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I Introduction
To introduce the topic discussed in this article, we start with a puzzle.
Consider a trefoil, the simplest knot (Fig. 1). It is easy to define a surface
that has this knot as its boundary: Take a strip, twist it three times, and
glue the ends together. If we try to color the sides of the surface differently,
we see that there is something strange. The strip is a kind of Möbius strip,
and cannot be oriented, because there is only one side. The puzzle now is
to define an orientable surface that has the trefoil as its boundary.

Figure 1: Trefoil

A second puzzle. It is easy to embed a trefoil in a closed surface: A trefoil
is a so-called torus knot. However, this knot does not divide the torus into
two parts, contrary to what one might expect from local inspection. Can
we embed the knot on a closed surface, in such a way that it divides this
surface into two parts?
The first puzzle has been solved in 1930 by Frankl and Pontrjagin [7],

who showed that such a surface can be found for any knot.
Oriented surfaces whose boundaries are a knot K are called Seifert

surfaces of K, after Herbert Seifert, who gave an algorithm to construct
such a surface from a diagram describing the knot in 1934 [13]. His
algorithm is easy to understand, but this does not hold for the geometric
shape of the resulting surfaces. Texts on knot theory only contain
schematic drawings, from which it is hard to capture what is going on. In
the cited paper, Seifert also introduced the notion of the genus of a knot
as the minimal genus of a Seifert surface. The present article is dedicated
to the visualization of Seifert surfaces, as well as the direct visualization
of the genus of knots.
This article is an extended version of a paper presented at IEEE

Visualization 2005 [15]. The most important extensions are the inclusion
of Scharein’s method to produce smooth and natural knots and links, and
the work we have done on dissemination of the results described here.
In section II we give a short overview of concepts from topology and

knot theory. In section III we give a solution for the second puzzle: We
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show how a closed surface can be constructed in which a knot is embedded,
in such a way that it divides the surface in two parts. Whereas a Seifert
surface consists of disks and bands, such a closed surface consists of spheres
and tubes. In section IV we discuss how these elements can be derived
and positioned from an abstract notation of a knot. In section V we show
how surfaces can be generated. Results are shown in section VI, in the
form of images of well-known knots and links. Also, SeifertView, our freely
available tool which can be used to generate and view knots and Seifert
surfaces, is described. Finally, in section VII the results are discussed and
suggestions for future work are made.

II Background
In this section we informally introduce a number of definitions and concepts
from topology in general and knot theory in particular. We limit ourselves
to those results that are directly relevant for the work presented here.
More information can be found in several books, and also on the Web
many resources are available. The Knot Book [1] of Colin Adams gives a
very readable and accessible introduction for non-experts; more depth can
be found in [11, 8, 9].
Knot theorists have enumerated knots by means of diagrams or braid

words, with invariants like the genus for distinguishing them. Results can
be found in the literature and on the Web. The Knot Atlas of Bar-Natan
provides many tables of knots and invariants [2]; the KnotInfo table [10]
of Livingston and Cha was a very valuable resource for us.

A. Topology
Knot theory is a subfield of topology. Topology is the mathematical study
of the properties of objects that are preserved through deformations of
objects. Two surfaces are homotopic if each of them can be continuously
deformed into the other. If this can be done without passing the object
through itself, they are not only homotopic but also isotopic. For instance,
a torus is isotopic (and hence also homotopic) to a cup with one handle,
and homotopic (but not isotopic) to a tube in the shape of a trefoil.
Two surfaces are homotopic when three conditions are satisfied. First

of all, either both should be orientable or neither; secondly, the number
of boundary components must be the same; and finally, the Euler
characteristic χ must be the same. The Euler characteristic χ is an
invariant for surfaces. Given an arbitrary (but regular) polygonalization
of a surface, χ = V − E + F , with V the number of vertices, E the
number of edges, and F the number of faces. Closed oriented surfaces are
homotopic to a sphere with g handles (or, equivalently, a donut with g
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holes). The number g is called the genus of the surface. For surfaces with
m boundaries χ = 2− 2g −m. The genus of a surface with boundaries is
defined to be equal to that of the surface that results when all components
of the boundaries are capped off with (topological) disks.

B. Knot theory
Knot theory studies the properties of mathematical knots and links. A
mathematical knot is a tamely embedded closed curve embedded in IR3.
Here an embedding of a closed curve is called tame if it can be extended
to an embedding of a tube (of fixed diameter) around the curve. A link
consists of multiple components, each of which is a knot. A knot or link
can be continuously deformed as long as it does not intersect itself. The
result of such a deformation is a knot isotopic to the original one. Up to
isotopy, a knot can be represented by a non-intersecting closed polyline
(finite sequence of line segments in three-space).

unknot trefoil trefoil (braid)

figure-eight knot knot 63 Hopf link

link Whitehead link Borromean rings1
24

Figure 2: Knot and link diagrams
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Knots and links are usually studied using projections or diagrams, such
as shown in Fig. 2. One knot can be projected in many different ways; as
an example two different projections of the trefoil are shown. A diagram
consists of edges and crossings. If an orientation is assigned to the knot,
we see that two different types of crossings exist: right-hand crossings and
left-hand crossings (Fig. 3).

left-hand crossing       right-hand crossing

-1                                    +1

Figure 3: Two different types of crossings

Some important questions in knot theory are whether two knots are the
same or not, and especially if a knot is equal to the unknot; how many
different knots do exist (given constraints), and how to classify knots.
One approach to this is to define invariants of knots. A classic one is the
minimum number of crossings in a diagram of a knot; more powerful and
distinctive are so-called knot polynomials, such as the Jones polynomial [1].

C. Seifert surfaces
The genus of a knot, introduced by Seifert [13], is another classic invariant
in knot theory. The Euler characteristic for a 1-dimensional object is 0
when applied to a knot, hence that does not lead to a distinction. Seifert
therefore used a connected, oriented, compact surface that has the knot as
its boundary to define the genus of a knot. At first sight, it is surprising
that such a surface exists for any knot or link. Seifert showed that such
a surface can be derived from a knot diagram using a simple algorithm.
It consists of four steps (Fig. 4). First of all, assign an orientation to the
components of the knot or link. Secondly, eliminate all crossings. At each
crossing two strands (say, A and B) meet. A crossing is eliminated by
cutting the strands, and connecting the incoming strand of A with the
outgoing strand of B, and vice versa. This gives a set of non-intersecting
(topological) circles, called Seifert circles. Thirdly, if circles are nested in
each other, offset them in a direction perpendicular to the diagram. Fill
in the circles, giving disks. Finally, connect the disks using twisted bands.
Each band corresponds to a crossing, and has one twist, with orientation
derived from the crossing type. A twist is a rotation over plus (right-hand)
or minus (left-hand) 180 degrees. Note that the crossing type does not
influence the circles that are generated. The resulting surface satisfies the
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requirements. Different projections of the knot lead to different surfaces,
possibly also with a different genus. The genus of a knot is defined as the
minimal genus of all oriented surfaces bounded by the knot. Note that not
all surfaces bounded by a knot arise from Seifert’s algorithm, and there
are examples with genus lower than that computed from the algorithm.

oriented knot circles bands

Ain

Aout

Bout

Bin

Ain

Aout

Bout

Bin

Figure 4: Seifert’s algorithm: Assign orientation, eliminate crossings, and
add bands; shown for a knot and a crossing

D. Challenge
Texts on knot theory show figures similar to Fig. 4. From these it is hard to
understand the shape of the surface. One reason is that such surfaces are
not familiar and are rarely encountered in the real world. We have searched
the literature and the Web, but could not find satisfying visualizations of
Seifert surfaces. The KnotPlot package of Robert Scharein [12] has a very
rich set of features and is a delight to work (and play) with, but even this
has no option to show Seifert surfaces. We therefore found it a challenge
to develop a method to visualize Seifert surfaces. Specifically, our aim was
to enable the viewer to generate and view Seifert surfaces interactively in
3D for arbitrary knots and links in different styles.
One possible route is to consider a Seifert surface as a minimal surface

(i.e., the surface with zero mean curvature, also known as the soap bubble
surface) using the knot as its fixed boundary. However, this requires that
a three-dimensional knot is available. Also, the definition of a suitable
initial surface mesh and the iterative calculation of the minimal surface
are not easy to implement and are compute intensive. We therefore opted
for a different approach. Given an abstract notation of a knot, derive the
structure of the Seifert surface and find a smooth geometry in a quick and
deterministic way.
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E. Braid representation

To generate Seifert surfaces for arbitrary knots and links, we need an
encoding for these knots and links. Many different encodings have been
developed, such as the Conway notation and the Dowker-Thistlethwaite
notation. For our purposes we found the braid representation to be very
useful. By means of braids, several different styles of surfaces can be
generated easily; and also, the braid representation lends itself well to
experimentation. It does have its limitations though, as we discuss in
section V.

A braid consists of a set of n strings, running (here) from a left bar
to a right bar (Fig. 5). Strings are allowed to cross, and the pattern can
be encoded by enumerating the crossings from left to right. A crossing is
denoted by σjk, which means that strings at the k’th and k + 1’th row are
twisted j times, where j = 1 denotes a right-hand crossing and j = −1
a left-hand crossing cf. Fig. 3. The closure of the braid is defined by
attaching the left bar to the right bar, such that no further crossings
are introduced. In other words, we add n extra strings that connect the
beginnings and ends of strings at the same row, without further crossings.
Every knot and link can be defined as a braid. A trefoil has the braid word
σ1σ1σ1 = σ3

1 , a figure eight knot can be represented as σ1σ
−1
2 σ1σ

−1
2 . An

alternative notation for braids is to use uppercase letters for right crossings
and lowercase letters for left crossings, and where the character denotes the
strings effected, according to alphabetic order. Hence, a trefoil is encoded
by AAA, and a figure eight knot by AbAb. Furthermore, every possible
braid word defines a knot or a link, which makes this representation well
suited for experimentation.

σ1 σ1σ2
−1 σ2

−1

1

2

3

Figure 5: Braid representation of figure-eight knot
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III Closed surfaces
Besides visualization of Seifert surfaces, another aim was to make the genus
of a knot ’more visible’. A trefoil or a figure eight knot has genus 1, hence
the corresponding Seifert surfaces are homotopic to a torus with a hole in
the surface. Via a number of steps in which the Seifert surface is deformed,
cut, and glued, this equivalence can be shown, but it is not really intuitive.
Closed surfaces are easier to understand, hence we studied how a closed
surface can be generated that contains the Seifert surface as an embedded
subsurface. We call such a surface a closed Seifert surface. The following
reasoning is straightforward, but we could not find it in the literature.
The standard approach of topologists is to cap off boundaries (here the

m boundaries of the Seifert surface) with (topological) disks. This leads to
a surface that is homotopic to a closed surface, but not isotopic. What we
need here to close the surface in a more decent way, is an oriented surface
that has the m components of the link as boundary. But this is exactly
the definition of a Seifert surface itself, which leads us immediately to a
solution. Using a physical analogy, the solution is to take two identical
Seifert surfaces, glue them together at the boundaries, and inflate the
closed object. This is shown in Fig. 6 for a trefoil (which also shows a
possible solution to the puzzles posed in the introduction). The Seifert
surface consists here of two disks, connected by three bands; the closed
Seifert surface consists of two spheres, connected by three tubes. The
knot splits the closed surface into two parts.

Figure 6: Inflating two Seifert surfaces, glued together at their boundaries

The genus of a closed Seifert surface can be determined as follows. The
Euler characteristic of a Seifert surface is χs = 2 − 2gs − m, with gs
the genus and m the number of components of the knot. For the Euler
characteristic χc of the closed surface we find χc = 2χs: The number of
vertices, faces and edges doubles, but at the boundaries a certain number
of edges and the same number of vertices disappear. However, as V and
E have opposite signs in the definition of χ, this does not influence the
resulting value. For a closed surface χc = 2− 2gc, with gc the genus of the
closed surface. This leads to
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gc = 2gs +m− 1.

This gives us a direct way of finding oriented closed surfaces in which to
embed a knot or link of genus gs such that the knot divides it into two
parts. For instance, for a trefoil or figure eight knot a genus 2 surface
can be used (such as a donut with two holes, or two spheres connected
by three tubes), and in greater generality, for a knot of one component a
donut with 2gs holes can be used.

IV Structure
In this section we derive the structure of the Seifert surfaces, starting from
the braid word. The aim here is to determine the number of disks (or
spheres) and their position in space, and the bands (or tubes), with the
number of twists and attachment positions to the disks as attributes. The
disks are positioned in 3D (x, y, z) space. We take x and y in the plane of
the diagram, and z perpendicular to the plane. Disks are parallel to the
x, y plane. Each disk has two sides, denoted A and B. For each disk a
decision must be made if the A or B side is positioned upwards.

Figure 7: Figure eight knot in stacked, split, flat, and reduced style

Because of the regular structure of braids, various styles of Seifert
surfaces can easily be derived from these. Fig. 7 shows four styles for
a figure eight knot, using ellipsoids and tubes. First, the stacked style. If
all closing strings are positioned in the default way, it is easy to see that
the Seifert circles are all nested. Hence, the corresponding Seifert surface
consists of a stack of disks, where each disk is connected with bands to
its neighbors (Fig. 8). All disks have the A side facing upwards, their
position is (0, 0, (i − 1)D), where i is the index of the row to which the
disk corresponds, and D a distance between the disks. A nice geometric
representation is obtained by subdividing each disk into k sectors, where k
is the total number of crossings. Sectors of neighboring disks are connected
with bands when appropriate. Using a suitable setting for the geometry,
we generate an object similar to a wedding-cake.
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Figure 8: Standard braid representation gives stacked disks

As a variation, one set of closing strings can be positioned above, and
the remaining set can be positioned below the braid. This gives the split
style: two sets of stacked disks in wedding-cake style, where the lower disks
of each set are connected by bands in the plane. One set has the A side
facing up, the other set has the B side upwards. As an example, in Fig. 9
two strings are positioned above and one is positioned below the braid. We
introduced this style in order to produce for instance the Seifert surface
that results from the standard projection of the figure eight knot.

Figure 9: Split style

An alternative style, the flat style, is obtained as follows. The upper
closing string is positioned above of the braid, the lowest closing string
below the braid, and the closing strings in between are put downward,
pushed perpendicular to the plane of the braid. Strings of the last kind
introduce extra crossings. Their number can be minimized by carefully
choosing the path of the string (Fig. 10). From this lay-out of the strings,
disks and bands can be derived using Seifert’s algorithm. Thus a set of non-
nested, disjoint Seifert circles will be obtained, so they can be positioned
in a plane. The structure can be constructed as follows. Suppose that
σjk is the i-th crossing. We add two disks, one with A up (brown) at
position (iD, kD, 0) and one with B up (yellow) at (iD, (k + 1)D, 0). In
other words, at each upper and lower triangle of an original crossing disks
are positioned. Next, vertical bands are added that represent the original
crossings, with a twist according to the crossing. Finally, horizontal bands
are added between disks on the same row. If both disks have the same
side up, no twists are added. An A up disk on the left and a B up disk
on the right are connected by a band with a single negative twist, and a
single positive twist is used for the reverse order.
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Figure 10: Flat style

The flat style is not particularly interesting, but this planar lay-out can
be simplified further, giving the more attractive reduced style. Several
disks have only two bands attached to them. Such a disk can be removed,
and the original two bands can be replaced by a single band, with the
number of twists equal to the sum of the number of twists of the original
bands. Application of this rule to the figure eight knot leads to a simple
structure of two disks, connected by three bands with 1, 1 and −3 twists
respectively (Fig. 11). Such a knot, with a Seifert surface that consists of
two disks, connected by parallel twisted bands, is known as a pretzel knot.
The trefoil is a (1, 1, 1) pretzel knot.

Figure 11: Reduced style

The structure of the pattern of disks and bands can be described as a
planar graph, with each disk mapped to a vertex, each band to an edge,
and each hole to a face. For the optimal lay-out of such graphs a number
of algorithms exist [5]. We implemented a simplistic one (using a trial-and-
error approach), which gave satisfactory results for the graphs produced
here.

V Geometry
In the previous section we have discussed how to generate disks and bands
from a braid word, and how to position and orient the disks. The next step
is to produce a surface to visualize the Seifert surface or the corresponding
closed surface. We use ellipsoids as the basic shape for disks and spheres,
and curved cylinders with an elliptical cross section for the bands and
tubes. These are approximated with polygons. Smoothing can be applied
to obtain smoother knots and surfaces. Furthermore, we describe two
extensions of the basic method: definition of multiple vertical twists and
of double knots.
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A. Ellipsoids
In the standard position, an ellipsoid with two axes of equal length
(representing a squeezed sphere) can be described by

p(u) = (d cosu cos v, d sin u cos v, h sin v)/2,
with spherical coordinates u = (u, v) ∈ [−π, π)× [−π/2, π/2], and with the
diameter d and height h as parameters. Obviously, setting h close to zero
gives a disk, setting d = h gives a sphere. The ellipsoid is subdivided into
ns sectors, where each sector has at most one tube attached. Consider one
such a sector (u, v) ∈ [−U,U ] × [−V, V ], where U = π/ns and V = π/2.
The top half (v ∈ (0, V ]) belongs to either A or B, the bottom part belongs
to the other part of the surface. If no band is attached, then this sector
can be straightforwardly polygonized with a rectangular mesh with size
parameters I and J . The vertices are pij = p(uR(i, j)), with

uR(i, j) = (Ui/I, V j/J)
and (i, j) ∈ [−I, I]× [−J, J ]. Obviously, the vertices at the poles coincide.
If a band or tube is attached, a hole must be made in this mesh, and

some care is required to make sure that this hole conforms with the end of
the tube. The cross-section of bands and tubes is described as an ellipse,
with width w and height d. Obviously, setting w close to 0 gives a band,
setting w = d gives a tube. Suppose that the attachment point of the
centerline of the tube is pA = p(uA). Typically, uA = 0, and vA is an
optional offset in the direction of the poles to move the attachment point
closer to the disk to which the other side of the tube points. This was used
for instance in Fig. 6. We model the boundary of the hole in the ellipsoid
in spherical coordinates as

uB(s) = uA + (a cos sπ/2, b sin sπ/2),
with s ∈ [0, 4) (Fig. A.). The lengths of the semi-axes a and b are chosen
so as to match the distances of p(uB(0)) and p(uB(1)) to p(uA), measured
along the surface of the ellipsoid, with w/2 and d/2, respectively. This hole
is a perfect ellipse in (u, v) space, and, for our purposes, a good enough
approximation of an ellipse in 3D space.

U-U

-V

V

uA

ab

I-I
-J

J

u i

v j

i0

j0

-j0

-i0

Figure 12: Sector of ellipsoid in (u, v) and (i, j) coordinates
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U0

V

I0
0

J

u i

v

i0

j0

j

α
0

auA

β 

Figure 13: Upper right quadrant in (u, v) and (i, j) coordinates

Also, we define a rectangular hole in the mesh space: (−i0, i0)×(−j0, j0).
The mesh has to be warped such that the inner boundary conforms with
the hole in the ellipsoid, while the outer boundary still conforms with
the standard boundary of the sector. We have modeled this as follows.
Consider the upper-right quadrant of the sector (Fig. 13). We measure
the position of a mesh-point (i, j) in a kind of polar coordinates (α, β),
where β ∈ [0, 1] denotes the angle, and α ∈ [0, 1] how close we are to the
inner boundary (α = 0) or the outer boundary (α = 1). Specifically, we
use

αij = max(αi, αj) with

αi = i− i0
I − i0

and αj = j − j0

J − j0
;

and

βi,j =
{
j/L(i, j) if αi > αj
1− i/L(i, j) otherwise

with
L(i, j) = (1− αij)(i0 + j0) + αij(I + J).

If only the hole has to be taken care of, mesh points can be found using

uC(i, j) = uA + ((αija+ (1− αij)(U − ua)) cosβijπ/2,
(αijb+ (1− αij)(V − va))) sin βijπ/2).

To obtain a smooth transition from the inner to the outer boundary, we
determine the vertices pij = p(uH) by blending circular and rectangular
coordinates via

uH(i, j) = (1− h(αij))uC(i, j) + h(αij)uR(i, j) with

h(t) = −2t3 + 3t2.

The blending function h(t) gives a smooth transition at the boundaries
because h′(0) = 0 and h′(1) = 0. The other quadrants are dealt with
similarly. A result is shown in Fig. 14.
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Figure 14: Mesh of ellipsoid

B. Tubes
The tubes are also modeled via a rectangular mesh of polygons. We use a
mesh cij , i ∈ [0..P − 1], j ∈ [0..Q], where i runs around the cross section of
the tube, and j along the centerline. The centerline of a tube is modeled
by use of a cubic Bézier curve [6]. Such a curve is given by

b(t) = (1− t)3b0 + 3(1− t)2tb1 + 3(1− t)t2b2 + t3b3

with t ∈ [0, 1]. For b0 and b3 we use the end points of the tube, i.e., the
attachment points pA. The control point b1 is derived from the normal
n0 on the surface of the ellipsoid

b1 = b0 + µn0/3|b3 − b0|

where µ (typically 1) can be tuned to vary the offset of the tubes. The
other control point b2 is defined similarly.
To generate the surface of the tube, contours must be rotated and

interpolated. We use a Frenet frame as a natural reference frame along
the centerline, given by

f3(t) = b′/|b′|, f2(t) = f ′3/|f ′3|, f1(t) = f3 × f2,

where b′ = db/dt. A Frenet frame is undefined when the curvature is
zero. When the control points are colinear, an arbitrary frame can be
chosen instead. When locally the curvature is zero, the frame can rotate
over 180 degrees, which has to be checked and corrected for.
Suppose that the start contour consists of a sequence of points pi, with

i = 0, · · · , P − 1, such that p0 is located at the boundary between the A
and B part of the surface, and with a counterclockwise orientation when
viewed from outside the ellipsoid. Here P = 4i0 + 4j0. The end contour
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with points qi is defined similarly, also with P points, except that we
assume here a clockwise orientation. We use a rotating frame for the
rotation of the contour, given by

g1(t) = cosφ f1 − sinφ f2

g2(t) = sinφ f1 + cosφ f2

g3(t) = f3

with
φ = φ(t) = (φ1 − φ0 + T2π)t+ φ0.

The offset φ0 is set in such a way that initially g1 is aligned with p0−b0.
We measure this initial offset relative to the Frenet frame with

φ0 = arctan p∗0 · f2(0)
p∗0 · f1(0)

where
p∗0 = p0 − b0 − ((p0 − b0) · f3(0))f3.

The final offset φ1 is defined similarly. The value of T is chosen such that
the total rotation φ(1) − φ(0) matches with the desired number of twists
R of the tube, e.g.,

T = round φ0 − φ1 +Rπ

2π .

Contours are interpolated in a local frame, using a cubic Bézier spline
again, i.e.,

c∗i (t) = (1− t)3c∗i0 + 3(1− t)2tc∗i1 + 3(1− t)t2c∗i2 + t3c∗i3.

For c∗i0 we use start contour points, transformed by use of the g(0) frame:

c∗i0 = (g1(0) · (pi − b0), g2(0) · (pi − b0), g3(0) · (pi − b0)) .

For c∗i3 the end contour points are used:

c∗i3 = (g1(1) · (qi − b3), g2(1) · (qi − b3), g3(1) · (qi − b3)) .

For the contours in between we use ellipses:

c∗i1 = c∗i2 = (w cos 2πi/P, d sin 2πi/P, 0).

The points of the mesh of the tube are now finally given by

cij = b(j/Q) + (g1(j/Q), g2(j/Q), g3(j/Q)) · c∗i (j/Q).
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C. Smoothing
The preceding approach gives ellipsoids and tubes. To obtain smoother
surfaces, especially to render less abrupt transitions between tubes and
ellipsoids, smoothing can be applied. In [15] we proposed to use geometric
smoothing, based on Catmull-Clark subdivision [3]. This does indeed give
more attractive shapes, but the resulting knots and links often still did
not resemble their natural counterparts, shown in textbooks, or produced
by Scharein’s KnotPlot [12]. The latter immediately suggests a solution:
Apply Scharein’s method for smoothing the links here also, and let the
surface follow. In the following we describe this procedure in more detail.
Scharein’s approach is to use a relatively simple physics-based iterative

procedure. Each vertex of a link is considered as a point mass, and is
attracted by its neighbors and repelled by all other vertices of all links.
The positions of the vertices are incrementally updated taking the forces
into account, until a stable or attractive configuration results. In more
detail, in his model for the magnitude of the attracting force Fa between
two neighboring vertices

Fa(r) = Hr1+β

is used, modeling a generalization of Hooke’s law. The use of β = 0 gives
the standard linear version. For the repelling force Fr between vertices a
generalized electrostatic model is used, i.e.,

Fr(r) = Kr−(2+α),

where the use of α = 0 gives the standard inverse quadratic version. We
used a slight adaptation. Instead of Fa(r) and Fr(r) we use Fa(r/ra)
and Fr(r/ra), where ra is the initial average distance between neighboring
vertices. This reduces the effect of the initial scale of the model on the
final result.
For the calculation of the motion of the vertices Newton’s laws and a

simple Euler scheme are used. Each vertex has an associated velocity v,
which is updated for time step i according to

vi+1 = (1− γ)vi + F∆ti.

The amount of damping (and hence dissipation of energy) can be controlled
via γ, and F is the sum of all forces acting on a vertex of a link. The new
position pi+1 follows from

pi+1 = pi + min(dmax, |vi+1∆ti|)
vi+1∆ti
|vi+1∆ti|

.

For the vertices of the surfaces we used almost the same force model
(including normalization by ra), except that only attracting forces and
no repelling forces are used. As a result, the surface follows the link, but
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does not influence it. Using a physical analogy, the knot is modeled as
a steel rod, and the surface as a thin flexible rubber sheet. This simple
model for the surfaces does not lead to a minimal surface, but it does lead
to smooth surfaces with faces of similar size and shape.

Figure 15: Smoothing using relaxation

The amount of displacement is clamped to a value dmax. Furthermore,
if the new position of the vertex is closer than dclose(> dmax) from non-
neighbouring edges, the update is ignored. Scharein has proved [12]
that this combination of measures prevents self-intersection of the knot.
Surfaces are not checked for self-intersection. Self-intersection can occur
when the simulation is continued in search of a minimal energy, but often
such a configuration is visually not attractive. Also, a check for self-
intersecting surfaces would give a high performance penalty.
The time taken per time step is quadratic in the number of vertices of

the link, and linear in the number of vertices of the surfaces. For a smooth
interactive performance, a low number of vertices has to be used. Hence,
we use by default low resolution settings for the meshes. For the mesh of
the disks we use a scheme in which the number of meridians is constant
between two tubes, and independent of the angle between the tubes.
Furthermore, selection of a proper time step ∆ti is important. Too high

a value gives an unstable result, too low a value does not give enough
progress. To prevent both extremes, we use an exponentially decreasing
time step

∆ti+1 = (1− µ)∆ti,

where µ denotes the strength of the decrease. As a result, initially large
steps are made, whereas later on the shape stabilizes to a smooth shape.
This is not necessarily the minimal energy configuration, but that one did
not always seem to be the most attractive anyway. In our implementation,
each time the user presses a smooth button, a new cycle of iterations is
started: the time step is reset to an initial large value, and the model
is smoothed further, which gives an easy control over the amount of
relaxation desired. Each cycle takes typically 5-10 seconds, shown as a
smooth animation on the screen. Fig. 15 shows the effect of this smoothing
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procedure. On the left the original mesh is shown, followed by application
of one, three, and a large number of cycles of iterations. Already after
one cycle an attractive result is obtained. The last version is the minimal
energy configuration for this parameter setting, where the collision check
prevents further smoothing. The resulting shape is geometrically simple,
but less attractive than its predecessors.

Figure 16: Use of a high value for α

We used here α = 0 and β = 1, which we found to give nice results for
stacked disks configurations. Scharein recommends to use a higher value
for the repulsion coefficient α, such as α = 4. This gives a result as shown
in Fig. 16. A high α has the effect that the knot is surrounded by a hard
tube, the force quickly increases when the knot is approached. This gives a
more irregular knot and surface. However, when the aim is to show a knot
represented by a thick tube in a small space, which is typical for KnotPlot,
a high value of α is required.

Figure 17: Different initial configurations for Whitehead link.
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Different initial configurations lead to different results. An example
using the Whitehead link is shown in Fig. 17. On the left, a stacked disks
style is used, which gives a ring, around which another link is twisted in
a figure eight way. On the right, a reduced style is used, which leads to
two symmetric links. In this case, the simple relaxation scheme used will
never lead to the same result, because the lengths of the links are different
in the first and the same in the second case. Also, it seems as if there
are several local minima. As the aim here is mainly to obtain a smooth
and understandable result, rather than a global optimum, this is not a
problem. Usually, the most pleasant results were obtained with the simple
stacked disks style. This model is regular (all bands are similar) and leads
to three-dimensional shapes, in contrast to the other styles. Smoothing
therefore leads fluently to spatial surfaces.
If one would aim at a quick and useful implementation of visualization

of Seifert surfaces, our recommendation is to start with the stacked disks
style in combination with relaxation as described before. This combination
is relatively easy to implement, leads to results that show the structure of
the surface, and yields smooth surfaces bounded by natural representations
of the knot.
For presentation purposes, higher resolution meshes are convenient, and

we therefore kept an option for geometric refinement. Upon user request,
the links are refined by means of an interpolation scheme following the
Catmull-Rom spline [4]; for the surfaces Catmull-Clark subdivision [3] is
used.

D. Knot representation
It is convenient to have an explicit representation of the knot or the
components of the link that correspond to the surfaces. For this purpose,
the geometry of the knot is derived from the surfaces. Each polygon is
assigned to part A or B of the surface, components are found by tracing
edges that bound polygons that belong to different parts. The knot is
shown as a tube. Optionally, an offset can be specified, such that the knot
is shifted perpendicular to the surface in an outward normal direction. In
Fig. 7 we used an offset of the radius of the tube, such that the knot
touches the surface. Also, this is useful for visualizing the linking number
of the offset with the original knot, a quantity that plays a role in knot
invariants like the Alexander polynomial.
We have added an option to use transparency for more insight in the

resulting shape. Transparency itself is not without problems using the Z-
buffer algorithm employed in graphics cards. For an optimal result with
transparent surfaces, all polygons should be sorted and rendered in back to
front order, which is a time consuming operation. We use a shorter route.
For insight into the structure, understanding the shape of the knot is vital,
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hence it is advantageous to see the knot through surfaces. We implemented
this idea by rendering first all surfaces, followed by rendering the knot
transparently but only when behind the surfaces, and finally rendering the
knot again opaquely when the knot is in front of the surfaces.

Figure 18: Double figure eight knot

E. Extensions
In the approach so far, a knot or link separates two surfaces (say A and B).
We can split the knot into two parallel knots and introduce a new surface C
in between them. We implemented this as follows. The algorithms produce
a mesh where each face is labelled A or B. If we now change these labels
to C for all faces that meet a face with a different label, we obtain a strip
of two faces wide that is labeled C, assuming that the knot is bounded by
at least two faces on each side with the same label. Repeated application
of this step gives a wider strip labeled C. Next, if the standard tracing
method for finding links in space is used, a parallel knot emerges. This
extension was easy to implement, but the results are complex, as shown in
Fig. 18, where for a figure eight knot a stacked balls version, and various
views of a smoothed version are shown. The blue surface C is a ribbon in
the shape of a figure eight knot.
Another extension is related to a limitation of the braid representation:

It does not always yield a minimal genus surface. Consider Fig. 19, where
knot 51, also known as the cinquefoil knot, and the almost similar 61 knot
are compared. The knot 51 has the braid word AAAAA, the knot 61
has the braid word AABacBc. If we use these braid words to generate
Seifert surfaces, we find a good result for the cinquefoil knot. The closed
Seifert surface has four holes, which matches with its genus 2. However,
the surface for the 61 knot also has four holes. The 61 has genus 1, and to
visualize this, the shape should have two holes, which can be achieved
by visualizing the 61 knot as a (5,-1,-1) pretzel knot. The flat style,
closest to the original braid representation, is messy. Merging bands and
eliminating disks gives the more compact reduced representation, but these
steps cannot reduce the genus.
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51 - diagram

61- diagram

51 - flat

61 - reduced

Figure 19: 51 cinquefoil knot (AAAAA) and 61 knot (AABacBc)

This limitation can be explained in various ways. The main difference
between the upper parts of 51 and 61 is that in the former the strands
run parallel, while in the latter their directions are opposite. The
braid notation excels in representing parallel twisted strands, but cannot
compactly represent twisted strands with opposite directions. Knots
with many crossings and a low genus typically have twisted strands with
opposite directions, pretzel knots are a good example of these.

A a5A3

Figure 20: Extended braids: multiple vertical twists

We implemented a simple extension to handle a large number of such
knots as well. In the letter based braid notation, each symbol represents
a single twist of two parallel strands. We extended this by allowing also
the definition of vertical twists (Fig. 20). Each letter can be followed by
a number that gives the number of vertical twists, such that for instance
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a (1, 3, -5) pretzel knot is defined as AA3a5. One limitation we impose
is that the number of vertical twists should be either odd or even for all
bands connecting the same disks, i.e., the same for all A’s and a’s, all B’s
and b’s, etc. If this condition is met, then processing these extra twists
is straightforward. One change is that when even twists are used, the
orientation of disks changes. With this extension shapes such as chain
rings can be defined easily via a sequence A2A2... (Fig. 21).

Figure 21: Chain ring (A2A2A2A2)

VI Results

A. Examples

Interactive viewing provides much better insight in the 3D shape than
watching static images. Nevertheless, we show some more examples of
results. As mentioned in the previous section, the braid representation
does not always yield a surface with minimal genus. This property can
also be used as a feature, i.e., to produce surfaces with a high genus that
are bounded by simple knots and links. Consider the knots and links
produced by a sequence AaAaAa... One strand is always on top of the
other here (Fig. 22), hence this produces either two loose rings or one
unknot, for an even or odd number L of letters, respectively. The Seifert
surface is more complex, and contains L− 1 holes (Fig. 23). The result of
AaAa is intriguing. Locally, the shape is simple to understand, but it is
hard to form a mental image of the complete shape, like one can imagine
a sphere or a torus.
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A a A a

Figure 22: AaAa gives simple boundaries, but a complex topology of the
surface

Figure 23: AaA (left) and AaAa (right)

Fig. 25 shows a number of standard knots, Fig. 26 shows a number
of standard links. For each knot or link two views are given: one with a
minimal number of crossings and one that shows the spatial structure of the
surface. In [15] we have given examples of the same set, using stacked and
reduced styles, in combination with geometric smoothing. Whereas these
images showed the structure clearly, the use of physically based smoothing
leads to results that resemble the natural shapes of the knots much better.

B. Dissemination
The visualization of Seifert surfaces is useful for knot theorists to illustrate
and explain their work. Our first experience in a course on knot theory was
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very positive in this respect. Also, we think that the concepts presented
and methods used here are interesting for a wider audience. Knot theory
is pure mathematics, but can be presented at a basic level without any
formula. In this spirit, our work could be used for tutorial and educational
purposes, such as for instance special projects on higher mathematics at
high schools. We already spent some effort in bridging the gap between
our research results and application on a wider scale.

Figure 24: User interface SeifertView

First of all, we have tried to turn our research prototype into a useful
and interesting tool for an extended audience. The result is a Microsoft
Windows application, which we have called SeifertView. A snapshot of
the user interface is shown in Fig. 24. The user can view and rotate the
knot (here knot 77) in the main area. With the controls below the main
view area, the user can select which parts have to be shown, trigger a
smoothing cycle, refine the mesh, or reset to the original shape. The first
tab sheet, shown on the right, provides basic functionality which enables an
occasional user to have a quick result. The user can define knots and links
by pressing a button, via specification of a braid word, or by selection
from a table with all knots having up to ten crossings1 (obtained from
[10]). A schematic representation of the corresponding braid is shown.
Eight presets are offered to select a presentation style. Pressing such
a button not only selects a different algorithm, but also dimensions are

1Added in this republication: This table was derived by Gittings, and was obtained
from [10]. See: Thomas A. Gittings. Minimum Braids: A Complete Invariant of Knots
And Links. arXiv:math/0401051, 2004.
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tuned to obtain a satisfying result. Furthermore, a selection for weak or
strong repulsion during smoothing is offered. The other tab sheets contain
a large number of options for tuning various aspects, such as the shading,
the geometry, and the mesh generation and relaxation.

Figure 25: From left to right: Figure eight knot, knot 63 (AAbAbb), knot
71 (AAAAAAA), and knot 85 (AAAbAAAb)

Figure 26: From left to right: Hopf link (AA), link 41
2 (AAAA), Whitehead

link (AbAbb), and Borromean rings (AbAbAb)

We have added various features based on discussions with prospective
users, For instance, an option is provided to hide all controls for classroom
presentation purposes. Also, an option is offered to produce anti-aliased
high resolution images for printing purposes directly from the application.
As an illustration, in Fig. 27 the effect of oversampling each pixel 25 times,
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using a jittered grid, and averaging with a Mitchell filter is shown for a
small (200×100) image. By means of tiling, images with a resolution
of 3000×3000 can be produced. Finally, we offer a special feature for a
younger public: users can study a knot in detail with a thrill ride in a
roller coaster (Fig. 28).

Figure 27: Anti-aliasing: left a screenshot, right an anti-aliased version

Figure 28: A special effect

SeifertView is available for download from [14]. On this web site we
furthermore provide a short and informal introduction to Seifert surfaces,
the braid representation, and various options and features of our tool.
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VII Discussion

We have presented a method for the visualization of Seifert surfaces, and
have introduced closed Seifert surfaces. These surfaces are generated
starting from the braid representation; several styles can be used, and by
varying parameters the user can produce different versions. Via physically
based smoothing, attractive knots can be generated in seconds.
In this field, one answer gives immediately rise to new questions. Some

examples are the following. Physically based smoothing leads to attractive
surfaces; we would like to have a procedure that gives smooth closed
surfaces (see section III). This requires a modified relaxation method with
for instance extra outward pressure on the surface.
We are interested in producing minimal genus surfaces for knots and

links. Allowing multiple twists does increase the flexibility, but we have
not yet found an algorithm to convert a braid representation (or other
representation) into this new representation, and also we do not know if
this extended braid notation suffices to produce any minimal genus knot.
If this can be done for all different knots, tables and overviews of Seifert
surfaces can be generated automatically. Another future goal is to create
Seifert surfaces from arbitrary given closed loops. That is, the input would
be a geometric model of the knot, rather than the braid notation or other
symbolic representation.
Another remaining puzzle concerns the morphing of shapes. For instance

in Fig. 7, all shapes are isotopic, but we would like to exhibit this via a
smooth animation.
Finally, so far we concentrated on visualizing Seifert surfaces, but

these are not the only possible surfaces bounded by knots. Also, Seifert
surfaces play an important role in computing linking numbers, fluxes, and
circulations for space curves. Visualizing these would be helpful in a wide
range of applications ranging from knot theory to electromagnetism to
fluid dynamics.
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