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Chapter 1

Introduction

In these notes we study the Dirichlet problem for critical points of a convex
functional of the form

F (u) =
∫

Ω
φ (|∇u|) , (1.1)

where Ω is a bounded domain of a complete Riemannian manifoldM. We
also study the asymptotic Dirichlet problem when Ω = M is a Cartan-
Hadamard manifold.
As minimal conditions on φ we require that{

φ ∈ C1 ([0,∞)) ∩ C2 ((0,∞))
φ′(s) > 0 and φ′′(s) > 0 for s > 0. (1.2)

These conditions imply the strict convexity of F and ensure the ellipticity
of the associated Euler-Lagrange equation.
There is a vast literature on this class of problems, mainly on the

Euclidean space, which we do not discuss here. Our aim is to present
a unified approach to this problem, in the Riemannian setting, which
comprises the classical examples of the p−Laplacian (φ(s) = sp, p > 1)
and the minimal surface equation (φ(s) =

√
1 + s2). Our approach does

not use the minimization technique of the Calculus of Variations which
seems to be common in the case of the p−Laplacian. Instead we use
the classical method of a-priori C1 estimates which are obtained from
the Euler-Lagrange equation using a coordinate free calculus. Degenerate
elliptic equations like the p−Laplacian are dealt with by an approximation
argument.
The p−energy and the area are typical representatives for two classes

of functionals which we shall distinguish in what follows. With the
abbreviation a = φ′ the Euler-Lagrange equation of F is

Q [u] := div
(
a(|∇u|)
|∇u|

∇u
)

= 0, (1.3)
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6 Jaime Ripoll and Friedrich Tomi

which may be written in the equivalent form

|∇u|2 ∆u+ b (|∇u|)∇2u (∇u,∇u) = 0, (1.4)

where
b(s) = sa′(s)

a(s) − 1 (1.5)

and ∇2 denotes the Hessian. It follows from (1.2) that 1 + b(s) > 0 for
s > 0.
As it is well known from the theory of elliptic equations, the behavior

of the eigenvalues of the quadratic form associated with (1.4)

q (ξ, ξ) = |∇u|2 |ξ|2 + b (|∇u|) 〈ξ,∇u〉2 (1.6)

is crucial. Precisely, it is the quotient of the eigenvalue λ in direction ∇u
given by

λ = |∇u|2 (1 + b (|∇u|))

and the maximal eigenvalue given by

Λ = |∇u|2 max {1, 1 + b (|∇u|)}

which is decisive. We may easily see that

λ

Λ = 1 + b−,

where b− = min {b, 0} . The construction of barriers at the boundary
depends on the behavior of the function 1 + b−. We consider the two
following possibilities:

Condition I. Mild decay of the eigenvalue ratio:(
1 + b−(s)

)
s2 ≥ ϕ(s), s ≥ s0 > 0, (1.7)

where ϕ is non decreasing and∫ ∞
s0

ϕ(s)
s2 ds = +∞. (1.8)

Condition II. Strong decay of the eingenvalue ratio:(
1 + b−(s)

)
s2 ≥ ϕ(s), s ≥ s0 > 0,

where ϕ is non increasing and∫ ∞
s0

ϕ(s)
s

ds = +∞. (1.9)
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As we will see, with mild decay of the eingenvalue ratio one is able to
construct barriers on arbitrary bounded smooth domains. However, for
partial differential equations with strong decay of the eigenvalue ratio, it
is necessary to require the mean convexity of the domain (see Section 3.2).
Let us mention that the p−Laplace equation falls into class I and the

minimal surface equation into class II. Further conditions besides I and II
will have to be imposed for global and local gradient estimates (see Section
3.3). Let us also mention that the behavior of type I was introduced by
Serrin as regularly elliptic (see [20]).
These notes address mainly researchers and graduate students interested

in elliptic partial differential equations on Riemannian manifolds and may
serve as a material for corresponding courses and seminars. Indeed, the
first author gave a course at Federal University of Santa Maria, Rio Grande
do Sul, Brazil, on the second semester of 2017, based on these notes.
Our goal in this text was to carve out structural conditions on the

integrand φ which lead to global and local C1−estimates for solutions of
the corresponding Euler-Lagrange equations. The text gives a complete,
self-contained presentation of this part of the theory; no prerequisites
besides elementary Riemannian geometry are required. Once the crucial
C1−estimates are established a general machinery may be applied to
obtain higher order estimates. For this machinery we refer to the literature
[10], [15], it is not a subject of this text.
We believe that the techniques of these notes can be extended to more

general partial differential equations, such as equations with a nonzero
right hand side Q = f with f depending on the point of the manifold, the
function and its first derivatives.
We would like to express our thanks to Roberto Nuñes for checking part

of this manuscript and for contributing the useful estimate in Remark 3.2.



Chapter 2

Overview of the technique

We resume in this section the main ideas used in these notes to investigate
the Dirichlet problem in bounded smooth domains of a Riemannian
manifold.

2.1 The method of a priori bounds
The case in which the partial differential equation (1.3) is singular or
degenerate, as the p−Laplacian and a similar family of partial differential
equations, is reduced to the regular case by a perturbation technique (see
Section 4). The main and largest part of our notes concerns the existence
of solutions of regular partial differential equations. Regular means that
(1.3) is elliptic and has at least Hölder-continuous coefficients. To be more
precise we write (1.3) in the equivalent form

A (|∇u|) ∆u+ A′ (|∇u|)
|∇u|

∇2u (∇u,∇u) = 0, a(s) = sA(s).

In terms of a local orthonormal frame E1, ..., En this equation may be
written as ∑

i,j

aij (|∇u|)
(
∇2u

)
ij

= 0

with
aij = A (|∇u|) δij + A′ (|∇u|)

|∇u|
uiuj , ∇u = uiEi.

By an elementary but careful computation one sees that for u ∈ C2 (Ω) the
coefficients aij are α−Hölder continuous provided that A ∈ C1,α ([0,∞)) .
Moreover, the eigenvalues of the matrix (aij) are A(s) and A(s) + sA′(s)
so that ellipticity amounts to the inequalities

A(s) > 0, A(s) + sA′(s) > 0

8
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for all s ≥ 0.
To investigate the Dirichlet problem for our partial differential equations

which are regular, for smooth boundary data, we use the classical method of
a priori bounds. In the abstract setting of Functional Analysis, this method
is conveniently exposed in form of the following fixed point theorem of
Leray-Schauder.
Let B be a Banach space and denote by ‖ ‖ the norm of B. A continuous

mapping T : B → B is called compact if the image by T of bounded subsets
of B are precompact that is, their closures are compact subsets of B.

Theorem 2.1. Let T : B → B be a compact mapping and set

V := {v ∈ B | v = σT (v) for some σ ∈ [0, 1]} . (2.1)

Assume that there is a constant C such that

‖v‖B ≤ C

for all v ∈ V. Then T has a fixed point that is, there is u ∈ B such that
T (u) = u.

This theorem may lastly be derived from Brouwer fixed point theorem
(which asserts that a continuous mapping from a ball of Rn into itself has
a fixed point, see Chapter 11 of [10]). We now show how one can use
Theorem 2.1 for investigating the existence of solutions to the Dirichlet
problem{

Q [u] = A (|∇u|) ∆u+ A′(|∇u|)
|∇u| ∇

2u (∇u,∇u) = 0 in Ω
u|∂Ω = g

(2.2)

for a given g ∈ C2,α (Ω) , where Ω is a C2,α fixed bounded domain ofM,
A (|∇u|) = a (|∇u|) / |∇u| . We assume that Q is regular.
In order to apply Theorem 2.1 we take B = C2 (Ω) and define the

operator T : C2 (Ω) → C2 (Ω) as follows. Any u ∈ C2 (Ω) determines a
linear operator

Lu [v] = A (|∇u|) ∆v + A′ (|∇u|)
|∇u|

∇2v (∇u,∇u)

which satisfies Lu [u] = 0 if and only if Q [u] = 0. From the regularity
assumption of Q, Lu is elliptic and has Hölder coefficients. It then follows
from Theorem 6.14 of [10] that the Dirichlet problem{

Lu [w] = 0 in Ω
w|∂Ω = g
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has a unique solution w ∈ C2,α (Ω) . We may then define T [u] = w ⇔
Lu [w] = 0 and w|∂Ω = g. It is clear that u ∈ C2 (Ω) is a solution of (2.2)
if and only if u is a fixed point of T.
To prove that T is a compact operator we first note that Lu satisfies the

maximum principle (Theorem 3.5 of [10]) which implies, in combination
with Theorem 6.6 of [10], that if w ∈ C2.α (Ω) satisfies Lu [w] = 0 then
there is a constant C depending only on a C2 (Ω) bound for u such that

|w|C2,α ≤ C |g|C2,α .

Since the embedding of C2,α (Ω) into C2 (Ω) is compact it follows that
T maps bounded subsets into precompact subsets. The continuity of T
follows by a similar argument.
Now, let v ∈ V where V is given by (2.1). We may assume that v

is nonzero. Then there is σ ∈ (0, 1] such that v = σT [v] . Obviously
v/σ ∈ C2,α (Ω) and Lv [v/σ] = Lv [T [v]] = 0. Hence, by the linearity of
Lv, Lv [v] = σLv [v/σ] = 0 that is, v satisfies Q [v] = 0 with v|∂Ω = σg.
Hence, the applicability of Theorem 2.1 depends on obtaining a uniform
estimate of the C2 norm of v that is, an upper bound of |v|C2 depending
only on |g|C2,α(Ω) (besides Ω and a, but not on σ). This is what one calls in
partial differential equations theory as “a priori” estimates since they can
be obtained independently of the existence of a solution of (2.2). How one
obtains these estimates in our case is a matter of a preliminary discussion
in the next section.

2.2 A priori estimates
We assume here that Q is regular and that Ω is a C2,α bounded domain. A
fundamental tool to obtain a priori estimates is the comparison principle.
It says that if v, w ∈ C2 (Ω) ∩ C0 (Ω) are sub and supersolutions
respectively of Q (that is Q(u) ≥ 0 and Q(w) ≤ 0, in the classical or weak
sense, see Section 3.1 for details), and if v|∂Ω ≤ w|∂Ω then v ≤ w in Ω. In
our case, once we prove a comparison principle for our partial differential
equations, since the constant functions are solutions of Q [u] = 0 we
immediately have

inf
Ω
g ≤ u ≤ sup

Ω
g

if u ∈ C2 (Ω) ∩ C0 (Ω) is a solution of (2.2). We then have an a priori
estimate for the C0 norm

|u|C0 ≤ sup
Ω
|g| (2.3)

for any possible solution u ∈ C2 (Ω) ∩ C0 (Ω) of (2.2).
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The case of smooth boundary data

We begin by obtaining a priori gradient estimates, first by using barriers
to control the gradient at the boundary of the domain. Barriers at a given
point p ∈ ∂Ω are sub and supersolutions v, w ∈ C1 (Ω) of Q, respectively,
such that

v(p) = w(p) = g(p)
and

v(x) ≤ g(x) ≤ w(x)
for all x ∈ ∂Ω. From the comparison principle it then follows that if
u ∈ C1 (Ω) is a solution of (2.2) then

v ≤ u ≤ w

and, from elementary analysis, it follows that

|∇u(p)| ≤ max{|∇w(p)|, |∇v(p)|}.

In many cases, when M has nonnegative Ricci curvature a maximum
principle holds for the norm of the gradient, that is

sup
Ω
|∇u| = sup

∂Ω
|∇u|

from which, with the help of barriers, one obtains an a priori C1 estimates
of a solution of (2.2). In a general manifold, where the Ricci curvature can
be negative or change sign, and for the general class of partial differential
equations considered here, the maximum of the gradient can, in principle,
occur at an interior point of the domain. If this happens we prove that
the gradient at such a point is controlled by the C0 norm of the solution.
Together with the boundary gradient estimate we then obtain an a priori
C1 estimate of a solution of (2.2).
Next we need Hölder estimates for the gradient. For this step we refer

to well established theories in the literature (see [10], Theorem 13.2). We
may then assert that there is γ > 0 such that u has an a priori C1,γ norm
bound in Ω (with γ depending only on |u|C1 and hence only on |g|C2,α) and
therefore the coefficients of the operator Lu have uniformly bounded norm
in Cαγ

(
Ω
)
. We may then again apply the linear theory (see Theorem 6.6

of [10]) to the equation

Lu [u] = 0, u|∂Ω = σg

to obtain an a priori C2 (Ω) bound for u.
We have seen that the solvability of the Dirichlet problem (2.2) reduces

to proving a comparison principle for Q and obtaining global a priori
estimates for the gradient. This will be done in the next sections. It
remains to consider the Dirichlet problem (2.2) for continuous boundary
data. The main points of this are discussed in the next section.
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The case of continuous boundary data

We assume that Q is regular and that (2.2) is solvable for C2,α boundary
data. To study the problem (2.2) in the case that Ω is bounded and of
C2,α class but g is only continuous we need to obtain a priori local gradient
estimates. We begin by obtaining a maximum principle for the difference
of two solutions (Proposition 3.2) that is, if u, v ∈ C2 (Ω) ∩C0 (Ω) satisfy
Q [u] = Q [v] = 0 in Ω then

sup
Ω
|u− v| = sup

∂Ω
|u− v| . (2.4)

We then consider a sequence gk ∈ C2,α (Ω) converging in the C0 norm to
g. From the maximum principle the corresponding solutions uk ∈ C2 (Ω)
to the Dirichlet problem with boundary data gk satisfy

sup
Ω
|uk − uj | = sup

Ω
|gk − gj | , j, k ∈ N,

being hence a Cauchy sequence on C0 (Ω) . The sequence (uk) then
converges in the C0 norm to some u ∈ C0 (Ω) . To prove that in fact
u ∈ C2 (Ω) we obtain local gradient estimates. This is done by fixing an
arbitrary x ∈ Ω and choosing r > 0 such that the closed geodesic ball
Br(x) is contained in Ω and is normal. Then we prove that there is a
constant C depending only on a, r, g such that

|∇uk(x)| ≤ C

for all k ∈ N. Then, as before, we can make use of Theorem 13.2 of
[10] to get an uniform C1,γ−norm bound of (uk) for some γ > 0 and
the linear theory (Theorem 6.6 of [10]) to prove that the sequence (uk)
has equibounded C2,γα norm on any relatively compact subdomain of
Ω. Therefore, it contains a subsequence converging in the C2 norm to
u on any such subdomain and thus u ∈ C2 (Ω) . By the continuity of
Q : C2 (Ω)→ C0 (Ω) it follows that Q [u] = 0.
The boundary gradient estimates, the gradient estimates at interior

points for smooth boundary data, and the local gradient estimates are
obtained in the next sections.



Chapter 3

Gradient estimates

In this section we derive global and local estimates for solutions for regular
partial differential equations under the assumption that the solutions are
of C3 class.

3.1 Comparison and maximum principles

Let Ω be a domain inM, Ω compact. We assume that

Q [u] = div
(
a (|∇u|)
|∇u|

∇u
)

is such that a : [0,∞)→ R is strictly increasing and a(0) = 0.
Denote by C0,1

0 (Ω) the space of Lipschitz functions which compact
support on Ω. We say that u ∈ C0,1(Ω) is a weak solution of Q if∫

Ω

〈
a (|∇u|)
|∇u|

∇u,∇ξ
〉
dx = 0 (3.1)

for all ξ ∈ C0,1
0 (Ω). We say that v ∈ C0,1(Ω) is a weak supersolution

(subsolution) of Q if (3.1) holds with “≥” (“≤”) instead of “=” for all
ξ ∈ C0,1

0 (Ω) with ξ ≥ 0 on Ω.

Proposition 3.1 (Comparison Principle). Let Ω be open and bounded,
u ∈ C0,1(Ω) a weak subsolution of Q and v ∈ C0,1(Ω) a weak supersolution
of Q such that

lim sup
k

(u(xk)− v(xk)) ≤ 0 (3.2)

for any sequence xk in Ω which leaves any compact subset of Ω. Then it
follows that u ≤ v in Ω.

13
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Proof. Let ε > 0 and let us choose

ζ := (u− v − ε)+ = max {u− v − ε, 0} .

From (3.2) it follows that u and v have bounded first derivatives on the
support of ζ, a compact subset of Ω, and

∇ζ =
{
∇ (u− v) if u− v > ε
0 elsewhere.

Therefore |∇u| and |∇v| are integrable on the set

Λε := {x ∈ Ω | u(x)− v(x) > ε}

and we have∫
Λε

〈
a(|∇u|)
|∇u|

∇u− a(|∇v|)
|∇v|

∇v,∇u−∇v
〉
dx ≤ 0. (3.3)

On the other hand,

〈
a(|∇u|)
|∇u|

∇u− a(|∇v|)
|∇v|

∇v,∇u−∇v
〉

= a(|∇u|)|∇u|2 − a(|∇u|)
|∇u|

〈∇u,∇v〉 − a(|∇v|)
|∇v|

〈∇u,∇v〉+ a(|∇v|) |∇v|

≥ a(|∇u|)|∇u| − a(|∇u|)|∇v| − a(|∇v|)|∇u|+ a(|∇v|)|∇v|
= (a(|∇u|)− a(|∇v|)) (|∇u| − |∇v|) ,

where the inequality is implied by Cauchy-Schwarz inequality. Since a is
increasing it follows from (3.3) that |∇u| = |∇v| a.e. on Λε. From this,
in connection with (3.3), we conclude that ∇ζ = 0 a.e. on Ω. It follows
then, again from (3.3), that ζ = 0 since ζ ∈ C0,1

0 (Ω). We conclude that
u − v ≤ 0 in Ω since ε > 0 is arbitrary, concluding with the proof of the
proposition.

Proposition 3.2 (Maximum Principle). Let Ω ⊂ M be an open
bounded and u, v ∈ C0,1(Ω) ∩ C0 (Ω) be weak solutions of Q. Then

max
Ω
|u− v| = max

∂Ω
|u− v| . (3.4)

In particular, since v = 0 is a solution we have the maximum principle

max
Ω
|u| = max

∂Ω
|u| .
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Proof. Set
M := max

∂Ω
|u− v| .

Then, from the Comparison Principle

u = u− v + v ≤ v +M.

Reversing the roles of u and v we get v ≤ u + M from which we get
(3.4).

3.2 Boundary gradient estimates. Barriers.

In this section we assume that Ω is a bounded domain of C2 class inM.
We follow Serrin’s treatment with some simplifications [20]. The cases of
mild and strong decay of the eigenvalue ratio have to be treated separately.
Nevertheless the type of barrier that we use, defined in what follows, will
be the same in both cases.
We fix a number δ0 > 0 such that the function

d(x) = distance(x, ∂Ω)

is of C2 class on the boundary strip

Ωδ0 =
{
x ∈ Ω | 0 ≤ d(x) ≤ δ0

}
and we seek barriers of the form

w = g + f(d),

where the function f is defined in some interval [0, δ] , 0 < δ ≤ δ0, f(0) = 0,
and w is a supersolution with f(δ) = M or a subsolution with f(δ) = −M,
M > 0 a preassigned number.
To simplify later calculations we introduce the linear operator

Lwv = ∆v + b (|∇w|)∇2v

(
∇w
|∇w|

,
∇w
|∇w|

)
which satisfies

|Lwv| ≤ (n− 1 + 1 + b)
∣∣∇2v

∣∣ ≤ nB ∣∣∇2v
∣∣ (3.5)

with B = max {1, 1 + b} . Using (1.4) and (1.5) we may write the operator
Q as

Q [w] = Lwg + f ′Lwd+ f ′′

(
1 + b

〈
∇d, ∇w
|∇w|

〉2
)
. (3.6)
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We shall also need the following obvious estimates of |∇w| in terms of
f ′:

f ′ − c1 ≤ |∇w| ≤ f ′ + c1, (3.7)
where c1 = maxΩδ0

|∇g| and hence

2
3f
′ ≤ |∇w| ≤ 4

3f
′ (3.8)

provided that
f ′ ≥ α ≥ max {1, 3c1} , (3.9)

where the number α will be appropriately chosen later on. We construct
only a supersolution and assume then that f ′′ ≤ 0.

The case of mild decay of the eigenvalue ratio

As mentioned at the introduction, this class falls into the Serrin’s category
of “regularly elliptic” equations (see [20]). We have

1 + b

〈
∇d, ∇w
|∇w|

〉2
≥ (1 + b)

〈
∇d, ∇w
|∇w|

〉2

= 1 + b

f ′2

〈
∇w −∇g, ∇w

|∇w|

〉2
≥ 1 + b

f ′2
(|∇w| − c1)2 (3.10)

≥ 1
4

1 + b

f ′2
|∇w|2

on account of (3.8) and (3.9). Inserting into (3.6), recalling that f ′′ ≤ 0
and observing (3.5) we obtain

4
f ′B

Q [w] ≤ 4n
(∣∣∇2g

∣∣+
∣∣∇2d

∣∣)+ f ′′

f ′3
b+ 1
B
|∇w|2 .

Setting
C = 4nmax

Ωδ

(∣∣∇2g
∣∣+
∣∣∇2d

∣∣)
and observing that

b+ 1
B

= 1 + b−

we obtain from (1.7) and (1.8)

4
f ′B

Q [w] ≤ C + f ′′

f ′3
ϕ

(
2
3f
′
)
. (3.11)

In the last step having used (3.8) and the fact that ϕ is non-decreasing. Our
task will be complete if we can find a solution to the ordinary differential
equation

f ′′ + C
f ′3

ϕ
( 2

3f
′
) = 0 (3.12)
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which is defined in some interval [0, δ, ] to be explicitly determined later,
0 ≤ δ ≤ δ0, and satisfies f(0) = 0, f(δ) = M and f ′ ≥ α in [0, δ], where
M is a given positive number and now α is chosen as

α = max
{
M

δ0
, 1, 3c1

}
. (3.13)

We rewrite (3.12) as an equation for the inverse function of f ′, denoted
by h, that is

h′(s) = −
ϕ
( 2

3s
)

Cs3 ,

leading to

h(s) =
∫ β

s

ϕ
( 2

3 t
)

Ct3
dt, α ≤ s ≤ β,

where β is still to be determined.
The domain of the definition of f is the interval [h(β), h(α)] = [0, δ] with

δ =
∫ β

α

ϕ
( 2

3 t
)

Ct3
dt

and

f(δ) =
∫ δ

0
f ′(s)ds = −

∫ α

β

t
ϕ
( 2

3 t
)

Ct3
dt =

∫ β

α

ϕ
( 2

3 t
)

Ct2
dt.

Due to (1.8) we may now choose β and hence δ so that f(δ) = M .
Moreover,

δ =
∫ β

α

ϕ
( 2

3 t
)

Ct3
dt ≤ 1

α

∫ β

α

ϕ
( 2

3 t
)

Ct2
dt = M

α
≤ δ0,

where we used that α ≥ 1 for the first inequality and that α ≥ M/δ0
for the second one. Replacing f by −f we obtain a subsolution. This
completes the construction of barriers for the class of partial differential
equations with mild decay of the eigenvalue ratio.

Remark 3.1. We shall now illustrate the significance of the divergence
of the integral in (1.8) by showing that the existence of a supersolution w
with the above properties fails in general in the case that the boundary is
concave and condition (1.8) is violated. More precisely, let us assume that∫ ∞

s0

(1 + b(s)) ds < +∞ (3.14)

and that ∆d ≥ c in the boundary strip Ωδ0 for some constant c > 0. Then
we may construct a subsolution of the form

v = f(d), 0 ≤ d ≤ δ ≤ δ0,
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such that
f(0) = 0, f ′ > 0, f ′(0) = +∞, f(δ) = M

for some positive number M which is determined by the integral (3.14).

If there were a supersolution w ∈ C1 (Ωδ) such that w(x) ≥ M for
d(x) = δ and w|∂Ω = 0 then it would follows from the comparison principle
that w ≥ v in Ωδ. This is however impossible since the interior normal
derivative of w − v equals to −∞ along ∂Ω.
In order to construct v we compute

Q [v] = f ′∆d+ f ′′ (1 + b(f ′)) ≥ cf ′ + f ′′ (1 + b(f ′))

so that if will be enough to find a solution to the equation

f ′′ + c
f ′

1 + b(f ′) = 0

with the required properties.
As above, we switch to the inverse function h of f ′ and get

h(t) = 1
c

∫ ∞
t

1 + b(s)
s

ds, α ≤ t < +∞,

where α is chosen in such a way that δ = h(α) ≤ δ0. It follows that

f(δ) =
∫ ∞
α

(1 + b(s)) ds =: M > 0.

The case of strong decay of the eigenvalue ratio

In this case it becomes necessary to restrict the geometry of ∂Ω; we require
that the mean curvature of ∂Ω as well as of the level hypersurfaces of d,
0 ≤ d ≤ δ0, is nonnegative with respect to the normal vector ∇d. This is
equivalent to the condition

∆d ≤ 0 in Ωδ0 . (3.15)

Since ∇2d (∇d,∇d) = 0 we then obtain

f ′Lwd ≤ f ′b∇2d

(
∇w
|∇w|

,
∇w
|∇w|

)
≤ B f ′2

|∇w|2

∣∣∣∣2∇2d (∇d,∇g) + 1
f ′
∇2d (∇g,∇g)

∣∣∣∣
≤ Bc0,
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where the constant c0 only depends on

max
Ωδ0

(
|∇g|+

∣∣∇2d
∣∣)

and (3.9) is assumed to hold further on. Inserting this last estimate and
(3.10) in (3.6) we arrive at

4
B
Q [w] ≤ C + f ′′

f ′2
1 + b

B
|∇w|2

≤ C + f ′′

f ′2
ϕ (|∇w|)

≤ C + f ′′

f ′2
ϕ

(
4
3f
′
)
,

where the constant C depends only on

max
Ωδ0

(
|∇g|+

∣∣∇2g
∣∣+
∣∣∇2d

∣∣)
and we used (3.8), (1.9) and the fact that ϕ is non-increasing. We again
choose α according to (3.13) and consider h, the inverse function of f ′,
which is given by

h(s) = C

∫ β

s

ϕ
( 4t

3
)

t2
dt, α ≤ s ≤ β.

We obtain
δ = C

∫ β

α

ϕ
( 4t

3
)

t2
dt

and
f (δ) = C

∫ β

α

ϕ
( 4t

3
)

t
dt.

Condition 1.9 allows to choose β such that f(δ) = M and, as before,

δ ≤ M

α
≤ δ0

and the barrier construction for the class of minimal surface equation is
complete.

From the previous calculations and also (2.3), we obtain:
Theorem 3.3. Let Ω be a bounded domain of class C2 in M and
u ∈ C1 (Ω) be a weak solution of (1.3) such that u = g on ∂Ω with
g ∈ C2 (Ω) . We assume that either Condition I or II of Section 1 are
satisfied and in case that Condition II holds we require furthermore that
the mean curvature of ∂Ω with respect to the interior normal of ∂Ω as well
as of the inner parallel hypersurfaces of ∂Ω in some neighborhood of ∂Ω is
non negative. Then the normal derivative of u on ∂Ω can be estimated by
a constant depending only on |g|C2(Ω).



20 Jaime Ripoll and Friedrich Tomi

3.3 Global and local gradient estimates
In this section we prove global and local estimates of solutions of the
partial differential equation (1.3) on bounded domains. We assume that u
is a solution of class C3 and use the equivalent form of (1.3), namely:

|∇u|2∆u+ b∇2u (∇u,∇u) = 0 (3.16)

recalling that

b(s) = sa′(s)
a(s) − 1.

In order to derive gradient bounds for the solutions of (3.16) we consider
a point of Ω, say x0, where a certain auxiliary function attains a local
maximum. We need slightly different such auxiliary functions, all of them
of the form

G (x) = g(x)f(u)F (|∇u|).
The gradient estimates (local and global) are obtained by writing

∇2G(x0) (∇u,∇u)

as a polynomial in |∇u|. Analyzing its leading coefficient, after an
appropriate choice of g, f and F, the constraint

∇2G(x0) (∇u,∇u) ≤ 0

will impose an upper bound for |∇u| .
We shall make use of the well known Bochner formula:

Proposition 3.4 (Bochner formula). IfMn is a Riemannian manifold
and u ∈ C3(M) then

〈∇∆u,∇u〉 = 1
2∆ |∇u|2 −

∣∣∇2u
∣∣2 − Ric (∇u,∇u) . (3.17)

Proof. Let p ∈ M and E1, ..., En a local orthonormal frame field in a
neighborhood V of p such that

∇EiEj(p) = 0, i, j = 1, ..., n. (3.18)

Hence, we have at p

∆ |∇u|2 =
∑
j

∇2 |∇u|2 (Ej , Ej)

=
∑
j

〈
∇Ej∇ |∇u|

2
, Ej

〉
=
∑
j

Ej
〈
∇|∇u|2, Ej

〉
. (3.19)
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Since 〈
∇|∇u|2, Ej

〉
= Ej |∇u|2 = Ej 〈∇u,∇u〉
= 2

〈
∇Ej∇u,∇u

〉
= 2∇2u (Ej ,∇u)

= 2∇2u

(
Ej ,

∑
i

〈∇u,Ei〉Ei

)
= 2

∑
i

〈∇u,Ei〉∇2u (Ej , Ei) (3.20)

hold at every point of M we obtain

∆ |∇u|2 = 2
∑
i,j

Ej
(
〈∇u,Ei〉∇2u (Ej , Ei)

)
= 2

∑
i,j

[
Ej (〈∇u,Ei〉)∇2u (Ej , Ei) + 〈∇u,Ei〉Ej

(
∇2u (Ej , Ei)

)]
and then

∆ |∇u|2 = 2
∑
i,j

[
∇2u (Ej , Ei)2 + 〈∇u,Ei〉Ej

(
∇2u (Ej , Ei)

)]
. (3.21)

By the symmetry of ∇2u we have at p

Ej
(
∇2u (Ej , Ei)

)
= Ej

(
∇2u (Ei, Ej)

)
= Ej 〈∇Ei∇u,Ej〉
=
〈
∇Ej∇Ei∇u,Ej

〉
=
〈
R (Ej , Ei)∇u+∇Ei∇Ej∇u,Ej

〉
= 〈R (Ej , Ei)∇u,Ej〉+ Ei

〈
∇Ej∇u,Ej

〉
= 〈R (Ej , Ei)∇u,Ej〉+ Ei

(
∇2u (Ej , Ej)

)
, (3.22)

where R denotes the curvature tensor ofM. Inserting (3.22) in (3.21) we
finally arrive at

∆ |∇u|2

2 =
∑
i,j

{
∇2u (Ej , Ei)2 + 〈∇u,Ei〉

[
〈R (Ej , Ei)∇u,Ej〉+ Ei

(
∇2u (Ej , Ej)

)]}
=
∣∣∇2u

∣∣2 +
∑
j

〈R (Ej ,∇u)∇u,Ej〉+
∑
i

〈∇u,Ei〉Ei (∆u)

=
∣∣∇2u

∣∣2 + Ric(∇u,∇u) + 〈∇∆u,∇u〉 .

We now obtain an equation for |∇u| by differentiating (3.16) in direction
∇u.
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Lemma 3.5. If u solves (3.16) then, in an orthonormal frame E1, ..., En
with E1 = |∇u|−1∇u on a neighborhood of Ω where ∇u is non zero, the
following equality holds

(b+ 1) |∇u| ∇2 |∇u| (E1, E1) + |∇u|
n∑
i=2
∇2 |∇u| (Ei, Ei)

+b′ |∇u| ∇2u (E1, E1)2 + b

n∑
i=2
∇2u (E1, Ei)2

−
n∑

i=1,j=2
∇2u (Ei, Ej)2 − Ric (∇u,∇u) = 0,

where Ric denotes the Ricci tensor ofM.

Proof. Differentiating (3.16) in direction ∇u gives

|∇u|2 〈∇∆u,∇u〉+
〈
∇ |∇u|2 ,∇u

〉
∆u

+b′ 12 |∇u|
−1
〈
∇ |∇u|2 ,∇u

〉
∇2u (∇u,∇u)

+b∇u
(
∇2u(∇u,∇u)

)
= 0.

From the relation

∇2u (∇u,∇u) = 1
2

〈
∇ |∇u|2 ,∇u

〉
and Bochner formula (3.17) we obtain

1
2∆ |∇u|2 −

∣∣∇2u
∣∣2 − Ric (∇u,∇u)

+ (b′ |∇u| − 2b) |∇u|−4∇2u (∇u,∇u)2

+1
2b |∇u|

−2∇u
〈
∇ |∇u|2 ,∇u

〉
= 0.

For the last term we have

∇u
〈
∇ |∇u|2 ,∇u

〉
= |∇u|

[〈
∇E1∇ |∇u|

2
,∇u

〉
+
〈
∇ |∇u|2 ,∇E1∇u

〉]
= |∇u|

[
∇2 |∇u|2 (E1,∇u) +

n∑
i=1

〈
Ei

(
|∇u|2

)
Ei,∇E1∇u

〉]

= |∇u|2
[
∇2 |∇u|2 (E1, E1) + 2

n∑
i=1
∇2u (E1, Ei)2

]
.
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This leads to

1
2 (b+ 1)∇2 |∇u|2 (E1, E1) + 1

2

n∑
i=2
∇2 |∇u|2 (Ei, Ei)

+ (b′ |∇u| − b)∇2u (E1, E1)2 + b
n∑
i=2
∇2u (E1, Ei)2

−
n∑

i,j=1
∇2u (Ei, Ej)2 − Ric (∇u,∇u) = 0.

Using finally the relation
1
2∇

2 |∇u|2 (Ei, Ei) = |∇u| ∇2 |∇u| (Ei, Ei) +∇2u (E1, Ei)2
, 1 ≤ i ≤ n,

to convert the last equation into one for |∇u| instead of |∇u|2 we arrive
at the equation in the lemma.

We resume some computations used in the estimates in the following
lemma:

Lemma 3.6. If u solves (3.16) and the function G(x) = g(x)f(u)F (|∇u|)
attains a local maximum in an interior point y0 of Ω with ∇u(y0) 6= 0
then, in terms of a local orthonormal basis E1 := |∇u|−1∇u,E2, . . . , En of
Ty0M we obtain, at y0, the relations

F ′

F
∇2u(E1, Ei) = −1

g
〈∇g,Ei〉 −

f ′

f
〈∇u,Ei〉

and

0 ≥
[
−F

′b′

F
+ (b+ 1)(F

′′

F
− F ′2

F 2 )
]
∇2u(E1, E1)2 + F ′

F |∇u|
∑
i,j
i≥2

∇2u(Ei, Ej)2

+
[
− F ′b

F |∇u|
+ F ′′

F
− F ′2

F 2

]∑
i≥2
∇2u(E1, Ei)2 + (b+ 1)(f

′′

f
− f ′2

f2 )|∇u|2

+ |∇u|F
′

F
Ric(E1, E1) + 1

g

(b+ 1)∇2g(E1, E1) +
∑
i≥2
∇2g(Ei, Ei)


− 1
g2

(b+ 1)〈∇g,E1〉2 +
∑
i≥2
〈∇g,Ei〉2

 .
Proof. We compute

∇ lnG = 1
g
∇g + f ′

f
∇u+ F ′

F
∇|∇u| (3.23)



24 Jaime Ripoll and Friedrich Tomi

and, for ξ, η ∈ Ty0M,

∇2 lnG(ξ, η) = 〈∇ξ∇ lnG, η〉 = 〈∇ξ
(

1
g
∇g + f ′

f
∇u+ F ′

F
∇|∇u|

)
, η〉

= 〈− 1
g2 ξ(g)∇g + 1

g
∇ξ∇g + [f

′′

f
ξ(u)− f ′2

f2 ξ(u)]∇u+ f ′

f
∇ξ∇u

+ [F
′′

F
ξ(|∇u|)− F ′2

F 2 ξ(|∇u|)]∇|∇u|+
F ′

F
∇ξ∇|∇u|, η〉

= − 1
g2 〈∇g, ξ〉〈∇g, η〉+ 1

g
∇2g(ξ, η) + [f

′′

f
− f ′2

f2 ]〈∇u, ξ〉〈∇u, η〉

+ f ′

f
∇2u(ξ, η) + [F

′′

F
− F ′2

F 2 ] 1
|∇u|2

∇2u(∇u, ξ)∇2u(∇u, η)

+ F ′

F
∇2|∇u|(ξ, η),

where we used the relation

∇2u(∇u, η) = 〈∇η∇u,∇u〉 = 1
2η(|∇u|2) (3.24)

= 1
2 〈∇|∇u|

2, η〉 = |∇u|〈∇|∇u|, η〉.

By (3.23) and (3.24) we have at y0

F ′

F
∇2u(E1, Ei) = F ′

F |∇u|
∇2u(∇u,Ei)

= F ′

F
〈∇|∇u|, Ei〉 = −1

g
〈∇g,Ei〉 −

f ′

f
〈∇u,Ei〉.

Since (3.16) is elliptic and the matrix (∇2 lnGy0(Ei, Ej)) is nonpositive,
we obtain at y0

0 ≥ θ = (b+ 1)∇2 lnG(E1, E1) +
∑
i≥2
∇2 lnG(Ei, Ei)

= −b+ 1
g2 〈∇g,E1〉2 + b+ 1

g
∇2g(E1, E1) + (b+ 1)(f

′′

f
− f ′2

f2 )〈∇u,E1〉2

+ (b+ 1)f
′

f
∇2u(E1, E1) + (b+ 1)(F

′′

F
− F ′2

F 2 ) 1
|∇u|2

∇2u(∇u,E1)2

+ (b+ 1)F
′

F
∇2|∇u|(E1, E1)− 1

g2

∑
i≥2
〈∇g,Ei〉2 + 1

g

∑
i≥2
∇2g(Ei, Ei)

+ (f
′′

f
− f ′2

f2 )
∑
i≥2
〈∇u,Ei〉2 + f ′

f

∑
i≥2
∇2u(Ei, Ei)

+ (F
′′

F
− F ′2

F 2 ) 1
|∇u|2

∑
i≥2
∇2u(∇u,Ei)2 + F ′

F

∑
i≥2
∇2|∇u|(Ei, Ei).
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Hence, by (3.16),

θ = F ′

F |∇u|

|∇u|(b+ 1)∇2|∇u|(E1, E1) + |∇u|
∑
i≥2
∇2|∇u| (Ei, Ei)


+ (b+ 1)(F

′′

F
− F ′2

F 2 )∇2u(E1, E1)2 + (F
′′

F
− F ′2

F 2 )
∑
i≥2
∇2u(E1, Ei)2

+ (b+ 1)(f
′′

f
− f ′2

f2 )|∇u|2 + 1
g

(b+ 1)∇2g(E1, E1) +
∑
i≥2
∇2g(Ei, Ei)


− 1
g2

(b+ 1)〈∇g,E1〉2 +
∑
i≥2
〈∇g,Ei〉2

+ f ′

f

[
b∇2u(E1, E1) + ∆u

]︸ ︷︷ ︸
= 0

.

(3.25)

By Lemma 3.5 and (3.25), we obtain

θ = F ′

F |∇u|

−b′ |∇u| ∇2u(E1, E1)2 − b
∑
i≥2
∇2u(E1, Ei)2

+
∑
i,j
i≥2

∇2u(Ei, Ej)2 + Ric(∇u,∇u)


+ (b+ 1)(F

′′

F
− F ′2

F 2 )∇2u(E1, E1)2 + (F
′′

F
− F ′2

F 2 )
∑
i≥2
∇2u(E1, Ei)

+ (b+ 1)(f
′′

f
− f ′2

f2 )|∇u|2 + 1
g

(b+ 1)∇2g(E1, E1) +
∑
i≥2
∇2g(Ei, Ei)


− 1
g2

(b+ 1)〈∇g,E1〉2 +
∑
i≥2
〈∇g,Ei〉2


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and so

θ =
[
−F

′b′

F
+ (b+ 1)(F

′′

F
− F ′2

F 2 )
]
∇2u(E1, E1)2 + F ′

F |∇u|
∑
i,j
i≥2

∇2u(Ei, Ej)2

+
[
− F ′b

F |∇u|
+ F ′′

F
− F ′2

F 2

]∑
i≥2
∇2u(E1, Ei)2 + (b+ 1)(f

′′

f
− f ′2

f2 )|∇u|2

+ |∇u|F
′

F
Ric(E1, E1) + 1

g

(b+ 1)∇2g(E1, E1) +
∑
i≥2
∇2g(Ei, Ei)


− 1
g2

(b+ 1)〈∇g,E1〉2 +
∑
i≥2
〈∇g,Ei〉2

 .

The class of mild decay of the eigenvalue ratio

Taking the function F (s) = s in Lemma 3.6, we obtain

∇2u(E1, E1)2

|∇u|2
= f ′2

f2 |∇u|
2 + 1

g2 〈∇g,E1〉2 + 2f ′

fg
〈∇g,E1〉|∇u|, (3.26)

1
|∇u|2

∇2u(E1, Ei)2 = 1
g2 〈∇g,Ei〉

2, ∀i = 2, . . . , n (3.27)

and

0 ≥ −b
′|∇u|+ b+ 1
|∇u|2

∇2u(E1, E1)2 + 1
|∇u|2

∑
i,j
i≥2

∇2u(Ei, Ej)2

− b+ 1
|∇u|2

∑
i≥2
∇2u(E1, Ei)2 + (b+ 1)(f

′′

f
− f ′2

f2 )|∇u|2

+ Ric(E1, E1) + 1
g

(b+ 1)∇2g(E1, E1) +
∑
i≥2
∇2g(Ei, Ei)


− 1
g2

(b+ 1)〈∇g,E1〉2 +
∑
i≥2
〈∇g,Ei〉2

 . (3.28)
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Inserting (3.26) and (3.27) in (3.28), we arrive at

0 ≥ −(b′|∇u|+ b+ 1)
[
f ′2

f2 |∇u|
2 + 1

g2 〈∇g,E1〉2 + 2f ′

fg
〈∇g,E1〉|∇u|

]
− (b+ 1)

∑
i≥2

1
g2 〈∇g,Ei〉

2 + (b+ 1)(f
′′

f
− f ′2

f2 )|∇u|2

+ Ric(E1, E1) + 1
g

(b+ 1)∇2g(E1, E1) +
∑
i≥2
∇2g(Ei, Ei)


− 1
g2

(b+ 1)〈∇g,E1〉2 +
∑
i≥2
〈∇g,Ei〉2


= −b′|∇u|f

′2

f2 |∇u|
2 + (b+ 1)

(
f ′′

f
− 2f

′2

f2

)
|∇u|2 + Ric(E1, E1)

− (b′|∇u|+ b+ 1)
[
〈∇g,E1〉2

g2 + 2f ′

fg
〈∇g,E1〉|∇u|

]
− b+ 1

g2

∑
i≥2
〈∇g,Ei〉2

+ 1
g

(b+ 1)∇2g(E1, E1) +
∑
i≥2
∇2g(Ei, Ei)


− 1
g2

(b+ 1)〈∇g,E1〉2 +
∑
i≥2
〈∇g,Ei〉2

 . (3.29)

We first consider the global estimate where we set g ≡ 1 and choose
f(u) = (ln(K + u))−1 with a constant K > 0. For convenience we also
assume that u ≥ 0. For this f we have

f ′ = −(K+u)−1(ln(K+u))−2, f ′′ = (K+u)−2(ln(K+u))−3 (ln(K + u) + 2)

and thus

f ′

f
= − 1

(K + u) ln(K + u) ,
f ′′

f
= 1

(K + u)2 ln(K + u) + 2f ′2

f2 .

Then (3.29) becomes

0 ≥ −b′|∇u|f
′2

f2 |∇u|
2 + (b+ 1)

[
f ′′

f
− 2f

′2

f2

]
|∇u|2 + Ric(E1, E1)

and so

(K + u)−2(ln(K + u))−1
[
b+ 1− b′+|∇u|

ln(K + u)

]
|∇u|2 ≤ |Ric− |, (3.30)
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where b′+ = max{b′, 0} and

Ric− := min
|η|=1

min {Ric (η, η) , 0} .

We now require the condition:

Condition 3.7. There are numbers s0, β > 0 and a function ϕ ∈
C0 ([0,∞)) with lims→+∞ ϕ(s) = +∞ such that

(b(s) + 1− βb′+(s)s)s2 ≥ ϕ(s)

for s ≥ s0.

Then, since (3.30) holds at a point where the function G = |∇u|/ ln(K+
u) attains a maximum, choosing K = exp(1/β), we obtain

Theorem 3.8. Under Condition 3.7 there is a constant C depending only
on ϕ, β and supΩ

(
|u|+ Ric−

)
such that if the function |∇u|/ ln(K + u)

attains a local maximum at an interior point y0 of Ω, then

|∇u(y0)| ≤ C.

We now turn our attention to the local estimates. Here we consider the
solution u in a closed geodesic ball Br(x0) with center x0 and radius r
smaller than the distance of x0 to its cut locus, if the latter is nonempty,
and we choose

g(x) = 1− ρ2

r2 , ρ(x) = dist(x, x0).

Unless ∇u ≡ 0 in Br(x0), what would make any further estimate
superfluous the function lnG attains a local maximum in some point y0 in
the interior of Br(x0). In case that

g(y0)|∇u(y0)| ≤ 4
r

f(u(y0))
|f ′(u(y0))| (3.31)

would hold, then the estimate of |∇u(y0)| will turn out to be trivial. Hence
we shall assume that

1
g
≤ r|f ′|

4f |∇u| at y0
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what implies

2
∣∣∣∣ f ′fg 〈∇g,E1〉|∇u|

∣∣∣∣ ≤ 2 |f
′|

fg
|∇g||∇u|

≤ 2 |f
′||∇u|
f

r|f ′||∇u|
4f

|∇ρ2|
r2

= f ′2|∇ρ2||∇u|2

2f2r

= f ′2ρ|∇ρ||∇u|2

f2r

≤ f ′2|∇u|2

f2 . (3.32)

Now we find it necessary to require a much stronger condition than
Condition 3.7, namely:

Condition 3.9. There exist positive numbers α, β and s0 such that

B(s)−1(b(s) + 1− β|b′(s)|s) ≥ α, ∀s ≥ s0,

where, as before, B(s) = max{1, 1 + b(s)}.

It is immediate to see that Condition 3.9 implies Conditions I and 3.7.

From (3.29) we have

0 ≥ −|b′||∇u|f
′2

f2 |∇u|
2 + (b+ 1)

(
f ′′

f
− 2f

′2

f2

)
|∇u|2 + Ric(E1, E1)

− (|b′||∇u|+ b+ 1)
[
|∇g|2

g2 +
∣∣∣∣2f ′fg 〈∇g,E1〉|∇u|

∣∣∣∣]− b+ 1
g2 |∇g|

2

− 1
g

[
(b+ 1)|∇2g|+

√
n− 1|∇2g|

]
− 1
g2

[
(b+ 1)|∇g|2 + |∇g|2

]
.
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By means of (3.32) one has

0 ≥ −|b′||∇u|f
′2

f2 |∇u|
2 + (b+ 1)

(
f ′′

f
− 2f

′2

f2

)
|∇u|2 + Ric(E1, E1)

− (|b′||∇u|+ b+ 1)
[

4
g2r2 + f ′2|∇u|2

f2

]
− 4(b+ 1)

g2r2

− 1
g

[
(b+ 1) |∇

2ρ2|
r2 +

√
n− 1|∇2ρ2|

r2

]
− 1
g2

[
(b+ 1) 4

r2 + 4
r2

]
= −|b′||∇u|f

′2

f2 |∇u|
2 + (b+ 1)

(
f ′′

f
− 2f

′2

f2

)
|∇u|2 + Ric(E1, E1)

− (|b′||∇u|+ b+ 1) 4
g2r2 −

|b′||∇u|f ′2|∇u|2

f2 − (b+ 1)f
′2|∇u|2

f2

− 4(b+ 1)
g2r2 − 1

g

[
(b+ 1) |∇

2ρ2|
r2 +

√
n− 1|∇2ρ2|

r2

]
− 1
g2

[
(b+ 1) 4

r2 + 4
r2

]
and so

0 ≥ −2|b′||∇u|f
′2

f2 |∇u|
2 + (b+ 1)

(
f ′′

f
− 3f

′2

f2

)
|∇u|2 + Ric(E1, E1)

− (|b′||∇u|+ b+ 1) 4
g2r2 −

b+ 1 +
√
n− 1

gr2 |∇2ρ2| − 1
g2

[
(b+ 1) 8

r2 + 4
r2

]
≥ −2|b′||∇u|f

′2

f2 |∇u|
2 + (b+ 1)

(
f ′′

f
− 3f

′2

f2

)
|∇u|2 + Ric(E1, E1)

− (|b′||∇u|+ b+ 1) 4
g2r2 −

(
1 +
√
n− 1

)
B

gr2 |∇2ρ2| − 12B
g2r2 .

Our Condition 3.9 implies

|b′|s ≤ 1
β

(b+ 1)

and hence

b+ 1 + |b′|s ≤ (1 + 1
β

)(b+ 1) ≤ (1 + 1
β

)B.

Thus

(b+ 1)
(
f ′′

f
− 3f

′2

f2

)
|∇u|2 − 2|b′||∇u|f

′2

f2 |∇u|
2

≤ B

g2r2

(
14 + 4

β
+
(
2 +
√
n− 1

)
|∇2ρ2|

)
+ |Ric− |



Chapter 3. Gradient estimates 31

Hence there is a constant C0 = C0(n, β) such that

B

[
(b+ 1)

(
f ′′

f
− 3f

′2

f2

)
|∇u|2 − 2|b′||∇u|f

′2

f2 |∇u|
2
]

≤ C0

r2g2

(
1 + |∇2ρ2|

)
+ |Ric− |.

We again choose f(u) = 1/ ln(K + u). From the assumption that u ≥ 0,
one has

(b+ 1)
(
f ′′

f
− 3f ′2

f2

)
−2|b′|sf ′2

f2

= 1
(K + u)2 ln(K + u)

[
(1− 1

ln(K + u) )(b+ 1)− 2|b′|s
ln(K + u)

]
=

(1− 1
ln(K+u) )

(K + u)2 ln(K + u)

[
b+ 1− 2|b′|s

ln(K + u)(1− 1
ln(K+u) )

]

≥
(1− 1

lnK )
(K + u)2 ln(K + u)

[
b+ 1− 2|b′|s

lnK − 1

]
We choose K with 2/ (lnK − 1) = β so that

(b+ 1)
(
f ′′

f
− 3f ′2

f2

)
− 2|b′|sf ′2

f2 ≥ αB(1− (lnK)−1)
(K + u)2 ln(K + u) , ∀s ≥ s0

Therefore we get at y0,

g2|∇u|2 ≤ 1
α

(
C0

r2

(
1 + |∇2ρ2|

)
+ |Ric− |

)
(K + u)2 ln(K + u)

(1− (lnK)−1) ,

provided that |∇u(y0)| ≥ s0 and (3.31) does not hold. Since by
construction G(x0) ≤ G(y0), setting

M = max
Br(x0)

u,

we therefore either have
|∇u(x0)|

ln(K + u(x0)) ≤
g(y0)|∇u(y0)|
ln(K + u(y0))

≤
{

1
α

[
C0

r2

(
1 + |∇2ρ2|

)
+ |Ric− |

]}1/2 (K + u(y0))(ln(K + u(y0))1/2

ln(K + u(y0))(1− (lnK)−1)1/2

≤
{

1
α

[
C0

r2

(
1 + |∇2ρ2|

)
+ |Ric− |

]}1/2 (K +M)
(lnK)1/2(1− (lnK)−1)1/2
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and so

|∇u(x0)|

≤
{

1
α

[
C0

r2

(
1 + max |∇2ρ2|

)
+ |Ric− |

]}1/2 (K +M) (ln(K +M))
3
2

(1− (lnK)−1)1/2

or |∇u(y0)| ≤ s0, leading to

|∇u(x0)|
ln(K + u(x0)) ≤

g(y0) |∇u(y0)|
ln(K + u(y0)) ≤

|∇u(y0)|
lnK ,

and so

|∇u(x0)| ≤ s0
ln(K +M)

lnK ,

or, finally (3.31) holds, leading to

|∇u(x0)|
ln(K + u(x0)) ≤

g(y0)|∇u(y0)|
ln(K + u(y0))

≤ 4f
r|f ′|

1
ln(K + u(y0))

= 4
r

(K + u(y0))

and so

|∇u(x0)| ≤ 4(K +M) ln(K +M)
r

.

We thus proved

Theorem 3.10. Let u be a nonnegative solution of (3.16) in Br(x0), where
r is smaller than the distance of x0 to its cut locus, and let Condition 3.9
be satisfied. Then there are constants C and K depending only on n and
the numbers α, β, and s0 in Condition 3.9 such that

|∇u(x0)|

≤ C
{

1 + 1
r

+ 1
r2

(
1 + max

Br(x0)
|∇2ρ2|

)
+ max

Br(x0)
|Ric− |

}1/2

(K +M) (ln(K +M))2

with M = max
Br(x0)

u.

We remark that Conditions 3.7 and 3.9 are for example fulfilled if
b(s) + 1 = csm for some c > 0, m ≥ 0. Thus, Theorems 3.8 and 3.10
are valid for the p−Laplacian where b = p− 2, p > 1.
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The case of strong decay of the eigenvalue ratio

For the global estimates we may use the same type of auxiliary function as
before, though with a different f, namely, f(u) = exp(Ku) with a positive
constant K. With g ≡ 1 we obtain from (3.29)

0 ≥ −b′|∇u|f
′2

f2 |∇u|
2 + (b+ 1)

(
f ′′

f
− 2f

′2

f2

)
|∇u|2 + Ric(E1, E1)

≥ K2 (−b′ |∇u| − (b+ 1)) |∇u|2 − |Ric− |.

If we introduce the condition:

Condition 3.11. There are positive numbers α and s0 such that

(−b′(s)s− (b(s) + 1)) s2 ≥ α, s ≥ s0

and choose

K >

(
1
α

max
Ω
|Ric− |

)
1/2,

then we immediately get the result:

Theorem 3.12. If Condition 3.11 holds and the function exp(Ku)|∇u|
attains a local maximum in an interior point y0 of Ω then it follows that
|∇u(y0)| ≤ s0, where K must be chosen as above.

In order to derive an analogous local gradient estimate it seems to be
necessary to slightly modify the auxiliary function G and choose

G(x) = g(x)f(u) ln |∇u|, g = 1− ρ2

r2 .

This choice and the subsequent calculations are inspired by a paper of
Wang [21] which deals with the Euclidean mean curvature equation. It is
sufficient to consider this function in a range where |∇u| > 1 such that
also lnG is well defined. Again we consider G in the neighborhood of a
point y0 ∈ Ω where G attains a local maximum.
Taking the function F (s) = ln(s) in Lemma 3.6, we obtain at y0

∇2u(E1, Ei)
|∇u| ln |∇u| = −f

′

f
〈∇u,Ei〉 −

〈∇g,Ei〉
g

(3.33)
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and

0 ≥ − 1
|∇u|2 ln |∇u|

[
b′|∇u|+ (b+ 1)(1 + 1

ln |∇u| )
]
∇2u(E1, E1)2

+
∑
i,j
i≥2

∇2u(Ei, Ej)2

|∇u|2 ln |∇u| −
1

|∇u|2 ln |∇u|

[
b+ 1 + 1

ln |∇u|

]∑
i≥2
∇2u(E1, Ei)2

+ (b+ 1)f
′′

f
|∇u|2 + 1

ln |∇u|Ric(E1, E1)

+ 1
g

(b+ 1)∇2g(E1, E1) +
∑
i≥2
∇2g(Ei, Ei)


− (b+ 1)

[
f ′2

f2 |∇u|
2 + 1

g2 〈∇g,E1〉2
]
− 1
g2

∑
i≥2
〈∇g,Ei〉2. (3.34)

From (3.33) we have

∇2u(E1, E1)2

|∇u|2 ln2 |∇u|
= f ′2

f2 |∇u|
2 + 〈∇g,E1〉2

g2 + 2f ′

fg
〈∇g,E1〉|∇u| (3.35)

and

∇2u(E1, Ei)2

|∇u|2 ln2 |∇u|
= 〈∇g,Ei〉

2

g2 , ∀i = 2, . . . , n. (3.36)

Since b+ 1 ≥ 0, it follows that

∑
i,j
i≥2

∇2u(Ei, Ej)2 =
∑
i≥2
∇2u(Ei, E1)2 +

∑
i≥2
j≥2

∇2u(Ei, Ej)2

= −b
∑
i≥2
∇2u(Ei, E1)2 + (b+ 1)

∑
i≥2
∇2u(Ei, E1)2

+
∑
i≥2
j≥2

∇2u(Ei, Ej)2

≥ −b
∑
i≥2
∇2u(Ei, E1)2. (3.37)
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By (3.34), (3.35), (3.36) and (3.37), we have

0 ≥ − 1
|∇u|2 ln |∇u|

[
b′|∇u|+ (b+ 1)(1 + 1

ln |∇u| )
]
∇2u(E1, E1)2

− 1
|∇u|2 ln |∇u|

[
2b+ 1 + 1

ln |∇u|

]∑
i≥2
∇2u(E1, Ei)2 + (b+ 1)f

′′

f
|∇u|2

+ 1
ln |∇u|Ric(E1, E1) + 1

g

(b+ 1)∇2g(E1, E1) +
∑
i≥2
∇2g(Ei, Ei)


− (b+ 1)

[
∇2u(E1, E1)2

|∇u|2 ln2 |∇u|
− 2f ′

fg
〈∇g,E1〉|∇u|

]
−
∑
i≥2

∇2u(E1, Ei)2

|∇u|2 ln2 |∇u|

= − 1
|∇u|2 ln |∇u|

[
b′|∇u|+ (b+ 1)(1 + 2

ln |∇u| )
]
∇2u(E1, E1)2

− 1
|∇u|2 ln |∇u|

[
2b+ 1 + 2

ln |∇u|

]∑
i≥2
∇2u(E1, Ei)2 + (b+ 1)f

′′

f
|∇u|2

+ 1
ln |∇u|Ric(E1, E1) + 1

g

(b+ 1)∇2g(E1, E1) +
∑
i≥2
∇2g(Ei, Ei)


+ 2(b+ 1)f ′

fg
〈∇g,E1〉|∇u|. (3.38)

For a given ε > 0 only depending on a structural condition for (3.16) we
may assume that

ln |∇u(y0)| ≥ 2
ε

(3.39)

because if (3.39) does not hold the estimate for |∇u| will turn out to be
trivial.
From (3.38) and (3.39) we obtain

0 ≥ − 1
|∇u|2 ln |∇u| [b

′|∇u|+ (b+ 1)(1 + ε)]∇2u(E1, E1)2

− 1
|∇u|2 ln |∇u| (2b+ 1 + ε)

∑
i≥2
∇2u(E1, Ei)2 + (b+ 1)f

′′

f
|∇u|2

+ 1
ln |∇u|Ric(E1, E1) + 1

g

(b+ 1)∇2g(E1, E1) +
∑
i≥2
∇2g(Ei, Ei)


+ 2(b+ 1)f ′

fg
〈∇g,E1〉|∇u|.

Let us assume that
2b (|∇u|) + 1 + ε ≤ 0. (3.40)
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Hence,

0 ≥ − 1
|∇u|2 ln |∇u| [b

′|∇u|+ (b+ 1)(1 + ε)]∇2u(E1, E1)2

+ (b+ 1)f
′′

f
|∇u|2 1

ln |∇u|Ric(E1, E1) + 2(b+ 1)f ′

fg
〈∇g,E1〉|∇u|

+ 1
g

(b+ 1)∇2g(E1, E1) +
∑
i≥2
∇2g(Ei, Ei)

 . (3.41)

We shall choose f in such a way that
f ′

f
≥ 1

and assume that
rg(y0) |∇u(y0)| ≥ 4, (3.42)

because otherwise
g(y0) ln |∇u(y0)| ≤ 1

4
and the estimative of |∇u(x0)| becomes trivial. By (3.42) we have∣∣∣∣ 〈∇g,Ei〉g

∣∣∣∣ ≤ 2ρ|∇ρ|
gr2 ≤ 2

gr
≤ |∇u|2 . (3.43)

It follows then from (3.33) and (3.43) that∣∣∣∣∇2u(E1, E1)
|∇u| ln |∇u|

∣∣∣∣ ≥ ∣∣∣∣f ′〈∇u,E1〉
f

∣∣∣∣− ∣∣∣∣ 〈∇g,E1〉
g

∣∣∣∣
≥ f ′|∇u|

f
− |∇u|2

≥ f ′|∇u|
f

− f ′|∇u|
2f = f ′|∇u|

2f (3.44)

and
2f ′

fg
(b+ 1)〈∇g,E1〉|∇u| ≥ −

2f ′

f
(b+ 1)

∣∣∣∣ 〈∇g,E1〉
g

∣∣∣∣ |∇u|
≥ −f

′

f
(b+ 1)|∇u|2. (3.45)

From (3.41), (3.44) and (3.45) one obtains

0 ≥ − f
′2

4f2 [b′|∇u|+ (b+ 1)(1 + ε)] |∇u|2 ln |∇u|+ (b+ 1)
(
f ′′

f
− f ′

f

)
|∇u|2

+ 1
ln |∇u|Ric(E1, E1) + 1

g

(b+ 1)∇2g(E1, E1) +
∑
i≥2
∇2g(Ei, Ei)

 ,
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where we assumed that

b′|∇u|+ (1 + ε)(b+ 1) ≤ 0. (3.46)

Finally we therefore arrive at

0 ≥ − f
′2

4f2 [b′|∇u|+ (b+ 1) (1 + ε)] |∇u|2 ln |∇u|+ (b+ 1)
(
f ′′

f
− f ′

f

)
|∇u|2

+ 1
ln |∇u|Ric(E1, E1) + 1

g

(b+ 1)∇2g(E1, E1) +
∑
i≥2
∇2g(Ei, Ei)

 .
(3.47)

We now introduce the following hypothesis:

Condition 3.13. There are positive numbers ε, α, and s0 such that

(−b′(s)s− (1 + ε) (b(s) + 1)) s2 ≥ α for s ≥ s0. (3.48)

Remark 3.2. From (3.48) we have

− b′(s)
b(s) + 1 >

1 + ε

s
.

Integrating between s0 and s we arrive at

− ln
(
b(s) + 1
b(s0) + 1

)
> (1 + ε) ln

(
s

s0

)
and so

b(s0) + 1
b(s) + 1 >

(
s

s0

)1+ε
.

Then

2b(s) + 1 + ε < −1 + ε+ 2
(s0

s

)1+ε
(b (s0) + 1)→ −1 + ε < 0

when s→ +∞. Taking s0 > 0 large enough we arrive at

2b(s) + 1 + ε < 0 for s ≥ s0.

It follows from the Condition 3.13 that (3.40) is valid.

Remark 3.3. In the case b (s) + 1 = 1
s2+1 and ε < 1, we have

(−b′(s)s− (1 + ε) (b(s) + 1)) s2 = 2s4

(s2 + 1)2 −
(1 + ε)s2

s2 + 1 → 1− ε > 0

and
2b (s) + 1 + ε = −2s2

s2 + 1 + 1 + ε→ −1 + ε < 0

when s→ +∞.
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It follows from Condition 3.13 that (3.46) is also valid and that b′(s) ≤ 0
for s ≥ s0 and hence there is a number β ≥ 1 such that b(s) + 1 ≤ β for
s ≥ s0. We now choose f(u) = exp(Ku) with K > 1. From (3.39), (3.47)
and the condition (3.13) we have

0 ≥ −K
2

4 [b′|∇u|+ (1 + ε) (b+ 1)] |∇u|2 ln |∇u|

+ (b+ 1)
(
K2 −K

)
|∇u|2 − 1

ln |∇u| |Ric− |

− 1
g

[
(b+ 1) |∇

2ρ|
r2 +

√
n− 1 |∇

2ρ2|
r2

]
≥ K2α

4 ln |∇u| − ε

2 |Ric− | − β +
√
n− 1
g

|∇2ρ2|
r2 .

We can now conclude that

g(y0) ln |∇u(y0)| ≤ 4
K2α

(
ε

2 |Ric− |+ β +
√
n− 1
r2 |∇2ρ2|

)
,

unless
ln |∇u(y0)| ≤ max

{
4

g(y0)r , ln s0

}
.

Since by construction G(x0) ≤ G(y0) we therefore either have

exp(Ku(x0)) ln |∇u(x0)| ≤ g(y0) exp(Ku(y0)) ln |∇u(y0)|

≤ 4 exp(Ku(y0))
K2α

(
ε

2 |Ric− |+ β +
√
n− 1
r2 |∇2ρ2|

)
.

Hence there is a constant C = C(n, β, α, ε) such that

ln |∇u(x0)| ≤ C exp(KM)
K2 max

{
|Ric− |+ 1

r2 |∇
2ρ2|

}
≤ C exp(KM) max

{
|Ric− |+ 1

r2 |∇
2ρ2|

}
,

where
M = max

x∈Br(x0)
|u(x)− u(x0)|

or
g(y0) ln |∇u(y0)| ≤ 4

r
,

leading to

exp(Ku(x0)) ln |∇u(x0)| ≤ g(y0) exp(Ku(y0)) ln |∇u(x0)| ≤ 4
r

exp(Ku(y0))
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and thus
ln |∇u(x0)| ≤ 4

r
exp(KM)

or, finally |∇u(y0)| ≤ s0 holds, leading to

exp(Ku(x0)) ln |∇u(x0)| ≤ g(y0) exp(Ku(y0)) ln s0 ≤ exp(Ku(y0)) ln s0

and so
ln |∇u(x0)| ≤ exp(KM) ln s0.

We thus proved

Theorem 3.14. Let u be a solution of (3.16) in Ω such that the Condition
3.13 is satisfied and let x0 ∈ Ω and r > 0 be such that the geodesic ball
Br(x0), is contained in Ω and is disjoint of the cut locus of x0. Then there
is a constant C depending only n and the numbers ε, α, and s0 in the
Condition 3.13 such that

ln |∇u(x0)| ≤ C exp(KM) max
{

1 + 1
r

+ max
(
|Ric− |+ 1

r2 |∇
2ρ2|

)}
for all K > 1, where

M = max
x∈Br(x0)

|u(x)− u(x0)|.

We remark that Condition 3.11 and Condition 3.13, the latter with
ε = 1/4, are satisfied if

b(s) + 1 = 1
1 + s2 .

Hence, Theorems 3.14 and 3.12 are valid for the minimal surface equation.



Chapter 4

Existence theorems for
regular equations on
bounded domains

In the course of the proof of the existence theorems we shall make
references to results of [10] by using local coordinate systems.
Let M be a complete Riemannian manifold. We note that in local

coordinates {∂/∂xi, 1 ≤ i ≤ n} of TΩ ⊂ TM defined on an open set U of
Rn, the functional

F (u) =
∫

Ω
φ (|∇u|)ω

can be written as
F (u) =

∫
U

φ (|∇u|)√gdx,

where g = det (gij) , gij = 〈∂/∂xi, ∂/∂xj〉 ,
(
gij
)

= (gij)−1
. We may see

that given l ∈ {1, ..., n} the l−local component of (∇u)l is

(∇u)l = gkl
∂u

∂xk
,

where the summation is understood and so

|∇u|2 = gij (∇u)i (∇u)j = gijg
ik ∂u
∂xk

gjl ∂u∂xl

= δjk
∂u
∂xk

gjl ∂u∂xl = gjl ∂u∂xk
∂u
∂xl

.

(4.1)

To obtain the Euler-Lagrange equations we note that, writing

A (|∇u|) = a (|∇u|)
|∇u|

,

40
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we have for ϕ ∈ C∞0 (U)∫
U

φ′ (|∇u|)
|∇u|

〈∇u,∇ϕ〉√gdx =
∫
U

A (|∇u|) gij ∂u
∂xi

∂ϕ

∂xj

√
gdx

= −
∫
U

∂

∂xj

(
√
ggijA (|∇u|) ∂u

∂xi

)
ϕdx

so that ∑
j

∂

∂xj
Aj (x,Du) = 0, (4.2)

where
Aj =

∑
i

(
√
ggijA (|∇u|) ∂u

∂xi

)
.

4.1 The case of mild decay of the eigenvalue
ratio

We begin with the case of smooth boundary data.

Theorem 4.1. Let Ω ⊂M be a domain of class C2,α for some α > 0, Ω
compact and let g ∈ C2,α (Ω) . We write a as a(s) = sA(s) and assume

(i) A ∈ C1,α ([0,∞)) ∩ C2,α ((0,∞)) ,

min
0≤s≤s0

{
A, 1 + sA′(s)

A(s)

}
> 0 (4.3)

for any s0 > 0

(ii) there is a non-decreasing function ϕ defined on some interval [s0,∞)
such that ∫ ∞

s0

ϕ(s)
s2 ds =∞

and (
1 + b−(s)

)
s2 ≥ ϕ(s),

where
b(s) = sa′(s)

a(s) − 1 = sA′(s)
A(s)

(iii) there are a C1 function ψ on some interval [s0,∞) with ψ (s)→∞
as s→∞ and β > 0 such that(

1 + b(s)− β (b′)+ (s)s
)
s2 ≥ ψ(s).
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Then the Dirichlet problem{
Q [u] = div (A (|∇u|)∇u) = 0 in Ω,
u|∂Ω = g

(4.4)

has a unique solution u ∈ C2,α (Ω) .
Proof. As explained in Subsection 2.2, it is enough to obtain a priori
gradient bounds for a one parameter family of solutions of (4.4). Precisely,
it is enough to prove that there is a constant C depending only on Ω, A
and g such that

|∇v| ≤ N (4.5)

if v ∈ C2 (Ω) satisfies Q [v] = 0 and v|∂Ω = σg for some σ ∈ [0, 1] . But
this is immediate from (ii) and (iii) and Theorems 3.3 and 3.8. This proves
Theorem 4.1.

Remark 4.1. The assumption of A ∈ C2,α ((0,∞)) is necessary to
guarantee that u is of class C3 (in the set |∇u| > s0 > 0 for large s0)
and to apply the results of Section 3.3.

Theorem 4.2. Let Ω be as in Theorem 4.1 and g ∈ C0 (∂Ω) . We assume
Condition (i) as in Theorem 4.1 but instead of (ii) and (iii) as in this
theorem we require the stronger condition

B(s)−1 (1 + b(s)− β |b′(s)| s) ≥ α (4.6)

with some positive constant α and

B(s) := max {1, 1 + b(s)} , s > 0.

Then the above Dirichlet problem has a unique solution u ∈ C2,α (Ω) ∩
C0 (Ω) . Moreover, for any relatively compact subdomain Λ of Ω there is a
C2,α (Λ) bound depending only on Λ and supΩ |u| .

Proof. Let us first remark that condition (4.6) implies conditions (ii) and
(iii) in Theorem 4.1. Indeed, since B(s) ≥ 1, the condition (iii) is clearly
satisfied with ϕ(s) = αs2. Recalling that

1 + b

B
= 1 + b−,

it follows from (4.6) that 1 + b− ≥ α and hence (ii) is fulfilled with
ϕ(s) = αs2.We therefore have Theorem 4.1 at our disposal and then, with
Theorem 3.10, it is enough to apply the technique explained at Section 2.2
to conclude the proof of the theorem.
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4.2 The case of strong decay of the
eigenvalue ratio

Theorem 4.3. Let Ω be a bounded domain of class C2,α inM such that
the mean curvature of ∂Ω with respect to the interior normal vector of ∂Ω
as well as of the inner parallel hypersurfaces of ∂Ω in some neighborhood
of ∂Ω is non negative. We write a as a(s) = sA(s) and assume:

(i) A ∈ C1,α ([0,∞)) ∩ C2,α ((0,∞)) ,

min
0≤s≤s0

{
A, 1 + sA′(s)

A(s)

}
> 0 (4.7)

for any s0 > 0;

(ii) there are positive numbers α and s0 such that

(−b′(s)s− (b(s) + 1)) s2 ≥ α, s ≥ s0. (4.8)

Then the Dirichlet problem{
Q [u] = div (A (|∇u|)∇u) = 0 in Ω,
u|∂Ω = g,

where g ∈ C2,α (Ω) has a unique solution u ∈ C2,α (Ω) .
Proof. Using our Theorems 3.3 and 3.12 the proof of the above theorem is
completely analogous to that of Theorem 4.1 once we prove that condition
(ii) implies Condition II in the introduction.
Clearly (4.8) implies that b′ ≤ 0 for s ≥ s0 and hence b is non increasing

for s ≥ s0. If there were numbers C > 0 and s1 > 0 such that −b′(s)s ≥ C
for s ≥ s1 then b(s) → −∞ (s→∞) , a contradiction since b ≥ −1.
Therefore, there is a sequence sk → +∞ such that −b(sk)sk → 0 for
k →∞. Then condition (4.8) implies

1 + b(sk) ≤ −b′(sk)sk → 0

and so
1 + b(s)→ 0 (4.9)

as s→∞ since b is non increasing. Now condition (4.8) also implies

b′(s) ≤ − α
s3

for s ≥ s0. Therefore we have for s0 < s < σ

b(σ)− b(s) ≤ −α
∫ σ

s

dt

t3
= α

2

(
1
σ2 −

1
s2

)
.
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Since b(σ)→ −1 (σ →∞) by (4.9) we obtain

(1 + b(s)) s2 ≥ α

2 > 0 (s > s0) .

Since b(s) < 0 for all sufficient large s we have(
1 + b−(s)

)
s2 ≥ α

2 > 0

and so Condition II is satisfied with ϕ(s) = α/2.

Since the condition (4.10) below obviously implies condition (4.8), the
proof of the next theorem is completely analogous to the proof of Theorem
4.2 using the local gradient estimates of Theorem 3.14:

Theorem 4.4. Let Ω be as in the previous theorem. We assume Condition
(i) as in Theorem 4.3 but instead of (ii) as in this theorem we require the
stronger condition

(−b′(s)s− (1 + ε) (b(s) + 1)) s2 ≥ α for s ≥ s0 (4.10)

for some positive numbers ε, α and s0. Then the Dirichlet problem{
Q [u] = div (A (|∇u|)∇u) = 0 in Ω,
u|∂Ω = g,

where g ∈ C0 (Ω) has a unique solution u ∈ C0 (Ω) ∩ C2,α (Ω) .



Chapter 5

Existence theorems for
some degenerate or
singular equations on
bounded domains

In order to prove similar existence theorem for certain singular or
degenerate equations like the p−Laplace equations we show how such
equations may be approximated by regular ones satisfying the conditions
of Theorems 4.1 and 4.2. Precisely, we now assume that the coefficient a
is of the form

a(s) = sp−1A(s), s ≥ 0,
where p > 1, A ∈ C1,α ([0,∞)) ∩ C2,α (0,∞) , A(s) > 0 for s ≥ 0.

(5.1)
We observe that the equation (1.3) becomes singular for p < 2 and

degenerate elliptic for p > 2. We now regularize (5.1) in the form

aκ(s) =
(
κ+ s2) p2−1

A(s)s, (5.2)

where κ > 0. We compute

a′κ =
(
κ+ s2) p2−1

A+
(
κ+ s2) p2−1

A′s+
(p

2 − 1
) (
κ+ s2) p2−2 2s2A,

1 + bκ = sa′κ
aκ

=
(
κ+ s2)1− p2 A−1a′κ = 1 + sA′

A
+ (p− 2) s2

κ+ s2 .

Since
a′ = (p− 1) sp−2A+ sp−1A′

45
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we get
sa′

a
= sa′

sp−1A
= (p− 1) + sA′

A
(5.3)

and hence

1 + bκ = 1 + sa′

a
− (p− 1) + (p− 2) s2

κ+ s2

= 1 + b− (p− 2)
(

1− s2

κ+ s2

)
that is

1 + bκ = 1 + b− (p− 2) κ

κ+ s2 . (5.4)

It follows that
b′κ = b′ + (p− 2) 2κs

(κ+ s2)2 . (5.5)

Now we would like to check that the Conditions I, 3.7, 3.9 hold for
the family aκ uniformly for κ ∈ (0, 1] provided that they are true for the
original a.
We have from Condition I and (5.4)

(
1 + b−κ

)
s2 ≥ (1 + b) s2 + (p− 2)− κs2

κ+ s2

≥ ϕ(s) + (p− 2)− =: ϕ̃(s), 0 ≤ κ ≤ 1,

where ϕ̃ is non decreasing as ϕ is and∫ ∞
1

ϕ̃(s)
s2 ds =∞

by Condition I. As next we turn to the analogue of Condition 3.7. We
have

sb′κ = sb′ + (p− 2) 2κs2

(κ+ s2)2

so that
s (b′κ)+ ≤ s (b′)+ + (p− 2)+ 2κs2

(κ+ s2)2 .

It follows then from Condition 3.7 that(
1 + bκ(s)− β (b′κ(s))+

s
)
s2

≥
(

1 + b(s)− β (b′κ(s))+
s
)
s2 − (p− 2)+

(
κs2

κ+ s2 + β
2κs4

(κ+ s2)2

)
≥ ϕ(s)− (p− 2)+ (κ+ 2βκ)→∞ (s→∞)
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uniformly for κ ∈ (0, 1] . Finally we come to Condition 3.9. There holds

1 ≤ Bκ = max {1, 1 + bk} ≤ max {1, 1 + b}+ (2− p)+ κ

κ+ s2

≤ B
(

1 + (2− p)+ κ

κ+ s2

)
≤ 2B

since p > 1. It follows from Condition 3.9 and (5.5) above that

B−1
κ (1 + bκ(s)− β |b′κ(s)| s)

≥ 1
2B
−1 (1 + b(s)− β |b′(s)| s)

− (p− 2)+ κ

κ+ s2 + β |p− 2| 2κs2

(κ+ s2)2 ≥
1
4α

if s ≥ s0(p, β) and κ ∈ (0, 1] . We thus showed that the Conditions I, 3.7
and 3.9 imply the corresponding conditions for the regularized equation,
uniformly for κ ∈ (0, 1] .
Finally we come to Condition 3.13 which clearly includes Condition 3.11,

the latter also implying Condition II in the introduction as was shown in
the proof of Theorem 4.3. We have

(−sb′κ − (1 + ε) (1 + bκ)) s2 = (−sb′ − (1 + ε) (1 + b)) s2

+ (2− p)
[

2κs4

(κ+ s2)2 − (1 + ε) κs2

κ+ s2

]
≥ (−sb′ − (1 + ε) (1 + b)) s2 − |2− p|κ (2 + 1 + ε) ≥ α

2

for s ≥ s0, uniformly for κ ∈ (0, κ0 (p)) , 0 < ε ≤ 1, provided that
Condition 3.13 holds.
Let us finally check for the ellipticity of the regularized equation. We

compute

div
(
aκ (|∇u|)
|∇u|

∇u
)

=(
κ+ |∇u|2

) p
2−1

A∆u+
(p

2 − 1
)(

κ+ |∇u|2
) p

2−2
A
〈
∇ |∇u|2 ,∇u

〉
+
(
κ+ |∇u|2

) p
2−1

A′ 〈∇ |∇u| ,∇u〉 =(
κ+ |∇u|2

) p
2−1

A∆u+
[
(p− 2)

(
κ+ |∇u|2

) p
2−2

A

+
(
κ+ |∇u|2

) p
2−1 A′

|∇u|

]
∇2u (∇u,∇u) ,
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that is

div
(
aκ (|∇u|)
|∇u|

∇u
)

=

(
κ+ |∇u|2

) p
2−1

A

{
∆u+

[
(p− 2) |∇u|2

κ+ |∇u|2
+ A′ |∇u|

A

]
∇2u

(
∇u
|∇u|

,
∇u
|∇u|

)}
.

In order to test the ellipticity we replace ∇2u by 〈ξ, . 〉 ⊗ 〈ξ, . 〉 with a
unit length vector ξ and with

η := |∇u|−1∇u, ξ⊥ := ξ − 〈ξ, η〉 η

we must consider the quadratic form

q(s, ξ) =
(
κ+ s2) p2−1

A(s)
{∣∣ξ⊥∣∣2 +

[
1 + (p− 2) s2

κ+ s2 + sA′(s)
A(s)

]
〈ξ, η〉2

}
.

Since
1 + (p− 2) s2

κ+ s2 ≥ min {1, p− 1}

we obtain

Lemma 5.1. We assume that for some interval [0, s0] there are positive
numbers c, C such that

c ≤ A(s) ≤ C,

c ≤ min {1, p− 1}+ sA′(s)
A(s) ≤ 1 + (p− 2)+ + sA′(s)

A(s) ≤ C,

for s ∈ [0, s0] . Then the estimate(
κ+ s2) p2−1

c2 ≤ q (s, ξ) ≤
(
κ+ s2) p2−1

C2

holds for s ∈ [0, s0] and |ξ| = 1.

Lemma 5.1 gives the ellipticity condition for the regularized equations
and we may therefore get the following immediate consequences of
Theorems 4.1 and 4.2. Since we showed above that the Condition I,
3.7 and 3.9 hold uniformly for κ ∈ (0, 1] and Condition 3.13 uniformly
for κ ∈ (0, κ0 (p)] we get C1 bounds for the solutions of the regularized
equations independent of κ ∈ (0, 1] and κ ∈ (0, κ0 (p)] , respectively.

Corollary 5.2 (of Theorem 4.1). We assume all the conditions of
Theorem 4.1 but replacing (4.3) by

min
0≤s≤s0

{
A(s),min {1, p− 1}+ sA′(s)

A(s)

}
> 0 (5.6)
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for any by s0 > 0. Then the regularized Dirichlet problem{
div
(
aκ(|∇u|)
|∇u| ∇u

)
= 0,

u|∂Ω = g,

where aκ is given by (5.2), has a unique solution uκ ∈ C2,α (Ω) for all
κ > 0. Moreover, the family uκ, 0 < κ ≤ 1, is uniformly bounded in
C1 (Ω) .
Corollary 5.3 (of Theorem 4.2). We assume all the conditions of
Theorem 4.2 but replacing (4.3) by (5.6). Then the regularized Dirichlet
problem {

div
(
aκ(|∇u|)
|∇u| ∇u

)
= 0,

u|∂Ω = g,

where aκ is given by (5.2), has a unique solution uκ ∈ C2,α (Ω) ∩C0 (Ω) ,
for all κ > 0. Moreover, the family uκ, 0 < κ ≤ 1, has a uniform C1 bound
on each compact subset of Ω.

Corollary 5.4 (of Theorem 4.3). We assume all the conditions of
Theorem 4.3 but with a(s) = sp−1A(s) and replacing (4.7) by (5.6). Then
the regularized Dirichlet problem{

div aκ(|∇u|)
|∇u| ∇u = 0 in Ω

u|∂Ω = g

has a unique solution u ∈ C2,α (Ω) for all κ ∈ (0, κ0(p)) and for all
g ∈ C2,α (Ω) . Moreover, there is a C1 (Ω) bound for u independent of
κ.

Corollary 5.5 (of Theorem 4.4). We assume all the conditions of
Theorem 4.4 but with a(s) = sp−1A(s) and replacing (4.7) by (5.6). Then
the regularized Dirichlet problem{

div aκ(|∇u|)
|∇u| ∇u = 0 in Ω

u|∂Ω = g

has a unique solution u ∈ C2,α (Ω) ∩ C0 (Ω) for all κ ∈ (0, κ0(p)) and for
all g ∈ C0 (Ω) . Moreover, the family uκ, κ ∈ (0, κ0(p)) , admits a uniform
C1 bound on each relatively compact open subset Λ of Ω.

We are now able to obtain existence theorems when the coefficient a
behaves as a(s) = sp−1A(s) (for details see (5.1)). As an intermediate
step we first demonstrate how from the results obtained so far one may
easily derive the existence of Lipschitz continuous weak solutions in the
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degenerate or singular case. A much deeper analysis is required if one
wants to show the optimal C1,β regularity of solutions. A complete proof
of the latter would go far beyond the intentions of these notes and we
shall therefore confine ourselves with a reduction to known results in the
literature.

Theorem 5.6. We assume either the conditions of Theorem 4.1 or
Theorem 4.2, but replacing (4.3) and (4.7) by (5.6). Then the Dirichlet
problem {

div
(
a(|∇u|)
|∇u| ∇u

)
= 0,

u|∂Ω = g,

where a(s) = sp−1A(s), p > 1, has a unique weak solution in C0,1 (Ω) .
Proof. The solution is obtained as a limit of a sequence (uκi) , κi > 0,
κi → 0 (i→∞) , where uκi are solutions of the regularized Dirichlet
problems according to Corollary 5.2 or Corollary 5.4, respectively. By
these corollaries, the families (uκ) are uniformly bounded in C1 (Ω) and
hence, in particular, there is a uniform L2 (Ω) bound for ∇uκi . We may
therefore find a function u ∈ C0,1 (Ω) such that uκi converges (up to a
subsequence) uniformly to u in Ω and ∇uκi converges weakly to ∇u in
L2 (Ω) . The statement of the theorem follows immediately if we can show
that u minimizes the functional

F (v) =
∫

Ω
φ (|∇v|) dV

subject to the boundary condition v|∂Ω = g, i.e. that F (u) ≤ F (v) for
any v ∈ C1 (Ω) with v|∂Ω = g.
We clearly have

Fκ (uκ) ≤ Fκ (v)
for all such v where

Fκ (v) =
∫

Ω
φκ (|∇v|) dw, φκ (s) =

∫ s

0
aκ (t) dt ≥ φ (s) .

By a well known result in the Calculus of Variations, using the convexity
of φ [16] we get for arbitrary v ∈ C1 (Ω) , v|∂Ω = g:

F (u) ≤ lim inf F (uκi) ≤ lim inf Fκi (uκi) ≤ lim inf Fκi (v) = F (v).

As announced above we shall now show using a result of Lieberman how
one may deduce the C1,β regularity in the singular or degenerate case. As
a consequence of this, the set where the gradient of the solution does not
vanish is open and hence the solution is of class C2 on this set.
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Theorem 5.7. We assume all the conditions of Theorem 4.1 but with
a(s) = sp−1A(s), p > 1, and replacing (4.3) by (5.6). Then there is β > 0
such that the Dirichlet problem{

div
(
a(|∇u|)
|∇u| ∇u

)
= 0,

u|∂Ω = g
(5.7)

has a unique weak solution u ∈ C1,β (Ω).
Proof. We shall obtain the solution of (5.7) as limit of solutions uκi of
the corresponding regularized equations when κi → 0 as i → ∞. The
existence of uκi and the uniform C1 (Ω) bound is guaranteed by Corollary
5.2. We shall show that Theorem 1 of [15] may be applied to obtain a
uniform C1,β (Ω) bound for the sequence uκi . From this the statement
of the theorem is a straightforward consequence. In order to meet the
assumptions of Lieberman we must modify our equation as follows. We
replace the coefficient A by

Ã(s) =
{

A(s) if s ≤ s0,
A(s0) if s > s0,

where s0 is an upper bound for the C1 (Ω) norm of our solution uκ which
is guaranteed by Corollary 5.2. It is then obvious that uκ will be a solution
of the modified equation

div
((

κ+ |∇uκ|2
) p

2−1
Ã (|∇uκ|)∇uκ

)
= 0,

in local coordinates (see (4.2))∑ ∂

∂xj
Ãj (x,Du) = 0

with
Ãj (x,Du) =

∑√
ggij

(
κ+ |∇u|2

) p
2−1

Ã (|∇u|) ∂u
∂xi

.

Let us remark that for a function u on the manifold M the norm of its
gradient ∇u on M is equivalent to the Euclidean norm of its Euclidean
gradient Du. Moreover the quotient

κ+ s2

(
√
κ+ s)2

being bounded by positive constants from above and from below

independent of 0 < κ ≤ 1 and s ≥ 0 the term
(
κ+ |∇u|2

) p
2−1

may
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be replaced in all estimates by (
√
κ+ |Du|)p−2

. Therefore, by Lemma 5.1,
the ellipticity required in Lieberman’s theorem is satisfied. It remains to
check the Holder estimates of the coefficients Ãj (x,Du) with respect to
the coordinates x = (x1, ..., xn). We even show a Lipschitz condition by
computing a bound for the partial derivatives ∂Ãj/∂xk.
Denoting by C a generic constant which only depends on the metric

tensor gij and it first derivatives we get

∂ |∇u|2

∂xk
≤ C |Du|2 , ∂ |∇u|

∂xk
≤ C |Du|

and hence ∣∣∣∣∣∂Ãj∂xk
(x,Du)

∣∣∣∣∣ ≤ C
{(

κ+ |∇u|2
) p

2−1
Ã (|∇u|) |Du|

+
(
κ+ |∇u|2

) p
2−2
|Du|2 Ã (|∇u|) |Du|

+
(
κ+ |∇u|2

) p
2−1

Ã′ (|∇u|) |Du|2
}
.

Setting
K := max

0≤s≤s0
{A(s), A′(s)} = max

0≤s≤s0

{
Ã(s), Ã′(s)

}
and observing that Ã′(s) = 0 for s > s0 we obtain the estimate∣∣∣∣∣∂Ãj∂xk

(x,Du)

∣∣∣∣∣ ≤ CK {(1 + |Du|)p−1 +
(
1 + s2

0
) p

2−1
s2

0

}
≤ C̃ (1 + |Du|)p−1

with a constant C̃ also depending on s0. This completes the proof.

On the basis of Corollary 5.3 the proof of the following theorem proceeds
along the same lines as that of the previous theorem by replacing Ω by
a relatively compact subdomain Λ of Ω and using a local version of the
C1,β estimates in Lieberman’s theorem. We note that though such a local
version is not explicitly stated in Lieberman’s result, it is obviously a
necessary ingredient to get global estimates. Indeed the interior estimates
can be obtained by the same methods as the estimates at the boundary.

Theorem 5.8. We assume all the conditions of Theorem 4.2 but replacing
(4.3) by (5.6). Then there is a unique weak solution of the Dirichlet
problem {

div
(
a(|∇u|)
|∇u| ∇u

)
= 0,

u|∂Ω = g
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which, on each subdomain Λ of Ω with Λ ⊂ Ω, belongs to C1,β (Λ) for some
β possibly depending on Λ. Moreover, for each such relatively compact
subdomain Λ there is a C1,β (Λ) bound for u depending only on Λ and
supΩ |u| .
Theorem 5.9. We assume all the conditions of Theorem 4.2 but with
a(s) = sp−1A(s), p > 1, and replacing (4.7) by (5.6). Then there is a
unique weak solution of the Dirichlet problem{

div
(
a(|∇u|)
|∇u| ∇u

)
= 0,

u|∂Ω = g

which belongs to C1,β (Ω) .
Proof. On the basis of Corollary 5.4 the proof is completely analogous to
that of Theorem 5.7.

Theorem 5.10. We assume all the conditions of Theorem 4.3 but with
a(s) = sp−1A(s), p > 1, and replacing (4.7) by (5.6). Then the Dirichlet
problem {

div
(
a(|∇u|)
|∇u| ∇u

)
= 0,

u|∂Ω = g

has a unique weak solution u ∈ C0 (Ω) ∩ C1 (Ω) for any g ∈ C0 (Ω) .
Moreover, for each relatively compact subdomain Λ of Ω the solution u
belongs to C1,β (Λ) for some β > 0 and there is an a-priori bound for the
C1,β norm of u depending only on supΩ |u| , Λ and Ω.
We close this section by presenting an example where Theorems 5.9

and 5.10 apply. This example can be seen as a p−area version of the
minimal surface equation, analogous to the p−energy of the Laplace partial
differential equation, 1 < p ≤ 2.
Example 5.1. We consider the integrand

φ (s) = (1 + sp)
1
p

for which we get

a (s) = φ′ (s) = sp−1

(sp + 1)
p−1
p

, 1 + b(s) = sa′(s)
a(s) = p− 1

sp + 1

b′(s) = −p (p− 1) sp−1

(sp + 1)2 .

Hence we obtain(
−sb′(s)− (1 + ε) (1 + b(s))

)
s2 = p− 1

(sp + 1)2

(
(p− 1− ε) sp+2 − (1 + ε) s2) ≥ α > 0

for s ≥ s0 (p, ε) provided that ε < p−1 and p ≤ 2. The ellipticity condition
(5.6) is verified by a similar direct calculation.



Chapter 6

The asymptotic Dirichlet
problem

The existence or nonexistence of non constant entire bounded harmonic
functions on a Cartan-Hadamard manifold M is a topic of study in
Differential Geometry that dates back to the 70’s (see [9], [19]). In the
last years this problem has been studied with other partial differential
equations such as the p−Laplacian ([11]) and the minimal surface equation
([8], [4], [5], [18]). The class of partial differential equations considered
here has been studied in [17] with the purpose of proving Liouville type
theorems that is, non existence of non constant bounded solutions. In
this last part of our notes we investigate the existence of bounded non
constant solutions of this class of partial differential equations by studying
the associated asymptotic Dirichlet problem.

6.1 Existence theorems
A natural way of finding bounded entire solutions to a partial differential
equation on a Cartan-Hadamard manifold is by solving the asymptotic
Dirichlet problem with a prescribed non constant boundary data given at
infinity.
Recall that a Cartan-Hadamard manifold is a complete, connected and

simply connected Riemannian n-manifold M, n ≥ 2, of non-positive
sectional curvature. By the Cartan-Hadamard theorem, the exponential
map expo : ToM → M is a diffeomorphism for every point o ∈ M.
Consequently,M is diffeomorphic to Rn.
A Cartan-Hadamard manifold M can be compactified by adding a

sphere at infinity which is also called the asymptotic boundary of M.
The sphere at infinity ofM, denoted by ∂∞M, is defined as the set of all

54
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equivalence classes [γ] of unit speed geodesic rays γ ofM; two such rays γ1
and γ2 are equivalent if supt≥0 d (γ1(t), γ2(t)) <∞. The compactification
M of M, also known as the geometric compactification of M, is then
M :=M∪ ∂∞M, with the following topology.
Given p ∈ M let B ⊂ Sn−1 be an open geodesic ball of the unit sphere

Sn−1 of TpM. Given v ∈ Sn−1, denote by γv : [0,∞) → M the geodesic
ray such that γv (0) = p and γ′v(0) = v. Then, given t > 0 the sets

T = {[γv] | v ∈ B} ∪ {γv ((t,∞)) | v ∈ B}

with p varying inM, B varying on the unit sphere of TpM and t varying
in the positive real numbers form a basis for a topology on M, called
the cone topology. The space M, equipped with the cone topology, is
homeomorphic to a closed Euclidean ball. For more details see [7].
The asymptotic Dirichlet problem onM for a differential operator Q on
M consists in finding a (unique) function u ∈ C0(M) such that Q [u] = 0
onM and u|∂∞M = g, for a given function g ∈ C0 (∂∞M).
We consider onM the same family of operators already considered here

so far, namely, operators of the form

Q [u] = div
(
a(|∇u|)
|∇u|

∇u
)
, (6.1)

where a ∈ C2 ((0,∞)) ∩ C0 ([0,∞)) satisfies conditions to be discussed in
the course of the text.
For further references in the text, it is convenient to state the asymptotic

Dirichlet problem for Q in the following short form{
Q [u] = div

(
a(|∇u|)
|∇u| ∇u

)
= 0 onM

u|∂∞M = g, u ∈ C1(M) ∩ C0(M).
(6.2)

We follow now closely the paper [18] of J. Ripoll and M. Telichevesky. In
the case of bounded domains, the continuous extension to the boundary of
the domain of a prospective solution to the Dirichlet problem of an elliptic
partial differential equation (for example, the one obtained by Perron’s
method is typical, [10]) depends on the regularity of the domain with
respect to the partial differential equation, that is, on the existence of
barriers at each point of the boundary of the domain (see Subsection 2.2
and also [10]). To deal with the asymptotic Dirichlet problem in M we
extend this notion of regularity to the asymptotic boundary ∂∞M ofM.
We consider here weak C1 solutions to the equation Q [u] = 0 inM that

is, we require that u ∈ C1 (M) and satisfies∫
M

〈
a (|∇u|)
|∇u|

∇u,∇ζ
〉
dx = 0 (6.3)
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for every ζ ∈ C∞0 (M). A function v ∈ C0,1 (Ω) is a subsolution of Q in a
domain Ω ofM if Q[v] ≥ 0 weakly in Ω, that is∫

M

〈
a (|∇v|)
|∇v|

∇v,∇ζ
〉
dx ≤ 0 (6.4)

for every non-negative ζ ∈ C∞0 (Ω). A function w ∈ C0,1 (Ω) is called a
supersolution of Q in Ω if −w is a subsolution for Q in Ω.
Given x ∈ ∂∞M and an open subset Ω ⊂ M such that x ∈ ∂∞Ω,

an upper barrier for Q relative to x and Ω with height C is a function
w ∈ C0,1 (M) such that

(i) w is a supersolution for Q

(ii) w ≥ 0 and limp∈M, p→x w(p) = 0

(iii) wM\Ω ≥ C.

Lower barriers are defined similarly.
We say thatM is regular at infinity with respect to Q if, given C > 0,

x ∈ ∂∞M and an open subset W ⊂ ∂∞M with x ∈ W , there exist an
open set Ω ⊂M such that x ∈ Int ∂∞Ω ⊂W and upper and lower barriers
w, v ∈ C1 (M) relative to x and Ω, with height C.
The regularity at infinity has already been considered by other authors

for the p−Laplacian. The reader should compare the above definition with
Definition 2.6 and Theorem 2.7 in [3] for the case of the Laplace operator
and also with Theorem 3.3 and Definition 3.4 in [14] for the case of the
p−Laplacian.

Theorem 6.1. LetM be a Hadamard manifold which is regular at infinity
with respect to Q. Assume moreover that

(a) given φ ∈ C0 (M) , there is a sequence of bounded C2,α domains
Ωk ⊂ M, k ∈ N, satisfying Ωk ⊂ Ωk+1, ∪Ωk = M such that, given
k, there is a weak solution uk ∈ C0(Ωk) ∩ C1(Ωk) of the Dirichlet
problem for Q [u] = 0 in Ωk such that uk|∂Ωk = φ|∂Ωk

(b) sequences of solutions with uniformly bounded C0 norm are compact
in the C1 norm in precompact subsets ofM.

Then the asymptotic Dirichlet (6.2) is solvable for any continuous
asymptotic boundary data g ∈ C0 (∂M∞).

Proof. Let g̃ ∈ C0(M) be a continuous extension to M of the asymptotic
boundary data g of problem (6.2). From condition (a) there is a solution
uk ∈ C0(Ωk) ∩ C1(Ωk) of the Dirichlet problem{

Q[u] = 0 in Ωk,
u|∂Ωk = g̃|∂Ωk.
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Condition (b) together with the diagonal method show that there exists
a subsequence of (uk) converging uniformly on compact subsets of M in
the C1 norm to a global solution u ∈ C1(M) of Q [u] = 0. From the
comparison principle it follows that

sup
M
|u| ≤ sup

M
|g̃| .

One needs to show that u extends continuously to ∂∞M and satisfies
u|∂∞M = g. Let x ∈ ∂∞M and ε > 0 be given.
Since g is continuous, there exists an open neighborhoodW ⊂ ∂∞M of x

such that g(y) < g(x)+ε/2 for all y ∈W . Furthermore, regularity of ∂∞M
implies that exists an open subset Ω ⊂ M such that x ∈ Int (∂∞Ω) ⊂ W
and w : M → R upper barrier with respect to x and Ω with height
C := 2 maxM |g|.
Defining

v(p) := w(p) + g(x) + ε, p ∈ Ω,

we claim that u ≤ v in Ω.
From the continuity of g̃ we may find k0 such that g̃(p) < g(x) + ε/2

for all p ∈ ∂Ωk ∩ Ω, k ≥ k0. Moreover, we may choose k0 such that
Ωk0 ∩ Ω 6= ∅. Set Vk := Ω ∩ Ωk, k ≥ k0. We note that uk ≤ v in Vk.
Indeed, this inequality holds on

∂Vk = (∂Ωk ∩ Ω) ∪ (∂Ω ∩ Ωk).

On ∂Ωk ∩ Ω is due to the choice of k0; on ∂Ω ∩ Ωk it holds because
w ≥ max |g| on ∂Ω, which implies that w ≥ uk, by the comparison
principle. Also the comparison principle implies that uk ≤ v in Vk. Since
it holds for all k ≥ k0, we have u ≤ v on Ω.
It is also possible to define v− :M→ R by v−(p) := g(x)− ε− w(p) in

order to obtain u ≥ v− in Ω. We then have

|u(p)− g(x)| < ε+ w(p),

for all p ∈ Ω and hence

lim sup
p→x

|u(p)− g(x)| ≤ ε.

The proof is complete, since ε > 0 is arbitrary.

Theorem 6.1 brings up the problem of when the Hadamard manifoldM
is regular at infinity. The following definition, introduced in [18], turned
out to be a key concept.
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Definition 6.1. LetM be a Hadamard manifold. We say thatM satisfies
the strict convexity condition (SC condition) if, given x ∈ ∂∞M and a
relatively open subset W ⊂ ∂∞M containing x, there exists a C2 open
subset Ω ⊂ M such that x ∈ Int (∂∞Ω) ⊂ W, where Int (∂∞Ω) denotes
the interior of ∂∞Ω in ∂∞M, andM\ Ω is convex.
Informally speaking one may say that, as it happens with strictly convex

bounded domains of the Euclidean space, M satisfies the SC condition
when one can extract fromM a neighborhood of any point of ∂∞M such
that what remains is still convex.

Lemma 6.2. Let M be a Hadamard manifold with sectional curvature
KM ≤ −k2 < 0 and satisfying the SC condition. Assume that

Q [u] = div
(
a(|∇u|)
|∇u|

∇u
)

= 0 (6.5)

with a ∈ C0 ([0,∞)) ∩ C1 ((0,∞)) satisfies

a(0) = 0, a′(s) > 0 for all s > 0; (6.6)
there exist q > 0 and δ > 0 such that a(s) ≥ sq, s ∈ [0, δ] . (6.7)

ThenM is regular at infinity with respect to Q.

Proof. Let C > 0 and x ∈ W ⊂ ∂∞M be given. Since Q [−u] = −Q [u]
it is enough to prove the existence of barriers from above at x. Since M
satisfies the SC condition, there exists a C2 open subset Ω ofM such that
x ∈ Int (∂∞Ω) ⊂W and such thatM\Ω is convex. Let s : Ω→ R be the
distance function to ∂Ω. Since M\ Ω is convex and KM ≤ −k2, k > 0,
we may apply comparison theorems (see Theorems 4.2 and 4.3 of [3]) to
obtain the estimate

∆s ≥ (n− 1)k tanh ks. (6.8)

On the other hand, since a′ > 0, a has an inverse function a−1 ∈ C1 ([0, α))
where α = sup a ≤ ∞. Set

c = a(2C)
coshn−1 k

.

Since 0 ≤ c cosh1−n kt ≤ α for all t ≥ 0 we may define a function
g : [0,∞)→ R, g ∈ C2 ((0,∞)) , possibly with g(0) =∞, by

g(s) :=
∫ ∞
s

a−1 (c cosh1−n kt
)
dt. (6.9)

Without loss of generality, we may choose δ small such that a (δ) < c.
Then, since

c cosh1−n 0 = c > a(δ)
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and limt→+∞ c cosh1−n kt = 0 there is τ satisfying

c cosh1−n kτ = a (δ) .

Since for t ∈ [0, a (δ)] we have a−1(t) ∈ [0, δ] it follows from (6.7) that

t = a
(
a−1 (t)

)
≥ a−1(t)q

and hence a−1(t) ≤ t1/q for t ∈ [0, a (δ)]. Therefore

g(s) ≤
∫ τ

0
a−1(c cosh1−n kt)dt+

∫ +∞

τ

a−1(c cosh1−n kt)dt

≤ a−1(c)τ +
∫ +∞

τ

(c cosh1−n kt)
1
q dt

≤ a−1(c)τ + (2c)
1
q

∫ +∞

τ

e−
kt
q dt = a−1(c)τ + (2c)

k
q

q
e−kτ < +∞

for all s > 0. Furthermore,

g(0) >
∫ 1

0
a−1 (c cosh1−n kt

)
dt ≥ a−1(c cosh1−n k) = 2C

and lims→∞ g(s) = 0. Therefore we define v : Ω→ R as

v(p) := g(s(p)),

and will prove that Q(v) ≤ 0. We have

∇v(p) = g′(s(p))∇s(p) = −a−1 (c cosh1−n ks(p)
)
∇s

and then
|∇v| = |g′(s)| = a−1 (c cosh1−n ks

)
.

Also ∇v/|∇v| = −∇s. Combining the previous expressions, we obtain

Q [v] = div (−a (|g′(s)|)∇s)
= div

(
−a
(
a−1 (c cosh1−n ks

))
∇s
)

= div
(
−c cosh1−n ks∇s

)
= −(1− n)ck

(
cosh−n ks

)
(sinh ks) 〈∇s,∇s〉 − c

(
cosh1−n ks

)
∆s

≤ (n− 1)ck
(
cosh−n ks

)
(sinh ks)

− (n− 1)c
(
cosh1−n ks

)
k (tanh ks) = 0,

and hence, by Lemma 3.1, v is a supersolution on Ω.
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To finish with the proof, define the global supersolution w ∈ C0 (M) ∩
C0,1 (M) by

w(p) =
{

min {v(p), C} if p ∈ Ω
C if p ∈M \ Ω,

which is of course an upper barrier relative to x and Ω with height C.

As a consequence of Theorems 6.1 and 6.2 we obtain

Theorem 6.3. Let M be a Hadamard manifold with sectional curvature
satisfying KM ≤ −k2 < 0. Assume that M satisfies the SC condition
together with the conditions (6.6) and (6.7) of Lemma 6.2, and that Q
satisfies conditions (a) and (b) of Theorem 6.1. Then the asymptotic
Dirichlet problem (6.2) is solvable for any g ∈ C0 (∂∞M).

Theorem 6.4. We assume that the operator

Q [u] = div a (|∇u|)
|∇u|

∇u

satisfies the following conditions (i) and either (ii) or (ii’):
(i) There are numbers p > 1 and α ∈ (0, 1) such that a(s) = sp−1A(s)

with A ∈ C1,α ([0,∞)) ∩ C2,α ((0,∞)) and

min
0≤s≤σ

{
A(s),min {1, p− 1}+ sA′(s)

A(s)

}
> 0

for any σ > 0
(ii) There are numbers β > 0, γ > 0 and s0 > 0 such that with

b(s) := sA′(s)
A(s)

B(s) := max {1, 1 + b(s)}

there holds
B(s)−1 (1 + b(s)− β |b′(s)| s) ≥ γ

for s ≥ s0.
(ii’) There are numbers ε > 0, γ > 0 and s0 > 0 such that

(−sb′(s)− (1 + ε) (1 + b(s))) s2 ≥ γ

for s ≥ s0.
Then, if the Cartan-Hadamard manifold M has sectional curvature

KM ≤ −k2 for some number k > 0 and satisfies the SC condition
(Definition 6.1), the asymptotic Dirichlet problem{

Q [u] = 0 onM
u|∂∞M = g
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has a unique solution u ∈ C0 (M) ∩ C1 (M) which, for each relatively
compact subdomain Ω ⊂ M belongs to C1,λ (Ω) with λ > 0 possibly
depending on Ω. In case p = 2 in (i) above the solution u is classical,
i.e., u ∈ C2,α (M) .

Proof. We observe that the uniqueness follows immediately from
Proposition 3.1. For the existence part, choose a fixed point ofM, say o,
and, given k ≥ 1, let Ωk be the geodesic ball ofM centered at o and with
radius k. Since M is a Cartan Hadamard manifold Ωk is a C2,α domain
for all k and, from the Hessian comparison theorem, Ωk is a convex and
hence a mean convex domain for all k ≥ 1 (Theorems 4.2 and 4.3 of [3]).
Conditions (a) and (b) in Theorem 6.1 are satisfied as follows from the
Theorems 5.8 and 5.10. The conditions 6.6 and 6.7 of Lemma 6.2 clearly
hold by assumption (i). Thus, Theorem 6.4 is an immediate consequence
of Theorem 6.3.

6.2 Final comments
LetM be a Hadamard manifold. If dimM = 2 and the sectional curvature
ofM satisfies KM ≤ −k2, k > 0, then, since any two points at infinity of
M can be connected by a geodesic, it trivially follows thatM satisfies the
SC condition. In arbitrary dimensions it is proved in [18] that ifKM ≤ −k2

and eitherM is rotationally symmetric (see [3]) or the sectional curvature
of M decays at most exponentially then M satisfies the SC condition.
The SC condition also holds in Hadamard manifolds where the sectional
curvature may go to zero with a certain rate, but assuming stronger
assumptions on the decay of the curvature. The asymptotic Dirichlet
problem can be solved in some of these manifolds by using barriers at
infinity others than those of Lemma 6.2 (see [6]).
We finally should remark that in dimensions greater than or equal to 3

just an upper bound for the sectional curvature ofM is not enough for the
solvability of the asymptotic Dirichlet problem inM. Indeed, Ancona [1]
and Borbely [2] construct examples of 3−dimensional Hadamard manifolds
with curvature less than or equal to −1 such that if an entire harmonic
function extends continuously to the asymptotic boundary then it is
constant. Holopainen extended Borbely’s example to the p−Laplacian [12]
and in [13] the authors constructed similar counter-examples of manifolds
for a class of partial differential equations that includes the p−Laplacian
and minimal surface equation. Therefore, in these manifolds, because of
Theorem 6.3, the SC condition is not satisfied.



Bibliography

[1] A. Ancona: Convexity at infinity and Brownian motion on
manifolds with unbounded negative curvature, Revista Matemática
Iberoamericana, 10 (1), 189–220,(1994)

[2] A. Borbély: The nonsolvability of the Dirichlet problem on
negatively curved manifolds, Differential Geometry and its
Applications 8, 217–237, 1998.

[3] H. I. Choi: Asymptotic Dirichlet problems for harmonic functions
on Riemannian manifolds, Trans. Am. Math. Soc., 281 (2), 691–
716, (1984)

[4] Jb. Casteras, I. Holopainen, J. Ripoll: On the asymptotic Dirichlet
problem for the minimal hypersurface equation in a Hadamard
manifold, to appear at Potential Analysis

[5] Jb. Casteras, I. Holopainen, J. Ripoll: Asymptotic Dirichlet
problem for A-harmonic and minimal graph equations in Cartan-
Hadamard manifolds, to appear in Communications in Analysis
and Geometry

[6] Jb. Casteras, I. Holopainen, J. Ripoll: Convexity at infinity
in Cartan Hadamard manifolds and applications to asymptotic
Dirichlet and Plateau problems, to appear in Math Z.

[7] P. Eberlein, B. O’Neill: Visibility manifolds, (1973), 45–109.

[8] J. A. Gálvez, H. Rosenberg : Minimal surfaces and harmonic
diffeomorphisms from the complex plane onto certain Hadamard
surfaces, American Journal of Mathematics 132 (5), 1249–1273,
2010.

[9] R. E. Green, H. Wu: Function theory on manifolds which possess
a pole, Vol 699 Lecture Notes in Mathematics. Springer, Berlin,
(1979)

62



Bibliography 63

[10] D. Gilbarg, N. Trudinger: “Elliptic Partial Differential Equations
of Second Order”. Springer, Berlin (1998)

[11] I. Holopainen: Asymptotic Dirichlet problem for the p-Laplacian
on Cartan-Hadamard manifolds, Proc. Amer. Math. Soc. 130
(2002), 3393-3400

[12] I. Holopainen: Nonsolvability of the asymptotic Dirichlet problem
for the p-Laplacian on Cartan–Hadamard manifolds, Adv. Calc.
Var., 9 (2016), no. 2, 163–185

[13] I. Holopainen, J. Ripoll: Nonsolvability of the asymptotic
Dirichlet problem for some quasilinear elliptic PDEs on Hadamard
manifolds, Revista Matemática Iberoamericana, Vol. 31, p. 1107-
1129 (2015)

[14] I. Holopainen, A. Vähäkangas: Asymptotic Dirichlet problem on
negatively curved spaces, J. Analysis 15 (2007), 63-110

[15] G. Lieberman: Boundary regularity for solutions of degenerate
elliptic equations, Nonlinear Analysis, Theory, Method &
Applications, Vol. 12, N. 11, 1203-1219, (1988)

[16] C. B. Morrey Jr.: Multiple Integrals in the Calculus of Variations,
Springer-Verlag, (1964)

[17] M. Rigoli, A. Setti: Liouville type theorems for ϕ−subharmonic
functions, Rev. Mat. Iberoam., 17 (2001), 471 - 520

[18] J. Ripoll, M. Telichevesky: Regularity at infinity of Hadamard
manifolds with respect to some elliptic operators and applications
to asymptotic Dirichlet problems, Trans Am Math Soc, v. 367, p.
1523-1541, (2015)

[19] R. Schoen, S-T Yau: Lectures on Differential Geometry,
International Press, Somerville, Massachusetts, U.S.A (1994)

[20] J. Serrin: The Problem of Dirichlet for Quasilinear Elliptic Differ-
ential Equations with Many Independent Variables, Philosophical
Transactions of the Royal Society of London. Series A, Mathemat-
ical and Physical Sciences, Vol. 264, No. 1153, pp. 413-496, (1969)

[21] Xu-Jia Wang: Interior gradient estimates for mean curvature
equations, maths.anu.edu.au/~wang/publications/1-Gradient-
Esti-Mean-Curv.pdf



64 Jaime Ripoll and Friedrich Tomi

Jaime Ripoll
Federal University of Santa Maria
Federal University of Rio Grande do Sul
Av. Bento Gonçalves 9500, 91501-970 Porto Alegre - RS, Brazil
jaime.ripoll@ufrgs.br

Friedrich Tomi
Heidelberg University
Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
tomi@mathi.uni-heidelberg.de


