

La figure suivante résume schématiquement la situation. Notons que $\partial_{|}W(x,y)$ y est représenté en deux morceaux (verticaux) mais que cela n'est qu'un artefact de la représentation bidimensionnelle.

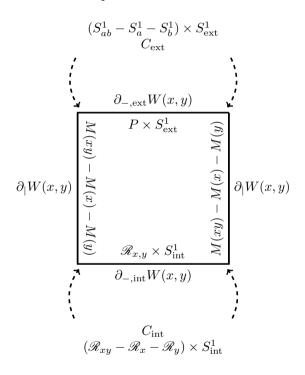


FIGURE 5.2 – Décomposition de $\partial W(x,y)$

On voit déjà sur cette figure l'idée de la preuve du théorème : après lissage des coins, W(x,y) est une \mathbb{J} -variété dont le bord $\partial W(x,y)$ se décompose en trois parties. Plus exactement, en tenant en compte les orientations, on a

$$\partial W(x,y) = \left(\partial_{-,\mathrm{ext}} W(x,y)\right) \underset{C_{\mathrm{ext}}}{\sqcup} \left(\partial_{|} W(x,y)\right) \underset{C_{\mathrm{int}}}{\sqcup} \left(-\partial_{-,\mathrm{int}} W(x,y)\right).$$

D'après l'analogue du théorème de Lannes et Latour démontré au chapitre précédent, le morphisme $\partial: \mathbf{W}(\mathbb{Q}(t)) \to \mathbf{WT}(\Lambda_{\mathbb{Q}})$ envoie donc la

classe de Witt de la forme d'intersection de W(x,y) sur la classe de Witt de la forme d'enlacement $(TH_1(\partial W(x,y);\Lambda_{\mathbb{Q}}),\operatorname{Enl})$ de cette \mathbb{J} -variété de dimension 3.

Or, comme on le voit sur le schéma, la partie la plus significative de $\partial W(x,y)$ est constituée du bord vertical $\partial_{|}W(x,y) = M(xy) - M(x) - M(y)$, \mathbb{J} -variété à bord dont la forme d'enlacement, une fois régularisée, donne précisément une forme de Blanchfield de classe de Witt $\beta_{xy} - \beta_x - \beta_y$. Il va donc s'agir dans un premier temps de démontrer qu'effectivement les parties $\partial_{-,\text{int}}W(x,y)$ et $\partial_{-,\text{ext}}W(x,y)$, beaucoup moins riches (la première ne dépend que de perm(x) et perm(y), la seconde ne dépend que de n) ne contribuent pas à la classe de Witt de la forme d'enlacement de $\partial W(x,y)$, si ce n'est en tuant le noyau des formes d'enlacement de M(x), M(y) et M(xy). Plus précisément, la fin de ce chapitre vise à démontrer le premier point de la proposition suivante.

Théorème.

- La forme d'enlacement $(TH_1(\partial W(x,y);\Lambda_{\mathbb{Q}}), \operatorname{Enl})$ a pour classe de Witt $\beta_{xy} \beta_x \beta_y$.
- $Si \ \alpha_{x,y} \in \mathbf{W}(\mathbb{Q}(t))$ est la classe de Witt de la forme d'intersection (régularisée) de W(x,y), alors $-\partial \alpha_{x,y} = \beta_{xy} \beta_x \beta_y$.

Il restera ensuite à identifier $\alpha_{x,y}$ à un cocycle de Meyer, ce qui est l'objet du prochain chapitre.

5.3 Preuve de $-\partial \alpha_x = \beta_{xy} - \beta_x - \beta_y$

5.3.1 Ajout de $\partial_{-,\text{ext}}W(x,y)$

Soit $N = (\partial_{-,\text{ext}} W(x,y)) \underset{C_{\text{ext}}}{\sqcup} (\partial_{|} W(x,y))$. Le but de cette section est de démontrer le résultat intermédiaire suivant.

Proposition.

- La forme d'enlacement $(TH_1(N; \Lambda_{\mathbb{Q}}), \operatorname{Enl})$ a un noyau (t-1)primaire.
- La classe de Witt de la forme régulière $(TH_1(N; \Lambda_{\mathbb{Q}})_0, \operatorname{Enl}_0)$ est égale à $\beta_{xy} \beta_x \beta_y$.

La première affirmation ne pose pas de difficulté. On a établi lors de la preuve de la proposition de la section 3.2.4 que si l'extérieur E(L) d'un entrelacs de S^3 est muni de sa structure canonique de \mathbb{J} -variété, l'homologie $H_1(\partial E(L); \Lambda_{\mathbb{Q}})$ du bord est de (t-1)-torsion.

Or, le bord $\partial N = C_{\rm int} = \partial_{\rm int} M(xy) - \partial_{\rm int} M(x) - \partial_{\rm int} M(y)$ s'identifie à $\partial E(\widehat{xy}) - \partial E(\widehat{x}) - \partial E(\widehat{y})$. Le $\Lambda_{\mathbb{Q}}$ -module $H_1(\partial N; \Lambda_{\mathbb{Q}})$ est donc de (t-1)-torsion, ce qui entraı̂ne que le noyau

$$TH_1(N; \Lambda_{\mathbb{Q}}) \cap \operatorname{im} (i_* : H_1(\partial N; \Lambda_{\mathbb{Q}}) \to H_1(N; \Lambda_{\mathbb{Q}}))$$

de la forme d'enlacement est (t-1)-primaire et donc que la forme $(TH_1(N); \Lambda_{\mathbb{Q}})_0$, Enl_0) est régulière.

On va démontrer la deuxième partie de la proposition à l'aide d'une réduction sous-lagrangienne. Découpons le raisonnement en plusieurs étapes.

Lemme. Le sous-module

$$I = \operatorname{im} (H_1(\partial_{-,\operatorname{ext}} W(x,y); \Lambda_{\mathbb{Q}}) \to H_1(N; \Lambda_{\mathbb{Q}})) \subset TH_1(N; \Lambda_{\mathbb{Q}})$$

est isotrope.

Démonstration du lemme. Comme on l'a vu, $\partial_{-,\text{ext}}W(x,y)$ est un produit $P\times S^1_{\text{ext}}$. Le revêtement infini cyclique de $\partial_{-,\text{ext}}W(x,y)$ est ainsi homéomorphe à n copies de $P\times \mathbb{R}$, ce qui entraı̂ne que $H_1(\partial_{-,\text{ext}}W(x,y);\Lambda_{\mathbb{Q}})$ est un $\Lambda_{\mathbb{Q}}/(t^n-1)$ -module libre de rang 2, engendré par des relevés des courbes de bord S^1_a et S^1_b . En particulier, toute l'homologie de cette \mathbb{J} -variété $\partial_{-,\text{ext}}W(x,y)$ est dans l'image de l'homologie de son bord, ce qui entraı̂ne que sa forme d'enlacement est identiquement nulle.

En particulier, le morphisme induit par l'inclusion $\partial_{-,\text{ext}}W(x,y) \to N$ doit envoyer son homologie $H_1(\partial_{-,\text{ext}}W(x,y);\Lambda_{\mathbb{Q}}) = TH_1(\partial_{-,\text{ext}}W(x,y);\Lambda_{\mathbb{Q}})$ sur un module isotrope.

Lemme. L'orthogonal de I dans $(TH_1(N; \Lambda_{\mathbb{Q}}), Enl)$ est

$$J = \operatorname{im} \left(Ti_* : TH_1(\partial_{|}W(x,y); \Lambda_{\mathbb{Q}}) \to TH_1(N; \Lambda_{\mathbb{Q}}) \right).$$

 $D\acute{e}monstration$ du lemme. La suite de Mayer-Vietoris fournit un morphisme

$$\psi: H_1(N; \Lambda_{\mathbb{Q}}) \to H_0(C_{\mathrm{ext}}; \Lambda_{\mathbb{Q}})$$

dont le novau est l'image du morphisme

$$H_1(\partial_|W(x,y);\Lambda_{\mathbb{Q}}) \oplus H_1(\partial_{-,\mathrm{ext}}W(x,y);\Lambda_{\mathbb{Q}}) \to H_1(N;\Lambda_{\mathbb{Q}})$$

induit par les inclusions.

Comme toutes les classes d'homologie de $\partial_{-,\text{ext}}W(x,y)$ proviennent de son bord commun avec $\partial_{|}W(x,y)$), on a donc

$$\ker \psi = \operatorname{im} \left(i_* : H_1(\partial_{|}W(x,y) \to H_1(N;\Lambda_{\mathbb{Q}}) \right).$$

Comme en outre $H_1(C_{\mathrm{ext}}; \Lambda_{\mathbb{Q}})$ est de torsion, $\ker(i_*) \subset TH_1(\partial_{|}W(x, y); \Lambda_{\mathbb{Q}})$ et $\ker(\psi) \cap TH_1(N; \Lambda_{\mathbb{Q}}) = \mathrm{im}(Ti_*)$.

Il reste à montrer que si $x \in TH_1(N; \Lambda_{\mathbb{Q}})$, x est orthogonal à I si et seulement si $\psi(x) = 0$.

Tout d'abord, $H_1(\partial_{-,\text{ext}}W(x,y);\Lambda_{\mathbb{Q}})$ est de torsion. Cela implique qu'étant donné une classe $c\in H_1(\partial_{-,\text{ext}}W(x,y);\Lambda_{\mathbb{Q}})$, on peut trouver une 2-chaîne S dans $\widetilde{\partial}_{-,\text{ext}}W(x,y)$ telle que ∂S soit un multiple (à coefficients dans $\Lambda_{\mathbb{Q}}$) de c. Ainsi, une 1-chaîne dans $\partial_{|}W(x,y)$ n'intersectera pas S, ce qui entraîne que I et J sont orthogonaux.

Réciproquement, supposons que $\psi(x) \in H_0(C_{\mathrm{ext}}; \Lambda_{\mathbb{Q}})$ soit non triviale. Or, le $\Lambda_{\mathbb{Q}}$ -module $H_0(C_{\mathrm{ext}}; \Lambda_{\mathbb{Q}})$ est de torsion et, par dualité de Poincaré, l'accouplement $\mathrm{Enl}_{C_{\mathrm{ext}}}: TH_0(C_{\mathrm{ext}}; \Lambda_{\mathbb{Q}}) \times TH_1(C_{\mathrm{ext}}; \Lambda_{\mathbb{Q}}) \to S(\Lambda_{\mathbb{Q}})$ induit un isomorphisme $TH_1(C_{\mathrm{ext}}; \Lambda_{\mathbb{Q}}) \to TH_0(C_{\mathrm{ext}}; \Lambda_{\mathbb{Q}})^{\vee}$. En particulier, on peut trouver $y \in TH_1(C_{\mathrm{ext}}; \Lambda_{\mathbb{Q}})$ telle que

$$\operatorname{Enl}_{C_{\operatorname{ext}}}(\psi(x), y) = \operatorname{Enl}_{N}(x, i_{*}(y)) \neq 0.$$

Ce qui entraı̂ne que x n'appartient pas à l'orthogonal de I.

Ainsi, la forme d'enlacement induit une forme sur I^{\perp}/I qui est évidemment isomorphe à la forme d'enlacement sur le quotient $TH_1(\partial_{|}W(x,y);\Lambda_{\mathbb{Q}})/\operatorname{im}\left(H_1(C_{\mathrm{ext}};\Lambda_{\mathbb{Q}})\to H_1(\partial_{|}W(x,y);\Lambda_{\mathbb{Q}})\right)$. Or, la forme sur $TH_1(M(x);\Lambda_{\mathbb{Q}})/\operatorname{im}\left(H_1(\partial_{\mathrm{ext}}M(x);\Lambda_{\mathbb{Q}})\to H_1(M(x);\Lambda_{\mathbb{Q}})\right)$ n'est autre que $(TH_1(E(\widehat{x});\Lambda_{\mathbb{Q}}),\mathrm{Enl})$. (On ne peut pas à proprement parler de réduction sous-lagrangienne car les formes considérées peuvent être dégénérées.)

Le résultat s'étend aux modules obtenus en ne considérant que les composantes p-primaires pour $p \neq (t-1)$ (si I est un sous-module isotrope de T d'orthogonal J, I_0 est bien un sous-module isotrope de T_0 d'orthogonal J_0) et l'on obtient que la forme non dégénérée Enl_0 sur $TH_1(N; \Lambda_{\mathbb{Q}})_0$ admet une réduction sous-lagrangienne isomorphe à

$$(TH_1(E(\widehat{xy}); \Lambda_{\mathbb{Q}}), \operatorname{Enl}) \oplus (TH_1(E(\widehat{x}); \Lambda_{\mathbb{Q}}), -\operatorname{Enl}) \oplus (TH_1(E(\widehat{y}); \Lambda_{\mathbb{Q}}), -\operatorname{Enl}).$$

On obtient donc bien $[(TH_1(N; \Lambda_{\mathbb{Q}})_0, \operatorname{Enl}_0)] = \beta_{xy} - \beta_x - \beta_y$ en passant aux classes de Witt.

5.3.2 Ajout de $\partial_{-,int}W(x,y)$ et conclusion

Il reste maintenant à relier la forme régulière $(TH_1(N; \Lambda_{\mathbb{Q}})_0, \operatorname{Enl}_0)$ de la section précédente à la forme d'enlacement de la \mathbb{J} -variété $\partial W(x, y)$ tout entière.

Bien que la structure exacte de $\partial_{-,int}W(x,y) = \mathscr{R}_{x,y} \times S^1_{int}$ soit plus complexe que celle que nous venons de traiter, le fait que le morphisme $\pi_1(S^1_{int}) \to \mathbb{J}$ soit un isomorphisme permet essentiellement d'ignorer cette partie de $\partial W(x,y)$.

Lemme. Soit $X \times S^1$ une \mathbb{J} -variété définie par le morphisme

$$\pi_1(X\times S^1)\simeq \pi_1(X)\times \pi_1(S^1)\xrightarrow{\operatorname{pr}_2} \pi_1(S^1)\xrightarrow{\varphi} \mathbb{J},$$

où φ est un isomorphisme. Alors les $\Lambda_{\mathbb{Q}}$ -modules d'homologie $H_*(X \times S^1; \Lambda_{\mathbb{Q}})$ sont de (t-1)-torsion.

Démonstration du lemme. Par définition de la \mathbb{J} -structure, le revêtement infini cyclique de $X \times S^1$ est simplement $X \times \mathbb{R}$, l'action de l'automorphisme de revêtement t étant donnée par la translation le long du deuxième facteur. En particulier,

$$H_*(X \times S^1; \Lambda_{\mathbb{Q}}) \simeq H_*(X),$$

où le soulignement signifie que le \mathbb{Z} -module $H_*(X)$ est muni de sa structure de $\Lambda_{\mathbb{Q}}$ -module trivial.

Ce lemme s'applique notamment à $C_{\rm int} \simeq (\mathcal{R}_{xy} - \mathcal{R}_x - \mathcal{R}_y) \times S^1_{\rm int}$ et $\partial_{-,\rm int} W(x,y) \simeq \mathcal{R}_{x,y} \times S^1_{\rm int}$.

La suite de Mayer-Vietoris appliquée au recouvrement $\widetilde{\partial} W(x,y)=\widetilde{N}\cup\widetilde{\partial}_{-,\mathrm{int}}W(x,y)$

$$\cdots \to H_1(C_{\mathrm{int}}; \Lambda_{\mathbb{Q}}) \to H_1(N; \Lambda_{\mathbb{Q}}) \oplus H_1(\partial_{-,\mathrm{int}} W(x, y); \Lambda_{\mathbb{Q}})$$
$$\to H_1(\partial W(x, y); \Lambda_{\mathbb{Q}}) \to H_0(C_{\mathrm{int}}; \Lambda_{\mathbb{Q}}) \to \cdots$$

montre alors que l'inclusion $N \to \partial W(x,y)$ induit un isomorphisme (et donc une isométrie) entre les formes d'enlacement réduites

$$(TH_1(N; \Lambda_{\mathbb{Q}})_0, \operatorname{Enl}_0)$$
 et $(TH_1(\partial W(x, y); \Lambda_{\mathbb{Q}})_0, \operatorname{Enl}_0)$.

La section précédente entraı̂ne donc que la classe de Witt de $(TH_1(\partial W(x,y);\Lambda_{\mathbb{Q}})_0,\operatorname{Enl}_0)$ est

$$\beta_{xy} - \beta_x - \beta_y \in \mathbf{WT}(\Lambda_{\mathbb{Q}}).$$

D'après le théorème du chapitre précédent, on obtient donc bien le résultat souhaité :

$$\partial \alpha_{x,y} + \beta_{xy} - \beta_x - \beta_y = 0.$$

Chapitre 6

Cocycle de Meyer à valeurs dans $\mathrm{W}(\mathbb{Q}(t))$

6.1 Cocycle de Meyer

Comme on l'a expliqué à la section 1.3.1, Meyer a démontré dans [54, Satz I.2.2] que si F et B sont des variétés fermées et orientées (de dimension m et n, respectivement) et que $W \to B$ est un fibré orienté de fibre F, la signature de l'espace total W (supposé de dimension multiple de 4) ne dépendait que de l'action du groupe fondamental de B sur l'homologie de F. Plus précisément, la signature de W vérifie la formule

$$\operatorname{sign} W = \begin{cases} \operatorname{sign} H^{n/2}(B; H^{m/2}(F; \mathbb{R})), & \text{si } n \equiv m \equiv 0 \text{ (mod 2)}, \\ 0 & \text{sinon.} \end{cases}$$

Dans le cas n et m pairs, $H^{m/2}(F;\mathbb{R})$ est vu comme un système local de coefficients défini sur B, et le groupe de cohomologie correspondant est muni d'une structure bilinéaire par la composition

$$H^{n/2}(B; H^{m/2}(F; \mathbb{R})) \otimes H^{n/2}(B; H^{m/2}(F; \mathbb{R}))$$

$$\to H^{n}(B; H^{m/2}(F; \mathbb{R}) \otimes H^{m/2}(F; \mathbb{R}))$$

$$\to H^{n}(B; H^{m}(F; \mathbb{R})) \simeq H^{n}(B; \mathbb{R}) \simeq \mathbb{R}$$

des cup-produits de B et de F. Cette forme bilinéaire est bien symétrique (puisque m+n est un multiple de 4, on a $n\equiv m\pmod 4$: s'ils sont multiples de 4, les deux cup-produits sont symétriques, s'ils sont congrus à 2, les deux sont antisymétriques).

Ce théorème généralise le théorème de Chern, Hirzebruch et Serre évoqué à la section 1.3.1 : en effet, dans ce cas précis, le système local de coefficients est trivial, donc $H^{n/2}(B; H^{m/2}(F; \mathbb{R})) = H^{n/2}(B; \mathbb{R}) \otimes H^{m/2}(F; \mathbb{R})$, muni

de la structure bilinéaire produit, dont on vérifie aisément que sa signature est nulle si n/2 et m/2 sont impairs et vaut le produit des signatures si n/2 et m/2 sont pairs.

Dans le cas où n=m=2 (mais où la représentation de monodromie n'est plus supposée triviale), Meyer explicite complètement le calcul de la signature : il construit un 2-cocycle Meyer sur le groupe symplectique $\mathrm{Sp}_{2a}(\mathbb{R})$ tel que

$$sign W = \langle \rho^* Meyer, [B] \rangle,$$

οù

$$\rho: \pi_1(B) \to \operatorname{Aut}(H_1(F; \mathbb{R}))$$

est la représentation de monodromie (qui est bien à valeurs symplectiques, car elle préserve la forme d'intersection sur $H_1(F;\mathbb{R})$). Notons qu'en vertu de l'acyclicité de la surface B, on a un isomorphisme $H_2(B;\mathbb{R}) \simeq H_2(\pi_1(B);\mathbb{R})$ et donc une classe fondamentale $[B] \in H_2(\pi_1(B))$.

La propriété de cocycle et le calcul explicite du cocycle de Meyer reposent sur les propriétés d'additivité et de non-additivité de la signature et font intervenir l'invariant fondamental des triplets de lagrangiens dans l'espace vectoriel symplectique standard $H_{-1}(\mathbb{R}^n)$, l'indice ternaire de Wall

$$\tau(L_0, L_1, L_2) \in \mathbb{Z}.$$

Définition. Soit $L_1, L_2, L_3 \subset (V, \omega)$ trois lagrangiens d'un \mathbb{R} -espace vectoriel symplectique. L'*indice de Wall* $\tau(L_1, L_2, L_3) \in \mathbb{Z}$ est alors la signature de la forme quadratique ¹

$$\frac{L_1 \cap (L_2 + L_3)}{L_1 \cap L_2 + L_1 \cap L_3} \to \mathbb{R}$$

$$[x] \mapsto \omega(x_1, x_2),$$

si [x] est la classe d'un vecteur $x_1 = x_2 + x_3 \in L_1 \cap (L_2 + L_3)$.

L'indice de Wall est invariant si l'on transforme les trois lagrangiens par une même transformation symplectique; si l'on permute les lagrangiens, il est multiplié par la signature de la permutation.

Avant d'énoncer le résultat de Wall, rappelons qu'une application classique de la dualité de Poincaré montre que, si M est une variété de dimension 4m-1 de bord Σ , la forme d'intersection munit $H_{2m-1}(\Sigma;\mathbb{R})$ d'une structure d'espace vectoriel symplectique pour laquelle le sous-espace

$$\ker\left(i_*: H_{2m-1}(\Sigma; \mathbb{R}) \to H_{2m-1}(M; \mathbb{R})\right)$$

est un sous-espace lagrangien.

^{1.} Cette définition est tirée de l'article original [76]. Il est en fait possible de donner plusieurs expressions de formes quadratiques définissant la même signature, dont certaines rendent plus évidentes les propriétés de symétrie. On recommande l'article [62] pour une comparaison de ces définitions.

Théorème ([76]). Soit W une variété de dimension 4m, que l'on suppose réunion de deux variétés orientées à bord W_1 et W_2 . On suppose qu'il existe une variété fermée orientée $\Sigma \subset \partial W$ de dimension 4m-2 et des variétés orientées à bord $M_0, M_1, M_2 \subset W$ de dimension 4m-1 ne s'intersectant que sur leur bord commun et telles que

$$\partial W_1 = M_0 - M_1$$
, $\partial W_2 = M_2 - M_0$, $\partial M_0 = \partial M_1 = \partial M_2 = \Sigma$.

Alors

$$\operatorname{sign} W = \operatorname{sign} W_1 + \operatorname{sign} W_2 + \tau(L_1, L_0, L_2),$$

 $où L_i \subset H_{2m-1}(\Sigma; \mathbb{R})$ est le sous-espace lagrangien

$$\ker (i_*: H_{2m-1}(\Sigma; \mathbb{R}) \to H_{2m-1}(M_i; \mathbb{R})).$$

Notons que si W est obtenu en recollant des variétés W_1 et W_2 le long de composantes connexes de leur bord, le théorème de Wall s'applique (avec M_0 et Σ vides) et montre que sign $W = \text{sign } W_1 + \text{sign } W_2$, ce qui constitue le théorème d'additivité de Novikov.

Dans le calcul de Meyer, le théorème de Novikov permet de découper la surface B en pantalons et d'obtenir la signature de W comme somme des signatures des restrictions du fibré $W \to B$ au-dessus d'une décomposition de B en pantalons. Plus algébriquement, c'est la preuve que la signature de W est obtenue comme évaluation d'un 2-cocyle qu'il suffit donc de savoir calculer pour deux isomorphismes symplectiques $f,g \in \operatorname{Sp}_{2g}(\mathbb{R})$.

Le théorème de Wall permet de faire ce calcul et d'obtenir Meyer(f,g), c'est-à-dire la signature d'un fibré $W\to P$ de représentation de monodromie

$$\rho: \pi_1(P) = \mathbb{L}(a,b) \to \operatorname{Sp}_{2g}(\mathbb{R})$$

$$a \mapsto f$$

$$b \mapsto a$$

comme un indice de Wall.

Concrètement, le pantalon P s'identifie au recollement de deux anneaux P_1 et P_2 le long d'un intervalle I_0 inclus dans leur bord. Cette décomposition induit une décomposition de W en deux fibrés W_i sur l'anneau. La signature de chacun de ces fibrés est nulle (le champ de vecteurs radial sur l'anneau se relève en un champ de vecteurs sur W_i dont le flot permet de disjoindre toute surface S_1 d'une surface donnée S_2 , donc la forme d'intersection est triviale sur chacun de ces deux morceaux).

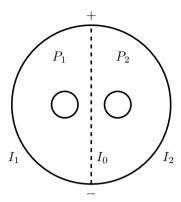


Figure 6.1 - P est l'union de deux anneaux

On peut alors appliquer le théorème de Wall : M_0 est la restriction (triviale) du fibré au-dessus de I_0 , M_1 et M_2 sont les restrictions (triviales) du fibré au-dessus de I_1 et I_2 , les intervalles constituant l'autre partie du bord de P_1 et P_2 , respectivement. Le rôle de la sous-variété Σ est joué par les deux fibres F_+ et F_- au-dessus des points d'intersection des intervalles I_i . Les conventions d'orientation imposent à l'orientation de F_+ de coïncider avec l'orientation privilégiée de F et à celle de F_- de coïncider avec l'orientation opposée. En particulier, si on note ω la forme d'intersection sur $H_1(F;\mathbb{R})$, $H_1(\Sigma;\mathbb{R})$ s'identifie à la somme directe $H_1(F;\mathbb{R}) \oplus H_1(F;\mathbb{R})$, munie de la forme symplectique standard $(-\omega) \oplus \omega$. Pour cette forme symplectique, les graphes des isomorphismes symplectiques sont des sous-espaces lagrangiens.

Les fibrés restreints au-dessus des intervalles I_i sont triviaux. On peut choisir les trivialisations et identifier $H_1(M_i; \mathbb{R})$ à $H_1(F; \mathbb{R})$ de telle sorte que les isomorphismes

$$H_1(F_-;\mathbb{R}) \to H_1(M_i;\mathbb{R}) \to H_1(F_+;\mathbb{R})$$

soient donnés par f^{-1} pour i = 1, id pour i = 0 et g pour i = 2. En particulier, les lagrangiens

$$L_i = \ker(H_1(\Sigma; \mathbb{R}) \to H_1(M_i; \mathbb{R})) \subset H_1(\Sigma; \mathbb{R}) = H_1(F; \mathbb{R}) \oplus H_1(F; \mathbb{R})$$

sont les graphes des isomorphismes symplectiques id (i=0), f^{-1} (i=1) et q (i=2).

D'après le théorème de Wall, on a donc

$$\operatorname{sign} W = \tau(\operatorname{gr} f^{-1}, \operatorname{gr}\operatorname{id}, \operatorname{gr} g) = \tau(\operatorname{gr}\operatorname{id}, \operatorname{gr} f, \operatorname{gr} fg),$$

la dernière égalité étant donné par les symétries de l'indice de Wall.

On obtient donc le 2-cocycle de Meyer

$$Meyer(f, g) = \tau(grid, gr f, gr fg),$$

défini sur le groupe symplectique $\mathrm{Sp}_{2g}(\mathbb{R}),$ et qui est simplement la version inhomogène du 2-cocycle homogène

$$meyer(f, g, h) = \tau(gr f, gr g, gr h).$$

L'indice de Wall a été considérablement généralisé. Notamment, il est possible de définir un indice de Wall associant à tout triplet (L_0, L_1, L_2) de lagrangiens de l'espace vectoriel symplectique standard $H_{-1}(K^n)$ une classe de Witt

$$\tau(L_0, L_1, L_2) \in \mathbf{W}(K),$$

cf. par exemple [62, 74]. Cela permet directement d'en déduire l'expression d'un 2-cocycle Meyer défini sur le groupe des automorphismes symplectiques de $H_{-1}(K^n)$.

On peut en donner une définition directement inspirée des considérations sur la suite spectrale que l'on a exposées au début de ce chapitre. Ainsi, si K est un corps à involution et que E un K-espace vectoriel muni d'une forme antihermitienne σ , on note $\operatorname{Aut}(E,\sigma)\subset\operatorname{GL}_K(E)$ le sous-groupe des automorphismes préservant la forme σ . Étant donné f et $g\in\operatorname{Aut}(E,\sigma)$, la représentation $\pi_1(P)=\mathbb{L}(a,b)\to\operatorname{Aut}(E,\sigma)$ envoyant a sur f et b sur g permet de voir E comme un système local de coefficients défini sur P.

On pourrait alors définir le cocycle de Meyer (à valeurs dans le groupe de Witt $\mathbf{W}(K)$) comme la classe de Witt de la forme hermitienne obtenue en régularisant la composition

$$H^1(P, \partial P; E) \otimes H^1(P, \partial P; E) \to H^2(P, \partial P; E \otimes E) \to H^2(P, \partial P; K) \simeq K$$

du cup-produit et de la forme antihermitienne $E \otimes E \to K$.

Cependant, on en donne ici une définition plus élémentaire, quoique équivalente.

Définition. Soit K un corps à involution, (E, σ) une forme antihermitienne et $f, g \in \operatorname{Aut}(E, \sigma)$ des automorphismes préservant la forme anti-hermitienne. On définit alors l'espace vectoriel

$$H = \{(u, v) \in E \oplus E \mid f(u) - u + g(v) - v = 0\}$$

que l'on munit de la forme sesquilinéaire

$$h((u, v); (u', v')) = \sigma(g(v) - u, f(u') - u').$$

La forme h définit alors une forme hermitienne sur H, et on pose

$$\operatorname{Meyer}(f,g) = [(H,h)] \in \mathbf{W}(K).$$

Remarque. La preuve du fait que h est hermitienne est un calcul direct peu éclairant. Soit (u, v) et (u', v') deux éléments de H. On a alors

$$\begin{split} h((u,v);(u',v')) - \overline{h((u',v');(u,v))} \\ &= \sigma\left(g(v) - u, f(u') - u'\right) - \overline{\sigma\left(g(v') - u', f(u) - u\right)} \\ &= \sigma\left(g(v) - u, f(u') - u'\right) + \sigma\left(f(u) - u, g(v') - u'\right) \\ &= \sigma\left(g(v) - u, f(u') - u'\right) + \sigma\left(f(u) - u, v' - f(u')\right) \\ &= \sigma\left(g(v), f(u') - u'\right) - \sigma\left(u, f(u')\right) + \sigma\left(u, u'\right) + \sigma\left(f(u), v'\right) \\ &- \underbrace{\sigma\left(f(u), f(u')\right)}_{=\sigma(u,u')} - \sigma\left(u, v'\right) + \sigma\left(u, f(u')\right) \\ &= \underbrace{\sigma\left(g(v), v' - g(v')\right)}_{=\sigma(g(v), v') - \sigma(v, v')} + \sigma\left(f(u), v'\right) - \sigma\left(u, v'\right) \\ &= \sigma\left(g(v) - v + f(u) - u, v'\right) = 0, \end{split}$$

ce qui démontre que h est hermitienne. Le sens de cette formule sera beaucoup plus clair à la prochaine section.

6.2 Fibrés en surfaces sur le pantalon

Dans toute cette section F est une surface connexe orientée, que l'on suppose non fermée, et $W \to P$ est un fibré orienté sur le pantalon, de fibre F. Observons ce que donnent dans ce cas particulier les arguments de Meyer relatifs à la suite spectrale de Leray-Serre.

À la deuxième page de la suite spectrale, on observe les groupes d'homologie $H_p(P; H_q(F; \mathbb{Q}))$ à coefficients dans les systèmes locaux de coefficients $H_q(F; \mathbb{Q})$. Le fait que la fibre soit connexe et les hypothèses d'orientation entraînent que les systèmes locaux de coefficients $H_0(F; \mathbb{Q}) = \mathbb{Q}$ et $H_2(F; \mathbb{Q})$ sont triviaux. En revanche, $H_1(F; \mathbb{Q})$ est un système local de coefficients a priori non trivial, gouverné par la représentation de monodromie $\rho: \pi_1(P) = \mathbb{L}(a,b) \to \operatorname{Aut}(H_1(F; \mathbb{Q}))$ (on continue à noter $f = \rho(a)$ et $g = \rho(b)$).

Comme le pantalon est un espace d'Eilenberg-MacLane, l'homologie $H_p(P; H_1(F; \mathbb{Q}))$ s'identifie à l'homologie du groupe $\mathbb{L}(a, b)$ à coefficients dans $H_1(F; \mathbb{Q})$. Celui-ci possède une résolution libre

$$0 \to \mathbb{Z}[\mathbb{L}(a,b)] \oplus \mathbb{Z}[\mathbb{L}(a,b)] \xrightarrow{(a-\mathrm{id},b-\mathrm{id})} \mathbb{Z}[\mathbb{L}(a,b)] \to \mathbb{Z}$$

donnant naissance à un complexe de longueur 1

$$C_1 = H_1(F; \mathbb{Q}) \oplus H_1(F; \mathbb{Q}) \xrightarrow{\partial} C_0 = H_1(F; \mathbb{Q})$$

 $(u, v) \mapsto f(u) - u + g(v) - v.$

Il s'ensuit donc que

$$H_0(P; H_1(F; \mathbb{Q})) = H_1(F; \mathbb{Q})/(\operatorname{im}(f - \operatorname{id}) + \operatorname{im}(g - \operatorname{id})),$$

(ce qui est conforme à la description classique de $H_0(\mathbb{L}(a,b);H_1(F;\mathbb{Q}))=H_1(F;\mathbb{Q})_{\mathbb{L}(a,b)}$ comme groupe des co-invariants) et que

$$H_1(P, H_1(F; \mathbb{Q}))$$

= $\{(u, v) \in H_1(F; \mathbb{Q}) \oplus H_1(F; \mathbb{Q}) \mid f(u) - u + g(v) - v = 0\}.$

En outre, vu les dimensions en jeu, la suite spectrale de Leray-Serre associée à la fibration $F \to W \to P$ dégénère dès la deuxième page et $H_2(W;\mathbb{Q})$ s'identifie à $H_1(P;H_1(F;\mathbb{Q}))$.

$$E_{0,2}^2 = 0 E_{1,2}^2 = H_1(P; \mathbb{Q})$$

$$E_{0,1}^2 = H_1(F; \mathbb{Q})_{\pi_1(P)} E_{1,1}^2 = H_1(P; H_1(F; \mathbb{Q}))$$

$$E_{0,0}^2 = \mathbb{Q} E_{1,0}^2 = H_1(P; \mathbb{Q})$$

Figure 6.2 – La deuxième page de la suite spectrale de $F \to E \to P$

En outre, même dans le cas où F est fermée (et donc où $H_2(F;\mathbb{Q})$ n'est pas trivial), on vérifie facilement que le sous-espace vectoriel $H_2(F;\mathbb{Q}) \subset H_2(W;\mathbb{Q})$ est inclus dans le noyau de la forme d'intersection. En particulier, on obtient directement un corollaire du théorème de Meyer : quitte à quotienter par le noyau, il revient au même de considérer $H_2(W;\mathbb{Q})$ ou le groupe d'homologie $H_1(P;H_1(F;\mathbb{Q}))$.

Remarque. Quand on a affaire à un fibré $F \xrightarrow{i_*} W \xrightarrow{\pi} B$, où F et B sont des surfaces fermées, la deuxième page de la suite spectrale contient neuf termes a priori non triviaux, et la suite spectrale elle-même ne dégénère qu'à la troisième page. Le groupe d'homologie $H_1(B; H_1(F; \mathbb{Q}))$ s'identifie alors au sous-quotient $\ker(\pi_*)/\operatorname{im}(i_*)$ de $H_2(W; \mathbb{Q})$, qui n'est autre que le résultat de la réduction sous-lagrangienne sur l'espace isotrope $\operatorname{im}(i_*: H_2(F; \mathbb{Q}) \to H_2(W; \mathbb{Q}))$. La signature de $H_2(W; \mathbb{Q})$ est donc la même que celle de la forme quadratique portée par $H_1(B; H_1(F; \mathbb{Q}))$ ce qui permet de retrouver ce cas particulier du théorème de Meyer.

La proposition suivante justifie $a\ posteriori$ notre définition du cocycle de Meyer.

Proposition. Soit $F \to W \to P$ un fibré orienté sur le pantalon, dont la fibre est une surface orientée non fermée. On note ω la forme d'intersection (antisymétrique) sur $H_1(F;\mathbb{Q})$. Alors il existe un isomorphisme

$$H_2(W; \mathbb{Q}) \simeq H_1(P; H_1(F; \mathbb{Q}))$$

= $\{(u, v) \in H_1(F; \mathbb{Q}) \oplus H_1(F; \mathbb{Q}) \mid f(u) - u + g(v) - v = 0\},$

faisant correspondre la forme d'intersection et la forme symétrique

$$h((u, v); (u', v')) = \omega (f(u) - v, g(v') - v').$$

En particulier, la classe de Witt de la forme d'intersection (régularisée) de W est $Meyer(f, g) \in \mathbf{W}(\mathbb{Q})$.

La fin de la section est consacrée à la preuve de cette proposition.

Comme F est supposée non fermée, $H_2(F;\mathbb{Q}) = 0$ et la discussion précédente sur la suite spectrale de Leray-Serre démontre l'isomorphisme $H_2(W;\mathbb{Q}) \simeq H_1(P;H_1(F;\mathbb{Q}))$. Cependant, nous allons construire un isomorphisme plus explicite, ce qui nous permettra d'identifier de façon directe la forme d'intersection et la forme h définissant le cocycle de Meyer.

Pour cela, décrivons une autre décomposition du pantalon P: soit P_1' (resp. P_2') un voisinage régulier compact d'un chemin I_1 (resp. I_2) joignant la composante extérieure S_{ab}^1 du bord du disque à la composante intérieure S_a^1 (resp. S_b^1). On suppose que les deux voisinages ainsi construits sont disjoints, de telle sorte que P_1' , P_2' et $P_0 = P \setminus (P_1' \sqcup P_2')$ soient homéomorphes à des disques. Plus précisément, P_i' est un domaine à coins, dont la frontière est composée de quatre arcs, dont deux sont inclus dans le bord de P et deux définissent des courbes proprement plongées dans P. On note ces deux courbes I_i^- et I_i^+ , de telle sorte qu'en tournant dans le sens direct le long des composantes de bord de P, on longe P_i en allant de I_i^- à I_i^+ .

On définit maintenant la décomposition du fibré W correspondant à cette décomposition de P: on note W_0 (resp. W_i') la restriction du fibré au-dessus de P_0 (resp. P_i') et M_i^{\pm} la restriction au-dessus de I_i^{\pm} . Tous ces fibrés ont des bases contractiles et sont donc triviaux. En particulier, le premier groupe d'homologie de chacun de ces morceaux s'identifie à $H_1(F;\mathbb{Q})$.

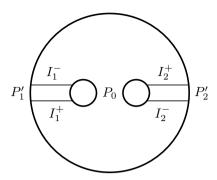


FIGURE 6.3 - P est l'union de trois disques

Choisissons les identifications de telle sorte que les isomorphismes

$$H_1(F;\mathbb{Q}) \simeq H_1(M_i^{\pm};\mathbb{Q}) \to H_1(W_0;\mathbb{Q}) \simeq H_1(F;\mathbb{Q})$$

et

$$H_1(F;\mathbb{Q}) \simeq H_1(M_1^-;\mathbb{Q}) \to H_1(W_i';\mathbb{Q}) \simeq H_1(F;\mathbb{Q})$$

soient l'identité et que les isomorphismes

$$H_1(F;\mathbb{Q}) \simeq H_1(M_i^+;\mathbb{Q}) \to H_1(W_i';\mathbb{Q}) \simeq H_1(F;\mathbb{Q})$$

soient égaux à f^{-1} (pour i = 1) et g^{-1} (pour i = 2). En quelque sorte, on a « concentré » la monodromie au-dessus des P'_i .

Notons $W'=W_1'\sqcup W_2'$ et $M=M_1^-\sqcup M_1^+\sqcup M_2^-\sqcup M_2^+$. La suite exacte de Mayer-Vietoris fournit un morphisme « intersection avec M »

$$H_2(W; \mathbb{Q}) \to H_1(M; \mathbb{Q}) \simeq H_1(F; \mathbb{Q})^{\oplus 4}$$

qui est injectif et dont l'image est constituée des quadruplets $(c_1^-,c_1^+,c_2^-,c_2^+)\in H_1(F;\mathbb{Q})^{\oplus 4}$ dont l'image dans chacun des deux morceaux $H_1(W_0;\mathbb{Q})$ et $H_1(W';\mathbb{Q})$ est triviale, c'est-à-dire tels que

$$\begin{cases} c_1^- + c_1^+ + c_2^- + c_2^+ = 0\\ (c_1^- + f^{-1}(c_1^+), c_2^- + g^{-1}(c_2^+)) = 0. \end{cases}$$

Via le morphisme

$$\begin{array}{c} H_1(F;\mathbb{Q}) \oplus H_1(F;\mathbb{Q}) \to H_1(F;\mathbb{Q})^{\oplus 4} \\ (u,v) \mapsto (-u,f(u),-v,g(v)), \end{array}$$

cela identifie bien $H_2(W; \mathbb{Q})$ à

$$H_1(P; H_1(F; \mathbb{Q}))$$

= $\{(u, v) \in H_1(F; \mathbb{Q}) \oplus H_1(F; \mathbb{Q}) \mid f(u) - u + g(v) - v = 0\}$.

On peut décrire très précisément cet isomorphisme : chacun des deux W_i' est homéomorphe à un produit $P_i' \times F$. En particulier, en faisant le produit avec un arc proprement plongé dans P_i' joignant I_i^- à I_i^+ , chaque classe d'homologie $u \in H_1(F; \mathbb{Q})$ (représentée par une courbe) définit une classe d'homologie relative dans $H_2(W_i', \partial W_i'; \mathbb{Q})$ (représentée par un cylindre). Cette construction fournit l'isomorphisme

$$H_1(F; \mathbb{Q}) \simeq H_1(W_i'; \mathbb{Q}) \simeq H_2(W_i', \partial W_i'; \mathbb{Q})$$

donné par la dualité de Poincaré. Via les identifications, le morphisme composé

$$H_2(W_i', \partial W_i'; \mathbb{Q}) \xrightarrow{\partial} H_1(\partial W_i'; \mathbb{Q}) \xrightarrow{i_*} H_1(W_0; \mathbb{Q})$$

envoie cette classe correspondant à u sur f(u) - u si i = 1 et sur g(u) - u si i = 2.

Ainsi, $\{(u,v) \in H_1(F;\mathbb{Q}) \oplus H_1(F;\mathbb{Q}) \mid f(u)-u+g(v)-v=0\}$ s'identifie aux classes relatives dans W' dont le bord borde également dans W_0 . Par construction, on peut donc reboucher une telle classe pour obtenir un cycle dans W dont l'intersection avec W' est ce cycle relatif. Le calcul d'homologie précédent montre que la classe d'homologie (dans W) ainsi obtenue ne dépend pas des différents choix et que l'on obtient ainsi toute l'homologie de W.

On a donc obtenu une description assez explicite de classes représentant le groupe d'homologie $H_2(W;\mathbb{Q})$. Pour conclure la preuve de la proposition, il s'agit maintenant, en exhibant des modèles en bonne position les uns par rapport aux autres, de calculer la forme d'intersection sur cet espace vectoriel

$$H_2(W; \mathbb{Q}) = H_1(P; H_1(F; \mathbb{Q}))$$

 $\simeq \{(u, v) \in H_1(F; \mathbb{Q}) \oplus H_1(F; \mathbb{Q}) \mid f(u) - u + g(v) - v = 0\}.$

Soit donc (u,v) et (u',v') deux éléments de cet espace vectoriel. Nous allons représenter les classes d'homologie de degré 2 de W correspondant à ces éléments par des surfaces plongées s'intersectant transversalement telle que tous les points d'intersection appartiennent à la même fibre F_o au-dessus d'un point $o \in P_0$.

Considérons les deux graphes suivants, plongés dans le pantalon.

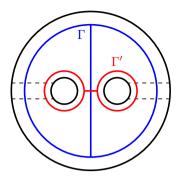


FIGURE 6.4 – Contrôle de l'intersection

On note λ_0 (resp. λ_0') l'arc du graphe Γ entièrement inclus dans P_0 et λ_i (resp. λ_i') l'arc du graphe Γ (resp. Γ') intersectant P_i' en un sous-arc. Le seul point d'intersection entre les deux graphes est o, point d'intersection entre λ_0 et λ_0' .

On peut alors construire une surface correspondant à l'élément (u,v) et se projetant presque sur le graphe Γ : si c_0 (resp. c_1 , c_2) est une courbe lisse orientée représentant la classe g(v)-u (resp. u,v), on peut construire au-dessus de λ_0 (resp. au-dessus du sous-arc $\lambda_i \cap P_i'$) la surface à bord correspondante. On a ainsi construit au-dessus d'une partie du graphe une surface à bord dont le bord a six composantes : quatre courbes de classes d'homologie -u, f(u), -v et g(v) au-dessus des extrémités des sous-arcs $\lambda_i \cap P_i'$ et deux courbes de classes d'homologie g(v)-u et -(g(v)-u)=v-f(u) au-dessus des sommets du graphe. On voit alors que l'on peut prolonger ces morceaux de surfaces en une surface fermée lisse S en ajoutant des morceaux dont la projection reste arbitrairement proche des parties du graphe non encore utilisées.

De la même façon, si c_0' (resp. c_1' , c_2') est une courbe représentant la classe d'homologie f(u') - u' (resp. u', v'), on peut construire une surface analogue pour l'élément (u',v'), c'est-à-dire une surface S' prolongeant la surface à bord correspondant à c_0' (resp. c_i') au-dessus de λ_0 (resp. au-dessus du sous-arc $\lambda_i \cap P_i'$) et s'éloignant arbitrairement peu des autres parties du graphe Γ' .

Au moment de construire la courbe c_0' , on a pu faire en sorte que les deux courbes c_0 et c_0' incluses dans F soient transverses. L'intersection entre les surfaces S et S' est alors transverse, incluse dans la fibre F_o , et vaut exactement l'intersection (dans $H_1(F;\mathbb{Q})$) des deux classes $[c_0] = g(v) - u$ et $[c_0'] = f(u') - u'$. On obtient donc bien que la forme d'intersection est isomorphe à la forme h définie sur $H_1(P; H_1(F;\mathbb{Q})) = \{(u,v) \in H_1(F;\mathbb{Q}) \oplus H_1(F;\mathbb{Q}) \mid f(u) - u + g(v) - v = 0\}.$

6.3 Cocycle de Meyer hermitien

On peut maintenant appliquer les constructions précédentes au fibré $W(x,y) \to P$.

Les deux tresses x et y définissent, via la représentation de Burau, deux automorphismes $f = \operatorname{Burau}(x)$ et $g = \operatorname{Burau}(y)$ de la forme antihermitienne de Squier $(H_1(D_n; \mathbb{Q}(t)), \operatorname{Sq})$. Convenons de noter (\mathcal{H}, η) le $\mathbb{Q}(t)$ -espace hermitien associé à ces deux automorphismes par le procédé décrit à la section 6.1. En particulier, on a un cocycle de Meyer

$$Meyer(Burau(x), Burau(y)) = [(\mathcal{H}, \eta)] \in \mathbf{W}(\mathbb{Q}(t)).$$

Le but de cette section est le résultat suivant, qui achève la preuve de l'égalité $\beta_{xy} - \beta_x - \beta_y = -\partial \text{Meyer}(\text{Burau}(x), \text{Burau}(y))$.

Proposition. Il existe un isomorphisme $\mathbb{Q}(t)$ -linéaire

$$\Phi: \mathscr{H} \to H_2(W(x,y); \mathbb{Q}(t))$$

tel que

$$\forall (u, v), (u', v') \in \mathscr{H}, \ I_{W(x, v)}^{\mathbb{Q}(t)} \left(\Phi(u, v), \Phi(u', v') \right) = \eta \left((u, v); (u', v') \right).$$

En particulier, on a l'égalité suivante dans $\mathbf{W}(\mathbb{Q}(t))$:

$$\alpha_{x,y} = \text{Meyer}(\text{Burau}(x), \text{Burau}(y)).$$

 $D\acute{e}monstration$. Le morphisme $\pi_1(W) \to \mathbb{J}$ définissant la structure de \mathbb{J} -variété de W = W(x,y) prolonge la \mathbb{J} -structure des fibres D_n . Il s'ensuit que l'espace total \widetilde{W} du revêtement infini cyclique associé $\widetilde{W} \to W$ est un fibré sur le pantalon dont la fibre s'identifie au revêtement \widetilde{D}_n .

En particulier, la représentation de monodromie $\pi_1(P) = \mathbb{L}(a,b) \to \operatorname{Aut}(H_1(\widetilde{D_n};\mathbb{Q}))$ est donnée par la représentation de Burau, comme expliqué en 3.3, c'est-à-dire qu'elle envoie a sur f et b sur g. La fibre $\widetilde{D_n}$ étant une surface non fermée, on peut appliquer le résultat de la section précédente au fibré $\widetilde{W} \to P$. On obtient ainsi un isomorphisme \mathbb{Q} -linéaire

$$\Phi_{\Lambda_{\mathbb{Q}}}: \mathscr{H}_{\Lambda_{\mathbb{Q}}} \to H_2(\widetilde{W}; \mathbb{Q}),$$

οù

$$\mathscr{H}_{\Lambda_{\mathbb{Q}}} = \left\{ (u, v) \in H_1(\widetilde{D_n}; \mathbb{Q}) \oplus H_1(\widetilde{D_n}; \mathbb{Q}) \,\middle|\, f(u) - u + g(v) - v = 0 \right\}.$$

La définition de l'isomorphisme utilisée à la section précédente (à l'aide de rebouchage de cycles relatifs) montre que l'isomorphisme Φ_{Λ_0}

commute aux automorphismes de revêtement, c'est-à-dire qu'il est $\Lambda_{\mathbb{Q}}$ -linéaire. Comme $H_1(D_n, \Lambda_{\mathbb{Q}}) = H_1(\widetilde{D_n}; \mathbb{Q})$ est isomorphe à $\Lambda_{\mathbb{Q}}^{n-1}$ et que $\Lambda_{\mathbb{Q}}$ est principal, cela entraı̂ne que $\mathscr{H}_{\Lambda_{\mathbb{Q}}}$ et $H_2(W; \Lambda_{\mathbb{Q}}) = H_2(\widetilde{W}; \mathbb{Q})$ sont des $\Lambda_{\mathbb{Q}}$ -modules libres. En particulier, ils s'identifient à des réseaux dans les $\mathbb{Q}(t)$ -espaces vectoriels \mathscr{H} et $H_2(W; \mathbb{Q}(t))$, et l'isomorphisme $\Phi_{\Lambda_{\mathbb{Q}}}$ s'étend en un isomorphisme

$$\Phi: \mathcal{H} \to H_2(W; \mathbb{Q}(t)).$$

Pour vérifier que cet isomorphisme Φ fait bien correspondre les deux formes hermitiennes naturellement définies sur ces espaces vectoriels (η et $I_W^{\mathbb{Q}(t)}$, respectivement), il suffit de le vérifier sur les réseaux, c'est-à-dire qu'il suffit de vérifier que

$$\forall (u,v), (u',v') \in \mathscr{H}_{\Lambda_{\mathbb{Q}}}, I_{W}^{\mathbb{Q}(t)}\left(\Phi(u,v), \Phi(u',v')\right) = \eta\left((u,v); (u',v')\right).$$

Par ailleurs, la proposition de la section précédente entraı̂ne que $\Phi_{\Lambda_{\mathbb{Q}}}$ réalise un isomorphisme entre la forme d'intersection (usuelle, c'est-à-dire à valeurs dans \mathbb{Q}) $\langle \cdot, \cdot \rangle$ sur $H_2(W; \Lambda_{\mathbb{Q}}) = H_2(\widetilde{W}; \mathbb{Q})$ et la forme

$$h: ((u, v); (u', v')) \mapsto \omega (g(v) - u, f(u) - u)$$

définie sur $\mathscr{H}_{\Lambda_{\mathbb{Q}}}$. Ici, ω note la forme d'intersection (usuelle) \mathbb{Q} -bilinéaire et antisymétrique définie sur le \mathbb{Q} -espace vectoriel $H_1(D_n; \Lambda_{\mathbb{Q}}) = H_1(\widetilde{D_n}; \mathbb{Q})$.

L'égalité vient alors directement du fait que $I_W^{\mathbb{Q}(t)}$ et η sont obtenus à partir de $\langle \cdot, \cdot \rangle$ et h, respectivement, par le procédé de Reidemeister :

$$\forall \alpha, \beta \in H_2(W; \Lambda_{\mathbb{Q}}) = H_2(\widetilde{W}; \mathbb{Q}),$$

$$I_W^{\mathbb{Q}(t)}(\alpha, \beta) = \sum_{k \in \mathbb{Z}} \langle t^k \alpha, \beta \rangle t^k.$$

$$\forall u, v \in \mathscr{H}_{\Lambda_{\mathbb{Q}}},$$

$$\eta\left((u, v); (u', v')\right) = \sum_{k \in \mathbb{Z}} h\left((t^k u, t^k v); (u', v')\right) t^k.$$

 Φ réalise donc bien une isométrie entre les deux espaces hermitiens (\mathcal{H}, η) et $(H_2(W(x, y); \mathbb{Q}(t)), I_{W(x, y)}^{\mathbb{Q}(t)})$.

6.4 Retour sur le théorème de Gambaudo et Ghys

On a donc démontré l'égalité $\beta_{xy} - \beta_x - \beta_y = -\partial \text{Meyer}(\text{Burau}(x), \text{Burau}(y))$ dans $\mathbf{WT}(\Lambda_{\mathbb{Q}})$. L'objet de cette section est de comparer ce résultat au théorème original de [32].

Comme on l'a rappelé dans l'introduction (page 280), le théorème de Gambaudo et Ghys est l'énoncé suivant, valable pour toutes tresses $x, y \in B(n)$ et toute racine de l'unité $\omega \in S^1$ d'ordre premier avec n:

$$\operatorname{sign}_{\omega}(xy) - \operatorname{sign}_{\omega}(x) - \operatorname{sign}_{\omega}(y) = -\operatorname{Meyer}(\operatorname{Burau}_{\omega}(x), \operatorname{Burau}_{\omega}(y)).$$

Remarque. La précision sur l'ordre de ω est nécessaire. En effet, si $\sigma_1 \in B(2)$ est le générateur du groupe des tresses à n brins, on a

$$\operatorname{sign}_{-1}(\sigma_1^2) - \operatorname{sign}_{-1}(\sigma_1) - \operatorname{sign}_{-1}(\sigma_1) = -1$$

car $\widehat{\sigma_1^2}$ est l'entrelacs de Hopf et $\widehat{\sigma_1}$ est le nœud trivial. Ce contre-exemple et l'énoncé du théorème de Gambaudo-Ghys que nous utilisons proviennent de [19] (dans l'article original, Gambaudo et Ghys énoncent le résultat pour des éléments de $B(\infty) = \varinjlim B(n)$).

Tout d'abord, remarquons que, les racines de l'unité d'ordre premier avec n étant denses dans le cercle, la connaissance des entiers $\mathrm{sign}_{\omega}(x)$ pour ces ω implique la connaissance de tous les $\mathrm{sign}_{\omega}(x)$ sauf éventuellement un nombre fini, et donc la connaissance de $\sigma^{\mathrm{LT}}(L) \in \mathrm{\acute{E}q}(S^1)$.

La classe Meyer(Burau(x), Burau(y)) $\in \mathbf{W}(\mathbb{Q}(t))$ est représentée par une forme quadratique explicite. En spécifiant $t = \omega$, on obtient directement la forme quadratique représentant le cocycle entier Meyer(Burau_ $\omega(x)$, Burau_ $\omega(y)$) $\in \mathbf{W}(\mathbb{C}) \simeq \mathbb{Z}$, où Meyer note cette fois le cocycle défini sur le groupe des automorphismes préservant une forme antihermitienne complexe. En particulier, la fonction $\omega \mapsto \mathrm{Meyer}(\mathrm{Burau}_{\omega}(x), \mathrm{Burau}_{\omega}(y))$ et la fonction équilibrée associée à Meyer(Burau(x), Burau(y)) $\in \mathbf{W}(\mathbb{C}(t))$ coïncident sur le complémentaire d'un nombre fini de points.

Maintenant, on a vu à la section 3.2.5 que l'image de β_x dans $\mathbf{WT}(\Lambda_{\mathbb{C}}) \simeq \mathbb{Z}^{(S^1)}$ était donné par les signatures de Milnor $\sigma^{\mathrm{M}}(L) \in \mathbb{Z}^{(S^1)}$. Comme $\sigma^{\mathrm{M}}(L) = \mathrm{saut}(\sigma^{\mathrm{LT}}(L))$, on obtient que les deux fonctions équilibrées associées à

$$\begin{array}{ll} \omega \mapsto -\mathrm{Meyer}(\mathrm{Burau}_{\omega}(x), \mathrm{Burau}_{\omega}(y)) \\ \mathrm{et} & \omega \mapsto \mathrm{sign}_{\omega}(xy) - \mathrm{sign}_{\omega}(x) - \mathrm{sign}_{\omega}(y) \end{array}$$

possèdent la même image par le morphisme saut : Éq $(S^1) \to \mathbb{Z}^{(S^1)}$. Cela entraı̂ne qu'ils diffèrent d'une fonction constante qui doit être nulle car on vérifie directement que les deux fonctions s'annulent quand $\omega=1$. On obtient donc l'égalité des fonctions équilibrées, ce qui entraı̂ne que pour tout $\omega \in S^1$ dans le complémentaire d'un ensemble fini,

$$\mathrm{sign}_{\omega}(xy) - \mathrm{sign}_{\omega}(x) - \mathrm{sign}_{\omega}(y) = -\mathrm{Meyer}(\mathrm{Burau}_{\omega}(x), \mathrm{Burau}_{\omega}(y)).$$

En résumé, l'image dans $\mathbf{WT}(\Lambda_{\mathbb{C}})$ de l'égalité $\beta_{xy} - \beta_x - \beta_y = -\partial \mathrm{Meyer}(\mathrm{Burau}(x), \mathrm{Burau}(y))$ redonne presque, mais pas tout à fait, le théorème de Gambaudo et Ghys.

En revanche, le morphisme induit par l'inclusion

$$\mathbf{WT}(\Lambda_\mathbb{Q}) \to \mathbf{WT}(\Lambda_\mathbb{C})$$

a pour noyau tout le sous-groupe de torsion de $\mathbf{WT}(\Lambda_{\mathbb{Q}})$, qui est isomorphe à $(\mathbb{Z}/2)^{\infty} \oplus (\mathbb{Z}/4)^{\infty}$ comme on l'a vu à la section 2.2.

Pour illustrer la richesse des informations contenues dans le noyau de $\mathbf{WT}(\Lambda_{\mathbb{Q}}) \to \mathbf{WT}(\Lambda_{\mathbb{C}})$, notons qu'un théorème de Levine ([46]) affirme que l'application qui associe à un nœud K sa classe de Witt $[\beta_K] \in \mathbf{WT}(\Lambda_{\mathbb{Q}})$ est surjective.

Bibliographie

- James Wadell Alexander, A lemma on systems of knotted curves, Proc. Nat. Acad. Sci. 9 (1923), p. 93-95.
- [2] Emil Artin, *Theorie der Zöpfe*, Abhandlungen aus dem mathematischen Seminar der Universität Hamburg 4 (1925), p. 47-72.
- [3] Emil Artin, Theory of braids, Ann. of Math. 48 (1947), p. 101-126.
- [4] Michael Atiyah, The signature of fiber bundles, p. 73-84, in Global Analysis: Papers in honor of K. Kodaira, Princeton Mathematical Series 29, Tokyo University Press, 1969.
- [5] A. Jon Berrick, Frederick R. Cohen, Elizabeth Hanbury, Yan-Loi Wong and Jie Wu (ed.), Braids, Introductory lectures on braids, configurations and their applications, IMS Lecture Notes 19, World Scientific (2009).
- [6] Stephen Bigelow, The Burau representation is not faithful for n = 5, Geom. Topol. 3 (1999), p. 397-404.
- [7] Joan S. Birman, *Braids, links, and mapping class groups*, Annals of Mathematical Studies **82**, Princeton University Press, 1974.
- [8] Jean Barge and Étienne Ghys, Surfaces et cohomologie bornée, Invent. Math. 92 (1988), p. 509-526.
- [9] Jean Barge and Étienne Ghys, Cocycles d'Euler et de Maslov, Math. Ann. 294 (1992), p. 235-265.
- [10] Jean Barge and Jean Lannes, Suites de Sturm, indice de Maslov et périodicité de Bott, Progress in Mathematics 267, Birkhäuser, 2008.
- [11] Jean Barge, Jean Lannes, François Latour and Pierre Vogel, Λ -sphères, Ann. Sci. École Norm. Sup. 4 (1974), p. 463-505.
- [12] Christophe Bavard, Longueur stable des commutateurs, Enseignement Math. **37** (1991), p. 109-150.
- [13] Werner Burau, Über Zopfgruppen und gleichsinnig verdrillte Verkettungen, Abh. Math. Sem. Hamburg 11 (1936), p. 179-186.
- [14] Nicolas Bourbaki, Éléments de mathématiques. Algèbre. Chapitres 1 à 3, Masson, 1970.

- [15] Marc Burger and Nicolas Monod, Bounded cohomology of lattices in higher rank Lie groups, J. Eur. Math. Soc. 1 (1999), 199-235.
- [16] Danny Calegari, scl, MSJ Memoirs 20, Mathematical Society of Japan, 2009.
- [17] David Carter and Gordon Keller, Bounded elementary generation of $SL_n(\mathcal{O})$, Amer. J. Math. 105 (1983), p. 673-687.
- [18] Shiing-Shen Chern, Friedrich Hirzebruch and Jean-Pierre Serre, On the index of a fibered manifold, Proc. Amer. Math. Soc. 8 (1957), p. 587-596.
- [19] David Cimasoni and Anthony Conway, Colored tangles and signatures, preprint, http://arxiv.org/abs/1507.07818.
- [20] David Cimasoni and Vladimir Turaev, A Lagrangian representation of tangles, Topology 44 (2005), p. 747-767.
- [21] Gaël Collinet and Pierre Guillot, A link invariant with values in the Witt ring, Quantum Topol. 5 (2014), no. 3, p. 259-287.
- [22] Patrick Dehornoy, *Braids and Self Distributivity*, Progress in Mathematics **192**, Birkhäuser, 2000.
- [23] Régine and Adrien Douady, Algèbre et théories galoisiennes, Cassini, 2005.
- [24] Michael Entov and Leonid Polterovich, Calabi quasimorphism and quantum homology, Int. Math. Res. Not. **30** (2003), p. 1635-1676.
- [25] D. B. A. Epstein, Curves on 2-manifolds and isotopies, Acta Math. 115 (1966), p. 83-107.
- [26] Albert Fathi, François Laudenbach and Valentin Poénaru, Travaux de Thurston sur les surfaces. Séminaire Orsay, Astérisque 66-67, Société Mathématique de France, 1979.
- [27] Feliks Frankl and Lev Pontrjagin, Ein Knotensatz mit Anwendung auf die Dimensionstheorie, Math. Ann. 102 (1930), 785-789.
- [28] Ralph Fox, Free Differential Calculus, I: Derivation in the Free Group Ring, Ann. of Math. 57 (1953), p. 547-560.
- [29] Jean-Marc Gambaudo and Étienne Ghys, *Enlacements asymptop-tiques*, Topology **36** (1997), p. 1355-1379.
- [30] Jean-Marc Gambaudo and Étienne Ghys, Signature asymptotique d'un champ de vecteurs en dimension 3, Duke Math. J. Topology 106 (2001), p. 41-79.
- [31] Jean-Marc Gambaudo and Étienne Ghys, Commutators and diffeomorphisms of surfaces, Ergodic Theory and Dynamical Systems 24 (2004), p. 1591-1617.
- [32] Jean-Marc Gambaudo and Étienne Ghys, *Braids and signatures*, Bull. Soc. Math. France **133** (2005), p. 541-579.

- [33] Étienne Ghys, Groupes d'homéomorphismes du cercle et cohomologie bornée, The Lefschetz centennial conference, Part III (Mexico City, 1984), Contemp. Math. 58, III (1987), p. 81-106.
- [34] Étienne Ghys, *Groups acting on the circle*, Enseignement Math. **47** (2001), p. 329-407.
- [35] André Gramain, Sphères d'homologie rationnelle [d'après J. Barge, J. Lannes, F. Latour et P. Vogel], Séminaire Bourbaki 1974/1975, exposé 455 (nov. 1974).
- [36] André Gramain, Formes d'intersection et d'enlacement sur une variété, Mém. Soc. Math. France 48 (1976), p. 11-19.
- [37] Michael Gromov, Volume and bounded cohomology, Publ. IHÉS 56 (1982), p. 5-99.
- [38] Christian Kassel and Vladimir Turaev, *Braid Groups*, Graduate Texts in Mathematics **247**, Springer, 2008.
- [39] Cherry Kearton, Blanchfield duality and simple knots, Trans. Amer. Math. Soc. 202 (1975), p. 141-160.
- [40] Robion C. Kirby, *The topology of 4-manifolds*, Lecture Notes in Mathematics **1374**, Springer, 1989.
- [41] Max-Albert Knus, Quadratic and Hermitian Forms over Rings, Grundlehren der mathematischen Wissenschaften 294, Springer (1991).
- [42] Kunihiko Kodaira, A certain type of irregular algebraic surfaces, J. d'analyse math. 19 (1967), p. 207-215.
- [43] Tsit-Yuen Lam, Introduction to quadratic forms over fields, Graduate Studies in Mathematics 67, Springer (2005).
- [44] Walther Landherr, Äquivalenz Hermitescher Formen über einem beliebigen algebraischen Zahlkörper, Abh. Math. Sem. Hamburg Univ. 11 (1935), p. 245-248.
- [45] Jean Lannes and François Latour, Forme quadratique d'enlacement et applications, Astérisque 26, 1975.
- [46] Jerome Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. **44** (1969), p. 229-244.
- [47] Jerome Levine, Knot Modules I., Trans. AMS 229 (1977), p. 1-50.
- [48] Jerome Levine, Metabolic and hyperbolic forms from knot theory, J. Pure Appl. Algebra 58 (1989), p. 251-260.
- [49] Richard Litherland, Cobordism of satellite knots in Four-manifold theory, Contemp. Math. 35 (1984), Amer. Math. Soc. p. 327-362.
- [50] Charles Livingston, Swatee Naik, Introduction to Knot Concordance, in preparation. Available at http://wolfweb.unr.edu/homepage/naik/ConcordanceBook.pdf.

- [51] Darren D. Long, Michael Paton, The Burau representation is not faithful for $n \ge 6$, Topology **32** (1993), p. 439-447.
- [52] Andréj Andrévič Márkov, Über die freie Âquivalenz der geschlossenen Zöpfe, Matematičeskij sbornik (Recueil mathématique) 1 (1936), p. 73-78.
- [53] Takao Matumoto, On the signature invariants of a non-singular complex sesqui-linear form, J. Math. Soc. Japan 29 (1977), p. 67-71.
- [54] Werner Meyer, Die Signatur von lokalen Koeffizientensystemen und Faserbündeln, Bonn. Math. Schr. **53** (1972).
- [55] Werner Meyer, Die Signatur von Flächenbündeln, Math. Ann. 201 (1973), p. 239-264.
- [56] John Milnor, A duality theorem for Reidemeister torsion, Ann. of Math. 76 (1962), p. 137-147. Collected in [58].
- [57] John Milnor, Infinite cyclic coverings in Conf. on the Topology of Manifolds, p. 115-133, Prindle, Weber, and Schmidt, 1968. Collected in [58].
- [58] John Milnor, Collected papers. Volume 2: the fundamental group, Publish or Perish, 1995. Réimpression AMS, 2009.
- [59] John Milnor and Dale Husemoller, Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete 73, Springer, 1973.
- [60] John A. Moody, The Burau representation of the braid group B_n is unfaithful for large n, Bull. Amer. Math. Soc. **25** (1991), p. 379-384.
- [61] Leonid Polterovich and Zeev Rudnick, Stable mixing for cat maps and quasi-morphisms of the modular group, Ergodic Theory Dynam. Systems **24** (2004), p. 609-619.
- [62] Pierre Py, Indice de Maslov et théorème de Novikov-Wall, Bol. Soc. Math. Mexicana 11 (2005).
- [63] Pierre Py, Quasi-morphismes et invariant de Calabi, Ann. Sci. École Norm. Sup. **39** (2006).
- [64] Pierre Py, Quasi-morphismes et difféomorphismes hamiltoniens, thèse de doctorat, ÉNS Lyon, 2008.
- [65] Andrew Ranicki, The algebraic theory of surgery I. and II., Proc. London Math. Soc. 40 (1980), p. 87-192 and 193-283.
- [66] Andrew Ranicki, Exact Sequences in the Algebraic Theory of Surgery, Mathematical Notes 26, Princeton University Press, 1981.
- [67] Dale Rolfsen, Knots and Links, Publish or Perish, 1976. Réimpression AMS Chelsea, 2003.
- [68] Winfried Scharlau, Quadratic and Hermitian Forms, Grundlehren der mathematischen Wissenschaften 270, Springer, 1985.

- [69] Herbert Seifert, Über das Geschlecht von Knoten, Math. Ann. 110 (1935), p. 571-592.
- [70] Herbert Seifert and William Threlfall, Lehrbuch der Topologie,
 B. G. Teubner Verlag, 1934. AMS Chelsea reprint, 2004.
- [71] Jean-Pierre Serre, Homologie singulière des espaces fibrés, Ann. of Math. 54 (1951), p. 425-505.
- [72] Craig C. Squier, *The Burau representation is unitary*, Proc. AMS **90** (1984), p. 199-202.
- [73] Robert E. Stong, *Notes on cobordism theory*, Princeton University Press (1968).
- [74] Teruji Thomas, The Maslov index as a quadratic space, Math. Res. Lett. 13 (2006), p. 985-999.
- [75] Hale F. Trotter, On S-equivalence of Seifert matrices, Invent. Math. **20** (1973), 173-207.
- [76] Charles Terence Clegg Wall, Non-additivity of the signature, Invent. Math. 7 (1969), p. 269-274.
- [77] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics 38, Cambridge University Press, 1994.
- [78] Ernst Witt, Theorie der quadratischen Formen in beliebigen Körpern, J. für die reine und angew. Math. 176 (1937), p. 31-44.

Maxime Bourrigan École Normale Supérieure 45, rue d'Ulm - 75230 Paris cedex 5 - France maxime.bourrigan@ens.fr http://www.math.ens.fr/~bourrigan/