
SOCIEDADE BRASILEIRA DE MATEMÁTICA ENSAIOS MATEMÁTICOS
2019, Volume 34, 1–74

https://doi.org/10.21711/217504322019/em341





Contents

1 Malliavin calculus 5
1.1 Finite-dimensional case . . . . . . . . . . . . . . . . . . . . 5
1.2 Malliavin calculus on the Wiener space . . . . . . . . . . . . 6

1.2.1 Brownian motion and Wiener space . . . . . . . . . 6
1.2.2 Wiener integral . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 The derivative operator . . . . . . . . . . . . . . . . 8
1.2.4 Sobolev spaces . . . . . . . . . . . . . . . . . . . . . 11
1.2.5 Chain rule . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.6 Domain of the divergence in L2(Ω) . . . . . . . . . . 12
1.2.7 Iterated derivatives . . . . . . . . . . . . . . . . . . . 13
1.2.8 Continuity of the divergence . . . . . . . . . . . . . . 13
1.2.9 The divergence as a stochastic integral . . . . . . . . 14
1.2.10 Clark-Ocone formula . . . . . . . . . . . . . . . . . . 15
1.2.11 Isonormal Gaussian processes . . . . . . . . . . . . . 17

1.3 Multiple stochastic integrals. Wiener chaos . . . . . . . . . 17
1.3.1 Hermite polynomials . . . . . . . . . . . . . . . . . . 18
1.3.2 Multiple Stochastic Integrals . . . . . . . . . . . . . 20
1.3.3 Wiener chaos expansion . . . . . . . . . . . . . . . . 22
1.3.4 Derivative operator on the Wiener chaos . . . . . . . 22
1.3.5 Divergence on the Wiener chaos . . . . . . . . . . . 24

1.4 Criterion of differentiability . . . . . . . . . . . . . . . . . . 25
1.5 Ornstein-Uhlenbeck semigroup . . . . . . . . . . . . . . . . 26

1.5.1 Mehler’s formula . . . . . . . . . . . . . . . . . . . . 26
1.5.2 Hypercontractivity . . . . . . . . . . . . . . . . . . . 27
1.5.3 Generator of the Ornstein-Uhlenbeck semigroup . . 28
1.5.4 Second integral representation . . . . . . . . . . . . 29

1.6 Existence and regularity of densities . . . . . . . . . . . . . 30

2 Malliavin-Stein’s approach 32
2.1 Stein’s method for normal approximations . . . . . . . . . . 32

2.1.1 Total variation and convergence in law . . . . . . . . 34
2.2 Stein meets Malliavin . . . . . . . . . . . . . . . . . . . . . 35

3



4 David Nualart

2.2.1 Normal approximation on a fixed Wiener chaos . . . 37
2.2.2 Fourth Moment theorem . . . . . . . . . . . . . . . . 38
2.2.3 Multivariate Gaussian approximation . . . . . . . . 40
2.2.4 Chaotic Central Limit Theorem . . . . . . . . . . . . 40

3 Central limit theorems for stationary sequences 41
3.1 Breuer-Major theorem . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Convergence in law in C([0, T ]) . . . . . . . . . . . . 43
3.1.2 Functional version of the Breuer-Major theorem . . 45
3.1.3 Rate of convergence . . . . . . . . . . . . . . . . . . 49
3.1.4 Optimal rate of convergence . . . . . . . . . . . . . . 53

3.2 Fractional Brownian motion . . . . . . . . . . . . . . . . . . 55
3.2.1 Fractional noise . . . . . . . . . . . . . . . . . . . . . 56
3.2.2 Asymptotic behavior of the the q-variation of the fBm 57

4 Spatial averaging of SPDEs 58
4.1 Stochastic heat equation . . . . . . . . . . . . . . . . . . . . 58

4.1.1 Stochastic integration . . . . . . . . . . . . . . . . . 58
4.1.2 Mild solution . . . . . . . . . . . . . . . . . . . . . . 59
4.1.3 Malliavin differentiability of the solution . . . . . . . 59

4.2 Space averages . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.1 Functional Central Limit Theorem . . . . . . . . . . 66
4.2.2 Spatial colored noise . . . . . . . . . . . . . . . . . . 68
4.2.3 Stochastic wave equation . . . . . . . . . . . . . . . 70

Bibliography 72



Chapter 1

Malliavin calculus

Motivated by a probabilistic proof of Hörmander’s hypoellipticity theorem
(see [13]), Malliavin introduced in the 70’s a calculus of variations with
respect to the trajectories of the Brownian motion. This calculus was
further developed by Bismut, Kusuoka, Stroock, and Watanabe [3, 12, 28,
30], among others. The Malliavin calculus is a differential calculus on a
Gaussian probability space. Its main application has been to establish the
existence and smoothness of densities of functionals of Gaussian processes.
In combination with Stein’s method, the Malliavin calculus has been
recently used to derive quantitative results on normal approximations.
Basic references for Malliavin calculus and its applications to normal
approximations are [16, 19, 20].

1.1 Finite-dimensional case
Consider first the finite-dimensional case. That is, the probability space
(Ω,F , P ) is such that Ω = Rn, F = B(Rn) is the Borel σ-field of Rn, and P
is the standard Gaussian probability with density p(x) = (2π)−n/2e−|x|2/2.
In this framework we consider two differential operators. The first one is
the derivative operator, which is simply the gradient of a differentiable
function F : Rn → R:

DF =
(
∂F

∂x1
, . . . ,

∂F

∂xn

)
.

The second differential operator is the divergence operator and is defined
on differentiable vector-valued functions u : Rn → Rn as follows:

δ(u) =
n∑
i=1

(
uixi −

∂ui
∂xi

)
= 〈u, x〉 − div u.
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We denote by Ckp (Rn;Rm) is the space of functions f : Rn → Rm which
are k times continuously differentiable and their partial derivatives up to
order k are bounded by C(1 + |x|N ) for any x ∈ Rn and for some real
number N ≥ 0. That means f and its partial derivatives up to the order
k have polynomial growth.
It turns out that δ is the adjoint of the derivative operator with respect

to the Gaussian measure P . This is the contents of the next proposition.

Proposition 1.1.1. The operator δ is the adjoint of D; that is,

E(〈u,DF 〉) = E(Fδ(u))

if F ∈ C1
p(Rn) and u ∈ C1

p(Rn;Rn).

Proof. Integrating by parts, and using ∂p/∂xi = −xip(x), we obtain∫
Rn
〈DF, u〉p(x)dx =

n∑
i=1

∫
Rn

∂F

∂xi
uip(x)dx

=
n∑
i=1

(
−
∫
Rn
F
∂ui
∂xi

p(x)dx+
∫
Rn
Fuixip(x)dx

)
=

∫
Rn
Fδ(u)p(x)dx.

This completes the proof.

1.2 Malliavin calculus on the Wiener space

1.2.1 Brownian motion and Wiener space
The Wiener space is a probability space (Ω,F , P ) where

• Ω = C([0, T ]) is the space of continuous functions ω : [0, T ]→ R.

• F is the Borel σ-field B(Ω) for the topology of the uniform
convergence. One can easily show that F coincides with the σ-field
generated by the collection of cylinder sets

C = {ω ∈ Ω : ω(t1) ∈ A1, . . . , ω(tk) ∈ Ak} , (1.1)

for any integer k ≥ 1, Borel sets A1, . . . , Ak in R, and 0 ≤ t1 < · · · <
tk ≤ T .

• P is the Wiener measure. That is, P is defined on a cylinder set of
the form (1.1) by

P (C) =
∫
A1×···×Ak

pt1(x1)pt2−t1(x2−x1) · · · ptk−tk−1(xk−xk−1) dx1 · · · dxk,

(1.2)
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where pt(x) denotes the Gaussian density pt(x) = (2πt)−1/2e−x
2/(2t),

x ∈ R, t > 0.

The canonical process, defined by Bt(ω) = ω(t), is a Brownian motion.
That is, B = (Bt)t∈[0.T ] is a stochastic process satisfying the following
properties:

(i) B0 = 0.

(ii) For all 0 ≤ t1 < · · · < tn ≤ T the increments Btn −Btn−1 , . . . , Bt2 −
Bt1 are independent random variables.

(iii) If 0 ≤ s < t ≤ T , the increment Bt − Bs is a Gaussian random
variable with mean zero and variance t− s.

Properties (i), (ii), and (iii) are equivalent to saying that B is a Gaussian
process with mean zero and covariance function

Γ(s, t) = min(s, t). (1.3)

The existence of Brownian motion can be proved in the following way: The
function Γ(s, t) = min(s, t) is symmetric and nonnegative definite because
it can be written as

min(s, t) =
∫ T

0
1[0,s](r)1[0,t](r)dr, s, t ∈ [0, T ].

Then, for any integer n ≥ 1 and real numbers a1, . . . , an,
n∑

i,j=1
aiaj min(ti, tj) =

n∑
i,j=1

aiaj

∫ T

0
1[0,ti](r)1[0,tj ](r)dr

=
∫ T

0

( n∑
i=1

ai1[0,ti](r)
)2
dr ≥ 0.

Therefore, by Kolmogorov’s extension theorem, there exists a Gaussian
process with mean zero and covariance function min(s, t). Moreover, for
any s ≤ t, the increment Bt −Bs has the normal distribution N(0, t− s).
This implies that for any natural number k we have

E
(

(Bt −Bs)2k
)

= (2k)!
2kk! (t− s)k.

Therefore, by Kolmogorov’s continuity theorem, there exists a version of
B with Hölder-continuous trajectories of order γ for any γ < (k − 1)/(2k)
on the interval [0, T ]. This implies that the paths of this version of the
process B are γ-Hölder continuous on [0, T ] for any γ < 1/2.
The mapping P defined by (1.2) on cylinder sets can be uniquely

extended to a probability measure on F . This fact can be proved as a
consequence of the existence of Brownian motion on [0, T ].
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1.2.2 Wiener integral
We next define the integral of square integrable functions with respect to
the Brownian motion, known as the Wiener integral. We consider the set
E0 of step functions

ϕt =
n−1∑
j=0

aj1(tj ,tj+1](t), t ∈ [0, T ], (1.4)

where n ≥ 1 is an integer, a0, . . . , an−1 ∈ R, and 0 = t0 < · · · < tn ≤ T .
The Wiener integral of a step function ϕ ∈ E0 of the form (1.4) is defined
by ∫ T

0
ϕtdBt =

n−1∑
j=0

aj(Btj+1 −Btj ).

The mapping ϕ →
∫ T

0 ϕtdBt from E0 ⊂ L2([0, T ]) to L2(Ω) is linear and
isometric:

E
((∫ T

0
ϕtdBt

)2)
=
n−1∑
j=0

a2
j (tj+1 − tj) =

∫ T

0
ϕ2
tdt = ‖ϕ‖2L2([0,T ]).

The space E0 is a dense subspace of L2([0, T ]). Therefore, the mapping

ϕ→
∫ T

0
ϕtdBt

can be extended to a linear isometry between L2([0, T ]) and the Gaussian
subspace of L2(Ω) spanned by the Brownian motion. The random variable∫ T

0 ϕtdBt is called the Wiener integral of ϕ ∈ L2([0, T ]) and is denoted by
B(ϕ). Observe that it is a Gaussian random variable with mean zero and
variance ‖ϕ‖2L2([0,T ]).

1.2.3 The derivative operator
Let B = (Bt)t∈[0,T ] be a Brownian motion on the Wiener space (Ω,F , P ).
Set H = L2([0, T ]), and for any h ∈ H, consider the Wiener integral

B(h) =
∫ T

0
h(t)dBt.

The Hilbert space H plays a basic role in the definition of the derivative
operator. In fact, the derivative of a random variable F : Ω → R takes
values in H, and (DtF )t∈[0,T ] is a stochastic process in L2(Ω;H).
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We start by defining the derivative in a dense subset of L2(Ω). More
precisely, consider the set S of smooth and cylindrical random variables of
the form

F = f(B(h1), . . . , B(hn)), (1.5)

where f ∈ C∞p (Rn) (f is infinitely differentiable and, together with all its
partial derivatives, it has polynomial growth) and hi ∈ H.

Definition 1.2.1. If F ∈ S is a smooth and cylindrical random variable of
the form (1.5), the derivative operator DF is the H-valued random variable
defined by

DtF =
n∑
i=1

∂f

∂xi
(B(h1), . . . , B(hn))hi(t).

For instance, D(B(h)) = h and D(Bt1) = 1[0,t1], for any t1 ∈ [0, T ].
The derivative operator can be interpreted as a directional derivative.

Consider the Cameron-Martin space H1 ⊂ Ω, which is is the set of
functions of the form ψ(t) =

∫ t
0 h(s)ds, where h ∈ H. Then, for ant

h ∈ H, 〈DF, h〉H is the derivative of F in the direction of
∫ ·

0 h(s)ds:

〈DF, h〉H =
∫ T

0
htDtFdt = d

dε
F

(
ω + ε

∫ ·
0
hsds

)
|ε=0.

For example, if F = Bt1 , then

F

(
ω + ε

∫ ·
0
hsds

)
= ω(t1) + ε

∫ t1

0
hsds,

so, the directional derivative
∫ t1

0 hsds coincides with 〈DF, h〉H because
DtF = 1[0,t1](t).
The operator D defines a linear and unbounded operator from S ⊂

L2(Ω) into L2(Ω;H). Let us now introduce the divergence operator.
Denote by SH the class of smooth and cylindrical stochastic processes
u = (ut)t∈[0,T ] of the form

ut =
n∑
j=1

Fjhj(t), (1.6)

where Fj ∈ S and hj ∈ H.

Definition 1.2.2. We define the divergence of an element u of the form
(1.6) as the random variable given by

δ(u) =
n∑
j=1

FjB(hj)−
n∑
j=1
〈DFj , hj〉H. (1.7)
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In particular, for any h ∈ H we have δ(h) = B(h).
As in the finite-dimensional case, the divergence is the adjoint of the

derivative operator, as it is shown in the next proposition.

Proposition 1.2.1. Let F ∈ S and u ∈ SH. Then

E(Fδ(u)) = E(〈DF, u〉H).

Proof. We can assume that F = f(B(h1) . . . , B(hn)) and

u =
n∑
j=1

gj(B(h1) . . . , B(hn))hj ,

where h1, . . . , hn are orthonormal elements in H. In this case, the duality
relationship reduces to the finite-dimensional case proved in Proposition
1.1.1.

We will make use of the notation DhF = 〈DF, h〉H for any h ∈ H and
F ∈ S. The following two properties are immediate consequence of the
definitions and their proof is left as an exercise:

Heisenberg commutation relation: For ay u ∈ SH and h ∈ H,

Dh(δ(u)) = δ(Dhu) + 〈h, u〉H. (1.8)

Factorization: For any F ∈ S and u ∈ SH

δ(Fu) = Fδ(u)− 〈DF, u〉H. (1.9)

The following proposition provides a formula for the covariance of two
divergences:

Proposition 1.2.2. Suppose that u, v ∈ SH. Then, we have

E(δ(u)δ(v)) = E(〈u, v〉H) + E [〈Du,D∗v〉H⊗2 ] , (1.10)

where

〈Du,D∗v〉H⊗2 =
∞∑

i,j=1
Dei〈u, ej〉HDej 〈v, ei〉H,

and (ei)i≥1 is a complete orthonormal system in H,

Property (1.10) can also be written as

E(δ(u)δ(v)) = E
(∫ T

0
utvtdt

)
+ E

(∫ T

0

∫ T

0
DsutDtvsdsdt

)
.
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Proof of Proposition 1.2.2. To show property (1.10), using the duality
formula (Proposition 1.2.1) and property (1.8), we write

E(δ(u)δ(v)) = E(〈v,D(δ(u))〉H)

= E
( ∞∑
i=1
〈v, ei〉HDei(δ(u))

)

= E
( ∞∑
i=1
〈v, ei〉H

(
〈u, ei〉H + δ(Deiu)

))

= E(〈u, v〉H) + E
( ∞∑
i,j=1

Dei〈u, ej〉H Dej 〈v, ei〉H
)
.

This completes the proof.

1.2.4 Sobolev spaces
The next proposition will play a basic role in extending the derivative to
suitable Sobolev spaces of random variables.

Proposition 1.2.3. The operator D is closable from Lp(Ω) to Lp(Ω;H)
for any p ≥ 1.

Proof. Assume that a sequence FN ∈ S satisfies, for some p ≥ 1,

FN
Lp(Ω)−→ 0 and DFN

Lp(Ω;H)−→ η,

as N → ∞. Then η = 0. Indeed, for any u =
∑N
j=1Gjhj ∈ SH such

that GjB(hj) and DGj are bounded, by the duality formula (Proposition
1.2.1), we obtain

E(〈η, u〉H) = lim
N→∞

E(〈DFN , u〉H)

= lim
N→∞

E(FNδ(u)) = 0.

This implies that η = 0, since the set of u ∈ SH with the above properties
is dense in Lp(Ω;H) for all p ≥ 1.

We consider the closed extension of the derivative, which we also denote
by D. The domain of this operator is defined by the following Sobolev
spaces. For any p ≥ 1, we denote by D1,p the closure of S with respect to
the seminorm

‖F‖1,p =
(
E(|F |p) + E

(∣∣∣∣ ∫ T

0
(DtF )2dt

∣∣∣∣p/2))1/p
.
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In particular, F belongs to D1,p if and only if there exists a sequence
Fn ∈ S such that

Fn
Lp(Ω)−→ F and DFn

Lp(Ω;H)−→ DF,

as n→∞. For p = 2, the space D1,2 is a Hilbert space with scalar product

〈F,G〉1,2 = E(FG) + E
(∫ T

0
DtFDtGdt

)
.

In the same way we can introduce spaces D1,p(H) by taking the closure of
SH. The corresponding seminorm is denoted by ‖ · ‖1,p,H.

1.2.5 Chain rule
The Malliavin derivative satisfies the following chain rule.

Proposition 1.2.4. Let ϕ : R→ R be a continuous differentiable function
such that |ϕ′(x)| ≤ C(1 + |x|α) for some α ≥ 0. Let F ∈ D1,p for some
p ≥ α+ 1. Then, ϕ(F ) belongs to D1,q, where q = p/(α+ 1), and

D(ϕ(F )) = ϕ′(F )DF.

Proof. Notice that |ϕ(x)| ≤ C ′(1 + |x|α+1), for some constant C ′, which
implies that ϕ(F ) ∈ Lq(Ω) and, by Hölder’s inequality, ϕ′(F )DF ∈
Lq(Ω;H). Then, to show the proposition it suffices to approximate F
by smooth and cylindrical random variables, and ϕ by ϕ ∗αn, where αn is
an approximation to the identity.

1.2.6 Domain of the divergence in L2(Ω)
We next define the domain of the divergence operator. We identify the
Hilbert space L2(Ω;H) with L2(Ω× [0, T ]).

Definition 1.2.3. The domain of the divergence operator Dom δ in L2(Ω)
is the set of processes u ∈ L2(Ω× [0, T ]) such that there exists a constant
cu satisfying

|E(〈DF, u〉H)| ≤ cu‖F‖2
for all F ∈ D1,2.

By Riesz theorem, if u ∈ Dom δ, there exists a random variable
δ(u) ∈ L2(Ω) satisfying

E(〈DF, u〉H) = E(δ(u)F ),

for any F ∈ D1,2. Observe, that by the duality formula in Proposition
1.2.1, SH ⊂ Dom δ and for u ∈ SH, δ(u) is given by (1.7).
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Notice that δ is a linear operator such that E(δ(u)) = 0. Moreover, δ is
closed; that is, if the sequence un ∈ Domδ satisfies

un
L2(Ω;H)−→ u and δ(un) L

2(Ω)−→ G,

as n→∞, then u belongs to Dom δ and δ(u) = G.
From Proposition 1.2.2 it follows that D1,2(H) ⊂ Dom δ and for u, v ∈

D1,2(H) ⊂ Dom δ (1.10) holds, which implies

E(δ(u)2) ≤ E
(∫ T

0
u2
tdt

)
+ E

(∫ T

0

∫ T

0
(Dsut)2dsdt

)
= ‖u‖21,2,H.

Properties (1.8) and property (1.9) can be extended to random variables
in suitable Sobolev spaces. More precisely, property (1.8) holds if
u ∈ D1,2(H) and Dhu ∈ Dom δ and property (1.9) holds if F ∈ D1,2,
Fu ∈ L2(Ω;H), u ∈ Dom δ, and the right-hand side is square integrable.

1.2.7 Iterated derivatives
We can also introduce iterated derivatives and the corresponding Sobolev
spaces. The kth derivative DkF of a random variable F ∈ S is the k-
parameter process obtained by iteration:

Dk
t1,...tk

F =
n∑

i1,...,ik=1

∂kf

∂xi1 · · · ∂xik
(B(h1), . . . , B(hn))hi1(t1) · · ·hik(tk).

For any p ≥ 1, the operator Dk is closable from Lp(Ω) into Lp(Ω;H⊗k),
and we denote by Dk,p the closure of S with respect to the seminorm

‖F‖k,p =
(
E(|F |p) + E

( k∑
j=1

∣∣∣∣ ∫
[0,T ]j

(Dj
t1,...,tjF )2dt1 · · · dtj

∣∣∣∣p/2))1/p
.

For any k ≥ 1, we set Dk,∞ := ∩p≥2Dk,p, D∞,2 := ∩k≥1Dk,2, and
D∞ := ∩k≥1Dk,∞. Similarly, we can introduce the spaces Dk,p(H).

1.2.8 Continuity of the divergence
The following theorem is a consequence of Meyer’s inequalities:

Theorem 1.2.4. For any p > 1 and u ∈ D1,p(H),

E(|δ(u)|p) ≤ cp
(
E(‖Du‖pH⊗H) + E(‖u‖pH)

)
.
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A proof based on the boundedness in Lp(R) of the Hilbert transform
was given by Pisier [26]. We can introduce the iterated divergence and it
coincides with the adjoint of the iterated derivative:

E(δk(u)F ) = E(〈u,DkF 〉H⊗k).

The above estimate can be generalized as follows: for any integer k ≥ 1
and real p > 1, we have

E(|δk(u)|p) ≤ cp,k
k∑
`=0

E(‖D`u‖p
H⊗(k+`)). (1.11)

This means that δk is continuous from Dk,p(H⊗k) to Lp(Ω) for p > 1.

1.2.9 The divergence as a stochastic integral
The Malliavin derivative is a local operator in the following sense. Let
[a, b] ⊂ R+ be fixed. We denote by F[a,b] the σ-field generated by the
random variables {Bs −Ba, s ∈ [a, b]}.

Lemma 1.2.5. Let F be a random variable in D1,2∩L2(Ω,F[a,b], P ). Then
DtF = 0 for almost all (ω, t) ∈ Ω× [a, b]c.

Proof. If F belongs to S ∩L2(Ω,F[a,b], P ) then this property is clear. The
general case follows by approximation.

The following result says that the divergence operator is an extension of
Itô’s integral. For any t ≥ 0 we denote by Ft the σ-algebra generated by
the null sets and the random variables {Bs, s ∈ [0, t]}.

Theorem 1.2.6. Any process u in L2(Ω × [0, T ]) which is adapted (for
each t ≥ 0, ut is Ft-measurable) belongs to Dom δ and δ(u) coincides with
Itô’s stochastic integral

δ(u) =
∫ T

0
utdBt.

Proof. Consider a simple process u of the form

ut =
n−1∑
j=0

φj1(tj ,tj+1](t),

where 0 ≤ t0 < t1 < · · · < tn ≤ T and the random variables φj ∈ S are
Ftj -measurable. Then δ(u) coincides with the Itô integral of u because,
by (1.9),

δ(u) =
n−1∑
j=0

φj(Btj+1 −Btj )−
n−1∑
j=0

∫ tj+1

tj

Dtφjdt =
n−1∑
j=0

φj(Btj+1 −Btj ),
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taking into account that Dtφj = 0 if t > tj by Lemma 1.2.5. Then
the result follows by approximating any adapted and square integrable
process by simple processes, and approximating any φj ∈ L2(Ω,Ftj , P ) by
Ftj -measurable smooth and cylindrical random variables.

If u is not adapted, δ(u) coincides with an anticipating stochastic integral
introduced by Skorohod (see [27]). Using techniques of Malliavin calculus,
Nualart and Pardoux [21] developed a stochastic calculus for the Skorohod
integral.
If u and v are adapted then, for s < t, Dtvs = 0 and, for s > t, Dsut = 0.

As a consequence, property (1.10) leads to the isometry property of Itô’s
integral for adapted processes u, v ∈ D1,2(H):

E(δ(u)δ(v)) = E
(∫ T

0
utvtdt

)
.

If u is an adapted process in D1,2(H) then, from property (1.8), we obtain

Dt

(∫ T

0
usdBs

)
= ut +

∫ T

t

DtusdBs, (1.12)

because Dtus = 0 if t > s.

1.2.10 Clark-Ocone formula
Let B = (Bt)t∈[0,T ] be a Brownian motion on the Wiener space (Ω,F , P ),
equipped with its Brownian filtration (Ft)t∈[0,T ]. The next result expresses
the integrand of the integral representation theorem of a square integrable
random variable in terms of the conditional expectation of its Malliavin
derivative.

Theorem 1.2.7 (Clark–Ocone formula). Let F ∈ D1,2 ∩ L2(Ω,F , P ).
Then F admits the following representation:

F = E(F ) +
∫ T

0
E(DtF |Ft)dBt.

Proof. By the Itô integral representation theorem, there exists a unique
adapted process u ∈ L2(Ω× [0, T ]) such that F ∈ L2(Ω,F , P ) admits the
stochastic integral representation

F = E(F ) +
∫ T

0
utdBt.

It suffices to show that ut = E(DtF |Ft) for almost all (ω, t) ∈ Ω × [0, T ].
Consider an adapted and square integrable process v. On the one hand,
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the isometry property yields

E(δ(v)F ) =
∫ T

0
E(vsus)ds.

On the other hand, by the duality relationship (Proposition 1.2.1), and
taking into account that v is adapted,

E(δ(v)F ) = E
(∫ T

0
vtDtFdt

)
=
∫ T

0
E(vsE(DtF |Ft))dt.

Therefore, ut = E(DtF |Ft) for almost all (ω, t) ∈ Ω × [0, T ], which
concludes the proof.

Consider the following simple examples of the application of this
formula.

Example 1.2.8. Suppose that F = B3
t . Then DsF = 3B2

t 1[0,t](s) and

E(DsF |Fs) = 3E((Bt −Bs +Bs)2|Fs) = 3(t− s+B2
s ).

Therefore

B3
t = 3

∫ t

0
(t− s+B2

s )dBs. (1.13)

This formula should be compared with Itô’s formula,

B3
t = 3

∫ t

0
B2
sdBs + 3

∫ t

0
Bsds. (1.14)

Notice that equation (1.13) contains only a stochastic integral but it is not
a martingale, because the integrand depends on t, whereas (1.14) contains
two terms and one is a martingale. Moreover, the integrand in (1.13) is
unique.

Example 1.2.9. Consider the Brownian motion local time (Lxt )t≥0,x∈R.
For any ε > 0, we set

pε(x) = (2πε)−1/2e−x
2/(2ε).

We have that, as ε→ 0,

Fε =
∫ t

0
pε(Bs − x)ds L

2(Ω)−→ Lxt . (1.15)

Applying the derivative operator yields

DrFε =
∫ t

0
p′ε(Bs − x)DrBsds =

∫ t

r

p′ε(Bs − x)ds.
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Thus

E(DrFε|Fr) =
∫ t

r

E(p′ε(Bs −Br +Br − x)|Fr)ds

=
∫ t

r

p′ε+s−r(Br − x)ds.

As a consequence, taking the limit as ε→ 0, we obtain the following integral
representation of the Brownian local time:

Lxt = E(Lxt ) +
∫ t

0
ϕ(t− r,Br − x)dBr,

where

ϕ(r, y) =
∫ r

0
p′s(y)ds.

1.2.11 Isonormal Gaussian processes
So far, we have developed the Malliavin calculus with respect to Brownian
motion. In this case, the Wiener integral B(h) =

∫ T
0 h(t)dBt gives rise to

a centered Gaussian family indexed by the Hilbert space H = L2([0, T ]).
More generally, consider a separable Hilbert space H with scalar product
〈·, ·〉H. An isonormal Gaussian process is a centered Gaussian family
H1 = {W (h), h ∈ H} of random variables defined in some probability
space (Ω,F , P ), satisfying

E(W (h)W (g)) = 〈h, g〉H,

for any h, g ∈ H. Observe that H1 is a Gaussian subspace of L2(Ω).
The Malliavin calculus can be developed in the framework of an

isonormal Gaussian process, and all the notions and properties that do
not depend on the fact that H = L2([0, T ]) can be extended to this more
general context.

1.3 Multiple stochastic integrals. Wiener
chaos

In this section we present the Wiener chaos expansion, which provides
an orthogonal decomposition of random variables in L2(Ω) in terms of
multiple stochastic integrals. We then compute the derivative and the
divergence operators on the Wiener chaos expansion.
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1.3.1 Hermite polynomials
Consider the probability space (R,B(R), γ), where γ = N(0, 1) is the
standard Gaussian probability on R with density

p(x) = 1√
2π
e−x

2/2, x ∈ R.

Recall the basic differential operators:

• Derivative operator: Df(x) = f ′(x).

• Divergence operator: δf(x) = xf(x)− f ′(x).

They satisfy the following Heisenberg’s commutation relation for f ∈
C2(R):

(Dδ − δD)f = f.

Define the Hermite polynomials as follows. H0(x) = 1, and for n ≥ 1
put Hn(x) = δn1. In particular, for n = 1, 2, 3, we have

H1(x) = δ1 = x

H2(x) = δx = x2 − 1
H3(x) = δ(x2 − 1) = x3 − 3x.

The Hermite polynomials satisfy the following properties:

1. Formula for the derivative:

H ′m = mHm−1

In fact, using induction and the Heisenberg commutation relation, we can
write

H ′m = D(δm1) = (Dδ)(δm−11) = δD(δm−11) + δm−11
= δDHm−1 +Hm−1 = δ(m− 1)Hm−2 +Hm−1 = mHm−1.

2. Recursion formula:

Hm+1(x) = xHm(x)−H ′m(x) = xHm(x)−mHm−1(x).

3. The sequence of normalized Hermite polynomials { 1√
n!Hn, n ≥ 0} form

a complete orthonormal system of functions in the Hilbert space L2(R, γ).
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Proof. For n,m ≥ 0, we can write

∫
R
Hn(x)Hm(x)p(x)dx =

{
n! if n = m

0 if n 6= m
(1.16)

Indeed, using the properties of Hermite polynomials, we obtain∫
R
Hn(x)Hm(x)p(x)dx =

∫
R
Hn(x)δm1(x)p(x)dx

=
∫
R
H ′n(x)δm−11(x)p(x)dx

= n

∫
R
Hn−1(x)Hm−1(x)p(x)dx.

Then, we obtain (1.16) by iteration.
To show completeness, it suffices to prove that if f ∈ L2(R, γ) is

orthogonal to all Hermite polynomials, then f = 0. Because the leading
coefficient of Hn(x) is 1, we have that f is orthogonal to all monomials
xn. As a consequence, for all t ∈ R,∫

R
f(x)eitxp(x)dx =

∞∑
n=0

(it)n

n!

∫
R
f(x)xnp(x)dx = 0.

Notice that we can commute the integral and the series because

∞∑
n=0

∫
R

|tx|n

n! |f(x)|p(x)dx =
∫
R
e|tx||f(x)|p(x)dx

≤
[∫

R
f2(x)p(x)dx

∫
R
e2|tx|p(x)dx

] 1
2

<∞.

Therefore, the Fourier transform of fp is zero, so fp = 0, which implies
f = 0. This completes the proof.

4. Series expansion: For each a ∈ R, we have the following series
expansion, which will play an important role

∞∑
n=0

an

n!Hn(x) = eax−
a2
2 . (1.17)

Proof of (2.7): Taking into account that Hn = δn1 and that δn is the
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adjoint of Dn, we obtain

eax =
∞∑
n=0

1
n! 〈e

a·, Hn〉L2(R,γ)Hn(x)

=
∞∑
n=0

1
n! 〈e

a·, δn1〉L2(R,γ)Hn(x)

=
∞∑
n=0

1
n! 〈D

n(ea·), 1〉L2(R,γ)Hn(x)

=
∞∑
n=0

an

n! 〈e
a·, 1〉L2(R,γ)Hn(x).

Finally,
〈ea·, 1〉L2(R,γ) = 1√

2π

∫
R
eax−

x2
2 dx = e

a2
2 .

and (1.17) holds true.

1.3.2 Multiple Stochastic Integrals
Recall that B = (Bt)t∈[0,T ] is a Brownian motion defined on the Wiener
space (Ω,F , P ). Let L2

s([0, T ]n) be the space of symmetric square
integrable functions f : [0, T ]n → R. If f : [0, T ]n → R, we define its
symmetrization by

f̃(t1, . . . , tn) = 1
n!
∑
σ

f(tσ(1), . . . , tσ(n)),

where the sum runs over all permutations σ of {1, 2, . . . , n}. Observe that

‖f̃‖L2([0,T ]n) ≤ ‖f‖L2([0,T ]n).

Definition 1.3.1. The multiple stochastic integral of f ∈ L2
s([0, T ]n) is

defined as the iterated Itô stochastic integral

In(f) = n!
∫ T

0

∫ tn

0
· · ·
∫ t2

0
f(t1, . . . , tn)dBt1 · · · dBtn .

Note that if f ∈ L2([0, T ]), I1(f) = B(f) is the Wiener integral of f . If
f ∈ L2([0, T ]n) is not necessarily symmetric, we define

In(f) = In(f̃).

Using the properties of Itô’s stochastic integral, one can easily check
the following isometry property: for all n,m ≥ 1, f ∈ L2([0, T ]n), and
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g ∈ L2([0, T ]m),

E(In(f)Im(g)) =
{

0 if n 6= m,

n!〈f̃ , g̃〉L2([0,T ]n) if n = m.
(1.18)

Next, we want to compute the product of two multiple integrals. Let
f ∈ L2

s([0, T ]n) and g ∈ L2
s([0, T ]m). For any r = 0, . . . , n ∧m, we define

the contraction of f and g of order r to be the element of L2([0, T ]n+m−2r)
defined by

(f ⊗r g) (t1, . . . , tn−r, s1, . . . , sm−r)

=
∫

[0,T ]r
f(t1, . . . , tn−r, x1, . . . , xr)g(s1, . . . , sm−r, x1, . . . , xr)dx1 · · · dxr.

We denote by f ⊗̃r g the symmetrization of f ⊗r g. Then, the product of
two multiple stochastic integrals satisfies the following formula:

In(f)Im(g) =
n∧m∑
r=0

r!
(
n

r

)(
m

r

)
In+m−2r(f ⊗r g). (1.19)

The next result gives the relation between multiple stochastic integrals
and Hermite polynomials.

Proposition 1.3.1. For any g ∈ L2([0, T ]), we have

In(g⊗n) = ‖g‖nL2([0,T ])Hn

(
B(g)

‖g‖L2([0,T ])

)
,

where g⊗n(t1, . . . , tn) = g(t1) · · · g(tn).

Proof. We can assume that ‖g‖L2([0,T ]) = 1. Fix a ∈ R and set

Mt = exp
(
a

∫ t

0
gsdBs −

1
2a

2
∫ t

0
g2
sds

)
.

One one hand, we have, using (1.17),

MT = e
a
∫ T

0
gsdBs− 1

2a
2

=
∞∑
n=0

an

n!Hn

(∫ T

0
gtdBt

)
.
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On the other hand, using Itô’s formula, we obtain

MT = 1 +
∫ T

0
aMsgsdBs

= 1 + aI1(g) + a2
∫ T

0
gs

∫ s

0
MvgvdBv

= 1 + aI1(g) + a2
∫ T

0
gs

∫ s

0
gvdBv + a3

∫ T

0
gs

∫ s

0
MvgvdBv

=
∞∑
n=0

an

n! In(g⊗n).

Comparing both expansions yields the desired result.

1.3.3 Wiener chaos expansion
The next result is the Wiener chaos expansion.

Theorem 1.3.2. Every F ∈ L2(Ω) can be uniquely expanded into a sum
of multiple stochastic integrals as follows:

F = E(F ) +
∞∑
n=1

In(fn),

where fn ∈ L2
s([0, T ]n).

For any n ≥ 1, we denote by Hn the closed subspace of L2(Ω) formed
by all multiple stochastic integrals of order n. For n = 0, H0 is the
space of constants. Observe that H1 coincides with the Gaussian space
{B(f), f ∈ L2([0, T ])}. Then Theorem 1.3.2 can be reformulated by saying
that we have the orthogonal decomposition

L2(Ω) = ⊕∞n=0Hn.

Proof of Theorem 1.3.2. It suffices to show that if a random variable
G ∈ L2(Ω) is orthogonal to ⊕∞n=0Hn then G = 0. This assumption implies
that G is orthogonal to all random variables of the form B(g)k, where
g ∈ L2([0, T ]), k ≥ 0. This in turn implies that G is orthogonal to all the
exponentials exp(B(h)), which form a total set in L2(Ω). So G = 0.

1.3.4 Derivative operator on the Wiener chaos
Let us compute the derivative of a multiple stochastic integral.

Proposition 1.3.2. Let f ∈ L2
s([0, T ]n). Then In(f) ∈ D1,2 and

DtIn(f) = nIn−1(f(·, t)).
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Proof. Assume that f = g⊗n, with ‖g‖L2([0,T ]) = 1. Then, using
Proposition 1.3.1 and the properties of Hermite polynomials, we have

DtIn(f) = Dt(Hn(B(g))) = H ′n(B(g))Dt(B(g)) = nHn−1(B(g))g(t)
= ng(t)In−1(g⊗(n−1)) = nIn−1(f(·, t)).

The general case follows using linear combinations and a density argument.
This finishes the proof.

Moreover, applying (1.18), we have

E
(∫ T

0
(DtIn(f))2dt

)
= n2

∫ T

0
E(In−1(f(·, t))2)dt

= n2(n− 1)!
∫ T

0
‖f(·, t)‖2L2([0,T ]n−1)dt

= nn!‖f‖2L2([0,T ]n)

= nE(In(f)2). (1.20)

As a consequence of Proposition 1.3.2 and (1.20), we deduce the
following result.

Proposition 1.3.3. Let F ∈ L2(Ω) with Wiener chaos expansion F =∑∞
n=0 In(fn). Then F ∈ D1,2 if and only if

E(‖DF‖2H) =
∞∑
n=1

nn!‖fn‖2L2([0,T ]n) <∞,

and in this case

DtF =
∞∑
n=1

nIn−1(fn(·, t)).

Similarly, if k ≥ 2, one can show that F ∈ Dk,2 if and only if
∞∑
n=1

nkn!‖fn‖2L2([0,T ]n) <∞,

and in this case

Dk
t1,...,tk

F =
∞∑
n=k

n(n− 1) · · · (n− k + 1)In−k(fn(· , t1, . . . , tk)),

where the series converges in L2(Ω×[0, T ]k). As a consequence, if F ∈ D∞,2
then the following formula, due to Stroock, allows us to compute explicitly
the kernels in the Wiener chaos expansion of F :

fn = 1
n!E(DnF ). (1.21)
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Example 1.3.3. Consider F = B3
1 . Then

f1(t1) = E(Dt1B
3
1) = 3E(B2

1)1[0,1](t1) = 31[0,1](t1),
f2(t1, t2) = 1

2E(D2
t1,t2B

3
1) = 3E(B1)1[0,1](t1 ∨ t2) = 0,

f3(t1, t2, t3) = 1
6E(D3

t1,t2,t3B
3
1) = 1[0,1](t1 ∨ t2 ∨ t3),

and we obtain the Wiener chaos expansion

B3
1 = 3B1 + 6

∫ 1

0

∫ t1

0

∫ t2

0
dBt1dBt2dBt3 .

1.3.5 Divergence on the Wiener chaos
We now compute the divergence operator on the Wiener chaos expansion.
A square integrable stochastic process u ∈ L2(Ω×[0, T ]) has an orthogonal
expansion of the form

ut =
∞∑
n=0

In(fn(·, t)),

where f0(t) = E(ut) and, for each n ≥ 1, fn ∈ L2([0, T ]n+1) is a symmetric
function in the first n variables.

Proposition 1.3.4. The process u belongs to the domain of δ if and only
if the series

δ(u) =
∞∑
n=0

In+1(f̃n) (1.22)

converges in L2(Ω).

Proof. Suppose that G = In(g) is a multiple stochastic integral of order
n ≥ 1, where g is symmetric. Then

E(〈u,DG〉H) =
∫ T

0
E
(
In−1(fn−1(·, t))nIn−1(g(·, t))

)
dt

= n(n− 1)!
∫ T

0
〈fn−1(·, t), g(·, t)〉L2([0,T ]n−1) dt

= n!〈fn−1, g〉L2([0,T ]n) = n!〈f̃n−1, g〉L2([0,T ]n)

= E(In(f̃n−1)In(g)) = E(In(f̃n−1)G).

If u ∈ Dom δ, we deduce that

E(δ(u)G) = E(In(f̃n−1)G)

for every G ∈ Hn. This implies that In(f̃n−1) coincides with the projection
of δ(u) on the nth Wiener chaos. Consequently, the series in (1.22)
converges in L2(Ω) and its sum is equal to δ(u). The converse can be
proved by similar arguments.
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1.4 Criterion of differentiability
Proposition 1.4.1. Let (Fn)n≥1 be a sequence of random variables in
D1,p, p > 1, that converges to F in Lp(Ω) and is such that

sup
n

E(‖DFn‖pH) <∞.

Then F belongs to D1,p and the sequence of derivatives (DFn)n≥1 converges
to DF in the weak topology of Lp(Ω;H).
Proof. We will present here the proof in the case p = 2, based on Wiener
chaos expansions, the proof in the general case being more involved.
The assumptions imply that there exists a subsequence (Fn(k))k≥1

such that the sequence of derivatives (DFn(k))k≥1 converges in the weak
topology of L2(Ω;H) to some element α ∈ L2(Ω;H). By the duality
formula, we have

E(〈α, h〉HG) = lim
k→∞

E(〈DFn(k), h〉HG)

= lim
k→∞

E(Fn(k)δ(Gh))

= E(Fδ(Gh)).

Let F =
∑∞
n=0 In(fn). Then,

∞∑
n=1

E(〈nIn−1(fn(·, t)), h〉HG) =
∞∑
n=0

E(〈D(In(fn)), h〉HG)

=
∞∑
n=0

E(In(fn)δ(Gh))

= E(Fδ(Gh)) = E(〈α, h〉HG),

which implies that the series
∑∞
n=1 nIn−1(fn(·, t)) converges in L2(Ω;H)

and its sum is α. Therefore, F ∈ D1,2 and DF = α. This completes the
proof.

As a consequence we can prove the following chain rule for Lipschitz
functions:
Proposition 1.4.2. Let ϕ : Rm → R by a function such that

|ϕ(x)− ϕ(y)| ≤ K|x− y|

for any x, y ∈ Rm. Suppose F = (F 1, . . . , Fm) is such that F j ∈ D1,2.
Then, ϕ(F ) ∈ D1,2 and there exists a random vector G = (G1, . . . , Gm)
bounded by K, such that

D[ϕ(F )] =
m∑
j=1

GjDF j .
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Proof. First, show the result when ϕ ∈ C1(Rm). In this case, Gj =
∂jϕ(F ). Then, we approximate ϕ by ϕ ∗ εn, where εn is an approximation
to the identity and use the criterion for differentiabiilty.

1.5 Ornstein-Uhlenbeck semigroup
In this section we describe the main properties of the Ornstein–Uhlenbeck
semigroup and its generator. We then give the relationship between the
Malliavin derivative, the divergence operator, and the Ornstein–Uhlenbeck
semigroup generator.

1.5.1 Mehler’s formula
Let B = (Bt)t∈[0,T ] be a Brownian motion on a the Wiener space (Ω,F , P ).
Let F be a random variable in L2(Ω) with the Wiener chaos decomposition
F =

∑∞
n=0 In(fn), fn ∈ L2

s([0, T ]n).

Definition 1.5.1. The Ornstein–Uhlenbeck semigroup is the one-
parameter semigroup (Tt)t≥0 of operators on L2(Ω) defined by

Tt(F ) =
∞∑
n=0

e−ntIn(fn).

An alternative and useful expression for the Ornstein–Uhlenbeck
semigroup is Mehler’s formula:

Proposition 1.5.1. Let B′ = (B′t)t≥0 be an independent copy of B. Then,
for any t ≥ 0 and F ∈ L2(Ω), we have

Tt(F ) = E′(F (e−tB +
√

1− e−2tB′)), (1.23)

where E′ denotes the mathematical expectation with respect to B′.

Proof. Both Tt in Definition 1.5.1 and the right-hand side of
(1.23) give rise to linear contraction operators on L2(Ω). Thus,
it suffices to show (1.23) for random variables of the form
F = exp

(
λB(h)− 1

2λ
2), where B(h) =

∫ T
0 htdBt, h ∈ H, is an element

of norm one, and λ ∈ R. We have, using formula (1.17),

E′
(

exp
(
e−tλB(h) +

√
1− e−2tλB′(h)− 1

2λ
2
))

= exp
(
e−tλB(h)− 1

2e
−2tλ2

)
=
∞∑
n=0

e−nt
λn

n! Hn (B(h)) = TtF,
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because

F =
∞∑
n=0

λn

n! Hn (B(h))

and Hn(B(h)) = In(h⊗n) (see Proposition 1.3.1). This completes the
proof.

Here are two important consequences of Mehler’s formula:
1.) The operator Tt is nonnegative, that is, F ≥ 0⇒ TtF ≥ 0.
2.) The operator Tt is a contraction in Lp(Ω) for any p ≥ 1:

‖TtF‖p ≤ ‖F‖p.

Indeed, using Jensen’s inequality, it follows that, for any p ≥ 1,

E(|Tt(F )|p) = E(|E′(F (e−tB +
√

1− e−2tB′))|p)

≤ E(E′(|F (e−tB +
√

1− e−2tB′)|p)) = E(|F |p).

1.5.2 Hypercontractivity
The Ornstein–Uhlenbeck semigroup has the following hypercontractivity
property.

Theorem 1.5.2. Let F ∈ Lp(Ω), p > 1, and q(t) = e2t(p − 1) + 1 > p,
t > 0. Then

‖TtF‖q(t) ≤ ‖F‖p.

As a consequence of the hypercontractivity property, for any 1 < p <
q <∞ the norms ‖ · ‖p and ‖ · ‖q are equivalent on any Wiener chaos Hn.
In fact, putting q = e2t(p − 1) + 1 > p with t > 0, we obtain, for every
F ∈ Hn,

e−nt‖F‖q = ‖TtF‖q ≤ ‖F‖p,
which implies that

‖F‖q ≤
(
q − 1
p− 1

)n/2
‖F‖p. (1.24)

Moreover, for any n ≥ 1 and 1 < p <∞, the orthogonal projection onto
the nth Wiener chaos Jn is bounded in Lp(Ω), and

‖JnF‖p ≤

{
(p− 1)n/2‖F‖p if p > 2,
(p− 1)−n/2‖F‖p if p < 2.

(1.25)

In fact, suppose first that p > 2 and let t > 0 be such that p − 1 = e2t.
Using the hypercontractivity property with exponents p and 2, we obtain

‖JnF‖p = ent‖TtJnF‖p ≤ ent‖JnF‖2 ≤ ent‖F‖2 ≤ ent‖F‖p.
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If p < 2, we have

‖JnF‖p = sup
‖G‖q≤1

E((JnF )G) ≤ ‖F‖p sup
‖G‖q≤1

‖JnG‖q ≤ ent‖F‖p,

where q is the conjugate of p, and q − 1 = e2t.

1.5.3 Generator of the Ornstein-Uhlenbeck semigroup
The infinitesimal generator of the Ornstein–Uhlenbeck semigroup in L2(Ω)
is the operator given by

LF = lim
t↓0

TtF − F
t

,

and the domain of L is the set of random variables F ∈ L2(Ω) for which
the above limit exists in L2(Ω). It is easy to show that a random variable
F =

∑∞
n=0 In(fn), fn ∈ L2

s([0, T ]n), belongs to the domain of L if and
only if

∞∑
n=1

n2‖In(fn)‖22 <∞;

and, in this case, LF =
∑∞
n=1−nIn(fn). Thus, DomL coincides with the

space D2,2.
We also define the operator L−1, which is the pseudo-inverse of L, as

follows. For every F ∈ L2(Ω), set

LF = −
∞∑
n=1

1
n
In(fn).

Note that L−1 is an operator with values in D2,2 and that LL−1F =
F −E(F ), for any F ∈ L2(Ω), so L−1 acts as the inverse of L for centered
random variables.
The next proposition explains the relationship between the operators D,

δ, and L.

Proposition 1.5.2. Let F ∈ L2(Ω). Then, F ∈ DomL if and only if
F ∈ D1,2 and DF ∈ Dom δ and, in this case, we have

δDF = −LF.

Proof. Let F =
∑∞
n=0 In(fn). Suppose first that F ∈ D1,2 and DF ∈

Dom δ. Then, for any random variable G = Im(gm), we have, using the
duality relationship (Proposition 1.2.1),

E(GδDF ) = E(〈DG,DF 〉H) = mm!〈gm, fm〉L2([0,T ]m) = E(GmIm(fm)).
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Therefore, the projection of δDF onto the mth Wiener chaos is equal to
mIm(fm). This implies that the series

∑∞
n=1 nIn(fn) converges in L2(Ω)

and its sum is δDF . Therefore, F ∈ DomL and LF = −δDF .
Conversely, suppose that F ∈ DomL. Clearly, F ∈ D1,2. Then, for any

random variable G ∈ D1,2 with Wiener chaos expansion G =
∑∞
n=0 In(gn),

we have

E(〈DG,DF 〉H) =
∞∑
n=1

nn!〈gn, fn〉L2([0,T ]n) = −E(GLF ).

As a consequence, DF belongs to the domain of δ and δDF = −LF .

The next proposition shows that the operator L behaves as a second-
order differential operator.

Proposition 1.5.3. Suppose that F = (F 1, . . . , Fm) is a random vector
whose components belong to D2,4. Let ϕ be a function in C2(Rm) with
bounded first and second partial derivatives. Then, ϕ(F ) ∈ DomL and

L(ϕ(F )) =
m∑

i,j=1

∂2ϕ

∂xi∂xj
(F )〈DF i, DF j〉H +

m∑
i=1

∂ϕ

∂xi
(F )LF i.

Proof. By the chain rule (see Proposition 1.2.4), ϕ(F ) belongs to D1,2 and

D(ϕ(F )) =
m∑
i=1

∂ϕ

∂xi
(F )DF i.

Moreover, by Proposition 1.5.2, ϕ(F ) belongs to DomL and L(ϕ(F )) =
−δ(D(ϕ(F ))). Using the factorization property of the divergence operator
yields the result.

In the finite-dimensional case (Ω = Rn equipped with the standard
Gaussian law), L = ∆−x ·∇ coincides with the generator of the Ornstein–
Uhlenbeck process (Xt)t≥0 in Rn, which is the solution to the stochastic
differential equation

dXt =
√

2dBt −Xtdt,

where (Bt)t≥0 is an n-dimensional Brownian motion.

1.5.4 Second integral representation
Recall that L is the generator of the Ornstein–Uhlenbeck semigroup.

Proposition 1.5.4. Let F be in D1,2 with E(F ) = 0. Then the process

u = −DL−1F
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belongs to Dom δ and satisfies F = δ(u). Moreover u ∈ L2(Ω;H) is unique
among all square integrable processes with a chaos expansion

ut =
∞∑
q=0

Iq(fq(t))

such that fq(t, t1, . . . , tq) is symmetric in all q + 1 variables t, t1, . . . , tq.

Proof. By Proposition 1.5.2,

F = LL−1F = −δ(DL−1F ).

Clearly, the process u = −DL−1F has a Wiener chaos expansion with
functions symmetric in all their variables. To show uniqueness, let
v ∈ L2(Ω;H) with a chaos expansion vt =

∑∞
q=0 Iq(gq(t)), such that the

function gq(t, t1, . . . , tq) is symmetric in all q + 1 variables t, t1, . . . , tq and
such that δ(v) = F . Then, there exists a random variable G ∈ D1,2 such
that DG = v. Indeed, it suffices to take

G =
∞∑
q=0

1
q + 1Iq+1(gq).

We claim that G = −L−1F . This follows from LG = −δDG = −δ(v) =
−F . The proof is now complete.

It is important to notice that, unlike the Clark–Ocone formula,
which requires that the underlying process is a Brownian motion, the
representation provided in Proposition 1.5.4 holds in the context of a
general Gaussian isonormal process.

1.6 Existence and regularity of densities

Let F = (F 1, . . . , Fm) be a random vector such that F i ∈ D1,2 for
i = 1, . . . ,m. We define the Malliavin matrix of F as the random
symmetric nonnegative definite matrix

γF = (〈DF i, DF j〉H)1≤i,j≤m. (1.26)

In the one-dimensional case, γF = ‖DF‖2H. The following theorem is a a
basic criterion for the existence of a density.

Theorem 1.6.1. If det γF > 0 a.s. then the law of F is absolutely
continuous with respect to the Lebesgue measure on Rm.
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This theorem was proved by Bouleau and Hirsch using the co-area
formula and techniques of geometric measure theory, and we omit the
proof. As a consequence, the measure (det γF × P ) ◦ F−1 is always
absolutely continuous; that is,

P (F ∈ B ,det γF > 0) = 0,

for any Borel set B ∈ B(Rm) of zero Lebesgue measure.

Definition 1.6.2. We say that a random vector F = (F 1, . . . , Fm) is
nondegenerate if F i ∈ D1,2 for i = 1, . . . ,m and

E((det γF )−p) <∞,

for all p ≥ 2.

The following theorem is the basic criterion for the smoothness of
densities.

Theorem 1.6.3. Let F = (F 1, . . . , Fm) be a nondegenerate random vector
such that F i ∈ D∞ for all i = 1, . . . ,m. Then the law of F possesses an
infinitely differentiable density.

As an example of application of the above criterion, let F = Xt, where
(Xt)t ge0 is a diffusion process on Rm

dXt = b(Xt)dt+
d∑
k=1

σk(Xt)dBkt , X0 = x0.

Theorem 1.6.4. Suppose that the coefficients b, σk : Rm → Rm are
infinitely differentiable with bounded partial derivatives. Then, Xj

t ∈ D∞
for all t ≥ 0 and j = 1 . . . ,m. If, in addition, the Lie algebra spanned by
{σ1, . . . , σd} at x = x0 is Rm, where σk =

∑m
i=1 σ

i
k
∂
∂xi

, then for any t > 0
(det γXt)−1 ∈ ∩p≥2L

p(Ω) and, by Theorem 1.6.3, the density pt(x) of Xt

is C∞.

Notice that pt(x) satisfies the Fokker-Planck equation(
− ∂

∂t
+ L∗

)
pt = 0,

where

L = 1
2

m∑
i,j=1

(σσT )ij ∂2

∂xi∂xj
+

m∑
i=1

bi
∂

∂xi
.

Then, pt ∈ C∞ means that ∂
∂t−L

∗ is hypoelliptic (Hörmander’s theorem).
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Malliavin-Stein’s
approach for normal
approximations

2.1 Stein’s method for normal approxima-
tions

The following lemma is a characterization of the standard normal
distribution on the real line.

Lemma 2.1.1 (Stein’s lemma). A random variable Z such that
E(|Z|) < ∞ has the standard normal distribution N(0, 1) if and only if,
for any function f ∈ C1

b (R), we have

E(f ′(Z)− f(Z)Z) = 0. (2.1)

Proof. Suppose first that Z has the standard normal distribution N(0, 1).
Then, equality (2.1) follows integrating by parts and using that the density
p(x) = (1/

√
2π) exp(−x2/2) satisfies the differential equation

p′(x) = −xp(x).

Conversely, let ϕ(λ) = E(eiλZ), λ ∈ R, be the characteristic function of Z.
Because Z is integrable, we know that ϕ is differentiable and ϕ′(λ) =
iE(ZeiλZ). By our assumption, this is equal to −λϕ(λ). Therefore,
ϕ(λ) = exp(−λ2/2), which concludes the proof.

If the expectation E(f ′(X) − f(X)X) is small for functions f in some
large set, we might conclude that the distribution of X is close to the

32
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normal distribution. This is the main idea of Stein’s method for normal
approximations and the goal is to quantify this assertion in a proper way
(see, for instance, [6]).
To implement this idea, consider a random variable Z with the N(0, 1)

distribution and fix a measurable function h : R→ R such that E(|h(Z)|) <
∞. Stein’s equation associated with h is the linear differential equation

f ′h(x)− xfh(x) = h(x)− E(h(Z)), x ∈ R. (2.2)

Definition 2.1.2. A solution to equation (2.2) is an absolutely continuous
function fh such that there exists a version of the derivative f ′h satisfying
(2.2) for every x ∈ R.

The next result provides the existence of a unique solution to Stein’s
equation.

Proposition 2.1.1. The function

fh(x) = ex
2/2
∫ x

−∞
(h(y)− E(h(Z)))e−y

2/2dy (2.3)

is the unique solution of Stein’s equation (2.2) satisfying

lim
x→±∞

e−x
2/2fh(x) = 0. (2.4)

Proof. Equation (2.2) can be written as

ex
2/2 d

dx

(
e−x

2/2fh(x)
)

= h(x)− E(h(Z)).

This implies that any solution to equation (2.2) is of the form

fh(x) = cex
2/2 + ex

2/2
∫ x

−∞
(h(y)− E(h(Z)))e−y

2/2dy,

for some c ∈ R. Taking into account that

lim
x→±∞

∫ x

−∞
(h(y)− E(h(Z)))e−y

2/2dy = 0,

the asymptotic condition (2.4) is satisfied if and only if c = 0.

Notice that, since
∫
R(h(y)− E(h(Z)))e−y2/2dy = 0, we have∫ x

−∞
(h(y)− E(h(Z)))e−y

2/2dy = −
∫ ∞
x

(h(y)− E(h(Z)))e−y
2/2dy. (2.5)
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Proposition 2.1.2. Let h : R→ [0, 1] be a measurable function. Then the
solution to Stein’s equation fh given by (2.3) satisfies

‖fh‖∞ ≤
√
π

2 and ‖f ′h‖∞ ≤ 2. (2.6)

Proof. Taking into account that |h(x) − E(h(Z))| ≤ 1, where Z has law
N(0, 1), we obtain

|fh(x)| ≤ ex
2/2
∫ ∞
|x|

e−y
2/2dy =

√
π

2 ,

because the function x→ ex
2/2 ∫∞

|x| e
−y2/2dy attains its maximum at x = 0.

To prove the second estimate, observe that, in view of (2.5), we can
write

f ′h(x) = h(x)− E(h(Z)) + xex
2/2
∫ x

−∞
(h(y)− E(h(Z)))e−y

2/2dy

= h(x)− E(h(Z))− xex
2/2
∫ ∞
x

(h(y)− E(h(Z)))e−y
2/2dy,

for every x ∈ R. Therefore

|f ′h(x)| ≤ 1 + |x|ex
2/2
∫ ∞
|x|

e−y
2/2dy = 2.

This completes the proof.

2.1.1 Total variation and convergence in law
Let Fn be a sequence of random variables defined in a probability space
(Ω,F , P ).

Definition 2.1.3. We say that Fn
L→ F if E[g(Fn)] → E[g(F )] for any

g : R→ R continuous and bounded.

We know that Fn
L→ F if and only if P (Fn ≤ z) → P (F ≤ z) for any

point z ∈ R of continuity of the distribution function of F .
The total variation distance between two probabilities ν1 and ν2 on R

is defined as
dTV (ν1, ν2) = sup

B∈B(R)
|ν1(B)− ν2(B)|.

Then, the convergence dTV (P ◦F−1
n , P ◦F−1)→ 0 is strictly stronger that

the convergence in law Fn
L→ F . By an abuse of notation we will write

dTV (F,G) for dTV (P ◦ F−1, P ◦G−1).
Using Stein’s method, we can prove the following result.
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Proposition 2.1.3. Let ν be a probability on R. Then,

dTV (ν, γ) ≤ sup
φ∈FTV

∣∣∣∣∫
R
[φ′(x)− xφ(x)]ν(dx)

∣∣∣∣ ,
where

FTV = {φ ∈ C1(R) : ‖φ‖∞ ≤
√
π

2 , ‖φ
′‖∞ ≤ 2}

and γ denotes the standard normal distribution.
Proof. Let h : R → [0, 1] be a continuous function and let φh be the
solution to the Stein’s equation associated with h, that is,

h(x)− E[h(Z)] = φ′h(x)− xφh(x).

Integrating with respect to ν yields∣∣∣∣∫
R
hdν −

∫
R
hdγ

∣∣∣∣ =
∣∣∣∣∫

R
[φ′h(x)− xφh(x)]ν(dx)

∣∣∣∣
≤ sup

φ∈C1(R):‖φ‖∞≤
√

π
2 ,‖φ′‖∞≤2

∣∣∣∣∫
R

[φ′(x)− xφ(x)]ν(dx)
∣∣∣∣ .

This inequality holds for any h : R → [0, 1] measurable, because we can
approximate h by continuous functions almost everywhere with respect to
the measure ν + γ. Taking h = 1B , we obtain the result.

2.2 Stein meets Malliavin
Let (Bt)∈[0,T ] be a Brownian motion defined on the Wiener space (Ω,F , P ).
The following results connects Stein’s method with Malliavin calculus.
Theorem 2.2.1. Suppose that F ∈ D1,2 satisfies F = δ(u), where u
belongs to the domain in L2 of the divergence operator δ. Then,

dTV (F,Z) ≤ 2E[|1− 〈DF, u〉H|],

where Z is a N(0, 1) random variable.
Proof. Using the duality relationship between the operators D and δ and
chain rule, we can write

E[Fφ(F )] = E[δ(u)φ(F )] = E[〈u,D[φ(F )]〉H] = E[φ′(F )〈u,DF 〉H].

Therefore,

|E[φ′(F )]− E(Fφ(F )]| = |E[φ′(F )[1− 〈DF, u〉H]|
≤ 2E[|1− 〈DF, u〉H|]

for any φ ∈ FTV . This concludes the proof in view of Proposition
2.1.3.
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Consider the following example. Suppose that F =
∫ T

0 usdBs, where u
is an adapted measurable process in D1,2(H). Then,

DtF = ut +
∫ T

t

DtusdBs,

and

〈u,DF 〉H = ‖u‖2H +
∫ T

0

(∫ T

t

DtusdBs

)
utdt.

As a consequence,

dTV (F,Z) ≤ 2E
(
|1− ‖u‖2H|

)
+ 2E

(∣∣∣∣∣
∫ T

0

(∫ T

t

DtusdBs

)
utdt

∣∣∣∣∣
)

≤ 2E
(
|1− ‖u‖2H|

)
+ 2

[
E
∫ T

0

(∫ s

0
utDtusdt

)2
ds

] 1
2

.

These computations lead to the following result.

Proposition 2.2.1. A sequence Fn =
∫ T

0 u
(n)
s dBs, where u(n) is an

adapted and measurable process such that u(n) ∈ D1,2(H), converges in
total variation to the law N(0, 1) if:

(i) ‖u(n)‖2H → 1 in L1(Ω) and

(ii) E
∫ T

0

(∫ s
0 u

(n)
t Dtu

(n)
s dt

)2
ds→ 0.

Example: The previous proposition can be applied to the following process:

u
(n)
t =

√
2ntn exp(Bt(1− t))1[0,1](t).

In Theorem 2.2.1 we can take u = −DL−1F , because

F = LL−1F = −δDL−1F,

and, we obtain

dTV (F,Z) ≤ 2E[|1− 〈DF,−DL−1F 〉H|].

Suppose that E[F 2] = σ2 > 0. Then, we can derive the following
inequality:

dTV (F, σZ) ≤ 2
σ2E[|σ2 − 〈DF, u〉H|].
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Indeed,

dTV (F, σZ ) = sup
B∈B(R)

|P (F ∈ B)− P (σZ ∈ B)|

= sup
B∈B(R)

|P (σ−1F ∈ σ−1B)− P (Z ∈ σ−1B)|

≤ 2
σ2E[|σ2 − 〈DF, u〉H|].

Moreover,
E[〈DF, u〉H] = E[δ(u)F ] = E[F 2] = σ2,

and we obtain
dTV (F, σZ) ≤ 2

σ2

√
Var(〈DF, u〉H). (2.7)

2.2.1 Normal approximation on a fixed Wiener chaos
For random variables on a fixed Wiener chaos we can prove the following
result.

Proposition 2.2.2. Suppose F ∈ Hq for some q ≥ 2 and E(F 2) = σ2.
Then,

dTV (F, σZ) ≤ 2
qσ2

√
Var

(
‖DF‖2H

)
.

Proof. Suppose that F = Iq(f), where f ∈ L2
s([0, T ]q). We have

DtF = qIq−1(f(·, t)),

and F = δ(u), where

ut = Iq−1(f(·, t)) = 1
q
DtF.

Therefore,
〈DF, u〉H = 1

q
‖DF‖2H

and it suffices to apply (2.7).

The next result states the equivalence between the variance of ‖DF‖2H
and the default in the moment of order 4.

Proposition 2.2.3. Suppose that F = Iq(f) ∈ Hq, q ≥ 2. Then,

Var
(
‖DF‖2H

)
≤ (q − 1)q

3 (E(F 4)− 3σ4) ≤ (q − 1)Var
(
‖DF‖2H

)
.
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Proof. This proposition is a consequence of the following two formulas.
The first formula is the next one:

Var
(
‖DF‖2H

)
=

q−1∑
r=1

r2(r!)2
(
q

r

)4
(2q − 2r)!‖f⊗̃rf‖2H⊗(2q−2r) . (2.8)

Proof of (2.8): We have DtF = qIq−1(f(·, t)), and using the product
formula for multiple stochastic integrals we obtain

‖DF‖2H = q2
∫ T

0
Iq−1(f(·, t))2dt

= q2
q−1∑
r=0

r!
(
q − 1
r

)2
I2q−2r−2(f⊗̃r+1f)

= q2
q∑
r=1

(r − 1)!
(
q − 1
r − 1

)2
I2q−2r(f⊗̃rf)

= qq!‖f‖2H⊗q + q2
q−1∑
r=1

(r − 1)!
(
q − 1
r − 1

)2
I2q−2r(f⊗̃rf). (2.9)

Then, (2.8) follows from the isometry property of multiple integrals.

The second formula is the following one:

E[F 4]− 3σ4 = 3
q

q−1∑
r=1

r(r!)2
(
q

r

)4
(2q − 2r)!‖f⊗̃rf‖2H⊗(2q−2r) . (2.10)

Proof on (2.10): Using that −L−1F = 1
qF and L = −δD we can write

E[F 4] = E[F × F 3] = E[(−δDL−1F )F 3] = E[〈−DL−1F,D(F 3)〉H]

= 1
q
E[〈DF,D(F 3)〉H] = 3

q
E[F 2‖DF‖2H]. (2.11)

By the product formula of multiple integrals,

F 2 = Iq(f)2 = q!‖f‖2H⊗q +
q−1∑
r=0

r!
(
q

r

)2
I2q−2r(f⊗̃rf). (2.12)

Then (2.10) follows from (2.11), (2.12), (2.9) and the isometry property of
multiple integrals.

2.2.2 Fourth Moment theorem
Stein’s method combined with Malliavin calculus leads to a simple proof
of the Fourth Moment theorem:
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Theorem 2.2.2 (Nualart and Peccati [22], Nualart and
Ortiz-Latorre [23]). Fix q ≥ 2. Let Fn = Iq(fn) ∈ Hq, n ≥ 1 be
such that

lim
n→∞

E(F 2
n) = σ2.

The following conditions are equivalent:

(i) Fn
L→ N(0, σ2), as n→∞.

(ii) E(F 4
n)→ 3σ4, as n→∞.

(iii) ‖DFn‖2H → qσ2 in L2(Ω), as n→∞.

(iv) For all 1 ≤ r ≤ q − 1, fn ⊗r fn → 0, as n→∞.

This theorem constitutes a drastic simplification of the method of
moments.

Proof. First notice that (i) implies (ii) because for any p > 2, the
hypercontractivity property of the Ornstein-Uhlenbeck semigroup (see
(1.24)) implies

sup
n
‖Fn‖p ≤ (p− 1)

q
2 sup

n
‖Fn‖2 <∞.

The equivalence of (ii) and (iii)) follows from the previous proposition,
and these conditions imply (i), with convergence in total variation. The
fact that (iv) implies (ii) and (iii) is a consequence of ‖fn⊗̃rfn‖H⊗(2q−2r) ≤
‖fn⊗r fn‖H⊗(2q−2r) . Let us show that (ii) implies (iv). From (2.12) we get

E[F 4
n ] =

q∑
r=0

(r!)2
(
q

r

)4
(2q − 2r)!‖fn⊗̃rfn‖2H⊗(2q−2r)

= (2q)!‖fn⊗̃fn‖2H⊗2q +
q−1∑
r=1

(r!)2
(
q

r

)4
(2q − 2r)!‖fn⊗̃rfn‖2H⊗(2q−2r)

+(q!)2‖fn‖4H.

Then, we use the fact that (2q)!‖fn⊗̃fn‖2H⊗2q equals to 2(q!)2‖fn‖4H plus a
linear combination of the terms ‖fn ⊗r fn‖2H⊗(2q−2r) , with 1 ≤ r ≤ q − 1,
to conclude that

‖fn ⊗r fn‖H⊗(2q−2r) → 0, 1 ≤ r ≤ q − 1.
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2.2.3 Multivariate Gaussian approximation
The next result is as multivariate extension of the fourth moment theorem.

Theorem 2.2.3 (Peccati and Tudor [25]). Let d ≥ 2 and 1 ≤ q1 <
· · · < qd. Consider random vectors

Fn = (F 1
n , . . . , F

d
n) = (Iq1(f1

n), . . . , Iqd(fdn)),

where f in ∈ L2
s([0, T ]qi). Suppose that, for any 1 ≤ i ≤ d,

lim
n→∞

E[(F in)2] = σ2
i .

Then, the following two conditions are equivalent:

(i) Fn
L→ Nd(0,Σ), where Σ is a diagonal matrix such that Σii = σ2

i .

(ii) For every i = 1, . . . , d, F in
L→ N(0, σ2

i ).

Note that the convergence of the marginal distributions implies the joint
convergence to a random vector with independent components.

2.2.4 Chaotic Central Limit Theorem
For general random variables, we can show easily the following chaotic
central limit theorem.

Theorem 2.2.4 (Hu and Nualart [9]). Let Fn =
∑∞
q=1 Iq(fq,n), n ≥ 1.

Suppose that:

(i) For all q ≥ 1, q!‖fq,n‖2L2([0,T ]q) → σ2
q as n→∞.

(ii) For all q ≥ 2 and 1 ≤ r ≤ q − 1, fq,n ⊗r fq,n → 0 as n→∞.

(iii) q!‖fq,n‖2 ≤ δq, where
∑
q δq <∞.

Then, as n tends to infinity

Fn
L→ N(0, σ2), where σ2 =

∞∑
q=1

σ2
q .

Assuming (i), condition (ii) is equivalent to (ii)’: limn→∞ E(Iq(fq,n)4) =
3σ4

q , q ≥ 2. This theorem implies the convergence in law of the whole
sequence (Iq(fq,n), q ≥ 1) to an infinite dimensional Gaussian vector with
independent components.
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Central limit theorems for
stationary sequences

Suppose that (Xn)n≥1 is a sequence of random variables, defined in
some probability space (Ω,F , P ), which are independent and identically
distributed, with zero mean and finite variance E[X2

1 ] = σ2. Then, the
classical central limit theorem says that

1√
n

n∑
k=1

Xk
L→ N(0, σ2).

That means, for any a ≤ b,

lim
n→∞

P

(
a ≤ 1√

n

n∑
k=1

Xk ≤ b

)
=
∫ b

a

1√
2πσ2

e−x
2/2σ2

dx.

In this section we will apply the Malliavin-Stein’s method to establish
quantitative versions of the central limit theorem, where the independence
property is replaced by stationarity and we consider random variables
which are functionals of a given Gaussian process.

3.1 Breuer-Major theorem
Recall that γ denotes the standard normal distribution and Hq is the q-th
Hermite polynomial. A function g ∈ L2(R, γ) has Hermite rank d ≥ 1 if

g(x) =
∞∑
q=d

cqHq(x), cd 6= 0.

For example, g(x) = |x|p −
∫
R |x|

pdγ(x), p ≥ 1, has Hermite rank 2.

41
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Let ξ = (ξk)k∈Z be a centered stationary Gaussian sequence with unit
variance. Set ρ(v) = E[ξ0ξv] for v ∈ Z.

Theorem 3.1.1 (Breuer and Major [4]). Let g ∈ L2(R, γ) with
Hermite rank d ≥ 1 and assume∑

k∈Z
|ρ(k)|d <∞.

Then,

Fn := 1√
n

n∑
k=1

g(ξk) L→ N(0, σ2),

as n→∞, where

σ2 =
∞∑
m=d

m!c2m
∑
k∈Z

ρ(k)m. (3.1)

Note that |ρ(k)| ≤ 1, so

σ2 ≤
∞∑
m=d

c2mm!
∑
k∈Z
|ρ(k)|d = ‖g‖2L2(R,γ)

∑
k∈Z
|ρ(k)|d <∞.

Proof. From the chaotic Central Limit Theorem, it suffices to consider the
case g = cqHq, q ≥ d. There exists a sequence (ek)k≥1 in H = L2([0, T ])
such that for each j, k ≥ 1,

〈ek, ej〉H = ρ(k − j).

The sequence (B(ek))k≥1 has the same law as (ξk)k≥1, and we may replace
Fn = cq√

n

∑n
k=1Hq(ξk) by

Gn = cq√
n

n∑
k=1

Hq(B(ek)) = Iq(fq,n),

where fq,n = cq√
n

∑n
k=1 e

⊗q
k . We can write

q!‖fq,n‖2H⊗q =
q!c2q
n

n∑
k,j=1

ρ(k − j)q = q!c2q
∑
v∈Z

ρ(v)q
(

1− |v|
n

)
1{|v|<n},

and by the dominated convergence theorem

E[G2
n] = q!‖fq,n‖2H⊗q → q!c2q

∑
v∈Z

ρ(v)q = σ2.
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Applying the Fourth Moment Theorem, it suffices to show that for r =
1, . . . , q − 1,

fq,n ⊗r fq,n =
c2q
n

n∑
k,j=1

ρ(k − j)re⊗(q−r)
k ⊗ e⊗(q−r)

j → 0.

We have

‖fq,n⊗r fq,n‖2H⊗(2q−2r) =
c4q
n2

n∑
i,j,k,`=1

ρ(k−j)rρ(i−`)rρ(k−i)q−rρ(j−`)q−r.

Using |ρ(k − j)rρ(k − i)q−r| ≤ |ρ(k − j)|q + |ρ(k − i)|q, we obtain

‖fq,n ⊗r fq,n‖2H⊗(2q−2r) ≤ 2c4q
∑
k∈Z
|ρ(k)|q

n−1+ r
q

∑
|i|≤n

|ρ(i)|r


×

n−1+ q−r
q

∑
|j|≤n

|ρ(j)|q−r
 .

Then, it suffices to show that for r = 1, . . . , q − 1,

n−1+ r
q

∑
|i|≤n

|ρ(i)|r → 0.

This follows from Hölder’s inequality. Indeed, for a fixed δ ∈ (0, 1), we
have the estimates

n−1+ r
q

∑
|i|≤[nδ]

|ρ(i)|r ≤ n−1+ r
q (2[nδ] + 1)1− rq

(∑
i∈Z
|ρ(i)|q

) r
q

≤ cδ1− rq ,

and

n−1+ r
q

∑
[nδ]<|i|≤n

|ρ(i)|r ≤

 ∑
[nδ]<|i|≤n

|ρ(i)|q
 r

q

.

The first term converges to zero as δ tends to zero and the second one
converges to zero for fixed δ as n→∞.

3.1.1 Convergence in law in C([0, T ])
In the framework of the Breuer-Major theorem, we are interested in the
convergence in law in the space C([0, T ]).
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Definition 3.1.2. Let Yn := (Yn(t))t∈[0,T ] be a sequence of continuous
stochastic processes. We say that this sequence converges in law to a
continuous process Y if for any continuous and bounded function ϕ :
C([0, T ])→ C([0, T ]), we have

lim
n→∞

E(ϕ(Yn)) = E(ϕ(Y )).

A basic ingredient to show convergence in law in an infinite dimensional
space is the notion of tightness.

Definition 3.1.3. A sequence of probabilities (νn)n≥1 on C([0, T ]) is tight
if for any ε > 0 there exists a compact set Kε ⊂ C([0, T ]) such that

sup
n≥1

νn(Kc
ε ) ≤ ε.

By the Arzelà-Ascoli theorem, a set of functions K ⊂ C([0, T ]) is
compact if and only if :

(i) supx∈K,t∈[0,T ] |x(t)| <∞.

(ii) K is an equicontinuous set: For all ε > 0 there exists δ > 0 such that
for all x ∈ K,

|s− t| < δ ⇒ |x(s)− x(t)| ≤ ε.

This leads to the folliwing criterion for tightness on C([0, T ]):

Proposition 3.1.1. Consider a sequence of continuous stochastic
processes Yn = (Yn(t))t∈[0,T ] defined in a probability space (Ω,F , P ) and
set

νn(B) := P (Y −1
n (B)),

for any Borel set in C([0, T ]). The sequence νn = P ◦ Y −1
n is tight if

(i) supn≥1 P (|Yn(0)| > a)→ 0 as a ↑ ∞.

(ii) For some α > 1 and p ≥ 1.

E[|Yn(t)− Yn(s)|p] ≤ c|t− s|α,

It is well known that proving convergence in law in C([0, T ]) requires
showing convergence of the finite-dimensional distributions and proving
tightness. This is the contents of the next theorem.

Theorem 3.1.4. Let Yn = (Yn(t))t∈[0,T ] be a sequence of continuous
stochastic processes. Then Yn converges in law to a continuous process
Y if:
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(i) The finite-dimensional distributions of Yn converge in law to those
of Y . That is, for any 0 ≤ t1 < · · · ≤ tM ≤ T , we have, as n→∞,

(Yn(t1), . . . , Yn(tM )) L→ (Y (t1), . . . , Y (tM ))

(ii) The sequence of laws νn = P ◦ Y −1
n is tight.

In view of Proposition 3.1.1, a sufficient condition for (ii) is:
supn≥1 E(|Yn(0)|p) <∞ and

E[|Yn(t)− Yn(s)|p] ≤ c|t− s|α,

for some α > 1 and p ≥ 1,

3.1.2 Functional version of the Breuer-Major theorem
In the framework of the Breuer-Major theorem, define Yn as the continuous
process on [0, T ] obtained by linear interpolation from

Yn(N/n) = 1√
n

N∑
k=1

g(ξk), N = 1, 2, . . .

The following result is a functional version of the Breuer-Major theorem.

Theorem 3.1.5 (Nourdin and Nualart [14]). Let ξ = (ξn)n∈Z be a
centered Gaussian stationary sequence with unit variance and covariance
ρ. Let g ∈ L2(R, γ) with Hermite rank d ≥ 1. Suppose that:

(i)
∑
k∈Z |ρ(k)|d <∞.

(ii) g ∈ Lp(R, γ) for some p > 2.

Then, as n→∞,
(Yn(t))t∈[0,T ]

L→ σB,

where B is a Brownian motion, the convergence holds in law in C([0, T ])
and σ is defined in (3.1).

When the random variables ξn are independent, this is the classical
Donsker theorem: The random walk converges in distribution to the
Brownian motion.

Remark: Chambers and Slud [5] and Ben-Hariz [1] proved the functional
version of the Breuer-Major theorem under the following condition on the
rate of the convergence of the coefficients:

(ii’) m!c2m ≤ Cαm, m ≥ d,
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for some C > 0 and α < 1.
By the hypercontractivity property, (ii’) implies that g ∈ Lp(R, γ) for

2 < p < 1
α + 1. In fact,

‖g‖Lp(R,γ) ≤
∞∑
m=d
|cm| ‖Hm‖Lp(R,γ)

≤
∞∑
m=d
|cm|(p− 1)m2

√
m!

≤
√
C

∞∑
m=d

(α(p− 1))m2 <∞.

The converse is not true. For instance, the function g(x) = |x| −
√

2
π

belongs to Lp(R, γ) for all p ≥ 2 and its Hermite coefficients satisfy

(2m)!c22m = 2(2m)!
π22m(m!)2(2m− 1)2 ∼

2
(2m− 1)2π

√
πm

.

Proof Theorem 3.1.5. For the convergence of the law of Yn to the law of
σB in C([0, T ]), we need:

(A) Convergence in law of the finite-dimensional distributions: this
follows again from the Fourth Moment Theorem. Here we only need
g ∈ L2(R, γ) and condition (i).

(B) Tightness: This follows from the moment estimate:

‖Yn(t)− Yn(s)‖Lp(Ω) ≤ c|t− s|1/2, (3.2)

for some p > 2, which is proved using techniques of Malliavin
calculus.

Notice that when g =
∑M
m=d cmHm, by hypercontractivity,

‖Yn(t)− Yn(s)‖Lp(Ω) ≤ cM,p‖Yn(t)− Yn(s)‖L2(Ω)

and condition (ii) is not needed.
The proof of the moment estimates (3.2) will be done in several steps:

Step 1: Embedding the sequence (ξk)k≥1 in the Wiener space.
Recall that ξ = (ξn)n∈Z is a centered Gaussian stationary sequence with

unit variance and covariance

ρ(k) = E[ξnξn+k], k ∈ Z.
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Consider a sequence ek ∈ L2([0, T ]) such that for each j, k ∈ Z,

ρ(j − k) = 〈ej , ek〉L2([0,T ]) =
∫ T

0
ej(s)ek(s)ds.

Then,
(ξk)k∈Z

law= (B(ek))k∈Z .

So, we can assume that ξk = B(ek) =
∫ T

0 ek(s)dBs.

Step 2: Shift operator.
Let g ∈ L2(R, γ) be a function of Hermite rank d ≥ 1 and expansion

g(x) =
∞∑
m=d

cmHm(x).

For any 1 ≤ k ≤ d, consider the function gk defined by

gk(x) =
∞∑
m=d

cmHm−k(x).

From Hm = δkHm−k, we deduce that

δkgk(x) = g(x).

Step 3: Representation of g(ξi) as an iterated divergence.
We have

g(ξi) = δd(gd(ξi)e⊗di ).

Proof:

g(ξi) =
∞∑
m=d

cmHm(ξi).

Then, for everym ≥ d, using that multiple stochastic integrals are iterated
divergences, we obtain

Hm(ξi) = Hm(B(ei)) = Im(e⊗mi ) = δm(e⊗mi )

= δd
(
δm−d(e⊗(m−d)

i )e⊗di
)

= δd
(
Im−d(e⊗(m−d)

i )e⊗di
)

= δd
(
Hm−d(ξi)e⊗di

)
.

Step 4: Regularization property of the shift.

Lemma 3.1.6. If g ∈ Lp(R, γ) for some p ≥ 2 with Hermite rank d, then,
for any i ∈ Z and k = 1, . . . , d, gk(ξi) ∈ Dk,p.
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Proof. Suppose d = 1. We have

DL−1Hm(ξi) = − 1
m
H ′m(ξi)ei = −Hm−1(ξi)ei.

This implies
g1(ξi)ei = −DL−1g(ξi).

The result follows from the equivalence in Lp of the operators D and
(−L)1/2 (Meyer inequalities):

E(‖D2L−1g(ξi)‖pL2([0,T ]2)) ≤ cpE(|g(ξi)|p).

Step 5: Proof of tightness using Malliavin calculus.
Assume s = N1

n ≤ t = N2
n . We can write, using the continuity of the

iterated divergence (see (1.11)),

‖Yn(t)− Yn(s)‖Lp(Ω) = 1√
n

∥∥∥∥∥
N2∑

i=N1+1
g(ξi)

∥∥∥∥∥
Lp(Ω)

= 1√
n

∥∥∥∥∥
N2∑

i=N1+1
δd
(
gd(ξi)e⊗di

)∥∥∥∥∥
Lp(Ω)

≤ cp,d
d∑
k=0

1√
n

∥∥∥∥∥
N2∑

i=N1+1
Dk
(
gd(ξi)e⊗di

)∥∥∥∥∥
Lp(Ω;L2([0.T ]k+d)

= cp,d

d∑
k=0

∥∥∥∥∥∥ 1
n

N2∑
i,j=N1+1

〈
Dk(gd(ξi)), Dk(gd(ξj))

〉
L2([0,T ]k) ρ(i− j)d

∥∥∥∥∥∥
1/2

L
p
2 (Ω)

.

Notice that, from Lemma 3.1.6,

sup
j

E[‖Dk(gd(ξi))‖pL2([0,T ]k)] <∞, 0 ≤ k ≤ d

because E[|g(ξi)|p] <∞. As a consequence, deduce

‖Yn(t)− Yn(s)‖Lp(Ω) ≤ C

 1
n

N2∑
i,j=N1+1

|ρ(i− j)|d
1/2

.

Finally, the change of indices (i, j)→ (i, j + h) leads to

1
n

N2∑
i,j=N1+1

|ρ(i− j)|d ≤ CN2 −N1

n

∑
h∈Z
|ρ(h)|d = C(t− s).

This completes the proof of the moment estimates.
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3.1.3 Rate of convergence
Recall that (ξk)k∈Z is a centered Gaussian stationary sequence with unit
variance and covariance ρ(k) = E[ξnξn+k], k ∈ Z. Let

Fn = 1√
n

n∑
k=1

g(ξk),

where g has Hermite rank d ≥ 2 and
∑
k∈Z |ρ(k)|d < ∞. Then, we know

that

Fn := 1√
n

n∑
k=1

g(ξk) L→ N(0, σ2),

where σ2 =
∑∞
m=d c

2
mm!

∑
k∈Z ρ(k)m. Assume σ2 > 0. Define σ2

n =
Var(Fn) and consider the normalized sequence

Zn = Fn
σn
.

We are interested in the rate of convergence to zero of dTV (Zn, Z) where
Z ∼ N(0, 1). A basic estimated is given by the following proposition (see
(1.17)).

Proposition 3.1.2. Suppose that F ∈ D1,2 satisfies F = δ(u), where u
belongs to Domδ and E[F 2] = 1. Then, if Z ∼ N(0, 1),

dTV (F,Z) ≤ 2
√

Var〈DF, u〉H.

We will discuss here only the case of Hermite rank d = 2. Consider
the particular function g(x) = H2(x) = x2 − 1. With the assumption
ξk = B(ek), we can write

Zn = 1
σn
√
n

n∑
j=1

[B2(ej)− 1] = 1
σn
√
n

n∑
j=1

δ(B(ej)ej).

So, Zn = δ(un), where

un = 1
σn
√
n

n∑
j=1

B(ej)ej .

Then,

DZn = 2
σn
√
n

n∑
j=1

B(ej)ej

and

〈DZn, un〉H = 2
nσ2

n

n∑
i,j=1

B(ei)B(ej)ρ(i− j).
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As a consequence

Var(〈DZn, un〉H)

= 4
n2σ4

n

n∑
i1,i2,i3,i4=1

Cov(B(ei1)B(ei2), B(ei3)B(ei4))ρ(i1 − i2)ρ(i3 − i4)

= 4
n2σ4

n

n∑
i1,i2,i3,i4=1

[
ρ(i1 − i3)ρ(i2 − i4)ρ(i1 − i2)ρ(i3 − i4)

+ ρ(i1 − i4)ρ(i2 − i3)ρ(i1 − i2)ρ(i3 − i4)
]

= V (1)
n + V (2)

n .

Both summands are similar and can be treated in the same way. Focusing
only on the first summand, we make the change of variable i1 − i2 = k1,
i3 − i4 = k2 and i1 − i3 = k3 and we obtain

V (1)
n ≤ C

n

∑
|ki|≤n,i=1,2,3

|ρ(k1)ρ(k2)ρ(k3)ρ(k2 + k3 − k1)|.

Set ρn(k) = |ρ(k)|1{|k|≤n}. Then, by Hölder’s inequality,

V (1)
n ≤ C

n
〈ρn, (ρn ∗ ρn) ∗ ρn〉`2(Z)

≤ C

n
‖ρn‖`4/3(Z)‖(ρn ∗ ρn) ∗ ρn‖`4(Z).

Applying Young’s convolution inequality, yields

V (1)
n ) ≤ C

n
‖ρn‖4`4/3(Z) ≤

C

n

∑
|k|≤n

|ρ(k)| 43

3

. (3.3)

Therefore in the case g = H2 we have proved the following estimate

dTV (Zn, Z) ≤ C√
n

∑
|k|≤n

|ρ(k)| 43

 3
2

.

To handle the case of a general function g, let us recall the definition
of the Sobolev spaces in the context of the one-dimensional Gaussian
analysis. For any m ≥ 1 and p ≥ 2, Dm,p(R, γ) is the class of functions
g ∈ Lp(R, γ) which are m times weakly differentiable and g(k) ∈ Lp(R, γ)
for all 1 ≤ k ≤ m.
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Theorem 3.1.7 (Nourdin, Nualart and Peccati [15]). If g ∈ D1,4

has Hermite rank 2, then

dTV (Zn, Z) ≤ C√
n

∑
|k|≤n

|ρ(k)|

 1
2

+ C√
n

∑
|k|≤n

|ρ(k)| 43

 3
2

. (3.4)

Nualart and Zhou [24] proved this result assuming g ∈ D4,4 and using
Poincaré inequality and integration by parts. The proof for g ∈ D1,4 is
based on Gebelein inequality.

Some ingredients of the proof of Theorem 3.1.7: We can represent g(B(ei))
as

g(B(ei)) = δ(g1(B(ei))ei),

where g1(x) =
∑∞
m=2 cmHm−1(x). With this representation, we can write

Zn = δ(un), where

un = 1
σn
√
n

n∑
i=1

g1(B(ei))ei

and

〈DZn, un〉H = 1
nσ2

n

n∑
i,j=1

g′(B(ei))g1(B(ej))ρ(i− j).

Then, we can use two different approaches:

(i) If g ∈ D4,4, we can use Poincaré inequality:

Var(〈DZn, u〉H) ≤ E[‖D(〈DZn, u〉H)‖2H],

and apply twice the duality between D and δ (see Nualart and Zhou
[24]).

(ii) Another option is to write

Var(〈DZn, un〉H) = 1
n2σ4

n

×
n∑

ij=1
1≤j≤4

Cov
(
g′(B(ei1 ))g1(B(ei2 )), g′(B(ei3 ))g1(B(ei4 ))

)
ρ(i1 − i2)ρ(i3 − i4),

(3.5)

and use Gebelein’s inequality (Theorem 3.1.8 below) to estimate the
covariances.
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Theorem 3.1.8 (Gebelein inequality). Let H1 and H2 be subspaces of
H and denote by B1 and B2 the restrictions of B to H1 and H2, respectively.
Consider centered and square integrable functionals Fi(Bi), i = 1, 2. Then,

|E[F1(B1)F2(B2)]| ≤ sup
ϕ1∈H1,ϕ2∈H2,‖ϕ1‖H=‖ϕ2‖H=1

|〈ϕ1, ϕ2〉H|

×
√

Var(F1(B1))Var(F2(B2)).

Applying Gebelein’s inequality in (3.5), we have

Var(〈DZn, un〉H) = C

n2

n∑
i1,i2,i3,i4=1

|ρ(i1 − i2)ρ(i3 − i4)|

×max{|ρ(i1 − i3)|, |ρ(i1 − i4)|, |ρ(i2 − i3)|, |ρ(i2 − i4)|}

≤ C

n

∑
|ki|≤n,i=1,2,3

|ρ(k1)ρ(k2)ρ(k3)| = C

n

∑
|k|≤n

|ρ(k)|

3

.

This gives the rate

dTV (Zn, Z) ≤ C√
n

∑
|k|≤n

|ρ(k)|

 3
2

,

which was proved by Nourdin, Peccati and Yang in [18]. The proof of (3.4)
is more involved (see [15]]).
Example: Suppose that g(x) = |x|p − E[|Z|p], for any p ≥ 1. Consider
the particular case where ρ(k) ∼ k−α for some α > 0. Then, condition∑
k∈Z ρ(k)2 <∞ means α > 1

2 , and the rate is

dTV (Zn, Z) ≤ C ×


n−

1
2 if α > 1

n−
1
2
√

logn if α = 1
n−

α
2 if α ∈ [ 2

3 , 1)
n1−2α if α ∈ ( 1

2 ,
2
3 ).

For functions with Hermite rank d ≥ 3, Nualart-Zhou [24] proved that
for g ∈ D3d−2,4(R, γ), we have the estimate

dTV(Zn, Z) ≤ C1n
− 1

2
∑
|k|≤n

|ρ(k)|d−1

∑
|k|≤n

|ρ(k)|2
 1

2

+ C2n
− 1

2

∑
|k|≤n

|ρ(k)|2
 1

2
∑
|k|≤n

|ρ(k)|

 1
2

,
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where C2 = 0 if g = Hd. The proof is based on Poincaré inequality,
integration by parts and the Brascamp-Lieb inequaity, stated in the next
theorem, which is a generalization of Hölder and Young’s convolution
inequalities.

Theorem 3.1.9 (Brascamp-Lieb inequality). The following inequality
holds true ∑

k∈ZM

N∏
j=1

ρj(k · vj)dk ≤ C
N∏
j=1

(∑
k∈Z

ρj(k)1/pj

)pj
,

where ρj(x) ≥ 0, vj are nonzero vectors in RM , and the pj satisfy:

(i)
∑N
j=1 pj = M ,

(ii) For any I ⊂ {1, . . . ,M},
∑
j∈I pj ≤ dim(Span{vj , j ∈ I}).

As an application we can easily derive the estimate (3.3):

∑
|k1|,|k2|,|k3|≤n

|ρ(k1)ρ(k2)ρ(k3)ρ(k1 − k2 + k3)| ≤ C

∑
|k|≤n

|ρ(k)| 43

3

.

Indeed, in this case M = 3, N = 4, v1 = (1, 0, 0), v2 = (0, 1, 0),
v3 = (0, 0, 1) and v4 = (1,−1, 1). The pj must satisfy:

p1 + p2 + p3 + p4 = 3,

and for all j 6= k, pj ≤ 1 and pj + pk ≤ 2. Choosing pj = 3
4 , we obtain the

bound (3.3).

3.1.4 Optimal rate of convergence
By means of an intensive application of the Malliavin-Stein’s method,
Nourdin and Peccati obtained the following optimal rate of convergence in
total variation for random variables in a fixed chaos.

Theorem 3.1.10 (Nourdin and Peccati [17]). Assume E[F 2] = 1 and
F belongs a fixed Wiener chaos of order d ≥ 1. Then,

cΦ(F ) ≤ dTV (F,Z) ≤ CΦ(F ),

where Φ(F ) = max(|E[F 3]|,E[F 4]− 3).

In the framework of the Breuer-Major theorem, this yields (see Biermé,
Bonami, Nourdin and Peccati [2]):

dTV (Zn, Z) ∼ C√
n

∑
|k|≤n

|ρ(k)| 32

2

. (3.6)
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if g = H2 and

dTV (Fn, Z) ∼ c1
n

∑
|k|≤n

|ρ(k)|d−1

2 ∑
|k|≤n

|ρ(k)|2

+ c2
n

∑
|k|≤n

|ρ(k)| 2d3

3

1{d even}

for g = Hd, d ≥ 3.
Nualart and Zhou [24] proved (3.6) for g of rank d = 2 in D6,8(R, γ).

We conjecture that the estimate holds when g ∈ D3,8(R, γ). The
main ingredient in the proof of this result is the following theorem that
generalizes Theorem 3.1.10 to the case of random variables that do not
belong to a fixed chaos.
We will make use of the notation DuF = 〈DF, u〉H.

Theorem 3.1.11. Assume F = δ(u) ∈ D3,2 with u ∈ Dom δ and
E(F 2) = 1. Then if Z ∼ N(0, 1),

dTV (F,Z) ≤ (8 +
√

32π)Var(〈DF, u〉H) +
√

2π |E(F 3)|
+
√

32π E(|D2
uF |2) + 4π E(|D3

uF |) .

Proof. Let h : R→ [0, 1] be a Borel function. Using Stein’s equation, there
exists an absolutely continuous function fh such that ‖fh‖∞ ≤

√
π
2 and

‖f ′h‖∞ ≤ 2, satisfying

I := |E(h(F ))− E(h(Z))| = |E(f ′h(F )− Ffh(F ))| .

Applying duality yields

I = |E(f ′h(F )(1− 〈DF, u〉H))| .

Taking into account that E(〈DF, u〉H) = E(F 2) = 1, we have

I = |E ((f ′h(F )− E(f ′h(Z)))(1− 〈DF, u〉H)) | .

We apply Stein’s equation associated with ϕ = f ′h to obtain

I =
∣∣E ((f ′ϕ(F )− Ffϕ(F ))(1− 〈DF, u〉H)

)∣∣ .
where ‖fϕ‖∞ ≤ 4

√
π/2 and ‖f ′ϕ‖∞ ≤ 8. We continue to apply duality in

order to get

I =
∣∣E (f ′ϕ(F )(1−DuF )− 〈u,D(fϕ(F )(1−DuF ))〉H

)∣∣
=

∣∣E (f ′ϕ(F )(1−DuF )2)+ E
(
fϕ(F )D2

uF
)∣∣

≤ 8E[(1−DuF )2] + |E
(
(fϕ(F )− E(fϕ(Z)))D2

uF
)
|+ |E(fϕ(Z))E(D2

uF )|
=: I1 + I2 + I3 .
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For the term I1, we have

I1 = 8Var(〈DF, u〉H).

For the term I3, taking into account that

E(D2
uF ) = E(〈u,DF 〉Hδ(u)) = 1

2E(〈u,DF 2〉H) = 1
2E(F 3) ,

we obtain
I3 ≤ 2

√
π/2|E(F 3)| .

Finally, for the term I2, applying Stein’s equation associated with ψ = fϕ
yields

I2 =
∣∣E ((f ′ψ(F )− Ffψ(F ))D2

uF
)∣∣

≤
∣∣E (f ′ψ(F )(D2

uF −DuFD
2
uF )

)∣∣+
∣∣E (fψ(F )D3

uF
)∣∣ ,

where fψ satisfies ‖fψ‖∞ ≤ 16
√
π/2 and ‖f ′ψ‖∞ ≤ 4π. Finally,

E(|D2
uF −DuFD

2
uF |) ≤ 1

2
(
E(|D2

uF |2) + E(|1−DuF |2)
)
.

The proof is now complete.

3.2 Fractional Brownian motion

The fractional Brownian motion (fBm) BH = (BHt )t≥0 is a zero mean
Gaussian process with covariance

E(BHs BHt ) = RH(s, t) = 1
2
(
s2H + t2H − |t− s|2H

)
.

H ∈ (0, 1) is called the Hurst parameter.
The covariance formula implies E(BHt − BHs )2 = |t − s|2H . As a

consequence, for any γ < H, with probability one, the trajectories
t→ BHt (ω) are Hölder continuous of order γ:

|BHt (ω)−BHs (ω)| ≤ Gγ,T (ω)|t− s|γ , s, t ∈ [0, T ].

For H = 1
2 , B

1
2 is a Brownian motion.

Properties of the fractional Brownian motion:
1) The fractional Brownian motion has the following self-similarity
property. For all a > 0, the processes (a−HBHat)t≥0 and (BHt )t≥0 have
the same probability distribution (they are fractional Brownian motions
with Hurst parameter H).
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2) Unlike Brownian motion, the fractional Brownian motion has
correlated increments. More precisely, for H 6= 1

2 , we can write

ρ(n) = E(BH1 (BHn+1 −BHn )) = 1
2
(
(n+ 1)2H + (n− 1)2H − 2n2H)

∼ H(2H − 1)n2H−2,

as n→∞.
(ii) If H > 1

2 , then ρ(n) > 0 and
∑
n ρ(n) =∞ (long memory).

(iii) If H < 1
2 , then ρ(n) < 0 (intermittency) and

∑
n |ρ(n)| <∞.

3) The fractional Brownian motion has finite 1
H -variation: Fix T > 0.

Set ti = iT
n for 1 ≤ i ≤ n and define ∆BHti = BHti − BHti−1

. Then, as
n→∞,

n∑
i=1
|∆BHti |

1
H
L2(Ω),a.s.−→ cHT,

where cH = E[|BH1 |
1
H ].

Proof. By the self-similarity,
∑n
i=1 |∆BHti |

1
H has the same law as

T

n

n∑
i=1
|BHi −BHi−1|

1
H .

The sequence (BHi − BHi−1)i≥1 is stationary and ergodic. Therefore, the
Ergodic Theorem implies the desired convergence.

3.2.1 Fractional noise
Let ξk = BHk − BHk−1. The sequence (ξk)k≥1 is Gaussian, stationary and
centered with covariance

ρh(k) = 1
2
(
|k + 1|2H + |k − 1|2H − 2|k|2H

)
.

We have ρ(k) ∼ H(2H − 1)k2H−2 as k →∞. Then, for any integer d ≥ 2
such that H < 1− 1

2d , we have∑
v∈Z
|ρ(v)|d <∞.

By the Breuer-Major theorem, that if g ∈ Lp(R, γ), p > 2, has Hermite
rank d and H < 1− 1

2d

1√
n

bntc∑
k=1

g(∆kB
H) L→ σHB,

where σ2
H =

∑∞
m=d c

2
mm!

∑
k∈Z ρH(k)m and B is a Brownian motion.
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3.2.2 Asymptotic behavior of the the q-variation of
the fBm

For a real q ≥ 1, set cq = E[|Z|q], where Z ∼ N(0, 1). By self-similarity
and the Ergodic Theorem, the normalized p-variaton satisfies

npH−1
n∑
k=1
|BHk

n
−BHk−1

n

|p L= 1
n

n∑
k=1
|BHk −BHk−1|p

a.s.→ cp.

Then, if H < 3
4 , using that |x|p−cp has Hermite rank 2, the Breuer-Major

theorem leads to the following Central Limit Theorem:

1√
n

bntc∑
k=1

[
npH |BHk

n
−BHk−1

n

|p − cp
]
L→ σH,pB.

We can also deduce from the previous results, the following rate
of convergence of the quadratic variation. The sequence Zn =
1
σn

∑n
k=1

[
(BHk −BHk−1)2 − 1

]
, with Var(Zn) = 1, satisfies:

dTV (Zn, Z) ∼ cH ×


n−

1
2 if H ∈ (0, 2

3 )
n−

1
2 (logn)2 if H = 2

3
n6H− 9

2 if H ∈ ( 2
3 ,

3
4 ).
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Spatial averaging of
SPDEs

4.1 Stochastic heat equation
Consider the one-dimensional stochastic heat equation

∂u

∂t
= 1

2
∂2u

∂x2 + σ(u)∂
2W

∂t∂x
, x ∈ R, t ≥ 0,

with initial condition u0(x) = 1, driven by a space-time white noise ∂2W
∂t∂x .

We assume that σ is a Lipschitz function such that σ(1) 6= 0.
The space-time white noise is formally defined as a Gaussian centered

family of random variables {W (A), A ∈ B(R+ × R), |A| < ∞} with
covariance given by

E[W (A)W (B)] = |A ∩B|.

Writing W (A) = W (1A), we can extend W to H = L2(R+ ×R), in such a
way that

W (h) =
∫
R+×R

h(t, x)W (dt, dx)

is an isonormal Gaussian process on H. Moreover, W (s, t) = W ([0, s] ×
[0, t]), s, t ≥ 0 is a two-parameter Brownian motion.

4.1.1 Stochastic integration
For any t ≥ 0, let Ft be the σ-algebra generated by {W (A), A ∈
B([0, t] × R)}. A random field u = {u(t, x), t ≥ 0, x ∈ R} is adapted if
u(t, x) is Ft-measurable for each t ≥ 0 and x ∈ R. We can define the

58
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Itô-Walsh stochastic integral of adapted and measurable processes u such
that ∫

R+×R
E(u2(t, x))dtdx <∞,

in such a way that the following isometry property holds:

E

∣∣∣∣∣
∫
R+×R

u(t, x)W (dt, dx)

∣∣∣∣∣
2
 =

∫
R+×R

E(u2(t, x))dtdx.

Suppose that δ is the divergence operator in the framework of the
Malliavin calculus for the isonormal Gaussian process {W (h), h ∈ H}.
Then, If v ∈ L2(Ω×R+ ×R) is a square integrable adapted random field,
v belongs to the domain of δ and δ(v) coincides with the Itô-Walsh integral
of v:

δ(v) =
∫
R+×R

v(s, y)W (ds, dy).

4.1.2 Mild solution
The following is the fundamental result on the existence and uniqueness
of a mild solution to the stochastic heat equation.

Theorem 4.1.1 (Walsh [29]). There is a unique mild solution, which is
an adapted random field u such that for all p ≥ 2,

sup
x∈R

sup
0≤t≤T

E[|u(t, x)|p] <∞,

and u satisfies the integral equation:

u(t, x) = 1 +
∫ t

0

∫
R
pt−s(x− y)σ(u(s, y))W (ds, dy),

where pt(x) = 1√
2π exp(−x2/2).

Moreover, we have

sup
t∈[0,T ]

E(|u(t, x)− u(s, y)|p) ≤ CT,p(|s− t|p/4 + |x− y|p/2).

4.1.3 Malliavin differentiability of the solution
We will first show that the random variable u(t, x) belongs to the space
D1,p and obtain bounds for the p-moments of the derivative.

Proposition 4.1.1. For each (t, x) ∈ R+×R, u(t, x) ∈ D1,p for all p ≥ 2
and the derivative Ds,yu(t, x) satisfies
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(i) Ds,yu(t, x) = 0 if s > t and for s ≤ t:

Ds,yu(t, x) = pt−s(x, y)σ(u(s, y))

+
∫ t

s

∫
R
pt−r(x, z)Σ(r, z)Ds,yu(r, z)W (dr, dz)

where Σ(r, z), (r, z) ∈ R+ × R, is an adapted and bounded process.

(ii) For all t ∈ [0, T ], and p ≥ 2,

‖Ds,yu(t, x)‖p ≤ CT,p pt−s(x− y)

for almost all (s, y) ∈ [0, t]× R.

Remark: If the coefficient σ is of class C1 with bounded derivative,
then Σ(r, z) = σ′(u(r, z)).

Proof. The proof will be done in several steps:

Step 1: Consider the Picard approximations defined by u0(t, x) = 1, and
for each integer n ≥ 0 set

un+1(t, x) := 1 +
∫ t

0

∫
R
pt−s(x− y)σ(un(s, y))W (ds, dy). (4.1)

We know that, for each p ≥ 2,

lim
n→∞

E(|un(t, x)− u(t, x)|p) = 0.

and also supn supt∈[0,T ] supx∈R E(|un(t, x)|p) <∞.
By induction we will show that for each (t, x) ∈ [0, T ]× R and for each

p ≥ 2, un(t, x) ∈ D1,p and

‖Ds,yun(t, x)‖p ≤ CT,ppt−s(x− y). (4.2)

for almost all (s, y) ∈ [0, t]× R.
Suppose that the induction hypothesis holds for all integers less than

or equal to n. By the chain rule for Lipschitz functions (see Proposition
1.4.2), for each (t, x) ∈ [0, T ] × R, σ(un(t, x)) belongs to D1,p and there
exists a random variable Σn bounded by the Lipschitz constant of σ, such
that

D(σ(un(t, x))) = ΣnDun(t, x).

If σ is continuously differentiable, then Σn = σ′(un(t, x)). Then, applying
the properties of the divergence operator (see (1.12), we deduce that
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∫ t
0
∫
R pt−s(x− y)σ(un(s, y))W (ds, dy) is in D1,p and

Ds,yun+1(t, x)

=Ds,y

(∫ t

0

∫
R
pt−r(x− z)σ(un(r, z))W (dr, dz)

)
=pt−s(x− y)σ(un(s, y)) +

∫ t

r

∫
R
pt−r(x− z)ΣnDs,yun(r, z)W (dr, dz)

Now, let us estimate the Lp norm of Ds,yun+1(t, x).

E (|Ds,yun+1(t, x)|p) ≤ sup
r,z

E(|σ(un(r, z))|p)pt−s(x− y)

+ E

(∣∣∣∣∫ t

s

∫
R
pt−r(x− z)ΣnDs,yun(r, z)W (dr, dz)

∣∣∣∣p
)
.

The Burkholder-David-Gundy inequality yields, with a constant cp,

E

(∣∣∣∣∫ t

s

∫
R
pt−r(x− z)ΣnDs,yun(r, z)W (dr, dz)

∣∣∣∣p
)

≤ cppLip(σ)pE
(∣∣∣∣∫ t

s

∫
R
p2
t−r(x− z)|Ds,yun(r, z)|2dzdr

∣∣∣∣p/2
)

≤ cppLip(σ)p
(∫ t

s

∫
R
p2
t−r(x− z)‖Ds,yun(r, z)‖2pdzdr

)1/2

,

where Lip(σ) denotes the Lipschitz constant of σ. Therefore, the preceding
displayed computation yields that

‖Ds,yun+1(t, x)‖2p ≤K2
T,p p

2
t−s(x− y)

+ c2pLip(σ)2
∫ t

s

∫
R
p2
t−r(x− z)‖Ds,yun(r, z)‖2pdzdr,

where
KT,p := sup

n
sup

(s,y)∈[0,T ]×Rd
‖σ(un(s, y))‖p <∞.

By iterating this inequality, yields

‖Ds,yun+1(r, z)‖2p
≤K2

T,pp
2
r−s(z − y)

+ c2pLip(σ)2
n−1∑
k=1

∫
∆k−1(s,t)

∫
Rk−1

k−1∏
j=1

p2
rj−1−rj (zj−1 − zj)dzk−1drk−1 +Rn,



62 David Nualart

with the convention r0 = t, z0 = x, rk−1 = s and zk−1 = y. Here dzk−1
means dz1 · · · dzk−1 and ∆k−1(s, t) denotes the simplex {s ≤ rk−1 < · · · <
r1 < t}. The residual term Rn, taking into account that u(0, x) = 1, can
be expressed as

Rn = c2pLip(σ)2σ2(1)
∫

∆n(s,t)

∫
Rn

n∏
j=1

p2
rj−1−rj (zj−1 − zj)dzndrn,

with the same conventions as before. Then, using the fact that

p2
r−s(z) = C√

r − s
p r−s

2
(z) ,

and ∫
R
ps(x− y)pt(y − z)dy = ps+t(x− z) ,

we have for the integrals of the product of heat kernels above,∫
∆n(s,t)

∫
Rn

n∏
j=1

p2
rj−1−rj (zj−1 − zj)dzndrn

≤Cn
∫

∆n(s,t)

∫
Rn

n∏
j=1

(rj−1 − rj)−
1
2 p(rj−1−rj)/2(zj−1 − zj)dzndrn

=Cn(t− s)
n−1

2
Γ( 1

2 )n+1

Γ(n+1
2 )

p t−s
2

(x− y)

=Cn(t− s)n2
Γ( 1

2 )n+1

Γ(n+1
2 )

p2
t−s(x− y) .

This allows us to complete the proof of (4.2).

Step 2: We know that un(t, x) converges in Lp(Ω) to u(t, x). The
estimate (4.2) implies that

sup
n

E(‖Dun(t, x)‖pH) <∞.

By Proposition 1.4.1, this implies that u(t, x) belongs to D1,p. Applying
the operator D to the equation satisfied by u(t, x) we deduce point (i).

Step 3: Finally, it remains to show that the estimate (4.2) holds
for u(t, x). This follows from the fact that Dun(t, x) (by choosing a
subsequence) converges in the weak topology of Lp(Ω;H) to Du(t, x).
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4.2 Space averages
Fix t ≥ 0. We are interested in the asymptotic behavior as R→∞ of the
random variable ∫ R

−R
u(t, x)dx

Because the process x → u(t, x) is stationary and the covariance decays
fast, we expect a central limit theorem to hold for these space averages.
The mean of this variable is given by

E

(∫ R

−R
u(t, x)dx

)
= 2R.

Notice that∫ R

−R
u(t, x)d− 2R =

∫ t

0

∫
R

(∫ R

−R
pt−s(x− y)dx

)
σ(u(s, y))W (ds, dy).

Set
fR(s, y) =

∫ R

−R
pt−s(x− y)dx.

Notice that fR(s, y) ≤ 1 and∫
R
f2
R(s, y)dy =

∫
R

∫
[−R,R]2

pt−s(x− y)pt−s(x′ − y)dxdx′dy

=
∫

[−R,R]2
p2(t−s)(x− x′)dxdx′

≤ 2R. (4.3)

Then, using the isometry property of the stochastic integral we can
compute the variance σ2

R:

σ2
R :=

∫ t

0

∫
R

(∫ R

−R
pt−s(x− y)dx

)2

E[σ(u(s, y))2]dyds

=
∫ t

0
E(s)

∫
R
f2
R(s, y)dyds

=
∫ t

0
E(s)

∫
[−R,R]2

p2(t−s)(x− x′)dxdx′ds

≈ 2R
∫ t

0
E(s)ds,

as R→∞, with E(s) = E[σ(u(s, y))2].
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Fix t > 0 and set

FR = 1
σR

(∫ R

−R
u(t, x)dx− 2R

)
.

The main result is the following quantitative version of the central limit
theorem.
Theorem 4.2.1 (Huang, Nualart and Viitasaari [10]). Let Z ∼
N(0, 1). Then there exists a constant C, depending on t, such that

dTV (FR, Z) ≤ C√
R
,

where Z ∼ N(0, 1).
Proof. The main ingredient of the proof is the following result (see (2.7): If
FR ∈ D1,2 satisfies E[F 2

R] = 1 and FR = δ(vR), where vR ∈ Domδ. Then,

dTV (FR, Z) ≤ 2
√

Var(〈DFR, vR〉H).

We can write
FR = δ(vR),

where
vR(s, y) = 1

σR
σ(u(s, y))fR(s, y)1[0,t](s).

Moreover,

Ds,yFR = 1
σR

(∫ R

−R
Ds,yu(t, x)dx

)
1[0,t](s).

Therefore,

〈DFR, vR〉H = 1
σ2
R

∫ t

0

∫
R

∫
[−R,R]

fR(s, y)σ(u(s, y))Ds,yu(t, x)dxdyds.

We know that u(t, x) ∈ D1,p for all p ≥ 1 and for s ≤ t,

Ds,yu(t, x) =pt−s(x− y)σ(u(s, y))

+
∫ t

s

∫
R
pt−r(x− z)Σ(r, z)Ds,yu(r, z)W (dr, dz) ,

(4.4)

where Σ(r, z) is an adapted random field bounded by the Lipschitz
constant of σ. If σ ∈ C1, then Σ(r, z) = σ′(u(r, z)). This produces the
decomposition
〈DFR, vR〉H

= 1
σ2

R

∫ t

0

∫
R
f2

R(s, y)σ2(u(s, y))dyds

+ 1
σ2

R

∫ t

0

∫
R
fR(s, y)σ(u(s, y))

(∫ t

s

∫
R
fR(r, z)Σ(r, z)Ds,yu(r, z)W (dr, dz)

)
dyds.
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We have √
Var(〈DFR, vR〉H) ≤

√
2(A1 +A2),

where

A1 = 1
σ2

R

∫ t

0

(∫
R2
f2

R(s, y)f2
R(s, y′)Cov

(
σ2(u(s, y)), σ2(u(s, y′))

)
dydy′

) 1
2

ds

and

A2 = 1
σ2

R

∫ t

0

(∫
R2
fR(s, y)fR(s, y′)

∫ t

s

∫
R
f2

R(r, z)

× E
[
σ(u(s, y))σ(u(s, y′))Σ2(r, z)Ds,yu(r, z)Ds,y′u(r, z)

]
dzdrdydy′

) 1
2

ds .

Estimation of A2: Using

sup
y∈R

sup
s∈[0,t]

‖σ(u(s, y))‖L4(Ω) ≤ K(t),

|Σ(r, z)| ≤ Lip(σ),
‖Ds,yu(r, z)‖L4(Ω) ≤ Cpr−s(z − y),

and fR(s, y)fR(s, y′) ≤ 1 we obtain

A2 ≤
C

R

∫ t

0

(∫
R2

∫ t

s

∫
R
f2
R(r, z)pr−s(z − y)pr−s(z − y′)dzdrdydy′

) 1
2

ds .

Integrating y′, y over R, and using (4.3) we obtain

A2 ≤
C

R

∫ t

0

(∫ t

s

∫
R2
f2
R(r, z)dzdr

) 1
2

ds ≤ C√
R
.

Estimation of A1: By Clark-Ocone formula for two-parameter processes,

σ2(u(s, y)) = E[σ2(u(s, y))] +
∫ s

0

∫
R
E[Dr,z(σ2(u(s, y)))|Fr]W (dr, dz).

Then,

Cov(σ2(u(s, y)), σ2(u(s, y′)))

=
∫ s

0

∫
R
E
[
E[Dr,z(σ2(u(s, y)))|Fr]E[Dr,z(σ2(u(s, y′)))|Fr]

]
dzdr.

Applying the chain rule we have

Dr,z(σ2(u(s, y))) = 2σ(u(s, y))Σ(s, y)Dr,zu(s, y)
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and ∥∥E[Dr,z(σ2(u(s, y)))|Fr]
∥∥

2 ≤ 2K4(t)Lip(σ) ‖Dr,zu(s, y)‖4 .

This produces the estimate∣∣Cov
(
σ2(u(s, y)), σ2(u(s, y′))

)∣∣
≤ 4Lip(σ)2K2

4 (t)
∫ s

0

∫
R
‖Dr,zu(s, y)‖4 ‖Dr,zu(s, y′)‖4 dzdr

≤ C
∫ s

0

∫
R
ps−r(z − y)ps−r(z − y′)dzdr

= C

∫ s

0
p2s−2r(y − y′)dr.

Therefore,

A1 ≤
C

R

∫ t

0

(∫ s

0

∫
R2
f2
R(s, y)f2

R(s, y′)p2s−2r(y − y′)drdydy′
) 1

2

ds

≤ C

R

∫ t

0

(∫ s

0

∫
R2
fR(s, y)fR(s, y′)p2s−2r(y − y′)drdydy′

) 1
2

ds.

We have, by the semigroup property, integrating in y and y′,∫
R2
fR(s, y)fR(s, y′)p2s−2r(y−y′)dydy′ =

∫
[−R,R]2

p2t−2r(x−x′)dxdx′ ≤ 2R,

which yields,
A1 ≤

C√
R
.

This completes the proof.

4.2.1 Functional Central Limit Theorem
The following result is a functional version of the central limit theorem for
space averages.

Theorem 4.2.2 (Huang, Nualart and Viitasaari [10]). Set ξ(s) =
E[σ(u(s, y))2] for any s ≥ 0. Then(

1√
R

(∫ R

−R
u(t, x)dx− 2R

))
t∈[0,T ]

→
(∫ t

0

√
2ξ(s)dBs

)
t∈[0,T ]

,

as R tends to infinity, where B is a Brownian motion and the convergence
is in law on the space of continuous functions C([0, T ]).
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Proof. The proof will be done in two steps.

(i) Proof of tightness: Tightness is a consequence of the estimate:

E

(∣∣∣∣∣
∫ R

−R
u(t, x)dx−

∫ R

−R
u(s, x)dx

∣∣∣∣∣
p)
≤ C(T )R

p
2 (t− s)

p
2 .

for any 0 ≤ s < t ≤ T and any p ≥ 1.

(ii) Convergence of the finite-dimensional distributions: We use the
following result:

Proposition 4.2.1. Let F = (F (1), . . . , F (m)) be a random vector such
that F (i) = δ(v(i)) for v(i) ∈ Dom δ, i = 1, . . . ,m. Assume F (i) ∈ D1,2 for
i = 1, . . . ,m. Let Z be an m-dimensional Gaussian centered vector with
covariance matrix (Ci,j)1≤i,j≤m. For any C2 function h : Rm → R with
bounded second partial derivatives, we have

|E(h(FR))− E(h(Z))| ≤ m

2 ‖h
′′‖∞

√√√√ m∑
i,j=1

E
[
(Ci,j − 〈DF (i), v(j)〉H)2

]
,

where
‖h′′‖∞ = max

1≤i,j≤m
sup
x∈Rm

∣∣∣∣ ∂2h

∂xi∂xj
(x)
∣∣∣∣ .

Fix points 0 ≤ t1 < · · · < tm ≤ T and consider the random variables

F
(i)
R = 1√

R

(∫ R

−R
u(ti, x)dx− 2R

)
,

for i = 1, . . . ,m. We can write F (i)
R = δ(v(i)

R ), where

v
(i)
R (s, y) = 1[0,ti](s)

1√
R

∫ R

−R
pti−s(x− y)σ(u(s, y))dx.

Set FR = (F (1)
R , . . . , F

(m)
R ) and let Z be an m-dimensional Gaussian

centered vector with covariance

Ci,j := E[ZiZj ] = 2
∫ ti∧tj

0
ξ(r)dr,

where we recall that ξ(r) = E[σ(2(r, x))2].
Then, applying the previous proposition,

|E(h(FR))− E(h(Z))| ≤ m

2 ‖h
′′‖∞

√√√√ m∑
i,j=1

E
[(
Ci,j − 〈DF (i)

R , v
(j)
R 〉H

)2
]
.
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It suffices to show that for each i, j, 〈DF (i)
R , v

(j)
R 〉H converges in L2(Ω), as

R tends to infinity to Ci,j . This follows from the expression

〈DF (i)
R , v

(j)
R 〉H = 1

R

∫ ti∧tj

0

∫
R
fR(ti, s, y)fR(tj , s, y)σ2(u(s, y))dyds

+ 1
R

∫ ti∧tj

0

∫
R
fR(tj , s, y)σ(u(s, y))

×
(∫ ti

s

∫
R
fr(ti, r, z)Σ(r, z)Ds,yu(r, z)W (dr, dz)

)
dyds,

with the notation fR(t, s, y) =
∫ R
−R pt−s(x, y)dx.

4.2.2 Spatial colored noise
Consider the stochastic heat equation

∂u

∂t
= 1

2∆u+ σ(u)Ẇ ,

on R+ ×Rd with initial condition u(0, x) = 1. The function σ is Lipschitz
continuous and we assume that σ(1) 6= 0.
The noise Ẇ (t, x) is a centered Gaussian random field with covariance

E
[
Ẇ (t, x)Ẇ (s, y)

]
= δ0(t− s)γ(x− y),

where γ : Rd → R+∪{∞} is nonnegative definite and the Fourier transform
of γ is a tempered measure µ, that satisfies Dalang’s condition:∫

Rd

µ(dξ)
1 + |ξ|2 <∞.

We define formally the noise as a Gaussian centered family of random
variables

W = {W (ϕ), ϕ ∈ C∞0 ([0,∞)× Rd)},

with covariance

E[W (φ)W (ϕ)] =
∫ ∞

0

∫
R2d

φ(s, x)ϕ(s, y)γ(x− y)dxdyds

=
∫ ∞

0

∫
Rd
Fφ(s, ξ)Fϕ(s, ξ)µ(dξ)ds,

where Fφ refers to the Fourier transform in the space variable. Let H0 be
the closure of C∞0 (Rd) under the inner product

〈ϕ,ψ〉H0 =
∫
R2d

ϕ(x)ψ(y)γ(x− y)dxdy =
∫
Rd
Fϕ(ξ)Fψ(ξ)µ(dξ).
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Then, the Gaussian family W can be extended to the Hilbert space
H := L2(R+,H0), in such a way that {W (g), g ∈ L2(R+;H0)} is an
isonormal Gaussian process.
From Dalang [7] there is a unique mild solution, which is an adapted

random field u such that for all p ≥ 2,

sup
x∈R

sup
0≤t≤T

E[|u(t, x)|p] <∞,

and u satisfies the integral equation:

u(t, x) = 1 +
∫ t

0

∫
R
pt−s(x− y)σ(u(s, y))W (ds, dy),

where pt(x) = (2πt)−d/2e−|x|2/2t.
Consider the spacial averages

FR =
∫
BR

u(t, x)dx,

where BR = {x ∈ Rd : |x| ≤ R}. Chen, Khoshnevisan, Nualart and Pu
(work in progress) proved that if

∫
Rd γ(x)dx <∞, then, for all t > 0,

dTV

(
1
σR

∫
BR

[
u(t, x)− 1

]
dx, Z

)
≤ CR−d/2,

where σ2
R = Var

( ∫
BR

[u(t, x)− 1] dx
)
. Moreover, as R→ +∞,

σ2
R ∼ Rd

∫
Rd

Cov(u(t, x), u(t, 0))dx.

For the Riesz kernel γ(x) = |x|−β , with 0 < β < min(d, 2), that is not
integrable, we have the following result.

Theorem 4.2.3 (Huang, Nualart, Viitasaari and Zheng [11]). For
all t > 0, there exists a constant C = C(t, β), such that

dTV

(
1
σR

∫
BR

[
u(t, x)− 1

]
dx, Z

)
≤ CR−β/2.

where σ2
R = Var

( ∫
BR

[u(t, x)− 1] dx
)
. Moreover, as R→ +∞,

σ2
R ∼

(
kβ

∫ t

0
η2(s) ds

)
R2d−β ,

where η(s) = E[σ(u(s, y))] and kβ :=
∫
B2

1
|x1 − x2|−βdx1dx2.
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In [11]], the authors have also obtained a functional version of the above
central limit theorem. That means, as R→ +∞, we have(

R
β
2−d

∫
BR

[
u(t, x)− 1

]
dx

)
t∈[0,T ]

⇒
(√

kβ

∫ t

0
η(s)dBs

)
t∈[0,T ]

,

where B is a Brownian motion and the convergence takes place on the
space of continuous functions C([0, T ]). If σ(x) = x, then the first chaos
dominates (non-chaotic behavior). This is not true for space-time white
noise and σ(x) = x.

4.2.3 Stochastic wave equation
Consider the stochastic wave equation on on R+ × R

∂2u

∂t2
= ∂2u

∂x2 + σ(u)Ẇ ,

where Ẇ = ∂2W
∂t∂x and W is a two parameter centered Gaussian process

with covariance

E [W (t, x)W (s, y)] = (s ∧ t)1
2
(
|x|2H + |y|2H − |x− y|2H

)
,

where H ∈ [1/2, 1). That is, W is a Brownian motion in time and a
fractional Brownian motion with Hurst parameter H is space.
We assume the initial conditions u(0, x) = 1 and ∂u

∂xu(0, x) = 0 and σ is
Lipschtiz. There is a unique mild solution such that

u(t, x) = 1 + 1
2

∫ t

0

∫
R

1{|x−y|≤t−s}σ(u(s, y))W (ds, dy) .

Set

FR(t) := 1
σR

(∫ R

−R
u(t, x)dx− 2R

)
,

where σ2
R = Var

(∫ R
−R u(t, x)dx

)
. Then, we can prove the following version

of the central limit theorem for spatial averages.

Theorem 4.2.4 (Delgado, Nualart and Zheng [8]). Let Z ∼ N(0, 1).
Then there exists a constant C, depending on t, such that

dTV (FR(t), Z) ≤ CRH−1.

It is also possible to show the following functional central limit theorem.
Set η(s) = E[σ(u(s, y))] and E(s) = E[σ2(u(s, y))], s ≥ 0.
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Theorem 4.2.5 (Delgado-Nualart-Zheng [8]). As R tends to infinity,

(i) If H = 1
2 ,(

1√
R

(∫ R

−R
u(t, x)dx− 2R

))
t∈[0,T ]

→
(∫ t

0
(t− s)

√
2E(s))dBs

)
t∈[0,T ]

,

(ii) If H ∈ (1/2, 1),(
R−H

(∫ R

−R
u(t, x)dx− 2R

))
t∈[0,T ]

→
(√

2
∫ t

0
(t− s)η(s)dBs

)
t∈[0,T ]

,

where B is a Brownian motion and the convergence is in law in C([0, T ]).

We would like to point out that in (ii) the first chaos dominates when
σ(x) = x.
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