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Abstract. This text is an expanded series of lecture notes based on
a 5-hour course given at the workshop entitled Workshop for young
researchers: Groups acting on manifolds held in Teresépolis, Brazil in
June 2016. The course introduced a number of classical tools in smooth
ergodic theory—particularly Lyapunov exponents and metric entropy—as
tools to study rigidity properties of group actions on manifolds.

We do not present a comprehensive treatment of group actions or general
rigidity programs. Rather, we focus on two rigidity results in higher-
rank dynamics: the measure rigidity theorem for affine Anosov abelian
actions on tori due to A. Katok and R. Spatzier and recent the work of the
author with D. Fisher, S. Hurtado, F. Rodriguez Hertz, and Z. Wang on
actions of lattices in higher-rank semisimple Lie groups on manifolds We
give complete proofs of these results and present sufficient background in
smooth ergodic theory needed for the proofs. A unifying theme in this text
is the use of metric entropy and its relation to the geometry of conditional
measures along foliations as a mechanism to verify invariance of measures.
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