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Preface

This collective work originates from the workshop for young researchers
Groups acting on manifolds held in Teresopolis, June 20-24 2016. The
structure of the text respects the format of the event: Aaron Brown was
lecturing about rigidity of smooth group actions, but other talks were
given by young researchers and devoted to explain background notions.
We thank all the participants, whose active presence contributed to a very
pleasant scientific experience. The event was sponsored by the French-
Brazilian Network in Mathematics, CNPq, UFF and EDAIL

Smooth ergodic theory takes a prominent réle in the modern theory of
differentiable dynamical systems. Typically one is interested in studying
iterations of one single map, or a flow; this can be done under many
different aspects, one of the most successful being the description of
statistical behaviors, or the ergodic properties. That is, given a probability
measure which is invariant for the dynamics, one wants to describe the
distribution of the orbits, the typical rates of contraction/expansion, etc.
One of the difficulties, or the richness, is that a given system usually
admits different invariant measures, and for each measure the statistical
descriptions may differ in a significant way. The book [pr3] was giving a
good account of the state of the art about a decade ago (see also [prl,pr27]
as more classical references).

The study of dynamical systems can be enlarged to include also general
group actions on manifolds. This was historically motivated by geometry
and foliation theory, but since the appearance of hyperbolic dynamical
systems, dynamicists found an own interest for it. A starting point for
what will be discussed in this text, goes back to works of Hirsch, Pugh
and Shub [pr18,pr33], where the notion of Anosov action first appeared.
Not all isomorphism classes of groups are adapted to usual dynamical tools,
and one usually restricts the attention to abelian, or amenable groups,
or at least to groups containing “large” abelian subgroups. Compared
to the previous discussion, a first relevant difference for group actions is
that invariant probability measures (for the full group!) in general do not
abound. In Chapter 2, Aaron Brown presents a pioneering result by Katok
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8 M. Triestino

and Spatzier [pr22, pr23| stating that, under suitable hypotheses, invariant
ergodic probability measures for the action of a higher rank abelian group
must be of algebraic nature; see Theorem 2.1.8. Indeed, the main source
of examples of Anosov actions is given by Lie groups, notably by discrete
diagonalizable groups of matrices acting on homogeneous spaces. One
usually refers to these kinds of results as measure rigidity.

The term rigidity here will also refer to a different, but closely related
setting: the so-called Zimmer program. Before explaining it, let us make
a preliminary digression. Instead of discrete groups, we first focus on Lie
groups. The celebrated Montgomery—Zippin theorem [pr30] tells that the
topological structure is intimately connected to geometry; one can go even
further:

Conjecture (Hilbert—Smith). If a locally compact topological group G acts
faithfully on some connected n-manifold M, then G is a Lie group.

This conjecture has been validated only for dimension n < 3 [pr31]
(actually, the conjecture reduces to prove that a group of p-adic integers Z,
admits no faithful actions on manifolds). One may further ask, given a Lie
group G, what is the lowest dimension n(G) such that G admits a faithful
action on a manifold of dimension n? For example, the group PSL(n,R)
acts on the real projective space RP™~!, which is of dimension n— 1, but it
cannot act on a lower dimensional space. In general, for a simple Lie group
G, the optimal lower bound depends on the maximal parabolic subgroup
of G [pr34], but a satisfactory bound can be given in terms of the so-called
(real) rank of G (this is by definition, the dimension of the largest abelian
subalgebra 2 of Lie(G) which satisfies that for every a € %A, the adjoint
operator ad(a) : Lie(G) — Lie(G) is diagonalizable over R, see also Section
4.1.2). Since the fundamental work of Margulis [pr28], it is natural to
consider the same kind of question for lattices (i.e. discrete, finite covolume
subgroups) in simple Lie groups. The so-called Margulis’s superrigidity
roughly states that every linear representation of a lattice of a simple Lie
group of rank > 2 extends to the ambient group (more precisely, modulo
finite subgroups and up to some bounded error, see Theorem 4.3.3),
and therefore all linear representations of lattices are classified. Zimmer
program is about the nonlinear analogue of superrigidity.

Conjecture (Zimmer). Let G be a simple Lie group with rank(G) > 2
and T' a lattice of G. Let M be a closed d-dimensional manifold, and
p : ' - Diff (M) a homomorphism. If d < rank(G) then p has finite
image.

More generally, it is conjectured that a lattice I' € G cannot act (with
infinite image) on a closed manifold whose dimension is lower than the least
dimension n(G) introduced above. For detailed discussions, we recommend



Preface 9

the expository works by David Fisher [pr13,prl4]. Very recently, Aaron
Brown, in collaboration with David Fisher and Sebastian Hurtado, solved
Zimmer’s conjecture [pr4, pr5| (some additional hypotheses are required,
see Theorem 4.2.6). Chapter 4 of these notes discusses the main ingredients
of their work. As for measure rigidity, the theory of nonuniformly
hyperbolic dynamical systems takes the major part. The works by
Ledrappier—Young [pr25, pr26] on the relationship between Lyapunov
exponents and entropy are of notable relevance here. These are very
deep works, but we hope the reader will find a suitable introduction here.
The main notions and results are recalled throughout the text, especially
in Chapter 3 and in the appendices by Bruno Santiago and myself,
Davi Obata, Sébastien Alvarez and Mario Rolddn. Another important
ingredient of similar flavor is the work of Ratner on unipotent flows, but
we do not treat it in detail, as several very good introductions are available
(in primis [pr36]).

One delicate aspect in Zimmer’s conjecture is about regularity: in
[pr4, pr5] the authors require the action to be by C? diffeomorphisms,
that is p(I") c Diff?(M). This is a very mild condition, at least compared
to the previous approaches appearing in the literature, which had strong
requirements such as invariant volume or geometric structures, or the
action to be by real-analytic diffeomorphisms or on low dimensional
manifolds [pr7,pr37,prl2,prl7, pr35, pr6, pra2, prl5, pr16]. We recommend
the beautiful collection of contributions [pr11] for more detailed discussions
on these works (and much more!).

As this text is more focused on smooth ergodic theory and applications
to rigidity properties, we will shortly mention the other aspects of Zimmer’s
conjecture. These include the algebraic properties of Lie groups and their
lattices, especially their rigidity properties. An essential ingredient of
[prd, prb] is the strong property (T), introduced by V. Lafforgue [pr24] and
studied by de Laat—de la Salle [pr8, pr9] which generalizes the more classical
Kazhdan’s property (T) [pr2] and is also enjoyed by lattices in higher-
rank simple Lie groups. Very roughly, strong property (T) is a machine
to produce invariant vectors for representations as operators of Banach
spaces, and is used by Brown-Fisher—-Hurtado to reduce the nonlinear
problem to a linear one, and then apply superrigidity.

Finally, in Chapter 5, Aaron Brown discusses further rigidity results
that rely on tools of smooth ergodic theory, and which are, in some
sense, extensions of Katok—Spatzier [pr22, pr23| discussed in the first part.
First, he reviews theorems by Kalinin, Katok and F. Rodriguez-Hertz
[pr19, pr21, pr20] about rigidity problems for non-uniformly hyperbolic Z?
actions on general 3-manifolds. Secondly Cartan flows, which constitute
an other important class of Anosov actions, are treated. = Among
these, a classical example is the action of the group A < SL(3,R)
of diagonal matrices with positive entries, on the homogeneous space
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X = SL(3,R)/SL(3,Z), which has dimension 8. An analogue of Katok—
Spatzier result in this setting is motivated by a conjecture by Margulis (see
[pr29]) that A-invariant ergodic measures should be algebraic: this was
solved by Einsiedler-Katok-Lindenstrauss [pr10] for measures of positive
entropy.

Sections that are not required for the rest of the text or that may be
skipped on first reading are marked by an asterisk k.

Michele Triestino (editor)
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Chapter 1

Introduction

1.1 Groups acting on manifolds and rigidity
programs

In the classical theory of dynamical systems, one typically studies actions
of 1-parameter groups: Given a compact manifold M, a diffeomorphism
f: M — M generates an action of the group Z; a smooth vector field
X on M generates a flow ¢': M — M or an action of the group R.
However, one might consider groups more general than Z or R acting on
a manifold M. Natural families of group actions arise in many geometric
and algebraic settings and the study of group actions connects many areas
of mathematics including geometric group theory, representation theory,
Lie theory, geometry, and dynamical systems.

This text focuses on various rigidity programs for group actions.
Roughly, such rigidity results aim to classify all actions or all invariant
geometric structures (such as closed subsets, probability measures, etc.)
under

1. suitable algebraic hypotheses on the acting group, and/or
2. suitable dynamical hypotheses on the action.

This text primarily takes the first approach: under certain algebraic
conditions on the acting group, we establish certain rigidity properties
of the action. Specifically, we will consider actions of various higher-rank
discrete groups: higher-rank, torsion-free abelian groups Z* for k > 2 or
lattices I" in higher-rank simple Lie groups such as I' = SL(n, Z) for n > 3.
At times we impose certain dynamical hypotheses as well. In particular,
in Chapter 2 we consider certain families of algebraic Anosov actions and
will discuss more general results on Anosov actions in this introduction.

12



Chapter 1. Introduction 13

Neither this introduction nor this text as a whole gives a comprehensive
account of rigidity results for group actions on manifolds. (For instance,
we do not discuss the vast literature and many recent results concerning
group action on the circle S'. See, however [160].) Our goal is rather to
give detailed proofs (in simplified examples) of a small number of rigidity
theorems coming from higher-rank dynamics and to present the necessary
background and constructions in smooth ergodic theory required for these
proofs. This introduction aims to give context to these results and give the
reader some familiarity with broader rigidity programs in the literature.

1.1.1 Smooth group actions

Let M be a compact manifold without boundary and denote by Diff" (M)
the group of C" diffeomorphisms f: M — M. Recall that if » > 1 is not
an integer then, writing

r=k+pB forkeNandge(01),

we say that f: M — M is C" oris C**# if it is C* and if the kth derivatives
of f are p-Holder continuous.

For r = 1, the set Diff" (M) has a group structure given by composition
of maps. Given a (typically countably infinite, finitely generated) discrete
group I', a C™ action of I on M is a homomorphism

a: T'— Diff" (M)

from the group I into the group Diff” (M); that is, for each v € T the image
a(v) is a C" diffeomorphism a(v): M — M and for x € M and 1,72 € T’
we have

a(m2)(x) = a(y)(a(r2)(@)).

If the discrete group I is instead replaced by a Lie group G, we also require
that the map G x M — M given by (g,2) — a(g)(z) be C".

If vol is some fixed smooth volume form on M (which we always
normalize to be a probability measure) we write Diff} (M) for the group
of C"-diffeomorphisms preserving vol. A classical result of Moser ensures
the vol is uniquely defined up to a smooth change of coordinates [154].
A volume-preserving action is a homomorphism a: I' — Diff, (M) for
some volume form vol.

As discussed above, actions of the group of integers Z are generated
by iteration of a single diffeomorphism f: M — M and its inverse. For
instance, given an integer n > 1, the diffeomorphism «(n): M — M is
defined as the nth iterate of f: for zx € M

a(n)(z) = f"(x) == fofo---of(x)
-

n times
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Given a manifold M, any pair of diffeomorphisms f, g € Diff (M) naturally
induces an action a: Fy — Diff(M) of the free group on two generators
F, = {a,b)y which is uniquely defined by the conditions «(a) = f and
a(b) = g. If a pair of diffeomorphisms f: M — M and g: M — M
commute, we naturally obtain a Z?-action a: Z? — Diff(M) given by

a(n,m)(z) = f"og™ ().

1.1.2 Rigidity of Anosov diffeomorphisms

As a prototype for general rigidity results discussed below, we recall certain
rigidity properties exhibited by Anosov diffeomorphisms f: M — M. We
first recall the definition of an Anosov diffeomorphism.

Definition 1.1.1. A C! diffeomorphism f: M — M of a compact
Riemannian manifold M is Anosov if there is a D f-invariant splitting
of the tangent bundle TM = E*® E* and constants 0 < k < 1and C > 1
such that for every x € M and every n € N

[ Dy f"™(v)| < Ce™|v| for all v e E°(x)
| D, f~"(w)| < Cr"™||w| for all w e E"(x).
As a primary example, consider a matrix A € GL(n,Z) with all

eigenvalues of modulus different from 1. Then, with T" := R"/Z" the
n-torus, the induced toral automorphism L 4: T™ — T™ given by

La(x +2Z") = Az + Z"
is Anosov. More generally, given v € T™ we have f: T™ — T™ given by
f(z) = La(z) +v

is an affine Anosov map. In dimension 2, a standard example of an

Anosov diffeomorphism is given by L4: T? — T? where A is the matrix
S
1 1)

As a prototype for local rigidity results, it is known (see [5, 155],

[114, Corollary 18.2.2]) that Anosov maps are structurally stable: if

f is Anosov and g is C" close to f then g is also Anosov and there is a
homeomorphism h: T™ — T" such that

hog= foh. (1.1.1)

The map h is always Holder continuous but in general need not be C! even
when f and g are C® or real-analytic. The map h in (1.1.1) is called a
topological conjugacy between f and g.
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All known examples of Anosov diffeomorphisms occur on finite factors
of tori and nilmanifolds. From [86,142] we have a complete classification—
a prototype global rigidity result—of Anosov diffeomorphisms on tori
(as well as nilmanifolds) up to a continuous change of coordinates: If
f: T™ — T™ is Anosov, then f is homotopic to L4 for some A € GL(n,Z)
with all eigenvalues of modulus different from 1; moreover there is a
homeomorphism hA: T™ — T"™ such that

hof=Ljoh.

Again, the topological conjugacy h is Holder continuous but need not be
C'. Conjecturally, all Anosov diffeomorphisms are, up to finite covers,
topologically conjugate to affine maps on tori and nilmanifolds.

1.1.3 Actions of higher-rank lattices and the Zimmer
program

A principal family of discrete groups considered in this text are lattices I’
in (typically higher-rank, see Section 4.1.2) simple Lie groups G. That is,
we consider discrete subgroups I' € G such that G/T" has finite volume.
Examples of such groups include I' = SL(n, Z) where G = SL(n,R) (which
is higher-rank if n > 3). It is well known that the matrices

(o 7)m(5Y)

freely generate a finite-index subgroup of SL(2,Z) and thus the free group
F; is a lattice subgroup of G = SL(2,R) (which has rank 1.) See Section
4.1.1 for background and additional details.

Linear representations

To motivate the results and conjectures concerning smooth actions of such
T, first consider the setting of linear representations p: I' — GL(d,R).
A linear representation 7: Z — GL(d,R) of the group of integers is
determined by a choice of a matrix A € GL(d,R); similarly, a linear
representation 7: Fy — GL(d,R) of the free group F is determined by
a choice of a pair of matrices A, B € GL(d, R). These representations may
be perturbed to non-conjugate representations 7.

In contrast, for groups such as I' = SL(n,Z) for n > 3 (and
other lattices T' in higher-rank simple Lie groups), linear representations
m: I' - GL(d,R) are very rigid as demonstrated by various classical
results including [143,147, 156,166, 187,204]. For instance, for cocompact
I' c SL(n,R), local rigidity results in [187,204] established that any
representation 7: I' — SL(n,R) sufficiently close to the inclusion ¢: ' —
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SL(n,R) is conjugate to ¢. A cohomological criterion for local rigidity of
general linear representations 7: I' —> GL(d, R) was given in [205], further
studied in [151,171], and is known to hold for lattices in higher-rank simple
Lie groups. Margulis’s superrigidity theorem (see Theorem 4.3.3 below and
[147]) establishes that every linear representation 7: I' - GL(d, R) extends
to a representation 7: SL(n,R) — GL(d,R) up to a “compact error;” this
effectively classifies all representations I' — GL(d,R) up to conjugacy.

Smooth actions of lattices

As in the case of linear representations, actions of Z or F5 on a manifold
M are determined by a choice of diffeomorphism f € Diff" (M) or pair of
diffeomorphisms f, g € Diff" (M ). Such actions may be perturbed to create
new actions that are inequivalent under continuous change of coordinates.
In particular, there is no possible classification of all actions of Z or Fy
on arbitrary manifolds M. The free group on two generators F; and
the group SL(2,Z) (which contains a finite-index subgroup isomorphic
to Fy) are isomorphic to lattices in the Lie group SL(2,R). Both Fj
and SL(2,Z) admit many actions that are “non-algebraic” (i.e. not built
from modifications of algebraic constructions) and the algebraic actions of
such groups often display less rigidity then actions of higher-rank groups.
For instance, there exists a l-parameter family of deformations of the
standard SL(2, Z)-action on the 2-torus T? such that no continuous change
of coordinates conjugates the deformed actions to the original affine action.
See Examples 4.1.11 and 4.1.12 for further discussion.

However, as in the case of linear representations, the situation is
expected to be very different for actions by lattices in SL(n,R) for n > 3
and other higher-rank simple Lie groups. In particular, the Zimmer
program refers to a collection of conjectures and questions which roughly
aim to establish analogues of rigidity results for linear representations
m: ' - GL(d,R) in the context of smooth (often volume-preserving)
actions

a: ' — Diff* (M)

or “nonlinear representations”. In particular, it is expected that all
nonlinear actions a: I' — Diff" (M) are, in some sense, of “an algebraic
origin”. We note that genuinely “non-algebraic” actions exist; see for
instance the discussion in Example 4.1.10 and [78, Sections 9, 10]. Thus,
a complete classification of all actions of higher-rank lattices up to smooth
conjugacy is impossible. However, it seems plausible that certain families
of actions (Anosov, volume-preserving, low-dimensional, actions on specific
manifolds, actions preserving a geometric structure, etc.) are classifiable
and that all such actions are constructed from modifications of standard
algebraic actions. See Section 4.1.3 for examples of standard algebraic
actions. We refer to the surveys [76,78,79,128] for further discussion on
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various notions of “algebraic actions,” the Zimmer program, and precise
statements of related conjectures and results.

For volume-preserving actions, the primary evidence supporting
conjectures in the Zimmer program is Zimmer’s superrigidity theorem for
cocycles, Theorem 4.3.2 below. This extension of Margulis’s superrigidity
theorem (for homomorphisms) shows that the derivative cocycle of any
volume-preserving action a: I' — Diff|, ;(M) is—up to a compact error
and measurable coordinate change—given by a linear representation I' —
GL(d,R).

Actions in low-dimensions

Precise conjectures in the Zimmer program are easiest to formulate for
actions in low dimensions. See in particular Questions 4.2.1. For instance,
if the dimension of M is sufficiently small, Zimmer’s conjecture states
that all actions should have finite image (see Definition 4.1.4). See
Conjectures 4.2.2 and 4.2.3 for precise statements of this conjecture. Early
results establishing this conjecture in the setting of actions the circle
appear in [42,93,208] and in the setting of volume-preserving (and more
general measure-preserving) actions on surfaces in [87,88,165]. See also
[92] and [74] for results on real-analytic actions and [44,46,47] for results on
holomorphic and birational actions. There are also many results (usually in
the C° setting) for actions of specific lattices on manifolds where there are
topological obstructions to the group acting; a partial list of such results
includes [29,30,162,206,207,211,212,221]. Chapter 4 of this text presents
recent progress towards this conjecture made in [34].

Local rigidity

Beyond the finiteness of actions in low dimensions, there are a number of
local rigidity conjectures that aim to classify perturbations of non-finite
actions. We recall one common definition of local rigidity of a C® group
action:

Definition 1.1.2. An action a: I' — Diff®(M) of a finitely generated
group I is said to be locally rigid if, for any action &: I' — Diff* (M)
sufficiently C'-close to «, there exists a C* diffeomorphism h: M — M
such that

hoda(y)oh™ = a(y) for all y e T. (1.1.2)

In Definition 1.1.2, using that I is finitely generated, we define the C!
distance between o and & to be

max{dci (a(y),a(y)) | v € F}

where F' < T is a finite, symmetric generating subset.
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Local rigidity results have been established for actions of higher-rank
lattices in many settings. For instance, local rigidity is known to hold for
isometric actions by [18,83]. In the non-isometric setting, local rigidity
has been established for affine Anosov actions.

Definition 1.1.3. We say an action a: I' — Diff (M) is Anosov if a(y)
is an Anosov diffeomorphism for some v € I'.

See Example 4.1.5 and Remark 4.1.6 for examples of affine Anosov actions
of lattices on tori.

For Anosov actions, note that while structural stability (1.1.1) holds for
individual Anosov elements of an action, local rigidity requires that the
map h in (1.1.2) intertwines the action of the entire group I'; moreover,
unlike in the case of a single Anosov map where h is typically only Holder
continuous, we ask that the map A in (1.1.2) be smooth.

There are a number of results establishing local rigidity of affine Anosov
actions on tori and nilmanifolds including [94,98,116,118,167,170]. The
full result on local rigidity of Anosov actions by higher-rank lattices was
obtained in [124, Theorem 15]. See also related rigidity results including
[98] for results on deformation rigidity and [98, 100, 136, 168] for various
infinitesimal rigidity results. Additionally, see [84,149] for local rigidity of
closely related actions and [112] and [124, Theorem 17] for results on the
local rigidity of projective actions by cocompact lattices.

Global rigidity

Beyond the study of perturbations, there are a number of conjectures
and results on the global rigidity of smooth actions of higher-rank
lattices. Most global rigidity results in the literature focus on various
families of Anosov actions. (Though, see Conjecture 4.2.5 for a global
rigidity conjecture that is not about Anosov actions.) Such conjectures and
results aim to classify all (typically volume-preserving) Anosov actions by
showing they are smoothly conjugate to affine actions on (infra-)tori and
nilmanifolds. See for instance [75,85,94,98,117,118,149, 169] for various
global rigidity results for Anosov actions.

Recently, [41] gave a new mechanism to study rigidity of Anosov actions
on tori; in particular, it is shown in [41] that all Anosov actions (satisfying
a certain lifting condition which holds, for instance, when the lattice is
cocompact) of higher-rank lattices are smoothly conjugate to affine actions,
even when the action is not assumed to preserve a measure. This provides
the most general global rigidity result for Anosov actions on tori and
nilmanifolds.
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1.1.4 Actions of higher-rank abelian groups

In Chapter 2, the discrete groups we consider are higher-rank abelian
groups of the form Z* for & > 2. We focus on certain affine Anosov
actions and aim to classify all invariant measures for such actions.

Recall that Anosov diffeomorphisms f: T? — T¢ on tori are classified
up to continuous changes of coordinates. Such maps f leave invariant
many closed subsets and probability measures on T? of intermediate
dimension. (See Proposition 2.1.1 and nearby discussion.) For Anosov
actions (satisfying certain non-degeneracy conditions) of higher-rank
abelian groups ZF, a number of rigidity results show that properties of
higher-rank actions are strikingly different from actions of a single Anosov
diffeomorphism. We outline some of these results known to hold in this
setting:

1. Local rigidity results—in which perturbations of affine Anosov
actions are smoothly conjugate to the original actions—have been
established in [116,122,124] with the most general results appearing
in [62]. A partial list of related local rigidity results in the setting of
partially hyperbolic actions includes [51,52,196,197,201, 202].

2. Global rigidity results—in which all Anosov actions on tori and
nilmanifolds are shown to be smoothly conjugate to affine actions—
have been established in [53, 80, 81, 109-111, 178] with the most
complete result being [179]. Under strong dynamical hypotheses,
a number of these results including [53, 109, 110] establish global
rigidity results without any assumption on the underlying manifold.

3. Results classifying all invariant sets (such as showing all closed
invariant sets are finite or all of M) including Furstenberg’s theorem
([89], Appendix A, and Theorem 2.1.2 below) and [20].

4. Measure rigidity results—in which all ergodic, invariant Borel
probability measures with positive entropy are shown to be algebraic
or smooth—have been established in a number of settings including
Theorems 2.1.5 and 2.1.8 discussed below and in [66, 123, 183].
See also [106, 108] for versions of these results in non-linear and
non-uniformly hyperbolic settings (discussed in Section 5.1) and
[63-65, 67] for related results for diagonal actions on homogeneous
spaces (discussed in Section 5.2.)

1.1.5 Rigidity and classification of orbit closures and
invariant measures

A direction which is not pursued in this text concerns actions of groups
I" with much less structure than those considered above. As a prototype,
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one should consider I' = F3, the free group on two generators. Instead
of studying all actions of such groups, one might consider families
of actions arising from geometric or algebraic constructions or actions
satisfying certain dynamical properties. The aim is then to classify
certain dynamically defined objects, such as orbit closures and invariant
(or stationary) measures, by showing that such objects are smooth or
homogeneous.

Consider a discrete group I' and an action «: I' — Diff"(M) on a
compact manifold M. Given x € M the orbit of z is

Oy :={a(y)(x) :ve T}

and the orbit closure of z is O,, the closure of O, in M. A probability
measure g on M is I'-invariant if for all v € T' and Borel measurable
B c M we have

w(B) = p(a(y1)(B)).
Given a probability measure v on the acting group I', we say that a

probability measure g on M is v-stationary if for all Borel measurable
B < M we have

n(B) = | oty (B) ().

That is, p is v-stationary if it is “invariant on average”. While an action
might not admit invariant measures (for instance if the group I' is non-
amenable), for any measure v on I' there always exists at least one v-
stationary measure (assuming M is compact and the action is C°.)

For a diffeomorphism f: M — M exhibiting strong hyperbolicity
properties, there always exist orbit closures that are Cantor sets (of
intermediate Hausdorff dimension) and singular invariant probability
measures supported on these Cantor sets. This holds, for instance, if f is
Anosov or preserves an invariant measure with no Lyapunov exponent
equal to zero; see Proposition 2.1.1 and nearby discussion as well as
[26,113]. Similarly, singular orbit closures and invariant or stationary
measures may appear for actions of free groups.

However, there are a number of extremely influential results establishing
homogeneity of orbit closures and invariant measures in certain
homogeneous or affine settings. An extremely important setting in
which such a program was carried out is Raghunathan’s conjecture (see
[65, pg. 358]) on the homogeneity of orbit closures for unipotent flows
on homogeneous spaces. Important special cases of this conjecture were
established in many papers including [27,54-56, 59,90, 193]. Classification
of orbit closures was central to Margulis’s proof of the Oppenheim
conjecture [145,146] and later results of Dani and Margulis [57,58]. The
full conjecture on the homogeneity of all orbit closures and invariant
measures for unipotent flows was established by Ratner in a series of papers
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[173-176]. Similar results in more general homogeneous spaces and using
different techniques were obtained in [150].

More recently, there have been a number of breakthroughs in the setting
of homogeneous dynamics and Teichmiiller dynamics where new techniques
are developed to classify orbit closures and invariant and stationary
measures for certain families of group actions. In these settings, a number
of common rigidity properties of an action a:: I' — Diff (M) are established:

1. Stiffness of stationary measures: all v-stationary measures are I'-
invariant (for a finitely supported measure v whose support generates
r).

2. Rigidity of invariant measures: all ergodic, I'-invariant measures
are a volume on a ‘nice’ (e.g. homogeneous, affine, or smooth)
submanifold.

3. Rigidity of orbit closures: all orbit closures are ‘nice’ submanifolds.

In a homogeneous setting, one may consider the natural action (see
Example 4.1.5) of a subgroup I" of SL(n, Z) on the torus T™. In [95,96,158]
closed invariant sets were classified under various hypotheses on the acting
group. Assuming certain algebraic properties of the group I, in [25]
and [14] all stationary measures are shown to be either supported on a
finite set or are the Lebesgue volume on T™ and hence are I'-invariant;
moreover, every orbit is either finite or dense. Similar results appear in
[14] for groups of translations on homogeneous spaces and under weaker
hypotheses (which allow for orbit closures to be finite unions of proper
homogeneous submanifolds) in [15,16]. See also [185] for an application
of the method from [15] to a certain non-volume-preserving homogeneous
action and the recent preprint [70] that extends many of the above results
with fewer algebraic conditions.

In Teichmiiller dynamics, an affine but non-homogeneous action of
SL(2,R) (the natural SL(2,R)-action on a stratum H(x) in the moduli
space of abelian differentials on a surface) is studied in the breakthrough
work [71]. For the action of the upper-triangular subgroup P < SL(2,R)
and for certain measures v on SL(2,R), the P-invariant and v-stationary
measures are shown in [71] to be SL(2, R)-invariant and to coincide with
natural volume forms on affine submanifolds. This classification of P-
invariant measures is used in [72] to show that P- and SL(2,R)-orbit
closures are affine submanifolds.

In inhomogeneous settings, there are a number of families of actions
for which a classification of orbit closures and invariant measures is both
expected and desired. Such a classification was attained for nonlinear
group actions on surfaces (satisfying certain dynamical hypotheses) in [38].
Analogous results are expected to hold in higher-dimension.
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1.1.6 Common themes

We end this introduction by outlining two common themes that recur
throughout this text.

Entropy, exponents, and the geometry of conditional measures

The first major theme that runs throughout this text is the relationship
between metric entropy, Lyapunov exponents, and the geometry of
measures along foliations and orbits. The most basic relationship between
these quantities is expressed in Lemmas 2.2.6 and 3.2.4 which, for C? (or
C'*8) diffeomorphisms, characterizes measures with zero metric entropy
precisely as those measures whose conditional measures along unstable
Pesin manifolds are purely atomic.

For measures with positive entropy but failing to attain equality
in the Margulis-Ruelle inequality (Theorem 3.2.6(1) below), the
Ledrappier—Young entropy formula (Theorem 3.2.7 below) gives a very
general relationship between the geometry of conditional measures on
unstable manifolds (specifically, the transverse dimension relative to the
stratification into fast unstable manifolds), Lyapunov exponents, and
metric entropy.

Our principal interest is in measures which attain equality in the
Margulis—Ruelle inequality. (At times we will also be interested in
measures that attain the maximal value for entropy conditioned along
some expanding foliation or orbit of a group; see Definition 3.2.3 and
(3.3.3), page 76.) For such measures, Ledrappier and Ledrappier—Young
showed (see Theorem 3.3.3, and (3.2.3), page 68) that conditional measures
along unstable manifolds are absolutely continuous with respect to the
Riemannian volume. Moreover, Ledrappier explicitly computes the density
function of the conditional measures; in the case that the foliation and its
dynamics are homogeneous, this yields invariance of the measure along the
foliation. See Proposition 2.4.8 and Theorem 3.3.5.

Deriving invariance of a measure from entropy considerations underlies
the “invariance principle” for linear cocycles in [131] and its extension to
Cl-cocycles in [6]. It is one of the key ideas in the classification theorem
of Margulis and Tomanov [150] extending and giving some alternative
arguments to Ratner’s measure classification theorem. See for example
discussion in [209, Section 5.6]. Related entropy arguments are used in
[71]. The relationship between entropy and the geometry of conditional
measures also plays a key role in [64, 65].

In this text, we use the relationship between entropy and geometry of
conditional measures in our proofs of Theorem 2.1.8 and Theorem 4.6.1
(and its extension in Proposition 4.6.5.) In our proof of Theorem 2.1.8,
we use Proposition 2.4.8 (as well as the fact that all foliations considered
are one-dimensional) to simplify certain arguments from [123]. In the
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proofs of Theorem 4.6.1 and Proposition 4.6.5, we use Theorem 3.3.5 to
obtain invariance of certain measures under a group action by studying
the entropy conditioned along the orbits of the group.

Linear functionals and higher-rank dynamics

In the proofs of the rigidity results considered in this text, we always
reduce part of the proof to studying dynamics of higher-rank groups of the
form R¥ for k > 2. The proofs of Theorems 2.1.8, 4.2.4, 4.2.6, and 4.6.1
all use similar tricks that rely on the fact that R¥ is higher-rank when
k > 2. To each action of R*, we will associate certain dynamically defined
linear functionals. In the proof of Theorem 2.1.8, these are the Lyapunov
exponents. In the proofs of Theorems 4.2.4, 4.2.6, 4.6.1 these are the
fiberwise Lyapunov exponents and the roots of the Lie algebra (where
R* ~ A is the maximal split Cartan subgroup of diagonal matrices).

The higher-rank tricks we employ are all variations on the following
trivial fact: if \: R¥ — R is a non-zero linear functional and if k > 2, then
there exists so € R¥ with so € ker()\) and s # 0. In the proof of Theorem
2.1.8, the selection of such a sy ensures there exists nontrivial dynamics
acting isometrically along a dynamical foliation (see Lemma 2.5.2.) In the
proofs of Theorem 4.2.4 and Theorem 4.6.1, the higher-rank assumption
and the low-dimensionality of the fiber ensures we may find a nontrivial
so for which all fiberwise Lyapunov exponents vanish (see (4.6.1), page
105.) In the proof of Theorem 4.2.6, we use that if A, 3: R¥ — R are non-
proportional, non-zero linear functionals then we may select sy € R* such
that sg € ker 8 and A(sg) > 0. When A is a fiberwise Lyapunov exponent
(for some RF-invariant measure) and 3 is a root, this implies that s is
centralized by a unipotent root subgroup and we can average (the measure)
over this subgroup to obtain a new fiberwise Lyapunov exponent (for a new
measure) \': R¥ — R with ) (sg) > 0. See Claim 4.9.1 and the proof of
Proposition 4.8.2 in Section 4.9.4.
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Chapter 2

Rudolph and
Katok—Spatzier measure
rigidity theorems

2.1 Furstenberg’s conjecture; theorems by
Rudolph and Katok—Spatzier

2.1.1 Furstenberg conjecture

Let S! = R/Z be the additive circle. Note that for k € {2,3,4,...} the
map
Myp: xr— kx mod 1

is an expanding map of S*. The following properties of M}, are well known.
For instance, using that Mj is uniformly expanding for k£ > 2, one may
pass to a symbolic extension and derive such properties using symbolic
dynamics of the full k-shift.

Proposition 2.1.1. For k€ {2,3,4,...} there exist

1. uncountably many mutually disjoint, closed, invariant subsets A
Sl .
2. uncountably many ergodic, My -invariant Borel probability measures

w with positive metric entropy h,(My).

Analogous results hold for Anosov diffeomorphisms and Axiom A
systems [26] and for any C'*#-diffeomorphism of a surface with positive
topological entropy [113].

24
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Note that each map M), generates an action of the semigroup Ny on S?.
In [89] Furstenberg considered the action of the semigroup N2 generated
by

z—2r modl, z+— 3z modl.

Theorem 2.1.2 (Furstenberg’s theorem [89]. See Appendix A). The only
closed subsets of S* that are invariant under both

x—2r modl, z+— 3z modl

are finite subsets (of rational numbers) or all of S*.

In [20], Berend extended Furstenberg’s result to subsets of tori invariant
under certain abelian groups of automorphisms. (See also [203] for further
discussion on higher-rank abelian actions of toral automorphisms and
[14-16,25,95,96,158] for results concerning actions by toral automorphisms
of more general groups.)

Note that both generators z — 2z mod 1 and z — 3z mod 1 preserve
the Lebesgue measure m on S'. Thus, m is invariant under the action of
the semigroup N2 generated by My and M3. Also, for any rational point
p/q mod 1 € Q/Z, the orbit of p/q under the action of N2 is finite and
there exists an NZ-invariant measure supported on finitely many points of
this orbit.

From Theorem 2.1.2 and the above observations, it is natural to
conjecture the following.

Conjecture 2.1.3 (Furstenberg’s conjecture). The only ergodic, Borel
probability measure on S* that is invariant under both

r—2xr modl, z~—3xr modl

is either supported on a finite set (of rational numbers) or is the Lebesgue
measure on S*.

Remark 2.1.4. In Conjecture 2.1.3, the word ergodic means ergodic for
the semi-group action generated by My and Mjs. That is, if p is an Ms-
and Ms-invariant measure, then p is ergodic if any measurable set D < T3
satisfying

M;YD)=D  M;Y(D)=D

has either (D) = 1 or (D) = 0. It is possible that u is ergodic for the
NZ-action but not ergodic for either of the generators My or Ms.

2.1.2 Rudolph’s theorem

Conjecture 2.1.3 remains open. Building on previous results (specifically
[141] and [103]), Rudolph obtained what is still the optimal partial
resolution of Conjecture 2.1.3.
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To state the result, we refer to the definition of metric entropy h,,(f) for a
p-preserving transformation f defined in Section 3.2.1 below. If f: X — X
is a continuous transformation of a compact metric space and if p is an f-
invariant measure supported on a finite set then the metric entropy h,,(f)
is zero. The converse need not hold; indeed using symbolic dynamics one
can build measures p on S! that are ergodic and invariant under Mo,
satisfy h, (M) = 0, and have no atoms and hence have infinite support.
Explicit examples of such measures include measures supported on infinite
minimal subshifts with zero topological entropy such as Sturmian subshifts
and Morse-Thue (and more general substitution) subshifts; see [137, §13.7].

In [183], Rudolph resolved Conjecture 2.1.3 except, possibly, for zero
entropy measures with infinite support.

Theorem 2.1.5 ([183]). The only ergodic Borel probability measure on S*
that is invariant under both

My: z—2x modl and Ms: xz— 3xr mod1

and satisfies
hu(Mg) >0 or hH(Mg) >0

is the Lebesque measure on S*.

2.1.3 Katok—Spatzier reformulation

A minor technical nuisance in studying Furstenberg’s conjecture is that
the action is noninvertible. That is, the maps

rz—2r modl, x+— 3xr mod]l

generate an action of the semigroup N2 rather than the action of a group.
By passing to the natural extension solenoid one can induce an action of
the group Z? that contains the NZ-action as a topological factor.

One can view the natural extension solenoid as an analogue of
3-dimensional torus except that the solenoid has non-Archimedean
directions. A. Katok proposed studying a related action on a more familiar
space: the action of two commuting (hyperbolic) automorphisms of T3.
One then naturally obtains a version of Furstenberg’s conjecture for Z*-
actions by automorphisms of tori and solenoids of arbitrary dimension. A
generalization of Rudolph’s theorem under a number of hypotheses was
established in this setting by Katok and Spatzier [123,125].

We will focus on the following concrete example which demonstrates
many of the ideas in the paper [123].

Example 2.1.6. Let

A=

— N W
— N DN
==

2 1 1
. B=|120| (2.1.1)
10 1
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One verifies the following properties of A and B:
Claim 2.1.7.

1. det A = det B = 1 so A and B preserve the orientation on R® and
the integer lattice 73;

2. A has 3 distinct real eigenvalues
Xa>1>x4> x4 >0
3. B has 3 distinct real eigenvalues
XB > Xp > 1> x5 >0;

4. A and B commute: AB = BA;
5. A*B* = 1d only when k = ¢ = 0.

As A and B commute and are diagonalizable over R, they are jointly
diagonalizable. The enumerations of the eigenvalues of A and B are chosen
so that x% and x% correspond to the same joint eigenvector; see (2.2.1)
below.

Since both A and B preserve the integer lattice Z3 — R3, they induce
diffeomorphisms

La: T3 — T3, Lp: T3 - T3

where T? is the quotient group T3 = R3/Z3 and L4: T? — T3 is the
automorphism
La: (v + 7% — Az + 73

Note that each of the diffeomorphisms L4: T3 — T% and Lg: T? — T3 is
an Anosov diffeomorphism.

The maps L4 and Lp generate a Z2-action a: Z2? — Diff(T3) on the
3-torus given by

a(ny,ne) (x) = L% (L% (x)) = L7 (L% (2)) = Lam g ().

Note that given any Z-action, any homomorphism ¢ : Z2 — Z induces a
“fake” Z2-action where the kernel of 1 acts trivially. Claim 2.1.7(5) ensures
the action « is not of this form; that is, « is a “genuine” Z>2-action.

In [123,125], Katok and Spatzier proved a generalization of Rudolph’s
theorem for Z*-actions on tori and solenoids generated by automorphisms
under a number of technical hypotheses. These hypotheses are satisfied by
the action in Example 2.1.6. We note that some of these hypotheses were
later removed in [66]. The main result from [123] applies to the action
constructed in Example 2.1.6 and yields the following natural analogue of
Rudolph’s Theorem, Theorem 2.1.5.
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Theorem 2.1.8. Let La,Lg: T2 — T3 be as in Example 2.1.6. Then,
the only ergodic, Borel probability measure i on T3 that is invariant under
both La and Lp and satisfies

hy(La)>0 or hy,(Lp)>0
is the Lebesque measure on T3.

The rest of this chapter will be devoted to proving Theorem 2.1.8. For
a more concise yet complete proof of this result, see [105, Section 2.2].

Remark 2.1.9. To generalize the action constructed from Example 2.1.6,
let A € GL(d,Z) be a matrix whose characteristic polynomial is irreducible
over Q and has d distinct real roots. It follows from Dirichlet’s unit
theorem (see [115, Proposition 3.7]) that the centralizer of A in GL(d,Z)
contains Z~! as a subgroup of finite index. Let a: Z4~' — Diff(T9) be
the induced action. See [115], where such actions of Z%~! on T? are called
Cartan actions, for further discussion.
The proof we present of Theorem 2.1.8 adapts to show the following.

Theorem 2.1.10 ([123]). For d > 3 and any Cartan action o: 24~ —
Diff(T?) as above, any ergodic, a-invariant Borel probability measure p on
T with

hu(am)) >0

for some n € Z91 is the Lebesque measure on T%.

2.2 Reductions in the proof of Theorem 2.1.8

2.2.1 Lyapunov exponent functionals

Let A and B be as in Example 2.1.6. Since the eigenvalues of A and B
are distinct real numbers, A and B are diagonalizable over R. Moreover,
since A and B commute, they are jointly diagonalizable; that is there is a
Q@ € GL(3,R) such that

xa 0 0 X5 0 0
QA= 0o % o0 |, Q'BQ= 0 x% 0 |. (221
0 0 % 0 0 X3

For 1 < j < 3, let Ej denote the jth joint eigenspace of A and B
(corresponding to x7’, and x7.) As each A and B is irreducible over Q,
the eigenspaces E7 are totally irrational: if v e E* \ {0} has coordinates
v = (v1,v9,v3) then vy, ve, and vs are linearly independent over Q.

It is more convenient at times to work with the logarithm of the
eigenvalues of A and B. For j € {1,2,3} let

Ny =log(x), X =log(xp).
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Note that for any (ng,ns) € Z? we have

()™ (xi)™ 0 0
Q lAMBMQ = 0 (A" (x5)"™ 0
0 0 ()™ (x3)"
e"l)‘}é+”2>‘}3 0 0
- 0 niA4 +nary 0
€
0 0 enl)\iJrng)\%

For any (ny,ns) € Z2, the subspace E is an eigenspace for A" B"2. Let
X’ (n1,n2) be the eigenvalue of A™ B"2 corresponding to the eigenspace
EJ. We have

log(x? (n1,n2)) = NNy + naXj.
Thus, the map M : Z? — R given by

M (n1,n2) = log(x? (n1,ng)) = nlx\i, + ng)\fg

is additive. In particular, each A extends to a linear functional A/ : R? —
R.

Definition 2.2.1. The linear functionals M: R? — R are called the
Lyapunov exponent functionals for the action a.

2.2.2 Stable, unstable, and Lyapunov foliations of T3

Note that R? acts by translation on T? as does any vector subspace V' < R3.
For 1 < j < 3 and any = € T3 let W7 (z) denote the orbit of x under
translation by elements of the vector subspace E7:

Wi(z)={z+v:ve E}.

The sets W7 (x) form a foliation of T3 by lines. We call W(x) the jth
Lyapunov manifold through x and call the corresponding foliation the
jth Lyapunov foliation. Note that if 2’ € W7 (x) with 2/ = x+v for some
v € EJ then for any (n1,n2) € Z% we have a(nq,na)(2') € W (a(ny,n2)(z))
and

a(n1,n2)(2') = a(ni,ng)(x) + N )

V.

In particular, the action by a(ni,ng) dilates distances in W/-leaves by
exactly et (m1:72)
Given (0,0) # (n1,n2) € Z?, let
E; = @ FE andE} = P F

(711,712) (n17n2)
I (nl,n2)<0 )\j(nl,ng)>0
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be the stable and unstable subspaces for the matrix A™* B"2. For x € T3

we similarly define W, . (x) and W}, ) (x) to be the orbits of z under

Efy nyy and Ef s respectively. For (nq,n2) # (0,0), the map
a(ni,ng) = L'} L% T3 — T?

is Anosov and W, () and W,
ni,n2

(n1,n2)
manifolds through « for the Anosov diffeomorphism a(nq,ns).

Observe

() are the stable and unstable

Claim 2.2.2. For any (ni,n2) € Z?, any x € T3, and any (0,0) #
(my,mg) € Z2

(1) ang,ng)(W(2)) = W(a(ny, no)(2));
(2) alng,na)(We, (@) = Wik (o) (@)):
(3) g, na) (Wi, oy (@) = Wi, o (e, n)(@)):

(4) EZ‘ml ma) and E(Sml ma) GT€ positive-dimensional and have comple-
mentary dimension in R3;

(5) the sets Wi, m2)(3:) and W, mz)(a:) are injectively immersed
planes or lines that intersect transversally and have complementary

dimension in T3.

Property (1) is clear as E7 is an eigenspace of A™ B™2. Properties (2) and
(3) follow from the commutativity of a(ny,n2) and a(my,mg). Property
(4) follows as A (my, ma) # 0 for each (0,0) # (mq,my) € Z? and

A (my,mg) + A2 (my,ma) + X3 (my,mg) = 0

for every (mq,mz) € Z2. Property (5) follows from (4) and that the spaces
E’ are totally irrational.

Remark 2.2.3. If a: Z9~! — Diff(T?) is as in Theorem 2.1.10 then there
are d Lyapunov exponent functionals A’: Z9~1 — R, 1 < i < d. Moreover,
these are in general position. Analogous properties to those in Claim 2.2.2
hold in this case. For instance, we claim that for each 1 < ¢ < d there is
some n € Z47! with A’(n) > 0 and M (n) < 0 for all j # i; in particular,
for such n, EY is 1-dimensional and E? is (d—1)-dimensional. We actually
claim a stronger fact as in Claim 2.2.2(4): for any non-trivial partition

{1,...,d}=AuB, A#*g, B#J
there exists n € Z%1 such that

)\i(n) <0 forallie A
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and ‘
A'(n) >0 forallieB.

This can be seen by observing there are 2¢ —2 such partitions. Similarly,
d hyperplanes in R?~! in general position divide R%~! into 2% —2 connected
components each of which corresponds to a different collection of signs.

Recall that the eigenspaces E7 are totally irrational. In particular, from
the unique ergodicity of totally irrational flows on tori, we obtain the
following.

Lemma 2.2.4. A Borel probability measure n on T3 is the Lebesque
(Haar) measure if and only if there exists 1 < j < 3 such that the measure
w is invariant under the I-parameter group of translations generated by
EJ.

Thus, to prove Theorem 2.1.8, it is enough to verify that any ergodic,
(La, Lp)-invariant measure with positive entropy is invariant under
translation by E7 for some 1 < j < 3.

2.2.3 Conditional measures and leaf-wise measures

(See Appendix B, [49], Section 3.2.1, and [69, Section 5] for additional
details and references.) Let p be a Borel probability measure on T3. In
general, the partition of (T?, 1) into the jth Lyapunov manifolds W7 is not
a measurable partition. (See Lemma 2.2.6 below for precise statement as
well as Appendix B.) Let £ be a measurable partition (see Section 3.2.1 and
Definition B.3.1 in Appendix B) of T? subordinate to W7 (see Definition
3.2.2); that is

1. ¢ is a measurable partition of the measure space (T2, p);
2. £(x) € Wi(x) for p-a.e. x;

3. &(z) contains an open neighborhood of z (in the immersed topology)
in W7 (z) for p-a.e. x;

4. &(x) is precompact in the immersed topology of W/ (z) for p-a.e. x;

Let {u$} denote a family of conditional measures of  relative to the
partition . That is (see Definition 3.2.1 and Definition B.2.1 in Appendix
B.2)

1. ué is a Borel probability measure on T? such that u$(¢(x)) = 1;
2. if y € {(«) then u§ = ps;

3. if D = T® is a Borel set then z + u& (D) is measurable and
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4. p(D) = § ps(D) du(a).

Such a family {u$} of probability measures exists and is unique modulo
p-null sets (see [180].)

Rather than studying conditional probability measures {1} discussed
above that depend on the choice of partition &, it is more convenient
to study a family of leaf-wise measures denoted by {u} along W7,
Each measure g/ in this family is a locally finite, Borel measure (with
respect to the immersed topology) on W7 (z) but is typically an infinite
measure. We discuss the properties of these measures and then outline
their construction.

Given x € T3, let

I:={z+v:ve E |v <1}

denote the unit ball (i.e. interval) in W7(x) centered at z. Given two
locally finite, Borel measures 71 and 72 on W7 (x) we say 71 and 79 are
proportional, written 1y oc 72, if there is ¢ > 0 with

m = cn2.

Proposition 2.2.5 (Leaf-wise measures). For almost every x € T? there
is a locally finite, Borel (in the immersed topology) measure pl, on W (x)
such that

(1) each i, is normalized so that i (I3) = 1;

2) the family {uJ.1 s} of probability measures on T3 depends measurably
ur I’
on x;

(3) for x’ € W(x) we have p, Ocufc/;

(4) if i is a-invariant, then for any (n1,ng) € Z* we have
a(nh 77,2)* (/’Lgc) o Mi(nl,nQ)(l‘);

(5) given any measurable partition & subordinate to W7, the conditional
probability measure pS at T is given by

& _

x

0 11 N e () -

b (E(x))

Outline of construction. To construct the family {ul} of leaf-wise
measures, consider a sequence {¢¥}rcn of measurable partitions of T such
that

1. each &F is subordinate to W7,
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2. for almost every x, we have &¥(z) < ¢¥+1(z), and
3. for almost every z, we have | J, £"(z) = W7 (x).

From the uniqueness of conditional measures, for almost every x we have
that & and ' coincide on &¥(z) n €4(x) up to normalization: if £ > k
then

£

e 1 ¢
Hy = 2o, Mz rgk(m)~

ps (64(x))
For each x and every k sufficiently large so that

I < & (x),
let 1

gEt = ¢
ps (I2)

Then, given any compact (in the immersed topology) subset K = W7 (x),
we have for any k and ¢ such that K < ¢*(z) and K < &*(z) that

i (K) = S (K). (2.2.2)

The measure uJ, on W7 (z) is then defined to be the locally finite Borel
measure defined by (2.2.2) for each compact K < WJ(z). Properties (1),
(2), and (5) follow from construction and the properties of the families of
conditional measures {u$*}. Property (4) follows from the invariance of p.

For Property (3), note that if 2/ € W7 (z) then both xJ and p?, are locally
finite Borel measures on the same space W7(x) = W7 (a’). Moreover, there

¥4
is some /£ such that 2’ € £/(z). Since the conditional measures uil = ui,
coincide, it follows that the leaf-wise measures y, and (), are proportional;
however, due to the choice of normalization we typically have uJ # wl,. O

See also Section 6 of [68], especially Theorem 6.3, where the construction
of the family of leaf-wise measures is presented in a more general setting.
We emphasize that the topology for which 7. is Borelian is the immersed
topology on the submanifold W7 (z) rather than the topology inherited as
a subset of T3; as measures on T3, the measures p/, are rather pathological
whenever they are non-atomic (see Lemma 2.2.6 below.)

For (0,0) # (ni,n2) € Z? and for a.e. v € T? we similarly construct
locally finite, leaf-wise measures ,usm’m)’m and /ﬂ(nhmm on the leaf of the
corresponding stable or unstable foliation through x.

Recall that an atom of a locally finite measure p on a space X is a
point x € X with p({z}) > 0. A probability measure x4 on X is an atom
supported at x if u(X \ {z}) = 0 and p({z}) = 1 in which case we write
= 6. We have the following equivalences. (See Lemma 3.2.4 below for
a proof of a more general statement.)
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Lemma 2.2.6. Let (ni,n2) € Z% ~ {(0,0)} and let u be an ergodic,
a(ny,ng)-invariant measure on T3. The following are equivalent:

1. hy(a(ni, ng)) = 0;
2. for p-a.e. x, the measure ”?nl,nz),fc has at least one atom;

3. for p-a.e. x the measure ;ﬂ(*m na)w = bz 18 a single atom supported
at x;

4. the partition of (T3, u) into full W(’jll n2)-leaves is a measurable
partition.

For every x € T3, the subspace F7 — R3 gives a coordinate system
(inducing the immersed topology) on the embedded line W7(x). Tt is
convenient to make these coordinates explicit: for z € T3, define an
identification ®, between the vector space E7 and the immersed manifold
Wi(z) = T2 by

®,: BV — Wi(x), ®,(v) =z +v.

Let vJ denote the locally finite Borel measure on E’ given by pull-back
under ®,; that is (see also Figure 2.2, page 50), let

vl = (®;1)x ().
Remark 2.2.7. The map ®, describes W7 (z) as an immersed copy of E’

with = as the origin. Thus, for ' € W (z) with 2 # 2’ we have ®, # ®,.
However, writing 2’ = x + v for some v € E? we have

By (t) = Do (t — v).

What is the difference between i/, and v2? For each z € T3, the measure
wl is a locally finite measure on the immersed curve Wi (z) < T3. For
x' ¢ Wi(z) it is difficult to compare the measures p and p?,. On the
other hand, for each x € T3, the measure vJ is a locally finite measure
on the vector space EJ ~ R; in particular, it is much more convenient
to work with the collection {v2} as we can easily compare vJ and v, for
x # 2’ e T3, A

For 2’ € W (z), recall that p oc pi?, as W (z) = WJ(a'). However, for
2’ € W (x) we do not necessarily have that v ocv/,. The key step in the
proof of Theorem 2.1.8 is to establish that v oc v/, for (typical) 2’ € W (z).

The following lemma characterizes measures on T? that are invariant
under translations by E7. Together with Lemma 2.2.4, this reduces the
proof of Theorem 2.1.8 to studying the geometry of the family of measures
{vi}.

Lemma 2.2.8. A probability measure p on T3 is invariant under
translations by E7 if and only if for p-a.e. x the measure vJ is proportional
to the Lebesque (Haar) measure on B ~ R.
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2.3 Interlude: Tools from smooth ergodic
theory

To complete the proof of Theorem 2.1.8, a number of additional tools from
smooth ergodic theory are needed. These tools and facts, as well as many
additional facts that will be used in Chapter 4, are collected in Chapter
3 below. For the proof of Theorem 2.1.8, we encourage the reader to first
consult

1. Section 3.2.6, especially Propositions 3.2.12 and 3.2.13 (used in
Section 2.5.4), and

2. Section 3.3.1, especially Theorems 3.3.3 and 3.3.5 (used in Section
2.4.1 and Section 2.5.3.)

To understand these statements, the reader should refer to Section 3.1.1,
Section 3.1.4, Section 3.2.1, Section 3.2.3, and Definition 3.2.5.

2.4 Entropy, translation, and geometry of
leaf-wise measures

In this section, we present two key propositions, Proposition 2.4.6 and
Proposition 2.4.8 below, that will be used in the proof of Theorem 2.1.8. To
motivate these results, in the setting of Theorem 2.1.8, let p be an ergodic,
a-invariant probability measure with positive entropy (for some element of
the action). By Lemmas 2.2.4 and 2.2.8, the proof of the theorem reduces
to showing that for almost every z, the measure vJ is proportional to
the Lebesgue (Haar) measure m on E7 ~ R for some j € {1,2,3}. This is
equivalent to showing that the measure 7, is the Lebesgue (Haar) measure
along the manifold W/(z) = x + E7.

We present here two key propositions that will give us such properties
of the measures pJ. and vZ. First, under suitable geometric hypotheses
on a measure v on R, we show in Proposition 2.4.6 that v is of the form
v = pm where m denotes the Lebesgue measure on R and p: R — R is
a density function with 0 < p(z) < o for m-a.e. . In Section 2.5, we
show for some j € {1,2,3} that these geometric hypotheses hold for the
measure vJ for p-a.e. . Second, using an entropy computation due to
Ledrappier (see Theorem 3.3.3 below), we show in Proposition 2.4.8 that
the density function p above is constant and, specifically, that u is the
Lebesgue measure on W/ (x) for almost every .
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2.4.1 Shearing measures on R

Consider a locally finite Borel measure v on R. For ¢t € R, denote by
T;: R — R the translation

and let (T;)4v denote the measure defined by
(Ty)s«v(B) = v(T-+(B)) = v(B — t).

Recall that two locally finite Borel measures 1; and v5 on R are
proportional, written 1y oC v, if there is a constant ¢ > 0 with

vV = CclVa.

Two locally finite measures vy and 5 on R are equivalent if there is a
measurable function p with 0 < p(z) < o for all z such that

vy = pre

where p o indicates the measure defined as

(p)(E) = jEpm dus ()

for any Borel E.
Given a locally finite Borel measure v on R, let G(v) < R denote the
subgroup of translations satisfying

Gv)={teR: (T})svocv}.

Example 2.4.1. Consider the Lebesgue measure m on R. Then G(m) =
R; in fact for every t € R we have (T}).m = m.

Example 2.4.2. Consider v to be the measure on R given by the density
e”; that is
dv(z) = €” dm(x).

For ¢ € R we have
d((Ty)«v)(x) = " tdm(z — t) = e*'dm(z) = e 'e“dm(z)

so
(Ty)sv = e tvocw.

Again we have G(v) = R.
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Note that for a generic density function p: R — (0, 0), we expect G(pm)
to be the trivial subgroup G(pm) = {0}.

Although not needed in our proof of Theorem 2.1.8, one can show the
following.

Claim 2.4.3. If v is a locally finite Borel measure on R with G(v) = R
then there exist C > 0 and a € R such that v = pm where

p(x) = Ce™.

Indeed, we show in the proof of Proposition 2.4.6 below that, if G(v) =
R, then v is equivalent to m. The density function p is then a measurable
function p: R — (0, 00) such that for each ¢ € R, the function

p(x)
plz —1)

is a constant (in ) function ¢;. As ¢yt = cs¢; and as t — ¢; is measurable,
the claim follows.

€T —>

Example 2.4.4. Consider the measure v on R given by

V= Z e"o,.

nez

For t € R we have

(T)«)(B) =v({z —t:x € B}) = > "0npe(B) =" > "™ 6,44(B).

nez. nez
Thus
1. (T3)4v is mutually singular with v if ¢ ¢ Z, and
2. if t € Z then (T})yv = e v ocv.
We thus have that G(v) = Z is a discrete subgroup of R.
We have the following elementary claim.
Claim 2.4.5. G(v) is a closed subgroup of R.

Recall the support of a measure v, written supp(v), is the smallest
closed subset of full measure. Note that G(v) restricts to a continuous
action on supp(v). In particular, as G(v) is a closed subgroup, if G(v) has
a dense orbit in supp(r) then G(v) acts transitively on supp(v).

We state our first key proposition of this section.

Proposition 2.4.6. Suppose G(v) acts transitively on the support of v.
Then either
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(1) the support of v is a countable set and G(v) is discrete, or
(2) v is equivalent to the Lebesgue measure m and G = R.

The assumption that G(v) acts transitively on the support of v in
Proposition 2.4.6 is a very strong hypothesis; for a typical measure on
R, we expect G(v) = {0}.

To prove Proposition 2.4.6, we recall the Lebesgue-Besicovitch
differentiation and decomposition theorems:

Proposition 2.4.7 (c.f. [152, Theorems 2.12, 2.17]). Let vy and va be
two locally finite Borel measures on R. Let

— lim v1(B(x,r))
plz)i= i B

Then

(1) the limit p(x) exists va-a.e. and defines a vo-measurable function

p: R — [0,00);

(2) the set
S ={z:p(z) = oo}

s v1-measurable and vo-null;

(8) v1 decomposes as
vy =pre+uvls.

Proof of Proposition 2.4.6. Since G(v) < R is a closed subgroup, there are
only two options: either

1. G(v) is discrete in which case Proposition 2.4.6(1) follows, or
2. G(v) =R.

We show that if G(v) = R then v is equivalent to the Lebesgue measure
m.

We first consider the assertion that v « m. Let p and S be as in
Proposition 2.4.7 with 1 = v and vy = m. If v is not absolutely continuous
with respect to m then the singular set S has positive v-measure. Fix
x € S. Then p(z) = oo.

Consider any y € R. Let t = y — z. By the definition of G(v) we have

(Ty)wv = cv
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for some ¢ > 0 so

lim = lim )
r—0 m(B(y,r)) r—0 m(B(y,r))
1 V(BGT)
=0 m(B(z,r))
= o0.

It follows that p(y) = oo for every y € R. This contradicts that S is a
m-null set. It follows that v « m.

The reverse absolute continuity v » m follows in the same manner and
is left to the reader. O

2.4.2 Invariance from entropy considerations

We return to the setting and notation of Theorem 2.1.8.

For each z € T3, recall that I’ denotes the unit ball (i.e. interval) in
Wi(z) centered at x. Let m’ denote the locally finite Lebesgue measure
on the leaf W(x) normalized so that m? (I,) = 1. Note that for 2’ € W(x)
we have m! = m!, since m’, is invariant under translations by E°.

Our second key proposition of this section shows that if the leaf-wise
measures ' are absolutely continuous with respect to m!, then yu is
automatically invariant under translations by E°.

Proposition 2.4.8. For any i€ {1,2,3}, fir n € Z* such that
1. Xi(n) > 0, and
2. M(n) <0 for both j # i.
Then, the following are equivalent:
(a) hu(a(m)) =X
(b) fmf p-a.e. x, the measure p'. is absolutely continuous with respect to
ml;
(c) for p-a.e. x, the measure i, is equivalent to mi ;
(d) for pu-a.e. x, we have equality of measures u’. = mt;
(e) Vi is the Lebesgue (Haar) measure on E* for u-a.e. x.

Remark 2.4.9. We only prove the implication (a) == (d) of the
proposition. Given (a) = (d), the only other non-trivial implication
is (b) = (a). This implication follows, for instance, from [132] (see
Theorem 3.2.6(3) below) and can be shown using calculations similar to
those in the following proof.
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Our proof essentially follows [130, 134] though we make certain
simplifications using that the dynamics along Wi-manifolds is affine.

Proof that (a) = (d). We introduce some notation. Fix f = a(n).
Then f is a linear Anosov diffeomorphism of T2 such that for every x € T3,
the unstable manifold through z is Wi(x).

We may assume p is ergodic for f. Indeed, from the Margulis—Ruelle
inequality (see Theorem 3.2.6(1) below) we have that

hy (f) < A'(n)

for any f-invariant probability measure p’. As entropy is convex (see
(3.2.1), page 66), it follows that h,/(f) = A(n) for almost every ergodic
component ' of p (see Definition 2.5.5 and Appendix B.4).

Given a measurable partition & of T™, write f~'¢ for the partition

frle={f1(O) | Ceg

Then the atom of the partition f~'¢ containing z is

Fle(x) = fFHEf (@)

Recall that the Wi-manifolds are the unstable manifolds for f. Let

7@ - | )

be the unstable Jacobian of f: for any precompact, m’-measurable subset
C c Wi(z) we have

7@mqw»=fJ%wMQ

C

As the dynamics of f is affine along W-leaves, we have that J%(z) is
constant in xz. Explicitly, we have

() = X' (n) = N,

For the remainder, fix £ to be a measurable partition of (T3, ) such
that

1. ¢ is subordinate to the partition into W¢-manifolds (see Section 2.2.3
and Definition 3.2.2 below), and

2. ¢ is increasing under f: for a.e. x we have f~1¢(z) < £(z).
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Using that there exists n € Z2 such that the W leaves are the unstable
manifolds for the Anosov diffeomorphism a(n): T — T3, a partition £
with the above properties can be constructed, for instance, by taking & to
be the unstable plaques of a Markov partition (see [26,114,190]). See also
the construction in [132] which holds for general C'*# diffeomorphisms.
Let {uS} be a family of conditional measures for this partition. Also let

1

£ _ 7
" g e

denote the normalized restriction of the Lebesgue measure m?, to the atom
&(x) of this partition. Note that we have m’(&(z)) > 0 for p-a.e. z since
each atom &(z) contains a neighborhood of x in W(z); in particular, the
measure mj, is well-defined for p-a.e. x.

We have
E(p—1
log ( w du(m)) <0. (2.4.1)

Indeed,

where the inequality follows as

U)o e
Jew R 40 2, O maele)
us(C)>0

We claim that
mé(f1¢(x
f log <u§(ff())> dp(z) = 0. (2.4.2)

Indeed, write
m§ (f¢(x))
log | —/————| du(x
J g( WS 15@))) )

log (S (¢(+)) du(e) ~ [ log (454 ¢(2)) du(o).
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From the properties of £, we have (see Section 3.2.3 below)

- f log (S (f~1€(x))) dulx) = hu(F €| €) = hu(f).

On the other hand, we claim that

108 (s e(a) duta) = ~Aw). (2.4.3)

To establish (2.4.3), let ‘
q(z) := my(§(x)).
As f71¢(z) € £(x) < f&€(z) we have
@) M EF@)  mi (FE@) Sy T (@) dmi,
=

= < =

q(x) mi(E(@) T mi(E(@) mi (§(x)

and

q(x) mi(§(x)) T mi(fTHE(f(2)  xi(m)
It follows that the function

q(f(z)) m}(x)(f(f(l‘))) - m?(z)(&(f(l‘))) 1

) qof
og

is L®(u) (in particular L (u)); from [132, Proposition 2.2] we have that
Jlogq(;f du = 0.

We then have that

[tos (ms 7 166) duta) = [10g (”W) e

and (2.4.3) follows.
As we assumed h,(f) = A(n), equation (2.4.2) follows. From the strict
concavity of log we have

mb(f¢(x)) m§(f¢(x))
log | —=—>"] du(z) <lo — = du(x
J g(uﬁ(flf(x))) ) < g( e )>
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with equality if and only if the function

is constant off a p-null set. From (2.4.1) and (2.4.2), it thus follows that

ps(Fe(@) = mE(fE(x))

for p-almost every z. In particular, if C' < £(z) is a union of elements of
F1E, then i£(C) = m§(C).

We may repeat the above calculations with f replaced by f" for n > 1
and obtain that

S (f7E(x)) = m(FE(2))
for p-a.e. x. As the partitions {f~"&(2') | 2’ € {(z)} generate the point
partition on each £(x), it follows for p-a.e. x that

ps =ms.

Replacing & with f™(&) for each n > 1, we obtain uﬁn(f) =ml"® and
the equality u, = m! for u-a.e. z follows. O

Remark 2.4.10. When f: M — M is an Anosov diffeomorphism or,
more generally, a non-uniformly hyperbolic C**# diffeomorphism we still
have equivalence of (a), (b), and (c) in Proposition 2.4.8 when the right-
hand side of (a) is replaced by the sum of all positive Lyapunov exponents
counted with multiplicity and the measures are conditional measures along
unstable manifolds. See Theorem 3.3.3 below and Appendix D, especially
Section D.2.4, for details. The proof is nearly identical to the above except
for the analogue of computation (2.4.3). Multiplying the measures m$, with
an appropriate dynamically defined density (see (D.2.2) in Appendix D),
a computation analogous to (2.4.3) still holds. See [134, Lemma 6.1.2].

The extra conclusion (d) in Proposition 2.4.8 follows in our setting
from the fact that the W¢-manifolds are orbits of a group action (namely
translation by E® on T?) and that f acts homogeneously between orbits.
The density function guaranteed by (c) is then constant and equality in
(d) holds by choice of normalization. See Theorem 3.3.5 below for a more
general framework in which the extra invariance in (d) follows.

Remark 2.4.11. In our proof of Theorem 2.1.8 below, we will apply
Proposition 2.4.6 above to conclude for some j € {1, 2, 3} that the leaf-wise
measures p/. along leaves of the W7-foliation are absolutely continuous by
showing the group G(v?) is not discrete and hence G(v3) = R for a.e. z.
We will then apply Proposition 2.4.8 to conclude that the measures u are
Lebesgue along the W7-foliation and conclude that s is invariant under
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translation by E7. This approach heavily uses that the foliations W7 are
1-dimensional.

Alternatively, one may follow [123] (and many related arguments
including those in [38,106,108]) any apply dynamical arguments to show
that the density function in Claim 2.4.3 is constant. For instance,
using that the dynamics expands unstable manifolds, one may show the
curvature o of the density function p in Claim 2.4.3 decreases and obtain
a contradiction by Poincaré recurrence unless & = 0 and p is constant.
This approach can be adapted when leaves of W7-foliations are higher
dimensional. In this case, the group G(vJ) is a closed subgroup of
isometries (of some R™) that preserve the vJ up to proportionality. By
classifying orbits of subgroups of the isometry group of R™ and using
the dynamics along W9-leaves, one then argues that G(v2) consists of
translations that preserve v.

2.5 Proof of Theorem 2.1.8

2.5.1 Inducing from a Z2-action to a R2-action

To prove Theorem 2.1.8, it is convenient to induce from the Z2-action
on the 3-manifold T2 to a R2-action on a certain 5-dimensional manifold
which we denote by N. We first outline a general construction of N. (See
Section 4.5.1 below for details of a related construction.) Let N = R? x T3
and let Z2 act on N on the right by

(s,2) - n = (s +mn,a(-n)(z)).
Let R2 act on N on the left by
t-(s,z) =(t +s,x).

Let N =N /7?2 be the quotient manifold under the right Z2-action. As the
left R2-action and right Z2-action commute, we obtain a R2-action on N.
The manifold IV has a structure of a fiber-bundle with fibers diffeomorphic
to T3. The R2-action on N permutes the 3-dimensional fibers and fibers
over the natural R%-action on T? = R2/Z? by translations. For each
j € {1,2,3}, there is a foliation W/ of N by injectively immersed curves;
each curve W7 (x) is contained in the T3-fiber through 2. Moreover, there
is a Riemannian metric on N such that, if dJ(-,-) denotes the induced
distance in W/(z), then for any y, z € W (x) and s € R?

dga:(s "Y,S- Z) = eAJ(S)d;(yv Z)

Given any Riemannian metric on N and any RZ-invariant probability
measure i on N we may define fiberwise Lyapunov exponents for the action
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of R? restricted to the fibers of N (see Section 3.1.3 and Section 4.5.2). For
any RZ2-invariant measure /i, these exponents coincide with the exponents
AL A2, and A3 above.

The above construction of N works in full generality. However, in the
context of Theorem 2.1.8, using that A and B are diagonalizable over
R and have positive eigenvalues it is possible to give a more algebraic
construction of the suspension manifold N. The algebraic construction
has the advantage that the dynamical properties outlined above following
immediately. We state the properties of the suspension space and induced
R2-action and outline the construction in Section 2.5.5.

Given s = (s1, s2) € R? define subspaces of R?

Ef\ o) = @ E and B o) = @ E.

kj(sl,‘92)<0 )\j(81,82)>0

Note that if (s1, s2) € ker A \ {0} for some j € {1,2,3} then both E7G o)

and Ez‘sl 55) ATE 1-dimensional.

Proposition 2.5.1 (See Section 2.5.5). There is a 5-dimensional manifold
N and an R?-action &: R? — Diff (N) with the following properties:

(1) N is a fiber-bundle over T2 with fibers diffeomorphic to T3; moreover
the action & permutes the fibers.

(2) For every 1 < j < 3 the vector space E’ acts by addition on N. For
every x € N, the orbit Wi (x) = {x + v : v € E'} is contained in the
T3 fiber containing x and the leaves W (x) form a smooth foliation
of N. The W -leaves are permuted by the action &.

(3) For every 0 # (s1,s2) € R? the vector spaces B, oy and B

similarly act by addition on N. The orbits W*(z) and W"(x)

are contained in the fiber through x and correspond to the stable

and unstable manifolds, respectively, for the partially hyperbolic

diffeomorphism &(s1,s2): N — N.

(4) For all (ty,t2) € R? and x € N, the map
alty, ta): W (z) — W (a(ty, t2)(x))

dilates distances in W9 by ezactly eN (t2) | That is, for y € Wi(x)
writing y = x + v for some v e EJ, we have

At t2)(y) € W (a(tr, t2)(@))

and |
Aty t2)(y) = lty, ta) () + X' 082y,
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Given s € R? let W¥(x) = EY%(x) be the unstable manifold through
x € N for the 1-parameter flow a(ts). Similarly let Wi(z) = x + Ei(z)
be the stable manifold through « € N for the 1-parameter flow a(ts). The
stable and unstable manifolds W2 (x) and W2 (z) are contained in the T3-
fiber of N through x. Note that for s # (0,0), the leaves W2 (x) and W (x)
are at least one-dimensional. Moreover, if s is not in a kernel of any M
(see Figure 2.1) then W (z) and W2 (x) are of complementary dimension
in the T3-fiber through . If s # (0,0) is contained in the kernel of A7 then
W (z) and W (z) are both 1-dimensional.

To begin the proof of Theorem 2.1.8, fix an ergodic, a-invariant
probability measure p on T? with positive entropy h,(a(nq,n2)) > 0 for
some (n1,n2) € Z2. Note that a(n1,n2) has either 2-dimensional unstable
or 1-dimensional unstable manifolds. Replacing (n1,ns) with (—nq, —ns)
if necessary and recalling that

hu(a(ni,ng)) = hu(a(nl,ng)_l) = hy(a(—ni, —n2))

we can assume that a(ni,ns) has 1-dimensional unstable manifolds. Fix
1 < i < 3 for the remainder of the proof such that E* = E* . We will

(n1,n2)
show that g is invariant under translations by E°.

We write fi for the ergodic, @-invariant measure on N corresponding to
it To construct the measure i, first let m? denote the Lebesgue measure
on R2. Then m? x p is a locally finite Borel measure on N = R? x T?
that is invariant under the actions of both R? and Z2. Let ji denote the
image of m? x p restricted to the fundamental domain [0, 1]?> x T®. From
Lemma 2.2.6 the leaf-wise measures pi of u along Wi-leaves in T? are
nonatomic. This holds if and only if the leaf-wise measures fii, of ji along
Wi-manifolds in N are nonatomic. Moreover, ergodicity of u for the Z2-
action on T? implies that fi is ergodic for the R2-action on N.

For # € N we again parameterize W*(x) by E? via the map

®,: B> Wiz), ®i(v)=z+v

and let 78 given by

Ty = (D5 )wfiy

be the corresponding locally finite measure on E* ~ R. Recall we fix a
normalization of each 7% so that each 7% gives mass 1 to the unit ball (i.e.
interval) in E%. From the choice of E*, the measures 7% are nonatomic for
a.e.x e N.

To prove Theorem 2.1.8, we will show that G(7.) = R for fi-almost
every x € N. This will imply that G(v.) = R and thus v/ is absolutely
continuous with respect to Lebesgue for p-almost every z € T2 by
Proposition 2.4.6. Applying Proposition 2.4.8 then implies that p is
invariant under translations by E?, showing that u is the Lebesgue measure
on T3.
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2.5.2 Restriction to the kernel of \’

We now heavily use that our acting group R? is higher-rank. Recall that
AL, A2, A3 are linear functionals on R2?; moreover, none of the functionals
AL, A2, A3 is the zero function and no pair is proportional. It follows that
each functional A\', A2, A3 has a 1-dimensional kernel and that all kernels
are distinct. See Figure 2.1.

ker(\3)

Figure 2.1: Kernels of the Lyapunov exponent functionals in the acting
group R?.  Signs indicate the signs of the Lyapunov exponents in
corresponding half-cones. For instance, + + — indicates the open half-
cone of s € R? such that A'(s) > 0,\%(s) > 0, and A3(s) < 0. (Recall that
the sum of the A\’ is zero.)

As the exponents A\? are not proportional to functionals defined over Q,
none of the kernels is defined over Q. In particular, there is no 0 # n € Z?
with n € ker M for any j € {1,2,3}. This is the primary reason why we
induce to an R2-action on N rather than studying the Z2-action on T3.

Recall our fixed i € {1,2,3} above such that the leaf-wise measure fi{, is
non-atomic for almost every z € N. As the kernel ker \? is 1-dimensional,
we may fix sg = (81, s2) € ker \? \ {0}. For the remainder of the proof we
will (almost) exclusively study the 1-parameter flow ¢, inside ker \’:

o N >N, di(z) = ltso)(@) = altsy, ts2) (x).

From the fact that fi is @-invariant, the choice of sq € ker \?, and
the choice of normalization of the family of leaf-wise measures {i’}, we
immediately obtain the following.

Lemma 2.5.2. For every t € R and almost every x € N
(1) ¢p: Wi(z) > Wi(gi(2)) is an isometry;

(2) (¢o)sfiy, = ﬂ'fbt(z);
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(3) Vo = Vg, (2

Proof. Conclusion (1) follows from Proposition 2.5.1(4) and the choice of
so € ker A so that é(s) dilates distances in W by e*'(s0) = 1.
For Conclusion (2), from the invariance of i we have

(00)xfily = ((80))wfily O il ()
On the other hand, since ¢; is an isometry along W-leaves, we have
Gi(I3) = If,
where I% is the unit ball (i.e. interval) in W(z). It follows that
()i (I, ) = A5 (I3) = 1
and thus, from our choice of normalization,
() fily = ﬂ;t(x)'
Conclusion (3) then follows from (1), (2), and definition of ®Z. O

Recalling Remark 2.2.7, conclusion (3) of Lemma 2.5.2 is quite strong:
the family of measures {72} on E' is constant along orbits of the flow ¢;.

2.5.3 Conclusion of the proof assuming ergodicity of
o

Note that while fi is assumed to be R?-ergodic, there is no reason that /i
is ergodic for the 1-parameter flow ¢,. We complete the proof of Theorem
2.1.8 assuming the measure ji is ergodic for the l-parameter flow ¢;.
Although this may not hold in general, we will explain how to correct
this in the next section.

Recall the notation and conclusion of Proposition 2.4.6. The next lemma
verifies that the measures 7. satisfy the hypotheses of Proposition 2.4.6.

Lemma 2.5.3. Assume the 1-parameter flow ¢, acts ergodically on (N, ).
Then for u-a.e. x € N, the group G(U) acts transitively on the support of
~i

vy,

Proof of Theorem 2.1.8 assuming ergodicity of ¢;. Assuming Lemma 2.5.3
holds, from Proposition 2.4.6 we conclude that either 7% is supported on
a countable set (and thus the measure 72 has atoms) or the measure ¢, is
absolutely continuous with respect to Lebesgue measure on E* ~ R. From
our entropy assumptions (recall Lemma 2.2.6), the measures fii, and thus
7t have no atoms for almost every z € N and thus from Proposition 2.4.6
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we conclude that ¢ is absolutely continuous with respect to Lebesgue
measure on F',

It follows that the leaf-wise measures ji{, are absolutely continuous with
respect to Lebesgue measure on W¥(z) for almost ever z € N. From the
construction of fi, it follows that the leaf-wise measures u¢, are absolutely
continuous with respect to Lebesgue measure on W(z) for almost every
x € T3. (Alternatively, an analogue of (b) == (a) in Proposition 2.4.8
implies that hz(&(ni,n2)) = A(n1,n2) which, from the structure of f,
implies h,(a(ni,n2)) = A (ni,n2) and thus p’ is absolutely continuous
for p-almost every x.) From Proposition 2.4.8(d), it follows for a.e. z € T3
that u! coincides with the Lebesgue measure on W¢(z) normalized on IZ.
From Lemma 2.2.8, it follows that j is invariant under translations by E°
and is hence the Lebesgue measure on T? by Lemma 2.2.4. O

We give the proof of Lemma 2.5.3 (still assuming that ¢; is ergodic.)

Proof of Lemma 2.5.3 assuming ergodicity of ¢;. Recall from item (3) in
Lemma 2.5.2 that the parameterized collection of measures z — ¢ forms
a ¢-invariant, measurable function.! As we assume ergodicity of the flow
b1, it follows that the assignment x — 7% is constant ji-a.s. In particular,
for p-almost every x € N and fi’.-almost every o’ € Wi(z) we have

i, =L, (2.5.1)

Take such z and 2’. Recall the parametrization ®,: E* — W¥(z). Let
v € E* be such that 2’ = x +v. We observe (see Figures 2.2(a) and 2.2(b))
that

o, tod,: E' > E

is the map
‘I);loi’x/: t—t+v.

Recall that D;,, [L;,,ﬂi, and 7% are canonically defined by our choice of
normalization. Since x and z’ are in the same unstable manifold, we have
jik, ot il 50

(o )sTgr = gy < pyy = (Pa) 5.
and

(D1 0 D)y, o L.

It follows that
(T,) 4 = (Ty,) 4% oc L.

IThere is a minor technical point we ignored here. Namely, we are using that the
space of locally finite Borel measure on R is a reasonable topological space (with the
topology dual to compactly supported continuous functions) and that = + % is a
measurable function from (N, i) to the space of locally finite Borel measure on R.
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Thus v € G(#%). Since 2’ was a il -typical point of W¥(z) it follows that
G(7%) has a dense orbit in the support of 7%, and thus acts transitively on
the support of 77.,. O

y V!

Wi(x) = Wi(z')

~1 et
Mmocl’[’x’

B i
v
0
(a) Parametrizations ®, and @,/ (b) D7l oyt —t+w
Figure 2.2: Proof of Lemma 2.5.3
Remark 2.5.4. Above, we showed that 7, = 7 for 2’ = z + v with

v € E' but only obtained (T,)«7} oc 7} rather than (T,)«7;, = 7. The
coeflicient of proportionality is due to the choice of normalization on 77},
which is chosen so that 77} (B{El (O)) = 1 where Bf'(0) ¢ E’ is the unit
ball (interval) in E? centered at 0. We have

but do not (yet) know that 7 (B{T (v)) = 1. However, we do know that

(T)«7) (BE' @) = (@51 0 ®2)sth) (BF (v)
= ik (@ (@u(BE (1))

In particular, we have that (T,)«7% = (1)) 0% = (P51 0@, )0k, oc 7% with

explicit coefficient of proportionality: (T),)47: = ————— .
p prop Vi (Ty) s S (BF ()
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2.5.4 Overcoming lack of ergodicity: the mw-partition
trick

The proof of Lemma 2.5.3 seems to fail if the measure fi is not ¢;-ergodic.
Indeed, we used that the assignment x — 7% was ¢;-invariant to conclude
that the assignment = — ¢ was constant in order to conclude that 7% = i,
for jit -typical ' € W¥(z) in (2.5.1).

We recall the following constructions and definitions. See also Theorem
B.4.1 in Appendix B.4 and [182, Section 3.5].

Definition 2.5.5. Let f: X — X be a Borel map of a metric space X
preserving a Borel probability measure p. Then, there exists a measurable
partition & of (X, ) such that—writing {u£} for a family of conditional
measures of u relative to £ (see Definition 3.2.1)—for u-a.e. x the measure
pé is an ergodic, f-invariant Borel probability measure. The partition
£ is called the ergodic decomposition or the partition into ergodic
components of y with respect to f. The measures {uS} are called the
ergodic components of p.

To illustrate the most extreme defect when ergodicity fails, for a typical
x, it could be that the conditional measure along W(x) of the ¢;-ergodic
component fi$ of ji containing x is an atom at the point z. Then, the only
point z’ € Wi(x) for which one could conclude that 7% = ¢, would be
' = .

We now correct the proof of Lemma 2.5.3. This requires tools and
notation discussed in Section 3.2.6 below which we encourage the reader
to read first.

Examining the proof of Lemma 2.5.3, we did not fully use that the
assighment x ~— 7’ was constant. Rather, we used that the assignment
x +— D& was constant along the support of i in Wi(x). From this we
concluded that 7% = 7%, for fi-typical x and ji‘-typical 2’ in W(x).

Recall that if f: N — R is a ¢s-invariant, measurable function then f
is constant on almost every ¢;-ergodic component of . Thus, the proof
of Lemma 2.5.3 above works if we establish that almost every ¢s-ergodic
component of ji is “saturated” by full Wi-manifolds. The precise statement
appears in the following lemma, known as the “m-partition trick”. We
refer to Section 3.2.6 and Appendix C for details of the w-partition and
measurable hulls. From entropy considerations in Lemma 2.2.6, we have
that the partition of N into full Wi-leaves is not measurable. We let =¢
denote the measurable hull of the partition of (NN, i) into full Wé-leaves
(see Section Section 3.2.6). Also see Section 3.2.3 for the definition of the
partial order on the space of partitions.

Lemma 2.5.6 (w-partition trick). Z¢ is finer than the partition of (N, fi)
into ¢i-ergodic components.
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Note that if the Wi-leaves were expanded (or contracted) by ¢, then
the conclusion of Lemma 2.5.6 would follow from Proposition 3.2.12 below.
However, we chose ¢; precisely so that it neither expands nor contracts
Wi-leaves.

It follows from Lemma 2.5.6 that almost every ¢;-ergodic component
contains full W-leaves and hence the proof of Lemma 2.5.3 works by
replacing fi with a ¢s-ergodic component of fi.

We complete the proof of Theorem 2.1.8 by giving the proof of Lemma
2.5.6. For s € R? and = € N recall that W2 (z) and W2 (x) denote the stable
and unstable manifolds, respectively, for the 1-parameter flow «a(ts). We
let EY denote the measurable hull (see Section 3.2.6 below) of the partition
of (N, i) into full W¥-leaves. Similarly Z5 denotes the measurable hull of
the partition of (N, i) into full W¢-leaves.

Given s € R?, let & denote the measurable partition of (N, fi) into
ergodic components of the 1-parameter flow a(ts). Similarly, let 7 denote
the Pinsker partition (see Section 3.2.6 below) for the 1-parameter flow
a(ts) on (N, fi). As stated in Proposition 3.2.12 below, for any s € R? we
have

& < ES.
From Proposition 3.2.13 below, we have for any s € R? that

u
S

S
S

Sl =Tg ==
(See Section 3.2.3 for definition of the partial order on space of partitions.)
With the above notation, the conclusion of Lemma 2.5.6 states, for our
fixed sg, that
Esy < Z.

Given the abstract ergodic theoretic facts above, the proof of Lemma 2.5.6
is remarkably straightforward.

Ni(s) <0 S1 ,
o Ai(s) =0
S0
Ni(s) >0

Figure 2.3: Choice of s;



Chapter 2. Rudolph and Katok—Spatzier measure rigidity theorems 53

Proof of Lemma 2.5.6. Recall we chose so # (0,0) so that \(sq) = 0 and
M(sg) # 0 for each j # i. Pick s; € R? close to sq with the following
properties (see Figure 2.3):

1. M(s1) # 0 for every 1 < j < 3;
2. AN(s1) < 05
3. for each j # i, the numbers M (s;) and M (sg) have the same sign.

Since A(s1) < 0, it follows that W'(x) < W¢ (x) for every x € N. This
immediately implies

=S

sy

Also, note that W (x) = W (x) for all x € N whence Zf = =f . We
then obtain the following string of refinements and equalities:

=t
<=

=S _ _EU _ mu — =S =i
550 <_'Sg _7750_“50 sy = Ts, T sy <=
In symbols, this is exactly what we needed to prove. O

Lemma 2.5.6 completes the proof of Theorem 2.1.8. We end this section
with some technical remarks on the proof of Lemma 2.5.6.

Remark 2.5.7. In the proof of Lemma 2.5.6, to choose s; satisfying
condition (3), we heavily used the fact that there is no M with M = —c\?
for any ¢ > 0; that is, we are using that the action has no Lyapunov
exponents that are negatively proportional to A’. Indeed, if M = —c\?
then, for any choice of s; such that A\’ (s;) < 0, the sign of M/ changes
from zero at sy to positive at s;. On the other hand, if A7 and A’ were
positively proportional, we can adapt the proof by grouping all exponents
positively proportional to A’ together into a single coarse Lyapunov
exponent (see Section 3.1.4) and then study the leaf-wise measures along
higher-dimensional coarse Lyapunov manifolds (see Section 3.1.4.)

For an explicit example of a higher-rank action where the proof of
Lemma 2.5.6 (and consequently Theorem 2.1.8) fails, let

2 1 2 3
() wam(20)

We have eigenvalues
Xa>1>x%  xp>1>x3>0
and both L4: T? — T? and Lg: T? — T? are Anosov. Consider

La x1d: T* — T4, Id x Lp: T* > T%
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Clearly L4 x Id and Id x Lp commute and so generate a ZZ-action by
automorphisms of T#. Note that while the generators L4 x Id and Id x L
are not Anosov, the Z2-action contains Anosov diffeomorphisms such as
LA X LB.

Let p1; be any ergodic, L 4-invariant measure on T? and let jp be any
ergodic, Lp-invariant measure on T2. Note that we can pick y; different
from Lebesgue with h,,, (La) > 0. Then yu; x p2 is an ergodic, Z*-invariant
measure on T# that is not Lebesgue and has

By s (La x 1d) > 0.

The conclusion of Theorem 2.1.8 thus fails for this Z2-action on T*. The
proof degenerates in a number of places.

1. The Z?-action on T* has four Lyapunov exponent functionals:
(n1,m) — ni Xy, mAy, nodk, no)%.
We note that the functionals
(n1,n2) — nl/\,14, (n1,m2) = "1)\,24
are negatively proportional. Similarly
(n1,nz) — Nk, (n1,n2) — n2)\%

are negatively proportional.? The presence of negatively
proportional Lyapunov exponents makes it impossible to choose s;
in the proof of Lemma 2.5.6 above with the desired properties. In
fact, the conclusion of 2.5.6 is false for this example.

2. Consider the map h: T* = T? x T? — T? given by h(z,y) = 2. Then
h semiconjugates the Z2-action generated by L4 x Id and Id x Lg
with the Z-action generated by L4. For any L s-invariant measure
i on T?, we can find a Z2-invariant measure on T# projecting to
under h. In the language of [123], L4 is a rank-1 factor.

To state the general version ([123, Theorem 5.1]) of Theorem 2.1.8, Katok
and Spatzier impose additional hypotheses on the Z2-action to rule out
the defects discussed above. For the action in Example 2.1.6, neither of
these defects occurs.

The primary obstruction to the rigidity in this example is the presence
of rank-1 factors. For genuinely higher-rank actions with negatively
proportional pairs, other tools developed in [66] can be used to overcome
the failure of Lemma 2.5.6.

2In the literature, negatively proportional exponents such as (n1,nz2) — nl)\}A and
(n1,n2) — n1A? are often referred to as a symplectic pair.
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*2.5.5 Algebraic construction of the suspension space
N

We outline the construction in Proposition 2.5.1. Recall our fixed
commuting matrices A and B are jointly diagonalizable: there is Q €
GL(3,R) with

00 B0 0
Q'AQ=| 0 & 0 |, Q'BQ=| 0 B 0
0 0 ¢ 0 0 e

Also recall our Lyapunov exponent functionals ' : R2 — R, given by
)\j (tl, t2) = tl)‘{q + tg)\jB.

Given t = (t1,t2) € R? let M* € GL(3,R) be the interpolation matrix

N (b1t2) 0 0
Mt = Q 0 X (t1,t2) 0 Qfl,
0 0 X’ (b1:t2)

Note that for t = (n1,n9) € Z", M* = A™ B"2 € GL(3,Z). However, for
t ¢ Z3, we expect M*® ¢ GL(3,Z); in particular, M* does not define an
action on the torus T?.

For t € R? define the “twisted” lattice subgroup Ay — R? by

Ay = Mt7Z3.

Note that if m € Z? then Ay, is the standard integer lattice Z3. For t € R?
define a “twisted torus” T by

T, = R3/As.

Note that if m € Z? then Ty, is the standard torus T3; also if t/ = t + m
where m € Z2 then Ay = Ay whence Ty = Ty.
Consider R?xR3. Let Z3 act on R? xR? as follows: given (t,2) € R2xR?
and n € Z3 define
(t,7) -n = (t,z + M*n).

Let N be the quotient of R? x R3 by this action. Note that N is a fiber-
bundle over R? whose fiber over t is exactly the twisted torus Tt. ~
Consider the following Z?-action on N: given m € Z? and (t,z+A¢) € N

(t,x +A¢) m=(t+m,z+ Ay).

Also consider the following R*-action on N: given s € R? and (t,z + A¢) €
N
s (t,x 4+ A¢) = (s +t, M3z + A¢ys).
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Let N be the quotient manifold N /72 where the quotient is by the Z2-
action described above. As the R2- and Z2-actions on N commute, the
R2-action on N descends to an R2-action on N which we denote by d.

Note that N is a 5-dimensional manifold which fibers over the torus
T? = R?/Z? and has 3-dimensional fibers where the fiber over t + Z* € T?
is Ty. Also note that N inherits a Riemannian metric from R? x R3. Given
z € N the tangent space T, N decomposes as

T.N=R’@E'®@E*’® E?

where E* are the joint eigenspaces of A and B enumerated as before.
Each E' acts on N as follows: given p = (t +Z2 2+ A¢) € N and v € E?

pro=(t+Z%z+A) +v=>0t+Z%z+v+ Ap).

Note that the orbit W(p) = {p + v : v € E} is contained in the fiber
through p. Moreover, for any p = (t + 72,2+ Ay) € N, any p' = p+ v for
ve E' and any s = (s1,s2) € R? we have

a(s)(p) = &(s)(p) + e Nt oy = G(s)(p) + X v,



Chapter 3

Primer: smooth ergodic
theory for Z%-actions

We present background material and a number of tools from the theory
of nonuniformly hyperbolic dynamics that will be used in Chapter 4 and
explain a number of facts and constructions that were used in Chapter
2. We will be particularly interested in the relation between entropy,
conditional measures, and Lyapunov exponents for single diffeomorphisms
and for actions of higher-rank abelian groups.

3.1 Lyapunov exponents and Pesin mani-
folds
3.1.1 Lyapunov exponents for diffeomorphisms

Let f: M — M be a C* diffeomorphism of a compact manifold M. Let x
be an ergodic, f-invariant Borel probability measure. We recall Oseledec’s
Theorem [161]; see also [172,198].

Theorem 3.1.1 (Oseledec [161]). There are
1. a measurable set A with u(A) = 1;
2. numbers A1 > A2 > ... > \P;

3. a p-measurable, D f-invariant splitting T,M = @!_, E'(x) defined
forxe A

such that for every r € A

o7
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(a) for every v e E'(z) ~ {0}
lim log | Do f"(0)] = X'
et n x )
(b) if Jf denotes the Jacobian determinant of f then

: 1 n c %
nﬂlﬁwﬁlog“]f | = Z;miA

where m; = dim E*(x);

(c) for every i # j we have

lim llog (sinL(Ei(f”(:E)),Ej(f”(x)))) =0.

n—+oo n

The numbers A\* are called the Lyapunov exponents of f with respect
to pu and the subspaces E(z) are called the Oseledec’s subspaces.
Above, m® denotes the almost-surely constant value of dim E’(z), called
the multiplicity of \’.

Given any f-invariant measure g on M (which may be nonergodic) the
average top Lyapunov exponent of f with respect to u is

L1 n
Nonlfo) = int > [1og 1D, du(z). (3.1.1)

Since 1 is f-invariant, the sequence n — §log | D, f"| du(z) is subadditive
and the infimum in (3.1.1) can be replaced by a limit.
By the subadditive ergodic theorem, the functions

1 n
z— —log [ D. f"|
n

converge a.e. to an invariant, integrable function with integral Aeop(f, 1t);
see [91,126] and [195, Chapter 3]. If p is ergodic, we have in the
notation of Theorem 3.1.1 that Aeop(f, ) = AL If p is not ergodic, let
{1} denote the ergodic decomposition (see Definition 2.5.5) of y and let
AL> A2 > > )\ﬁ(x) denote the Lyapunov exponents of f with respect
to the ergodic invariant measure pf. Then we have

Nop(f11) = jA; dpu(z).
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3.1.2 Lyapunov exponents and (sub)exponential growth
of derivatives

Let M be a compact manifold and equip TM with a background
Riemannian metric and associated norm. Let f: M — M be a C!
diffeomorphism. We say f: M — M has uniform subexponential
growth of derivatives if for all € > 0 there is a C. > 0 such that

IDf"| := sup | Dy f™| < Ceecl™! for all n € Z.
reM

Note that we allow that C. — o as € — 0.

Proposition 3.1.2. A diffeomorphism f: M — M has wuniform
subexponential growth of derivatives if and only if for any f-invariant Borel
probability measure p, all Lyapunov exponents of f with respect to i are
zero.

That is, f: M — M has uniform subexponential growth of derivatives
if and only if Mop(fyt) = Mop(f~1 ) = 0 for every f-invariant Borel
probability measure p.

Proof. We show that vanishing of all Lyapunov exponents for all f-
invariant probability measures implies that f has uniform subexponential
growth of derivatives; the converse is clear.

Suppose that f: M — M fails to have uniform subexponential growth
of derivatives. Then there is an ¢ > 0 and sequences of iterates n; € Z
with |n;| — o0, base points 2; € M, and unit vectors v; € T, M such that

Dy, fhiv;| = ecmal. (3.1.2)

Replacing f with f~', we may assume without loss of generality that
n; — 0.

Let UM < T'M denote the unit-sphere bundle. We represent an element
of UM by a pair (z,v) where v € T, M with ||v| = 1. Note that UM is
compact. Note also that Df: TM — TM induces a map Uf: U — U
given by the renormalized derivative:

Ufe) = () ph ).

1Dz f(v)]
Define ®: UM — R as follows: given (z,v) € UM, let

O(z,v) := log | Da f(v)]-

By the chain rule, we have

log | D f"( Z Ufj x,v)
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For each 7, let 7 denote the empirical measure along the orbit segment
(@), 05), Uf(x5,05), - U7 (@g,05)

in UM given by

njfl

m Z 5Ufk (xj,v5)

njkO

From (3.1.2) we have for every j that
J@ dv’ > e.

Claim 3.1.3. Let v be any weak-+ subsequential limit of {v7}. Then

(a) v is U f-invariant;

m)f¢du>e

Proof. Conclusion (a) follows as in the proof of the Krylov-Bogolyubov
theorem: if ¢: M — R is any (bounded) continuous function then

2H¢ch

n;j

hm‘f¢dw J¢ofd7 =0 (3.1.3)

showing that v is f-invariant. Conclusion (b) follows from continuity of ®
and weak-# convergence. O

From Claim 3.1.3(b), we may replace v with an ergodic component (see
Definition 2.5.5) v/ of v such that {® dv/ > e.

Take p to be the push-forward of v/ under the natural projection
UM — M. Then p is an f-invariant, ergodic measure on M. Let {v/}
denote a family of conditional measures of v/ for the partition of UM into
fibers over M. By the pointwise ergodic theorem, for p-a.e. x € M and
vi-a.e. v e UM(z) we have

1 ln 1
s T n _ = j _ ’
nhrréonlogHsz ()| = hm E U f(x,v)) JCP dv' =€

j 0
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On the other hand,

n—

Mool ) = Jim [ 1og |D.f") du(z)

lim if sup 2 O(U fi(x,v)) du(x)

n—=w0n veUM(a:) i—0

\%

n—oo

f@du’}e

Above, the inequality follows from comparing the maximal growth with
the average growth (averaged by v.,.) It follows that the largest Lyapunov
exponent of f with respect to u is at least € > 0. O

lim ”jlz (U (2,0)) dva(v) du(a)

3.1.3 Lyapunov exponents for nonuniformly hyper-
bolic Z?-actions

How does the theory of Lyapunov exponents change for actions of more
general abelian groups? We state a version of Oseledec’s theorem for
actions of Z¢ which can easily be extended to actions of R¢ x ZF. One
should think of the following as a non-stationary version of the joint-
diagonalizability or joint-Jordan-normal-form for commuting matrices as
exploited in Section 2.2.1.

Let M be a compact manifold, let o: Z? — Diff* (M) be a Z%action,
and let p be an ergodic, a-invariant measure.

Theorem 3.1.4 (Higher-rank Oseledec’s theorem (see [37])). There are
1. a measurable set A with p(A) = 1;
2. linear functionals \*, \%,... \: R - R;

3. a p-measurable, Da-invariant splitting T, M = @®!_, E*(x) defined
forx e A

such that for every r € A
(a) for every v e Ei(x) ~ {0}
| log| Dea(n)(w)] - Xi(n)

In| =0 |n

= 0;

(b) if Jf denotes the Jacobian determinant of f then
L loglJa(n)| = S, miX(n)

’
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(c) for everyi # j

lim - log (sinL(Ei(a(n)(m)),Ej(a(n)(z)))) ~0.

The linear functionals A*, A2, ..., \?: R — R are called the Lyapunov
exponent functionals or simply the Lyapunov exponents of u. In
(b), m® is the almost-surely constant value of dim E’(z), called the
multiplicity of \’. Note that (a) implies convergence along rays: for
any n € Z% and v e E'(x) ~ {0}

;}E%O%bg |Dzc(kn)(v)| = Ne(n). (3.1.4)

The convergence in (a) is taken along any sequence n — oo; this is stronger
than (3.1.4) and is typically needed in applications.

3.1.4 Unstable manifolds and coarse Lyapunov mani-
folds

Unstable subspaces and unstable manifolds for a single
diffeomorphism

Let f: M — M be a C' diffecomorphism of M and let 1 be an ergodic,
f-invariant measure. Let A! be the Lyapunov exponents for f with respect
to p. For x € A € M, where A is as in Theorem 3.1.1, define

Ai>0
to be the unstable subspace through . We have that
1
E%(x) :={veT,M :limsup — log | D, f~"(v)| < 0}.

n—oo 1N

We may similarly define stable and neutral (or center) subspaces through

x, respectively, by .
E*(z) == P E'(z)
Ai<0

and

E¢(z):== @ E'().

Ai=0

We now assume that f: M — M is C'*# for § > 0. Through p-almost
every point x the set

W (a) = {y limsup - log(d(f " (x), /(1)) < o}

n—oo 1
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is a connected C'*4 injectively immersed manifold with 7, W% (x) = E%(x)
(see [163]) called the (global) unstable Pesin manifold of f through
x. The collection of all W"(z) forms a partition of (a full measure subset
of) M; in general, this partition does not have the structure of a nice
foliation. However, restricted to sets of large measure the partition into
local unstable manifolds has the structure of a continuous lamination.
That is, for almost every x € M and any € > 0 there is a neighborhood U
of x such that, on a set Q of relative measure (1 —¢) in U, the local leaves
of W*-manifolds form a partition of 2 by embedded dim(E")-dimensional
balls that vary continuously in the C'*P-topology.

Given the Lyapunov exponents A\! > A2 > ... > I of y, fix j €
{1,---,p} such that A > 0. Then, for almost every z, the set

. ) 1 Y Y ,
W) = {y s lnsup ©log(a(s (@) " (0) < -V}
is again a connected, C'*# injectively immersed manifold with
T,Wi(z)= P E'(z)
iz

called the (global) jth unstable manifold through z. We remark that,
in general, the intermediate unstable distributions, E¢(z) for A' > 0, do
not integrate to invariant family of immersed submanifolds.

Coarse Lyapunov exponents and subspaces

Let a: Z% — Diff' (M) be an action and let x be an ergodic, a-invariant
probability measure. We introduce objects that play the role of unstable
subspaces and unstable manifolds for the Z%-action a.

Given Lyapunov exponents A1, A2, ..., \?: R? — R we say A\’ and M are
positively proportional if there is a ¢ > 0 with
A= eN.

Note that this defines an equivalence relation on the linear functionals
ALAZ WP RS R,

The positive proportionality classes are called coarse Lyapunov
exponents. For a Z-action generated by a single diffeomorphism f, the
coarse Lyapunov exponents are simply the collections of positive, zero, and
negative Lyapunov exponents.

Let x = {\‘} be a coarse Lyapunov exponent. While the size of x(n) is
not well defined, the sign of x(n) is well defined. Write

EX(2) = ®riey B (2)

called the corresponding coarse Lyapunov subspace.
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Coarse Lyapunov manifolds for Z%-actions

Analogous to the existence and properties of unstable Pesin manifolds for
nonuniformly hyperbolic diffeomorphisms we have the following for actions
of higher-rank abelian groups.

Let a: Z% — Diff'*#(M) be an action and let p be an ergodic, a-
invariant probability measure. Let A be as in Theorem 3.1.4.

Proposition 3.1.5. For almost every x € A and for every coarse
Lyapunov exponent x there is a connected, C**5, injectively immersed
manifold WX(x) satisfying the following:

1. T,WX(x) = EX(x);

2. a(n)WX(z) = WX(a(n)(z)) for all n € Z4;

3. WX(x) is the set of all y € M satisfying

lim sup 1 log d(a(—kn)(y), a(—kn)(z)) < 0 for all n € Z* with x(n) > 0.

k—o0 k

The manifold WX (x) is called the coarse Lyapunov manifold through
z associated with the coarse Lyapunov exponent y.

To construct WX-manifolds, given n € Z¢ with x(n) > 0 let Wein) (x)
denote the unstable manifold for the diffeomorphism «(n): M — M
through x. Then, for almost every x € M the manifold WX(z) is the
path component of the intersection

N Wi ()

neZ,x(n)>0

containing x.

3.2 Metric entropy

3.2.1 Metric entropy

General references for this section include [181,182]. Throughout, we take
(X, ) to be a standard probability space. That is, (X, ) equipped
with the o-algebra of py-measurable sets is measurably isomorphic to an
interval equipped with the Lebesgue measure and a countable number of
point masses; see for instance [182, Chapter 2].
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Measurable partitions and conditional measures

Recall that a partition £ of (X, i) is measurable if the quotient (Y, i) :=
(X,u)/¢ is a standard probability space. See also Definition B.3.1 in
Appendix B.3. This is a technical but crucial condition. For more
discussion and other characterizations of measurability see [49], [180], and
Appendices B and C.

A key property of measurable partitions is the existence and uniqueness
of a family of conditional measures (or a disintegration) of u relative to
this partition. Given a partition £ of X, for z € X we write £(z) for the
element of £ containing x.

Definition 3.2.1. Let £ be a measurable partition of (X,u). Then
there is family of Borel probability measure {u$}.cx, called a family of
conditional measures of p relative to &, with the following properties:
For almost every x

1. p& is a Borel probability measure on X with us(&(2)) = 1;
2. if y € £(z) then ug = us.
Moreover, if D < X is a Borel subset then
3. x> p (D) is measurable and
4. (D) = §ps(D) dp(z).
Such a family is unique modulo p-null sets.
For construction and properties of {u$} see for instance [180]. See also
Appendix B.2 for further discussion.
Conditional information and conditional entropy

Given a measurable partition ¢ of a standard probability space (X, p),
write {u$} for a family of conditional measures of y with respect to the
partition £. Given two measurable partitions n, € of (X, 1) the conditional
information of 7 relative to & is

Lu(n | §)(x) = —log(ps (n(=)))
and the conditional entropy of 7 relative to £ is
1,11 = [ 1,011 (a) du(o)

The join n v & of two partitions 1 and £ is

nvé={AnB|Aen Be¢}.
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The entropy of 7 is

Hy(n) = Hu(n [{F, X}).

Note that if H,,(n) < oo then 7 is necessarily countable (mod zero) and
Hyu(n) = = ey 108(1(C))u(C).

Metric entropy of a transformation

Let f: (X,u) — (X, u) be an invertible, measurable, measure-preserving
transformation. Let 7 be an arbitrary measurable partition of (X, u). We
define

@ . w .
nt =\ fn, n =\ f'n.
=0 €7

We define the entropy of f given the partition 7 to be
h(fon) = Hu(n | fo) = Hu(® | fo™) = Hu(f '™ [ 07).
We define the p-metric entropy of f to be h,(f) = sup{h,(f,n)} where
the supremum is taken over all measurable partitions of (X, p). If
p=ap + Bus2

where «, 8 € [0,1] satisfy a + 8 = 1 and p; and ug are f-invariant Borel
probability measures then

hu(f) = aby, (f) + Bhy, (f)- (3:2.1)

3.2.2 Entropy under factor maps

Let (X, ) and (Y, v) be standard probability spaces. Let f: X — X and
g: Y — Y be measure-preserving transformations. Suppose there is a
measurable map ¢: X — Y with

Yepp = v

and
Yof=gou.
In this case, we say that g: (Y,v) — (Y,v) is a measurable factor of
[ (Xop) = (X, ).
We note that entropy only decreases under measurable factors: if
g: (Y,v) = (Y,v) is a measurable factor of f: (X, u) — (X, ) then

hu(g) < hu(f)-
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The difference between the entropies h,(g) and h,(f) is captured by the
Abramov—Rokhlin theorem. Let ¢ be the measurable partition of (X, u)
into level sets of ¢p: X — Y. Note that ( is an f-invariant partition:
¢ = ¢’. Define the conditional entropy h,(f | ¢) of f relative to ¢ to be

hu(f]¢) = s%p hyu(f € v Q)

where, as usual, the supremum is over all measurable partitions £ of (X, u).
We call h,(f | ¢) the fiberwise entropy of f. The Abramov-Rokhlin
theorem (see [1,21,133]) states the following:

hu(f) = hu(g) + hyu(f | €). (3.2.2)

3.2.3 Unstable entropy of a diffeomorphism

Let f: M — M be a C'*# diffeomorphism and let 4 be an ergodic, f-
invariant measure.

Partitions subordinate to a foliation

For the following discussion and in most applications considered in this
text, we may take F to be an f-invariant foliation of M with C'*# leaves.
More generally, we may take F to be, in the terminology introduced in [37],
an f-invariant, tame measurable foliation; that is, F a partition of a full
measure set by C1T# manifolds with the property that locally, restricting
to sets of large measure, F has the structure of a continuous family of
C'*P discs. The primary examples of such measurable foliations include
the partition into global jth unstable Pesin manifolds and the partition into
global coarse Lyapunov manifolds in the setting of Z%actions. Note that
the partition into global leaves of a measurable foliation is not necessarily
a measurable partition; rather locally the partition looks like a measurable
family of C'*+# discs.

Write F(z) for the leaf of F through x. We say F is expanding (for f)
it F(z) ¢ W¥(z), i.e. if F(z) is a subset of the global unstable manifold
through z for f discussed in Section 3.1.4. As a key example, one should
consider F", the partition of M into full global unstable manifolds.

Definition 3.2.2. We say a measurable partition ¢ is subordinate to F
if

1. {(z) c F(x) for p-a.e. x;

2. £(x) contains an open (in the immersed topology) neighborhood of
x in F(z) for p-a.e. x;

3. &(x) is precompact in (the immersed topology of) F(x) for p-a.e. x;
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Partial ordering on the set of partitions

We recall the partial order on partitions of (M, u). Let € and 7 be partitions
of the probability space (M, u). We write

n=<¢

and say that ¢ is finer than n (or that 7 is coarser than &) if there is a
subset X ¢ M with p(X) = 1 such that for almost every z,

() X cn(z) n X.

Wesayn=¢ifn<¢&and € <.

Entropy conditioned on a foliation

We say that a partition ¢ is increasing if f¢ < & where f¢ denotes the
partition f§ = {f(C) | C € &}.

Definition 3.2.3. Given an expanding, f-invariant foliation F we define
the entropy of f conditioned on F to be

hu(F [ F) = (£, €)

where £ is any increasing, measurable partition subordinate to F.

There are two small claim in Definition 3.2.3: First we have that
ho(f,61) = hu(f,&) for any two increasing partitions & and &
subordinate to F; see for example [134, Lemma 3.1.2]. Second, such a
partition £ always exists. This was shown when F = F* is the partition
into global unstable Pesin manifolds for a C'*# diffeomorphism in [132]
(see also discussion in [134, (3.1)]) extending a construction due to Sinai
for uniformly hyperbolic dynamics [189, 190]; the proof in [132] can be
adapted for general invariant expanding F.

When F = F" is the partition into full unstable manifolds, define the
unstable metric entropy of f to be

h(f) i= hu(f | ).

The principal result (Corollary 5.3) of [134] shows that for C?
diffeomorphisms we have equality of the metric entropy of f and the
unstable metric entropy of f:

hu(f) = hi(f)- (3.2.3)

For C'*A_diffeomorphism without zero Lyapunov exponents equality
(3.2.3) was shown by Ledrappier in [130]; for the general case of C1+5-
diffeomorphisms, (3.2.3) holds from [31].
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3.2.4 Entropy, exponents, and geometry of condi-
tional measures.

(See Appendix D for further details). In this section, we consider the
relationships between metric entropy h,(f), Lyapunov exponents, and the
geometry of conditional measures along unstable manifolds.

Let f: M — M be a C**# diffeomorphism and let p be an ergodic,
f-invariant measure. At one extreme we have the following generalization
of Lemma 2.2.6 characterizing invariant measures with zero entropy.

Lemma 3.2.4. Let p be an ergodic, f-invariant measure on M and let € be
a measurable partition of (M, u) subordinate to the partition into unstable
manifolds. The following are equivalent:

(1) hu(f) = 0;
(2) for u-a.e. x, the conditional measure ué, has at least one atom;

(3) for p-a.e. x, the conditional measure us is a single atom supported
at x;

(4) the partition of (M,p) into full W™-manifolds is a measurable
partition.

Proof sketch. The implications (1) = (4) and (1) == (3) are a
consequence of [134, Theorem B] (see also [31] for C1*# setting.) Indeed, if
hu(f) = 0, then the Pinsker partition (see Section Section 3.2.6 below) is
the point partition. From [134, Theorem B] we have that the Pinsker
partition is the measurable hull of (and in particular is coarser than)
the partition into full unstable manifolds. As the point partition is the
finest partition, it follows that the partition into full unstable manifolds is
measurably equivalent to the point partition and (3) and (4) follow.

The implications (4) = (3) and (2) = (3) follow from the dynamics
on unstable manifolds and ergodicity of the measure. For instance, to
see (4) = (3), assume the partition of (M, p) into full W*-manifolds
is measurable and let {u%} denote a family of conditional probability
measures for this partition. As p is f-invariant and as the partition into
full unstable leaves is f-invariant, we have fypu¥ = /ﬂ;(x) for almost every
x.

Given z € M, let W"(z, R) denote the metric ball of radius R centered
at z in the internal metric of W*(z). Given ¢ > 0 and R > 0, define the
set G5 r of (6, R)-good points to be

Gspi={zxeM|ps(W*=,R)) =1—4}.

Fix R > 0 such that u(Gs r) > 0. Take a subset G’ < G5 g with p(G') > 0
such that the function

&’ — diam}_. ,n (f(W" (2", R)))
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converges to 0 uniformly on G’ as n — o where diam},(B) denotes the
diameter of B ¢ W*(z) with respect to the internal metric on W*(z). For
almost every z, we have f™(z) € G’ for infinitely many n € N. For such z
and any € > 0, there is ng € N such that for all n > ng with f*(z) € G’ we
have

[t (@), R)) « W(z, €)

whence
BV (2,0)) 2 i) (W (/7 (@), B)) = 16,

Taking € — 0 we have p%({z}) = 1 —0 and, as § was arbitrary, (3) follows.

Finally, the implication (3) == (1) follows from Corollary 5.3 of
[134] (see (3.2.3) below) and the computation of unstable entropy in
Definition 3.2.3. O

At the other extreme, we have the following definition.

Definition 3.2.5. We say p is an SRB measure (or satisfies the SRB
property) if, for any measurable partition £ of (M, u) subordinate to
the partition into unstable manifolds, for almost every x the conditional

measure 5 is absolutely continuous with respect to Riemannian volume
on W¥(z).

We have the following summary of a number of important results.

Theorem 3.2.6. Let f: M — M be a C**P8 diffeomorphism and let ju be
an ergodic, f-invariant measure. Then

(1) hu(f) < Z)J‘>o mix;

(2) if 1 is absolutely continuous with respect to volume then

hu(f) = Z mi)\i§

Ai>0

(3) if p is SRB then hy,(f) = X500 mAL

Theorem 3.2.6(1), known as the Margulis—Ruelle inequality, is
proven in [184]. Theorem 3.2.6(2), known as the Pesin entropy formula,
is shown in [164]. Theorem 3.2.6(3) was established by Ledrappier and
Strelcyn in [132]. In the next section, we will complete Theorem 3.2.6
with Ledrappier’s Theorem, Theorem 3.3.3, which provides a converse to
Theorem 3.2.6(3).

For general measures invariant under a CZ2-diffeomorphism (for the
case of C'*A-diffeomorphisms, see [31]), Ledrappier and Young explain
explicitly the defect from equality in Theorem 3.2.6(1). This captures the
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intermediate geometry of measures with positive entropy (and hence non-
atomic unstable conditional measures) but entropy strictly smaller than
the sum of positive Lyapunov exponents.

Let 0° denote the (almost-surely constant value of the) pointwise
dimension of p along the ith unstable manifolds; see Section D.3 in
Appendix D for definition. With 4% = 0, let

,Yi _ 51 o 52’71.

The coefficients 7' reflect the transverse geometry (in particular the
transverse dimension) of the measure p inside of the ¢th unstable manifold
transverse to the collection of (¢ — 1)th unstable manifolds. In particular,
we have v < m® (see [135, Proposition 7.3.2].)

Theorem 3.2.7 ([135]). Let f: M — M be a C**# diffeomorphism and
let p be an ergodic, f-invariant measure. Then

ha(f) = Y5 'A%
Ai>0
(Note that the proof in [135] required f to be C?; following [31] and
[7, Appendix], the theorem holds when f e C*+5.)

*3.2.5 Coarse-Lyapunov entropy and entropy prod-
uct structure

Consider now a: Z¢ — Diff'** (M) a smooth Z%-action on a compact
manifold M. Let p be an ergodic, a-invariant measure. Recall that a
coarse Lyapunov exponent x is a positive-proportionality class of Lyapunov
exponents of a. For almost every x € M there is a coarse Lyapunov
subspace EX(z) € T, M and a coarse Lyapunov manifold WX (x) tangent
to EX(x) at x.

Let FX denote the partition of M into full WX-manifolds. Given
n € Z4 with x(n) > 0, following the construction from [132] we can find a
measurable partition £ of (M, i) that is subordinate to FX and increasing
for a(n). We then define the y-entropy of a(n) to be

hi(a(n)) = hu(a(n) | x) = hu(a(n) | FX) = hu(a(n),§).

The main result of [40] is the following “product structure of entropy”
for Z%-actions.

Theorem 3.2.8 ([40, Corollary 13.2)). Let a: Z% — Diff**#(M) be a
smooth Z%-action on a compact manifold M and let 1 be an ergodic, a-
invariant measure. Then for any n € 74

hu(a(n) = > hu(a(n) | x).

x(n)>0
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Fix n € Z? and let f = a(n). The formulas in Theorem 3.2.7 and
Theorem 3.2.8 then look quite similar. However, the contribution of
each Lyapunov exponent A to the total entropy in Theorem 3.2.7 is
a “transverse entropy” (the coefficient ~* is a measure of “transverse
dimension”). In Theorem 3.2.8, the entropy of each coarse Lyapunov
exponent y is a “tangential entropy” h,(a(n) | x) obtained by conditioning
along WX-manifolds. Thus, Theorem 3.2.7 does not immediately imply
Theorem 3.2.8. To show Theorem 3.2.8, one first shows that the total
“transverse entropy” in Theorem 3.2.7 contributed by all A’ € y is equal
to the total conditional entropy h,(a(n) | x). This is done in [40]. The
idea is to first establish an analogue of Theorem 3.2.7 for the conditional
entropy h,(f | x); this is done in [32] where a formula of the form

ha(F 1 %) = hula — Y Xini(n)
Aiex

is shown. Then (following [97]) one uses that n — h,(a(n) | x) is linear on
any half-cone where no coarse Lyapunov exponent x’ changes sign to show
that the transverse dimensions X! of each A\ € x are independent of n and
coincide with the transverse dimensions v* appearing in Theorem 3.2.7 for

f=an).

3.2.6 Abstract ergodic theoretic constructions in
smooth dynamics

(See Appendices B and C for further details.) Let f: M — M be a C'*#
diffeomorphism and let p be an f-invariant probability measure. We do
not assume pu to be ergodic. We introduce here a number of measurable
partitions of the measure space (M, ) associated with the dynamics f:

1. &, the ergodic decomposition (see Definition 2.5.5 and Theorem B.4.1
in Appendix B.4);

2. m, the Pinsker partition;
3. =%, the measurable hull of the partition into unstable manifolds;
4. =%, the measurable hull of the partition into stable manifolds.

In this section, we will define objects (2)—(4) above and explain the
following two assertions:

1. £E< =
2 BS == U

The first assertion is a standard fact in hyperbolic dynamics (which forms
the first step in the Hopf argument for ergodicity) and is discussed in detail
in Theorem C.2.1 in Appendix C. The second is [134, Theorem B].
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Measurable hull of a partition

Given a (possibly nonmeasurable) partition £ of (M, ) we write Z(&) for
the measurable hull of &; that is, () is the finest measurable partition
with E(§) < & If € is measurable, then we have Z(£) = £ but in general
() is strictly coarser than . We illustrate this concept with a few
examples.

Example 3.2.9. Suppose that p is f-invariant and ergodic. Let O be the
partition into orbits of f. Then O is not measurable (see Example B.2.5
in Appendix B). The measurable hull of O is the trivial partition Z(0) =
{M, @}. For example, given a totally irrational flow on the torus T?, the
partition into flow lines is not measurable and the measurable hull is the
trivial partition.

More generally, if p is not ergodic then the measurable hull of O is
E(0) = &, the ergodic decomposition (M, u). (See Definition 2.5.5 and
Example C.1.2 in Appendix C.)

For the following two examples, recall Lemma 2.2.6 and Lemma 3.2.4.

Example 3.2.10. Let f be a C™8 volume-preserving Anosov
diffeomorphism of a connected manifold M. Let £* denote the partition of
M into unstable manifolds. Then £* is not measurable (for the invariant
volume). In fact, it is known that the measurable hull of £* is again the
trivial partition Z(§%) = {M, &}.

Example 3.2.11. Let f: M — M be a C'*# diffeomorphism and let u be
any ergodic, f-invariant probability measure. Let £“ denote the partition
of M into (full) unstable manifolds. Then &* is measurable if and only if
hu(f) = 0. In particular, if h,(f) > O then the measurable hull of {" is
strictly coarser than £.

In general, given a C'*# diffeomorphism f: M — M and an ergodic,
f-invariant probability measure u we let =% and =° denote, respectively,
the measurable hulls of the partition of (M, i) into full unstable and stable
manifolds.

We state the first relationship between the above objects in the following
proposition whose proof follows immediately from the pointwise ergodic
theorem. (See Theorem C.2.1, Appendix C.)

Proposition 3.2.12. Let f: M — M be a C'*P diffeomorphism and let
w be any f-invariant probability measure. Then € < Z° and £ < Z*.

Proof. Let o(€) and o(Z%) denote the o-algebras of £-saturated and =*-
saturated sets, respectively.

Consider any continuous function ¢: M — R. Then ¢*: M — R defined
by

5 (@) = timsup = 3 o(7()
k=0

n—oo0
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is an f-invariant function that is constant along W#-leaves. In particular,
the function ¢ is measurable with respect to (&) and o(Z%). Moreover,
using that C°(M) is separable and dense in L'(u) and applying the
pointwise ergodic theorem, it follows that the o-algebra o(£) is the minimal
o-algebra for which ¢1 is measurable for all continuous ¢: M — R. Tt
follows that o(&) < o(Z°) whence £ < Z5. O

The Pinsker partition

Let f: (X,u) — (X,u) be a measure-preserving transformation of
a standard probability space (X,u). The Pinsker partition = of
f+(X,n) — (X,p) is the finest measurable partition (X,u) with the
following property: for any measurable partition & < m, we have

hﬂ(.ﬂ f) = O

Another characterization of 7 is the following: m is the unique f-invariant
partition such that, if (g,Y,v) is a measurable factor of (f, X, u) with zero
entropy, then (g,Y,v) is also a factor of the factor system (f, X, u)/x.

Our second relationship, stated as [134, Theorem B], characterizes the
Pinsker partition in smooth dynamics.

Proposition 3.2.13 ([134, Theorem B|). Let f: M — M be a C**P
diffeomorphism and let p be any f-invariant Borel probability measure.
Then we have equality of partitions

u

BV =g =

S

(1]

Remark 3.2.14. We say that a measure-preserving transformation
f+ (X, ) — (X, u) has the K-property (or the Kolmogorov property)
if the Pinsker partition 7 is the trivial partition 7 = {¢¥, X}. For such
systems, every non-trivial factor has positive entropy.

Let f: M — M be a C'*? volume-preserving Anosov diffeomorphism.
Anosov first showed that such maps are ergodic with respect to the
invariant volume in [5]. In this setting, the analogue of Proposition 3.2.13
is established in [189]; that is any set A € 7 is equal modulo 0 to a set
fully saturated by stable manifolds and also equal modulo 0 to a (possibly
different set) that is fully saturated by unstable manifolds. Using the
absolute continuity of the stable and unstable foliations established by
Anosov in his proof of ergodicity, one may show that any A € 7 is equal
modulo 0 to a set that is both fully saturated by stable manifolds and
unstable manifolds. It follows that any A € 7 is null or conull. In
particular, this shows that volume-preserving Anosov diffeomorphisms
have the K-property. This explains the conclusion in Example 3.2.10 that
E™ is the trivial partition. See, for example, [43] for a modern discussion of
absolute continuity and the K-property in uniformly (partially) hyperbolic
settings.
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3.3 Entropy, invariance, and the SRB
property

In dissipative (i.e. non-volume-preserving) dynamical systems, ergodic
SRB measures p without zero Lyapunov exponents provide examples of
physical measures: there is a set B of positive Lebesgue measure such
that for any continuous function ¢, the forward time average of ¢ along
the orbit of points in B converges to {¢ du. In applications and specific
examples, a recurring problem is to establish the existence of physical and
SRB measures. We pose a related question that arises naturally in the
settings considered in this text:

Question 3.3.1. Given a diffeomorphism f: M — M and an f-invariant
measure u, how do you verify that p is an SRB measure?

Seemingly unrelated, consider a group G acting smoothly on a manifold
M. We pose the following:

Question 3.3.2. Given a Borel probability measure g on M and a
subgroup H < G, how do you verify that y is H-invariant?

One method to answer both of these questions is given in Theorem 3.3.3
and Theorem 3.3.5 below.

3.3.1 Ledrappier’s theorem

(See Appendix D for further details.) We outline one approach that solves
both Question 3.3.1 and 3.3.2 in a number of settings. We discuss other
approaches towards verifying the existence of SRB measures below.

We recall Section 3.2.3 where the notion of unstable entropy was
introduced. The main result (Corollary 5.3) of [134] shows for a C? (see
[31] for the C1*# case) diffeomorphism f: M — M preserving an ergodic
probability measure p that the metric entropy of f and the unstable metric
entropy of f coincide:

hu(f) = hy (f)-
Using this fact, Ledrappier gave a geometric characterization of all
measures satisfying equality h,(f) = >1,io, mi\* in the Margulis-Ruelle
inequality, giving a converse of Theorem 3.2.6(3).

Theorem 3.3.3 (Ledrappier’s Theorem [130]). Let f be a C'*P
diffeomorphism and let p be an ergodic, f-invariant, Borel probability
measure. Then p is SRB if and only if

he(f) = D0 miX (3.3.1)

Ai>0
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In the proof of Theorem 3.3.3, Ledrappier actually proves something
much stronger than the SRB property: if hj;(f) = X yiog m*\’ then the
leaf-wise measures p¥ of p along unstable manifolds are equivalent to the
Riemannian volume with a Hoélder continuous density. That is, if m}
the Riemannian volume along W*(x) then for a.e. x there is a Holder
continuous, nowhere vanishing function p: W*(x) — (0,0) with

ey = pmy. (3.3.2)

In particular, the leaf-wise measure p® has full support in W¥(x).
Moreover, Ledrappier explicitly computes the density function p; see
(D.2.2) in Appendix D and [134, Corollary 6.1.4].

We make use of the explicit formula for the density p in the following
setup. Consider a Lie group G and a smooth, locally free action of G on a
manifold M. We denote the action by ¢g-x for g € G and z € M. Consider
a Lie subgroup H < G and s € G that normalizes H. Let f: M — M be
the diffeomorphism given by s; that is f(x) = s-x. Let u be an ergodic,
f-invariant Borel probability measure and suppose that the orbit H - x is
contained in the unstable manifold W*(x) for u-almost every x.

Since s normalizes H, the partition of M into H-orbits is preserved by f;
in particular, the partition into H-orbits is a subfoliation of the partition
into unstable manifolds. Given a Borel probability measure y on M and a
measurable partition £ subordinate to the partition into H-orbits we can
define conditional measures S of u. Given x € M (using that the action
is locally free) we can push forward the left-Haar measure on H onto the
orbit H -z via the parametrization H -2 = {h-2z: he H}.

Lemma 3.3.4. p is H-invariant if and only if for any measurable partition
& subordinate to the partition into H-orbits and p-a.e. x the conditional
measure ps coincides—up to normalization—with the restriction of the
left-Haar measure on H - x to &(x).

Similar to the definition of metric entropy of f conditioned on unstable
manifolds, we can define the metric entropy of f conditioned on H-
orbits, written h,(f | H), by

hu(f | H) == hyu(f,€)
where £ is any increasing, measurable partition £ subordinate to H-orbits.
Let A, Ei(x), and m be as in 3.1.1 for the dynamics of f and the measure
u. We define the multiplicity of A® relative to H to be (the almost
surely constant value of)
m = dim(E'(z) n T,(H - ).
Generalizing Theorem 3.2.6(1) we have (see for instance [32])

hu(f | H) < D0 XmbH. (3.3.3)

Ai>0
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From the proof of Theorem 3.3.3, (in particular, the explicit formula for
the density function p in (3.3.2); see (D.2.2) in Appendix D and proof of
Proposition 2.4.8) we have the following.

Theorem 3.3.5. With the above setup, the following are equivalent:
(1) hu(f | H) = Yyisg A'mBH;

(2) for any measurable partition § subordinate to the partition into H-
orbits and almost every x, ué is absolutely continuous with respect
to the Riemannian volume on the H-orbit H - x;

(3) w is H-invariant.

The proof is only a slightly more complicated version of the proof of
Proposition 2.4.8. Note that as Theorem 3.3.5 only concerns the entropy
and dynamics inside H-orbits, the result holds for C! or even C° actions
since the dynamics permuting H-orbits is affine and hence C®. See for
instance [64] where related entropy results are shown for C? actions of Lie
groups.

A possible critique of Theorem 3.3.3 is that in examples it seems
nearly impossible to verify equality in (3.3.1) without first knowing that
the measure is SRB. However, in a number of settings of group actions
on manifolds, it turns out one can, in fact, verify equality in (3.3.1)
(or typically, equality in Theorem 3.3.5(1)) and thus derive the SRB
property or gain additional invariance of the measure only from entropy
considerations. This is one key idea in this text, the papers [34,39], and
also appears as a main tool in [71,150].

Remark 3.3.6. The statement and proof of Theorem 3.3.3, especially the
reformulation in Theorem 3.3.5, is very similar to the invariance principle
for fiberwise disintegrations of measures invariant under skew products.
The earliest version of this invariance principle is due to Ledrappier [131]
for projectivized linear cocycles. Avila—Viana extended this to cocycles
taking values in the group of C! diffeomorphisms in [6]. See Proposition
4.6.5 for a related invariance principle in the setting of actions of lattices
on manifolds.

3.3.2 Approaches to Questions 3.3.1 and 3.3.2

Although not the main focus of this text, we summarize a number of
alternative approaches towards approaching Questions 3.3.1 and 3.3.2 that
arise in various dynamical settings.

SRB property from dynamical hypotheses. In the setting of
uniformly hyperbolic dynamics, SRB measures are known to exist for
Anosov diffeomorphisms, Anosov flows, and Axiom A attractors. See
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[26,28]. In the setting of partially hyperbolic diffeomorphisms, under
suitable conditions on the central dynamics SRB measures are known to
exist; related results hold for dynamics with a dominated splitting. See
for example [2-4,22].

SRB measures via detailed analysis. For specific families of examples
exhibiting nonuniform hyperbolicity, tools of parameter exclusion, normal
forms, and detailed analysis can be used to show the existence of an SRB
measure. See for example, [9-12,102, 139,192, 200]. General hypotheses
that can be verified in a number of examples are given in [199,213] which
guarantee the existence of SRB measures. See the survey article [214] for
more background.

Verifying equality in the entropy formula. As discussed above, the
culmination of the results of [130,132,134] characterizes SRB measures
exactly as those for which the equality h,(f) = X ,..,m'A" holds.
Similarly, equality in Theorem 3.3.5(1) holds if and only if the measure u
is invariant under the action of the subgroup H. This approach—verifying
equality in the entropy formula to obtain invariance of a measure—has
been exploited in particular in [34,39,71,150].

Shearing and translation invariance in a homogeneous structure.
A common tool to obtain invariance or absolute continuity properties of
leaf-wise measures is to manufacture a shear of leaf-wise measures along
leaves of a foliation. That is, given an invariant measure p and an affine
foliation F with family of normalized leave-wise measures {u }, for a u-
typical x one may be able to use the dynamics to construct approximations
of translations along the support of u in the leaf F(x) that preserve the
measure u up to normalization. Taking a limit, one has that u’ is
preserved up to normalization under some translations which gives strong
information (see Proposition 2.4.6) on the geometry of u’. Additional
dynamical arguments can then often establish translation invariance of
the leaf-wise measures p . Manufacturing translation invariance of leaf-
wise measures along their support in an affine foliation F is a main tool
used to establish Ratner’s measure classification results in [174,176] and
[150]. This was also one of the main steps (see Lemma 2.5.3) in the proof
of Theorem 2.1.8.

In a setting similar to that of Theorem 2.1.8, for higher-rank
diagonal actions on semisimple homogeneous spaces (see Section 4.4.2),
the high entropy method [63, 64] and low entropy method [67, 138]
provide mechanisms to obtain translation invariance of leaf-wise measures,
culminating in the landmark paper [65]. Another mechanism to obtain
translation invariance of leaf-wise measures appears in [14, 15] and is
used to establish measure rigidity results for stationary measure for affine
random walks. In [71], a mechanism inspired by [14] is used to obtain
invariance for certain affine actions of SL(2, R).
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This approach, and specifically the method presented in Chapter 2
from [123], has been adapted to establish measure rigidity in a number
of nonlinear settings including [106] and [108]. In non-linear settings,
unstable manifolds W"(x) are C? injectively immersed copies of R* for
some k. Although there might be no natural notion of translation, relative
to certain coordinate systems H,: R¥ — W%(x) obtained from normal
forms of the dynamics along unstable manifolds, leaf-wise measures pY
are absolutely continuous if and only if their images (H;1),u? in these
coordinates are translation invariant in R*. In a number of non-linear
settings including [38,106,108] absolute continuity properties of a measure
1 along unstable foliations is shown by establishing translation invariance

of the leaf-wise measures (H,!),u¥ in these coordinates.



Chapter 4

Smooth lattice actions
and new results in the
Zimmer program

The main goal of this chapter will be to understand properties and
to classify smooth actions of certain countable groups I' on compact
manifolds. The main results of this chapter are Theorem 4.2.4 and
Theorem 4.2.6. We give their proofs after introducing some terminology
and motivation.

4.1 Smooth lattice actions

We give some background on lattices in semisimple Lie groups and
a number of examples of smooth actions of lattices on manifolds.
References with additional details for this and the next section include
[13,78,127,128,147,210].

4.1.1 Lattices in semisimple Lie groups

Recall that a Lie algebra g is simple if it is non-abelian and has no
non-trivial ideal. A Lie algebra g is semisimple if it is the direct sum
g = @legi of simple Lie algebras g;; this is equivalent to the fact that
[g,9] = g. We say a Lie group G is simple (resp. semisimple) if its Lie
algebra g is simple (resp. semisimple). The main example for this text is
the simple Lie group G = SL(n, R).

Let G be a connected semisimple Lie group with finite center.
Semisimple Lie groups are unimodular and hence admit a bi-invariant
measure, called the Haar measure, which is unique up to normalization.

80
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A lattice in G is a discrete subgroup I' € G with finite co-volume. That
is, if D is a measurable fundamental domain for the right-action of I on G
then D has finite volume. If the quotient G/T" is compact, we say that T is
a cocompact lattice. If G/T" has finite volume but is not compact we say
that T' is nonuniform. The quotient manifold G/T" by the right action
of I' admits a left-action by G and the Haar measure on G descends to a
finite, G-invariant measure on G,/I" which we normalize to be a probability
measure.

Example 4.1.1. The standard example of a lattice in G = SL(n,R) is
I' = SL(n,Z). Note that SL(n,Z) is not cocompact in SL(n,R). However,
SL(n,R) and more general simple and semisimple Lie groups possess both
nonuniform and cocompact lattices. (See for example [210, Sections 6.7,
6.8] for examples and constructions.)

Example 4.1.2. In the case G = SL(2,R), the fundamental group of
any finite area hyperbolic surface is a lattice in G. In particular, the
fundamental group of a compact hyperbolic surface is a cocompact lattice
in G. This can be seen by identifying the fundamental group of S with the
deck group of the hyperbolic plane H = SO(2, R)\SL(2,R). For instance,
the free group I' = F, on two generators is a lattice in G as can be seen
by giving the punctured torus S = T? \ {pt} a hyperbolic metric.

See [210] for further details on constructions and properties of lattices
in Lie groups.

4.1.2 Rank of G

Every semisimple matrix group admits an Iwasawa decomposition
G = KAN where K is compact, A is a simply connected free abelian
group of R-diagonalizable elements, and N is unipotent. For general
semisimple Lie groups with finite center, we have a similarly defined
Iwasawa decomposition G = K AN where the images of A and N under the
adjoint representation are, respectively, R-diagonalizable and unipotent.
See for instance [127] for details. The dimension of A is the rank of G.
We call such a group A a maximal split Cartan subgroup.
In the case of G = SL(n,R), the standard choice of K, A, and N are

K =S0(n,R), A = {diag(e",e",...,e") ity + -+ 1, = 0},

and N the group of upper-triangular matrices with all diagonal entries
equal to 1. Note that, as elements in SL(n,R) have determinant 1, we
have

diag(e',e'2,... e'") e SL(n,R)

if and only if t; + -+ +t, = 0. Thus A ~ R""! and the rank of SL(n, R)
isnm—1.
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We say that a simple Lie group G is higher rank if its rank is at least
2. We will say that a lattice I' in a higher-rank simple Lie group G is
a higher-rank lattice. In particular, G = SL(n,R) and its lattices are
higher-rank when n > 3.

In Example 4.1.9 below, we present an example of a cocompact lattice
I in the group G = SO(n,n) when n > 4. The group SO(n,n) has rank n
and thus I' is a higher-rank, cocompact lattice.

For further examples, see Table 4.1 for calculations of rank for various
matrix groups and [127, VI.4] for examples of Iwasawa decompositions for
various matrix groups.

4.1.3 Standard actions of lattices in Lie groups

We present a number of standard examples of “algebraic” actions of lattices
in Lie groups. We also discuss in Example 4.1.10 some modifications of
algebraic actions and constructions of more exotic actions.

Example 4.1.3 (Finite actions). Let I be a finite-index normal subgroup
of I'. Then F = T'/T” is finite. Suppose the finite group F acts on a
manifold M. Since F' is a quotient of I' we naturally obtain a I'-action on
M.

Note that an action of a finite group preserves a volume simply by
averaging any volume form by the action.

Definition 4.1.4. An action a: I' — Diff (M) is finite or almost trivial
if it factors through the action of a finite group. That is, « is finite if there
is a finite-index normal subgroup IV < I such that a/|r is the identity.

We remark that by a theorem of Margulis [144], if T' is a lattice in a
higher-rank, simple Lie group with finite center then all normal subgroups
of T" are either finite or of finite-index.

Example 4.1.5 (Affine actions). Let I' = SL(n,Z) (or any finite-index
subgroup of SL(n,Z)). Let M = T™ = R"/Z"™ be the n-dimensional torus.
We have a natural action a: I' — Diff(T™) given by

a)(x+Z")=~y-x+Z"

for any matrix v € SL(n, Z).

To generalize this example to other lattices, let I' = SL(n,R) be any
lattice and let p: ' — SL(d,Z) be any representation. Then we have a
natural action a: I' — Diff(T9) given by

a(y)(@+2%) = p(y) -z + 2.

Note that these examples preserve a volume form, namely, the Lebesgue
measure on T¢. Also note that these actions are non-isometric.
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Remark 4.1.6. Both constructions in Example 4.1.5 give actions a: I' —
Diff(T?) that have global fixed points. That is, the coset of 0 in T? is a
fixed point of a(y) for every v e T

The construction can be modified further to obtain genuinely affine
actions without global fixed points. Given a lattice I' < SL(n,R) and
a representation p: I' — SL(d,Z), there may exist non-trivial elements
ce H) (I, T); that is, ¢: I' — T? is a function with

c(mz2) = p(m)e(ry2) + c(r1) (4.1.1)

and such that there does not exist any 7 € T¢ with

c(v) =p(v)n—n (4.1.2)

for all v e T'. (Equation (4.1.1) says that ¢ is a cocycle with coefficients in
the I'-module T%; (4.1.2) says c is not a coboundary.) We may then define
a: T' — Diff(T?) by

a(y)(x+2% = p(y) - &+ c(y) + Z%.

Equation (4.1.1) ensures that & is an action and (4.1.2) ensures that & is
not conjugate to the action a.

In the above construction, any cocycle ¢: I' — T¢ is necessarily
cohomologous to a torsion-valued (that is, Q¢/Z%-valued) cocycle. This
follows from Margulis’s result (see [147, Theorem 3 (iii)]) on the vanishing
of H pl (T, R9). In particular, & and « are conjugate when restricted to a
finite-index subgroup of T'. See [99] for more details.

Example 4.1.7 (Projective actions). Let I' < SL(n,R) be any lattice.
Then I" has a natural linear action on R™. The linear action of I" on R"
induces an action of I on the sphere S”~! thought of as the set of unit
vectors in R™: we have a: I' — Diff(S"~1) given by

vz
a(y)(x) ozl
Alternatively we could act on the space of lines in R™ and obtain an
action of I' on the (n — 1)-dimensional real projective space RP"~!. This
action does not preserve a volume; in fact there is no invariant probability
measure for this action. Additionally, these actions are not isometric for
any Riemannian metric.

Remark 4.1.8 (Actions on boundaries). Example 4.1.7 generalizes to
actions of lattices I' in G acting on boundaries of G. Given a semisimple
Lie group G with Iwasawa decomposition G = KAN, let M = K nCg(A)
be the centralizer of A in K. A closed subgroup Q < G is parabolic if
it is conjugate to a group containing M AN. When G = SL(n,R) we have
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that M is a finite group and any parabolic subgroup @ is conjugate to a
group containing all upper triangular matrices. See [127, Section VILT]
for further discussion on the structure of parabolic subgroups.

Given a semisimple Lie group G, a (finite-index subgroup of a) proper
parabolic subgroup @ < G, and a lattice I' ¢ G, the coset space M = G/Q
is compact and I' acts on M naturally as

a(7)(zQ) = 72Q.

These actions never preserve a volume form or any Borel probability
measure and are not isometric.

In Example 4.1.7, the action on the projective space RP"~! can be seen
as the action on SL(n,R)/Q where @ is the parabolic subgroup

% *
0 ®
Q= :
0 = %

Example 4.1.9 (Isometric actions). Another important family of
algebraic actions are isometric actions obtained from embeddings of
cocompact lattices in Lie groups into compact groups.

Isometric actions of cocompact lattices in split orthogonal groups
of type D,, (n = 4)

For n > 4, consider the quadratic form in 2n variables
Q(mla"'axnvyla"'ayn) = SL'% + x’?L - ﬁ(y% + +yi)

Let
B = diag (1,...,1,—\/5,...,—\@) € GL(2n,R)

be the matrix such that Q(z) = 7 Bz for all z € R?" and let
G =S0(Q) = {g € SL(2n,R) | g" Bg = B}
be the special orthogonal group associated with (). We have that
SO(Q) ~ SO(n,n)

is a Lie group of rank n with restricted root system of type D,, when
n > 4.1

1For n = 1, SO(1, 1) is a one-parameter group and for n = 2, SO(2,2) is not simple
(it is double covered by SL(2,R) x SL(2,R)). For n = 3, SO(3,3) is double covered by
SL(4,R).
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Let K = Q[v/2] and let Z[+/2] be the ring of integers in K. Let
I' = {geSL(2n,Z[v2]) | g" Bg = B}.

Then T is a cocompact lattice in G. (See for example [210], Proposition
5.5.8 and Corollary 5.5.10.)

Let 7: K — K be the nontrivial Galois automorphism, 7(v/2) = —+/2,
and let 7 act coordinate-wise on matrices with entries in K. Given vy e I’
we have 7() = Id if and only if v = Id. Moreover, as 72 = Id we have

7(7) € SO(7(Q)) == {g € SL(2n,R) | g"7(B)g = 7(B)} ~ SO(2n).

In particular, the map v — 7(7) gives a representation I' — SO(2n) with
infinite image into the compact group SO(2n).

As SO(2n) is the isometry group of the sphere $2"~1 = SO(2n)/SO(2n—
1) we obtain an action of " by isometries on a manifold of dimension 2n—1.

Isometric actions of cocompact lattices in SL(n,R)

A more complicated construction can be used to build cocompact lattices
I' c SL(n,R) that possess infinite-image representations 7: I' — SU(n)
(see discussion in [210, Sections 6.7, 6.8] as well as [210, Warning 16.4.3].)
In this case, one obtains isometric actions of certain cocompact lattices I’
in SL(n,R) on the (2n — 2)-dimensional homogeneous space

SU(n)/S(U) x U(n — 1)).

Example 4.1.10 (Modifications of standard examples and exotic actions).
Beyond the “algebraic actions” discussed in Examples 4.1.5-4.1.9, it is
possible to modify certain algebraic constructions to construct genuinely
new actions; these actions might not be conjugate to algebraic actions and
may exhibit much weaker rigidity properties. One such construction starts
with the standard action of (finite-index subgroups of) SL(n,Z) on T"
and creates a non-volume-preserving action by blowing-up fixed points or
finite orbits of the action. In [117, Section 4], Katok and Lewis showed this
example can be modified to obtain volume-preserving, real-analytic actions
of SL(n,Z) that are not C° conjugate to an affine action; moreover, these
actions are not locally C'-rigid. In [17,19,77], constructions of non-locally
Cl-rigid, ergodic, volume-preserving actions of any lattice in a simple Lie
group are constructed by more general blow-up constructions.

Another example due to Stuck [191] demonstrates that it is impossible
to fully classify all lattice actions. Let P < SL(n,R) be the group of upper
triangular matrices. There is a non-trivial homomorphism p: P — R.
Now consider any flow (i.e. R-action) on a manifold M and view the flow
as a P-action via the image of p. Then G acts on the induced space
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N = (G x M)/P and the restriction induces a non-volume-preserving, non-
finite action of I'. This example shows—particularly in the non-volume-
preserving-case—that care is needed in order to formulate any precise
conjectures that assert that every action should be “of an algebraic origin”.
Note, however, that we obtain a natural map N — G/P that intertwines
['-actions; in particular, this action has an “algebraic action” as a factor.
We refer to [78, Sections 9 and 10] for more detailed discussion and
references to modifications of algebraic actions and exotic actions.

4.1.4 Actions of lattices in rank-1 groups

Actions by lattices in higher-rank Lie groups are expected to be rather
constrained. Although Example 4.1.10 shows there exists exotic, genuinely
“non-algebraic” actions of such groups, these actions are built from
modifying algebraic constructions or factor over algebraic actions. For
lattices in rank-one Lie groups such as SL(2,R), the situation is very
different. There exist natural actions that have no algebraic origin and
the algebraic actions of such groups seem to exhibit far less rigidity (for
example Example 4.1.12 which is not locally rigid) than those above.

Example 4.1.11 (Actions of free groups). Let G = SL(2,R). The
free group I' = F; is isomorphic to a lattice in G. (For instance, the
fundamental group of the punctured torus is isomorphic to F5; more
explicitly, SL(2,Z) contains a copy of Fy as an index 12 subgroup.) Let
M be any manifold and let f,g € Diff(M). Then f and g generate an
action of I' on M which in general is not of an algebraic origin and does
not exhibit any local rigidity. In particular, there is no expectation that
any rigidity phenomena should hold for actions of all lattices in SL(2,R).

For the next example, recall Definitions 1.1.1 and 1.1.3 of Anosov
actions.

Example 4.1.12. (Non-standard Anosov actions of SL(2,Z)). Consider
the standard action g of SL(2,Z) on the 2 torus T? as constructed in
Example 4.1.5. In [98, Example 7.21], Hurder presents an example of a
l-parameter family of deformations a;: SL(2,Z) — Diff(T?) of ag with
the following properties:

1. Each «; is a real-analytic, volume-preserving action;

2. For t > 0, «; is not topologically conjugate to g, (even when
restricted to a finite-index subgroup of SL(2,Z).)

Moreover, since aq is an Anosov action and since the Anosov property is
an open property we have that

3. each o4 is an Anosov action.
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This shows that even affine Anosov actions of SL(2,Z) fail to exhibit local
rigidity properties and that there exist genuinely exotic Anosov actions of
SL(2,Z). This is in stark contrast to the affine Anosov actions of higher-
rank lattices which are known to be locally rigid by [124, Theorem 15].

In contrast, it is expected that all Anosov actions of higher-rank
lattices are smoothly conjugate to affine actions as in Example 4.1.5
or Remark 4.1.6 (or analogous constructions in infra-nilmanifolds). See
Question 4.2.1(6) below. Recent progress towards this conjecture appears
in [41].

Remark 4.1.13. There are a number of rank-1 Lie groups whose
lattices are known to exhibit some rigidity properties relative to linear
representations. For instance, Corlette established superrigidity and
arithmeticity of lattices in certain rank-1 simple Lie groups in [50]. In
particular, Corlette establishes superrigidity for lattices in Sp(n,1) and
Fy 20 the isometry groups of quaternionic hyperbolic space and the Cayley
plane. It seems plausible that lattices in certain rank-1 Lie groups would
exhibit some rigidity properties for actions by diffeomorphisms; currently,
there do not seem to be any results in this direction.

4.2 Actions in low dimension and Zimmer’s
conjecture

4.2.1 Motivating questions

For actions by lattices in rank-1 groups, we have seen that it is easy to
construct exotic actions of free groups and Example 4.1.12 shows there are
exotic Anosov actions of SL(2,Z) on tori.

However, for actions of lattices in higher-rank, simple Lie groups, the
situation is expected to be far more rigid. In particular, the examples
from the previous section lead to a number of more precise questions and
conjectures. For concreteness, fix n > 3 and let G = SL(n,R). Let I' ¢ G
be a lattice. Recall the action of I' on S" ! and the volume-preserving
Anosov action of I" = SL(n,Z) on T™.

Questions 4.2.1. Consider the following questions:

(1) Is there a non-finite action of I' on a manifold of dimension at most
n—27

(2) If the answer to (1) is unknown, does every action of I on a manifold
of dimension at most n — 2 preserve a volume form?

(3) Is there a non-finite, volume-preserving action of I on a manifold of
dimension at most n — 17
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(4) Is every non-finite action of I' on an n-torus of the type considered
in Example 4.1.57 What about volume-preserving actions? That is,
if a: T' — Diff(T™) is a non-finite action is @ smoothly conjugate to
an affine action as in Example 4.1.5 (or as in Remark 4.1.6)7

(5) Are the only non-finite actions of I' on a connected (n — 1)-manifold
those considered in Example 4.1.77 That is, if a: I' — Diff“(M) is
a non-finite action is M either S"~! or RP"~! and is o smoothly
conjugate to the projective action?

Motivated by wvarious conjectures on the classification of Anosov
diffeomorphisms and Question 4.2.1(4), we also pose the following.

(6) Is every (volume-preserving) Anosov action of T' of the type
considered in Example 4.1.57 That is, if a: I' — Diff(M) is an
Anosov action is M a (infra-)nilmanifold and is & smoothly conjugate
to an affine action as in Example 4.1.5 (or as in Remark 4.1.6)7

Questions 4.2.1(1) and (3) are referred to as Zimmer’s conjecture,
discussed in the next section. Question 4.2.1(2) is irrelevant given a
negative answer to Question 4.2.1(1) but motivated the result stated in
Theorem 4.2.4 below and was natural to conjecture before an answer to
Question 4.2.1(1) was known. It may be that answering Question 4.2.1(2)
is possible in dimension ranges where Conjecture 4.2.3(1) below is expected
to hold but is not yet known.

4.2.2 Zimmer’s conjecture for actions by lattices in
SL(n,R)

Recall Example 4.1.5 and Example 4.1.7. For lattices in SL(n,R),
Zimmer’s conjecture asserts that these are the minimal dimensions
in which non-finite actions can occur. We have the following precise
formulation.

Conjecture 4.2.2. Forn = 3, let '  SL(n,R) be a lattice. Let M be a
compact manifold.

(1) If dim(M) < n —1 then any homomorphism I' — Diff (M) has finite
image.

(2) In addition, if vol is a volume form on M and if dim(M) =n — 1
then any homomorphism T' — Diff yo1(M) has finite image.

We are intentionally vague about the regularity in Conjecture 4.2.2 (and
Conjecture 4.2.3 below). Zimmer originally stated Conjecture 4.2.2(2)
for the case of C® volume-preserving actions; see [215, 218, 219].
Conjecture 4.2.2(1) for C™ actions first appears in [74]. Most evidence
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for the conjecture requires the action to be at least C'. It is possible
the conjecture holds for actions by homeomorphisms; see for instance
[29, 207, 208] for a partial list of results in this directions. The results
we discuss below require the action to be at least C*T# as we use tools
nonuniformly hyperbolic dynamics though some of our results still hold
for actions by C! diffeomorphisms (see Theorem 4.2.7 below.)

*%4.2.3 Zimmer’s conjecture for actions by lattices in
other Lie groups

To formulate Zimmer’s conjecture for lattices in general Lie groups, to
each simple, non-compact Lie group G we associate 3 positive integers
do(G), dvep(G), demt (G) defined roughly as follows:

1. do(G) is the minimal dimension of G/H as H varies over proper
closed subgroups H — G. (We remark that H is necessarily a
parabolic subgroup in this case.)

2. diep(G) is the minimal dimension of a non-trivial linear
representation of (the Lie algebra) of G.

3. demt (@) is the minimal dimension of a non-trivial homogeneous space
of a compact real form of G.

See Table 4.1 where we compute the above numbers for a number of
matrix groups, (split) real forms of exceptional Lie algebras, and complex
matrix groups. We also include another number r(G) which is defined in
[34,39] and arises from certain dynamical arguments?; this number gives
the bounds appearing in the most general result, Theorem 4.10.2 below,
towards solving Conjecture 4.2.3. For complete tables of values of dyep(G),
demt (@), and do(G), we refer to [45].

Given the examples in Section 4.1.3 and the integers diep(G), domt(G)
and do(G) defined above, it is natural to conjecture the following.

Conjecture 4.2.3 (Zimmer’s Conjecture). Let G be a connected, simple
Lie group with finite center. Let I' € G be a lattice. Let M be a compact
manifold and vol a volume form on M. Then

(1) if dim(M) < min{dyep(G), demt (G), do(G)} then any homomorphism
a: T'— Diff (M) has finite image;

(2) if dim(M) < min{dep(G),demi(G)} then any homomorphism
a: ' — Diffyo1 (M) has finite image;

(8) if dim(M) < min{do(G),drep(G)} then for any homomorphism
a: T'— Diff (M), the image a(T") preserves a Riemannian metric;

2 A precise definition that is equivalent to that in [34,39] is that r(G) is do(G’) where
G’ is the largest R-split simple subgroup in G.
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restricted
G root rank | diep(G) | demt(G) | do(G) r(G)
system

SL(n,R) A1 |n—1 n 2n —2 n—1 n—1
SO(n,n +1) B, n 2n +1 2n 2n—1 |[2n—1
Sp(2n,R) Cp n 2n dn —4 2n—1 [2n—1
SO(n,n) D, n 2n 2n—1 2n—2 | 2n—2

Ey Eg 6 27 26 16 16

Ey Ey 7 56 o4 27 27

Evirr Eg 8 248 112 57 57

I Fy 4 26 16 15 15

G Ga 2 7 6 5 5
SL(n,C) Anr |n—1 2n 2n — 2 2n—2 | n—1
SO(2n,C) D, n 4n 2n —1 dn—4 |2n—2
SO(2n +1,C) B, n | 4n+2 2n dn—2 |2n—1
Sp(2n,C) Cp n 4n dn —4 dn—2 |2n—1
S}?(f’;) B, D p+q |p+qg—1|p+qg—2|2p—1

Table 4.1: Numerology appearing in Zimmer’s conjecture for various
groups. See also [45] for more complete tables. See Theorem 4.10.2 where
the number r(G) appears and [34,39] or Footnote 2 for definition.

(4) if dim(M) < dwep(G) then for any homomorphism a: T —
Diffyo1(M), the image «(T) preserves a Riemannian metric.

4.2.4 Recent results in the Zimmer program

The following two recent results address Questions 4.2.1(1)—(3) above. In
the remainder of this part, we outline their proofs (at times, specializing
to the case of C* actions and the case of G = SL(3,R).) We also refer
the reader to the excellent article by Serge Cantat [45] that presents (in
French) a complete proof of Theorem 4.2.6.

Before an answer to Questions 4.2.1(1) and (3) were known, the author
together with Federico Rodriguez Hertz and Zhiren Wang studied Question
4.2.1(2) and were able to show that all such actions preserve some
probability measure.

Theorem 4.2.4 ([39, Theorem 1.6]). For n > 3, let I' < SL(n,R) be a
lattice. Let M be a manifold with diim(M) < n — 1. Then, for any C1+5
action a: I' — DiffHﬁ(M), there exists an a-invariant Borel probability
measure.
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For actions on the circle, an analogue of Theorem 4.2.4 is shown in
[93, Theorem 3.1] for actions by homeomorphisms.

In the critical dimension, dim(M) = n — 1, the projective action on
RP"1 discussed in Example 4.1.7 gives an example of an action that
does not preserve any Borel probability measure. If « is an action of T’
on a space X, we say that a Borel probability measure i is nonsingular
for « if the measure class of y is preserved by the action. In particular,
any smooth volume on RP™"~1! is nonsingular for the projective action. In
[39, Theorem 1.7], it is shown that all non-measure-preserving actions on
manifolds of the critical dimension (n — 1) have the projective action on
RP" ! equipped with a smooth volume as a measurable factor. Precisely,
for any action o: T — Diff**# (M) where dim(M) = n—1 it is shown that
either

1. there exists an a-invariant Borel probability measure p on M; or

2. there exists a Borel probability measure p on M that is nonsingular
for the action «; moreover the action « on (M, u) is measurably
isomorphic to a finite extension of the projective action in
Example 4.1.7 and the image of u factors to a smooth volume form
on RP"1,

This gives strong evidence for a positive answer to Question 4.2.1(5)
which we pose as a formal conjecture.

Conjecture 4.2.5. For n > 3, let I' < SL(n,R) be a lattice, let M be
a closed (n — 1)-dimensional manifold, and let a: T — Diff*(M) be an
action with infinite image. Then, either M = S"~' or M = RP"™! and
the action o is C* conjugate to the projective action on either S"~1 or
RP" ! in Example 4.1.7.

Returning to actions on manifolds below the critical dimensions in
Zimmer’s conjecture, the author with David Fisher and Sebastian Hurtado
recently answered Questions 4.2.1(1) and (3) for actions by cocompact
lattices in SL(n,R) in [34].

Theorem 4.2.6 ([34, Theorem 1.1]). For n > 3, let I' < SL(n,R) be a
cocompact lattice. Let M be a compact manifold.

(1) If dim(M) < n—1 then any homomorphism T' — Diff>(M) has finite
image.

(2) In addition, if vol is a volume form on M and if dim(M) =n —1
then any homomorphism T' — Diff> (M) has finite image.

vol

The proof of Theorem 4.2.6 uses ideas and results from [39], particularly
the proof of Theorem 4.2.4, as ingredients. Thus, while Theorem 4.2.4
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follows trivially from Theorem 4.2.6, we include the proof of Theorem 4.2.4
below as key ideas (namely, Theorem 4.6.1, Theorem 4.6.1’, and
Proposition 4.6.5) will be needed in the proof of Theorem 4.2.6.

Remarks on Theorem 4.2.6. We give a number of remarks on
extensions of Theorem 4.2.6. See also the discussion in Section 4.10.

1. Recently, the author, together with David Fisher and Sebastian
Hurtado, announced in [35] that the conclusion of Theorem 4.2.6
holds for actions of SL(n, Z) for n > 3. The result for general lattices
in SL(n,Z) as well as analogous results for lattices in other higher-
rank simple Lie groups, has been announced [36]. This establishes
Conjecture 4.2.2 for actions by C? (and even C''*# diffeomorphisms).
See Theorem 4.10.2.

The results for actions of SL(n, Z) and of general nonuniform lattices
use many of the ideas presented in this text but also require a number
of new techniques (including the structure of arithmetic groups,
reduction theory, and ideas from [140]) which will not be discussed
in this text.

2. We state Theorem 4.2.6 for actions by C? diffeomorphisms though
the proof can be adapted for actions by C'*# actions. Our proof
below will assume the action is by C® diffeomorphisms to simplify
certain Sobolev space arguments.

3. The result for actions by lattices in general Lie groups is stated in
Theorem 4.10.2 below. In particular, parts (1) and (2) of Conjecture
4.2.3 hold for C'*# actions by lattices in simple Lie groups that are
non-exceptional, split real forms. For C'*# actions by lattices in
simple Lie groups that are exceptional, split real forms, Conjecture
4.2.3(1) holds.

4. D. Damjanovich and Z. Zhang observed that the proof of Theorem
4.2.6 can be adapted to the setting of actions by C'-diffeomorphisms.
Together with the author, they have announced the following
theorem.

Theorem 4.2.7 ([33]). Let T' < G be a lattice in a higher-rank
simple Lie group G with finite center. Let M be a compact manifold.

(a) If dim(M) < rank(G) then any homomorphism T' — Diff' (M)
has finite image.

(b) In addition, if vol is a volume form on M and if dim(M) =
rank(G) then any homomorphism T' — Diff. (M) has finite
1mage.
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For actions by lattices in other higher-rank groups, there is a gap
between what is known for C! versus C'*A-actions. Indeed, our
number 7(G) in Theorem 4.10.2 always satisfies 7(G) > rank(G) and
is a strict inequality unless G has restricted root system of type A,,.

4.3 Superrigidity and heuristics for Conjec-
ture 4.2.2

The original conjecture (for actions by lattices in SL(n,R)) posed by
Zimmer was Conjecture 4.2.2(2) (see for example [218, Conjecture II]).
Conjecture 4.2.2(1) was formulated later and first appears in print in
[74, Conjecture I]. The reason Zimmer posed his conjecture as Conjecture
4.2.2(2) is that the strongest evidence for the conjecture—Zimmer’s
cocycle superrigidity theorem—requires the action to preserve some Borel
probability measure. Zimmer’s cocycle superrigidity theorem also provides
strong evidence for local and global rigidity conjectures related to
Questions 4.2.1(4)—(6) and is typically used in proofs of results towards
solving such conjectures.

In this section, we state a version of Zimmer’s cocycle superrigidity
theorem and some consequences. We also state a version of Margulis’s
superrigidity theorem (for linear representations). We also give some
heuristics for Zimmer’s conjecture that follow from the superrigidity
theorems. General references for this section include [147,210,216].

4.3.1 Cocycles over group actions

Consider a standard probability space (X, ). Let G be a locally compact
topological group and let a: G x X — X be a measurable action of G
by p-preserving transformations. In particular, a(g) is a p-preserving,
measurable transformation of X for each g € G. Below, we will always
assume the measure p is ergodic for this action.

A d-dimensional measurable linear cocycle over a is a measurable
map

A: G x X - GL(d,R)
satisfying for a.e. x € X the cocycle condition: for all g1, g2 € G,
A(g192,2) = A (91, a(92)(2)) A(g2, z). (4.3.1)
If e is the identity element of G, then (4.3.1) implies that
Ale,x) = A(e, z)Ale, x)

whence A(e, z) = Id for a.e. z.
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We say two cocycles A,B: G x X — GL(d,R) are (measurably)
cohomologous if there is a measurable map ®: X — GL(d,R) such that
for a.e. z and every g € G,

B(g,z) = ®(a(g)(z)) " Alg, 2)®(x). (4.3.2)

We say a cocycle A: G x X — GL(d,R) is constant if A(g,z) is
independent of x, that is, if 4: G x X — GL(d,R) coincides with a
representation m: G — GL(d,R) on a set of full measure.

As a primary example, let a: G — Diffllt(M) be an action of G by
C! diffeomorphisms of a compact manifold M preserving some Borel
probability measure p. Although the tangent bundle TM may not be a
trivial bundle, we may choose a Borel measurable trivialization ¥: TM —
M x R? of the vector-bundle TM where d = dim(M). We have that ¥
factors over the identity map on M and, writing ¥,: T, — R¢ for the
identification of the fiber over = with R?, we moreover assume that |¥,|
and |¥ 1| are uniformly bounded in x.

Fix such a trivialization ¥ and define A to be the derivative cocycle
relative to this trivialization:

A(g,m) = Dma(g)

where, we view Dgya(g) as an element of GL(d,R) transferring the fiber
{z} x R? to {a(g)(x)} x R? via the measurable trivialization ¥. To be
precise, if U: TM — M xR? is the measurable vector-bundle trivialization
then
Alg, ) == ¥(a(g)(x))Dealg)¥(z) .

In this case, the cocycle relation (4.3.1) is simply the chain rule. Note that
if we choose another Borel measurable trivialization ¥': TM — M x R¢
then we obtain a cohomologous cocycle A’. Indeed, we have

A'(g,x) = ¥'(a(g)(2))¥(a(g)(x)) " Alg, z)¥(x) ¥’ ()~

so we may take ®(z) = U(z)¥/(z)~! in (4.3.2).
We have the following elementary fact which we frequently use in the
case of volume-preserving actions.

Claim 4.3.1. Let a: G — Diff! (M) be an action by volume-preserving

vol
diffeomorphisms. Then, for any a-invariant measure p, the derivative

cocycle A is cohomologous to a SL* (d,R)-valued cocycle.

Above, SL¥(d,R) is the subgroup of GL(d,R) defined by det(A) = +1.

4.3.2 Cocycle superrigidity

We formulate the statement of Zimmer’s cocycle superrigidity theorem
when G is either SL(n,R) or a lattice subgroup of SL(n,R) for n > 3.
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Note that the version formulated by Zimmer (see [216]) had a slightly
weaker conclusion. We state the stronger version formulated and proved
in [82].

Theorem 4.3.2 (Cocycle superrigidity [82, 216]). For n > 3, let
G be either G = SL(n,R) or let G be a lattice in SL(n,R). Let
a: G — Aut(X, p) be an ergodic, measurable action of G by u-preserving
transformations of a standard probability space (X, u). Let A: G x X —
GL(d,R) be a bounded,® measurable linear cocycle over c.

Then there exist

1. a linear representation p: SL(n,R) — SL(d,R);

2. and a compact subgroup K < GL(d,R) that commutes with the image
of p;

3. a K-valued cocycle C: G x X — K;
4. and a measurable function ®: X — GL(d,R)

such that for a.e. x € X and every g € G

Alg, ) = (a(g)()) ' p(9)C(g, 2) (). (4.3.3)

In particular, Theorem 4.3.2 states that any bounded measurable linear
cocycle A: G x X — GL(d,R) over the action « is cohomologous to the
product of constant cocycle p: G — SL(d, R) and a compact-valued cocycle
C:Gx X — K c GL(d,R).

4.3.3 Superrigidity for linear representations

Zimmer’s cocycle superrigidity theorem is an extension of Margulis’s
superrigidity theorem for linear representations. We formulate a version
of this theorem for linear representations of lattices in SL(n, R).

Theorem 4.3.3 (Margulis superrigidity [147]). For n > 3, let T be a
lattice in SL(n,R). Given a representation p: I' — GL(d,R) there are

1. a linear representation p: SL(n,R) — SL(d,R);

2. a compact subgroup K < GL(d,R) that commutes with the image of
p

3Here, bounded means that for every compact K < G, the map K x X — GL(d,R)
given by (g, x) — A(g, x) is bounded. More generally, we may replace the boundedness
hypothesis with the hypothesis that the function z — supgcx log |A(g, )|l is L' (u).
See [82].
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such that
p(Vp(7) e K

forall veT.
That is, p = p - ¢ is the product of the restriction of a representation

p: SL(n,R) — SL(d,R)

to I' and a compact-valued representation c: I' — K. Moreover the image
of p and ¢ commute.

In the case that I' is nonuniform, one can show that all compact-valued
representations c: I' — K have finite image. See for instance the discussion
in [210, Section 16.4], especially [210, Exercise 16.4.1].

For certain cocompact I' < SL(n,R), there exists compact-valued
representations ¢: I' — SU(n) with infinite image. (See discussion in
Example 4.1.9.) The next theorem, characterizing all homomorphisms
from lattices in SL(n,R) into compact Lie groups, shows that
representations into SU(n) are more-or-less the only such examples. The
proof uses the p-adic version of Margulis’s superrigidity theorem and some
algebra. See [147, Theorem VII.6.5] and [210, Corollary 16.4.2].

Theorem 4.3.4. For n > 3, let ' < SL(n,R) be a lattice. Let K be a
compact Lie group and 7w: I' — K a homomorphism.

(1) If T is nonuniform then w(I") is finite.

(2) IfT is cocompact and 7(T') is infinite then there is a closed subgroup
K' c K with

M) c K'c K
and the Lie algebra of K' is of the form Lie(K’) = su(n) x - - - xsu(n).

The appearance of su(n) in (2) of Theorem 4.3.4 is due to the fact that
su(n) is the compact real form of sl(n,R), the Lie algebra of SL(n,R). For
a cocompact lattice T' in SO(n,n) as in Example 4.1.9, the analogue of
Theorem 4.3.4 states that

Lie(K') = s0(2n) x - -+ x 50(2n).

4.3.4 Heuristic evidence for Conjecture 4.2.2

We present a number of heuristics that motivate the conclusions of
Conjectures 4.2.2 and 4.2.3.
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Analogy with linear representations

Note that if d < n, there is no non-trivial representation p: SL(n,R) —
SL(d,R); moreover, by a dimension count, there is no embedding of su(n)
in sl(d,R). We thus immediately obtain as corollaries of Theorems 4.3.3
and 4.3.4 the following.

Corollary 4.3.5. For n = 3, let T’ be a lattice in G = SL(n,R). Then,
for d < n, the image of any representation p: I' — GL(d,R) is finite.

Conjecture 4.2.2 can be seen as a “nonlinear” analogue of this corollary.
That is, we aim to prove the same result when the linear group GL(d, R)
is replaced by certain diffeomorphism groups Diff (M).

Invariant measurable metrics

For n = 3, let T be a lattice in G = SL(n,R) and consider a measure-
preserving action a: I' — Diﬁi(M ) where M is a compact manifold of
dimension at most d < n — 1 and p is an arbitrary Borel probability
measure on M preserved by a. The derivative cocycle of the action « is
then GL(d,RR)-valued. Since there are no representations p: SL(n,R) —
SL(d,R) for d < n, Theorem 4.3.2 implies that the derivative cocycle is
cohomologous to a compact-valued cocycle. In particular, we have the
following:

Corollary 4.3.6. For T', M, and a.: T — Diff}L(M) as above

(1) « preserves a ‘u-measurable Riemannian metric,” i.e. there is a
u-measurable, a-invariant, positive-definite symmetric two-form on

TM;
(2) for any € >0 and v €T, the set of x € M such that

1
lim inf = log | Dya(y™)] = €

n—0 N

has zero H-measure.

For (1), suppose the derivative cocycle is cohomologous to a K-valued
cocycle for some compact group K < GL(d,R). One may then pull-
back any K-invariant inner product on R? to T, M via the map ®(z) in
Theorem 4.3.2 to an a(T")-invariant inner product. Conclusion (2) follows
from Poincaré recurrence to sets on which the function ®: M — GL(d, R)
in Theorem 4.3.2 has bounded norm and conorm. Note from (2) that all
Lyapunov exponents for individual elements of the action must vanish.

From Corollary 4.3.6, given n > 3 and a lattice I" in G = SL(n,R),
we have that every action a: I’ — Diffl (M) preserves a Lebesgue-

vol

measurable Riemannian metric ¢ whenever M is a compact manifold of
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dimension at most n — 1. Suppose one could show that g was continuous
or C*. As we discuss in Step 3 of Section 4.7 below, this combined with
Theorem 4.3.4 implies the image «(T") is finite. Thus, Conjecture 4.2.2(2)
follows if one can promote the measurable invariant metric g guaranteed
by Corollary 4.3.6 of Theorem 4.3.2 to a continuous Riemannian metric.

The discussion in the previous paragraphs suggests the following variant
of Conjecture 4.2.2(2) might hold:

Forn = 3, if T' < SL(n,R) is a lattice and if p is any fully
supported Borel probability measure on a compact manifold M
of dimension at most (n — 1) then any homomorphism

I' — Diff,,(M)
has finite image.

Our method of proof of Conjecture 4.2.2(2) does not establish this
conjecture. However, the conjecture would follow (even allowing for u
to have partial support) if the global rigidity result in Conjecture 4.2.5
holds.

Actions with discrete spectrum

Upgrading the measurable invariant Riemannian metric in Corollary 4.3.6
to a continuous Riemannian metric in the above heuristic seems quite
difficult and is not the approach we take in the proof of Theorem 4.2.6. In
[217], Zimmer was able to upgrade the measurable metric to a continuous
metric for volume-preserving actions that are very close to isometries. This
result now follows from the local rigidity of isometric actions in [18,83].

Zimmer later established a much stronger result in [220] which provides
very strong evidence for the volume-preserving cases in Conjecture 4.2.3.
Using the invariant, measurable metric discussed above and that higher-
rank lattices have Property (T), Zimmer showed that any volume-
preserving action appearing in Conjecture 4.2.3 has discrete spectrum.
In particular, this result implies that (the ergodic components of) all
volume-preserving actions appearing in Conjecture 4.2.3 are measurably
isomorphic to isometric actions.

4.4 Structure theory of SL(n,R) and Cartan
flows on SL(n,R)/T

Let G = SL(n,R) and let I' © G be a lattice. Recall we write G = KAN
for the Iwasawa decomposition where

K =80(n,R), A = {diag(e', e, ... eM) ity + -+ t, = 0},
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and N is the group of upper triangular matrices with 1s on the diagonal.

We will be interested in certain subgroups of G and how they capture
dynamical information of the action of the Cartan subgroup A on the
homogeneous space G/T.
4.4.1 Roots and root subgroups
We consider the following linear functionals

B A-R

given as follows: for i # j,

B4 (diag(etl,etQ, A et")) =t; —t;.

The linear functionals %/ are the roots of G. N
Associated to each root 5%/ is a 1-parameter unipotent subgroup U"’/ <
G. For instance, in G = SL(3,R) we have the following 1-parameter flows

1t 0 1 0 ¢t 1 0 0
WPt = 0 1 0 |, «P*@®)=1{ 0 0|, «?*@®)=1| o0 t |,

0 0 1 0 1 0 1

10 0 10 0 1
ey=| ¢t 1 0 |, «'@®)=(0 1 0], «>*@®)=1]0

0 0 1 t 0 1 0t 1

We let U%J denote the associated 1-parameter unipotent subgroups of

G:

[
[

o
o

—= O
o o
N———

U = {u™(t) : t e R}. (4.4.1)

The groups U%J have the property that conjugation by s € A dilates their
parametrization by e (%)

subd (£)s™1 = uhd (P 9)y), (4.4.2)
In particular, if ¢’ = u*J(t) - g is in the U%J-orbit of g and s € A then
/

S - g e ulvj(eﬁ1](s)t) 8- g

4.4.2 Cartan flows

For concreteness, consider G = SL(3,R) and let I' be a lattice in SL(3, R)
such as SL(3,Z). Let X denote the coset space X = G/T'. This is an 8
dimensional manifold (which is noncompact when I' is a nonuniform lattice
such as SL(3,Z).) G acts on X on the left: given g € G and x = ¢'T € X
we have

g-z=g¢TeX.
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The Cartan subgroup A < G is the subgroup of diagonal matrices with
positive entries

et 0 0
A= 0 e 0 ity +ta+1t3=0
0 0 els

The group A is isomorphic to R2, for instance, via the embedding
(s,t) — diag(e®, e, e 57").
We consider the action a: A x X — X of A on X given by
a(s)(z) = sx.

For x € X let W¥J(x) be the orbit of x under the 1-parameter group

ij.
o Wi (z) = {uld (t)e : t € RY).
For s € A, we claim that the s-action on X dilates the natural

parametrization of each W%J(z) by exactly 3%/ (s). Indeed, if z € X and
if 2/ = ubI(v) - x € Wi (z) then for s € A we have

a(s)(z') = su®l

5
5

Vo)

(v)
(v)
= u" (v)a(s) ()

where, using (4.4.2), we have that have

T

ui

<

s lsz

V)

v =P )y,

In particular, we interpret the functionals 3%7 as the (non-zero) Lyapunov
exponents for the A-action on X (with respect to any A-invariant
measure). Note that the zero functional is a Lyapunov exponent of
multiplicity two corresponding to the A-orbits. The tangent spaces to
each W7 (z) as well as the tangent space to the orbit A - x gives the A-
invariant splitting guaranteed by Theorem 3.1.4. Note that no two roots
B%7 are positively proportional and hence are their own coarse Lyapunov
exponents for the action (see Section 3.1.4).

4.5 Suspension space and fiberwise expo-
nents

We now begin the proofs of Theorem 4.2.4 and Theorem 4.2.6 with a
technical but crucial construction. Here, we induce from an action « of a
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lattice I' on a manifold M to an action of G = SL(n,R) on an auxiliary
manifold denoted by M®. The properties of the G-action on M“ mimic
the properties of the I'-action on M. However, for a number of reasons it
is much more convenient to study the G-action on M“. The construction
is parallel to the construction described in Section 2.5.1.

4.5.1 Suspension space and induced G-action

Fix G = SL(n,R) and let I = G be a lattice. Let M be a compact manifold
and let a: I' — Diff (M) be an action.
On the product G x M consider the right I'-action

(g:2) v = (g7, (v ()

and the left G-action
a- (gax) = (CLg,QZ’).

Define the quotient manifold M := (Gx M)/I". As the G-action on G x M
commutes with the I'-action, we have an induced left G-action on M. For
g € G and x € M* we denote this action by ¢g-x and denote the derivative
of the diffeomorphism z +— g -z at € M“ by Dyg: T, M* — T4, M.
We write
m: M* — SL(n,R)/T

for the natural projection map. Note that M has the structure of a fiber-
bundle over SL(n,R)/T" induced by the map = with fibers diffeomorphic
to M. The G-action permutes the M-fibers of M. We let F = ker(Dm)
be the fiberwise tangent bundle: for z € M, F(z) < T,M* is the
dim (M )-dimensional subspace tangent to the fiber through x.

Equip M with a continuous Riemannian metric. For convenience, we
moreover assume the restriction of the metric to G-orbits coincides under
push-forward by the projection m: M* — SL(n,R)/T with the metric on
SL(n,R)/T induced by a right-invariant (and left K-invariant) metric on
G. (We note that if T' is cocompact, M is compact and all metrics are
equivalent. In the case that I' is not cocompact, some additional care is
needed to ensure the metric is well behaved in the fibers. We will not
discuss the technicalities of this case here.)

We outline the construction of such a metric. Fix a C* Riemannian
metric {-,-) on TM. Passing to a finite index subgroup, we may assume
that K\G/T is a manifold. When T is cocompact in G, this manifold
is compact. (More generally, when T' is nonuniform, K\G/T' has a
compactification as real-analytic manifold with corners; see [24].) Let
{77?11-,1' =1,...,m} be afinite, C® partition of unity of the locally symmetric
space K\G/T' subordinate to finitely many coordinate charts. Lift each
1@- to a K-invariant function defined on G/I". For each i, we select at



102 A. Brown

compactly supported ¢;: G — [0,1] such that ¥;(g) = z/AJZv(gF), the map
g — gI' is injective on the support of v;, and the support of each ;
intersects a fixed compact fundamental domain containing the identity.
Write ; : G — [0, 1] for the function

¢i,7(g)

Yilgy
The supports satisfy supp(;, 7) N supp(¢;
the collection {v; 5 | 7 € {1,...,m},v €
Given v,w € {g} x T, M set

.

i) = & whenever v # +" and
I'} is a partition of unity on G.

(0, W)y, = Z Y, i (9XDea(7)(0), Dpar(7) (w))s.

i=1~vel’

Equip T(y,.)(Gx M) = T,G xT, M with the product of the left K-invariant,
right I-invariant metric on G and (v, w)4 .. Note that this metric is (-
Hélder continuous if a is an action by C'*# diffeomorphisms. We then
verify that I' acts by isometries and thus the metric descends to a metric
on M. Indeed, writing | - |4, for the norm associated to {:,-)q ., for
v € {g4} x T, M we have

paw = 25 2, in (g Dea(m) @)

i=1~el’

= Z > S 1 (@I Daa(m) ()5

2 Diya1 (@) Daa(vA9) (0) [

lvlig

-1

z'y'y HD(X(’Y)(I (’Y’Ay 704(’3/)(1‘))133304(;)/’55)(”)“%

r
( Jv

q,a(v)(w

4.5.2 Fiberwise Lyapunov exponents
Recall that A < G is the subgroup
A = {diag(e’, e, ... e} ~ R"L

The G-action on M restricts to an A-action on M. Let u be any ergodic,
A-invariant Borel probability measure on M“. The G-action (and hence
the A-action) permutes the fibers of M“ and hence the derivatives of the
G- and A-actions preserve the fiberwise tangent subbundle F < TM®.
We equip A ~ R"! with a norm |- |. We may restrict Theorem 3.1.4
to the A-invariant subbundle F' ¢ TM“ and obtain Lyapunov exponent
functionals for the fiberwise derivative cocycle. We thus obtain
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1. an A-invariant set A ¢ M with p(A) = 1;

2. linear functionals /\flu )\gu, cee )\57”: A — R; and
3. a p-measurable, A-invariant splitting F'(z) = @_, Ef (z) defined
forze A

such that for every z € A and v € Ef (z) \ {0}

log [ Dga(v)| = A7, (a)

la]—c0 |al

=0.
In particular, for any a € A and v € F(z) \ {0} we have

ia(a)-

o1

Jim —log [ Dy (v)] = A

A coarse fiberwise Lyapunov exponent xf is a positive
proportionality class of fiberwise Lyapunov exponents.

4.6 Invariance principle and proof of Theo-
rem 4.2.4

4.6.1 Proof of Theorem 4.2.4

Given the constructions in Section 4.5 and Ledrappier’s theorem as
formulated in Theorem 3.3.5 (see also Proposition 2.4.8), we are now in a
position to prove Theorem 4.2.4. In fact, we prove the following invariance
principle:

Theorem 4.6.1. LetT'  SL(n,R) be a lattice. Leto: T — Diff'™? (M) be
an action and let M™ denote the suspension space with induced G-action.
Let 11 be an ergodic, A-invariant Borel probability measure on M* whose
projection to SL(n,R)/T" is the Haar measure.

Then, if dim(M) < n — 2 the measure u is G-invariant. Moreover, if «
preserves a volume form vol and if dim(M) < n— 1 then the measure u is
G-invariant.

Note that Theorem 4.6.1 does not require that I' be cocompact.*
Theorem 4.2.4 follows immediately from Theorem 4.6.1: since A is abelian
(in particular amenable) and the space of probability measures on M®
projecting to the Haar measure on SL(n,R)/I" is nonempty, A-invariant,

4However, in the case that I' is nonuniform, the space M% is not compact and
some care is needed to define Lyapunov exponents; in particular, we must specify a
Riemannian metric on M“. A Riemannian metric on M adapted to this setting is
constructed in [39].
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and weak-* compact, the Krylov-Bogolyubov theorem implies there is an
A-invariant Borel probability measure p on M® projecting to the Haar
measure on SL(n,R)/T. Since the Haar measure on SL(n,R)/T is A-
ergodic, we may moreover assume that p is A-ergodic. Theorem 4.6.1
implies p is G-invariant and Theorem 4.2.4 then follows from the following
elementary claim.

Claim 4.6.2. The I'-action o on M preserves a Borel probability measure
if and only if the induced G-action on M® preserves a Borel probability
measure (which necessarily projects to the Haar measure on G/T).

Indeed, if p is a G-invariant measure on M“ then conditioning on the
fiber of M* over eI’ € G/T" gives an a-invariant measure on M viewed as
the fiber of M“ over eI'. On the other hand, if /i is an a-invariant measure
on M then, writing m¢ for the Haar measure on G, we have mg X [ is
a (right) T-invariant and (left) G-invariant measure on G x M and hence
descends to a (finite) G-invariant measure on M®.

Remark 4.6.3. For more general semisimple Lie groups G we have the
following theorem which follows from the proof of Theorem 4.6.1. In this
setting, we take A to be a maximal split Cartan subgroup; that is, A is a
maximal, connected, abelian subgroup of R-diagonalizable elements.

Theorem 4.6.1'. Let G be a simple Lie group and let T' < G be any
lattice. Let a: T — Diff'™# (M) be an action and let M® denote the
suspension space with induced G-action. Let p be an ergodic, A-invariant
Borel probability measure on M* whose projection to G/I' is the Haar
measure.

Then, if dim(M) < rank(G) then the measure p is G-invariant.
Moreover, if a preserves a volume form vol and if dim(M) < rank(G)
then the measure u is G-invariant.

Remark 4.6.4. In fact, Theorem 4.6.1 and 4.6.1" hold for actions by C'-
diffeomorphisms. This can be shown by the invariance principle of Avila
and Viana [6] (see the discussion in Remark 3.3.6). We present below a
proof that uses (mildly) the C'*# hypotheses as this motivates the proof
of Proposition 4.6.5 (which allows us to establish an analogue of Theorem
4.6.1" for manifolds of higher critical dimension) in the next section which
requires the higher regularity of the action.

We proceed with the proof of Theorem 4.6.1 which is adapted from [45].
This argument is somewhat simpler than the argument in [34,39] (though
is special for the case SL(n,R)). The main simplification was observed by
S. Hurtado. This argument is exploited in [33] to obtain results for actions
by C! diffeomorphisms.
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Proof of Theorem 4.6.1. Let pu be an ergodic, A-invariant Borel probabil-
ity measure on M® whose projection to SL(n,R)/T" is the Haar measure.

Recall that A ~ R"" !, In the non-volume-preserving case, since
dim(M) < n — 2 there are at most n — 2 fiberwise Lyapunov exponents.
In particular, the intersection of the kernels of the fiberwise Lyapunov
exponents is a subspace of A whose dimension is at least 1. In the volume-
preserving case, there are at most (n — 1) fiberwise Lyapunov exponents;
however, these satisfy the linear relation they necessarily sum to zero since
the cocycle is cohomologous to an SL*(n — 1,R)-valued cocycle (recall
Claim 4.3.1) whence for every g € G,

‘[log\det(Dg )| dp = Z/\

Thus, if dim(M) < n — 1 and if « is a volume-preserving action, then the
intersection of the kernels of all fiberwise Lyapunov exponents again has
dimension at least 1. In particular, in either case we may find a nonzero
so € A such that

/\5u(80) = 0 for every fiberwise Lyapunov exponent Afu' (4.6.1)
Recall that entropy can only decrease under a factor. Thus

h;t (80) = hHaar (SO)

where higaar(So) denotes the entropy of translating by s on SL(n,R)/T
with respect to the Haar measure.

Recall we interpret the roots 8 of SL(n,R) as the (non-zero) Lyapunov
exponents for the A-action on SL(n,R)/T" with respect to any A-invariant
measure and hence also as Lyapunov exponents for the A-action on the
fiber bundle M transverse to the fibers and tangential to the local G-
orbits. See discussion in Section 4.4.2. Let N, < G be the subgroup
generated by all root subgroups U” with £(sg) > 0. Similarly, let N_ < G
be the subgroup generated by all root subgroups U? with B(sg) < 0.
The orbits of Ny and N_ in SL(n,R)/T" correspond, respectively, to the
unstable and stable manifolds for the action of translation by so on G/T.
Since sg is in the kernel of all fiberwise Lyapunov exponents, each tangent
space F(x) to the fibers of M% is contained in the neutral Lyapunov
subspace E¢ () for the action of sg on (M, i) for almost every x. Thus,
the orbits of Ny and N_ in M“ also correspond, respectively, to the
unstable and stable manifolds for the action of sy on M¢.

We have that

hHadr SO Z /6 50 - thar(So ) - Z (_5<50))

B(s0)>0 B(s0)<0
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In particular, from the choice of sy, the Margulis-Ruelle inequality
(Theorem 3.2.6(1)), and the Ledrappier—Young Theorem (3.2.3) (page 68)

>0 B(s0) = hataar(s0) < hu(s0) = hyulso | No) < D) Blso).

B(So)>0 ﬁ(80)>0

It follows that
w(s0 [Ny = > Blso)-
B(s0)>0
By Theorem 3.3.5, it follows that p is N -invariant. Similarly we have
that p is N_-invariant.

In particular, p is invariant by the subgroups N_, Ny, and A of G. To
end the proof, we claim the following standard fact: the subgroups N_ and
N generate all of SL(n,R). It follows from the claim that the measure u
is G-invariant.

To prove the claim, it is best to work with Lie algebras. Let ny, n_,
and a be the Lie algebras of N_ and N, , and A, respectively. Let b be
the Lie algebra generated by n, and n_. For any X € a we have

[X,b] =5

since a normalizes each root space g°. For roots ﬂ,@ with 8(sg) # 0 and
B(s0) # 0 we have

(676”1 b
by definition. For roots 3, 3 with B(sp) > 0 and B(so) = 0 we have

07, 0] =g cp

since either g#*+% = 0 (if B+ B is not a root) or (3 + B)(so) = B(so) > 0
(if 8+ S is a root). Similarly, for roots 3, 5 with 8(sg) < 0 and 3(sp) =0
we have R

[6”, 6”1 < b.
It follows that b is an ideal of the Lie algebra g = sl(n,R) of SL(n,R). But

sl(n,R) is simple (i.e. has no nontrivial ideals). Since h # {0}, it follows
that h = sl(n,R) and the claim follows. O

*4.6.2 Advanced invariance principle: nonresonance
implies invariance

Theorem 4.6.1 gives the optimal dimension count in Theorem 4.2.4
for actions by lattices T' in SL(n,R). However, for lattices in other
simple Lie groups, the critical dimension in Theorem 4.6.1" falls below
the critical dimension expected for the analogous versions of Theorem
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4.2.4 and Theorem 4.2.6. For instance, the group G = Sp(2n,R), the
group of (2n) x (2n) symplectic matrices over R, has rank n. Theorem
4.6.1 implies that for any lattice I' € G and any compact manifold
M with dim(M) < n — 1, any action a: I' — Diff'*#(M) preserves a
Borel probability measure. However, the main result of [39] shows for a
lattice T' in Sp(2n, R) that any action a: T' — Diff?(M) preserves a Borel
probability measure when dim(M) < 2n—2. To obtain the optimal critical
dimensions, it is necessary to use a more advanced invariance principle
developed in [39] and based on key ideas from [40].

Recall that we interpret roots %/: A — R as the nonzero Lyapunov
exponents for the action of A ~ R"™1 on SL(n,R)/T" (for any A-invariant
measure on G/I'.) Each root 3%/ has a corresponding root subgroup
U < SL(n,R). Given an ergodic, A-invariant measure p on M we also
have fiberwise Lyapunov exponents )\fu,)\g’”, . '7)‘£u: A — R for the
restriction of the derivative of the A-action on (M%,u) to the fiberwise
tangent bundle F < TM® in M®. Then, the roots 5/ and fiberwise
Lyapunov exponents )\5 ., are linear functions on the common vector space
A ~R" 1. We say that a root 37 is resonant with a fiberwise Lyapunov
exponent )\5 ., of p if they are positively proportional; that is (%7 is resonant
with /\f’“ if there is a ¢ > 0 with

i F
B =X,

Otherwise we say that 3%/ is not resonant with AiF,u' We say that a root
B%9 of G is nonresonant if it is not resonant with any fiberwise Lyapunov
exponent )\5 ,, for the ergodic, A-invariant measure p.

The following is the key proposition from [39].

Proposition 4.6.5 ([39, Proposition 5.1]). Suppose p is an ergodic, A-
invariant Borel probability measure on M® projecting to the Haar measure
on SL(n,R)/T" under the projection w: M* — SL(n,R)/T.

Then, for every nonresonant root 37, the measure p is U™ -invariant.

Remark 4.6.6. Since each root $%J is a nonzero functional on A, if a
fiberwise exponent Af, is zero, then every root 37 is not resonant with
Afu' Since no roots of SL(n,R) are positively proportional, if there are
p fiberwise Lyapunov exponents {)\f w1l <1< p} or, more generally,
p’ < p coarse fiberwise Lyapunov exponents {Xf w1 < i < p'} then
Proposition 4.6.5 implies that y is invariant under all-but-p’ root subgroups
U®J. Moreover, if every fiberwise Lyapunov exponent )\5 . 1s In general
position with respect to every root 4%/ then from Proposition 4.6.5, j is
automatically G-invariant.

*%4.6.3 Coarse-Lyapunov Abramov—Rokhlin Theorem
and Proof of Proposition 4.6.5



108 A. Brown

The proof of Proposition 4.6.5 follows from a version of the Abramov—
Rokhlin theorem (see equation (3.2.2), page 67) for entropies subordinated
to coarse-Lyapunov foliations. We outline these ideas and the proof of
Proposition 4.6.5 in this section.

Each root 3%/ of SL(n,R) is a Lyapunov exponent for the A-action on
(M?, ) (corresponding to vectors tangent to U® orbits in M“.) Let
X denote the coarse Lyapunov exponent for the A-action on (M?, p)
containing A%7; that is, x*7 is the equivalence class of all Lyapunov
exponents for the A action on (M®,u) that are positively proportional
to B4I. Let {\F wl<i< p} denote the collection of fiberwise Lyapunov
exponents. We have that

X" = {B*} if B is not resonant with any )\EM

Otherwise, x*? contains A%/ and all fiberwise Lyapunov exponents
Af,: A — R that are positively proportional to 5"7.

For pi-a.c. € M® there is a coarse Lyapunov manifold WX (z) through
z (see Section 3.1.4). If x*/ = {8/} then for z € M*, WX (z) is
simply the U%J-orbit of . Otherwise, WX’ (x) is a higher-dimensional
manifold which intersects the fibers of M“ nontrivially. The partition of
(M®, ;1) into WX’ -manifolds forms an A-invariant partition X with
C1*5 leaves.

If 8% is resonant with some fiberwise Lyapunov exponent, let x*
denote the corresponding coarse fiberwise Lyapunov exponent; that is,
x> is the equivalence class of fiberwise Lyapunov exponents that are
positively proportional to 7. If 8%7 is not resonant with any fiberwise
Lyapunov exponent, let x»5f denote the zero functional. If x»%¥ is
nonzero, for u—ae x € M there is a coarse fiberwise Lyapunov
manifold Wx"” ( ) through x. (To construct fiberwise coarse Lyapunov
manifolds Wx" F(ac)7 recall that the fibers of M“ are permuted by the
dynamics of A; all constructions in Section 3.1 may be carried out fiberwise
in the setting of a skew-product of diffeomorphisms over a measurable base
if the C**# norms of the fibers are uniformly bounded. ) If x*3F is zero,
we simply define WX (z) = {x}. We have that WX (z) is contained
in the fiber through z and that WX'”’ (x) is the U%J-orbit of WX"” ( )-

For each x*J and a € A with 3%7(a) > 0 we define a conditional entropy
of a conditioned on x*/-manifolds, denoted by h,(a | x*/) as in Section
3.2.5. Similarly, we can define a conditional entropy of a conditioned on
the fiberwise coarse Lyapunov manifolds associated to x*7F, denoted by

hu(a | x 43:F) . In this setting, we have the following “coarse-Lyapunov
Abramovaokhlin formula”.

1,5, F

Theorem 4.6.7. Let p be an ergodic, A-invariant measure on M that
projects to the Haar measure on SL(n,R)/T'. For any a € A with
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B (a) > 0,
hu(a | X)) = hitaar(a | B9) + hy(a | x55F). (4.6.2)

Above,
hHaar(a' | Bivj)

denotes the conditional entropy of translation by a in SL(n,R)/T
conditioned along U%-orbits in SL(n,R)/T.

Proof of Theorem 4.6.7. We first show the upper bound
hu(a | X)) < hitaar(a | B%7) + hy(a | X5). (4.6.3)

This is a standard estimate in abstract ergodic theory whose proof we
include for completeness.

Fix a € A with 8% (a) > 0. Let /) be an increasing measurable partition
of G/T subordinate to the partition into U%J-orbits. Let m: M* — G/T
be the natural projection and let n = 7=1#9. Let £ > 7 be an increasing
measurable partition of (M®, ) subordinate to the partition into WX
manifolds. Let ¢ be the partition of (M%,u) into the level sets of
m: M — G/T; that is, ¢ is the partition of M“ into fibers of the fibration
7w MY — G/T. Let £ := ¢ v ¢ be the join of ¢ and (. The partitions 7,
¢, and €7 satisfy

L. h#(aa 77) = h’Haar(a,’fA]) = hHaar(a ‘ ﬂi’j)’

2. h#(aa 5) = h’u(a ‘ Xi’j), and

3. h#(aa §F) = h,u(a | Xi’j’F).

We have the following computation (see for example [120, Lemma 6.1]):

hu(a | x™) := hu(a,€)
= hu(a777 4 5)

< hy(a,n) + by, (a,é v \/a”@))

neZ

= hHaar(aa ﬁ) + hu(a'ag \% C)
= hitaar(a | 6“) +hy(a | Xi7j’F)
and (4.6.3) follows.

On the other hand, summing over all roots 8 with 5(a) > 0 we have from
the classical Abramov-Rokhlin theorem (3.2.2), the product structure of
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entropy in Theorem 3.2.8, and an analogous version of Theorem 3.2.8 for
the fiberwise entropy h,(a | ¢) appearing in (3.2.2) that

hu(a) = >, hua]x)
(a)>0

x(a
= > hulal X))+ D hulalx")
B%3(a)>0 x nonres.
x"(a)>0
< Dy (hmea(@ ] BY) +hu(a [ X))+ D) hula | x")
B3 (a)>0 X nonres.
x(a)>0
= Y hma(al 89+ Y hula] X
B3 (a)>0 xF(a)>0
= hHaar(a) + h#(a | ¢)
= hyu(a).

In the second and third lines, the second sum is over all fiberwise coarse
Lyapunov exponents that are not resonant with any root 8 of G. Since
entropies are non-negative quantities, it follows that

hu(a | Xi’j) = hHaar(a | ,Bi’j) + hﬂ(a ‘ Xi’ij)
for all 8% with £%7(a) > 0. .

Remark 4.6.8. A more general version of Theorem 4.6.7 appears in
[40, Theorem 13.6] where the factor map = is allowed to be measurable and
the measure 7, (1) on the factor system is an arbitrary ergodic, A-invariant
measure.

The proof of Proposition 4.6.5 is a straightforward consequence of
Theorem 4.6.7.

Proof of Proposition 4.6.5. Given aroot 3% and a € A such that 87 (a) >
0 we have defined the conditional entropy h,(a | 3%7) for the translation
by a conditioned on U%J-orbits in M“. From an appropriate version of the
Margulis—Ruelle inequality (see Theorem 3.2.6(1) and (3.3.3)), for a € A
with 3%9(a) > 0 we have that

hu(a| B%7) < B (a). (4.6.4)

On the other hand, if 4%/ is nonresonant then x*:f" is the zero functional
whence the coarse Lyapunov manifold WX (z) associated to x* is simply
the U%I-orbit of z for every z € M and the term h,(a | x*7F') in (4.6.2)
of Theorem 4.6.7 vanishes. Hence, by Theorem 4.6.7,

hu(a | B59) = hy(a | X7) = hiaar(a | B59) +0 = 4 (a).  (4.6.5)
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From (4.6.4) and (4.6.5), we have that the conditional entropy hy,(a | 3%7)
attains its maximal possible value. In particular, from the invariance
principle in Theorem 3.3.5(3), it follows that y is U%J-invariant. O

*4.6.4 Proof of Theorem 4.2.4 using the advanced
invariance principle

We outline another proof of Theorem 4.2.4 based on Proposition 4.6.5.
This more closely mimics the arguments in [34].

Proof of Theorem 4.2.4 using Proposition 4.6.5. From Claim 4.6.2, it is
sufficient to construct a G-invariant probability measure on M%. Note
that A ~ R"~! is abelian (and in particular amenable, see Remark 4.9.2)
and that the space of probability measures on M“ projecting to the Haar
measure on SL(n,R)/T" is nonempty, A-invariant, and weak-* compact.
The Krylov-Bogolyubov theorem thus gives an A-invariant probability
measure p on M® projecting to the Haar measure on SL(n,R)/T.
Moreover, since the Haar measure on SL(n,R)/T" is A-ergodic, we may
assume p is A-ergodic.

Let dim(M) = d < n — 2. The fiberwise tangent bundle F of M*
is d-dimensional and therefore there are at most d fiberwise Lyapunov
exponents

)\F

NN

A, k<d

As no pair of roots of SL(n,R) is positively proportional, there are at
most d roots that are resonant with the fiberwise Lyapunov exponent )\ﬁ -
All other roots 8%/ are nonresonant. By Proposition 4.6.5, if 3%7 is not
resonant with any A, then p is UJ-invariant.

Let H < SL(n,R) be the subgroup that preserves u. We claim H = G
completing the proof. As d < n — 2, p is invariant under A and all-
but-at-most-(n — 2) root subgroups U®/. Then H has codimension at
most (n — 2). From [34, Lemma 2.5], we have that H is parabolic;
that is, H is conjugate to a group of block-upper-triangular matrices
(see Remark 4.1.8). However, the proper closed parabolic subgroups of
SL(n,R) of maximal codimension are conjugate to the codimension (n—1)
subgroup

¥ % *
0 = %
. (4.6.6)
0 = *

(See Section VII.7, especially Proposition 7.76 of [127] for discussion on the
structure of parabolic subgroups.) As H has codimension at most n — 2,
it thus follows that H = G as there are no proper parabolic subgroups of
G with codimension less than (n — 1). O



112 A. Brown

Remark 4.6.9. The above proof has the advantage that it generalizes to
give invariance of measures in the optimal critical dimension for actions by
lattices in other Lie groups including Sp(2n,R), SO(n,n), or SO(n,n + 1)
on manifolds of the optimal dimension. As discussed in Section 4.6.2 for
a lattice T' in a group such as G = Sp(2n,R), the proof in Section 4.6.1
yields that any C'*# action of I' on a manifold of dimension at most
rank(G) — 1, any A-invariant measure on M that projects to Haar on
G/T' is G-invariant. However, the above proof establishes this result for
manifolds M where the critical dimension is 7(G), the number in the last
column of Table 4.1 (page 90) defined in [34,39] (see also Footnote 2 on
page 89.) For R-split groups G we have r(G) = do(G). In particular, the
above proof can be adapted to show the following:

Theorem 4.6.10. Let G be a higher-rank simple Lie group G with finite
center, let T' be a lattice in G, let M be a closed manifold, and let
a: T — Diff'™# (M) be an action. Then

1. if dim(M) < r(G) — 1, every A-invariant probability measure on M®
that projects to the Haar measure on G/T is G-invariant;

2. if dim(M) < r(GQ) and o is volume-preserving, every A-invariant
probability measure on M that projects to the Haar measure on
G/T is G-invariant.

In particular, if dim(M) < r(G) — 1, every action o: T — Diff*™? (M)
preserves a Borel probability measure.

4.7 Proof outline of Theorem 4.2.6

We outline the proof of Theorem 4.2.6 for the case of C*® actions of
cocompact lattices in SL(n,R). That is, for n > 3, we consider a
cocompact lattice I' in SL(n,R) and show that every homomorphism
a: ' — Diff®(M) has finite image when

1. M is a compact manifold of dimension at most (n — 2), or

2. M is a compact manifold of dimension at most (n—1) and « preserves
a volume form vol.

The broad outline of the proof consists of 3 steps.

4.7.1 Step 1: Subexponential growth

In the case that T' © SL(n,R) is cocompact, using its action on SL(n,R)
and that SL(n,R) is a proper length space one may show that I" is finitely
generated (see for example [73, Theorem 8.2]). More generally, it is
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a classical fact that all lattices I' in semisimple Lie groups are finitely
generated.

Fix a finite symmetric generating set S for I'. Given v € T, let || = |v|s
denote the word-length of v relative to this generating set; that is,

|v] = min{k : v = sp--- 51,8, € S}.

Note that if we replace the finite generating set S with another finite
generating set S’, there is a uniform constant C' such that the word-lengths
are uniformly distorted:

I7ls < Clvls.

Thus all definitions below will be independent of the choice of S.
Equip TM with a Riemannian metric and corresponding norm.

Definition 4.7.1. We say that an action a: I' — Diff' (M) has uniform
subexponential growth of derivatives if for every ¢ > 0 there is a
C = (. such that for every vy € T,

sup | Dya(y)] < Ce.
zeM

Note that if a: I' — Diff' (M) has uniform subexponential growth of
derivatives it follows for every € > 0 that there is a C' = C¢ such that for
every v eI,

sup [Dya(y)| = Ce™ Pl
zeM

The following is the main result of [34] in the case of cocompact lattices
in SL(n,R).

Theorem 4.7.2 ([34, Theorem 2.8]). For n > 3, let ' < SL(n,R) be a
cocompact lattice. Let a: ' — Difo(M) be an action. Suppose that either

(1) dim(M) <n—2, or

(2) dim(M) =n — 1 and « preserves a smooth volume.
Then a has uniform subexponential growth of derivatives.
Remark 4.7.3. The proof of Theorem 4.7.2 is the only place in the proof
of Theorem 4.2.6 where cocompactness of I' is used. It is not required for

Steps 2 or 3 below. For I' = SL(m, Z), the analogue of Theorem 4.7.2 is
established in [35] and has been announced for general lattices in [36].
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4.7.2 Step 2: Strong property (T) and averaging
Riemannian metrics

Assume a: I' — Diff*(M) is an action by C* diffeomorphisms.® The
action o of I' on M induces an action oy of I' on tensor powers of the
cotangent bundle of M by pull-back: Given w e (T*M)®* write

1)*w;

oy (yw = a(y”
that is, if vy,...vx € T, M then

ag(Mw(@)(v,...,vx) = w(@)(Dea(y vr, ..., Dea(y™"or).

In particular, we obtain an action of I' on the set of Riemannian metrics
which naturally sits as a half-cone inside S?(T* M), the vector space of all
symmetric 2-forms on M. Note that ay preserves C*(S%(T*(M))), the
subspace of all C* sections of S%(T* M) for any ¢ € N.

Fix a volume form vol on M. The norm on T'M induced by the
background Riemannian metric induces a norm on each fiber of S2(T*M).
We then obtain a natural notion of measurable and integrable sections of
S%(T*M) with respect to vol. Let H* = W2k(S2(T*M)) be the Sobolev
space of symmetric 2-forms whose weak derivatives of order ¢ are bounded
with respect to the L2?(vol)-norm for 0 < ¢ < k. Then H* is a Hilbert
space. Let |||+ denote the corresponding Sobolev norm on H* as well as
the induced operator norm on the space B(#H*) of bounded operators on
H*. Working in local coordinates, the Sobolev embedding theorem implies
that

HF < CH(SH(T*(M)))
as long as
< k—dim(M)/2.
In particular, for k sufficiently large, an element w of H* is a C* section
of S2(T*M) which will be a C* Riemannian metric on M if it is positive
definite.

The action ay is a representation of I' by bounded operators on
H*. From Theorem 4.7.2, we obtain strong control on the norm growth
of the induced representation ay. In particular, we obtain that the
representation ay: I' — B(H*) has subexponential norm growth:

Lemma 4.7.4. Let o: T' — Diff* (M) have uniform subexponential growth
of derivatives. Then, for all € > 0 there is C > 0 such that

s (M)l < CeM!
for all veT.

5For C? actions, one replaces the Hilbert Sobolev spaces W2*(S2(T*M))) below
with appropriate Banach Sobolev spaces WP:1(S2(T*M))) and verifies such spaces are
of the type €10 considered in [61].
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The proof of Lemma 4.7.4 follows from the chain rule, Leibniz rule,
and computations that bound the growth of higher-order derivatives by
polynomial functions in the growth of the first derivative. See [83, Lemma
6.4] and discussion in [34, Section 6.3].

We use the main result from [61,129]: cocompact lattices T' in higher-
rank simple Lie groups (such as SL(n,R) for n > 3) satisfy Lafforgue’s
strong Banach property (T) first introduced in [129]. The result for
SL(n,R) and its cocompact lattices (as well as other higher-rank simple
Lie groups containing a subgroup isogenous to SL(3,R)) is established by
Lafforgue in Corollary 4.1 and Proposition 4.3 of [129]; for cocompact
lattices in certain other higher-rank Lie groups (containing a subgroup
isogenous to Sp(4,R)), the results of [61] are needed. See also [60] for
the case of nonuniform lattices. Strong Banach property (T) considers
representations 7 of I' by bounded operators on certain Banach spaces E
(of type &1p). If such representations have sufficiently slow exponential
norm growth, then there exists a sequence of averaging operators p,
converging to a projection ps, such that for any vector v € E, the limit
P (v) is m-invariant. In the case that E is a Hilbert space (which we may
assume when « is an action by C* diffeomorphisms) we have the following
formulation. Note that Lemma 4.7.4 (which follows from Theorem 4.7.2)
ensures our representation o satisfies the hypotheses of the theorem.

Theorem 4.7.5 ([60,61,129]). Let H be a Hilbert space and for n = 3,
let T be a lattice in SL(n,R).

There exists € > 0 such that for any representation w: T' — B(H), if
there exists C. > 0 such that

I7(1)] < Cee

for all v € T then there exists a sequence of averaging operators p, =
diwim(7y;) in B(H)—where w; = 0, Y w; = 1, and w; = 0 for every v, €T
of word-length larger than n—such that for any vector v € H, the sequence
U = pn(v) € H converges to an invariant vector v* = py(v).

Moreover the convergence is exponentially fast: there exist 0 < \ < 1
and C = Cy such that |v, — vs| < CA™||v]|.

Theorem 4.7.5 as stated in [61,129] requires that T' be cocompact. The
extension to nonuniform lattices is announced in [60]. The exponential
convergence in Theorem 4.7.5 is often not explicitly stated in the definition
of strong property (T) or in statements of theorems establishing that the
property holds for lattices in higher-rank simple Lie groups; however, the
exponential convergence follows from the proofs.

We complete Step 2 with the following computation.

Proposition 4.7.6. For n > 3, let ' < SL(n,R) be a lattice and let
a: T — Diff*(M) be an action with uniform subexponential growth of
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derivatives. Then for any !, there is a C* Riemannian metric g on M
such that

a(T") < Isomg (M).

Proof. Consider an arbitrary C* Riemannian metric g. For any k, we have
g € H*. We apply Theorem 4.7.5 and its notation to the representation
ag: I — B(H") with the g the initial vector v. As averages of finitely
many Riemannian metrics are still Riemannian metrics we have that
gn = pn(g) is positive definite for every m. In particular, the limit
9o = Pao(g) is in the closed cone of positive (possibly indefinite) symmetric
2-tensors in H*. Having taken k sufficiently large we have that g, is C%; in
particular, g4 is continuous, everywhere defined, and positive everywhere.
We need only confirm that g4 is non-degenerate, i.e. is positive definite
on T, M for every x € M.

Given any x € M and any unit vector £ € T, M, for any ¢ > 0 we have
from Definition 4.7.1 that there is a C. > 0 such that

Pa(9)(6,6) = (Y wiak(1)g) (6,€)

= > wig(Daa(y; )€, Daar(y; 1))
1
c?

> —2en

where we use that w; > 0 only when v; has word-length at most n.
On the other hand, from the exponential convergence in Theorem 4.7.5
we have

IPn(9)(&5€) — Poo(9)(§, )| < CaAA™.

Thus
1
c?

€

672en o C}\An

Po(9)(§;€) =

for all n > 0. Taking € > 0 sufficiently small we can ensure that

1
CQ 2en < _—\"
e€ C)\

for all sufficiently large n. Then, for all sufficiently large n we have

1
@6_26’” > C}\)\n

€

and thus py(g9)(§,&) > 0. O
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4.7.3 Step 3: Margulis superrigidity with compact
codomain

From Steps 1 and 2 we have that any action a: I' — Diff*(M) as in
Theorem 4.2.6 preserves a C* Riemannian metric g. In the general case
of C?-actions (or even C'*F-actions), we have that any action a: I' —
Diff?(M) preserves a continuous Riemannian metric g. See [34, Theorem
2.7]. We thus have

a: I' — Isomgy(M).

The group Isom, (M) is compact. When g is at least C?, it follows from
the classical result of Myers and Steenrod [159] that Isomg,(M) is a Lie
group; for continuous g we use the solution to the Hilbert—Smith conjecture
for actions by bi-Lipschitz maps [177] to conclude that Isomg (M) is a Lie
group. Let dim(M) = m. Then

m(m + 1)
—

Indeed, the orbit of any point p € M under Isomy(M) has dimension at
most m and the dimension of the stabilizer of a point is at most W,

the dimension of SO(m); thus

dim(Isomg,(M)) < (4.7.1)

m(m —1)
2
With K = Isomy(M) we thus obtain a compact-valued representation
a: ' — K. By equation (4.7.1), if m < 1+/8n2 — 7 —  then dim(su(n)) =
n? —1 > dim(K); by conclusion (2) of Theorem 4.3.4, «(T) is thus
contained in a 0-dimensional subgroup of K. This holds in particular
if m < n — 1. We thus conclude that the image

al') € K = Isomgy (M)

dim(Isomgy(M)) < m +

is finite.
Summarizing the arguments from Steps 2 and 3, we obtain the following.

Theorem 4.7.7. Forn > 3, let I' < SL(n,R) be a lattice. Let a: T —
Diff? (M) be an action with uniform subexponential growth of derivatives.

Then, if
1 1
dim(M) < 5/8n% =7~ 2,
the image a(T") is finite.
4.8 Proof outline of Theorem 4.7.2
To establish Theorem 4.2.6, from the discussion in Section 4.7 it is enough

to establish Theorem 4.7.2: the action o has uniform subexponential
growth of derivatives. We outline the proof of Theorem 4.7.2.
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4.8.1 Setup for proof

For n > 3, let I' < SL(n,R) be a cocompact lattice. Let M be a compact
manifold and let a: T' — Diff?(M) be an action. Assume either that
dim(M) < n — 2 or that dim(M) < n — 1 and that « preserves a volume
form. We recall the following constructions from the proof of Theorem
4.2.4:

1. The manifold M* = (SL(n,R) x M)/T" is the suspension space
introduced in Section 4.5.1. M® is a fiber bundle over SL(n,R)/T
with fibers diffeomorphic to M. Moreover, M and SL(n,R)/T
have natural (left) SL(n,R)-actions and the projection m: M* —
SL(n,R)/T intertwines these G-actions.

2. A < SL(n,R) denotes the subgroup of diagonal matrices with
positive entries. We have A ~ R"~! which is a higher-rank, free
abelian group if n > 3.

3. Given an ergodic, A-invariant Borel probability measure g on M<
we have fiberwise Lyapunov exponents.

MM AR

1w ) p.pt

for the restriction of the derivative of the A-action on M% to the
fibers of M% introduced in Section 4.5.2.

4. B%i: A — R are the roots of SL(n, R) and U%7 are the corresponding
root subgroups introduced in Section 4.4.1.

4.8.2 Two key propositions

The proof of Theorem 4.7.2 is by contradiction and follows from the
following two propositions. Our first key proposition is an analogue of
Proposition 3.1.2.

Proposition 4.8.1. Suppose that a: T — Diff' (M) fails to have uniform
subexponential growth of derivatives. Then there exists a Borel probability
measure u' on M such that

(1) ' is A-invariant and ergodic;
(2) there exists a nonzero fiberwise Lyapunov exponent )‘fu’: A—-R.

The proof of Proposition 4.8.1 is very similar to the proof of Proposition
3.1.2 with some minor modifications and notational differences. We include
an outline of the proof in Section 4.9.3; see also [34, Section 4] for complete
details. Obtaining uniform control on the growth of a cocycle from bounds
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on the top Lyapunov exponent over all invariant measures is a standard
technique in dynamical systems; see for instance [48,101,104, 186].

The measure p’' in Proposition 4.8.1 projects to an ergodic, A-invariant
measure on SL(n,R)/T". If i’ projected to the Haar measure on SL(n,R)/T
then, from Theorem 4.6.1 and the bounds on the dimension M, the
measure p’ would be G-invariant and, as explained below, the proof of
Theorem 4.7.2 would be complete. However, there may exist ergodic A-
invariant measures on SL(n,R)/T that are not the Haar measure.%

By carefully averaging the measure u/ along root subgroups U/ and
applying Ratner’s measure classification theorem [176] to the projected
measure on SL(n,R)/T" we obtain the following.

Proposition 4.8.2. Let a: T' — Diff'(M) be an action. Suppose there
exists an ergodic, A-invariant measure p' on the suspension space M with
a nonzero fiberwise Lyapunov exponent )\?#,: A — R. Then there exists
a Borel probability measure p on M“ such that

(1) w is A-invariant and ergodic;
(2) there exists a nonzero fiberwise Lyapunov exponent )\iuz A - R;
(3) w projects to the Haar measure on SL(n,R)/T.

Remark 4.8.3.

1. Propositions 4.8.1 and 4.8.2 hold in full generality; they do not
depend on the comparison between the dimension of M and the rank
of SL(n,R). The constraint on the dimension of M is used to obtain
a contradiction in the proof of Theorem 4.7.2 by applying Theorem
4.6.1 and Zimmer’s cocycle superrigidity to the fiberwise derivative
cocycle.

2. Propositions 4.8.1 and 4.8.2 heavily use the fact that I" is cocompact
in SL(n,R) so that the manifold M® is compact. For instance, if
M® is not compact then the proof of Proposition 4.8.1 (compare
with proof of Proposition 3.1.2) fails as there may be escape of mass
into the cusp of G/T". Thus, more subtle arguments are required
to establish the analogue of Theorem 4.7.2 in the case that I' is
nonuniform. In the case that I' = SL(n,Z), such arguments appear
in [35].

3. Both Proposition 4.8.1 and Proposition 4.8.2 hold for C' actions.
The C'*# hypotheses is later used (along with the dimension
bounds) to conclude that the A-invariant measure p obtained in
Proposition 4.8.2 is, in fact, G-invariant by applying Theorem 4.6.1.

61n fact, for certain lattices I' there exist ergodic A-invariant measures on SL(n, R)/T
that have positive entropy for some element of A as shown by M. Rees; see [63, Section
8].
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4.8.3 Proof of Theorem 4.7.2

We deduce Theorem 4.7.2 from Proposition 4.8.1, Proposition 4.8.2,
Theorem 4.6.1, and Theorem 4.3.2.

Proof of Theorem 4.7.2 . Let a: T — Diffz(M) be as in Theorem 4.7.2.
For the sake of contradiction, assume that

a: T — Diff?>(M)

fails to have uniform subexponential growth of derivatives. Let p’ be
the measure guaranteed by Proposition 4.8.1. We then apply Proposition
4.8.2 to obtain an ergodic, A-invariant Borel probability measure p on M
that projects to the Haar measure on G/I" and has a non-zero fiberwise
Lyapunov exponent. In either case considered in Theorem 4.7.2, it follows
from Theorem 4.6.1 that p is G-invariant.

Recall that we write m: M* — SL(n,R)/I" for the natural projection and
let F' be the fiberwise tangent bundle; that is, F' is sub-vector-bundle of
TM® given by F' = ker Dr. As F is G-invariant, we may apply Zimmer’s
cocycle superrigidity theorem, Theorem 4.3.2, to the fiberwise derivative
cocycle A(g,x) = Dyglp(y) of the p-preserving SL(n,R)-action on M®.
Since the fibers have dimension at most n — 1 and since there are no non-
trivial representations p: SL(n,R) — SL(d,R) for d < n, it follows from
Theorem 4.3.2 that the fiberwise derivative cocycle A(g,z) = Dyg!p(q)
is cohomologous to a compact-valued cocycle: there is a compact group
K < SL(d,R) and a measurable map ®: M* — GL(d,R) such that

(g 2)Dygl p(ay®(x) ' € K.

By Poincaré recurrence to sets on which the norm and conorm of ® are
bounded, it follows for any g € G and ¢ > 0 that the set of x € M“ such
that

1
lim inf —log || Deg™ [ pa) | = €
n—oo N
has p-measure zero. This contradicts the existence of nonzero fiberwise

Lyapunov exponent for p. This contradiction completes the proof of
Theorem 4.7.2. O

4.9 Discussion of the proof of Propositions
4.8.1 and 4.8.2

We outline the main steps in the proof of Propositions 4.8.1 and 4.8.2.
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4.9.1 Averaging measures on M“

Let H = {h! : t € R} be a l-parameter subgroup of SL(n,R). Given a
measure g on M and T > 0 we define

T

1
HT*M::—J(ht)udt
T)

to be the measure obtained by averaging the translates of p over the
interval [0, T].

Let s € A. Given any s-invariant measure g on M“, the average top
fiberwise Lyapunov exponent of s with respect to u is

o1 n
AEp(s.) = inf - [log 1D,(s™) e o). (4.9.1)
Note that if p is moreover A-invariant and A-ergodic with fiberwise
Lyapunov exponents )\fﬂ, ceey )\5#: A — R then
F _ F
Atop(&ﬂ“) - 112?2(1) Ai,,u(s)'

We have the following facts which we invoke throughout our averaging
procedures.

Claim 4.9.1. Let s € A and let u be an s-invariant measure on M*. Let
H = {ht,t € R} be a one-parameter group contained in the centralizer of s
in SL(n,R).

(1) The measure HT % y is s-invariant for every T > 0.

(2) Any weak-+ limit point of {HT % u} as T — o0 is s-invariant.

(3) Any weak-+ limit point of {HT % u} as T — oo is H-invariant.

(4) N (s, HT 5 1) = AE, (s, 1) for every T > 0.

(5) If i’ is a weak-+ limit point of {HT = u} as T — o then

Mop (s, 1) = A (s, ).

(1) is clear from definition and (2) follows since the set of s-invariant
measures is closed. (3) follows from (the proof of) the Krylov-Bogolyubov
theorem (see Claim 3.1.3). (4) is a standard computation which follows
from the compactness of M® and hence boundedness of the cocycle. Indeed
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we have

Nop(s. HT % 1) = inf = f log | Da(s™) 1 ¢ | d(HT = p)(x)

— inf Wﬂi log | Dpe. (5") 1| dt dpu(z)

I
=Y
=K

| —

el

j f log | Dyt (B s"h ) 1| dt dya()

inf f—JJ log | Dpe.o ()1 F|
+1og [ Dy (s™) 1 p|| + log | Ds.o(h*) I £|| dt du(x)

< in&% <J10g [Dz(s™) el du(z) + 2K>

where

K =sup {log |Dy(h')1p| :x€ M, te[-T,T]}.

(5) follows from the well known fact that the average top Lyapunov
exponent is upper-semicontinuous on the set of s-invariant measures (see
for example [195] or [34, Lemma 3.2(b)]). Indeed, in the weak-# topology,
for each n the function

o = flog IDy(s") 1| dpu(z)

is continuous. The pointwise infimum of a family of continuous functions
is upper-semicontinuous.

Remark 4.9.2. Recall that a Fdlner sequence in a Lie group H
equipped with a left-Haar measure my is a sequence {F, } of Borel subsets
F, c H, with 0 < mg(F,) < o, such that for every compact subset
Q c H one has

_ mu ((h- Fo)AF,)
lim sup =
n—90 pe mu(Fy)

If H admits a Fglner sequence then H is said to be amenable. When
H =R, a Folner sequence is given by F,, = [0,n]. Examples of amenable
groups include abelian groups, nilpotent groups, solvable groups, and
compact groups. See [8] for more details.

Consider H to be an amenable Lie subgroup of G = SL(n,R). Given a
Borel probability measure p on M“ and a Fglner sequence {F,} in H we

deﬁne
Fn*“ :_—7.[ h /14 de h/ .
”LH(I ’n,) F * ( )

n
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By a computation analogous to (3.1.3) in the proof of Claim 3.1.3, any
weak-x limit point fi of the sequence {F,, * u} as n — o0 is an H-invariant
measure on M®. Moreover, properties analogous to those in Claim 4.9.1
hold when averaging an s-invariant measure p against a Fglner sequence
(of precompact sets) {F,} in an amenable subgroup H contained in the
centralizer Cg(s) of s. See [34, Lemma 3.2] for precise formulations.

4.9.2 Averaging measures on SL(n,R)/T

When averaging probability measures on SL(n,R)/I" along 1-parameter
unipotent subgroups we obtain additional properties of the limiting
measures. The results stated in the following proposition are consequences
of Ratner’s measure classification and equidistribution theorems for
unipotent flows [173,174,176]. See also [209]. We do not formulate
Ratner’s theorems here but only the consequences we use in the remainder.

Proposition 4.9.3. Let ji be a Borel probability measure on SL(n,R)/T.
For each 1-parameter root subgroup U®J

(1) the weak-+ limit
U s = lim (U « 2 T > 0}
T—00
exists;
(2) if i is A-invariant, so is U x fi;
(3) if i is A-invariant and A-ergodic, the measure U % i is A-ergodic;
(4) if i is A-invariant and U -invariant then i is U’ -invariant.

Proposition 4.9.3(1) follows from Ratner’s measure classification and
equidistribution theorems for unipotent flows. ~ When U is higher-
dimensional, we use an analogue of Proposition 4.9.3(1) due to Shah
[188, Corollary 1.3]. Proposition 4.9.3(2) follows from the fact that A
normalizes U%/ and that the limit in Proposition 4.9.3(1) exists and is
hence unique. Proposition 4.9.3(4) is a consequence of Theorem 9 in [176]
or Proposition 2.1 in [173].

Proposition 4.9.3(3) is a short argument that uses the A-invariance
of i and the pointwise ergodic theorem: Since there is s € A such
that U%J-orbits are contracted by s, by the pointwise ergodic theorem,
the measurable hull of the partition into U%J-orbits refines the ergodic
decomposition for A. (See Proposition 3.2.12 and Theorem C.2.1 in
Appendix C.) Let 7 be the measurable hull of the partition into U*7-orbits
and let {4} be a family of conditional measures of ji for this partition.
(Note that from Ratner’s equidistribution theorem, we have that 7 is a
homogeneous measure on a closed homogeneous submanifold.) If ¢ is a
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bounded, A-invariant measurable function then for fi-a.e. x, ¢ is constant
fl-almost surely; in particular,

o) = [ o da

for pra.e. . Then x — (¢ dil is a p-almost everywhere defined, A-
invariant function. In particular, x — Sqﬁ dpll is constant p a.s. by
ergodicity of p. It follows that ¢ is constant ji-a.s. and ergodicity follows.

4.9.3 Proof of Proposition 4.8.1

We outline the proof of Proposition 4.8.1. Recall the notation introduced
in Section 4.5.1. In particular, 7: M* — G/T' is the canonical projection
and F' = ker(Dm) is the fiberwise tangent bundle of M*. We write the
derivative of translation by g in M as Dg and the restriction to the fiber
of F' through x € M by D.g! p(;). Equip M with any Riemannian metric
and write

|Dglp| = sup [Daglrell-
reM

Let K = SO(n). We equip G with a right-invariant, left- K-invariant
Riemannian metric and induced distance function d(-,-). We note that
relative to such a metric, all A-orbits are geodesically embedded in G. We
have the following elementary claim which allows us to transfer exponential
growth properties between the I'-action on M and the G-action on the
fibers of M.

Claim 4.9.4. IfT' < SL(n,R) is cocompact and if M is compact, then any
action

a: T — Diff' (M)

has uniform subexponential growth of derivatives if and only if for every
€ > 0 there is a C such that for all g € SL(n,R),

|Dglr| < Cect®9).

With the above claim, we outline the main steps in the proof of
Proposition 4.8.1.

Proof of Proposition 4.8.1. We assume o: I' — Diff'(M) fails to have
uniform subexponential growth of derivatives. Then, by Claim 4.9.4, there
exist € > 0, integers m,, € N with m,, — oo, elements g,,, € G with
d(gm,, ,e) = my, points x,, € M,, and unit vectors v, € Ty, M such
that

HDzmn Im, (Vm,, )| = e
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Let UF denote the unit sphere bundle in F' and, given g € G, let UDyg
denote the induced action on UF": given x € M* and v € UF(x) write

Dyg(v)

UD=0() = 15 4]

and
UDg(x,v) = (g-2,UDyg(v)) .

By the singular value decomposition of matrices, the group G = SL(n, R)
can be written as G = KAK where K = SO(n). (For general simple Lie
groups G we use the Cartan decomposition). We can thus write each
Im,, € G as

9m,, = knank»/n

where k,, k], € K and a, € A. Write
/ / " !/
n="Fn Tm,, x,=ank, Tm,,

Up =UDy,, kp(Um,), vy =UDs,, (anky,)(vm,)-
Then

= |Daykn (v - | Day, an(vp)] - [ Da,,, Ky (vm,,)

HDwmn 9m, (Umn)

and so

< li 71 D.L m my )l = 1 71 D 7 Un,
<l =108 [Da, g, (0 )| =l = o | Dy an5)]
as | D,k | is uniformly bounded over all k € K and z € M.

Note that

|mn — d(an, e)| = [d(gm,,,e) — d(an, e)| < d(kn,e) + d(k‘;,e)

is uniformly bounded in n. Thus m, 'd(a,,e) — 1. As A ~ R}
for each n there is a unique a, with a, = (d )™n: moreover, as A is
geodesically embedded in G, we have d(a,,e) — 1

For each n, let v, be the empirical measure on UF’ given by

m

T;ng an 6(36 )

Taking a subsequence {n;}, we may assume that v, converges to some v,
and that a,, converges to some s € A. Note that d( e) = 1. Let &z denote
the image of Vo under the natural projection UF — M. Adapting the
proofs of Claim 3.1.3 and Proposition 3.1.2 one can show that

1. vy is UDs-invariant whence [ is s-invariant;
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2. Mop(s,7) = €>0.

Take a Folner sequence {F,,} in A and let i be any weak-* limit point of
{F, #7} as n — o0. Then, from analogues of the properties in Claim 4.9.1
for averaging over Fglner sequences, we have that

1. fi is A-invariant;
2. Mo (s,/1) = €>0.

We take p’ to be an A-ergodic component of g with /\f';p (s, /) =ze>0. O

4.9.4 Proof of Proposition 4.8.2 for SL(3,R)

To simplify ideas, we outline the proof of Proposition 4.8.2 assuming that
I is a cocompact lattice in SL(3,R). We perform two averaging procedures
on the measure y’ from the hypotheses of Proposition 4.8.2 to obtain the
measure p in the conclusion of Proposition 4.8.2.

Proof of Proposition 4.8.2 for T' < SL(3,R). Take pg = p' to be the
ergodic, A-invariant probability measure in the hypotheses of Proposition
4.8.2 with nonzero fiberwise exponent

F
J#o PA - R )‘JMO # 0.

First averaging. Consider the elements
s =diag(},2,2) and 5= diag(2,2, 1)

of A c SL(3,R). Note that s and 5 are linearly independent and hence
form a basis for A ~ R2. As the linear functional /\f 4o 18 mONZETO, either

M (s)#0 or M (3)#0.

750 JsH0

Without loss of generality we may assume that

F
>\] Mo( ) # 0.
Take so to be either s or s7* so that A} “O( 0) > 0.
Consider the 1-parameter subgroup
100
U?3 = 0 1 ¢t |:teR
0 0 1

Note that U?? commutes with so. Let p; be any weak-* limit point
of {(U?*)T % pu} as T — oo. From Claim 4.9.1, p; is sg-invariant and

)‘th‘)p(‘SOv Ml) = Ag)p(807 MO)
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We now average p; over a Fglner sequence in A: identifying A with R?
let AT =[0,T] x [0,T] define a Fglner sequence {AT} in A. Then

T 1 T rT
At M1 = ﬁ (tl,tg)*ul d(tl,tg).
0 JO

Let u12 be any weak-# limit point of { AT % i1} as T — co. Then, from facts
analogous to those in Claim 4.9.1, ps is A-invariant and

Aop (80, 112) = Al (50, 1) > 0.

Note that s might no longer be U?3-invariant.

We investigate properties of the projection of each measure pg, 41, and
w2 to SL(3,R)/T'. For each j, we denote by fi; = m,(u;) the image of pu;
under the projection 7: M — SL(3,R)/T.

Observe that fi; = U?3 # i is U?3-invariant. Since jigp was A-invariant,
from Proposition 4.9.3(2) we have that i1 is A-invariant and it follows that
fi1 = fi2 50 flg is U?3-invariant and A-invariant. From Proposition 4.9.3(4),
[12 is invariant under the subgroup

c SL(3,R)

generated by A, U%3 and U2 in SL(3,R). Moreover, since fig was A-
ergodic, from Proposition 4.9.3(3) the measure fi; = fi2 is A-ergodic.

Returning to M ¢, as )\f;p(so,uz) > 0 and as [ip is A-ergodic, we may
replace ps with an A-ergodic component p} of pg such that

L. X, (s0, ) > 0, and
2. the projection of pf) to SL(3,R)/T is fio.

Let \F ~7/\§ P A — R denote the fiberwise Lyapunov exponents

Lty
for the A-invariant, A-ergodic measure u5. Then 0 < )\5.“/2 (sg) =
AMop(s0, ) for some 1 < j' < p' whence some fiberwise Lyapunov

exponent /\f e A — R is a nonzero linear functional.
b
Second averaging. Consider now the elements s = (2,2, %) and 3 =

(2, i, 2) in A. Again, either

F F (=
)\j,’%(s)#O or A, (5)#0.

VA

Case 1: Al ,(s) # 0. Take s; = s or 57 = s~! so that \; ,(s;) > 0.
WA 3
Consider the one-parameter group U'? which commutes with s;. As
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above, any weak-# limit point pg of {(UY?)T % ub} as T — oo is si-invariant,
with
)‘f;p(slﬂluﬁ) = )\ﬁ)p<81“l/2) > 0.

Let g be any weak-# limit point of {AT * u3} as T — oo (where AT g3
is as in the first averaging). Then p4 is A-invariant and

)‘g)p(sh;UA) = )‘g)p(slvﬂfi) > 0.

We claim that the projection fi4 of p14 to SL(3,R)/T is the Haar measure.
Since the groups U2 and U%? commute and since fi; was U>?-invariant,
it follows that fi3 = UY?  fig is U2-invariant. Also, since fio was A-
invariant, Proposition 4.9.3(2) shows that fiz is A-invariant. Thus fiz = fis
and [i4 is also invariant under the actions of A, U'2, and U®2. By
Proposition 4.9.3(4) it follows that fi4 is invariant under the groups U?!
and U?3; in particular fi; is invariant under the following subgroups of
SL(3,R):

0 0 0
* % 0
* * %

S * *
O * *

These two groups generate all of SL(3,R), and hence fiy is the Haar
measure.

Case 2: )\fj’% (3) # 0. Take s; = 5 or 51 = 5 ! so that )\5’% (s1) > 0.
Consider the one-parameter group U3 which commutes with s;. As
above, any weak-x limit point p3 of {(U?)T x4} as T — o is s;-invariant,
with

Mop (51, 13) = Ao, (51, 15) > 0.

Let p14 be any weak-# limit point of {AT % us} as T — oo. Then py is
A-invariant and
Mop (51, 114) = Ay (51, 13) > 0.

Again, we claim that fiu = U3 # [i5 is the Haar measure. Since the
groups U3 and U?? commute, it follows that fi3 is U%3-invariant. Also,
since fia was A-invariant, Proposition 4.9.3(2) shows that iz is A-invariant.
Thus fi3 = fi4 and fi4 is also invariant under the actions of A, U3 and
U%3. By Proposition 4.9.3(4) it follows that fi4 is invariant under the
following subgroups of SL(3, R):

*

0 0
*
*

O O *

* O *

0
*
0

* O %

*

Again, these two groups generate all of SL(3,R), and hence fi4 is the Haar
measure.
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Completion of proof. In either Case 1 or Case 2, since the Haar measure
fi4 is A-ergodic, we may take an A-ergodic component p} of u4 projecting
to the Haar measure with
)‘tF(;p(Slvﬂil) > 0.
If /\f AR )\5, e A — R denote the fiberwise Lyapunov exponents for
sHy sHy

the A-invariant, A-ergodic measure p} then 0 < )\57,7#21 (s1) = Mop(s1, 1))
for some 1 < j” < p” whence some fiberwise Lyapunov exponent
)\fj, e A — R is a nonzero linear functional.

My

This completes the proof of Proposition 4.8.2. O

4.9.5 Modifications of the proof of Proposition 4.8.2
in SL(n,R)

When T is a cocompact lattice in SL(n,R) we replace the first averaging
step with a more complicated averaging.

First averaging. We again take ug = p’ to be the A-invariant measure
in Proposition 4.8.2 with nonzero fiberwise exponent

F o F
AL ASR, A 0.

J5H0

Without loss of generality (by conjugating by a permutation matrix) we
may assume that for the element

s = diag(w%l,Q,...,Q)

of A c SL(n,R), we have
M (s) # 0.

7,10

Take sg to be either s, or s7! so that )\fuo(so) > 0.

Consider the unipotent subgroup U < SL(n,R) of matrices of the form

0
1

* O

1
0

*
00 - 1
00 ---

Note that U commutes with sg.
Let {F,} be a Fglner sequence (of precompact sets) in U and let pq be
any weak-# limit point of {F), * uo} as n — oo where

1

F,, = =7J u du.
Mo mU(Fn) . M0
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From facts analogous to those in Claim 4.9.1, we have that u; is so-
invariant and A (so, 1) = Af,(s0, o) > 0. Moreover, as U is higher-
dimensional, we use [188, Corollary 1.3] rather than Proposition 4.9.3(1)
to conclude (at least for certain Fglner sequences {F,} in U with nice
geometry) that the projection fiy of uy to G/T is the limit

ﬂl = han * [),0

and is A-invariant, ergodic, and U-invariant.
We again average u; over a Fglner sequence of the form

AT =[0,T] x --- x [0,T]

in A (identified with R"~!) and let 13 be any weak-# limit point of { AT sy}
as T — 0. Then puo is A-invariant and

At;F;p(SOvu?) = /\S)p(souu‘l) > 0.

Again, we have equality of the projected measures fi; = fis so fig is U-
invariant and A-invariant. From Proposition 4.9.3(4), fis is also invariant
under the subgroup

1 0 0
0 %= =
H: 0 * *
0 %= = *

As i is A-ergodic, we may replace ps with an A-ergodic component p
of po such that

L. A, (0, ph) > 0, and
2. the projection of uf to SL(n,R)/T is fis.
Then, if )\f”/ e )\5 e A — R denote the fiberwise Lyapunov exponents
N7 i

for uf, we have 0 < )\5’”,2(50) = Mop(s0, i) for some 1 < j/ < p/.

Second averaging. Consider now the roots 82 and 5" of G. Since 82
and B1™ are not proportional, at most one of 12 and 1" is proportional

to )\fj PE In particular, we may find either s or 5 in A such that

1. B12(s) = 0 but )\5’“,2(3) # 0; or

2. B (3) = 0 but Af,u; (5) # 0.
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The two cases in the second averaging step of Section 4.9.4 are then
identical to the above, where we either average over the 1-parameter group
U2 in the case )\F, /(s) # 0 or U™ in the case )\F (E) # 0. The

structure theory of SL(n R) will then imply that the measure obtained
after the second averaging projects to the Haar measure.

*k4.10 Zimmer’s conjecture for actions by
lattices in other Lie groups

Consider a connected, simple Lie group G with finite center. Let I' ¢ G
be a cocompact lattice. The proof of Theorem 4.2.6 discussed above,
particularly the use of Theorem 4.6.1 in Section 4.8.3 can be adapted
almost verbatim to show the following. See also [45] where Theorem 4.10.1
is stated and given a mostly self-contained proof.

Theorem 4.10.1. Let G be a connected, simple Lie group G with finite
center and rank at least 2. Let I' € G be a cocompact lattice. Let M be a
compact manifold.

1. If dim(M) < rank(G) then any homomorphism T' — Diff?>(M) has
finite image.

2. In addition, if vol is a volume form on M and if dim(M) < rank(G)
then any homomorphism T' — Diff2 (M) has finite image.

vol

As mentioned in Section 4.2.4, Theorem 4.10.1 holds for C* actions; see
Theorem 4.2.7.

Theorem 4.10.1 fails to give the optimal dimension bounds for the
analogue of Conjecture 4.2.2 given in Conjecture 4.2.3 for actions by
lattices in Lie groups other than SL(n,R). See Table 4.1 for various
conjectured critical dimensions arising in Zimmer’s conjecture for other
Lie groups.

To state the most general (as of 2018) result towards solving Conjecture
4.2.3, to any simple Lie group G, we associate a non-negative integer r(QG).
See [34, Section 2.2] or Footnote 2 on page 89 for equivalent definitions
of r(G) and Table 4.1 for values of r(G) in various examples of G. For
actions of lattices in a general Lie group G, the main result of [34], as well
as the announced extension, gives finiteness of the action up to the critical
dimension r(G).

Theorem 4.10.2 ([34] cocompact case; [36] nonuniform case). LetT' < G
be a lattice in a higher-rank simple Lie group G with finite center. Let M
be a compact manifold.

1. If dim(M) < r(G) then any homomorphism T — Diff'™? (M) has
finite image.
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2. In addition, if vol is a volume form on M and if dim(M) = r(G)
then any homomorphism I' — DiffH’B(M) has finite image.

vol

When G is exceptional or not a split real form, our number r(G) is lower
than the conjectured critical dimension in Conjecture 4.2.3(1) and (2).
However, for lattices in all Lie groups that are non-exceptional, split real
forms Theorem 4.10.2 confirms Conjecture 4.2.3(1) and (2). For instance,
for actions by lattices in symplectic groups we have the following.

Theorem 4.10.3 ([34, Theorem 1.3] cocompact case; [36] nonuniform
case). Forn =2, if M is a compact manifold with dim(M) < 2n — 1 and
if T < Sp(2n,R) is a lattice then any homomorphism o: I' — Diff>(M)
has finite image. In addition, if diim(M) = 2n—1 then any homomorphism
o: T — Diff2 (M) has finite image.

vol

Similarly, for actions by lattices in split orthogonal groups we have the
following.

Theorem 4.10.4 ([34, Theorem 1.4] cocompact case; [36] nonuniform
case). Let M be a compact manifold.

1. Forn = 4, if T < SO(n,n) is a lattice and if dim(M) < 2n — 2
then any homomorphism a: T — Difo(M) has finite image. If
dim(M) = 2n — 2 then any homomorphism o: T' — Diff% (M) has
finite image.

2. Forn =3, ifT' € SO(n,n + 1) is a lattice and if dim(M) < 2n — 1
then any homomorphism «: T — Diff>(M) has finite image. If
dim(M) = 2n — 1 then any homomorphism o: T' — Diff? (M) has
finite image.

For actions by lattices I' in simple Lie groups that are not split real forms
such as G = SL(n,C), SO(n,m) for m = n + 2, or SU(n, m), Theorem
4.10.2 above (the main result of [34] for cocompact case, [36] in general)
gives finiteness of all actions on manifolds whose dimension is below a
certain critical dimension. However, this critical dimension may be below
the dimension conjectured by the analogue of Conjecture 4.2.3 for these
groups. See Table 4.1.



Chapter 5

A selection of other
measure rigidity results

5.1 Nonuniformly hyperbolic Z*-actions

Instead of considering Z2-actions by automorphisms of T? as in Theorem
2.1.8, we might consider Z2-actions on the torus T® generated by two
commuting diffeomorphisms f,g: T3 — T3.

Recall that for any homeomorphism f: T? — T2 there exists a unique
M e GL(3,Z) so that any lift f: R3 — R3 of f is of the form

f(x) = Mx +y(x)

where ¢: R? — R3? is Z3-periodic. The linear map M can also be seen as
the induced action of f on first homology of T3. We call M the linear data
of f. By a theorem of Franks [86], if M has no eigenvalues of modulus
1 then there is a continuous, surjective h: T — T¢ homotopic to the
identity, such that

hOfILJy[Oh (511)

where Ly;: T3 — T2 is the induced automorphism of the torus; such a
map h is called a semiconjugacy.

If f,g: T3 — T are commuting homeomorphisms with linear data A
and B, respectively, one can verify that A and B commute. Indeed if
f(z) = Az +1(z) and §(z) = Bx + ¢(z) are lifts of f and g, respectively,
then

fo g(z) = ABzx + A¢(z) + ¢(x)

and
go f(m) = BAx + By(z) + ¢(x)

133
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are both lifts of f o g = go f whence AB = BA.
If A has no eigenvalues of modulus 1, we may take a map h: T3 — T3
with
hof=Ljoh

as in (5.1.1). Following [107, Lemma 1] (correcting [106, Lemma 1.2])
the map h conjugates the Z2-action generated by f and ¢ to an affine
action on T3 whose linear part is generated by L4 and Lg. That is, if
a: Z* — Diff(T?) is the non-linear action

a(ny,ng) = f"g™
then there is an affine action ag: Z? — Diff(T?) of the form
ao(n1,n2)(x) = L L2 (%) + V(ny ny)
for some v(y,, ) € T? such that for all (n1,ns) € Z?
hoa(ny,ng) = ag(ny,ng) o h. (5.1.2)
We note that the translation term (n1,n2) = v(n, n,) is a cocycle:

U(ni,ne)+(mi,me) = LZXlLEQU(mLmz) + VU(ni,n2)-

Moreover, the action ap has a fixed point if and only if v(,, »,) is a
coboundary:
U(ni,nz) = LzlL%QU -n

for some 1 € T3. The presence of the translation term V(ny,ny) 18 due to
the non-uniqueness of the map h satisfying (5.1.1). However, all maps h
satisfying (5.1.1) differ by a translation by an element of the finite set of
fixed points for L 4. Thus, the translation terms v(,, ,) take only finitely
many possible values. See discussion in [107] for more details. We note
that it is possible to construct genuinely affine Anosov actions ag without
fixed points as in Remark 4.1.6. See for example [99, Theorem 2]. In
particular, it may be that the action « is not semiconjugate to any action
by automorphisms. However, restricting to a subgroup ¥ c Z?2 of finite
index, one has that aglx: ¥ — Diff(T?) is an action by automorphisms:

ag(ni,n2)(z) = L'y L'y (2)

for all (n1,n9) € X.

If f is Anosov then its linear data A is known to have no eigenvalues of
modulus 1 and the map A in (5.1.1) is a homeomorphism. Suppose further
that f and g generate a “genuine” Z2-action so that the group of matrices
generated by their linear data A and B is not virtually cyclic. This implies
that the linear action generated by L, and Lp satisfies Theorem 2.1.8.
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Restricted to a finite-index subgroup, the map h conjugates the action
« to a linear action of the type of action considered in Example 2.1.6.
Since invertible maps preserve entropy, Theorem 2.1.8 classifies all positive
entropy measures that are jointly f- and g-invariant. We remark also that
under the above assumptions, from [178], we know in this setting that the
conjugating map h satisfying (5.1.2) is smooth. Note that the assumption
that the group of matrices generated by A and B is not virtually cyclic is
essential; for instance, if g is a power of f we expect no rigidity of jointly
invariant measures or smoothness of the conjugacy h.

If neither f nor g is Anosov, the map h in (5.1.2) may be non-invertible.
In particular, there may exist ergodic, a-invariant measures 1 on T3 with
hy(f) > 0 such that the push-forward measure h(u) has zero entropy for
ao(n) for every n € Z2. Note however that if

hh*(#) (ao(n)) >0

for some n € Z? then hy (1) is necessarily Haar by Theorem 2.1.8.

When the map h in (5.1.2) is non-invertible, analysis of measures
invariant under the affine action g gives less information about measures
jointly invariant under f and g. However, the method of proof of Theorem
2.1.8 can be adapted to study measures jointly invariant under f and g;
in particular, one can show the following theorem which is a simplified
version of the main results of [106,119].

Theorem 5.1.1 ([106,119]). Suppose f,g: T3 — T3 are commuting C*+#
diffeomorphisms. Suppose the linear data of f and g are, respectively, the
matrices A and B in Example 2.1.6. Then any ergodic probability measure
w that is invariant under both f and g and such that hy(u) is Haar is
absolutely continuous with respect to the Riemannian volume on T3. Such
a measure always exists and is, moreover, unique.

For actions on more general manifolds, there may be no a priori
semiconjugacy between the nonlinear action and an affine Anosov action.
However, under certain dynamical hypotheses on the action, the structure
of the algebraic toral action can be reconstructed. Consider a Z2-action
« on a 3-manifold M generated by two commuting diffeomorphisms
f,g: M — M. Given an ergodic, Z?-invariant probability measure p, one
can define Lyapunov exponent functionals for the Z2-action as in Theorem
3.1.4. These extend to linear functionals on R%. Note that there are at
most 3 (the dimension of M) Lyapunov exponent functionals. Under some
genericity assumptions on the Lyapunov exponent functionals, an analogue
of Theorem 2.1.8 and Theorem 5.1.1 was obtained in [108].

Theorem 5.1.2 ([108]). Let a be a Z*-action by C**+P-diffeomorphisms of
a 3-manifold and let p be an ergodic, a-invariant measure. Assume there
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are 3 nonzero, Lyapunov exponent functionals )\}L, )\12“ )\5 and that no pair
of exponents is proportional.

If some element a(ny,ng) has positive entropy with respect to p, then
s absolutely continuous with respect to the Riemannian volume on M.

In [121], it is shown in the setting of Theorem 5.1.2 that one can
reconstruct an action by (infra-)toral automorphism and a measurable
semiconjugacy h between the non-linear action « (restricted to a
finite-index subgroup of Z?) and the algebraic action. Moreover, the
semiconjugacy h takes (an ergodic component of) p to the Lebesgue
measure on the (infra-)torus, is differentiable along stable manifolds, and is
differentiable (in the Whitney sense) off sets of arbitrarily small measure.
This, in particular, implies that the exponents M’ 1.(n) are logarithms of
algebraic numbers for every n € Z2.

5.2 Invariant measures for Cartan flows

In Section 4.4.2, we introduced an important example of a higher-rank,
continuous-time algebraic Anosov action, namely, the diagonal action (or
Cartan flow) on a higher-rank semisimple homogeneous space. We review
its properties, referring back to Section 4.4 for details.

Example 5.2.1. Let G = SL(3,R) and let I' = SL(3,Z) or any lattice
in G. Let X denote the coset space X = G/I". This is an 8 dimensional
manifold (which is noncompact for I' = SL(3,Z).) G acts on X by left
translation.

The group A < G of diagonal matrices with positive entries is isomorphic
to R%. The action a: A x X — X of A on X is given by a(s)(z) = sz.
There are 6 roots 8%7: A — R given by 8% (diag(e’, e, e?)) = t; — ¢;
each with an associated root subgroup U < G. For re X, Whi(x) is
the orbit of x under the 1-parameter group U?:

Whi(z) = {U™ -z :teR}.
For s € A, the action a(s) dilates distances in W (z) by exactly e ().

One might ask whether an analogue of Theorem 2.1.8 holds in Example
5.2.1. That is, if u is an ergodic, A-invariant probability measure on X
such that there is some s € A with h,(a(s)) > 0, is p necessarily the Haar
measure on X or on a homogeneous submanifold of X?

The answer is no. The extension of the proof of Theorem 2.1.8 breaks
down in this setting as the trick in Lemma 2.5.6 fails. Indeed, for every
root 3%, we have that £ and 5 = —3%J are negatively proportional.
Moreover, explicit examples of diagonally invariant measures with positive
entropy (for some element of the diagonal) on spaces of the form SL(3,R)/T
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for certain (cocompact) lattices I' were constructed by Mary Rees in
an unpublished manuscript. See [63] for detailed constructions of such
measures.

A related problem is the classification of orbit closures for the A-
action on X = SL(n,R)/T. Rees’s construction yields A-orbit closures
in SL(n,R)/T" that are non-homogeneous and of intermediate Hausdorff
dimensions for certain lattices I'. It was shown in [153] that there exist
non-homogeneous A’-orbit closures in SL(n,R)/SL(n,Z) (for n = 6) for
certain higher-rank subgroups A’ of the full diagonal group A.

Returning to the classification of invariant measures, in the case that
I' = SL(3,7Z), the Margulis conjecture asserts that all ergodic A-invariant
measures i on X should be algebraic. See [65, Conjecture 1.1] and
discussion in [148, §1.2]. For measures with positive entropy, this
conjecture was solved in [65] (see Theorem 5.2.5 below). We outline the
main results used in [65], namely the high and low entropy methods.

To discuss the high and low entropy methods, first note that there
are some key differences in the structure of the foliations in this setting
versus the setting of Example 2.1.6. First note that any two transverse
foliations W W7 of the torus T2 by lines are jointly integrable; that
is there is a foliation of T? by planes W/ with Wi(x) < W%J(z) and
Wi(z) « Whi(x) for all x. This follows as T® has an abelian group
structure. In X = SL(3,R)/T", Lyapunov foliations do not jointly integrate
as the corresponding subgroups may not commute. For instance, the
subgroups U2 and U?3 do not commute and thus the foliations W12 (z)
and W?23(z) do not jointly integrate. This is the key idea behind the high
entropy method. Moreover, translations along Lyapunov directions E?
are isometries in the torus T3. In X = G/, translation by an element
of a 1-parameter subgroup U%7 is not isometric; there is some polynomial
shearing. This is a key step in the proof of Ratner’s measure classification
theorem for unipotent flows (see [176]) and is also a key idea in the low
entropy method.

We state the versions of the high entropy and low entropy methods for
Example 5.2.1. Given a measure p on X, for i # j let u%7 denote the locally
finite leaf-wise measures obtained by conditioning y along W*J-manifolds.

Theorem 5.2.2 (High entropy method [63]). Let u be an ergodic, A-
invariant measure on X = SL(3,R)/T". Let i, j, and k be distinct elements
of {1,2,3}. If u’ and pl* are nonatomic for a positive measure set of ©
then p is U*-invariant.

Note that the subgroups U*/ and U’* do not commute; precisely, we
have [U%,U7*] = U"F. Theorem 5.2.2 states that if both Lyapunov
exponents 3/ and (7F contribute entropy (so that u’’ and pl* are
nonatomic) then the measure g is invariant under their bracket U** =
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[U%,U7*]. The noncommutativity of U/ and U7 is essential in the
proof of the theorem.
From Theorem 5.2.2 one can derive the following corollary.

Theorem 5.2.3 ([63, Theorem 4.1]). Let I' = SL(n,R) be a lattice and
let u be an ergodic, A-invariant measure on X = SL(n,R)/T such that for
every nontrivial s € A,

hu(a(s)) > 0.
Then p is the Haar measure on X.

We note that the statements of Theorems 5.2.2 and 5.2.3 are specific for
the group SL(n,R). More general high entropy methods appear in [64].

The low entropy method is a bit more difficult to state. We state a
version for X = SL(3,R)/T". For each i # j, let Aj ; denote the kernel of
B*7 and let C(Aj ;) denote the centralizer of A ; in G = SL(3,R).

Theorem 5.2.4 (Low entropy method, [65, Theorem 2.3.]). Let u be an
ergodic, A-invariant measure on X = SL(3,R)/T". If pu%’ and p?* are
nonatomic for some i,j and p'7 is atomic for all other pairs i',j’ then
either

(1) p is U -invariant, or

(2) there is xo € X and s € A;; with a(s)(zo) = w0 such that p is
supported on the orbit C(A;] ;)zo.

Conclusion (2) is specific for the case that X is of the form X =
SL(n,R)/T" for n = 3. For n > 3, the appropriate version of (2) is slightly
more complicated.

To show that Theorem 5.2.2 and Theorem 5.2.4 cover all cases it is shown
[65, Corollary 3.4] for any ergodic, A-invariant measure p and every pair
i, 7, the measure u’7 is nonatomic if and only if u?* is nonatomic. Thus
every A-invariant measure p with positive entropy is considered in either
Theorem 5.2.2 and Theorem 5.2.4.

To apply the low entropy method, one typically does additional work
to rule out conclusion (2) in Theorem 5.2.4. Note that conclusion (2)
of Theorem 5.2.4 occurs in Rees’s examples so it can not be ruled out
for all lattices I'. However, for certain lattices, it can be shown that
(2) of Theorem 5.2.4 does not happen. In particular, this is verified for
I' = SL(n,Z) in [65]. The high and low entropy method combine to give
the following.

Theorem 5.2.5 ([65, Theorem 1.3, Corollary 1.4]). Let p be an ergodic,
A-invariant measure on X = SL(3,R)/SL(3,Z). Assume u has positive
entropy for some nontrivial element of A. Then u is the Haar measure on

X.
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Note the conclusion that p is the Haar measure above follows as we
assume n = 3 which is prime. For the general result on SL(n,R)/SL(n, Z),
the conclusion is that u is algebraic.

The study of invariant measures and orbit closures for various subgroups
H < SL(n,R) acting on X = SL(n,R)/SL(n,Z) is related to several
important problems in number theory. See for instance the proof of
Margulis’s proof [145,146] of the Oppenheim conjecture which reduces
to the study of H = SO(2,1)-orbit closures in SL(3,R)/SL(3,Z). See
[209, Section 1.2] for further discussion. One motivation for studying A-
invariant measures on SL(n,R)/SL(n,Z) is its relationship to Littlewood’s
conjecture. An important consequence of Theorem 5.2.5 is that the set
of values for which Littlewood’s conjecture fails has Hausdorff dimension
zero. See [65] as well as [148, §1.2] and [194] for details.
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Appendix A

Furstenberg’s theorem

by Dominique Malicet

Here we give a self-contained proof of Furstenberg’s Theorem (Theorem
2.1.2), mainly following the original proof in [A1].

A.1 Notations and statement

Let S! be the 1-dimensional torus R/Z. For « in S' we denote by
T, : S* — S! the translation operator defined by T,(r) = 2 + @ mod 1.
For n in N we denote by M,, : S' — S! the multiplication operator defined
by M, (z) =nz mod 1.

Theorem A.1.1 (Furstenberg). Let a and b be two positive integers which
are not powers of the same integer, and let F' be a closed subset of S!
invariant by M, and My: M,(F) = My(F) = F. Then either F is finite
or F =St

Remark A.1.2.

1. In the case where F' is an invariant finite set, it is actually a set of
rational numbers. (Indeed if |F'| = ¢ and z is a point of F' then there
exists n < ¢ with "z = z modulo 1.)

2. The conclusion does not hold if the closed set is invariant by only one
transformation M,. For example the triadic Cantor set is invariant
by Mg.

3. We can reformulate the theorem as follows: if a, b are integers which

are not powers of the same integer, then for any irrational number x
the set {a™b"z, (m,n) € N?} is dense modulo 1.
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A.2 Proof of the theorem

We follow the proof of Furstenberg (except that we try to avoid the
unnecessary use of the existence of minimal invariant closed subsets). For
the whole proof, we fix integers a and b which are not powers of the same
integer. It is equivalent to say that log a and log b are independent over Q.
Let F be a closed subset of S! invariant by M, and M,. If F is infinite, it
means that it has some accumulation point, and we want to deduce that
actually F' = S'. We divide the proof into two parts:

1. The first part treats the particular case where the accumulation point
of F' is a rational number. “Spreading” points of F' close to this
rational number by using M, and M;, we manage to prove that
F = S', mainly by combinatorial techniques.

2. The second part treats the general case where the accumulation point
can be irrational. The idea here is to use translations T, commuting
with M, and M, and to prove that there is “some T,-invariance” in
F'. The first treated case will help at some key points. The following
fact can be checked by a simple computation:

Lemma A.2.1. A translation T, commutes with M, and M, if and
only if (a—1)a = (b—1)a = 0 mod 1, or equivalently if « is a
rational number (modulo 1) whose denominator divides a — 1 and
b—1.

This condition on « is too restrictive to be useful (there is only a
finite number of solutions, and even no solution at all if @ — 1 and
b — 1 are coprime!). That is why we will actually use translations
commuting with some large powers of M, and M.

A.2.1 The particular case

In this part we prove the following weak version of the theorem:

Proposition A.2.2. If F is closed, invariant by M, and My and has
some rational number % as an accumulation point, then F = ST,

The proof relies on the following combinatorial lemma, which is actually
the only step where we use that we have two transformations M, and M,
instead of one.

Lemma A.2.3. Let us enumerate the set S = {a™b", (m,n) € N>} ¢ N

by an increasing sequence of integers (sg)ren. Then limy_, 4o 51;:1 =1
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Proof. Let ¢ be any positive number. The additive group generated by
log a and logb is dense in R (since loga and logb are independent over Q)
hence one can find a finite set A = Z? such that {mloga+nlogb, (m,n) €
A} is e-dense in [0,1]. Then, if py is large enough, we have that the
set {(m + p)loga + (n + p)logb,(m,n) € A,p > po} is a subset of
{log s,s € S}, and it is e-dense in [M, +00) where M = pgloga + pglogbd.
Thus if logsy > M, then logsii1 < logsi + e. We conclude that

limy_, 1o log sg1+1 — log s = 0 and hence that limg_, o S’;Zl = 1. O

Proof of Proposition A.2.2. Take the set S of Lemma A.2.3 and enumerate
it by the increasing sequence (sx). We denote by x — T the canonical
projection of R onto S?.

Let us treat first the case where the accumulation point of F' is 0 (modulo
1). Then, up to replacing F' by —F we assume that for any € > 0, there
exists x. in (0,¢) such that Z. belongs to F. Given ¢ > 0 and z € (e, 1),
let k. be such that s;_z. <z < sk, +12.. We have

— Ske+1 Ske+1
A(Z, F) < |2 — Sk, Te| < Sk +1Tc — Sk Te = (557 — 1) Sk Te < (Ssi —1)z
k k

€ €

Letting € going to 0 (so that x can be arbitrary in (0,1)), we have that
ke — 400 hence the last term tends to 0 by the lemma, and we conclude
that T belongs to F. Thus F' = S*.

In the general case where the accumulation point of F' is a rational
number 27 then the point p = 0 mod 1 is an accumulation point of M, (F),
and since M, commutes with M, and M, the set M, (F) is also invariant
by M, and M, and we deduce by the first case that M,(F) = S1. As a
consequence, we also have that M ! (My(F)) = S*, that is:

FUT:(F)U---UTea(F) =S8

Since a finite union of closed sets with empty interiors has empty interior,
we conclude that F' contains some non trivial interval I. But for sufficiently
large n, M(I) = S1, hence F' = S! by M,-invariance of F. O

A.2.2 The general case

We establish some lemmas relating ' with the dynamics of the translations
T,.

Lemma A.2.4. Let F be a closed infinite set which is invariant by M,
and My, and let T, be any translation. Then T, (F) nF £ .

Proof. Note that
To(F)NnF + < aeF —F,

where FF — F = {& —y,(z,y) € F x F}. The set F — F is closed and
invariant by M, and M,. Moreover, if F' is infinite, then F' has some
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accumulation point x and hence 0 = z — z is an accumulation point of
F — F. By Proposition A.2.2, F—F = S! and hence T, (F)nF + &. O

Lemma A.2.5. Let F be a closed infinite set which is invariant by M,
and My, and let T, be a translation commuting with M, and My. Then
there exists a nonempty closed set F < F' invariant by M., My and T,.

Proof. Since F is infinite, the set F’ of the accumulation points of F' is non
empty. Let us define by induction Fy = F’ and F,11 = F,, n To(Fp) =

;Hé TF(F'), and let F = (;_, T¥(F"') be the intersection of all the F,’s.
The sequence (F,)nen is a nested sequence of closed sets, all of them
invariant by M, and M, (because T, commutes with M, and M;). The
intersection F is obviously a closed subset of F invariant by M,, M. It
verifies T (F)  F hence, as T, is a translation, F' is also invariant by
T,. What remains to prove is that all the F}, are non empty, in order to
conclude by compactness that F' is non empty.

Let us assume by contradiction that F;, = ¢J for some n > 0. Choosing
n minimal we can assume that F;,_1 + &, and we have T, (F,—1)nF,—1 =
F, = &. By Lemma A.2.4, F,,_; is a finite set, and in particular it contains
only rational numbers (see the first observation in Remark A.1.2). Since
F,_1 # & and F,,_1 ¢ Fy = F’, this means that we can find a rational
number in F’, so that by Proposition A.2.2, F/ = F = S and hence
F,, = S', which gives a contradiction and concludes the proof. O

Remark A.2.6. We will use the previous lemma with rational translations
T,,, and in this case one easily checks that the set F defined in the proof
is actually the finite intersection F' = F' A To(F') -+ TF1(F) where k
is the denominator of o when written in reduced terms.

We are now ready to prove Theorem A.1.1:

Proof. Let F be a closed set invariant by M, and M, that we assume
infinite. Let k be a large integer coprime with a and b, and let n = ¢(k) be
the cardinal of (Z/kZ)™ so that @™ = b" = 1 mod k. Then, F is invariant
by Mg» = M} and My~ = M;', and the translation T1 commutes with
My» and Mbn by Lemma A.2.1. Applying Lemma A. 25 with Mgyn and
My instead of M, and M,, we find F < F non empty, invariant by T%

In particular F is %—dense, and hence so is F. Since k can be chosen
arbitrarily large, F = S*. O
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Appendix B

Measurable partitions,
disintegration and

conditional measures
by Bruno Santiago and Michele Triestino

Here we discuss more extensively the notion of conditional measures
(Section 2.2.3) and review Rokhlin Disintegration Theorem. We also give
some applications, mainly in relation to unstable partitions. For a more
detailed reference, the reader may consult [B13,B3] (or [B14] as historical
reference).!

B.1 Introduction

Consider a measure space (X, B, ). Suppose that we partition X in an
arbitrary way. Is it possible to recover the measure p from its restriction to
the elements of the partition? We shall address this question, defining the
“restriction” via a classical theorem of Rokhlin, giving some affirmative
answer and applying this idea to obtain interesting results.

Let us start with a simple (positive) example.

Example B.1.1 (Figure B.1). Consider the 2-torus T? = S! x S1,
endowed with the Lebesgue measure m. The torus is partitioned into
the vertical sets {y} x S'. Denote by m, the Lebesgue measure over the
circle {y} x S!, and n the Lebesgue measure over S'. If E = T? is a
measurable set we know from Fubini theorem that

1B.S. thanks Aaron Brown for helpful conversations and the organizing committee
of the conference “Workshop for young researchers: groups acting on manifolds” for the
opportunity of participating in this wonderful meeting.
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Sl

Y S with m = Leb
Figure B.1

m(E) = o my (E)dm(y). (B.1.1)

As we shall see later, for some simple, dynamically defined, partitions no
disintegration like this exists. In the next sections we shall define formally
the notion of a disintegration and try to explore a little bit this concept.

B.2 Disintegration and conditional probabil-
ity measures

Let Q = S! be a measurable subset with (Q) = 0. Notice that if in

(B.1.1) we choose to calculate the integral over S'\Q only, equality is not

affected. Thus, it is natural to consider partitions only modulo null sets

(sets of measure zero).

More formally, let (X, B, 1) be a probability space. Let P be a partition
of X into measurable sets. Let 7 : X — P be the natural projection:

m(x) is the unique element of P such that x € 7(x).
We can turn P into a measure space (P, B, i), by saying
QeB — 7 YQ)eB,

and

Q) = u(r=1(Q))
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This clearly makes the projection m measurable.

Definition B.2.1 (See Definition 3.2.1). A disintegration of p with respect
to P is a family of probability measures {up; P € P} € M;(X) such that
for every E € B one has

1. pp(P) =1 for fi-almost every P € P.

2. the assignment P € P — up(E) € R is B-measurable.

3. u(E) = §p up(E)df(P).
Each measure pp is called a conditional probability measure.

Observe that property (3) in Definition B.2.1 can be reformulated in
functional terms: for every p-integrable Borel function f : X — R one has
the Fubini property

L fdp = L L fdupdi(P).

As the lemma below states, in reasonable cases disintegrations are
essentially unique.

Lemma B.2.2. Assume that the o-algebra B is countably generated. If
{pp; P € P} and {uh; P € P} are disintegrations then up = pk for fi
almost every P € P.

Sketch of proof. Let G — B be a countable generating family, and A c G
the subalgebra generated by G (which is still countable). Using the
properties of disintegrations, one proves that for any F € A, the subset
Pg:={PeP|pup(E)# pi(E)} has fi-measure zero. Hence the countable
union Q = UEeg Pe has ji-measure zero. So if P ¢ Q, the measures up
and p% coincide on the generating subalgebra A < B and thus (by the
monotone class theorem) on B. O

From this lemma, we deduce the following dynamical property.

Lemma B.2.3. Let (X,d) be a separable metric space, endowed with
the Borel o-algebra B and a probability measure p. Let (f, X,B,un) be
a measure preserving system. Assume that there exists a partition P of X
into measurable invariant subsets, such that p admits a disintegration with
respect to P. Then for fi almost every P € P the conditional measure up
s f-invariant.

Proof. We want to prove that the family {f.up;P € P} is also a
disintegration, so that Lemma B.2.2 gives f,up = pp for almost every
PeP.
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As P € P is f-invariant, one has fyup(P) = up(f~1(P)) = up(P) =1,
so (1) in Definition B.2.1 is verified. Fix E € B. Clearly the assignment
P e P — fuup(E)is B-measurable, thus (2) is verified. For (3), invariance
of p gives p(E) = p(f~1(E)) and thus

W(E) = u(f(E)) = Jp up (1 E))dA(P)
- Jp Fenp(E)A(P). 0

Example B.2.4. Let P = {P,..., P,} be a finite partition of (X, B, p).
Assume that no element of this partition has zero measure. Define
probability measures u; supported on P; by the expression
w(E n P;)
w(Pi)
This defines the conditional probability measures. Indeed, we have

A({P:}) = p(F;) and

wi(E) = , for every F € B,i =1,.

n

Zu E“P = P (E)

In the same way, we can show that every countable partition admits a
disintegration.

There are very natural examples of partitions for which no disintegration
exists at all.

Example B.2.5 (cf. Example 3.2.9). Let § € R\Q be an irrational number,
m be the normalised Lebesgue measure on the unit circle S', equipped
with the Borel o-algebra. We consider Ry : S' — S, defined as the circle
rotation by an angle 276. Let O = {{Rg Vnez;x € Sl} be the partition
into Rg-orbits, with induced measure m. We claim that this partition
admits no disintegration. Indeed, assume that there exists {up; P € O},
a disintegration of the Lebesgue measure with respect to this partition.
By Lemma B.2.3, i almost every measure pup is Ry-invariant. Moreover
wp(P) = 1, but this is a contradiction because no invariant probability
measure can give positive mass to a countable infinite set (orbits are
countable).

More generally, given any ergodic system (f, X, B, u), where (X,d) is
a separable metric space and B the Borel o-algebra, one has that the
partition into orbits O admits no disintegration.

B.3 Measurable partitions

In this section we shall define a class of partitions for which we can always
find a disintegration. Recall from Section 3.2.3 that a partition P is finer
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than a partition @, which we denote by Q < P, if there exists a full
measure subset Xg < X such that for g-almost every x € X one has,

Plx)n X c Q(z) n X,

where P(z) (resp. Q(x)) denotes the atom of the partition P (resp. Q)
containing x. Given two partitions P and Q, we denote by P v Q the
smallest partition that refines both P and Q (this is the join introduced
in Section 3.2.1).

Definition B.3.1 (cf. Section 3.2.1). Let (X, B, ) be a probability space.
A partition P is measurable if there exists Xg < X with u(Xo) =1 and a
nested sequence of countable partitions P; < Py < -+ < P, < .-+ of X
such that P|x, = \/ff=1 Pr. In other words, for every P € P there exists
a sequence P,, with P,, € P, such that P n Xy = ﬂao P,

n=1-n-

Thus a measurable partition can be described as the joining of a
nested sequence of countable partitions. Recall from Example B.2.4 that
countable partitions always admit a disintegration.

From this fact and from a suitable martingale argument, one can prove
the following fundamental theorem.

Theorem B.3.2 (Rokhlin Disintegration Theorem). Let (X,d) be a
complete and separable metric space, endowed with the Borel o-algebra
B. Let u be any probability measure on (X,B) and P be a measurable
partition. Then, there exists {up;p € P}, a disintegration of p.

Let us see some examples of partitions which are, and which are not,
measurable.

Example B.3.3 (Figure B.2). In the two torus T? = S* x S1, consider
for each pair i,n, with n a positive integer and i € {1,2,3,...,2"}, the
interval J(i,n) = [‘=, 5%].

Then, the partition P,, = {S! x J(i,n)} is a measurable partition.
Example B.3.4 (cf. Example 3.2.10). Denote by m the Lebesgue measure
on the two-dimensional torus T2?. Let fa : T? — T? be the Anosov
diffeomorphism induced by the integer matrix

2 1
A= [1 1] |
Let P = {W%(z);x € T?} be the partition into unstable manifolds. We
claim that P is not measurable. Indeed, if P were measurable, as it is
the partition into orbits of an irrational flow, P = \/:LO=1 P, would imply
that for each n there exists P, € P,, with m(P,) = 1. Thus, the set
pP= ﬂfil P, belongs to the partition P, and m(P) = 1, which is absurd.
(This is the continuous-time version of Example B.2.5.)
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J(i,n)

Figure B.2: A measurable partition of T2.

B.4 Ergodic decomposition of invariant
measures

We proceed to give an important application of the disintegration theorem,
namely the decomposition of invariant measures into ergodic measures.

Let (X, B, 1) be a probability space and f : X — X be a measurable
map such that f.pu = p. We say that the measure preserving system
(f, X, B, ) is ergodic if every measurable f-invariant set has either zero
or full y-measure.

The goal of this section is to prove the following military principle: divide
the space to conquer the ergodic decomposition.

Theorem B.4.1 (Ergodic Decomposition; see Definition 2.5.5). Let (X, d)
be a complete and separable metric space, endowed with the Borel o-algebra
B and a probability measure p. Let (f, X,B, 1) be a measure preserving
system. Then there exists a measurable partition (&, Z%, i), with f-invariant
atoms, whose disintegration {up; P € £} satisfies that fi-almost every pp
is f-invariant and ergodic.

Furthermore, one can prove by measure theoretical arguments that the
ergodic decomposition £ given by the theorem is essentially unique, in
the sense that any other ergodic decomposition (£’ B ) is measurably
isomorphic to (S,B, i) (the isomorphism is even Borel in restriction to
conull subsets, see for example [B16]).

The idea for Theorem B.4.1 is that an ergodic system is dynamically
indecomposable, since its orbits spread uniformly over the configuration
space, and thus it is possible to split X into the indecomposable
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components of the dynamics (see Example B.2.5). Let us see this more
closely by recalling a fundamental result in ergodic theory.

B.4.1 The Birkhoff’s ergodic theorem

Consider the following statistical question: given a point p € X and a
certain positive measure set A < X, how often does the forward f-orbit of
x visit A?

From a more formal point of view this means to study the behavior of

the sequence
1 n—1

=3 @),

§=0
So, it is natural to ask: does this sequence converges? If so, to what limit?

Theorem B.4.2. Let (f, X, B, 1) be a measure preserving system, where
1 s a probability measure. Then for every measurable set A < X the limit

1
n

3 xalfi (@)
j=0

exists for p-almost every x € X.

It is not hard to show (though we will not do this here) that the ergodic
theorem implies the following.

Corollary B.4.3. A measure preserving system (f, X, B, u) is ergodic if
and only if

n—1
T = (@) = ()
j=0

for p-almost every x € X, and every measurable set A.

B.4.2 Proof of Theorem B.4.1

As we said before, we need to divide the space to conquer the ergodic
decomposition. So, our first task is to choose a suitable partition of X.
Let U < B be a countable basis for the topology of X, and A < B the
algebra generated by U. Notice that A is countable and generates B.

Then the ergodic theorem implies that for each A € A there exists
X4 © X with (X 4) = 1 and such that for every x € X4 the limit

n—1
r(A4,2) = lim -3 ()
j=0

exists. Take Xo = ()44 Xa. Then p(Xo) = 1.
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We define the following equivalence relation on Xy: = ~ y if, and only
if, 7(A,z) = 7(A,y), for every A € A.

Lemma B.4.4. The partition € = {[z];x € Xo} of X into ~-equivalence
classes is measurable.

We shall first finish the proof of Theorem B.4.1 assuming Lemma B.4.4.

Proof of Theorem B.4.1. Let £ be the measurable partition from
Lemma B.4.4 and {up; P € £} be the associated disintegration. Observe
that 7(A,z) = 7(A, f(x)) for every x € X, A € A, thus every atom of
the partition £ is f-invariant. By Lemma B.2.3, almost every pp is f-
invariant. It remains to prove that almost every up is ergodic. Fix P € £
and consider

C={EeB|7(E,x)is defined and constant for every x € Xo n P}.

Notice that A < C, by definition of £. Moreover, if Fy ¢ E; are elements
of C then

T(E1\E2,z) = 7(E1, ) — 7(E2, )

is well-defined and constant over Xy n P. If {E;} are pairwise disjoint sets

then
o0
T (U Ei,x> =
i=1 i

is well-defined and constant over Xy P. We conclude that C is a monotone
class (it is stable under increasing unions and decreasing intersections). By
the monotone class theorem we conclude that C = B. By Corollary B.4.3
we deduce that pp is ergodic. O

18

T(Eiyx)
1

Proof of Lemma B.4.4. Let A = {Ax} be an enumeration of A and
{gr} = Q be an enumeration of the rational numbers. Fix n € N. We
define a partition P,, in the following way: we mark the points q1,...,qn,
on the line and consider the partition of R into intervals induced by these
points. We declare © ~,, y if and only if 7(A;,z) and 7(A;,y) belong to

: 7(4; ) (A, y) TR R 4R

q1 q2 43 qn

Figure B.3: The partition P,.

the same interval of this partition for every i = 1,...,n (see figure B.3).
Clearly, 7(A;,z) = 7(A;,y) for every i if and only if x,y € ﬂfil P,, with
P, € P, and thus € = \/"_, Py,. O
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B.5 Non-measurable unstable partitions

Example 3.2.11 says that in general unstable partitions are not measurable.
However, as we have seen in Section 2.2.3, it is possible to define
conditional measures of a measure y conditioned on the unstable (or stable)
partition. The drawback is that the conditional measures are not likely
to be probability measures, and moreover they are defined only up to a
multiplicative constant. The construction is classical and goes back at least
to [B10,B11]. Since then, it appears as a standard tool in many important
measure rigidity results, as we have seen for Theorem 2.1.8 [B7,Bg], but
one also finds it in [B1,B12,B5,B6,B2], just to cite a few.

The idea described in Section 2.2.3 consists into considering an
exhaustion of the unstable partition W* by a sequence of subordinate
measurable partitions ¥ of p conditioned on &. This gives conditional
measures {,ugf) | P e ¢F} that one chooses to renormalize so that the unit
ball at a (with respect to the intrinsic metric of W*(z)), has measure 1 as
soon as this ball is contained in &¥(z). Then one is able to take a limit of
these conditional measures.

Although the construction is somehow delicate, rigorous treatments
appear rarely in the literature. A very abstract approach can be found
in [B1, Section 4.1] (in French), carefully explained in [B4]. As conditional
measures take a central place in these notes, we recall the construction as
it appears in these cited works.

For this, we start with a second countable locally compact group R (in
practice, this will be a closed subgroup of R¢, see Sections 2.5 and 3.1)
with an action on a standard Borel space (Z, Z) with discrete stabilizers
(i.e. the stabilizer of any point z € Z is a discrete subgroup of R). We also
fix a probability measure p on (Z, Z).

We denote by M(R) the space of (positive) Radon measures on R
and by PM(R) the space of projective measures, that is, of classes of
Radon measures with respect to the equivalence relation that declares
two measures op and oy equivalent if and only if they are (positively)
proportional (one writes o1 oC 03).

There is a natural map 7 : M(R) — PM(R) taking a given measure to
its class. Given an exhaustion R = [ J,,.y Xn of R defined by an increasing
union of compact subsets X,, © R, we define a section PM(R) - M(R)
by assigning to a given projective measure [o] the unique measure o
determined by the condition

o(Xpn) =1, where n is the least k € N such that [¢](X}) > 0.

In practice, when R = R%, one may choose X,, = R n [—n,n]?.

Definition B.5.1. A Borel subset ¥ < Z is a discrete section for the
action of R if for any z € Z, the set {r € R | r-z € X} is a closed and
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discrete subset of R. (This is called a lacunary section in [B4].)

A result by Kechris [B9] states that any such action admits a complete
discrete section, that is, with the additional property that R-¥ = Z. Now,
given a complete discrete section ¥ ¢ Z, we consider the surjective map

a:Rx¥Y—> Z
(r,z) »r-z

with countable fibers, so that the measure defined by
(a*u)(E) = f #(Ena'(2))du(z), for E < R x X Borel subset,
z

is a o-finite measure on R x ¥. (Observe that this is a pull-back of a
measure, so it comes from an exceptional construction.)

Let 1y, : R x ¥ — X denote the projection onto the second factor,
and uy the push-forward by ms of some finite measure equivalent to a*u
(recall that two measures are equivalent if they share the same zero and
full measure sets). By construction, uy is a finite measure on X.

The horizontal partition P = {R x {z}; z € X} is a measurable partition
of the Borel space R x ¥ thus (a refinement of) Rokhlin disintegration
theorem (Theorem B.3.2) ensures the existence of a disintegration of the
measure a*u: for px-almost every z € 3, there exits a conditional measure
iy » € M(R) (not necessarily finite, but o-finite) such that

a*i(A x B) = J ps.2(A)dus(z), for Ac R,B c X Borel sets.
B

Given r € R, we denote by p, the right multiplication by r on elements
of R. The following lemma [B1, Lemma 4.1] tells that the class of the
conditional measure does not change as we move along one orbit:

Lemma B.5.2. For pux-almost every z € X, for any r € R such that
r-z € X, one has

NZ,Z o (pr)*/«’i],r-m

Proof. The hypothesis of discrete stabilizers implies that the set {(r,z) €
R x X | r-z e X} is a countable union of graphs of partially defined,
Borel injective functions r; : 3; — R. Therefore it is enough to check the
equality for graphs of injective functions only. O

Finally, we have [B1, Prop. 4.2]:

Proposition B.5.3 (Definition of conditional measures). There exists (an
essentially unique) Borel map o : Z — PM(R), a Borel set E < Z of full
w-measure such that:
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for every discrete section %, for us-almost every zg € ¥ and for any
r € R such thatr - zg € E one has

[s,20] = (pr)xo(r - 20);
foranyre R,z € E such thatr - z € E, one has

o(2) = (pr)xo(r - 2).

Proof. Fix a complete discrete section ¥o. We define, for z = rzp € R-¥g =

VA

)

0(2) = [(p7 " ubtsn.eo] € PM(R).

The previous lemma guarantees that o(z) is well defined. O
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Appendix C

The Pinsker partition and
the Hopf argument

by Davi Obata

C.1 The Pinsker, stable and unstable parti-
tions

Here we treat more extensively some of the notions appearing in Section
3.2.6. We define the Pinsker partition and describe its relation with the
unstable and stable partitions, given by Theorem B of [C4]. We shortly
recall basic ingredients from measure theory; for a better discussion on
these points see [C2].

Let (X, B, 1) be a measure space. Given a partition £ of X define B(§)
to be the o-algebra generated by the measurable sets C' € B that are union
of elements of £. Given two partitions £ and 7, we say that £ refines n if
every element of 7 can be obtained by union of elements of £, we denote
it by n < &, we also say that n coarsens £. We say that two partitions n
and £ are equal mod zero if they are the same on a set of full y-measure,
and we denote it by n = £ (cf. Section 3.2.3).

Let f: X — X be a measurable function that preserves u; recall that
given any finite measurable partition £ we can define the metric entropy
with respect to this partition, denoted by h,(f,&) (see Section 3.2.1).

Definition C.1.1 (cf. Section 3.2.6). The Pinsker partition «(f) is
defined as the finest measurable partition such that if n is any finite
partition with < «(f) then h,(f,7) = 0. We can also define the Pinsker
o-algebra as the biggest sub-o-algebra of B, which we will denote by P
such that every A e P satisfies h,(f, {4, A°}) = 0.

168
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Given a partition £ we define its measurable hull Z(¢) as the finest
measurable partition which coarsens €. In other words Z(€) < £ and if 7 is
a measurable partition such that < £ then n < Z(§) (cf. Section 3.2.6).

Example C.1.2 (cf. Example 3.2.9). Let (X,d) be a complete and
separable metric space, B is Borel o-algebra, (f,X,B,u) a measure
preserving system and & the ergodic decomposition (Theorem B.4.1).
Then the measurable hull Z(O) of the partition by f-orbits O is the
ergodic decomposition £. To see this, notice that atoms of the ergodic
decomposition £ are f-invariant and therefore £ coarsens O. Thus it
remains to prove that & is the finest measurable partition enjoying this
property. For this, we remark that, replacing X with an ergodic component
P e £ and p with pp, we can assume that the measure p is ergodic.
Now, ergodic measures admit no nontrivial disintegration with respect to
a measurable partition into invariant subsets (we use Lemma B.2.3), so
any finer measurable partition &, £ < £ < O, must coincide with £.

From now on let us suppose that X = M is a manifold, B is the Borel o-
algebra and f : M — M is a C'+BA-diffeomorphism. By Oseledec’s theorem
(Theorem 3.1.1) we know that for p-almost every point x the Lyapunov
exponents are defined. By Pesin’s theory (see Section 3.1.4) we know
that for p-almost every point € M there are stable/unstable manifolds
W#(x), W*(z) tangent to the directions of the Oseledec’s splitting related
to the negative/positive exponents: they are defined by

n—oo N

W) = {y e M : limsup L logd (f (@), f"(4)) < o},

W*(x) = {y eM : limsupllogd (f™(2), [ (y) < O}.

n—oo N

In the case all the exponents are zero, those manifolds are just the points.
Thus we obtain two partitions, the stable and unstable partitions which we
denote by W* and W, respectively. (Their measurable hulls are denoted
by =Z° and Y, respectively, in Section 3.2.6.)

In [C4] Ledrappier and Young proved the following theorem
(cf. Proposition 3.2.13).

Theorem C.1.3 (Theorem B of [C4]). Let f : M — M be a C'*5-
diffeormorphism preserving a probability measure p. Then we have equality
of partitions

EW?) ==(f) =EW").

Leddrapier and Young actually state the theorem in terms of o-algebras,
the result is the same, up to replace the partitions by the o-algebras they
generate.
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C.2 The Hopf argument

The Hopf argument was introduced by Hopf [C3] to prove that the geodesic
flow on compact surfaces with constant negative curvature is ergodic with
respect to the Liouville measure. Later Anosov proved, in [Cl], that
every C?-volume preserving, Anosov diffeomorphism is ergodic. The Hopf
argument can be divided in two parts, the first part is that every ergodic
component is saturated, up to a set of measure zero, by stable or unstable
manifolds, the second part is that under an additional hypothesis called
accessibility, one can exploit the Anosov property to show that the system
is ergodic. Since then the ideas from Hopf argument have been the main
tool to prove ergodicity for partial hyperbolic systems, see [C7] for a survey
on conservative partially hyperbolic dynamics.

In our scenario we can state the Hopf argument in the following way
(cf. Proposition 3.2.12).

Theorem C.2.1 (The Hopf Argument). Let f : M — M be a
CY B8 _diffeormorphism preserving a probability measure p. The ergodic
decomposition is refined by the measurable hull of the stable partition, in
other words

2(0) < E(W9).

The same result holds if we change the measurable hull of the stable
partition by the measurable hull of the unstable partition.

Proof. Let v be an invariant ergodic measure in the ergodic decomposition
of p. By Birkhoff’s ergodic theorem (see Theorem B.4.2) for every
continuous function ¢ € C°(M) there is a measurable set A, of full v-
measure such that if € A, then the limit

n—1

1 .
+ = i — J 2.1
p*(z) = lim — ;) (7 (x)) (C2.1)
exists and it is equal to ™ SX @dv. Let {¢g }ren be a sequence which
is dense in C°(X) and cons1der the set A, = ﬂ A, ; this set has full v-

keN
measure and has the property that if z € A, and ¢ € CY(X), the equality

¢t (x) = § pdv holds. In other words, we have that for any x € A,
1 -
— 2 fi(x) 2%, ), in the weak™® -topology.
n =

Moreover, since the set A, has full v-measure, we can describe it as the
set of all points whose forward Birkhofl’s average converges to v.
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We claim that if x € A, then W#(x) c A,. Indeed, if y € W*(z), then

d(f"(z), f(y)) === 0.

We know that §(z,n) converges to v; to prove that d(y,n) also converges
to v we have to prove that for every ¢ € C°(X) one has

f @ dd(y,n) = J pdv.
X X

By continuity, one has |p(f™(z)) — ¢(f™(y))| — 0 as n goes to infinity,
thus

1 n—1 )
. — 1 - J
Jim | eddyn) = lim o j;)@(f )
1 n—1
= lim = J = dv. O
i Yol = [ e

Since our system f is invertible the same statement is also true for
the measurable hull of the unstable partition. We remark that analogous
results hold for flows.

Example C.2.2. We now give an example of application of this result.
Consider the group G = PSL(2,R) and the subgroups

= 0 1 0 1 =
A=(0 *>,L=(* 1) andU=(0 1).

It is easy to see that the subgroups A, L and U generate G. Suppose that
G acts on the left on a compact manifold M, by C'*# diffeomorphisms.
Assume that it preserves a probability measure p. We say that the measure
v is G-ergodic if every measurable set B that is G-invariant has zero or
full y-measure.

Of course if the measure p is ergodic for any of the subgroups then it is
ergodic for G. We will prove now that if the measure p is ergodic for G
than it is ergodic for D. We can parametrize the subgroups by

ez 0 10 1 s
a0 () man= () 0).

Observe that A; generates a flow and p is an invariant measure for this
flow. First we obtain that

1 se?

UsoAt:AtO(A—tOUSOAt):AtO(0 1

) = At e} Use*t. (022)
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Observe that from (C.2.2), we obtain
Uset 0 Ay = Ay o Us.
Now for any z € M and s € R, we have

d(As(x), Ar(Us(2))) = d(As(2), User (Ar(2))) —7—> 0
and this convergence is exponentially fast. This implies that Ug(x) €
W(x) for every s € R, where W*(x) is the unstable manifold of x with
respect to the flow A;. Similarly, we can check that L,.-+ 0 A, = A, 0 L,.,
thus L, (x) € W#(x).

Let ¢ € C9(M) be a continuous function and let ¢*(-) € L'(M, i) be
the forward Birkhoff average with respect to the flow A;. By Birkhoff’s
theorem this function is A-invariant and is defined on a set of full u-
measure. By Theorem C.2.1, for pu-almost every point x € M and for any
y € W#(z) it holds that ¢ (z) = ¢t (y). By the previous calculation we
know that for any r € R, we have L,.(z) € W#*(z). Thus, the function ¢*
is also L-invariant. Similarly, we conclude that ¢* is U-invariant. Notice
that A, L and U generate G, hence o1 is G-invariant and since p is G-
ergodic, the only G-invariant functions in L!(M, i) are the constants. We
conclude that T is constant p-almost everywhere. This is true for any
continuous function, therefore p is A-ergodic.

This is a simple case of a larger class of results called the “Mautner
phenomenon” (first appearing in [C5], see also [C6]).
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Appendix D

Metric entropy and
Lyapunov exponents after
Ledrappier—Young

by Sébastien Alvarez and Mario Roldan

Lyapunov exponents give a geometric way to measure the complexity
of a map, and metric entropy gives a probabilistic way to do so. We are
interested here in comparing these two notions. In these directions, the
two basic results are (see Theorem 3.2.6):

Margulis—Ruelle’s inequality proven in [D20]: For every
Cl-mapping f (not necessarily invertible) of a compact
Riemannian manifold M preserving a probability measure u,
the metric entropy is bounded above by the sum of positive
Lyapunov exponents,

mif) < | 3wV @duta).

I >0

Pesin’s Formula (also known as Entropy Formula) proven in
[D16] (see also [D11,D14]): For every C'*# diffeomorphism f
of a compact Riemannian manifold M preserving a probability
measure u equivalent to the Riemannian volume, we have

mf) = | 3w @V @)

A >0

As usual, \'(z) > MN(z)--- > N®)(z) denote all distinct Lyapunov
exponents of f at z, m?(z) is the multiplicity of A (z), and h,(f) denotes
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the metric entropy. Note that when p is ergodic, the quantities A (x),
r(x) and m’(x) do not depend on the choice of a p-typical x € M and the
integral sum in both formulas may be omitted.

The aim of Ledrappier—Young’s theory is to further study relations of
these types. In [D12], F. Ledrappier and L.-S. Young characterize those
measures which satisfy Pesin’s entropy formula. In [D13] they prove a
formula which is valid for every invariant measure.

We state below the first result, i.e. the principal result of [D12]. The
statement of the general formula shall be postponed until Section D.3.
Before stating the result, let us recall that an ergodic probability measure
p invariant by a C'*# diffeomorphism of a compact manifold M is said to
be an SRB measure if it has absolutely continuous conditional measures
on unstable manifolds.

Theorem D.0.1 (Ledrappier-Young I). Let f be a C'*# diffeomorphism
of a compact Riemannian manifold M and u be an ergodic, f-invariant
probability measure. Then p is SRB if and only if

hu(f) = Z mIN.

A >0

The “only if” direction is a generalization of Pesin’s formula: it was
proven in the conservative setting by Ya. Pesin. R. Mané gave a proof in
[D14] without using the theory of stable manifold. In this generality (for
SRB measures rather than for smooth measures), the proof of the “if” part
is due to F. Ledrappier and J.-M. Strelcyn in [D11].

The proof of the “if” part is the most difficult one and was first achieved
by F. Ledrappier in [D10] under the hypothesis that u is hyperbolic (i.e. has
no zero Lyapunov exponent) (see Section 3.1.1). Later, together with L.-S.
Young in [D12], they were able to treat the difficulties that emerge when
one allows the presence of zero Lyapunov exponents.

Let us say a word about the regularity of the dynamics in Theorem
D.0.1. F. Ledrappier and L.-S. Young proved that Theorem for C?
diffeomorphisms. As we will see later on there is a crucial step in which
the C? hypothesis rather than the C'*# hypothesis on the dynamics
was used in [D12]: obtaining the lipschitzness of the unstable holonomies
inside center-unstable sets. A. Brown recently showed in [D4], that this
lipschitzness actually holds for C'*# dynamics. Finally let us note that
the regularity can’t be lowered. It comes from [D2, D17] that a C*
diffeomorphism can have many hyperbolic ergodic probability measures
(i.e. without zero Lyapunov exponents) such that the points on their
supports have no unstable nor stable manifolds [D2,D17].

Example D.0.2 (Baker vs. horseshoe). Before entering in the details let
us borrow to L.-S. Young (see [D23, Example 4.1.3.]) an enlightening
illustration of the results above.
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Figure D.2: Smale’s horseshoe

Consider first the well known baker transformation. This is a piecewise
affine map of the unit square C of R? defined as follows. We set
T(z,y) = 2z,y/2)if  <1/2 and T(z,y) = 2z — 1,y/2+1/2) if z > 1/2.
(See Figure D.1.) Tt is possible to prove that the Lebesgue measure p is T-
invariant and ergodic and that 7" is then isomorphic to the (3, 2)-Bernoulli
shift. It is clear that

h,(T) =log2 = A%,

where AT is the largest Lyapunov exponent.

The second transformation is a piecewise affine map defined on a subset
of C that may be extended to Smale’s horseshoe. (See Figure D.2.) It
has a hyperbolic invariant set A of measure zero (this is a product of two
Cantor set) and we endow it with its measure of maximal entropy (which
is singular since it is supported on A). It is also isomorphic to the (1, 1)-

272
Bernoulli shift. Now we have
h,(T) =log2 < A*.

The first transformation satisfies the entropy formula, while the second
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one does not. One may interpret this fact as follows (see [D23]). In
a conservative system, all the expansion goes back to the system and
contributes to the entropy, whence the entropy formula. In a dissipative
system, some of the entropy is wasted along the way (in the second case,
it is wasted to “bend” the horseshoe) and the entropy is concentrated in
some region of smaller dimension (we will see how in the second part of
Ledrappier—Young’s theory).

D.1 Entropy along the unstable direction

We will focus on the second half of Ledrappier—Young’s theorem (Theorem
D.0.1) i.e. we want to prove

1 satisfies the entropy formula = p is SRB.

The principal idea of this theorem is that the entropy is created by the
expansion along unstable manifolds. We show below how to formalize this
idea and we sketch the proof given in [D12].

D.1.1 Partitions subordinate to the unstable foliation

Let f be a C'*P diffeomorphism of a compact Riemannian manifold
M and x € M be a regular point, meaning that Lyapunov exponents
A (2),A%(2), ..., \"@®) (x) and Oseledec’s splitting T, M = E'(z)®E?(z)®

- @E"®) (z) exist at x. By Oseledec’s Theorem (Theorem 3.1.1) the set of
such points is full for every f-invariant probability measure. The unstable
manifold at x is defined by

W) = {ye M5 T ~log (7). £~ (1) < 0}

By Pesin’s (un)stable manifold theorem (see [D7,D15,D19]) W*(x) is a
monotone union of discs tangent to E“(x) at x, so it is an injectively
immersed Euclidean space tangent to E*(x) at x where

= P E(a).

A >0
We will refer to the partition W* = {W"(z); x regular} as the unstable
foliation. The ambient Riemannian structure induces a Riemannian
structure on W*(x). This provides W*(x) with a topology that we call
the internal topology. Note that it differs from the topology induced by M
on W (z).

In general unstable leaves form a non-measurable partition of M and

we can’t disintegrate p in unstable leaves so we will need the following
definition.
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Say a measurable partition £ is (u-)subordinate to the unstable foliation
W if (cf. Section 3.2.3):

1. for p-almost every x € M, £(x) is a subset of W¥(x) with diameter
bounded by a constant €y which does not depend on z;

2. for p-almost every x € M, £(x) contains an open neighbourhood of
x inside W"(x);

3. £ is increasing, i.e. f€ < ¢&;
4. £ is generating, i.e. \/fzo f7"€ is the partition into points of M.

Note that unstable manifolds W*(x) are well defined for every regular
point, and that every f-invariant probability measure gives total mass to
the set of regular points. Hence the hypothesis of ergodicity of u is not
needed in the above definition.

The existence of measurable partitions subordinate to the unstable
foliation is due to F. Ledrappier and J.-M. Strelcyn [D11].

Proposition D.1.1 ([D11]). Let f be a C**# diffeomorphism of a compact
manifold M and W™ be the partition into Pesin unstable manifolds of f.
Then there exists a measurable partition £ subordinate to W*.

Let us sketch a proof of Proposition D.1.1 when W™ is wuniformly
expanding, building on recent work of J. Yang [D21]. This last hypothesis
means that W* is an f-invariant continuous foliation, tangent to a D f-
invariant continuous plane field E*, such that there exists a uniform \ < 1
such that

I1Df~ gl < X

Note that in the proof below, f needs only to be C' and p does not
need to be ergodic: this proof only uses the expansion property of f on
W* and Borel-Cantelli’s theorem.

Finite partitions and the Borel-Cantelli property

Fix a foliated atlas A" for W*". The proof consists in constructing first a
finite partition P of M satisfying the two conditions below

1. atoms of P are included in foliated charts of AY;

2. the series of p-masses of the M-neighbourhoods of the boundary of
any atom of P converges.

This partition is constructed from a covering of M by finitely many
small balls By such that > (N (0By)) < o (in what follows N,.(A)
stands for the r-neighbourhood of A). The construction of this covering
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does not require any hypothesis on p and is essentially a consequence of
the following Borel-Cantelli type lemma which allows us to find the radii
of these balls. For the sake of completeness we include the proof, which is
both elementary and elegant.

Lemma D.1.2. Let v be a finite Borel measure on R supported on [0,7¢]
for some rq > 0. Then for every A € (0,1), for Lebesque-almost every
r € [0,ro],

[e¢]
Zz/ r*)\j,rJr)\j]) < 00.
7=0

Proof. For a fixed j = 0 we will define the bad set as

V= {re v ([r= Vo + ¥ > 5

The bad set may be covered by finitely many bad intervals [r; — M, r; + M|
for i = 1,...,1 with r; € Y}, in such a way that any point of Y; belongs
to at most two bad intervals. We can bound the number [ of these bad
intervals because

l
LQ Z [ri — X, ri + M]) < 2v(R),

so I < 2v(R)j%. We deduce that Leb(Y;) < 4v(R)j2)\ so > Leb(Y,

By Borel-Cantelli’s theorem for Leb- alrnost every r € [0 ro]]there ex1stb Jr
such that r ¢ Y; for every j > j,, which implies that > v([r =M, r+M]) <
0.

This lemma being established we can construct the desired finite
partition P. We chose ry smaller than the Lebesgue number of the covering
of A*. Given x € M we want to define the radius r, of a ball centered at
x whose boundary satisfies the second condition stated above. To do so,
we define a measure v, on [0, 7] by

va(la,b]) = p({y € M; a <d(x,y) <b}),

and we apply Lemma D.1.2 to v,. If v, is the zero measure, we set
ry = ro/2. If it is not, Lemma D.1.2 gives r, € (r9/2,79) with

i (Nyi (0B(z,75))) < 0.

In particular u gives zero measure to the boundary of the spheres B(x, ;).
A compactness argument allows to cover M with finitely many such balls
By, which are included in unstable charts (by the choice of rg). The desired
partition is now P = \/,{By, “Bs}.
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Proof of Proposition D.1.1

Now consider the measurable partition &y whose atoms are the intersection
of atoms of P and unstable plaques of A". We claim that the following
partition is subordinate to W*

&=\ Féo.
j=0

The most complicated part is to prove that &(x) contains a
neighbourhood of z inside W*(x) for p-almost every z. Denote by P
the union of boundaries of atoms of P. We first use that u(0P) = 0 and
the f-invariance of u to find a Borel set X full for p such that f7(x) ¢ 0P
for every x € X and j € Z. This implies that for every z € X, & ()
contains an open neighbourhood of x for every k € N where

k
& = \/ Fi&o.
=0

The fact that £(x) contains an open neighbourhood of  comes from the
fact that

§(2) = Euia) (2)

for some k(z) € N. This k(z) is obtained from an argument d la Borel-
Cantelli. Let us explain it. Using once more the f-invariance of p as well
as the second property characterizing P, we see that

Z [f7 (M (0P))] <

By Borel-Cantelli’s theorem there exists a Borel set X of full y-measure
such that for every x € X we have d(f~%(x),0P) > MF for every k
greater than some k(z). One easily shows that when k > k(x) we have
&x(x) = &ry1(x), for the contrary would imply that f**1(0P)n&x(x) # &.
Using that plaques of A" have uniform diameters (say smaller than 1) we
find that d(z, f**1(6P)) < 1. Using the uniform expansion of f along
W*, one would find that d(f~*+Y(z),P)) < A1, which is absurd by
the deﬁn1t1on of k(x).

Remark D.1.3. In order to treat the general case one has to use Pesin’s
theory in order to get uniform expansion in sets of positive measure. This
is done by defining Pesin’s sets and analysing the first return maps to
these Pesin’s sets. Pesin’s sets A (we use Katok—Mendoza’s terminology
[D9]) are sets of positive measure (but which are not invariant) enjoying
the following properties
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e the size of local unstable manifolds of elements of A is uniformly
bounded from below; more precisely, there exists § > 0 such that for
every « € A, the preimage of W} _(x) under the exponential map at
x contains the graph of a C'-map from the §-neighbourhood of 0 in
E*(z) to E¢(x) ® E*(x);

e the dynamics is uniformly expanding along local unstable manifolds
inside A; more precisely there exist constants 0 < € < A/100 and
C > 0 such that for for every z € A everyn > 1 and meZ

||Da:f_n|Eu(fm(m)) || < CeA—eng—Imle
where A > 0 is the smallest positive Lyapunov exponent of f for p.

Of course, if one wants to increase the measure of Pesin sets, one looses
control on the constants C' and e. Nevertheless the argument sketched
in the case of uniformly expanded foliations can be adapted even if one
only guarantees the uniformity of the expansion in positive measure sets.
This analysis is essentially an argument given by Mafié in [D14]. We won’t
enter here into the details and suggest the reader to consult the classical
references: [D14,D11,D12,D23].

D.1.2 Entropy along the unstable direction

The next step of the proof of Ledrappier and Young is to define the entropy
along the unstable direction. Recall (Section 3.2.1) that when 1, and n, are
measurable partitions of M, H,(n:1 | n2) denotes the conditional entropy
of 1 given 19 and that when 7 is an increasing partition we have

hu(fim) = Hu(n | fn).

The next proposition allows us to define the entropy along the unstable
direction (cf. Definition 3.2.3).

Proposition D.1.4. Let f : M — M be a C'*P diffeomorphism of a
compact manifold. Let & and & be two measurable partitions subordinate
to the unstable foliation W* of f. Then

hu(f7 fl) = hu(fa 52)

Proof. Let us detail the argument proving this proposition. Let & and &
be two measurable partitions subordinate to W*. It is enough to prove
that h,(f, &) = hu(f,& v &). The great idea of the proof is to note that
since f&; < &; we have for every n > 0

[P v M <& v ffé <& v .
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By f-invariance of pu, the entropies of f conditional to the first and last
partitions coincide so we deduce that

hu(fré1vE) = hu(f,&av &) = Hy (& v f&l f& v f1H1&), (D.1.1)

the last equality coming from the definition of conditonal entropy. Before
carrying on with the proof, observe that f expands the unstable foliation,
so eventually the atoms of & should be included in atoms of "¢, for
n large enough. This gives a good hint that the entropy conditional to
& v f& should tend to the entropy conditional to &. Let us give a
formal explanation of this intuition.

We will use a formula of conditional entropy proved in Rokhlin’s classical
paper [D18, §5.9]. For measurable partitions A, B and C we have that

H,(Av B|C) = H,(AC) + Hy(B|A v C). (D.1.2)

Applying (D.1.2) with A = &1, B = f"¢ and C = f& v f*1¢ and having
in mind that & v f& = & we find

Hy, (& v fM&l fé v f776)
=H, (&|f&av fre) + Hy (f"&l & v fav f77e)
=H, (& |f&a v 7)) + Hy (&) f v &) .

Let us recapitulate. We just prove that the following equality holds for
every n = 0

hu(f &1 v &) =Hy (&]fé v fPM1&) + Hy (&]f "6 v f&) . (D.1.3)

Observe that f~"¢; generates (by Item 4. of the definition) so the second
term tends to 0 as n — c0. We must now prove that the first term converges
to H,(&|f&) = hu(f,&). We clearly have H,(&1]f& v fmTlE) <
H,(61]£&,) (see [D18, §5.10]).

We will now use that f expands the unstable manifold so that for
most points z € M, the atom f&;(z) is contained in an atom of f*F1&,.
Consider the Borel set D,, of such z. On the one hand f& = f& v f*T1&
in restriction to D,,. On the other hand, since f~! contracts unstable
manifolds we have p(D,,) — 1 as n — co0. This yields lim,, o H,,(&1|f&1 v
&) = Hy (&) f&), thus concluding the proof. O

This allows us to give sense to the following definition (see Section 3.2.3).

Definition D.1.5 (Entropy along the unstable direction). The p-entropy
of f along the unstable direction is the value

hu(f) = hu(£,6),

where £ is any measurable partition subordinate to the unstable foliation
w.
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D.1.3 Local entropy

It is often convenient to work with a local version of entropy which is due
to M. Brin and A. Katok see [D3]. The construction is quite general, but
for the sake of clarity we will state their results in our context.

Let us first define dynamical balls. Given x € M, n € N and r > 0 we
define

B, (z,r) = {yeM; d(f'(x), f'(y)) <7‘,Vi:0,...,n—1}.

Let p be an ergodic f-invariant measure. Given xz € M, set

N 1
h;t(fax) = lim m 7E10g :U’(BTL($7T))?

r=0p 00

and 1
Eﬂ(fa ) = lim hm ——log ,U(Bn(x,r))

r—0n—ow
Theorem D.1.6 (Brin—Katok). Let f : M — M be a C'*F
diffeomorphism of a compact manifold and p an ergodic f-invariant
measure. Then for p-almost every v € M

) = I (F, ) = (. 2) = lim Tim " log (B (7).
Following this classical work, F. Ledrappier and L.-S. Young adopted a
pointwise approach for defining the entropy along the unstable direction,
which works well in the ergodic case.
We will let d* denote the Riemannian distance on unstable manifolds
induced by the ambient Riemannian structure. Given x € M, n € N and
r > 0 we define

BY(z,r) = {ye W*(); d“(f'(2), f'(y)) <mVi=0,...,n—1}. (D.1.4)

We will now consider a partition £ subordinate to W and a system
(u¥)zenr of conditional measures of p associated with &, uniquely defined
up to a p-negligible set by Rokhlin’s theorem (see Appendix B). We will
define )

ﬁg(f7x7£) = lim m 75 log M;(B;:(‘Ta T’)),

r—0 4, 50
and
Dy (fr,€) = lim lim *flog py (B (@, 7).

r—0n—ow

In the second part of their work, F. Ledrappier and L.-S. Young prove the
following theorem (see [D13, Proposition 7.2.1. and Corollary 7.2.2.]).
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Theorem D.1.7. Let f : M — M be a C**P diffeomorphism of a compact
manifold and let p be an ergodic f-invariant measure. Then for p-a.e.
re M

B(F,€) = P, 2,€) = I Tim ——log j(B(z, 7)),

r—0n—w

and the common value s

Hyu(& ] £E) = hy(f)-

D.2 Measures satisfying the entropy formula

D.2.1 All the expansion occurs in the unstable
direction

The principal accomplishment of Ledrappier—Young’s first paper [D12] is
the proof of the following key result which says that all the expansion of
f occurs in the unstable direction (cf. Section 3.3.1).

Theorem D.2.1. Let f : M — M be a C**P diffeomorphism of a compact
manifold and p be an ergodic f-invariant probability measure. Then

hu(f) = b (f)-

In [D10], Ledrappier had already proved a similar statement for measures
without zero Lyapunov exponents, and, as we will see later on, knew how
to deduce the conclusion of Theorem D.0.1 from the equality

ne(f) = D, mIN.

A7 >0

D.2.2 The uniformly hyperbolic case

The case of uniformly hyperbolic dynamics is certainly an oversimplifica-
tion of the general context. Nevertheless, we may find useful to understand
the skeleton of the Ledrappier—Young’s delicate argument and the difficul-
ties therein.

Let us assume here that f is an Anosov diffeomorphism. This means
that there is a D f-invariant splitting TM = E° @ E" where E° and E"
are respectively uniformly contracted and expanded by D f.

Using the local product structure, every sufficiently small ball is
contained in a foliated chart for W* of the form D* x D* where D* and
D" are small stable and unstable discs respectively. Moreover in such a
chart the Riemannian distance is uniformly equivalent to the Lyapunov
distance which we may define as the L'-distance of the product D* x D,
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Given z € M and sufficiently small » > 0, the dynamical ball B,,(z, )
(for the Lyapunov distance) is inside Bf(x,7) x BY(x,r). Since W* is
uniformly contracted, the dynamical ball B (x,r) does not depend on
n € N. Using the transverse continuity of the restriction of the induced
Riemannian structure on leaves of W% we see that there exist r{ < ry
converging to 0 with r such that

U BZ(y7T1)CBTL(I7T)C U B;:(y,’f'Q). (D21)
yeBS (z,r) yeBS (x,r)

Let p be an ergodic f-invariant probability measure and u;, a system
of conditional measures of p along unstable plaques of a chart D® x D“
containing By, (z,r). Using (D.2.1) and the fact that B (x,r) does not
depend on n we find a constant C(r) > 0 such that

C(r)essinfy p (By(y,m1)) < p(Bn(w,7)) < C(r) esssup,, (B (y,72))-

Using the pointwise versions of measure entropy one deduces
hu(f) = b (f)-

D.2.3 Some words about the general case

The general case is much more delicate and actually the authors of [D12]
don’t follow such a naive pointwise approach. The most immediate
difficulty is that the hyperbolicity is not uniform and we must work
inside Lyapunov charts, which leads to important technicalities. But the
true difficulty of the paper is to understand and analyse the role of zero
Lyapunov exponents.

Let us explain some of the difficulties. For a regular point x € M one
may consider a Lyapunov chart at x. We won’t enter into the details of the
definition here, let us just say that this is an open set U, which is foliated
by local unstable manifolds W} _(y) (which are well defined for p-a.e. y).
The size of these unstable manifolds depends on y and is not uniform a
priori.

The situation is similar to what we saw in the uniformly hyperbolic
setting. One has a system of coordinates T' x D* around the point x, D“
being a small unstable disc and T being a small transversal to the unstable
foliation. This time 7T is not uniformly contracted and one may think of
T as a center stable set. And we must analyse how f acts on such sets.
The most important difficulty here is the following.

There is no canonical choice of a transverse distance on T'.

More precisely we want to show that the separation of unstable plaques
is less than the expansion along unstable manifolds. We know that this is
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the case for the expansion along a central transversal. But this apparent
weaker expansion could be a lure and be caused by the effect of a separation
inside unstable plaques. And the information that unstable holonomies are
Holder continuous, is not enough a priori to rule out the possibility that
the actual separation of unstable plaques (the dynamics in the quotient by
unstable plaques) is stronger than the expansion along unstable manifolds.
The authors treat this difficulty by proving that

unstable holonomies inside center-unstable manifolds are Lipschitz.

We don’t enter here into the technical details of the statement and refer
to [D12, §4.2]). Before we carry on with Ledrappier—Young’s theory let
us mention that a similar difficulty appears in Hirsch-Pugh—Shub’s theory
of normally hyperbolic laminations. In [D8, §7] the authors consider a
diffeomorphism f with an invariant normally hyperbolic lamination and
study the neighbouring diffeomorphisms. It is not quite true that close to
f, a diffeomorphism g has an invariant lamination which is (leaf)-conjugate
to that of f. When one applies the graph transform to such a g, the leaves
of the lamination can merge: the phenomenon of “sliding along plaques”
could lead to a branched invariant lamination (see [D5] for the definition
and [D6] for more information). This phenomenon can be avoided by
requiring a technical condition, called plaque expansivity, under which M.
Hirsch, C. Pugh and M. Shub prove that the branched lamination is a true
lamination. This plaque expansiveness is satisfied for Lipschitz foliations
(see [D8, Theorem 7.2.]). We don’t know examples of partially hyperbolic
diffeomorphisms with a foliation tangent to the central bundle that does
not satisfy plaque expansiveness, and we don’t know how to prove plaque
expansiveness for all such foliations.

The argument provided by F. Ledrappier and L.-S. Young works for C?
diffeomorphisms, and this is the only argument of the paper that needs this
regularity assumption. A. Brown showed in [D4] how this crucial step of
Ledrappier-Young’s proof can be carried on for C'*# diffeomorphisms.
The proof then consists in the precise analysis of how f expands the
transverse distance and of dynamical balls. One may think of this part as
a sophistication of the proof given in the uniformly hyperbolic setting.

D.2.4 Idea of proof of Theorem D.0.1

Now that we know that h,(f) = hj;(f) we may follow an argument due to
Ledrappier [D10] and deduce that

hu(f) = Z m'N = is SRB.
A >0
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Unstable jacobian
Let us define the unstable jacobian of f at x as the quantity
JU(z) = |JaC(sz|Eu(w))‘ .
Using Oseledec’s and Birkhoff’s theorems we get that for p-a.e. x € M
1 & ) o
JUp = lim — Z log J“(f'(x)) = Z mI N,
fM TS0 Ni=0

Dynamical prescription of densities

It is a well known fact that when an f-invariant measure p is absolutely
continuous along an expanding foliation, the densities along unstable
manifolds are dynamically prescribed. Denote by mY the Riemannian
volume of W*(z) and assume that

dpy = pdmy,

where p is a positive and measurable function and p¥ is a system
of conditional measures of p with respect to a measurable partition &
associated with W* that we will fix from now on. Then for p¥-a.e. y,z €
W (x)

o2) S T W)
oo~ LTy (b2.2)

In order to derive the equation above we prove the following lemma.

Lemma D.2.2. For p-almost every x € M the map given by

_ P ue

is constant on &(x).

Proof. Note that £ < f~1¢ so an atom of ¢ is a countable union of atoms
of f=1(£). We will consider the measurable function h, constant on atoms
of f~1(¢), by setting

h(y) = wy (F71€(y))-
The idea now is to write the family of conditional measures with respect
to f~1¢ in two ways. Firstly, using that ¢ < f~'¢ we have that for every
Borel set K < M

(K f71E(y))
py(f=1(y))
1 u(,
= @ JKmflg(y) P(Z)dmy( )-

frp-re) (K n f7HE(y)) =
(D.2.4)
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Secondly, by f-invariance of p we have

fp-re) (K 0 f7HW)) = ) (FK) nE(f(y))) - (D.2.5)

We get from (D.2.4), (D.2.5) and from a change of variable formula that

1 oo )
h(y) me—ls(y) )y (2) = L(K)m&(f(y)) pl2)dmjy ()

= dm¥, = T2V dm® (=),

Lo, M = [ s im e

Consequently for p-almost every y € M and m;-almost every z € f “(y)
we have

1
——p(2) = p(f(2)J"“(2).
o) (2) = p(f(2))J"(2)
This proves that the function
1
gof= n

is constant on atoms of f~'&. Finally we have that g is constant on atoms
of €. O

Reconstructing

Ledrappier’s argument is an inductive one. Denote by B(&) the o-algebra
whose elements are union of atoms of £&. We can see it as a o-algebra
“transverse” to . By Rokhlin’s theorem (Theorem B.3.2), a measure v
on M is determined by its trace on B(£) and by a system of conditional
measures with respect to &.

We will consider a positive function p satisfying (D.2.2). It is proven
in [D10, Theorem 3.1. Item viii] that log(p) is Holder continuous in every
atom &(x). Hence on every atom (), the function p is uniformly bounded
away from 0 and o0, and in particular it is m¥-integrable. In order to prove
the Holder continuity of log(p), one uses that on local unstable manifolds,
z — E%(z) is Lipschitz, that z — D, f is Hélder continuous, that f—!
contracts unstable manifolds so we can apply the usual distortion controls.
We will furthermore normalize p so that for p-almost every x € M

J p(x)dmy =1, (D.2.6)
()

Define the probability measure v on M satisfying both conditions

1. p and v coincide on B(§);
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2. the disintegration (v, ) of v with respect to & satisfies
dv, = pdmg,
where p satisfies (D.2.2) and (D.2.6).

We will prove by induction that g and v coincide on the o-algebra
B(f~™¢) for every n € N. Since £ is increasing and generating this implies
that p = v. All this follows from the next lemma.

Lemma D.2.3. Assume that § J*dp = h,(f,€). Then p and v coincide
on B(f1¢).

Proof. Each element &(z) contains countably many atoms of f~1¢ and p
and v coincide on B(£). Hence in order to show that u and v coincide

on B(f~1¢) it is enough to prove that v, (f~1€(y)) = py(f*¢(y)) almost
everywhere. We consider the derivative

vy (f7YE(y))
ty (f71E(Y))

which is well-defined almost everywhere and positive. Furthermore we have
§gdu = 1. Using Jensen’s inequality and the concavity of the logarithm,

one has:
flog(q) dp < log (Jqdu> = 0.

Moreover this inequality is an equality if and only if log(q) = 0 u-almost
everywhere, which as mentioned before, would imply that 4 = v on
B(f~1£). On the one hand, we have by definition

q(y) =

- j log 1y (/~2€(v)) duly) = Hy (1716 | €) = h(£. ).

On the other hand it is possible, thanks to the definition of p, to compute
explicitly

—flogvy (7)) dply) = flog J" dp.

By hypothesis these two quantities are equal. O

D.3 Ledrappier—Young II

The second part of Ledrappier—Young’s work focuses on finding a general
entropy formula for measures which are not SRB. The formula they find is
similar, the role of the multiplicities being replaced by some quantities v/
representing roughly the dimension of the measure y in the E’-direction.
They prove the following theorem.
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Theorem D.3.1 (Ledrappier-Young II). Let f be a C**8 diffeomorphism
of a compact Riemannian manifold M and p be an ergodic, f-invariant
probability measure. Let 0; denote the dimension of u along the j-th
dimensional unstable manifolds and

,yj =l i1

(with 6o = 0). Then
hu(f) = Z 'Yj)\j-

A >0

As for Theorem D.0.1, F. Ledrappier and L.-S. Young proved
Theorem D.3.1 only for C? diffeomorphisms, but again, after the works
of A. Brown [D4] and of L. Barreira, Ya. Pesin and J. Schmeling
[D1, Appendix] establishing the required Lipschitz regularity of holonomies
of intermediate foliations, it holds for C**# diffeomorphisms.

Before entering into the proof of Theorem D.3.1 we need to introduce
some of the objects appearing in the statement.

D.3.1 Nested foliations and Hausdorff dimension
Unstable foliations
For a regular point z € M let

AL(m) > Xa(x) > - > Apu(gy () >0

be the positive Lyapunov exponents of x. They are associated with a
splitting of the tangent space

T,M = E'(2)® E*(z)®--- @ EF" @ ().

We assume that p is ergodic so k%(z), m?(x) = dim E7(z) and M (x) do
not depend on the p-typical . The intermediate spaces E2(z),..., E*" (z)
need not to be integrable. But by Pesin’s theory there exist C?-immersed
manifolds at x a.e.  denoted by W(z), W?(z),..., W*" (z), tangent at x
to the spaces

B(z)

E'(z) ® E*(x)

EY(2)®E*(x)®--- @ E* (2).

These manifolds are dynamically determined as follows

Wita) = fye M T logd(~"(a).S 1) < -}



Appendix D. Metric entropy and Lyapunov exponents 191

They form (a.e.) nested foliations W, ..., W*" where W*" is the unstable
foliation W we have already worked with. The foliation W/ will be
referred to as the j-th unstable foliation.

Pointwise dimension of measures

Let X be a metric space and m be a probability measure on X. Recall the
following classical fact. A proof may be found in [D22].

Definition D.3.2. Say the dimension of m, denoted by dimm, is well
defined and equal to « if for m-a.e. point x the following limit is well
defined

In that case the dimension of m coincides with its Hausdorff dimension,
i.e.
dimm = HD(m) = inf HD(Y).
m(Y)=1
We can adopt this viewpoint and study the dimension of an ergodic
measure along unstable manifolds. Using Ledrappier—Strelcyn’s argument
(see Proposition D.1.1) one deduces for every j the existence of a
measurable partition & subordinate to the j-th unstable manifold W7,
We can moreover ask
[T Sy L

For j € {1,...,k%} we denote by d’ the distance in j-th unstable
leaves for the induced Riemannian structure. The corresponding balls
are denoted by B’(x,r) and the dynamical balls (by analogy with (D.1.4)
in Section D.1.3) are denoted by B} (z,r), r > 0 and n € N.

We can consider for every j a system (uf)zen of conditional measures
of p associated with &7. We define for p-a.e. v € M

. . J
50 67) — L 2B .0)
I loge

i ) _ J
5.7 (Z'7 E]) — lim log IU’(B (1'7 6)) .
€—0 log e

F. Ledrappier and L.-S. Young prove in [D13, Proposition 7.3.1] the
following.

Proposition D.3.3. The numbers & = & (x,&7) and ¥ =7 (x,&7) don't
depend on & nor on the p-typical x. Moreover

§ =5,
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If 67 is the common value then for u-a.e. x € M and every system of
conditional measures (1l )zen associated with a measurable partition &
subordinate to W7 we have

. 1 BJ
5] — lim Og M( (x’ 6)) .
e—0 log €

The number §7 is called the dimension of 1 on the j-th unstable foliation.

Pointwise entropies

F. Ledrappier and L.-S. Young also define a pointwise version of the
entropy along the j-th unstable foliation. Considering a partition &;
subordinate to W7 and a system of conditional measures (p2,) e we define

b, (f,x,&) = }grg)nhjrr;ofg log 1, (By,(, 7)),
and 1
N 7Y = lim lim —— J(BJ
hy(f,2,€) = lim lim ——log i, (By, (x, 7).
They proved a result analogue to Theorem D.1.7:
; N ; A 1 i i
b, (f 2, €)= Iy, (f,2,€") = lim lim ——log pz(By (x, 7)),

and the common value is

Hy, (€| f€) = R, (f).

D.3.2 1Idea of proof for Theorem D.3.1

Conformal case

Before explaining the idea of the proof, let us mention the simplest case.

Theorem D.3.4 (The conformal case). Let f : M — M be a C? mapping
and p an ergodic f-invariant probability measure. Assume that f has a
unique Lyapunov exponent A > 0, pu-a.e. Then

h(f) = Adim(p).

Proof. Let us give the main idea. The rigorous proof uses Pesin’s theory
and in particular, Mafié’s argument.

Let n € N and € > 0. Locally, f “looks like” an expansion by e* and
the dynamical ball B, (z,r) looks like a ball B(x,re~*") (this affirmation
is the one that needs Pesin’s theory to be made rigorous). So if € = re=*"

we have
log pu(B(z¢€))

1
~ oz p(By(r.m) ~ AEE

The formula follows. O
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Of course if f has various Lyapunov exponents, a dynamical ball looks
like an ellipsoid whose eccentricity tends to infinity and the previous
argument doesn’t work as easily. The precise formula is then given by
Ledrappier—Young.

D.3.3 Global strategy

The proof of Theorem D.3.1 follows three steps.
1. ht = M6t
2. hi —hI7L = NI(§7 — §971) = Myd;
3. B =Rt = h(f).

The first case is analogous to the conformal case. In restriction to the
first unstable manifolds, there is only one Lyapunov exponent and f looks
like an expansion by e*'. Here again one has to use Pesin’s theory to make
this idea rigorous.

In order to consider the second case, one has to collapse W7~1 inside
W3 and to consider “quotient dynamics” on the quotient space W7 /WJ—!
(one rather works with quotient partitions £7/£7=1). Once again one of the
main technical issues is that there is no canonical “transverse distance” on
the quotient, and one has to prove and use the fact that W7—!-holonomies
are Lipschitz inside W7. Once we manage to deal with these important
technicalities, we see that the quotient dynamics induced by f on &7 /&1
has a unique Lyapunov exponent (this is A7) and that the corresponding
entropy and dimension are respectively A/ — h7~! and 67 — 6=, The
situation is one more time analogous to the conformal case.

The third case is treated by Theorem D.2.1. Summing those equalities,
the second Ledrappier—Young’s theorem follows.
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