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smooth variations under consideration are infinitesimally isometric or, in
greater generality, infinitesimally conformal. The concept of infinitesimal
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Hence, these lecture notes contain results about nontrivial infinitesimal
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Preface

The main purpose of these lecture notes is to present recent results in the
theory of infinitesimal variations of submanifolds. The smooth variations
under consideration are infinitesimally isometric or, in greater generality,
infinitesimally conformal. For the most part, we are devoted to Euclidean
submanifolds but there is one chapter where the round sphere and the
hyperbolic space are the ambient spaces. The results contained in this
chapter have not been published elsewhere, at least, in the present form.

The concept of infinitesimal variation is the infinitesimal analogue of an
isometric variation and refers to smooth variations that preserve lengths
“up to the first order”. In the more general case of conformal infinitesimal
variations, lengths are preserved similarly but now up to a conformal
factor. It is already known from classical differential geometry that the
convenient approach to study infinitesimal variations is to focus on the
variational vector field of the variation. We call these vector fields in
the isometric case an infinitesimal bending, and a conformal infinitesimal
bending in the more general conformal case. Consequently, the arguments
in these lecture notes are mostly about nontrivial infinitesimal bendings
and the geometry of the submanifolds that carry them.

The study of smooth variations of Euclidean surfaces was already a hot
topic in differential geometry in the 19" century. In fact, initially there
was no distinction made between isometric variations and the ones that
are only infinitesimally isometric, but that changed mostly due to the
work of G. Darboux. The subject of isometric variations of surfaces was
proposed for competition by the French Academy of Sciences in 1859, the
main problem being to establish the differential equations that determine
all the surfaces isometric to a given one. The prize was obtained by a
young engineer called E. Bour, while competing with O. Bonnet and the
Italian geometer D. Codazzi. Even though Bonnet had already solved
the problem, it was Bour who won because for surfaces of revolution he
managed to integrate the differential equations. Part of Bour’s work was
published in [4]. For a modern account of some aspects of the theory of
variations of surfaces we refer to the book of Spivak [36].

The study of isometric variations of hypersurfaces M™, n > 3, in
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Euclidean space R™*! is also a classical subject going back to the first
part of the last century. In fact, the local classification of isometrically
deformable hypersurfaces, by means of two alternative parametrizations,
is due to U. Sbrana [34] in 1909 and E. Cartan [6] in 1916. Sbrana seems
to have been a student of L. Bianchi [2], who in 1905 already considered
the three-dimensional case. A modern presentation of the local parametric
classifications by Sbrana and Cartan, as well as several further results, have
been given by Dajczer-Florit-Tojeiro [12], and can also be seen in [21].

Although produced later but published earlier than his other work, the
case of infinitesimal variations of hypersurfaces was taken up by Sbrana
[33] in 1908. It turns out that the class of hypersurfaces that admit an
infinitesimal variation is much larger than the class that allow an isometric
variation, a fact that may be seen as a surprise. A complete classification
was given by Dajczer-Vlachos [23]. Finally, as for complete hypersurfaces
see Dajczer-Gromoll for isometric variations [13] and Jimenez [28] in the
infinitesimal case. The latter work is also part of these lecture notes.

In a rather long and very difficult paper, Cartan [6] in 1917 gave
a parametric classification of the conformally deformable Euclidean
hypersurfaces M™ of dimension n > 5 with the use of the method of moving
frames. These are smooth variations of a hypersurface by conformal ones.
A modern version of his result, as well as an alternative classification, has
been given by Dajczer-Tojeiro [20]. This result is also contained in [21].
The case n = 4 was subsequently treated by Cartan in [8] but only in a
special case, thus the full classification remains an open problem. Finally,
the parametric classification of the Euclidean hypersurfaces that admit
conformal infinitesimal bendings is due to Dajczer-Jimenez-Vlachos [18],
and is one of the topics considered here.

In these lecture notes we discuss the case of submanifolds other than
surfaces. A so-called Fundamental Theorem for infinitesimal bendings,
extending to any codimension the result for hypersurfaces in [23],
was obtained by Dajczer-Jimenez [15]. As in the theory of isometric
immersions, a system formed by three equations, called the fundamental
equations, is given. These equations are obtained in terms of a pair of
tensors associated to the bending and are shown to be the integrability
conditions for the equations that determine an infinitesimal bending. A
Fundamental Theorem in the more general case of conformal infinitesimal
bendings is due to Dajczer-Jimenez [17], and is also part of these lecture
notes.

Dajczer and Rodriguez [19] showed that submanifolds in low
codimension are generically infinitesimally rigid, that is, generically
only trivial infinitesimal variations are possible. In fact, they proved
that certain algebraic conditions on the second fundamental form of an
immersion, known to give isometric rigidity, yield infinitesimal rigidity as
well. For instance, a necessary condition (but far from being sufficient!)



for a hypersurface M™ in R™*! to admit an infinitesimal variation is to
have at any point at most two nonzero principal curvatures. In fact,
this result is already contained in the book of Cesaro [9] published in
1886. For higher codimension, algebraic conditions that yield rigidity are
rather strong requirements. They are given in terms of either the type
number or the s-nullities of the immersion. A rigidity result for conformal
infinitesimal variations is due to Dajczer-Jimenez in [17]. The proof turns
out to be much more elaborate than in the case of infinitesimal variations
and is also part of these lecture notes.

A brief outline of each chapter is given next.

Chapter 1 establishes several basic facts of the theory of submanifolds
that are intensively used throughout the rest of these lecture notes. First,
the second fundamental form and normal connection of an isometric
immersion are recalled by means of the Gauss and Weingarten formulas,
and their compatibility equations are given, namely, the Gauss, Codazzi
and Ricci equations. Then the so-called Fundamental Theorem for
isometric immersions is stated, according to which these data are sufficient
to determine uniquely any Euclidean submanifold. One topic covered in
this chapter is the most basic but fundamental result in the theory of flat
bilinear forms. Another topic is the differential equations satisfied by the
splitting tensor of a submanifold carrying a foliation of relative nullity, and
some of their consequences.

The remaining of these lecture notes can be seen as formed by two
parts. Constituted of five chapters, the first part is devoted to infinitesimal
variations of submanifolds, whereas the second part of two chapters deals
with the more general class of conformal infinitesimal variations.

Chapter 2 first introduces the notion of infinitesimal variation of an
FEuclidean submanifold. It is then discussed why, in order to study
infinitesimal variations, one has to understand their variational vectors
fields, called infinitesimal bendings. The first result is a Fundamental
Theorem for infinitesimal variations. It is shown that a certain system
of three equations for two tensors are the integrability conditions for the
equations that determine an infinitesimal bending. Moreover, it turns out
that this infinitesimal bending is unique in a precise sense. The second part
of the chapter deals with the rigidity problem of infinitesimal variations
for submanifolds in low codimension. It is shown that certain conditions
on the second fundamental form of the submanifold imply rigidity in the
sense that any infinitesimal variation has to be trivial.

Chapter 3 first observes that, if an Euclidean submanifold admits an
infinitesimal variation, then any embedded submanifold of that manifold
inherits, by composition of immersions, an infinitesimal variation. Thus, in
order to study the geometry of the submanifolds that admit a nontrivial
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infinitesimal variation, this situation should somehow be excluded, and
this leads to the concept of genuine infinitesimal variation. The main
purpose of this chapter is to characterize the Euclidean submanifolds in
low codimension that admit a genuine infinitesimal variations. Two local
and one global results are given, the latter for compact submanifolds.

Chapter 4 considers the case when the ambient space is either the round
sphere or the hyperbolic space. Some results of the previous chapters are
extended by means of similar techniques to submanifolds of these space
forms.

Chapter 5 is devoted to analyzing the structure of the infinitesimal
variation of an Euclidean submanifold that is intrinsically a Riemannian
product of manifolds. Conditions are given, both local and global, that
imply that any infinitesimal variation of the submanifold has to be the sum
of infinitesimal variations of isometric immersions of each of the factors.

Chapter 6 is about the classification of the complete Euclidean
hypersurfaces that admit nontrivial infinitesimal variations. It is shown
that the variations can only occur along a ruled strip. A ruled strip is
a ruled hypersurface with complete rulings, and possible boundary, such
that the rulings are tangent to the boundary. In other words, it is an affine
vector bundle over a curve with or without end points.

Chapter 7 deals with conformal infinitesimal variations. This concept
belongs to the realm of conformal geometry since, by composing the
submanifold with a conformal transformation of the ambient Euclidean
space, we obtain a new conformal infinitesimal variation. This class of
variations had received limited attention until recently; see Yano [37]
for an exception. The main contents of the chapter are a Fundamental
Theorem for conformal infinitesimal variations and a rigidity theorem for
these objects. Both results are in a similar spirit than in the case of
infinitesimal variations discussed above.

Chapter 8 gives a parametric classification of the FEuclidean
hypersurfaces of dimension at least five that admit nontrivial conformal
infinitesimal variations. The key ingredients in the classification are the so-
called conformal Gauss parametrization and a class of surfaces in either the
Euclidean or Lorentzian sphere. Finally, the classification in the conformal
case is used to give a parametric classification of the hypersurfaces that
admit nontrivial infinitesimal variations.

Finally, we point out that results already contained in [21] that strongly
relate to the subjects in these lecture notes will be described or referred
to but not proved again, at least, with a similar proof.



Chapter 1

Preliminaries

The purpose of this chapter is to recall several concepts and basic results
concerning isometric immersions between Riemannian manifolds.

Let M™ be an n-dimensional connected differentiable manifold endowed
with a Riemannian metric (, ) and denote by V the associated Levi-Civita
connection. The latter is the only torsion-free connection on the tangent
bundle T'M of the manifold compatible with the metric, that is, it satisfies
the conditions

X{Y,Z2) =(VxY,Z) + (Y, VxZ)

and

VxY - VyX =[X,Y] (1.1)
for any X,Y,Z € X(M). Here and elsewhere X(M) stands for the set of
smooth local vector fields of M™. The set of smooth local sections of a
more general vector bundle F over M" is denoted by I'(E). The curvature
tensor of M™ is defined by

R(X,Y)Z =VxVyZ —-VyVxZ -V xy|Z,
where X,Y, Z € X(M). The Ricci tensor is defined by
Ric(X,Y) =tr(Z = R(Z,X)Y),

where X, Y € X(M) and tr denotes taking the trace. The Ricci curvature
in the direction of a unit vector field X € X(M) is given by

Ric(X) = Ric(X, X).

n—1

9
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1.1 Isometric immersions

A smooth map f: M"™ — M™ between two differentiable manifolds is
called an immersion if the differential f.: T, M — Tf(w)M is injective for
all x € M™. Usually f(M), or just f for simplicity, is referred to as a
submanifold of M™. The manifold M™ is called the ambient space and
m — n the codimension of f.

An immersion f: M™ — M™ between Riemannian manifolds is said to
be an isometric immersion if the metric induced by f coincides with that
of M™, that is, if

X Y g = (X, V)t (1.2)

holds for any X,Y € X(M). For simplicity of notation, in the sequel we
drop the subindices of the inner products.

Let f: M™ — M™ be an isometric immersion. The orthogonal
complement of f,T,M in Tf(z)M at @ € M™ is denoted by N;M(x)
and called the normal vector space of f at x. Hence, according
to this decomposition the pull-back vector bundle f*T'M decomposes
orthogonally as

f*TM = f.TM & N;M,

where Ny M is called the normal bundle. The Levi-Civita connection V of
M™ induces a connection on f*TM which, for simplicity, is also denoted
by V. Given X,Y € X (M) and taking the tangent and normal components
of Vx f.Y, we obtain the relation

Vx£Y = £.VxY +a(X,Y)

known as the Gauss formula.

The map a: X(M) x X(M) — T'(N;M) above is called the second
fundamental form of f. Since [f,X,f.Y] = f.[X,Y] and both V and
V satisfy (1.1), then we have that « is symmetric. It is easily seen that «
is C'*°-bilinear, hence it can be regarded as a symmetric tensor, namely,
that o € Hom?(T M, TM; N;M).

Fix x € M"™ and let £ € NyM(x), then the shape operator A¢ of f at x
in the direction of £ is defined by

(AeX,Y) = (X, Y), )

for any X,Y € T,M. Notice that A is symmetric. ~Hence, any
& € T(NyM) determines a symmetric endomorphism A¢ of TM. If
X, Y € X(M) and £ € T'(N;M), then taking the derivative of (f.Y,£) =0
in the direction of X € X(M) gives

(AeX,Y) = —(£.Y, Vx§).
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Thus —A¢X is the tangent component of V x&. The normal component of
Vx¢ for € € T(NyM) determines a connection on NyM compatible with
the induced metric from M™. Denoted by V= this Riemannian connection
is called the normal connection of f. Then, we have the Weingarten
formula given by R
Vx€=—fildeX +Vxé

for any X € X(M) and £ € I'(NyM).

Finally, the normal curvature tensor is the curvature tensor of the
normal connection and thus given by

RH(X,Y)E = VEVEE — VEVEE — Vi y 6,
where X, Y € X(M) and £ e T'(NsM).

1.2 The fundamental equations

Given an isometric immersion f: M™ — M™, then comparing the
curvature tensors of both manifolds yields a set of three equations called
the fundamental equations of the immersion. In fact, if the ambient space
possesses constant sectional curvature then these are the compatibility
equations of an isometric immersion, namely, of equation (1.2).

Using the Gauss and Weingarten formulas gives

ﬁxﬁyf*z = @Xf*VYZ + @X(X(Y, Z)
= f(VXVYZ — Auiy.y X) + (X, Vv Z) + Vxa(Y,Z)  (1.3)

for any X,Y, Z € X(M). Let R and R denote the curvature tensors of M™
and M™ respectively. Taking the tangent component of R(X,Y) f.Z and
using (1.3) yields

(R(X,Y) [ Z) porm
= (VxVy foZ =VyVx fZ =V ix v [+ 2) f.rum
= (VXYY Z — AaynX = VyVxZ+ Aaix)Y — VixyZ)
= f(R(X,Y)Z — Ayv, ) X + Aax,2)Y)

for any X,Y,Z € X(M). The Gauss equation is obtained taking the inner
product of both sides of the proceeding equation with W € X(M), that is,

(R(X,Y)Z, W) = (R(X,Y)Z,W)+{a(X, W), Y, Z))—{a(X, Z), a(Y, W),

where f,W and W have been identified for simplicity.
Computing the normal component of R(X ,Y)Z yields the Codazzi
equation
(R(X7 YV)Z)l = (v)L(a)(Yv Z) - (VEL/O‘)(X’ Z)’
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where
(Vxa)(Y, Z2) = Vxa(Y, Z) — a(VxY, Z) — a(Y,Vx Z)

is the covariant derivative of the second fundamental form.
Taking the normal component of R(X,Y)¢ for & € I'(NyM) and using
the Gauss and Weingarten formulas gives

(R(X,Y)E)F = RH(X, V)¢ — a(X, AcY) + a(A: X, Y).

This equation is known as the Ricci equation. After taking the inner
product with n € NyM it takes the form

<RL(X? Y)§,77> = <R(X’ Y)£’77> + <[A57ATZ]X’ Y>7

where [, ] stands for the commutator of operators.

Next we focus on immersions f: M™ — Q7*, where Q) denotes a simply
connected complete space form with sectional curvature c¢, that is, the
Euclidean space R™, the sphere S/ or the hyperbolic space H, according
to whether ¢ = 0, ¢ > 0 or ¢ < 0, respectively. The ambient space is
endowed with the usual metric given by the inner product denoted by (, ).
In fact, we also use (, ) for the metric induced by f on M™. In this case,
the fundamental equations take the following forms:

The Gauss equation

(R(X,Y)Z,W) = e{(X AY)Z,W) + (a(X, W), (Y, 2)) — (a(X, Z), oY, W),

(1.4)
or equivalently
R(X,Y)Z =c(XNY)Z + Aaiy, 2y X — Aaix,2)Y-
The Codazzi equation
(Vxa)(Y,Z) = (Vya)(X, Z). (1.5)
The Ricci equation
(RH(X,Y)E,m) = ([Ae, A) X, Y). (1.6)

The fundamental equations for a hypersurface f: M™ — Qu*! have a
simpler form. Let N € I'(N;M) be a (local) unit normal vector field. If
¢ = 0, we can also regard N as the smooth map N: M™ — S} called the
Gauss map of f. Associated to N we have the shape operator Ay, which
we just denote by A. In this case, we also call A the second fundamental
form of f. Since the Ricci equation in this case is clearly trivial, then the
fundamental equations written in terms of A are as follows:
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The Gauss equation
RX,Y)Z =c(X NY)Z+ (AX NAY)Z.
The Codazzi equation

(VxA)Y = (VyA)X.

The Fundamental Theorem of submanifolds is only stated while a proof
can be seen in [21].

Theorem 1.1. Existence: Let M™ be a simply connected Riemannian
manifold, let € be a Riemannian vector bundle of rank p over M™
with compatible connection V¢ and curvature tensor R®, and let o €
L(Hom?(TM,TM;¢&)) be a symmetric tensor. For each & € T'(€), define
A% € T(End(TM)) by

(AEXY) = (a®(X,Y),€).

If (VE, a8, Ag) satisfies the Gauss, Codazzi and Ricci equations, then there
exist an isometric immersion f: M™ — QP and a vector bundle isometry

¢: &= Ny M such that Vip = ¢V and of = poat.

Uniqueness: Let f,g: M™ — QU*P be isometric immersions of a
Riemannian manifold M™. Assume that there is a vector bundle isometry
¢: NyM — NgM such that IV =9VLe and poaf = af. Then there
is an isometry 7: QPP — QPP such that 7o f = g and T|N;m = ¢.

In the case of hypersurfaces the above result is as follows.

Theorem 1.2. Existence: Let M™ be a simply connected Riemannian
manifold, and let A € T(End(TM)) be a symmetric tensor satisfying the
Gauss and Codazzi equations. Then there exist an isometric immersion
f: M™ — Qand a unit normal vector field N such that A coincides
with the shape operator Ay of f with respect to N.

Uniqueness: Let f,g: M™ — QP! be isometric immersions of an
orientable Riemannian manifold M™ with, respectively, unit normal vector
fields N7 and N9. If the corresponding shape operators satisfy A = +A9,
then there exists an isometry 7: QU1 — QUF! such that 7o f = g and
7 Nf =4+N9,

Remark 1.3. The compatibility conditions (1.4), (1.5) and (1.6) also hold
when we consider an isometric immersion f: M"™ — L™ of a Riemannian
manifold M™ into the standard flat Lorentzian space form L. Moreover,
Theorem 1.1 also holds if we let € be a semi-Riemannian vector bundle
over M™. More precisely, if the metric on € is Lorentzian then Theorem
1.1 holds with LL"*? as ambient space.
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1.3 The relative nullity

An isometric immersion f: M™ — M™ is said to be totally geodesic at
x € M™ if its second fundamental form « at = vanishes. The submanifold
f is called totally geodesic if it is totally geodesic at every point, that is,
if o is identically zero. An isometric immersion f: M"™ — M™ is said
to be umbilical at x € M™ if there is n € NyM(x) such that the second
fundamental form satisfies

a(X,Y)(x) = (X, Y)n

for any X,Y € T,M. Then a submanifold is said to be umbilical if it is
umbilical at every point. Of course, totally geodesic submanifolds are also
umbilical.

The totally geodesic (respectively, umbilical) submanifolds of R™ are
open subsets of affine subspaces (respectively, round spheres). Regarding
the sphere S™ as a hypersurface of R™1 its totally geodesic (respectively,
umbilical) submanifolds are open subsets of the intersections of S7* with
linear (respectively, affine) subspaces of R™*! and similarly for the
hyperbolic space H™ seen as a hypersurface of the Lorentzian space L1,

Given a symmetric bilinear form v: V' x V. — W, where V and W are
finite dimensional real vector spaces, the nullity subspace N(v) C V of ~
is

NHy)={XeV:4X,Y)=0 forall Y e V}.

The relative nullity subspace A(x) C T, M at x € M™ of an isometric
immersion f: M™ — M™ is A(z) = N(a)(x). The dimension v(x) of A(x)
is called the index of relative nullity of f at x.

A smooth distribution £ C TM on a Riemannian manifold M™ is said
to be totally geodesic if V1S € T'(E) for any S,T € I'(E).

Proposition 1.4. Let f: M™ — Q" be an isometric immersion. Then
the index of relative nullity is v upper semi-continuous. In particular, the
subset
My={x e M": v(z) =1y},

where v attains its minimum value vy is open. Moreover, on any open
subset U C M™ where v is constant A(x) determines a smooth totally
geodesic distribution. Thus A is integrable on U and the restriction of f
to each leaf is a totally geodesic submanifold.

Proof. This is Exercise 1.1. O
The leaves of the relative nullity distribution on an open subset U C M™

where the index of relative nullity v > 0 is constant form the relative nullity
foliation of U.
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For an isometric immersion f: M" — R™, a vector n € NyM(x) is
called a principal normal of f at z € M™ if the subspace

Ey(x)={T € T,M: o(T,X)=(T,X)n forall X e T,M}

is nontrivial. A normal vector field n € T'(N;M) is called a principal
normal vector field of f with multiplicity ¢ > 0 if E, (z) has dimension ¢
at any point € M™. In particular, if f: M™ — R™*! is a hypersurface
with Gauss map N, then a normal vector field n(x) = AMa)N(z) is a
principal normal at z if and only if A\(x) is a principal curvature of f at x,
that is, if and only if A(z) is an eigenvalue of A(z).

A smooth distribution £ C T'M of a Riemannian manifold is called
umbilical if there exists a smooth section § € I'(E+) such that

(Vo S, X) = (T, 5)(6, X)

for all 7,5 € T'(E) and X € T(E1). It follows that an umbilical
distribution is integrable and its leaves are umbilical submanifolds of M™.
For an umbilical distribution E of M™, if the vector field § € I'(E+) as
above satisfies that

(Vrd)gr =0
for all T € T'(FE) then we say that E is a spherical distribution.

Proposition 1.5. Let f: M™ — R™ be an isometric immersion with a
principal normal vector field n of multiplicity q. Then E, is a smooth
distribution. Moreover, if ¢ > 2 then E,, is a spherical distribution and the
restriction of f to each leaf is an umbilical submanifold of R™.

Proof. See Exercise 1.2. U

1.4 The splitting tensor

Let D C TM denote a tangent smooth distribution of a Riemannian
manifold M™. Then the tangent bundle splits orthogonally as TM =
D @ D+ and any tangent vector field X € X(M) decomposes accordingly
as

X=Xp+Xp..

The splitting tensor C: T'(D) x T'(D+) — I'(D1) of D is defined by
CT,X)=CrX =—(VxT)pe.

Clearly the tensor is C°°(M)-linear with respect to the second variable.
This is also the case for the first variable since

(VX(‘DT)DJ. = @(VxT)DJ_
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for any ¢ € C>°(M). Thus the value of C7 X (z) only depends on the values
of T and X at x € M™. Any T € D(z) determines an endomorphism
Cr: D*(x) — D*(z) called the splitting tensor of D at x € M™ with
respect to T'.

The splitting tensor encodes information of the distribution D+. For
instance D is integrable if and only if C7 is self-adjoint for any 7' € T'(D),
in which case Cr is the shape operator with respect to T of the inclusion
of the leaves of D+. Then the distribution D= is totally geodesic if and
only if C' vanishes. More generally, D' is umbilical if and only if there is
S € I'(D) such that

Cr =(T,S)I

for any T' € T'(D). The proofs of these facts are left as Exercise 1.3.

We now focus on the properties of the splitting tensor of the relative
nullity distribution A of an isometric immersion f: M™ — R™. In fact,
we consider the slightly more general case of a totally geodesic distribution
D C A of M™ with splitting tensor C. In the sequel V" stands for the
induced connection on D' and V1Cyg denotes the tensor

(VrCs)X = (VrCsX)pr — Cs(VrX)pe,

where S,T € T'(D) and X € I'(D1).
Proposition 1.6. The splitting tensor of D C A satisfies the equations:

VrCs = CsCr + Cy,s, (1.7)
(VXCr)Y = (V¥Cr)X = Civxn)pY — Crvyr)p X (1.8)
and

for any S,T € T(D), X,Y € T(D1) and £ € T(N;M). In particular, we

have that D
-0 = 2, (1.10)

where v = (t) s a unit speed geodesic contained in a leaf of D.

Proof. See Exercise 1.4. O

Proposition 1.7. Given an isometric immersion f: M™ — R™ and
a smooth symmetric bilinear form B: TM x TM — NyM assume that
A*(z) = ANN(B)(z) has constant dimension v* > 0 on an open subset
U C M"™. Suppose further that on U the smooth distribution A* is totally
geodesic with splitting tensor C and that

(VxB(Y. Z) = (V¥ B)(X,2) (1.11)
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holds for any X € T(A*) and Y, Z € X(M). If v: [0,b] — M™ is a unit
speed geodesic such that ¥([0,0)) is contained in a leaf of A* in U, then
A*(y(b)) = P5(A*(7(0))) where P is the parallel transport along ~y from
~v(0) to y(t). In particular, we have that v*(y(b)) = v*(y(0)) and the
tensor Cy extends smoothly to [0,b].

Proof. Let E be given by the orthogonal decomposition TM = A* & E.
Define the tensor J: E — E as the solution in [0,b) of

b

dtJ—f—CyOJ:O

with initial condition J(0) = I. In fact, if we take the parallel transport
along v of an orthonormal basis of E(y(0)), the previous equation can be
seen as an ordinary differential matrix equation. We have from (1.10) that
D2%J/dt? = 0, and hence J extends smoothly to P3(E(0)) in v(b). Let
Y and Z be parallel vector fields along v such that Y (t) € E(t) for each
t €10,b). Since v' € A*, it follows from (1.11) and the definition of J that

VLB(JIY, Z) = (VEB)(JY, Z) + B(DJY/dt, Z)
= (ViyB) (Y. 2) + B(DJY/dt, Z)
=B(CyJY + DJY/dt, Z)
= 0.

Thus B(JY,Z) and «(JY,Z) are parallel along . In particular J is
invertible in [0,b]. By continuity P5(A*(7(0))) C A*(y(b)), and then
Py(A*(7(0))) = A*(y(b)). Finally the tensor C. extends to [0,b] as
C =—DJjdto 1. 0

If the leaves of the relative nullity foliation are complete manifolds we
have the following result.

Proposition 1.8. Let f: M™ — R"™P be an isometric immersion.
Assume that U C M™ is an open subset where the index of relative nullity
v(z) = vy is constant and the relative nullity leaves are complete. Then,
for any xo € U and Ty € A(xg) the only possible real eigenvalue of Cr, is
zero. Moreover, if v(t) is a geodesic through xo tangent to Ty then

C’Y'(t) = TBCTO (I - tCTo)_l(Tf])_lv

where P is the parallel transport along v from xo. In particular, ker C.y
is parallel along .

Proof. This is Exercise 1.5. O
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An isometric immersion g: M™ x R¥ — R™ x R* of a Riemannian
product manifold M™ x R* is called a k-cylinder (or just a cylinder) over
the isometric immersion f: M™ — R™ if it factors as

g=fxI: M"xRF 5 Rk
where I: R¥ — RF is the identity map.

Cylinders are the simplest examples of Euclidean submanifolds carrying
a totally geodesic distribution contained in the relative nullity subspaces.
In fact, we have that {z} x R¥ is contained in the relative nullity subspace
of g at (z,y) € M™ x R*.

Proposition 1.9. Let f: M™ — R™ be an isometric immersion and let
D be a totally geodesic tangent distribution of rank k such that D C A.
If the splitting tensor of D vanishes then f is locally a k-cylinder over an
isometric immersion g: L% — R™~k,

Proof. We have from Exercise 1.3 that the distribution D+ is totally
geodesic. In particular, it is integrable. Since D C A, we have that
f.D is a constant subspace along M™ in R™. Let i: L"™* — M™ be the
inclusion of a leaf of D*. Since f,D is constant, then g = f o satisfies
g(L) € R™F where R™~* = (f,D)*, and hence f coincides locally with
the k-cylinder over g. O

1.5 Flat bilinear forms

Flat bilinear forms were introduced by J. D. Moore [31] after the pioneering
work of E. Cartan as a tool to deal with rigidity questions on isometric
immersions in space forms. In fact, they are also very helpful in the study
of similar questions for infinitesimal variations of submanifolds.

Let V™ and U™ denote finite dimensional real vector spaces and let WP-4
be a real vector space of dimension p + g endowed with an indefinite inner
product (, ) of signature (p,q). This means that p (respectively, ¢) is the
maximal dimension of a subspace of WP4 restricted to which the inner
product is positive definite (respectively, negative definite).

Let v: V™ x U™ — WP be a bilinear form. An element X € V" is
called a (left) regular element of v if

dimvx (U) = max{dim~y (U): Y € V"},

where yx(Y) = v(X,Y) for any Y € U™. It is easy to see that the set
RE(7) of regular elements of v is open and dense in V".

A bilinear form ~: V" x U™ — WP is said to be flat if

(WX, 2),7(Y, W) = (v(X, W), 7(Y, Z)) = 0
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forall X,Y € V® and W, Z € U™. The bilinear form -y is called null if
(V(X,2),7(Y,W)) =0

for all XY € V™ and W, Z € U™. Thus null bilinear forms are trivially
flat.

The following basic fact was observed by Moore [31].

Proposition 1.10. Let v: V™" x U™ — WP be a flat bilinear form. If
X € RE(v) then

(Y, keryx) € vx (U) Nyx (U)*
foranyY e V™.

If v: V* x V* — WP is a bilinear form its image is the subspace
8(y) C WP1 given by

8(y) =span{y(X,Y): X, Y e V"}.

We conclude this chapter with a fundamental result in the theory of
symmetric flat bilinear forms. It turns out to be false for p > 6, as shown
in [11] by means of a counterexample.

Theorem 1.11. Let v: V" x V? - WP9 1 <p<5andp+q <n, be
a symmetric flat bilinear form. If imN(y) < n —p—q—1 there is an
orthogonal decomposition

WPt =Wyt oWl h 1< <p,
such that the Wj-components vy; of v satisfy:
(i) v is nonzero but is null since 8(v1) = 8(v) N 8(7)*.
(it) v2 is flat and dimN(y2) >n —p — g + 2¢.
Proof. See Theorem 3 in [10] or Lemma 4.22 in [21]. O

1.6 Exercises

Exercise 1.1. Prove Proposition 1.4.
Hint: Given z € M™ observe that

A+ (x) = span{A¢ X : X € T, M, ¢ € NyM(x)}.

Let {X; }1<i<n—v € TpM and {& }1<i<n—v € NyM(z) be such that the set
of vectors {A¢, Xi}t1<i<n—» span At (z). Then the smooth extensions of
these vectors on a small neighborhood of x are linearly independent vector
fields. Use this to prove the first assertions whereas for last one use the
Codazzi equation.
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Exercise 1.2. Prove Proposition 1.5. If the hypersurface f: M™ — R*t!
has a principal curvature A of multiplicity ¢ > 2 conclude that X is constant
along the spherical leaves.

Hint: That E, is smooth follows from similar arguments as in Exercise
1.1. Set n = A{ where { € I'(NyM) has unit length. Use the assumption
that ¢ > 2 and the Codazzi equation to prove that T'(A) = 0 and V#¢ =0
for T'e I'(E,)). Now use the Codazzi to show that

(A¢ = MXI)V7S = —(T, S)grad A and (AVrS, X) = MT, S}V, ()

for any S, T € I'(E,), X € X(M) and & € I'(NyM) with ({,n) = 0. From
this and the definition of F), conclude that £, is an umbilical distribution.
In fact, show that

(VrS, X) = (T, 8)(3, X) (1.12)
for all T, S € I'(E,) and X € E;- where § satisfies

(A¢ — AI)§ = —grad A and (Ag6, X) = MV%E, C).

Now use the above equations together with the Codazzi and Ricci
equations to prove that Vro € I'(E,) for any T € T'(n), and thus that
E, is spherical. Finally, from the definition of E, and (1.12) see that the
restriction of f to a leaf of F), is an umbilical submanifold of R™.

Exercise 1.3. Let D C T'M be a tangent distribution of a Riemannian
manifold M™ and let C be its splitting tensor.

(i) Prove that D™ is integrable if and only if C7 is self-adjoint for any
T eT(D).

(ii) Show that D+ is umbilical if and only if there is S € I'(D) such
that Cp = (T, S)I for any T € T'(D). Conclude that D= is totally
geodesic if and only if C' vanishes.

Exercise 1.4. Prove Proposition 1.6.

Hint: Equations (1.7) and (1.8) follow from the facts that D is totally
geodesic, D C A and the Gauss equation. As for (1.9) use the Codazzi
equation. See Propositions 7.1, 7.2 and 7.3 in [21].

Exercise 1.5. Prove Proposition 1.8.

Hint: Assume on the contrary that Co = Crp, has nonzero real eigenvalues
Ai, 1 <4 < k, and let 77! = max; |\;]. Then I — tCy is invertible for
—7 <t < 7. Show that

Cr = TBCTO (I - tCTo)_l(?(t))_l
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solves the equation
D
—Cy = C?
et

with initial condition Cy at t = 0. Use (1.10) to show that C., () coincides
with C;. Observe that (7 —¢)~! or —(7 +t)~! is an eigenvalue of C./(y)
which diverges as t tends to 7 or —7 respectively. Reach to a contradiction
with the fact that C.(;) is well defined for all ¢ € R from the completeness
assumption. See also Proposition 13.8 in [21].



Chapter 2

Infinitesimal variations

The first part of this chapter is devoted to introduce the notion of
an infinitesimal variation of an Euclidean submanifold and to establish
a Fundamental Theorem for that class of variations. In the theory
of isometric immersions, the so-called Fundamental Theorem, discussed
in Chapter 1, shows that the Gauss-Codazzi-Ricci equations are the
integrability conditions for the system of differential equations that gave
the existence of an isometric immersion of a given Riemannian manifold
into Euclidean space. A similar result is given here for the class of
infinitesimal variations. In fact, it is shown that a system of three equations
involving two tensors are the integrability conditions for the equations that
determine the infinitesimal variations, and that in a certain sense there is
uniqueness.

The second part of the chapter deals with the rigidity problem for
submanifolds in low codimension. It is shown that certain conditions on
the second fundamental form of the submanifold, that are well-known to
yield isometric rigidity in the usual sense, also give rigidity for infinitesimal
variations.

2.1 Infinitesimal variations

In this section, the notions of infinitesimal variation and infinitesimal
bending of an Euclidean submanifold are introduced. Then, it is explained
why the study of the infinitesimal variations of a submanifold is done by
analyzing the possible infinitesimal bendings.

Let f: M™ — R™ be an isometric immersion of a Riemannian manifold
into Euclidean space. A smooth variation of f is a smooth map
F: I x M" — R™, where 0 € I C R is an open interval, such that
fe = F(t,): M™ — R™ is an immersion for any ¢t € I and fo = f. The

22
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variational vector field of a variation F of f is the section T € T'(f*TR™)
defined as 3
T = 5.0/0t|t=0 = Va,arftli=0-

Let X,Y still denote the extensions in a trivial way of vector fields
X,Y € X(M) to vector fields in X(I x M). Since

[X,0/0t] =0 =[Y,0/0t]
holds and the ambient space is flat, we have

) - N
§<ft*X, ft.Y) = (Voo T X, F.Y) + (T X, Vg, 9:F.Y)
= (VxF.0/0t,F.Y) + (F.X,VyF.0/0t).

(2.1)

An isometric variation of f: M™ — R™ is a smooth variation F: I x
M™ — R™ such that f;: M™ — R™ is an isometric immersion for any
tel.

Given an isometric variation F of f: M™ — R™, we have that

%<ft*X, feY)=0 (2.2)

for any X,Y € X(M) and ¢t € I. In particular, it follows from (2.1) that
the variational vector field T of F satisfies the condition

(VxT, £.Y) 4+ (£ X,VyT) =0

for any X, Y € X(M).

An isometric variation can be produced by composing an isometric
immersion f: M"™ — R™ with a family of isometries of R™ as follows:
Let C: I — O(m) be a smooth family of orthogonal transformations of
R™ and let v: I — R™ be a smooth map such that (C(0),v(0)) = (1,0).
Then, we define an isometric variation F of f by

F(t,x) = C() () + ()

for all (¢,x) € I x M™. Such an ¥ is called a trivial isometric variation.

An infinitesimal variation is the infinitesimal analogue of an isometric
variation. In fact, as seen next these are the variations that preserve
lengths but just “up to the first order”.

A smooth variation F: I x M"™ — R™ of an isometric immersion
f: M™ — R™ is called an infinitesimal variation if it satisfies the condition

0
i =0l X, fexY) =0 (2.3)
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for any X, Y € X(M).

It is known from classical differential geometry that the convenient
approach to study variations is to look at the variational vector fields.
That this is the way to proceed in the case of infinitesimal variations is
justified in the sequel.

A section T of f*T'R™ is called an infinitesimal bending of an isometric
immersion f: M™ — R™ if the condition

(VT £.Y) + (fX,VyT) =0 (2.4)
holds for any tangent vector fields X,Y € X(M).

Since the condition (2.3) gives (2.4), then there is an infinitesimal
bending associated to any infinitesimal variation. On the other hand,
associated to an infinitesimal bending T of f: M™ — R™ we have that the
infinitesimal variation F: R x M™ — R™ given by

F(t,z) = f(x) +tT(x) (2.5)

has variational vector field J. But by no means (2.5) is unique with
this property, although it may be seen as the simplest one. In fact,
new infinitesimal variations with variational vector field 7 are obtained
by adding to (2.5) terms of the type t*3, k > 1, where § € I'(f*TR™) and,
maybe, for restricted values of the parameter t.

We say that an infinitesimal bending is trivial if it is induced by a
trivial isometric variation. More precisely, a trivial infinitesimal bending is
the restriction to the submanifold of a Killing vector field of the ambient
space. That is, there is a skew-symmetric linear endomorphism D of R™
and a vector w € R™ such that T = Df + w. Conversely, given a trivial
infinitesimal bending we have that

F(t,z) = e f(z) + tw
is a trivial isometric variation of f.

Multiplying an infinitesimal bending by a constant and adding a trivial
infinitesimal bending yields a new infinitesimal bending. Since it is not
convenient to distinguish between these two bendings, from now on we
identify two infinitesimal bendings 77 and T5 if there exists 0 # ¢ € R and
a trivial infinitesimal bending Ty such that

‘:TQ = {Io + C‘:Tl. (26)
Then (2.5) will be seen as the representative of the class of infinitesimal
variations that share a common infinitesimal bending.

To conclude this section we observe that, beside the trivial infinitesimal
bendings, there are the following examples of infinitesimal bendings of a
rather simple geometric nature.
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Examples 2.1. (i) Let f: M™ — R™ be an isometric immersion. If
Z € X(M) is a Killing vector field of M™ and £ € I'(N;yM) satisfies
A¢ =0, then T = f,Z + £ is an infinitesimal bending of f. In particular,
if f is contained in an affine subspace, say f(M) C R C R™, then any
vector field 77 normal to R? determines an infinitesimal bending of f.

(#4) Given two isometric immersions f, g: M™ — R™ suppose that the map
h = f + g is an immersion. Then the map T = f — g is an infinitesimal
bending of h.

2.2 The associated pair

We show next that an infinitesimal bending T € I'(f*TR™) of an isometric
immersion f: M™ — R™ together with its second fundamental form
a: TM x TM — N¢M determine an associate pair of tensors (3, €) to 7,
where §: TM x TM — NyM is symmetric and &: TM x N¢M — Ny M
satisfies the compatibility condition

(E(X,m), &) +(E(X,&),m) =0 (2.7)
for any X € X(M) and 1, e T(N;M).
Let L € T(Hom(T M, f*TR™)) be the tensor defined by
LX =VxT=7.X

for any X € X(M). Notice that in terms of this tensor (2.4) acquires the
form

(LX, f.Y) + (f.X,LY) =0 (2.8)

for any X, Y € X(M). Let B: TM x TM — f*TR™ be the tensor given
by
B(X,Y)=(VxL)Y =VxLY — LVxY (2.9)

for any X,Y € X(M). The flatness of the ambient space and
B(X,Y)=VxVyT —Vy,vT

yield that B is symmetric. Hence, the tensor 3: TM x TM — NyM
defined by
BX,Y) = (B(X,Y))n,;m

is also symmetric. For later use, associated to a given £ € I'(N; M) we
define the symmetric tensor By € I'(End(TM)) by

(BeX,Y) = (B(X,Y),§)

for any X, Y € X(M).
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Let Y € T'(Hom(NyM,TM)) be given by
(Yn, X) + (n, LX) = 0. (2.10)
Then, we define the tensor £: TM x NyM — NyM by
E(X,n) = (X, Yn) + (LA X) N0
Hence, we have

(E(X,n), &) = (a(X,Yn) + LA, X, §)
Ae X, Yn) — (Y€, Ay X)

= —(LAX,n) — (X, YE), )
= —(&(X,€),m),

and thus the compatibility condition (2.7) is satisfied.

Proposition 2.2. We have that
B(X,Y) = f.Ya(X,Y) + B(X,Y) (2.11)
for any X, Y € X(M).
Proof. We need to show that
C(X,Y,Z) =((B - fYa)(X,Y), f.Z)
vanishes for any X,Y,Z € X(M). Equation (2.8) and its derivative give

0= (VZLX, f.Y) +(LX, V2 f.Y) + (VZLY, f.X) + (LY, V7 f. X)
= (B(Z,X), f.Y)+ {(LVzX, f.Y) + (LX, V7Y + a(Z,Y))
+(B(Z,Y), f.X)+ (LVZY, f.X) + (LY, fu,VzX + a(Z, X))
=(B(Z,X), [.Y) +(LX,a(2,Y)) + (B(Z,Y), f.X) + (LY, a(Z, X))
=((B - fi¥a)(Z,X), f.Y) + ((B — f.Ya)(Z,Y), f. X).
From the symmetry of B and the above, we obtain
CX,Y,2)=C(Y,X,Z) and C(Z,X,Y)=-C(Z,Y,X)
for any X,Y,Z € X(M). Then
= C(szaX) = _C(KXa Z) = _C(X7Y72)
=0,
as we wished. O

Remark 2.3. The last manipulation in the above proof is known as the
Braid Lemma.
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2.3 The fundamental equations

In this section, it is shown that the pair of tensors associated to an
infinitesimal bending satisfy a set of three equations that form the
Fundamental system of equations of an infinitesimal variation. The term
fundamental means that they are the integrability condition of the system
of differential equations whose solutions yield an infinitesimal bendings, a
fact that is proved in the following section.

Proposition 2.4. The pair (8, €) associated to an infinitesimal bending
T satisfies the following system of three equations:

Apy.2)X + Bav,2)X = Ap(x.2)Y + Ba(x,2)Y, (2.12)
(VxB)(Y,Z) = (VyB)(X, Z) = &(Y,a(X, Z)) - (X, (Y, Z))  (2.13)
and

(Vx&)(Y,n) = (Vy&)(X, 1)

(2.14)
= B(X,A,Y) - B(A,X,Y) + a(X,B,Y) — a(B,X,Y)

for all X,Y,Z € X(M) and n € T'(NyM). Moreover, equation (2.13) is
equivalent to

(VxBy)Y =(VyBy)X =By, Y +ByL, X = Agx,n)Y —Agvp X (2.15)
for all XY, Z € X(M) and n € T'(N;M).
Proof. We first show that

(VxY)n = —f.B,X — LA, X + &(X,n) (2.16)
for any X € X(M) and n € I'(Ny M), where we used the notation
(VxY)n=Vxfdn— £YVx0.

Taking the derivative of (2.10), we have from (2.8) and (2.10) that

0= (Vxfldn, £Y) + (Yn, VxY) + (VxLY,n) + (LY, Vxn)
= ((VxY)n, YY) + (B, X,Y) + (LA X, £.Y).

Since (f.Yn, &) = 0, we obtain

0= (VxfYn, &) + (£ Y0, VxE) = (VxY)n, &) — (a(X, Yn), &)
= <(@X13)77’€> + <LA7]X - S(Xv n)’€>

for any X € X(M) and n,§ € I'(NyM), and hence (2.16) follows.
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Using

(VxB)(Y,Z2) =Vx(VyL)Z = (VyyyL)Z - (VyL)VxZ (2.17)

it is easy to see that
(VxB)(Y,Z) — (VyB)(X,Z) = —-LR(X,Y)Z (2.18)

for all X,Y,Z € X(M). Tt follows using (2.11) that
(VxB)(Y, 2), £ W) = (VxY)a(Y, Z) + £ Y(Vx) (Y, Z) — foAsiy. ) X, f W)
for any X, Y, Z, W € X(M). Then (2.18) and the Codazzi equation give
(VxYa(Y, Z)—(VyY (X, Z), fW) = (LR(Y, X) Z+Apv,2) X —Apx,2)Y, W).
Now using the Gauss equation, we obtain

(VxW)a(Y,Z) - (VyY)a(X, Z), f.WV)
= (LAsx,2)Y — LAaiy, )X + Agv, )X — Apx,2)Y, fxW).

On the other hand, it follows from (2.16) that

((ﬁXH)a(Y, Z) - (ﬁy‘j)a(X, Z), f*W>
= (Bax,2)Y + LAy(x,2)Y — Bayv, ;)X — LAq(v,2) X, fxW).

From the last two equations, we obtain
(Ba(x,2)Y = Ba(v,2)X, W) = (Apv, )X — Apx,2)Y, W),

and this is (2.12).
From (2.11) and (2.17) we obtain

(VxB)(Y, Z))nym = (X, Ya(Y, 2)) + (VX B)(Y, Z).
Then, we have from (2.18) and the Gauss equation that

(VxB(Y, Z) = (V¥ B)(X, Z)
= (LR(Y, X)Z)n;m — a(X, Ya(Y, Z) + (Y, Yo (X, Z)
= (LAax,2)Y — LAay, 2y X)n,m — (X, Ya(Y, Z) + a(Y, Ya(X, Z),

and this is (2.13). Since € satisfies the compatibility condition (2.7), then
<8(X7 a(Y7 Z))v 77> = 7<AS(X,77)Y; Z>a

and this gives (2.15).
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We have

(Vx&)(Yon) = Vxe(Y,n) — &(VxY,n) — E(Y, Vxn)
= (Vxa)(Y,Yn) + (L(Vx A) (Y. 0))npar + (Y, Vi Yn)
—a(Y,YVxn) — (LVx A)Y)n;m + Vi (LAY )Ny u-

Then (2.16) gives

(Vx&)(Y,n) = (Vxa) (Y, Yn) + (L(Vx A) (Y, )N, m — a(Y, By X)
—a(Y, (LA X)rm) — (LY x AyY ) nar + V(LAY ) v, -

Using the Codazzi equation, we obtain

(V&) (Yon) — (VHE)(X.n)
= (X, B,Y) — a(Y. B,X) + a(X, (LAY )ra1)

—a(Y, (LAWX)TJW) - (LVXAUY)NJ‘M + V)L((LAUY)NfM
+ (LVy Ay X) nmr — Vi (LA X) Ny

Since
B(X, ATIY) = a(X, (LAnY)TM) - (LVXAUY)NfM + V)L((LAWY)NHW

then (2.14) follows. O

Remark 2.5. An alternative way to obtain the equations in Proposition
2.4 would be to follow the “classical procedure”, which goes as follows.
Since the metrics g; induced by the infinitesimal variation f; = f + tT
satisfy 0/0t|i=0g: = 0, hence the Levi-Civita connections and curvature
tensors of g; satisfy

0/0t)—o VY =0

and
E)/(’?lﬁ\t:()gt(Rt(X,Y)Z7 W)=0

for any X,Y,Z, W € X(M). Then this is used to compute the derivatives
with respect to t at ¢ = 0 of the Gauss, Codazzi and Ricci equations for
f+. In fact, this works quite nicely to obtain (2.12) since we have that

B(X,Y) = 0/0t|i—oa(X,Y),

where a! is the second fundamental form of f;. On the other hand,
the computation for the other two equations becomes really cumbersome
outside the hypersurface case. For hypersurfaces this was done in [21] and
[23]. See also Exercise 2.1. A result in coordinates for general codimension
was stated in [29].
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The first normal space Ni(xz) C NyM(z) at € M™ of an isometric
immersion f: M"™ — R™ is the vector subspace given by

Ni(z) = span{a(X,Y) : X, Y € T, M }.
We say that f has full first normal spaces if Ni(z) = NyM(x) at any
e M".

The following result shows that for a submanifold with full first normal
spaces the tensor 8 determines €.

Proposition 2.6. Let f: M™ — R™ be an isometric immersion with full
first normal spaces. 1If (B8,&) is the associated pair to an infinitesimal
bending T of f then & is the unique tensor that satisfies (2.7) and (2.13).

Proof. It £g: TM x NyM — NyM is a tensor that satisfies (2.7) and
(2.13), it follows from (2.13) that

(€ =o)X, Y, Z)) = (€ = &) (Y, (X, Z))
for any X,Y,Z € X(M). Since both € and & satisfy (2.7), we have
((€ = €0) (X1, a(X2, X3)), (X4, X5)) = —((€ — €0) (X1, a(Xa, X5)), (X2, X3)),
where X; € X(M), 1 <14 < 5. We denote
((& = €0) (X7, (X2, X3)), a(Xy, X5)) = (X1, Xo, X35, X4, X5).
It follows from the relations above and the symmetry of « that

(X1, X2, X3, Xy, X5) = —(X1, Xy, X5, X, X3) = — (X5, Xy, X1, X3, X3)

= (X5, Xo, X3, X4, X1) = (X3, Xo, X5, X4, X1) = — (X3, X4, X7, X0, X5)

= — (X4, X3, X1, X3, X5) = (X4, Xo, X5, X3, X1) = (X2, Xy, X5, X3, X1)

= — (X2, X3, X1, Xy, X5) = — (X2, X1, X3, Xy, X5) = —(X1, X2, X3, X4, X5)
=0,

and thus &€ — &y = 0. O

Finally, we characterize trivial infinitesimal bending in terms of the
associated pair of tensors.

Let T be a trivial infinitesimal bending f: M™ — R™, that is, we have
that
T=Df +w,

where D € End(R™) is skew-symmetric and w € R™. Then, we obtain
that
L=D

sorm and B(X,Y) = Da(X,Y).
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Let DV € T'(End(NyM)) be skew-symmetric and given by
DNy = (Dn)n,m
for any n € I'(NyM). Then, we have
B(X,Y)=DVa(X,Y) and &(X,n)=—(VxD")n,

where the second equation follows computing (@ xD)n=0.

Proposition 2.7. An infinitesimal bending T of f is trivial if and only if
there is a skew-symmetric C € T'(End(NyM)) such that

B(X,Y)=Ca(X,Y) and &(X,n) = —(VxC)n. (2.19)
Proof. Define D € T'(End(f*TR™)) by
D(x)X = L(z)X and D(z)n =Y(z)n+ C(z)n

for any X € T, M and ) € Ny,)M. Using the assumption on 3, we obtain
that
VxDY = (VxL)Y + LVxY
= fiYa(X,Y)+ Ca(X,Y)+ LVxY
=DVxY

for any X,Y € X(M). The assumptions on € and (2.16) give

VxDn = Vxf.Yn+ VxCn
= (Vx¥)n+ £YVxn + (VxCn + CVxn = fedoy X
= —f.ByX — LA, X + f.YVyn+ CVxn — fAcy X
for any X € X(M) and n € I'(NyM). But B, = —A¢, from § = Ca,

hence y }
VxDn=—~LA,X + f.YV%n+ CVxn = DVxn.

Therefore, we have shown that D(z) = D is constant along M™, and thus
the map T — Df is constant. O

In accordance with the identification (2.6), from now on we also identify
two pairs (81,&1) and (B2, E2) if there is 0 # ¢ € R such that the pair
(ﬂl — Cﬂg, 81 — 682) has the form (219)

2.4 The Fundamental Theorem

This section gives the Fundamental Theorem of infinitesimal variations.
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Theorem 2.8. Let f: M™ — R™ be an isometric immersion of a
simply connected Riemannian manifold. Let B: TM x TM — N¢M be
a symmetric tensor and let the tensor &: TM x N¢M — Ny M satisfy the
compatibility condition (2.7). If the pair (8,€) # 0 satisfies (2.12), (2.13)
and (2.14), then there is a unique infinitesimal bending T of f having (5, &)
as associated pair.

Proof. Given (8,€) as in the statement, we argue that there is D €
[(End(f*TR™)) satisfying
(VxD)(Y +1n) = —fu By X + B(X,Y) + &(X,n) (2.20)
for any X,Y € X(M) and n € I'(NyM). To prove this, henceforth we
check the integrability condition of (2.20), namely, that
(@X@yg - @y@x@ — ?[X,Y]D)(Z +1)=0
holds for any X,Y,Z € X(M) and n € I'(Ny;M). For simplicity, in the
following we write X instead of f,X. We have
(?X@YD —VyVxD— @[X’Y]Q)(Z +n)
=Vx(VyD)(Z +n) — (VyD)Vx(Z +n) = Vy(VxD)(Z +n)
+(VxD)\Vy(Z +1) = (VixyD)(Z + 1)
= Vx[-B,Y + B(Y. Z) + £(Y:n) + Bu(x 21 vinY — BY,VxZ — A,X)
—&(Y, (X, Z) + Vxn) + Vy[B,X — B(X, Z) — (X, )]
— Bow,z)rvinX +B(X,VyZ — A)Y) + &(X, a(Y, Z) + Vin)
+ By, [X, Y] = B([X,Y], Z) — E([X, Y], m).
Hence
(VxVyD —VyVxD — Vixy1D)(Z + 1)
= —Apv,2)X + Bax,2)Y + Apx,2)Y — Bav, )X
— (VxBn)Y + (Van)X + BV§77Y — BV‘L/”X — Ag(ym)X + Ag(Xm)Y
+ (V&) (Y,n) — (V¥E)(X,n) — a(X, B,Y) + Y, B, X)
+B(Y, A, X) — B(X, A,)Y)
= 0,
where to obtain the final conclusion we made use of (2.12) to (2.15).

Fix zp € M™ and a solution D* € T'(End(f*TR™)) of (2.20). Set
Do = D*(x9) and let ¢: f*TR™ x f*TR™ — R be the tensor defined by

¢(p,0) = (D" = Do)p,0) + ((D* = Do)a, p).
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Using (2.7) and (2.20) we obtain

(Vx9)(p,0) = X(6(p,0)) = $(Vxp,0) = d(p, Vx0)

= <(VXSD*)p7 U> + <(VXD*)U7 p>

=0.
Hence we have ¢ = 0, and therefore the map D(z) = D*(z) — Dy is a
skew-symmetric endomorphism of R™.

Define L € T'(Hom(TM, f*TR™)) by L(z) = D(x)|r,pm. Using (2.20)
we obtain
(VxL)Y = VxDY — DVxY

Thus
(VxL)Y = (VyL)X.
Hence, there is T € I'(f*TR™) such that
VxT=LX
for any X € X(M). Since D is skew-symmetric then L satisfies
(LX,Y)+ (LY, X) =0,
and thus 7T is an infinitesimal bending of f. Moreover, its associate pair
(8,€) is
BX,Y)=B(X,Y)+DVa(X,Y) and E(X,n) =E&(X,n) — (VxDV)n.

In fact, in this case Yn = (Dn)ra. Using (2.20), we have

E(X,n) = a(X, (Dn)ram) + (LA X )Ny
= (Vx(Dn)ram) Ny + (LA X) Ny
= (VxDn)n,m — VDV + (LA X) N, i
= &(X,n) + (DVxn)ny;m — VDV + (LA X) Ny i
= &(X,n) = (LAX)nyar — (Vx DY)y + (LA X )Ny
= &(X,n) — (VxDV)n.
Another solution D7 of (2.20) gives rise to an infinitesimal bending T; of

f. It now follows from Proposition 2.7 that T — J7 is a trivial infinitesimal
bending. 0
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Remark 2.9. Let f: M™ — L™ be an isometric immersion of a
Riemannian manifold M™ into the Lorentzian space form IL™. Recall
that L™ has R™ as underlying space and that its Levi-Civita connection
coincides with the Euclidean one. Hence, the arguments in the proof of
Theorem 2.8 also hold in this case. In fact, they hold for an immersion of
a Riemannian manifold M™ into R where the latter is endowed with any
possible indefinite metric.

2.5 The hypersurfaces case

Let f: M™ — R"! be a hypersurface with shape operator A
corresponding to the Gauss map N € I'(NyM). If T is an infinitesimal
bending of f, then associated to 7 we have the symmetric tensor B €
[(End(T'M)) given by

B(X,Y)=(BX,Y)N.

In codimension one, any tensor &: TM x NyM — Ny M satistying (2.7)
vanishes. Therefore, the fundamental equations of an infinitesimal bending
take the form

BXNAY —BY NAX =0 (2.21)

and
(VxB)Y = (VyB)X
for any X,Y € X(M). Notice that the second equation says that B satisfies
the condition of being a Codazzi tensor.
Proposition 2.7 gives the following characterization of trivial
infinitesimal bendings of hypersurfaces.

Proposition 2.10. An infinitesimal bending T of an hypersurface
f: M™ = R s trivial if and only if its associated tensor B vanishes.

The Fundamental Theorem for infinitesimal variations of hypersurfaces
goes as follows.

Theorem 2.11. Let f: M™ — R"™ be an isometric immersion of a
simply connected Riemannian manifold. Let 0 # B € TI'(End(TM)) be a
symmetric Codazzi tensor that satisfies (2.21). Then there exists a unique
infinitesimal bending T of f having B as associated tensor.

Proof. Let : TM x TM — NyM be the symmetric tensor given by
B(X,Y)=(BX,Y)N.

Then (2.14) trivially holds for 8 and & = 0. Moreover, by the assumptions
on B we have that (3, 0) satisfies (2.12) and (2.13). Thus, by Theorem 2.8
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there is a unique infinitesimal bending T of f having (3,0) as associated
pair. O

2.6 Infinitesimal rigidity

That a submanifold f: M™ — R™ is infinitesimally rigid means that any
infinitesimal bending of f is trivial. The goal of this section is to provide
conditions on the submanifold that yield infinitesimal rigidity.

The proof of the rigidity theorems in this section will make use of
an elementary but very useful result already contained in the classical
literature of infinitesimal variations of surfaces, for instance, see Bianchi

[3].
Proposition 2.12. Let T be an infinitesimal bending of an isometric
immersion f: M™ — R™ and let G;: M™ — R™, t € R, be the map defined
by

Gi(z) = f(z) + tT(x). (2.22)

The following assertions hold:

(i) The maps Gy and G_; are immersions that induce the same metric.

(ii) If [ is substantial and there exists 0 # to € R such that Gy, and
G_;, are congruent then T is trivial.

Proof. The assertion in part (i) follows from
IGa X" = [ £XI° + 2] 7. X |12

By the assumption of part (i) there exist an orthogonal transformation S
of R™ and a vector w € R such that

f+tT = S(f — toT) +w.

Thus ~ ~
[ X +toVxT = S(fu X —tcVxT),

and hence _
to(s + I)VXT = (S — I)f*X (2.23)

for all X € X(M).
Suppose that S + I is not invertible, that is, that there exists

0# 6 €ker(S + 1) =ker(S + 1),

where ()* denotes taking the transpose. Then (S — I)!§ = —26. Taking
the inner product of (2.23) with 4 gives

(f«X,6)=0
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for all X € X(M), contradicting the fact that f is substantial.
Thus S + I is invertible, and hence (2.23) yields

VxT =Df.X, (2.24)

where

D= L5405 1)
to

Since f is substantial, it follows from
(VxT, £.Y)+ (£, X,VyT) =0

and (2.24) that D is skew-symmetric. Moreover, since Df,X = VxDf
then (2.24) also yields y
Vx(T-Df)=0

for all X € X(M), thus showing that T is trivial. O

Proposition 2.12 was used to prove the following global result due to
Dajczer-Rodriguez [19]. The proof is also contained in [21].

Theorem 2.13. Let f: M™ — R™! n > 3, be an isometric immersion
of a compact Riemannian manifold such that there are no open subsets of
M™ where f is totally geodesic. Then f is infinitesimally rigid.

Next we state two well-known rigidity results for submanifolds. Recall
that an isometric immersion f: M™ — R™ is said to be rigid if any other
isometric immersion ¢g: M"™ — R™ is congruent to f by an isometry of
R™. That is, there is an isometry (rigid motion) 7: R™ — R™ such that
g = 7o f. The first result is the classical Allendoerfer’s theorem and the
second is due to do Carmo-Dajczer [5]. The proofs of both results can be
seen in [21].

It is said that an isometric immersion f: M™ — R™""P has type number
7 > 3 if at any point x € M™ there are three vectors X1, Xo, X3 € T, M
and a basis 1,...,&, of Ny M (x) such that the 3p vectors Ag, X; 1 < i <
3, 1 < j < p, are linearly independent. This condition is independent of
the normal basis.

Proposition 2.14. An isometric immersion f: M™ — R"P with type
number T > 3 s rigid.

The s-nullity vs(z), 1 < s < p, of an immersion f: M™ — R"P at
x € M" is defined as

vs(z) = Usc%zfiﬁ(x){dlm N(ays)},

where oy« = mys o o and wys: NyM — U? is the orthogonal projection
onto the normal subspace U?.
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Proposition 2.15. An isometric immersion f: M™ — R"P p < 5,
whose s-nullities satisfy vs <n —2s—1 for all 1 < s < p at any point of
M™ is rigid.

Remark 2.16. It is easy to see that the assumption on the s-nullities
is weaker than the one on the type number. In fact, that 7 > 3 implies
vs <n—3s,1 <s<p. On the other hand, it is not known if the Theorem
2.15 holds for higher codimensions since its

The following is the infinitesimal version of the above two results.

Theorem 2.17. An isometric immersion f: M™ — R™ which satisfies the
conditions in either Proposition 2.1} or Proposition 2.15 is infinitesimally
rigid.

Proof. Let T be an infinitesimal bending of f and let Gy: M™ — R™ be
defined by (2.22) for any t € R. By Proposition 2.12, the immersions
G: and G_; are isometric. Moreover, any point of M™ lies in an open
neighborhood U where G still satisfies the assumptions if ¢ is small
enough. By either Proposition 2.14 or Proposition 2.15, we have that
the restrictions G|y and G_¢|y are congruent, and hence T is trivial on
U by Proposition 2.12 since the assumptions include that f|y has full first
normal spaces and thus is substantial.

We have seen that T is locally trivial, that is, each point of M™ lies in
an open subset U such that VxT = Dy f. X along U. If two such open
subsets U and V intersect, then

(Du —Dv)

f.r.m =0 forall zeUNV.
Since flyny is substantial,
span{ f, T, M : z € UNV}=R"

Hence Dy = Dy, and thus T is globally trivial. O

2.7 Exercises

Exercise 2.1. Given an infinitesimal bending 7 of a submanifold
f:M™ = R™ let F: Ix M™ — R™ be a variation of f = fy by immersions
fi: M™ — R™ with variational vector field 7.

(i) Show that the Levi-Civita connections and curvature tensors of the
metrics ¢g; induced by f; for t € I satisfy

0/0t|1—oVY =0
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and
8/8t|tzogt(Rt(X, Y)Z, W) =0

for any XY, Z, W € X(M).
(i) If o' denotes the second fundamental form of f; for ¢ € I prove that
B(X,Y) = 3/0t|i=0a' (X,Y).
(iif) Extend n € T'(N;M) to a map n(t) € I'(Ny, M), t € I. Show that
foYn = (0/0t]i=on(t)) .70

(iv) Give an alternative proof of (2.11) using the above items.
(v) Using the above give an alternative proof of (2.12).

Exercise 2.2. Let F: I x M — R™ be an infinitesimal variation of an
isometric immersion f: M™ — R™. Let {X{,..., X!} be a one-parameter
family of tangent vectors fields such that for each ¢ fixed {X?,..., X!}
is an orthonormal frame for the metric induced by f;. Let X! € X(M),
1 <1 < n, be given at each point x € M™ by

K2

, 0
X{(@) = 5 =0 X! (2).

(i) Prove that
(X7, X5) + (X5, X3) =0
for any 1 <i,j <n.
(ii) Assume further that f is minimal and let 3" = L 3"  of (X}, X¥)
be the mean curvature vector field of f;, ¢t € I. Show that

0
ahzoj‘ft = 0

if and only if the tensor [ associated to the corresponding
infinitesimal bending satisfies

> B(Xi, Xi) =0.
=1

Hint: For (i4) use the previous item, part (i7) of Exercise 2.1 and (2.11).

Exercise 2.3. Prove the statements in Examples 2.1.



Chapter 3

Genuine infinitesimal
variations

If an isometric immersion of a Riemannian manifold into Euclidean
space admits an isometric deformation, then any submanifold of that
manifold inherits an isometric deformation obtained via the composition
of immersions. Therefore, to study the geometry of the isometrically
deformable submanifolds that lie in codimension larger than one it is
clear that deformations produced via compositions should somehow be
excluded. Consequently, it is convenient to restrict the study to the class
of isometric deformations called genuine. For results in this direction we
refer to Chapter 12 of [21]. The goal of this chapter is to deal with local
and global infinitesimal variations of submanifolds by means of a similar
approach.

Let T be an infinitesimal bending of an isometric immersion F': M"+¢ —
R"™P 0 < ¢ < p, and let j: M" — M"*¢ be an embedding. Then
T = ‘j'|j(M) is an infinitesimal bending of f = F o j: M™ — R"'P,
This observation motivates the following definitions where a more general
situation is considered since certain singularities are allowed. In fact,
the necessity to admit the existence of singularities of F' along j(M) for
isometric deformations, in the local as well as in the global situation, was
already well established in [14] and [26].

A smooth map F: M"t — R"? (0 < ¢ < p, from a differentiable
manifold into Euclidean space is said to be a singular extension of a
given isometric immersion f: M™ — R"P if there is an embedding
j: M™ — M™H 0 < ¢ < p, such that F is an immersion along M" ¢\ j (M)
and f = F o j. Hence, the map F may fail (but not necessarily) to be an
immersion along points of j(M).

39
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It is said that an infinitesimal bending 7 of an isometric immersion
f: M™ — R"™P egtends in the singular sense if there is a singular extension
F: M — R™? of f and a smooth map T: M"+ — R"P such that T
is an infinitesimal bending of F|y;\ ;(a) and T = ‘5|j(M).

An infinitesimal bending T of an isometric immersion f: M"™ — R"TP
p > 2, is called a genuine infinitesimal bending if T does not extend
in the singular sense when restricted to any open subset of M™. If f
admits such a bending we say that it is genuinely infinitesimally bendable.
By a genuine infinitesimal variation we mean an infinitesimal variation
whose associated infinitesimal bending is genuine. Finally, we say that
f is genuinely infinitesimally rigid if given any infinitesimal bending T
of f there is an open dense subset of M™ such that T restricted to any
connected component extends in the singular sense.

As one may expect trivial infinitesimal bendings are never genuine.
Moreover, if we have that f(M) Cc R** c R"*P, ¢ < p, and that e € R*P
is orthogonal to R"**, then T = ¢e for ¢ € C°°(M) is another example of
an infinitesimal bending that it is not genuine.

3.1 The local results

What can be said about the geometry of an Euclidean submanifold in
low codimension that admits an genuine infinitesimal variation? In this
section, we give two answers to the local version of this question. The case
when the submanifold is compact is treated in the subsequent section.

The following is the first main local result of this section. An isometric
immersion f: M™ — R™ is r-ruled if M™ carries a smooth r-dimensional
totally geodesic tangent distribution whose leaves (called rulings) are
mapped diffeomorphically by f to open subsets of affine subspaces of R™.

Theorem 3.1. Let f: M™ — R"™P, n > 2p > 4, be an isometric
immersion and let T be an infinitesimal bending of f. Then along each
connected component of an open dense subset either T extends in the
singular sense or f is r-ruled with r > n — 2p.

An immediate consequence is the following result.

Corollary 3.2. Let f: M™ — R"P n > 2p > 4, be a genuinely
infinitesimally bendable isometric immersion. Then f is r-ruled with
r > n — 2p along connected components of an open dense subset of M™.

Theorem 3.1 also has the next two immediate consequences since the
possibility of the submanifold being ruled is excluded by the assumptions.
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Corollary 3.3. Let f: M™ — R"*P n > 2p > 4, be an isometric
immersion. If M™ has positive Ricci curvature then f is genuinely
infinitesimally rigid.

Corollary 3.4. Let g: M" — S"™P~1 n > 2p > 4, be an isometric
immersion and let f = iog wherei: SPTP~1 5 R™P denotes the umbilical
inclusion. Then f is genuinely infinitesimally rigid.

A key ingredient in the proofs of the theorems in this section is the next
result due to Florit-Guimaraes [26]; see also [21].

Proposition 3.5. Let f: M™ — R™ be an isometric immersion and let
D be a smooth tangent distribution of dimension d > 0. Assume that there
does not exist an open subset U C M™ and Z € T(D|y) such that the map
F:U xR — R™ given by

F(xvt) = f(l’) +tf*Z(l‘)

is a singular extension of f on an open neighborhood of U x {0}. Then, for
any x € M™ there is an open neighborhood V' of the origin in D(x) such
that f.(x)V C f(M). Hence f is d-ruled along each connected component
of an open dense subset of M™.

Next we associate to an infinitesimal bending a flat bilinear form.

Proposition 3.6. Let f: M™ — R™ be an isometric immersion and let T
be an infinitesimal bending with associated pair (8,&). Then, at any point
of M™ the bilinear form 6: TM x TM — Ny M © N¢M defined by

is flat with respect to the inner product in NyM © NyM given by

((€ram), (C2,m2) ) Npman,m = (€1, 82) Ny — (11, M2) Ny -
Proof. A straightforward computation shows that

% ((0(X, 2),0(Y, W) — (O(X, W), 0(Y, 2)))) = (B(X, Z), a(Y, W)

+ <O‘(Xa Z),,B(Y, W)> - <ﬂ(X7 W)a a(Yv Z)> - <OL(X, W)7ﬂ()/a Z)>a
and the proof follows from (2.12). O

An isometric immersion f: M™ — R"P is called 1-regular if the first
normal spaces Ni(z), z € M™, have constant dimension k£ < p on M"
and thus form a subbundle N7 of rank k of the normal bundle. Under the
1-regularity assumption we have the following statement that is equivalent
to the above one.
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Proposition 3.7. Let f: M™ — R™ be 1-regular and let By : TM xTM —
N; be the Ni-component of B. Then the bilinear form 0: TM x TM —
Ny & Ny defined at any point by

~

9(X7 Y) = (OZ(X, Y) + Bl (Xv Y)’ Oé(X, Y) - Bl(Xa Y)) (32)

is flat with respect to the inner product induced on N1 @ Ni.

Proof of Theorem 3.1: Let T be an infinitesimal bending of f. From (2.10)
we have

((X,Y),LZ) + (Ya(X,Y), Z) = 0. (3.3)
Then, we easily obtain using (2.8) that

(£ X +VxY,LX +VxLY) = (a(X,Y), B(X,Y)) (3.4)

for any X,Y € X(M).

By Proposition 3.6 we have that the symmetric tensor 6 is flat at
any point of M™. Given Y € RE(6(z)) C T, M at x € M™, denote
D = kerfy where 6y (X) = 6(Y,X). Notice that Z € D means that
a(Y,2) =0 =B(Y,2).

Let U C M™ be an open subset where Y € X(U) satisfies Y € RE(6)
and D has dimension d at any point. Proposition 1.10 gives

(6(X.2),6(X,2)) =0

for any X € X(U) and Z € I'(D). Equivalently, the right hand side of
(3.4) vanishes and hence

(X +VxZ,LX +VxLZ) =0 (3.5)

for any X € X(U) and Z € I'(D,).
Assume that there exists a nowhere zero Z € I'(D) defined on an open
subset V of U such that F': V x (—¢,¢) — R"*? given by

F(z,t) = f(z) +tf.Z(x)
is a singular extension of f|y,. The map T: V x (—¢,€) — R"P given by

T(x,t) =T(x) +tLZ(x)

extends T|y and is an infinitesimal bending of F on the open subset where
F is an immersion. In fact,

<F*a/ata @a/at‘jv = <f*Z7 LZ> = 0;

(VosoiT, F. X)+(VxT, F.0/0t) = (LZ, f X +1Vx Z)+(LX +tVx LZ, f. Z) = 0
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and
(F,X,VxT) = (f.X +tVxZ,LX +tVxLZ) =0,

where the last equality follows from (3.5).

Let W C U be an open subset such that Z € T'(D) as above does not
exist along any open subset of W. By Proposition 3.5 the immersion is
d-ruled along any connected component of an open dense subset of W.
Moreover, we have that d = dim D = n — dim Im(fy ) > n — 2p. O

Remark 3.8. In Theorem 3.1 assume further that f is 1-regular with
dim N; = ¢ < p. Then we obtain the better lower bound r > n — 2q since
the proof still works making use of Proposition 3.7 instead of Proposition
3.6.

In the case of low codimension the following result, obtained with a
substantial additional effort, gives a better lower bound for the dimension
of the rulings. The proof is given at the end of this section after several
considerations.

Theorem 3.9. Let f: M™ — R"P n > 2p, be a genuinely infinitesimally
bendable isometric immersion. If 2 < p < 5, then one of the following facts
holds along any connected component, say U, of an open dense subset of
M™:

(i) flu is v-ruled by leaves of relative nullity with v > n — 2p.

(it) flu has index of relative nullity v < n — 2p at any point of U and is
r-ruled with r > n — 2p + 3.

Remark 3.10. For p = 2 we are always in case (i) since a (n — 1)-ruled
submanifold in that codimension has index of relative nullity v > n — 3 at
any point.

Let F: M™t! — R™P be an isometric immersion and let T be an
infinitesimal bending of F. Given an isometric embedding j: M™ — M"+!
consider the composition of isometric immersions f = Foj: M™ — R"*tP,
Then T = ‘j'|j(M) is an infinitesimal bending of f. It is easy to see that the
corresponding tensors B and B given by (2.9) have the relation

B(X,Y) = B(X,Y) + (VxY, Fun)Ln,
where n € I'(N; M) is of unit length and X,Y € X(M). Then (3.3) gives
(BX,Y), Fum) + (of (X, Y), L) = 0

for any X,Y € X(M). We will see that satisfying a condition of this type
may guarantee that an infinitesimal bending is not genuine. In fact, this
was already proved by Florit [25] in a special case.
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We say that an infinitesimal bending of an isometric immersion
fi M™— R™P p > 2 satisfies the condition (x) if there is n € (N M)
of unit length and ¢ € T'(R), where R is determined by the orthogonal
splitting NyM = P & R and P = span{n}, such that

By + A¢ =0, (3.6)
where B,, = (8,n). Thus, that (3.6) holds means that
(BX,Y),m) + (a(X,Y),6) =0 (3.7)

for any X, Y € X(M).

The following result proved below is of independent interest since it does
not require the codimension to satisfy p < 5 as is the case in Theorem 3.9.

Theorem 3.11. Let f: M™ — R™P, p > 2, be an isometric immersion
and let T be an infinitesimal bending of [ that satisfies the condition (x).
Then along each connected component of an open dense subset of M™ either
T extends in the singular sense or f is r-ruled with r > n — 2p + 3.

Similarly as above, there is the following immediate consequence.

Corollary 3.12. Let f: M™ — R*™P, p > 2, be an isometric immersion
and let T be a genuine infinitesimal bending of f that satisfies the condition
(). Then f is r-ruled with r > n —2p+ 3 on connected components of an
open dense subset of M™.

In the case that T satisfies the condition (x) we may extend the tensor
L to a tensor L € T'(End(TM & P, f*TR"*P) by defining

Ly = f.Yn +£.

Then L satisfies - -
(LX,m) + (fX,Ln) =0 (3.8)
for any X € X(M).

Given A € I'(f.TU @ P) nowhere vanishing along an open subset U of
M™, let the map F': U x (—¢,€) — R"*P be given by

F(z,t) = f(z) + tA(z). (3.9)

Notice that at least for ¢t = 0 the map F' is not an immersion at points
where X is tangent to U. Then let T: U x (—¢,€) — R™? be the map
given by

T(x,t) = T(x) + tLA(z). (3.10)

We have . }
<F*a/(9t, Va/atg‘> - 0
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Moreover, since (L), \) = 0 we obtain
(VosorT, F X) + (VxT, F.0/0t) = (LA, f.X) + (LX,\) + tX (LA, A) = 0

for any X € X(M) and t € (—¢,¢€). Thus T is an infinitesimal bending of
F on the open subset U of U x (—¢, €) where F' is an immersion if and only
if

(F.X,VxT) =0,

or equivalently, if and only if
(f X +tVx A\, LX +tVxL\) =0

for any X € X(M).

In the sequel, we take F restricted to U. By the above, in order to have
that T is an infinitesimal bending of F' the strategy is to make use of the
condition (*) to construct a subbundle D C f,TM @ P such that

(feX +VxA\LX +VxL\) =0

for any X € X(M) and any A € T'(D).

Lemma 3.13. Assume that T satisfies the condition (x). Then

(feX +Vx A\ LX +VxL\) = (VxNg, (VxL)\), (3.11)
where X € X(M), A e T'(f,TM @ P) and
(VxL)A = VxL\A — LV )\,
being V' the connection induced on f,TM @ P.
Proof. We have that
(fL X +Vx A, LX+VxL\) = (Vx A, Vx LA +(Vx A LX)+ (f. X, VxL\).

Set A = f.Z + ¢n where Z € X(M) and ¢ € C*°(M). We have from (2.8),
(2.10), (3.7) and (3.8) that

(VXALX) + (f. X, Vx L))

(Vx\ LX) + X {(f.X, L)) — (Vx f. X, L\)

= — (Vxf.X, L)) — (\,VxLX)

= — (f.VxX,LA) = (a(X, X), LX) = (\, LVx X) — (A, (Vx L) X)
= —(a(X, X), LZ + ¢&) — (f+Z + én, f'da(X, X) + B(X, X))
=0.
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Thus y o 3 o
(f.X + VA LX + Vx LX) = (VxA, VyLA).

For simplicity, from now on we write X for both X € X(M) and its image
under f,. Calling Y = (Vx\)s.r7m = VxZ — ¢pA, X, we have

(Vx\, VxL\)

= (Y + (VxNp + (VxA)r, Vx L))

=(Y,(VxL)Z 4+ LVxZ + X(¢)Ln + ¢V xLn) + (Vx A r, Vx L)

+ ((Ay X, Z) + X(¢))(n, (VxL)Z + LV x Z + X (¢)Ln + ¢V x Ln)

for any X € X(M). Using (2.8), (2.11) and (3.3) we obtain

(Y,(VxL)Z + LVxZ) = —(LY,a(X, Z)) — $(A, X, LV xZ)  (3.13)

(3.12)

and
(Y, X(¢)Ln + ¢Vx Ln) = ¢(Y, VxYn) — X (#)(LY, 1) — ¢(a(X,Y),£), (3.14)
where using (3.7) for the first term in the right hand side of (3.14) gives
(Y, Vx¥n) = X(Y, Yn) — (VxY,Yn)
=—X(LY,n) + (LVxY,n)
= —((VxL)Y,n) — (LY, Vxn)
— (a(X,Y),€) — (LY, Vxn). (3.15)
Moreover,
n,(VxL)Z + LVxZ) = —(a(X, Z),&) + (n, LV x Z) (3.16)
and
(n, X () Ln + ¢V x L) = —=¢(V xn, Ln)
= —¢(LA X, n) — ¢(Vx1, ). (3.17)

Now, a straightforward computation replacing (3.13) through (3.17) in
(3.12) and using (2.8) yields

(f+X +VXALX + Vx L))
= (VxA)r, VxLA) = (LY, (X, Z)g) — ¢(LY, V1)
— (X, 2), L(VxA)p) — ¢(Vxn, L(VxA)p)
= ((VxNg, (VxL)A)

as we wished. O
In view of (3.11) the next step is to construct a subbundle D C
f«TM @ P that satisfies that

(VxNr. (VxL)A) =0 (3.18)
for any X € X(M) and A € I'(D).
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Lemma 3.14. Assume that T satisfies the condition (x). Then, the
bilinear form p: TM X f,TM ® P — R® R defined by

P(X,0) = (VxMr + (VxL)Nr, (VxA)r = (VxL)A)r)
is flat with respect to the indefinite inner product given by
(€1, 1), (&2, 12)) RoR = (€1,€2) R — (11, p12) -
Proof. We need to show that
O = (p(X; 1), 0(Y, ) — ((X,0), p(Y,A)) =0

for any X, Y € X(M) and \,§ € f,TM @ P. We have

%@ = ((VxNr, (VyL)d)r) + ((Vyd)r, (VxL)N)r)
—((Vx0)r, (VyL)A)r) — (Vy MR, (VxL)S)R).

Clearly © = 0if A\,6 e T'(P). If A, € X(M), then

50 = (@(X N, (Vv D)6)r) + (a(Y: ), (VxD)A)m)

— (@(X,8)m, (T¥ DNr) — {a¥ N r. (VxD)5)z)

= (X ). ((Vy L)3) ) — (4,Y,8) (X, N, En)

o, 0)m, (Tx DN R) — (4, X, {alY, &)r, In)

— (X8, (Fy L)) + (4,Y: M {a (X, 0)m, L)
(Y N, (TxL))5) + {4, X, 5) oY

R,
R,
)R7

<a )Ra

Using first (3.7) and then (2.12) we obtain that

56 = (a(X 0),B(Y,8)) + (a(Y;6), 5(X, )
—(a(X,4), B(Y, A)) — (a(Y, A), B(X,0))
=0.
Finally, we consider the case A =7 and § = Z € X(M). Then

50 = (Vin, (FyL)Z)r) = (AyY, 2)(Vha, In) + (a(Y, Z)r, (Vx Dn)i)
— (Vm, (FxD)2)m) + (Ay X, 2V, Ln) — (X, Z)r, (T L))
= (Vxn, B(Y, 2)) = (4Y, Z)(Vxn.€) + (a(Y, Z)r, (Vx L + LAy X)r)
— (X, Z)r, (Vy Ln + LAY )r) = (Vyn, B(X, 2)) + (Ay X, Z)(Vyn, £).
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Notice that
(VxLy+ LA X)r = (a(X,Y7) + LA X) R + (VxE)R
= &(X,n)r + (VxR
=&(X,n) + (vé_(g)Rv
where the last step follows from (2.7). Then

50 = (Vi (Y, 2)) — (A,Y, 2)(Vn, ) + (a(Y, Z)m, €(X,m) + (VXE))
— (X, Z2) R, E(Y.m) + (Vi €)r) — (Vi BX, 2)) + (4, X, Z){(Vin, §)
=X0.2) o VEB(Y, 2)) + (0(Y, 2), €(X,m)) + {a(Y, 2), VX&)
—{a(X. 2),E(V.m)) ~ (a(X, Z), V&) ¥ (. B(X. 2)) + (n, VX, 2)).

Now using (3.7) we obtain

%@ = —X(& oY, Z)) — (0. VxB(Y, Z)) + (a(Y, Z), &(X,n)) + (a(Y, Z), VxE)
z

n)
—(a(X,2),8(Y,n)) — (a(X, Z), V§:€) + Y (£, a(X, 2)) + (n, V3 B(X, Z))
= — (& (Vxa)(Y,2))) — (0, (VxB)(Y, Z)) + (a(Y, Z), E(X,m))

- <a(X7Z)7E(Y777)> + <§7 (V)L/O‘)(X’Z» <77’ (V 6)(X Z)>
=0,

where the last equality follows from (2.7), (2.13) and the Codazzi equation.
O

Proof of Theorem 8.11: By Lemma 3.14 there is the flat bilinear form
. Let U be an open subset of M™ where there is Y € X(U) such
that Y € RE(y) and D = ker ¢y has dimension d at any point. Then
Proposition 1.10 gives

{e(X,A), (X, ) =

for any X € X(U) and A € T'(D). Notice that this implies that (3.18)
holds for any A € I'(D). Whenever there is a nonvanishing A € T'(D) on
an open subset V' C U such that (3.9) defines a singular extension of f|y,
then Ty extends in the singular sense by means of (3.10).

Let W C U be an open subset where A € T'(D) as above does not exist
along any open subset of W. Hence D must be a tangent distribution on
W, and Proposition 3.5 gives that f|w is d-ruled on connected components
of an open dense subset of W. Moreover, the dimension of the rulings is
bounded from below by n + 1 — dimIm(ypy) > n —2p + 3. O

Proof of Theorem 8.9: We work on the open dense subset of M"™ where f
is 1-regular on any connected component. Consider an open subset of a
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connected component where the index of relative nullity is v <n —2p—1
at any point. Theorem 1.11 applies and thus the flat bilinear form 0
in (3.2) decomposes at any point as 0 = 0, + 65 where 0 is as in part
(i) of that result. Hence, on any open subset where the dimension of
$(61) = 8(0) N S(6)* is constant, there are smooth local unit vector fields
(1,¢2 € Ny such that (¢1,¢2) € 8(01). Equivalently, we have

(B(X,Y), G+ ) +{(a(X,Y), G — () =0 (3.19)

for any X,Y € X(M). Then (; + (2 # 0 since otherwise (; — (2 € Ni-.
Hence T satisfies the condition (*) and the proof follows from Corollary
3.12. O

3.2 The global result

Dajczer-Gromoll [14] proved that along connected components of an open
dense subset an isometrically deformable compact Euclidean submanifold
in codimension two and of dimension at least five is either isometrically
rigid or it is contained in a deformable hypersurface (with possible
singularities) and that any isometric deformation of the former is given
by an isometric deformation of the latter. This result was extended by
Florit-Guimarées [26] to other low codimensions. The next result that
concerns infinitesimal bendings of submanifolds in codimension two is of a
similar nature.

Theorem 3.15. Let f: M™ — R"T2, n > 5, be an isometric immersion of
a compact Riemannian manifold that does not contain an open flat subset.
For any infinitesimal bending T of f at least one of the following facts
holds along any connected component, say U, of an open dense subset of
M"™:

(i) The infinitesimal bending T|y extends in the singular sense.

(ii) There is an orthogonal splitting R"*? = R"*l @ span{e} so that
fU) Cc R*™ ! and Ty = T1 + T is a sum of infinitesimal bendings
that extend in the singular sense where T, € R™! and Ty = ¢e for

¢ e C>).

It will follow from the proof that the assumption on the open flat subset
can be replaced by the weaker hypothesis that there is no open subset of
M™ where the index of relative nullity satisfies v > n — 1. Moreover, we
will see that cases (¢) and (i¢) are not disjoint.

For the proof the following two results of independent interest are used.
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Proposition 3.16. Let T be an infinitesimal bending of f: M™ — R*TP
and let 6 be the flat bilinear form defined by (3.1). At x € M™ denote
v*(x) = dim A*(z) where

A*(x) = N(0)(z) = ANN(S)(2).

Then, on any open subset of M™ where v* is constant the distribution A*

is totally geodesic and its leaves are mapped by f onto open subsets of
affine subspaces of R"TP,

Proof. We have from (2.13) and the definition of A* that
(VxB)(Z,Y) = (VzB)(X,Y) =0

for any X,Y € T(A*) and Z € X(M). Let V* = (V+,V1) be the
compatible connection in N¢M @& NgM. Hence

0= (V%0)(Z,Y) = 0(Z,VxY)

for any X,Y € T'(A*) and Z € X(M). Thus A* C A is totally geodesic.
O

On an open subset U C M™ where v* > 0 is constant, consider the
orthogonal splitting TM = A* @ E. Then let C: T'(A*) x I'(E) — T'(EF)
be the splitting tensor of A*. Notice that £(T,n) = 0 for any T € T'(A).
Then, we have from (2.13) that § verifies the conditions on Proposition
1.7, in fact, we have the following result.

Lemma 3.17. If~: [0,b] — M™ is a unit speed geodesic such that v([0,b))
is contained in a leaf of A* in U, then A*(y(b)) = P5(A*(v(0))) where P}
is the parallel transport along v from ~v(0) to v(t). In particular, we have
v*(y(b)) = v*(y(0)) and that the tensor C extends smoothly to [0,D].

We also need the following result.

Lemma 3.18. Let f: M™ — R"™P, p < 5 and n > 2p, be an isometric
immersion of a compact Riemannian manifold and let T be an infinitesimal

bending of f. Then, at any x € M™ there is a pair of vectors (1,(s €
N¢M(z) of unit length such that ((1,¢2) € (8(0)) L (x) where

8(0)(z) = span{0(X,Y) : X, Y € T, M}.
Moreover, on any connected component of an open dense subset of M™

the pair (1,(2 at x € M™ extend to smooth vector fields (1 and (o parallel
along A* that satisfy the same conditions.
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Proof. We claim that the subset U C M" of points where there is not
a pair (1,2 as in the statement, that is, where the metric induced on
(8(6))* is positive or negative definite, is empty. We first argue that
U is open. If otherwise, there exists a sequence {x;};eny of points in
M™\ U that converges to x € U. Hence, at each x; there is a pair of
unit vectors ¢}, (% € Ny M (x;) such that (6(X,Y)(x;), (¢, ¢5)) = 0 for all
X,Y € T,,M. This determines a sequence {(z;,(},(3)}ien CV x S" x S"
where V is a small neighborhood of z. Take a subsequence {(z;, (], (J)}jen
such that {(¢],¢)}jen converges to some (C1,¢2) in S™ x S™. Then, we
have that {(0(X,Y)(z), (¢1,¢2))) = 0 for any X,Y € T, M, and this is a
contradiction.

From Theorem 1.11 we have v* > 0 in U. Let V C U be the open
subset where v* = v is minimal. Take ¢ € V' and a unit speed geodesic
v in M™ contained in a maximal leaf of A* with (0) = z¢. Since M™ is
compact, there is b > 0 such that v([0,0)) C V and v(b) ¢ V. Lemma 3.17
gives v*(y(b)) = 1§ which implies v(b) ¢ U. Hence, there are unit vectors

(1,G2 € Ny M(y(b)) such that (C1,C2) € (8(6))*(v(D)).
Let (;(t) be the parallel transport along v = ~(t) of ;, i = 1,2. Then

<<9(X7 Y)v (gla <2)>> - <(AC1—€2 + BC1+C2)X3 Y>
It follows from (2.13) and the Codazzi equation that
(V0)(X,Y) = (VX0)(T.Y), (3.20)
where T' € T'(A*) extends 7/ and X,Y € X(M). Along ~ this gives

D
%GCLQ =C¢.eCy = Ci’eCl,Cw

where C¢, ¢, = A¢,—¢c, + B¢ +¢, and C’i, is the transpose of C.,/. Moreover,
by Lemma 3.17 this ODE holds on [0, b]. Given that C¢, ¢, (v(b)) = 0, then
C¢,,¢c, vanishes along . This is a contradiction and proves the claim.

We have from (3.20) that

(VEO)(X,Y) = —0(VxT,Y) € T(8())

for any T € T'(A*) and X,Y € X(M). Thus 8§(0) is parallel along the leafs
of A*. Let Uy be a connected component of the open dense subset of M™
where the dimensions of A%, §(6),8(0) N 8(§)* as well as the index of the
metric induced on §(#)* x 8(#)* are all constant. Hence, on Uy the vector
fields (71, (> can be taken parallel along the leafs of A*. O

Finally, for the proof of Theorem 3.15 we also need a result about
extensions of submanifolds in codimension two.

Let f: M™ — R™2 be an isometric immersion. Assume that there
is a smooth line subbundle R C N;yM, such that the tangent subspace
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D(x) = N(ag)(x) has dimension n — k at every point x € M™. Then D is
a smooth tangent distribution. Assume further that R is parallel along D
with respect to the normal connection. Then, we have that R is constant
along D. Decompose the tangent and normal bundles orthogonally as

TM=D®FE, NyM=P®R.
At each point x € M™, define
I(z) = span{(@xn)f*E@p: X € E(z),n € R(z)}.

Then it follows from our assumptions that I" is a smooth rank-%k subbundle
of fuEE® P. Let A be given by the orthogonal decomposition f,E & P =
'@ A and let A € I'(A) be a nowhere vanishing section of A. The following
holds.

Proposition 3.19. The map F: M"™ x (—e¢,¢) — R"2 given, for some
e>0, by
F(z,t) = f(z) +tA(z)

parametrizes a hypersurface whose second fundamental form has constant
rank k. Moreover, its relative nullity subspaces are AY = D@ span{d/0t}.

Proof. F is an immersion since A is nowhere tangent to f. We have
F.Z = f.Z +tVz\

for any Z € X(M). From the definition of A we obtain (Vz\,1) = 0 for
n € T'(R). Thus, the normal space of F at (z,t) coincides with the parallel
transport of R along the segment parameterized by ¢. In particular, we
have that A" = D @ span{d/0t}, and hence the second fundamental form
of F' has constant rank k. O

Proof of Theorem 3.15: We assume that there is no open subset of
M™ where the index of relative nullity satisfies v > n — 1. By Lemma
3.18, on connected components of an open dense subset of M™ there are
C1,¢2 € T(NgM) with ||¢1]] = ||¢2]] = 1 that are parallel along the leaves
of A* and

(O(X,Y),(C1,¢2)) =0

for any X,Y € X(M). It follows from (3.1) that (3.19) holds on connected
components of an open dense subset of M™. Let U C M"™ be an open
subset where (;,(> are smooth and {; + (o # 0. Thus T|y satisfies
the condition (x). Let V C U be an open subset where T is a genuine
infinitesimal bending. By Corollary 3.12 we have that f is (n — 1)-ruled
on each connected component V of an open dense subset of V. Since our
goal is to show that V is empty we assume otherwise.
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Proposition 3.5 and the proof of Theorem 3.11 yield that the rulings
on V are determined by the tangent subbundle D = ker ¢ x where ¢ was
given in Lemma 3.14 and X € RE(p). Also from that proof we have
dimIm(px) = 2, and therefore Im(px) = R® R where NyM = P& R as
in Lemma 3.14. Proposition 1.10 gives

¢y (D) C Im(px) NIm(px)t =0

for any Y € X(M), that is, D = N(¢). In particular, from the definition
of ¢ it follows that D C N(agr). Hence, by dimension reasons either
N(ar) =TM or D = N(ag). Next we contemplate both possibilities.

Let Vi C V be an open subset where N(ar) = T'M holds, that is,
Ny = P. Thus N; is parallel relative to the normal connection since,
otherwise, the Codazzi equation gives v = n — 1, and that has been
ruled out. Hence f|y, reduces codimension, that is, f(V7) is contained
in an affine hyperplane R"*!. Decompose T = T; + T3 where T, and T
are tangent and normal to R™*! respectively. It follows that T is an
infinitesimal bending of f|y, in R"*1. Since T satisfies the condition (x)
it follows from Proposition 2.10 that J; is trivial, that is, the restriction
of a Killing vector field of R**! to f(V;). Extending T as a vector field
normal to R"™! we have that T|y, extends in the singular sense, and this
is a contradiction.

Let Vo C V be an open subset where D = N(ag). By assumption
D # A. Let D be the distribution tangent to the rulings in a neighborhood
V4 of 2o € V. From Proposition 3.5 we have D(zo) = D(20). Let W C VJ
be an open subset where D # ﬁ, that is, where D is not totally geodesic.
Then there are two transversal (n—1)-dimensional rulings passing through
any point y € W. It follows easily that Ny = P on W. As above, we
obtain that T|y extends in the singular sense leading to a contradiction.
Let V3 C V5 be the interior of the subset where D is totally geodesic. On
V3 the Codazzi equation gives

Vxa(Z,Y) e T(P)

for all X,Y € I'(D) and Z € X(M). Thus R is parallel along D relative
to the normal connection. We have from Proposition 3.19 that f admits
a singular extension

F(z,t) = f(z) + tA(z)

for A € T'(f.TM & P) as a flat hypersurface. Moreover, F' has R as normal
bundle and 9/0t belongs to the relative nullity distribution. Therefore
(VxA)gr = 0 for any X € X(V3). Hence (3.18) is satisfied and thus T]y,
extends in the singular sense. This is a contradiction which shows that V/
is empty, and hence also is V.

It remains to consider the existence of an open subset U’ C M™ where
(1, G are smooth and ¢; + (2 = 0. It follows from (3.19) that ¢; — ¢z L Nj.
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Once more, we obtain that f(U’) € R"*1. Thus, we have an orthogonal
decomposition of T|y as in part (i¢) of the statement and T, To extend in
the singular sense as follows:

(i) Ti(z,t) = Ti(x) to F: U x R — R™?2 where F(z,t) = f(z) + te.

(ii) For instance locally as Ta(z,t) = Ta(z) to F: U x I — R™*? where
F(x,t) = f(x)+tN being N is a unit normal field to f|y in R**t. [

Remarks 3.20. (1) In case (i7) of Theorem 3.15 if T3 is trivial then T;
and T2 extend in the same direction, and thus T also extends. Therefore
we are also in case (i).

(2) Notice that for p = 2 we have shown as part of the proof that an
infinitesimal bending of a submanifold without flat points as in part (i7)
of Theorem 3.9 cannot be genuine.

3.3 Exercises

Exercise 3.1. Prove the Corollary 3.3.
Exercise 3.2. Verify the assertion in Remark 3.8.

Exercise 3.3. Verify the assertion in Remark 3.10.



Chapter 4

Nonflat ambient spaces

In this chapter, we extend several results from the previous chapters to the
case of submanifolds of simply connected complete space form Q* with
sectional curvature ¢ # 0, that is, either the sphere or the hyperbolic space
according to whether ¢ > 0 or ¢ < 0, respectively.

A section T of f*T'Q" is called an infinitesimal bending of an isometric
immersion f: M™ — Q" if the condition

(VxT, £.Y) 4+ (£, X, VyT) =0

holds for any X,Y € X(M). Here V denotes the Levi-Civita connection
of Q7. Then
(LX, £.Y) + (f.X, LY} = 0, (4.1)

where L € I'(Hom(T'M, f*TQ!")) is defined by
LX =VxT

for any X € X(M).
Let B: TM xTM — f*TQ[* be given by

B(X,Y) = (VxL)Y (4.2)

for any X,Y € X(M). Now B is not symmetric differently to the case of
the Euclidean ambient space. In fact, we have

B(X,Y)—B(Y,X)=VxVyT = VyVxT - Vixy|T
= R(X,Y)T
= c(f. X N fY)T, (4.3)

where R denotes the curvature tensor of the ambient space.

95
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Let 8: TM x TM — NyM be the tensor defined by
BX,Y) = (B(X,Y) +c(X,Y)T)n, M

for any X,Y € X(M). It follows from (4.3) that § is symmetric. Hence,
the tensor Be € I'(End(T'M)) associated to £ € I'(NsM) given by

<B€X7 Y> = </8(X7 Y)a£>

is also symmetric.
Let Y € T'(Hom(N;M,TM)) be defined by

<lé777 X> + <LX, 7]> =0 (44)

for any X € X(M) and n € I'(NyM). Then, the tensor &: TM x NyM —
Ny M given by
S(Xa 77) = O‘(X71377) + (LAT]X)NfM
satisfies
(E(X,m),&) + (&(X,€),m) =0 (4.5)

for any X € X(M) and n,& e (N M).
Proposition 4.1. We have that

B(X,Y) = £.Ya(X,Y) + B(X,Y) +c(£L.X ATILY  (46)
forany XY € X(M).
Proof. We have to show that
C(X,Y, Z) = (B—- f:4a)(X,Y), fu2) + (X, YT, fuZ) — (X, Z)(T, f.Y)
vanishes for any X,Y,Z € X(M). The derivative of (4.1) gives

0= (VZLX, £.Y) + (LX,V2L.Y) + (VLY. fu.X) + (LY, Vzf.X)
+(B(Z,Y), fX) + (LV Y, f.X) + (LY, i VzX + a(Z, X))

It follows that
C(Z,X,Y) = —C(Z,Y,X)
for any X,Y,Z € X(M). On the other hand, from (4.3) we obtain that
CX,Y, Z2)-C(Y,X,Z) = (B(X,Y) = B(Y, X), Z) = (T, .Y )(X, Z)
+ (T, £ XY, Z)
= 0.
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By the above, we have

C(X,Y,2) = ~C(X,2,Y) = ~C(Z,X,Y) = C(Z,Y, X)

as we wished. O

Proposition 4.2. The pair (3, ) associated to an infinitesimal bending
T of an isometric immersion f: M™ — QU* satisfies the following system
of three equations:

Aﬁ(Y,Z)X + Ba(yyz)X = Af;(X,Z)Y + Ba(xyz)Y, (4.7)

(VxB)(Y.Z) = (V¥ B)(X.Z) = E(Y,a(X, 2)) - E(X,a(Y, Z))  (4.8)

and
(Vx&)(Y,n) — (Vy€)(X,n) = B(X, A)Y) - B(A,X,Y) (4.9)
+a(X, B,Y) — a(B,X,Y)
for any X,Y,Z € X(M) and n € T(N;M).
Proof. We first show that
(VxW)n =T, n)f X — fuB,X — LA, X + &(X,n) (4.10)

for any X € X(M) and n € I'(Ny M), where
(Vx¥)n = Vx L — fYVx.
From the derivative of (4.4) we have using (4.1) and (4.6) that

0= (VxfYn, £.Y)+ (Yn, VxV) + (VxLY,n) + (LY, Vxn)
= <(@Xy)777 f*Y> + <B77X’ Y> - C<“T’ 77><X’ Y> + <LA77X7 .f*Y>

Since (f«Yn, &) = 0, we obtain

= ((VxY)n,€) + (LA X — E(X,n),€)

for any X € X(M) and n,& € I'(Ny;M), and (4.10) follows.

Since

(VxB)(Y,Z)=Vx(VyL)Z — (VvyyL)Z — (VyL)VxZ
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it is easy to see that
(VxB)(Y,Z) - (VyB)(X,Z) = R(X,Y)LZ — LR(X,Y)Z
=X AY)LZ - LR(X,Y)Z  (4.11)
for any X,Y,Z € X(M). It follows using (4.6) that
(VxB)(Y, Z) = (VxY)a(Y, 2) + [.Y(Vxa) (Y. Z) + (VxH)(Y. Z)
+cZ,TNa(X,Y) - (Y, Z)LX — J[+Agey,2) X
+c({a(X,2),T) + ([ Z, LX) f.Y
for any X,Y,Z € X(M). Then, the Codazzi equation gives
= <(@Xlé)a(}/7 Z) - (?Y%)Oé(‘)g Z)7 f*W> + C(<04(X, Z)7 (‘T>
+ (f+Z, LX)V, W) = c({Y, Z), T) + (f+Z, LY ))(X, W)
+(Agx,2)Y — Agv,y X, W) — (cL(X AY) Z, f W)
for any X,Y,Z, W € X(M). Hence (4.1), (4.11) and the Gauss equation
(1.4) yield
(Vx¥)a(Y, 2) = (Vy¥)a(X, 2), fL.W)
= clalY, 2), TX, W) — cla(X, Z), T)Y, W)
+ <LA (X, Z)Y — LAa(YZ X, f* > <A5 YZ)X AB(X Z)Y W>
On the other hand, it follows from (4.10) that
(VxY)a(Y, Z) = (VyY)a(X, 2), f* )
= (Y, 2), T)(X, W) — cla(X, Z), T)(Y, W)
+ (LA x,2)Y — LA(x(Y,Z)X» f* ) + (Bax,2)Y — Bav,2) X, W).
The last two equations give
(Asv.z)X — Apx,2)Y, W) = (Ba(x,2)Y = Bav, )X, W),
and this is (4.7).
Using (4.6) we obtain
(VxB)(Y, Z))n;m = (X, Ya(Y, Z)) + (Vx B)(Y. Z)
+c(f 2, T)a(X,Y) = (Y, Z) (LX) N, -
Then, we have from (4.11) and the Gauss equation that
(VxB)(Y, Z) = (V¥B)(X, 2)
= (LR(Y, X)Z)n,m — a(X, Y, Z)) + (Y, Ya(X, Z))
-+ C<K Z>(LX)NfM - C<X, Z>(LY)NfM
= (LAxx,2)Y — LAaiy, 2y X)Ny M
— (X, Ya(Y, 2)) + a(Y, Ya(X, 2)),
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and this is (4.8).
We have
(Vx&)(Y,n) = Vx&(Y,n) — E(VxY,n) — E(Y, V1)
= (Vxa) (Y, Yn) + (L(Vx A) (Y, ) n, 01 + (Y, Vx Yn)
—a(y, %V§n) — (LVxAyY )N,y + V)L((LAUY)N,fM'
Then (4.10) gives
(Vx&)(Y,n) = (Vxa)(Y,Yn) + (L(Vx A)(Y,n)n,a — a(Y, By X)
— a(Y, (LAnX)TM) — (LVXAnY)NfM
+ VR (LAY )N i+ o(T, ma(X,Y).
Using the Codazzi equation, we have
= a(X, BnY) - OL(}/, BnX) -+ OL(X, (LAnY)TM) — Oz()f7 (LAnX)TM)
— (LVxA)Y )N, v + V(LAY )N,
+ (LVYAUX)NfIVI — V%(LA,IX)NfM

From (4.6) and the definition of B we obtain

ﬂ(X, AnY) — C<X, AnY>(T)NfM
= a(X, (LAY )rn) — (LVXAnY)NfM + V)l((LAnY)NfM’

and then (4.9) follows. O

Let T be an infinitesimal bending of f: M™ — Q™. Let i: Q" — E™+!
stand for the isometric umbilical inclusion, where E™*! denotes either the
Euclidean space R™*! (¢ > 0) or Lorentzian space L™*! (¢ < 0) with the
standard flat metric. Recall that the position vector f =jofin E™*! lies
in N;M. Hence, for simplicity we write f € I'(N;M). Let V denote the

Levi-Civita connection on E™*! and regard T = i,T as an infinitesimal
bending of f. Then the tensor LX = V x 7T satisfies

LX =i, LX — e(f.X,T)f (4.12)
for any X € X(M).

Lemma 4.3. The pair (B, (6,) associated to T is given by

N

/B(X7Y) = Z*B(X7 Y) - C<X7 Y>7:*(‘T)NfM - C<04(X, Y),T>f,

E(X,iwn) = i €(X,n) — c((X, Yn) + ([ Ay X, 7)) f



60 Marcos Dajczer and Miguel I. Jimenez

and A
E(X, f) = ~iVx (TN,
for any X, Y € X(M) and n € T'(NyM).

Proof. Let V denote the Levi-Civita connection in E™+1. We have that

VxLY —LVxY =Vx (i LY — c(f.Y, T f) — i, LV xY + c¢(f.Vx Y, T)f
i(VxL)Y = ¢(£.Y,T) f.X = c(a(X,Y),T)f,

where for the last step we used (4.1). Recall that 3 is the normal
component of VL. It follows from (4.6) that

PN

BX,Y) = iB(X,Y) = (X, V)i (T)nym — (X, Y), T) f
for any X,Y € X(M). )
Let Y associated to T be given by (2.10). We have from (4.12) that
Yin = Yn
for any n € I'(NyM). It also follows from (4.12) that

~

L= prm.

Therefore, we obtain that

E(X, i) = &(X, Yn) + (LA X) N, 1
= Z*Q(van) - C<X»977>f + Z.*(LAT]*X)Nf]W - C<f*A?7Xa (‘T>f
— (X)) — (X, Yn) + ([ A, X, T)) f.

As for the position vector f, we have

E(X, f) = &(X,Uf) + (LA X)n,m
X, (T)rm) = (LX) n,m

and the proof follows. O

An infinitesimal bending T of an isometric immersion f: M™ — Q" is
said to be a trivial infinitesimal bending if it is of the form T = Z + w,
where Z is the restriction to f(M) of a Killing vector field of Q7 and
w € I'(NyM) is parallel along f with respect to the ambient connection,
that is, if Vxw = 0 for any X € X(M). Notice that if w # 0 then f

necessarily reduces codimension.
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Proposition 4.4. An infinitesimal bending T of f: M™ — QU is trivial
if and only if there is a skew-symmetric tensor C € T'(End(NyM)) such
that the associated pair (8,&) has the form

B(X,Y) =Ca(X,Y) and &(X,n) = —(V%C)n. (4.13)

Proof. If T is trivial it has the form T = Z + w where Z is the restriction
to the submanifold of a Killing vector field Z of Q" and w € I'(NyM) is
parallel along f. Then the associated tensor L satisfies

LX =LX

for any X € X(M), where £ is given by LU = VyZ for any U € X(Q™).
Since Z is a Killing vector field it satisfies

(LU, V) +(LV,U) =0
for any U,V € X(Q7*). Thus, we have

(VxL)Y =VxLY — LVxY =VxVyT — Vy,yvT
= @X@YZ— @@Xyzv—Fﬁa()gy)Z
=VxVyZ—Vg 2+ La(X,Y)

for any X,Y € X(M). It follows from Exercise 4.1 that
(VL)Y = c(f. X AN f.Y + La(X,Y)
for any X,Y € X(M). Hence, we obtain from (4.6) that
(L X ALY + La(X,Y) = £Yau(X,Y) + B(X,Y) + c(f X AT)£.Y.
Then, calling C = (L[N, )N, m We have
B(X,Y) =Ca(X,Y).

Since Z is a Killing vector field, then f.Yn = (Ln)s.ram where n €
I'(NyM). This implies that

(@XL)T] = @Xﬁn — L@XU
= Vx (£ Y0+ (Ln)npar) + L(f Ay X — V).
Taking normal components, we obtain

(VL) vy = (X, Yn) + V(L) n,ar + (LAX = V0N, M
=&(X,n) + Vx(Ln)n,m — (VX0 N, M-
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On the other hand, we have from Exercise 4.1 that
(Vx£)n = e(£X ATy = e, T)f.X,
which implies that
E(X,m) + Vx (Ln) vy — (EVx1) Ny = 0.
Thus the previous equation is just
(X, ) + (VxC)n =0,
and hence (4.13) holds.

Assume that T is an infinitesimal bending of f: M"™ — Q' whose
associated pair verifies (4.13) and regard T = i,J as an infinitesimal
bending of f = io f: M" — E™tL. We claim that that the tensors
associated to T have the form (2.19). In fact, let C' € I'(End(N;M)) be

given by . .
Civn =1i.Cn—c(n,T)f and Cf = i.(T)n;m

for any X € X(M) and n € T'(NyM). Then, it follows from Lemma 4.3
that

ﬁ(X7 Y) = Z*/B(Xa Y) - C<X7 Y>Z*(“T)NfM - C<Oé(X, Y)7T>f
=i,Ca(X,Y) — (X, YV)COf — cla(X,Y), T) f
=Ca(X,Y)

for any X, Y € X(M). As for &, we also have from Lemma 4.3 that

A

E(X, i) = i €(X,m) — c((X, Yn) + ([ Ay X, 7)) f
= —i.(Vx O — (X, Yn) + (4, X, T)) f
=i, (CVxn — VxCn) — c({X, Yn) + ({4, X, 7)) f
=i, (CVxn — VxCn) + c({(LX,n) + (Vxn,T) = (Vxn, 7)) f
= Ci,Vin —i,VxCn+cX(n,T)f
= CA’i*Vg‘(n — @ﬁ;é’z*n
= —(VxC)ixn,
where V1 denotes the normal connection of f . From the definition of ¢
it is not hard to see that

(VxO)f = i.Vx(T)n -

Hence, we also have from Lemma 4.3 that & = —@J—C', and this proves
the claim.
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It now follows from Proposition 2.7 that T is a trivial infinitesimal
bending of f, that is, that

F(a) = Di(a) +w,

where D is a skew-symmetric linear map of E™*! and w € E™H! is
constant. Since T = i, T is tangent to Q7°, then w is orthogonal to the
position vector f , hence it determines a parallel vector field normal to f
and therefore T is trivial. In particular, if f does not reduce codimension
then w = 0. O

From now on, we identify two infinitesimal bendings T and T of an
isometric immersion f: M"™ — QI* if there exist 0 # k € R and a trivial
infinitesimal bending Ty such that T = Ty + kT7. Accordingly, we also
identify pairs of tensors (81,&1) and (B2, €2) if there is 0 # k € R such
that (1 — kB2, €1 — kE2) has the form (4.13).

4.1 The Fundamental Theorem

In this section we give the Fundamental Theorem for infinitesimal
variations of submanifolds in nonflat ambient spaces.

Theorem 4.5. Let f: M" — Q' be an isometric immersion of a
simply connected Riemannian manifold. Let B: TM x TM — NyM be
a symmetric tensor and let the tensor E: TM x NyM — N¢M satisfy the
compatibility condition (4.5). If the pair 0 # (B, &) satisfies (4.7), (4.8)
and (4.9), then there is a unique infinitesimal bending T of [ having (8, &)
as associated pair.

Proof. Set f: iof: M™ — E™*! and define the tensors 3: TM x TM —
NfMand S:TMXNfM%Nbey

BX,Y) =i.B(X,Y), &(X,im) =i.&(X,n) and &(X,f) =0

for any X,Y € X(M) and n € I'(N;M). Notice that at any point both
tensors do not have a component in the direction of the position vector
f. This already implies that 3 verifies (2.12) since [ satisfies (4.7). Also
notice that V% f = 0 and that

Vi =i.Vxn

for any X € X(M) and n € I'(N;M). It follows from (4.8) and (4.9) that
3 and & verify (2.13) and (2.14) for any X,Y € X(M) and 1 € I'(NsM).
Since &(X, f) = 0 and Ap = —1I, then (2.14) also holds for f. Therefore
the integrability conditions of equation (2.20) are satisfied.
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Similarly as in the proof of Theorem 2.8, we take a skew-symmetric
solution D € T'(End(f*TE™*!)) of (2.20) along f. We claim that
T e T(f*TQI) given by

.7 (x) = D(a)f(x)
is an infinitesimal bending of f. For simplicity, from now on we write
U instead of ¢,.U when considering U € T'(f*TQI") as an element of
I( f*TIEm“) and, similarly, we write X instead f,X for tangent vector

fields. Recall that V denotes the Levi-Civita connection of QI and V the
one of E™*!. Also recall that

(DU, f) +(T,U) =0
for any U € T'(f*TQ""). Then
DU = (DU)rgm — (U, T) f. (4.14)
Thus we have

VxT =VxT+c(X,T)f
= VxDf +c(X,T)f
= (VxD)f + DX 4+ ¢(X,T)f.
We obtain from (2.20) and (4.14) that

VxT =B X + E(X, f) + (DX)rgp.

Notice that (BfX, Y) = (B(X,Y),f) = 0 and that &(X, f) = 0 by the
definition of the tensors 3 and €. Hence

VxT = (DX)rgm.

Since D is skew symmetric we have from the previous equation that T
verifies (4.1), and the claim follows. Also observe that from the previous
equation the tensor L associated to T is (D|rar)rgm. Then

VxDY = Vx(LY = ¢(Y,T)f)
= VxLY — (X, LY)f = (VxY,T)f — (Y, LX) f — (Y, T) f. X
=VxLY —c¢(VxY,T)f — Y, T f. X
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where in the last step we made use of (4.1). Using (4.14) we have that

(VxD)Y = VxDY — DVxY
=VxLY —c(VxY, ) f — (Y, T) f. X = DVxY +c(X,Y)T
=VxLY —c¢(VxY, T f — (Y, T f. X
—DVxY — Da(X,Y) + (X, V)T
= (VxL)Y —c(VxY,T)f — (Y, T) f. X
+e(VxY, T f — Da(X,Y) + ¢(X, V)T
= (VxL)Y —cla(X,Y), ) f — (Y, T f. X
—Da(X,Y) + (X, V)T
= (VxL)Y — (Da(X,Y))rgp — (Y, T) f X + c(X, V)T

It follows from (2.20) and the above that
(VxL)Y = B(X,Y) + (Da(X,Y))rgn + (Y, T) f.X — ¢(X,Y)T.
Thus, we have that the symmetric tensor B associated to T is given by
B=p+Ca,

where C' € T'(End(N;M)) is the skew-symmetric tensor defined as Cn =
(Dn)n,n for any n € T'(NyM). As for the tensor € associated to T, we
have

E(Xv 77) = Oé(Xalc’f??) + (LAUX)NfM
= (Vx(Dn)rar)npmr + (DA )i

= (Vx(Dn)rgr ) v, — VxCn — (DVxn) v, + CVx0

where for the last step we used (2.20). Therefore & = & — V1C, and this
concludes the proof. O

4.2 The hypersurfaces case

Let f: M™ — Q! be an isometric immersion with second fundamental
form A € T'(End(T'M)) with respect to a unit normal map N € I'(NyM).
Associated to an infinitesimal bending T of f there is the symmetric tensor
B € T'(End(T'M)) defined by

(BX,Y)N = B(X,Y).
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In codimension one, a tensor £: TM x NyM — NyM satisfying (4.5)
vanishes. Hence, the fundamental equations of an infinitesimal bending
take the form

BXNAY —BY NAX =0 (4.15)

and
(VxB)Y = (VyB)X
for any X, Y € X(M).
Analogously to the case of the flat ambient space we have the following

result.

Proposition 4.6. An infinitesimal bending T of an hypersurface f: M™ —
Qnt! s trivial if and only if its associated tensor B vanishes.

For hypersurfaces the Fundamental Theorem takes the following form.

Theorem 4.7. Let f: M™ — Q"' be an isometric immersion of a
simply connected Riemannian manifold. Let 0 # B € T'(End(TM)) be a
symmetric Codazzi tensor that satisfies (4.15). Then there exists a unique
infinitesimal bending T of f having B as associated tensor.

4.3 Infinitesimal rigidity

In this section, we give rigidity results analogous to the ones in Chapter 2
for the flat ambient space.

Proposition 4.8. Let T be an infinitesimal bending of a given isometric
immersion f: M™ — Q™. Then let Gy: M™ — E™F! fort € I C R be the
map defined by

Gi(x) = (1+ et T(2)|*) 2 (f(2) + 0.7 (2), (4.16)
where f =io f: M™ — E™tL. The following assertions hold:

(i) The maps Gy and G_; determine (locally if ¢ < 0 and I is small
enough) immersions in QT that induce the same metric.

(i) If f is substantial and there is 0 # to € I such that Gy, and G_y,
are congruent as immersions in QU then T is trivial.

Proof. We compute in E™*! and write T instead of i,T for simplicity.

P

Since the position vector f is orthogonal to QF*, then

1f (@) +T(@)|* = | F(@)]* + 2] T ()] (4.17)

= % + 2|7 ()% (4.18)
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If ¢ < 0, we restrict ourselves to open subsets U of M™ where there is a
constant K > 0 such that K2 > —c||T||%2. Therefore 1+ ct?||T(z)||* > 0 on
U when taking t € [ = (-K~!, K~!). Hence

1Gi(@)]I? = m (1/e+ 21T = *

and thus Gy (z) € Q" for any x € M™ (z € U if ¢ < 0).
Setting
$i(x) = (L4 ct?|[T(x)[*) 12,
we have
Gt*X = X(¢t)(f + tT) + (bt(f*X + thT)
for any X € X(M). Using (4.1) we obtain

|G X |12
= | X (6e)(f +tT) + e (f X +tVxT)|
= X(30)*f +1T)? + 20X (¢0)(f + 1T, f X +tVxT) + 2| fu X +tVxT|?
= X(6¢)*(1/c+ ||T|?) + 26: X (¢0) t{f, VX T) + t(f. X, T) + t*(VxT,T))
+ o[£ X))+ 2V T)?)
= (1/0)X(¢0)?0; > + 20 X (¢)*(Vx T, T) + 7 (| £ X |* + 2|V T|?)
for any X € X(M). Since
X(¢t) = _Ct2¢?<@X‘I> T)a
then R
1GeX|1? = 7 (| £ XI1° + 2 VxT|? — ct* 67 (Vx T, T)?)

for any X € X(M), and this proves part (7).

Now assume that the immersions G, and G_;, are congruent in Q7"
for to € I, that is, there is a linear isometry S of E™*! such that
Gi, = SoG_y,. Thus

(bto (f+ t(‘T) = (b*tos(f - tO(‘T)7

and since ¢y, = ¢_4,, we have

A

(S — Id)f = to(S + Id)T, (4.19)

where Id is the identity map in E™*1,
We claim that S + Id is invertible. If otherwise, there is 0 # § €
ker(S + Id). Since S* = S™1, where S* denotes the adjoint operator of
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S, then 0 € ker(S* 4+ Id) and hence (S — Id)*§ = —2§. Then the inner
product of (4.19) with ¢ gives

<f(:£),5> =0foranyz € M™.

For ¢ < 0 since we have <f, f) < 0, then (§,6) > 0. It follows that
f is contained in an hyperplane orthogonal to § in contradiction to the
assumption that f is substantial, and this proves the claim.

We have that S + Id is invertible, and hence T = Df where

D= ti(s + Id)"Y(S — Id).
0

To conclude the proof of part (ii) it remains to show that D is skew-
symmetric. For this, first notice that

(S—1Id)(S*"+Id)=S—-5"=—(S+1d)(S* - Id).
Then

(S+I1d)" (S — Id) = (S + Id)~*(S — Id)(S* + Id)(S* + Id)™*
= —(S+Id)" (S + Id)(S* — Id)(S* + Id)~!
=—(S* —Id)(S* + Id)™*
=—((S+Id)~*(S - Id))*

as we wished. O

A submanifold f: M™ — QI is said to be infinitesimally rigid if it
admits only trivial infinitesimal bendings. Since Propositions 2.14 and
2.15 also hold when the ambient space is Q*, then using the above we
have the following result.

Theorem 4.9. Let f: M™ — QP be an isometric immersion such that
either p <5 and the s-nullities satisfy v <n—2s—1 foralll < s <p or
the type number satisfies T > 3. Then f is infinitesimally rigid.

Proof. Let T be an infinitesimal bending of f. Define the maps G; by
(4.16). Then any point of M™ is contained in a neighborhood U such that
for ¢ is small enough the immersions G|y and G_;|y are congruent. Hence
T is trivial on U and the tensor 3 associated to T satisfies 8 = Cya for
some skew symmetric endomorphism Cy € I'(End(N;U)). In particular,
from the assumptions we have that f has full first normal spaces. Thus, if
two such open subsets U and V intersect then Cyy = Cy. Therefore, the
pair (3, ) associated to T has everywhere the form (4.13), and hence T is
globally trivial. O
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4.4 The genuine case

In this section, it is shown that several results from the previous chapter
also hold when the ambient space is a space form of nonflat sectional
curvature.

Several definitions given previously for the Euclidean ambient space
extend to the new situation with minor adaptations.

A smooth map F: M™t¢ — Q*P, 0 < £ < p, from a differentiable
manifold M™* is said to be a singular extension of a given isometric
immersion f: M™ — QP*P if there is an embedding j: M™ — M"¢,
0 < £ < p, such that F is an immersion along M"*¢\ j(M) and f = Foj.
Hence, the map F may fail (but not necessarily) to be an immersion along
points of j(M).

An infinitesimal bending 7T of an isometric immersion f: M™ —
Qnt?P extends in the singular sense if there is a singular extension
F: M" — QP of f and a smooth map T: M™ ¢ — E™*! such that
T is tangent to Q7 and is an infinitesimal bending of Flyp o with

‘:T: (j'|](]\/[)

That an isometric immersion f: M"™ — Q7 is r-ruled means that there is
a smooth r-dimensional totally geodesic tangent distribution whose leaves
are mapped diffeomorphically by f to open subsets of totally geodesic
submanifolds of Q7.

An infinitesimal bending T of an isometric immersion f: M™ — Qu*?,
p > 2, is called a genuine infinitesimal bending if T does not extend in
the singular sense when restricted to any open subset of M™. If f admits
such a bending we say that it is genuinely infinitesimally bendable. Finally,
we say that f is genuinely infinitesimally rigid if given any infinitesimal
bending T of f there is an open dense subset of M™ such that T restricted
to any connected component extends in the singular sense.

A key ingredient in this section is the following result obtained as
a consequence of Proposition 3.5. In what follows f = i o f where
f: M™ — Q™ is an isometric immersion and i: Q™ — E™*! is the usual
umbilical inclusion. Moreover, exp,,: T,Qr* — Q" denotes the exponential
map at p € Q.

Proposition 4.10. Let f: M™ — QI* be an isometric immersion and let
D be a smooth tangent distribution of dimension d > 0. Assume that there
is mo open subset U C M™ and Z € T'(D|y) with ||Z||?> = 1/|c| such that
the map F: U x I — QM C E™*L given by

(4.20)

costf(x) +sintf,Z if ¢>0,
F(xvt = A ~
coshtf(x)+sinhtf,Z if ¢<0
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is a singular extension of f on an open neighborhood of U x {0}. Then,
for any x € M™ there is an open neighborhood V of the origin in D(z)
such that exp g, (f«V) C f(M). Hence f is d-ruled along each connected
component of an open dense subset of M™.

Proof. Given a smooth map ¢g: N® — Q" from a differentiable manifold
N™, by the cone over g we mean the map §: N x R, — E™*! given by

9(y,s) = sg(y)-

Observe that if g is an immersion then also is g.
~ On an open subset U C M take Z € X(U) with || Z| = 1/|¢|. Then let
f be the cone over f and let F: U x Ry x I — E™*! be given by

F(z,s,t) = sf(z) +tf.2. (4.21)

Assume that there is an open neighborhood of (z,1,0) in U xR x I where
F is a singular extension of f. Then the intersection of its image with Qr
determines a singular extension of f. In fact, taking s # 1 and ¢ such
that s? + sign(c)t? = 1 we have that F(z,s,t) € Q. Moreover, for such
pair (s,t) if close enough to (1,0), then F is transversal to Q™ and thus
F(U x I xI)N QT is a singular extension of f.

Take Z € I'(D) with || Z||> = 1/|c| and let F: U x I — Q™ C E™*! be
given by (4.20). Notice that the cone over F, say F', can be parametrized
by (4.21). Therefore, our assumptions and the discussion above imply that
there does not exist an open subset U and Z € I'(D|y), || Z||? = 1/|c|, such
that F' is a singular extension of f. Hence, it follows from Proposition 3.5
that for any € M™ there is an open neighborhood V' of the origin in
D(z) such that £,V C f(M xR,). In other words, locally the cone over F
is contained in the cone over f. Thus the piece of geodesic in Q) passing
through f(z) in the direction of Z is contained in f(M), and the proof
follows. O

Proposition 4.11. Let f: M™ — QI* be an isometric immersion and let
T be an infinitesimal bending with associated pair (3,€). Then, at any
point of M™ the bilinear form 0: TM x TM — N¢M @© Ny M defined by

0(X,Y) = (a(X,Y) +B(X,Y),a(X,Y) - B(X,Y))
is flat with respect to the inner product in NyM & Ny M given by
((€sm), (o m) ) Nyman,m = (€1, 82) Ny — (1, M2) Ny -
Proof. Follows from (4.7). O

Similarly to the case of the Euclidean ambient space, we have the
following fact.
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Proposition 4.12. Let f: M™ — Q" be l-regular and let p1: TM x
TM — Ny be the Ni-component of 5. Then the bilinear form 6: TM x
TM — Ny & Ny defined at any point by

A~

0(X,Y) = (a(X,Y) + B1(X,)Y), (X, Y) = B1(X,Y))
is flat with respect to the inner product induced on N1 & Nj.

Theorem 4.13. Let f: M™ — Q"*P, n > 2p > 4, be an isometric
immersion and let T be an infinitesimal bending of f. Then along each
connected component of an open and dense subset either T extends in the
singular sense or f is r-ruled with r > n — 2p.

Proof. By Proposition 4.11 the symmetric tensor 6 is flat at any point
of M™. Given Y € RE(f) denote D = kerfy where 6y (X) = 0(Y, X).
Notice that Z € D means that a(Y,Z) = 0= 5(Y, Z).

Let U C M™ be an open subset where Y € X(U) satisfies Y € RE(0)
and D has dimension d at any point. Proposition 1.10 gives

<<9(X7 Z),0(X, Z)>> =0
for any X € X(U) and Z € I'(D). Equivalently, we have
(a(X,2),8(X,2)) =0 (4.22)

for any X € X(U) and Z € I'(D).

Assume that there is Z € T'(D), || Z]|? = 1/|¢|, defined in an open subset
V of U such that F': V x (—¢,¢€) given by (4.20) is a singular extension of
f. Let L be given by (4.12) and define T: M x (—e,e) — E™*1 by

T(xz,t) =

. costi, T (z) 4 sintL(z) Z(x) ife >0,
cosh ti, T(x) + sinhtL(z)Z(x) ifc < 0.

We claim that T is an infinitesimal bending of F' on the open subset where
F is an immersion. In what follows V denotes the Levi-Civita connection
of E™*1, We only argue the case ¢ > 0 since the computations for ¢ < 0
are similar. First notice that

(F(x,t),T(2,t)) = (costf +sintf,Z, costi,T + sintLZ)
= costsint(f,LZ) + costsint(f.Z,T)
= —costsint(fuZ,T) + costsint(f.Z,T)

and hence T is tangent to Q.
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We have that

(F0/0t, @3/3{5') —sin tf + cos tf*Z, —sinti, T + cos tﬁZ)

=
=0

We obtain using (4.1) that

(F.0/0t.V xT) + (F.X,V,0:T)
= (—sintf + costf.Z,costLX +sintVx LZ)
+ {cos tf*X + sin t@xf*Z —sin 4, T + cos tﬁZ)
= costsint(f, X, T) —sin® t(f, Vx LZ) + cos® t(f.Z, LX)
+ costsint(f,Z,V xLZ) — costsint(f.X,T) + cos> t(f. X, LZ)
—sin® t{f,.VxZ + (X, Z),T) + costsint(V x f. Z, LZ)
= —sin?t(f,VxLZ) + costsint(f.Z,V x LZ)
—sin? t{f,VxZ + a(X, Z),T) + costsint(Vx f. Z, LZ)
—sin?t(f,(VxL)Z) — sin?t{a(X, Z),T) + costsintX (f.Z, LZ)
=0

for any X € X(M), where for the last step we used Lemma 4.3. In addition,
we have using (2.11), (2.10) and Lemma 4.3 that
(F.XVxT)

= (cos tf*X + sin t@xf*Z, costLX + sin t@XIA/Z>
(f X, VxLZ)+ (Vx fo Z,LX)) +sin® t(Vx f. Z,V x LZ)
(f:X,(VxL)Z) + (a(X, 2), LX)

+sin? t((f.VxZ,(VxL)Z) + (&(X, Z),Vx LZ))

= sin? t((f.Vx Z, Ya(Y, 2)) + (a(X, Z),Vx LZ))

= costsint

—~~

= costsint

where the last steps follows from (4.22), and this proves the claim.

Let W C U be an open subset such that Z € T'(D) as above does not
exist along any open subset of W. By Proposition 4.10 the immersion is
d-ruled along any connected component of an open dense subset of WW.
Moreover, we have that d = dim D = n — dimIm(fy) > n — 2p. O
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Let F: M"!1 — Q" be an isometric immersion and let T be an
infinitesimal bending of F. Given an isometric embedding j: M" — M"+!
consider the composition of isometric immersions f = Foj: M"™ — QnTP.
Then T = ‘j“|j(M) is an infinitesimal bending of f. It is easy to see that the
corresponding tensors B and B given by (4.2) satisfy along f that

for n € I'(N; M) of unit length and any X,Y € X(M). It follows from
(4.6) that

(B(X,Y), Fun) = (B(X,Y), Fun) — (X, Y)(T, Fun)
and similarly using (4.4) that
(B(X,Y), Fup) = —(a" (X,Y), L) — (X, Y)(T, Fun).
Hence, it follows from (4.1) and the equations above that
(BX,Y), Fun) + ((X,Y), Lip) = 0

for all XY € X(M). As in the case of the Euclidean ambient space,
satisfying a condition of this type may guarantee that the infinitesimal
bending is not genuine.

We say that an infinitesimal bending of an isometric immersion
f: M™— QP p > 2, satisfies the condition (x) if there is n € I'(N;M)
of unit length and £ € T'(R), where R is determined by the orthogonal
splitting NyM = P @ R and P = span{n}, such that

By + A¢ =0, (4.23)
where B,, = (8,7n). Thus, that (3.6) holds means that
(B(X,Y),m) + (a(X,Y),£) =0 (4.24)
for any X, Y € X(M).
Assume that T satisfies the condition () and extend the tensor L to a

tensor L € I'(End(TM @ P, f*TQ'?)) by defining

Then L satisfies - -

for any X € X(M). Define Y: R — TM @ P by

Y5 =45 — (6,6)n,
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where § € I'(R). Then
(Y5, \) + (LA, 8) =0
for any A € I'(TM & P) and 6 € I'(N;M). Let
(VxL)\ = VxL\— LV'y\,

where X € X(M), A € I'(TM & P) and V' is the connection induced on
TM @ P. Then let 8: TM x (TM & P) — R be given by

BX,A) = (VxL)A)r + ¢(X, \)Tg.
Proposition 4.14. We have that
(VDA =Y(VxNr + B(X,\) 4+ c(f. X AT)A (4.25)
forany X € X(M) and N e T'(TM & P).
Proof. Observe that
(VxL)Y = (VxL)Y — (a(X,Y),n)In,
where X,Y € X(M). Then (4.4) and (4.6) give
(VxL)Y. Z) = (Ya(X,Y), Z) + (X AT, Z) — (a(X,Y),m)(Ln, Z)
=YX, Y)r, Z) + (X NT)Y, Z).
Since T satisfies the condition (x) it follows from (4.6) that

<(6Xf/)}/7 77> = <6(X’ Y)’n> - C<X7 Y><“T’ 77>
= —<Oé(X, Y)a€> - C<X7 Y><Ta 77>
= <90¢(X, Y)R’77> - C<X’ Y><‘I’ 77>'

Then (4.25) holds when A =Y € X(M).
Taking the derivative of

(Ln,Y)+ (n,LY) =0
in the direction of X we obtain
(VxL)n,Y) + (Ln,a(X,Y)r) + (Vxn, LY) + (1, (VxL)Y) = 0.
Using that (4.25) holds for A =Y gives
(VxL)n,Y) +(Vxn, LY) = (X, Y)(T,n) = 0.

Then o ~
(VxL)n,Y) = (YVxn,Y) + ¢(T,n)(X,Y).
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Finally, taking the derivative of (Ln,n) = 0 yields

(VxLyn,n) = (JVxmn.7),
and this concludes the proof. O
Assume that T satisfies the condition (x). Given A € T'(TU & P),

IAI? = 1/|¢|, where U is an open subset of M" define the map
F:U x (—¢,¢) — QP by

F(z,t) =

costfx + sinti A (x if ¢>0,
{ () () o0

coshtf(z) +sinhti,\x) if ¢ <0

and the map T: U x (—e, ) — E™F1 by

- {cos ti, T () 4 sint (i, L(x)A(z) — e(\(z), T(2)) f(x)) if ¢ >0,
T(z,t) =

N

cosh ti,T(x) + sinh (i, L(z)A(x) — c(\(z), T(x)) f(z)) ifc<O.
(4.27)
Observe that (F(z,t),T) = 0 and hence T is tangent to Q™. Assume that
¢ > 0 being the computations when ¢ < 0 similar. Since <I_/)\, A) = 0 then

(F.0/0t,V 5,5:T) = 0.
We have
(F.XVo,0:T)
= (costfu X +sintV xi,\, —sinti, T + cos t(i, LA — ¢(\, T) f))
= —costsint(f. X,T) + cos® t(f. X, L\) —sin® t(Vx\, T)
+ costsint(Vx A, LA) + ccostsint(\, T)(X, \)
and
(F.0/0t,V xT)
= (—sintf + costi,\, costV xi, T +sint(Vxi. LA — ¢\ TV fu X — X (N, TV f))
= costsint(f. X, T) +sin?t(f. X, L) +sin® tX (X, T) + cos® t(\, VxT)
+ costsint(\, Vx LA) — ccostsint(\, T)(X, \)
= costsint(f, X,T) +sin® t(Vx\,T) + cos? t(\, LX)
+ costsint(\, Vx L) — ccostsint(\, TV(X, \)
for any X € X(U). Adding the above expressions gives
(F. X, @8/6t§> + (F,0/0t,V xT) = costsint(Vx A, LA) 4 costsint(\, Vx L)
= costsintX (\, L))
=0.
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Therefore, if F' is an immersion on some open subset of U x (—e,€), we
have that T is an infinitesimal bending of F' if and only if

(F.X,VxT)=0 (4.28)
for any X € X(M).
Lemma 4.15. Assume that T satisfies the condition (x). Then

xS {sin z((VX;\)R, 3()5, A) if ¢>0, (129
sith?()(Vx \r, B(X,N) if c<0

for any X € X(M) and X € T(TM & P) with ||A]|? = 1/]|c|.

Proof. Again, we only argue the case ¢ > 0. We have

(F, X,V xi.T)

= (cos tf*X + sint@xi*)\,costﬁxi*ﬂ'—i— sint(@xi*f/)\
— A DLX = e XA D))

= costsint(f. X, VxL\) — ccostsint(\, T)|| X||> 4 costsint(Vx A, LX)
+ ccostsint(X, A) (£, X, T) +sin? t(Vx A, Vx L) + esin t(X, A)(f. X, L))
—esin? t(\, T (£ X, Vx A) + esin? tX (N, TH(X, \)

= costsint((fo X, (VxL)A) + (VoM r, LX) — ¢\, DX 12 + (X, N (. X, T))
+sin® t((Vx A, (VxD)A) + (Vx A g, VLX) — ¢\, T (£ X, Vx )
+ (X, AWV A, T)).

From (4.25) we obtain that

(F,X,Vxi,T)
= costsint((fo X, Y(Vx N r + c(fr X ATIA) + (Vx\)g, LX)
— e T IX]P + (X, N (£ X, T))
+sin? t((V N Y(Vx N + (£ X ATN) + (Vx A g, Vx L)
— (A T(fX, VX A) + ¢(X, M) (Vx A, T))
sin? t(—(LV'x X, (Vx N &) + (Vx N g, VXL + (X, NV ((Vx N g, 7))
sin® t(((Vx A\ g, (Vx LA + ¢(X, \)T))
= sin® ({(Vx M) r, B(X, A)),

and this concludes the proof. O
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Lemma 4.16. Assume that T satisfies the condition (x). Then, the
bilinear form p: TM X f,TM ® P — R® R defined by

P(X,N) = (VxNr+BXN), (VxNr = B(X, )
is flat with respect to the indefinite inner product given by
(€1, 1), (&25 p2) ) Ror = (1, &2) kR — (p1, i2) R-
Proof. We need to show that
for any X,Y € X(M) and A\, € f.TM & P. We have

50 = (VxX)r BV 8) + (Fy8)m, (X, V)
—{(Vx8)r, B, A) = (V¥ N)r, B(X,5)).

Clearly © = 0 if A\, € I'(P).
From the definitions of 8 and 5 we obtain

BX,Y) = ((VxL)Y)r +c(X,Y)Tg
= (VxL)Y)r — (A, X,Y)(Ln)g + (X, Y)Tg
=B(X,Y)r — (A, X, Y)¢
for any X,Y € X(M). Then

50 = (a(X N, Y 6)5 — (A,,6)€) + {a(¥,6)m BOX N — (4, X, N)E)

— (X, 0)r, B(Y, A r = (4,Y, A)§) — (Y, A) g, B(X, 0) r — (A, X, 6)E)
if 0,\ € X(M). Then (4.7) and (4.24) give

50 = (a(X, ), BY; ) + (al¥, ), 5(X, X)

—(a(X,0),B(Y,A)) — (a(Y; A), B(X,0))
=0.
Finally, if A\=n and 6 = Z € X(M) then
50 = (Vin, A(Y, 2) + {a(Y, 2), B(X,m)) — (a(X, 2), B, m) — (Vin, B(X, 2))
= (Vxn, B(Y, Z)) = (A, Z)(Vxn, &) + (Y, Z)r, (VxLn + LA, X))
— (X, Z)r, (Vy Ln+ LAY )r) = (Vyn, B(X, 2)) + (A, X, Z)(Viyn, §)
= X(n,B(Y, 2)) — (0, VX B(Y, 2)) + (AnY, Z)(n, VXE)
+ (Y, Z)r, E(X,n)r + (Vx&R) — (a(X, 2)r, E(Y,n)r + (V¥E)R)
— Y0, B(X, 2)) + (n, V¥ B(X, Z)) — (A X, Z) (1, V¥:E)
= X(n, B(Y, Z)) = (n, VX B(Y, 2)) + (Y, Z) r, (X, n)R) + (a(Y, Z), V)
— (X, Z)r, (Y, n)R) — (X, 2),V5€) = Y (1, B(X, Z)) + (, V¥ B(X, 2)).
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Now using (4.5) and (4.24) we obtain

%9 = — X(6a(Y,2)) = (0, VXB(Y, 2)) + (Y, Z),&(X,)) + (a(Y, Z), VXE)

— (X, 2), (Y, m)) — (X, 2), V&) + Y (€, (X, 2)) + (n, V¥ B(X, Z))
= — (& (Vxa)(Y; 2))) = (n,(VxB)(Y, 2)) + (Y, Z), (X, m))
— (X, 2), E(Y,m)) + (£, (Vya) (X, 2)) + (n, (V¥ B)(X, 2))

)

o

where the last equality follows from (4.5), (4.8) and the Codazzi
equation. O

Theorem 4.17. Let f: M"™ — QPP p > 2, be an isometric immersion
and let T be an infinitesimal bending of f that satisfies the condition (x).
Then along each connected component of an open and dense subset of M™
either T extends in the singular sense or f is r-ruled with r > n — 2p + 3.

Proof. From Lemma 4.16 the bilinear form ¢ is flat. Let U C M™ be
an open subset where there is Y € X(U) such that Y € RFE(yp) and
D = ker py has dimension d at any point. Then Proposition 1.10 gives

(p(X;A), 0(X,A)) =0

for any X € X(U) and A € I'(D). This and (4.29) imply that (4.28) holds
for any A € T'(D). Whenever there is A € I'(D), ||A|> = 1/||c||, on an open
subset V' C U such that (4.26) defines a singular extension of f|y, then
T]v extends in the singular sense by means of (4.27).

Let W C U be an open subset where A € T'(D) as above does
not exist along any open subset of W. Hence D must be a tangent
distribution on W, and from Proposition4.10 it follows that f|w is d-
ruled on connected components of an open dense subset of W. Moreover,
we have that the dimension of the rulings is bounded from below by
n+1—dimIm(ey) >n—2p+ 3. O

Corollary 4.18. Let f: M™ — Q7P p > 2 be an isometric immersion
and let T be a genuine infinitesimal bending of f that satisfies the condition
(). Then f is r-ruled with r > n —2p+ 3 on connected components of an
open dense subset of M™.

Finally, we have the following result.

Theorem 4.19. Let f: M" — QP n > 2p, be a genuinely
infinitesimally bendable isometric immersion. If 2 < p < 5, then one
of the following facts holds along any connected component, say U, of an
open dense subset of M™:

(i) flu is v-ruled by leaves of relative nullity with v > n — 2p.
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(i) flu has index of relative nullity v < n—2p at any point of U and is
r-ruled with r > n — 2p + 3.

Proof. The proof follows along similar arguments as the proof of Theorem
3.9 using Corollary 4.12 and Corollary 4.18. U

4.5 Exercises

Exercise 4.1. Let Z be a Killing vector field of a Riemannian manifold
M™ and let £ € T'(End(T'M)) be the tensor defined by £LX = VxZ. Prove
that £ satisfies

(VxL)Y = R(X,2)Y

for any X, Y € X(M).
Hint: First prove that the 1-form defined by w(X) = (X, Z) satisfies
dw(X,Y) = 2(LX,Y)

for any X,Y € X(M) and conclude that the 2-form (£LX,Y) is closed.
Then show that

(VXL Z) = (Vv £)X, Z) + (VL) X,Y) = 0.
Finally, prove and use that
(VxL)Y — (Vy L)X = R(X,Y)Z

for any X,Y € X(M).

Exercise 4.2. Let f: M™ — Q"' n > 4, be an isometric immersion
of a compact Riemannian manifold M™. Assume that there are no open
subsets of M™ where f is totally geodesic. Prove that f is infinitesimally
rigid.

Hint: Use Proposition 4.8 and Theorem 13.2 in [21].



Chapter 5

Variations of product
manifolds

This chapter is about infinitesimal variations of submanifolds that are
intrinsically a Riemannian product of manifolds. The study of such
variations is done analyzing the structure of the possible infinitesimal
bendings. The results obtained provide local and global conditions under
which the submanifold splits as an extrinsic product of immersions and any
infinitesimal bending of the submanifold has to be the sum of infinitesimal
bendings of each of the factors.

Let M™ = M x --- x M be a Riemannian product of Riemannian
manifolds of dimensions n; > 2, 1 < i < r. The extrinsic product
f: M™ — R™ of the set of isometric immersions f;: M — R™i,
1 <1 < r, is the isometric immersion given by

fl@) = (flzn),-.., frl@n)),

where ¢ = (z1,...,2,) € M™ and R™ = &]_;R™.
Let «f: M" — M™ denote the inclusion map for = = (Z; ..., Z,), that
is,

T

Li (ZL’Z) = (i’l,...,lﬂi,...,iﬂr).

Then let Zf be the inclusion of R™i into R™ defined in a similar manner.
The normal space of f at x = (x1,...,2,.) € M™ is

NiM(z) = @j_ Ny, M; (),

where Ny, M;(x;) is the normal space of f; at z; € M, 1 <i <r. If o

is the second fundamental form of f; at z; € M, 1 < i < r, then the
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second fundamental form « of f at x = (z1,...,2,) € M™ is given by

a(i8.X,i2,y) = e ealY) =g, (5.1
O if ¢ # 7,

where X € X(M;) and Y € X(M;), 1 <4,j <.

Let T; be an infinitesimal bendmg of fiinR™i 1 <4 <r andlet (3, ;)
be its associated pair. Then T(z) = >.._, Z{*(m)f]}(xi) is an infinitesimal
bending of f in R™. Let L be associated to T and let L; be associated to
‘Ti- Then

Lt X =i x (5.2)
for any X € X(M;). If B; is associated to 7, it follows that

B(i.X,15,Y) = (Ve x L)Y =

ik Uyx

dOBi(X,Y)  ifi=,
ifi # j,

where X € X(M;) and Y € X(M;). In particular,

dWe(x)Y) ifi=j
x x - .]a
and o)
~ x . .
(X, 7]y = { T G = (5.4)
J 0 ifi#j

for any X € X(M;), Y € X(M;) and n € I'(Ny, M;), where (5.4) follows
from (5.1), (5.2) and the deﬁnltlon (2.10) of Y in terms of which € is given.

f (8,€&) is the pair associated to an infinitesimal bending T of an
extrinsic product f = (fi,..., fr), we say that § is adapted to the product
structure if

Bl X, 15.Y) =0
for any X € X(M;) and Y € X(M;) with i # j.

Proposition 5.1. Let f: M™ — R™ be an extrinsic product of isometric
immersions f;: M — R™i, n; > 2, 1 < ¢ < r, with full first normal
spaces. If the tensor [ in the pair associated to an infinitesimal bending
T of f is adapted, then there exist locally infinitesimal bendings T; of fi,
1<i<r, such that T(x) = >_;_ i@, (x4)-

111*

Proof. From (2.12) we obtain

(B(ti X, 0.Y ), a(i5. Z, 5 W) + (i X, .Y ), (5. 2,15, W)) = 0 (5.5)
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for any X, Y € X(M;) and Z,W € X(M;) with i # j.
Let a; (X, Y%), 1 < k < dim Ny, M;, Wlth Xk, Yy € X(M;) be a basis of
NfiMi- Set

Cijai(Xi, Yi) = BNy, v, (4 Xk L3Y8), 0 # G,

where ﬁij M; denotes the Ny Mj-component of 3. We claim that the
linear extension to a map Cjj;: Ny, M; — Ny, M;, i # j, satisfies

Cijai(X, Y) = 5ij ( X, F Y)

s Yix

for any X,Y € X(M;). In fact, if

ai(X,Y) = cpai(Xi, Yi)
k

for X,Y € X(M;) and ¢, € R, 1 < k < dim Ny, M;, we obtain from (5.5)
that

(BOEX, 1Y) — chﬁ Xk, (8.Y5), (15, Z,65,W)) = 0

for any Z, W € X(M;), ¢ # j, and the claim follows.
We have from (5. 5) that the map C € I'(End(NyM)) defined by

Cilny =30 Cymi,
JFi

where n; € I'(Ny, M;), 1 <i <r, is skew-symmetric. Then, we obtain that
B(7.X,2Y) decomposes orthogonally as

) Vi

BUEX, YY) = By an, (X, Y ) + Calil, X, 5Y) (5.6)

for any X,Y € X(M;).
Let L;: TM; — fTR™ be given by
LZX = (LL%U*X)Rmi .

Since f is an extrinsic product of immersions, we have

Vi y iV LiX = Ve v (Lif, X )z
= (V 1; yLL» X)]R"w
= (B(15.Y, 1. X) Jrem
(f 904( j*Y7 L?,*X) +B( ]*Y7 Lq,*X))Rmi
=0
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for any X € X(M;) and Y € X(M;) with ¢ # j, where the last steps follow
using (2.11) and the assumption on 8. Thus the tensors L; are well defined
on M, 1 <i <r. Moreover, since B is symmetric, these tensors verify

( v é(Li)Y = ( v é,LZ.)X

for any X,Y € X(M;), where V’ is the connection in R™:. Thus, there
exist locally vector fields T; € T(ffTR™) with V4T, = L;X for any
X € X(M;), 1 <i <r. In particular, since L; verlﬁes (2.8), then T; is an
infinitesimal bending of f; and, if 3; belongs to the pair associated to T;,
we have

78X, Y) = By, o, (XY (5.7)

for any X,Y € X(M;), 1 <i<r.

Define an infinitesimal bending T of f by T = Oy f*(x)ﬂ' We have
from (5.3), (5.6) and (5.7) that T— T has the associated tensor f— 5 = Ca.
Since C is skew-symmetric the tensor V- C satisfies (2.7). Moreover, we
have

(VxB—VxB)(Y, Z) = (VxCa)(Y, Z)
=VxCa(Y,Z) - Ca(VxY,Z) - Ca(Y,VxZ)
= (VxO)a(Y,Z) +C(Vxa) (Y, 2)

for any X,Y,Z € X(M). Using the Codazzi equation, we obtain
(VxB—VxB)(Y, Z) = (Vy¥B — V¥B)(X, Z) = (VxC)a(Y, Z) — (VyC)a(X, Z)

for any X,Y, Z € X(M). Now Proposition 2.6 gives £ — &= —(V+0), and
the proof follows from Proposition 2.7. U

The assumption in the above result that f has full first normal spaces
cannot be dropped. In fact, we observed in Examples 2.1 that if this is
not the case then a smooth normal vector field in Ni- is an infinitesimal
bending.

Proposition 5.2. Let f: M" — R""P p < n, be an extrinsic product
of isometric immersions f;: M — R™tPi n, > 2 and 1 < 4 < 7.
Assume that the s-nullities of [ satisfy vs(z) <n—s, 1< s <p, at any
x € M™. Then any infinitesimal bending T of f is locally of the form
T(x)=>1_, f*(z)‘f( i), where T;, 1 <4 <r, is an infinitesimal bending
of fi-

Proof. Since f is an extrinsic product of immersions, then » . i Ui TMj C
N(any, n;)- Thus the assumption on the s-nullities yields } ., n; < n—p;,
that is,

pi <mng, 1<i<r (5.8)
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Take X € X(M;), W € X(M;) and Y, Z € X(M;) with ¢ # j. If also
k # 4, j, we obtain from (2.12) that
(BUEX, 5 W), a(ifY, 5, Z)) = 0. (5.9)
On the other hand, for k = 7 it follows from (2.12) that

BUEX, 5 W), a(f Y 5.2)) — (B(LY, W), a(f, X, 05, Z)) = 0. (5.10)

s gk ) bgx YES ) Ugx
Let 3%, TM; — Ny, M, be given by
BIZ/VX = B<L?*X’ L?*W)Nfi M; -

Suppose that dim Imgi;, = s > 0. Then (5.8) gives dimker B, =n; — s >
0. Tt follows from (5.10) that

(BUEX, W), (LT, . 2)) = 0

Yk I Pk

for any 7' in ker 3;,. This implies that vs > n — s, which contradicts our
assumption and proves that S(.7, X, 5, W)n, m, = 0 for any X € X(M;)
and W € X(M;). This together with (5.9) imply that

BULX, W) =0 if i # j.
Thus g is adapted, and the proof now follows from Proposition 5.1. O

For the proof of the next theorem we need the following result on
isometric immersions from [22]. It can also be seen as Theorem 8.14 in
[21].

Proposition 5.3. Let f: M"™ = M{" x --- x M — R"? 2p < n,
be an isometric immersion such that the s-nullities of f satisfy vs(x) <
n—2s, 1<s<wp,atanyx € M™ Then f is an extrinsic product of
isometric immersions.

The following is the main local result of this chapter.

Theorem 5.4. Let f: M™ — R**P, 2p < n, be an isometric immersion
of a Riemannian product M™ = M x --- x M withn; >2,1<j<r,
Assume that the s-nullities of [ satisfy vs(x) < m—2s, 1 < s < p, at
any x € M™. Then f is an extrinsic product of isometric immersions
f = (f1,-.-, fr) and any infinitesimal bending T of f is locally of the
form T(z) = Yi_, Z{fz)%(mi), where T; is an infinitesimal bending of
fir M - R™ 1 <i<r,

Proof. From Proposition 5.3 we obtain that f is an extrinsic product of
isometric immersions, and the proof follows from Proposition 5.2. [

Concerning isometric immersions of Riemannian products there is the
following basic rigidity result from [30]. It can also be seen as Theorem
8.10 in [21].
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Proposition 5.5. Let f: M™ — R™P be an isometric immersion of a
Riemannian product M™ = M{"* x ~-~><M;,Lp, withn; > 2 foralll <i < p.
If the subset of points of M’“, 1 < i < p, at which all the sectional
curvatures vanish has empty interior then f is an extrinsic product of

hypersurfaces f = (f1,..., fp)-

The following is the corresponding version of the above result for
infinitesimal variations.

Theorem 5.6. Let f: M™ — R"™P be an isometric immersion of a
Riemannian product M™ = M{" x --- X My?, ng > 2and 1 < i < p.
Assume that the subset of points of M, 1 < i < p, at which all the
sectional curvatures vanish has empty interior. Then f is an extrinsic
product of hypersurfaces fi: M — R%T1 1 < i < p, and any
infinitesimal T bending of f is locally of the form T(z) =Y %, Zik(x)ﬂ'i (24),
where T; is an infinitesimal bending of f;, 1 < i < p.

Proof. The first statement follows from Proposition 5.5. Since each M;"
has no flat open subset then, in an open and dense subset M C M™,
the index of relative nullity of f; satisfies ¥ = dim A; < n; — 2 for each
1<i<p.

Fix © = (21,...,7,) € M and let U* € NyM(x) = ®b_ Ny, M;(x;)
be a subspace. Assume that X = (X1,...,X,) € N(my- o a)(z), where
X, € T,,M;, 1 < i < p, and my=: NyM(xz) — U is the orthogonal
projection. Let n = (n1,...,mp) € U® where n; € Ny, M;(z;). Then
(e(X,Y),ny = 0 for any Y € T, M. If n; # 0, then taking ¥V =
0,...,Y;,...,0) for Y; € T,,M;, we obtain that X; € A;. Therefore,
we have that (N(mps o a))7, ar, C A

It U® C Ny, ij_ for some j, we have that T, M; C N(mysoa)(z). Notice
that

P
dim N(?TUs o a) < Z dim(N(TFUs o a))Twi M;-
i=1
By rearranging the factors, if necessary, we can assume that U® C
@®F_ Ny, M; with 1 < k < p. Hence

k

dim N(7ys o «) SZ —|—an
i=1

= >k

k
Z(ni—Q)—l—anSn—Zkgn—Qs
i=1

>k

IN

<n-—s.

Thus vs <n—s,1<s <p,on M"™, and the proof follows from Proposition
5.2. O
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The following result on isometric immersions is Corollary 8.24 in [21].

Proposition 5.7. Let M, ..., M,", n; > 2,1 <1i <p, be compact and
nonflat Riemannian manifolds. Then any isometric immersion f: M™ —
R"™P of the Riemannian product manifold M™ = M{"* x - -+ x M," is an
extrinsic product of hypersurfaces f;: M]"" — RvT1 1 <i <p.

Finally, there is the following global version of Theorem 5.6.

Theorem 5.8. Let M",.. .,M;Lp, n; > 2,1 <1 < p, be compact
Riemannian manifolds and let f: M™ — R"™P be an isometric immersion
of the Riemannian product M"™ = M{* x ... x M,”. Assume that the
subset of points of M"*, 1 < i < p, at which all the sectional curvatures
vanish has empty interior. Then f is an extrinsic product of hypersurfaces
fir MY — R™HL 1 <4 <p, and f is infinitesimally rigid.

Proof. The first statement follows from Proposition (5.7). Let T be an
infinitesimal bending of f. Fix 1 < i < p as well as points y; € MJnJ for
any j # i. Then the vector field T;(z;) = (T(y, ..., s, ... 2 Up) ) Rma+1 18
an infinitesimal bending of f;. Since M is compact and posses no flat
open subset, then by Theorem 2.13 we have that f; is infinitesimally rigid.
Hence T; is trivial for each choice of Yj-

On the other hand, we have from Theorem 5.6 that T(z) =

le Z{ fx)‘J'i(azi) locally. Thus, we necessarily have that T; = ‘Ti locally
for 1 < ¢ < p, and thus 7J; is trivial. Hence the associated tensors of T
have the form 2.19 at every point showing that T is trivial. O



Chapter 6

Variations of complete
hypersurfaces

This chapter gives a classification of the complete Euclidean hypersurfaces
of dimension at least four that admit nontrivial infinitesimal variations. If
the hypersurface is compact, it does not admit even isometric variations
due to the classical result of Sacksteder [32]. Dajczer-Gromoll [13]
proved that if the hypersurface is a complete manifold that does not
contain a cylinder of a certain type as an open subset, then it allows
isometric variations only along ruled strips. Before we state and prove
the infinitesimal analogue of the latter result that is due to Jimenez [28],
we hold a discussion on ruled hypersurfaces whose rulings are complete
Euclidean spaces.

6.1 Ruled hypersurfaces

A hypersurface f: M"™ — Rl n > 3, is said to be ruled if it is (n — 1)-
ruled. A hypersurface with possible boundary is said to be ruled if, in
addition, the rulings are tangent to the boundary. A connected component
of the subset of M™ where all the rulings are complete manifolds is called a
ruled strip. Therefore, a ruled strip is an affine vector bundle over a curve
with or without end points.

From now on the quantity dim At (x) = n — v(z) is called the rank of
the hypersurface f: M™ — R*t! at x € M™. Thus, the rank is just the
number of nonzero principal curvatures. The second fundamental form A
of a ruled hypersurface has rank at most two and, outside totally geodesic
points, the leaves of relative nullity are contained in the rulings.

Let f: M™ — R"*! be a ruled hypersurface and let c: I — M", ¢ = c(s)
and s € I C R, be a unit speed curve orthogonal to the rulings. The rulings
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form an affine vector bundle over é = focin R™t!. Let Ti(s),1 <i<n-1,
be orthonormal tangent fields on the corresponding bundle along ¢ which
are parallel with respect to the induced connection. Set f.dc/ds = Ty,
T, = f.T; and let N be a unit vector field along ¢ normal to f. Then

{ﬁa/as:ﬁo = -%,0:T; + 0N,
VaosTi = 0iTo + BiN,

where 0 = <AT07T0>, Qi = <ngTi>TO> and 67, = <AT'£7TO>7 1 S 7 S n—1.
We parametrize a neighborhood of &) in f(M) by f: W C I xR"™t —
R"*! given by

fls,ur, .. up—1) = ¢é(s) +Eluﬂ~}(s) (6.1)
We have at (s, uq,...,u,—1) that
f+0/0s = (1 + Ssus0) Ty + Ssui fiN.
Thus, the map f has maximal rank if and only if
1£:0/0s]” = (1 + Siuipi)? + (Siui i) # 0.

Note that the directions %;u;T;(s) for which ¥;u;3; = 0 are in the relative
nullity of f at ¢(s).

Proposition 6.1. Let f: M™ — R™t! n > 3, be an isometric immersion
and let U C M™ be an open subset where f has rank two. Assume that f|u
is ruled and that the relative nullity leaves are complete. Let§: [0,a] — M™
be a unit speed geodesic orthogonal to A such that 6([0,a)) C U is contained
on a ruling. Then the rank of f at d(a) is two. Moreover, every point in
U has a neighborhood V' such that f|y extends to a ruled strip of constant
rank two.

Proof. Let W C I x R"™! be an open subset where the parametrization
(6.1) is defined and write Wy = WN({s}xR""1). Assume that the geodesic
§ is contained on the ruling determined by f |w, and has T},_; as its tangent
vector field. Notice that r — f(s,O7 ...,0,7) is a parametrization of 4.
Since SB,-1(s) # 0, then the map f has maximal rank along § and we have
at 6(r) that

Fu(0/0s) = (14 ron_1)Ty + rBp_1N.

Let N(6(r)) = a(r)Ty + N be a vector field normal to f along § (not
necessarily unitary). Then

0= (ﬂ(@/@s),afo +N)=a(r)1+rep—1) +7Bn-1.
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Taking r € (0, a] we have that 1+ rp,_1 # 0, then

"B
alr) = 1+ T‘Pnfl)

Then, we obtain that

(Vo (r) f2(9/03), N(3(r))) = (pn-1To + Bu-1N,a(r)Ty + N)
_Bnr
1 + rPn—1 ’

which does not vanish. Thus the rank of f at §(a) is two, and therefore
the same holds for f.

It remains to prove that f|y extends locally to a ruled strip. Fix z € U
and let V C U be a neighborhood of 2 parametrized by (6.1). Extend f to
I x R*! with the same expression. We claim that this extension defines
a ruled strip of constant rank two. We first prove that f has no singular
points. As seen previously, we have that f is singular at points where

(1+ Eiuiapi)Q + (Eiuiﬁi)g =0.

Then, it suffices to show that X,u;p; = 0 for any T = X4, T;(s) € A(e(s)).
Given T € A(c(s)), we have

Siuipi = (V, T, To) = —(CrTh, Tp),

where Cr is the splitting tensor of A with respect to T. If Cr vanishes
there is nothing to prove. Otherwise, let X be a unit vector field on V
tangent to a ruling and orthogonal to the relative nullity. Since each ruling
is totally geodesic and the only real eigenvalue of C is zero by Proposition
1.8, then we have that CrX = 0 for any T € T'(A). Finally, using
Proposition 1.8 once more, we have that (CrTy,Tp) = 0, and therefore
f has no singular points.

It follows from Proposition 1.7 that the open subset where f has rank
two is a union of complete relative nullity leaves. From the previous
discussion we have that the rank of f along any ruling is two, and the
claim follows. O

6.2 The classification
The following is a classification of the complete hypersurfaces that admit
nontrivial infinitesimal variations.

Theorem 6.2. Let f: M™ — R" n > 4, be an isometric immersion
of a complete Riemannian manifold. Assume that there is no open subset
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of M™ where f is either totally geodesic or a cylinder over a hypersurface
in R* with complete one-dimensional leaves of relative nullity. Then f
admits nontrivial infinitesimal variations only along ruled strips.

If the hypersurface contains a ruled strip, a rather simple argument
given in [13] shows that there is a one-to-one correspondence between
the set of smooth functions on an open interval and the set of isometric
deformations of the hypersurface that act only along the ruled strip. Then
the same is true for the isometric variations obtained multiplying such a
function by a parameter. We show below that any infinitesimal bending
of the hypersurface is just the variational vector field of such an isometric
variation. Thus, the classification result for infinitesimal variations is the
same than for isometric variations.

Remark 6.3. Notice that Theorem 2.13 for n > 4 is a corollary of the
above result.

For the proof of Theorem 6.2 we need several lemmas.

Lemma 6.4. Let f: M™ — R"™L be an isometric immersion. If U C M™
is an open subset where f has constant rank two and the leaves of the
relative nullity are complete, then the codimension of

C():{TEA:CT:O} (62)

is at most one. Moreover, if dimCy = 1 and Cr is invertible for
T € T(Cy), then fly is a cylinder over a hypersurface g: L3 — R* that
carries a one-dimensional relative nullity distribution with complete leaves.

Proof. Assume that C3 C A has dimension at least two. Then, for
dimension reasons there is 7' € A such that Cp # 0 is self adjoint, which
contradicts Proposition 1.8.

Now assume that dim Cg- = 1 and that Cr is invertible for T € T'(Cy").
We have from (1.8) that

(VxS,TVCrY = (VyS,T)CrX
for all S € T'(Cp) and X,Y € I'(A+). Then
(VxS,TVY — (VyS,T)X € T'(ker Cr).
Since C7 is invertible, we necessarily have that
(VxS,TYY —(VyS,T)X =0.
Thus (VxS,T) =0 for any X € I'(A1). Note that

(VxS,Y)=—(CsX,Y) =0
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for any X, Y € AL, and thus VxS € T'(Cp).
On the other hand, it follows from (1.7) that

Cy,s = VirCs — CsCr =0

for any R € T'(A). Therefore Cy is a parallel distribution on U. Since
Coy C A the proof follows from Proposition 1.9. O

Let f: M™ — Rl be an isometric immersion, and let T be an
infinitesimal bending of f with associated tensor B. Set A* = A Nker B.
Assume that the second fundamental form of f has rank A = 2. Then
(2.21) gives A C ker B, hence rank B < 2 and, in particular, we have
A* = A. Since B is a Codazzi tensor, we obtain that

V1B =BCr=CrB (6.3)
for any T € T'(A*), where C is the splitting tensor of A* = A.

Lemma 6.5. Let f: M™ — R™! be a ruled hypersurface of constant rank
two with complete relative nullity leaves. Assume that the splitting tensor
of the relative nullity foliation does not vanish on any open subset. If T
is an infinitesimal bending of f, then its associated symmetric tensor B
satisfies

Blar = [g 8} (6.4)

with respect to a local orthonormal basis {Y, X} of A+ such that Y is
orthogonal to the rulings. Moreover, the smooth function 6 verifies that

X(0) = (VyY, X)0. (6.5)

Proof. On the open dense subset where C # 0, let T € I'(Cg-) be unitary,
where Cj is given by (6.2). Locally take X,Y € T(A') orthonormal
such that Y is orthogonal to the rulings. We have seen in the proof of
Proposition 6.1 that X € I'(ker Cr). Moreover, Proposition 1.8 implies
that C7 = pJ for some smooth function p, where J € T'(End(A1)) is
defined by JX =0 and JY = X.

The restrictions of A and B to Al are denoted by the same letters and
let D € T(End(A%1)) be given by D = A~7'B. From (1.9) and (6.3) we
have

ADCr = CAD = ACrD.

Hence A[D,Cr] = 0, and thus D commutes with J. This gives D =
o11 + ¢2J and
B=¢1 A+ P A

Since the immersion is ruled, then A has the form

=]
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with respect to {Y, X}. We easily have from (2.21) that ¢; = 0, and
therefore B has the form (6.4). Finally (6.5) follows from B being a Codazzi
tensor. O

The following fact is essential in the proof of Theorem 6.2.

Lemma 6.6. Let v* > 0 be constant on an open subset U C M™. If
~v:[0,b] = M™ is a unit speed geodesic such that ~([0,b)) is contained in
a leaf of A* in U, then (6.3) holds on [0, b)].

Proof. The proof follows immediately from Proposition 1.7. O

Proof of Theorem 6.2: Let T be a nontrivial infinitesimal bending of f and
let B be its associated symmetric tensor. We consider the subsets of M™
defined by

M; ={x € M" : rank A(z) > i}.

We have that Ms # (. If otherwise, we have from Proposition 1.8
that the splitting tensor of A vanishes. Then Proposition 1.9 gives
that f is a cylinder over a curve, but this is ruled out by assumption.
From Proposition 2.10 and Theorem 2.17 we have that B|y, = 0. Let
V C Wy = My \ M3 be the open subset of M™ defined by

V={xeW,y:B(z)#0}.

Since rank A =2 on V it follows from (2.21) that A = A*.

We claim that the leaves of relative nullity in V' are complete. Otherwise,
there is a geodesic : [0,b] — M™ contained in a leaf of the relative nullity
foliation such that v([0,b)) C V and v(b) ¢ V. From Lemma 6.6 we obtain
that B satisfies

v,\//(s)‘B = C’/Y’(S)B (66)

on [0,b] with B(b) = 0, where C’, denotes the transpose of C,/. Take a
parallel orthonormal basis of A1 along 7 and regard (6.6) as a differential
equation of matrices. Since B(b) = 0 then B necessarily vanishes along 7
(see Exercise 6.1). This is a contradiction, and proves the claim.

We show next that f|y is ruled. By Lemma 6.4 the codimension of Cy in
A is at most one. The assumption that f(M) does not contain a cylinder
gives that the subset

Vo={zeV:C(z)=0}

has empty interior. Let T' € T'(A) be a local unit vector field on the open
subset V3 = V \ V; spanning the orthogonal complement of Cy. Using
again Lemma 6.4 it follows that rank Cr = 1. Moreover, we have from
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Proposition 1.8 that V4 and V{; are both union of complete relative nullity
leaves.

We claim that the smooth distribution A & ker Cr on V; is totally
geodesic. If ker Cr is locally spanned by a unit vector field X, then

(VXT)AL = —CTX =0.

Similarly (VxS)ar = 0 for any S € T'(Cy). We have from (1.7) that
VRS € T'(Cy) for any S € T'(Cy) and R € T'(A), thus the integral curves
of T are geodesics. Then Proposition 1.8 gives that that Vo X = 0.
Moreover, we have from equation (1.7) that C7(VsX)ar = 0 and then
(VsX)ar =0 for any S € T'(Cp). It remains to show that (VxX,Y) =0
where Y € I'(A') is a unit vector field orthogonal to X. Since the only
real eigenvalue of C'r is zero, then C7Y = pX for a smooth non vanishing
function p. Equation 1.8 yields

(ViCr)Y = (Vi Cr)X,

which is equivalent to
X(p) =(VyY, X)p (6.7)

and
wVxX,Y)=0.

The last equation proves the claim.
Since Cr is nilpotent, we have that ker C. = ImC%. From (1.9) we
obtain that C,-A = ACyp, which implies that C/-AX = 0, and then that

(AX, X) = 0.

Thus the leaves of A @ ker Cr are totally geodesic submanifolds of R"*1,
that is, f|y, is ruled.

Recall that the leaves of relative nullity in V; are complete. Next we
prove that the rulings contained in V; are also complete. Assume, on
the contrary, that there is an incomplete ruling in V;. Thus, there is a
geodesic 0: [0,a] — M™ in the direction of X such that d(a) ¢ Vi. We
have from Proposition 6.1 that the rank of f at d(a) is two. Moreover,
from the second statement on that result, it follows that (6.7) extends to
§(a) where Y € T'(A') is as before. Since y is not zero along J we have
that 6(a) ¢ Vo, and hence d(a) ¢ V. On the other hand, Lemma 6.5 yields
that B has the form (6.4) with respect to {Y, X} and that § € C*°(M)
verifies (6.5). Using again Proposition 6.1 we obtain that (6.5) extends
smoothly to [0,a] with X = ¢’. But then B has to vanish along ¢, which
is a contradiction proving that the rulings on V; are complete.

Let S be a connected component of V; and let = € S together with
a sequence z; € S be such that z; — x. Let L; be the affine subspace
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of R""! determined by the ruling through f(z;). Since the rulings are
complete, there is an affine subspace L through f(z) which is the limit
of the sequence determined by L;. In fact, suppose that there are two
subsequences L and L converging to different subspaces L’ and L" that
intersect at f(z). Then, in a neighborhood of z different subspaces L;. and
L7 would intersect, and this is a contradiction. Clearly L C f (0S), and
thus f|g is a ruled strip.

Notice that if two ruled strips have common boundary then their union
is also a ruled strip. Take z € Vy. Since V; is dense in V, then
flx) € L C f(M) where L is an affine (n — 1)-dimensional subspace
of R™*! that is the limit of a sequence of rulings of V;. Suppose that there
exist two sequences of rulings L; C f(V1) and L} C f(V1) converging to
affine subspaces L' # L that intersect at f(x). Then L intersects L”
in a hyperplane for large values of j. Fixing j large enough, the same
holds for any ruling in a neighborhood of rulings of L. Let Z" and Z” be
vector fields tangent to L and L”, respectively, and let R be a vector field
tangent to L” N L;-. Since VzZ’ and VzZ" have no normal components,
it follows that L"” N L’ is a complete relative nullity leaf. The same holds
for the nearby rulings. In a neighborhood of y € L” N L, as before take
unit vector fields T' € T'(Cy-), X € ['(ker Cr) and Y such that CrY = puX
with p # 0. Let v be the unit speed geodesic of M"™ such that f o~ lies in
L”, f(v(0)) = y and is orthogonal to A. Then 7' = aX + bY with b # 0.
Hence

<CTIYI77/> = <T7 V’Y”y/> =0

is equivalent to abu = 0. This yields a = 0, and thus v/ =Y is orthogonal
to X. Since f,V.,T is tangent to L” and f,X is orthogonal to L”,
then C7Y = 0, and this is a contradiction. Hence, we have seen that
any sequence of points in V; converging to x, determines the same affine
subspace L as the limit of the correspondent rulings. Moreover, we have
shown that L does not intersect f(V;). Take a neighborhood Uy of z
where f is an embedding, then L N f(Up) determines a ruling through
f(x). Hence we have that f|y is ruled and has complete relative nullity
leaves. Using Lemma 6.5 as above, we obtain that the affine subspace L is
in fact contained in f(Vp). Thus, every connected component of V' defines
a ruled strip.

To conclude the proof of the theorem it remains to show that B = 0
on the open subset W7 = M \ Mg, that is, that B vanishes outside ruled
strips. It follows from (2.21) that B(A) C ImA on Wi, hence rank B < 2.
Let V' be the open subset of Wy defined as

V' ={zx e W;:B(z) #0},

then A* =ker B on V.
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We claim that V” is empty. Suppose otherwise. Let V” C V' be the open
subset where v* = dim A* attains its minimum in V’, say 1. We see next
that the leaves of A* are complete on V”. Suppose, on the contrary, that
there is a geodesic vy: [0,b] — M™ such that v([0,b)) C V' is contained on
a leaf of A* and that v(b) ¢ V. By Propositions 1.8 and 1.7 we know that
v(y(b)) = n—1and v*(y(b)) = 1. Then B(y(b)) # 0 and v(b) € M,. Take
a neighborhood of y(b) where B # 0. Since y(b) € M, there is a sequence
x € V such that xp — v(b). Recall that each connected component of V
defines a ruled strip. Let Lj be the affine subspace of R"*! given by the
ruling through f(zx). As before, there is an affine subspace L of dimension
n—1 which is the limit of the sequence L and determines a ruling through
f(y(b)). Since Ay'(b) = 0 and the geodesic f o~ is transversal to L, we
have that A(y(b)) = 0, and this is a contradiction. Hence A* has complete
leaves in V.

The leaves of the relative nullity foliation cannot be complete on any
open subset of Wj. This follows easily from Propositions 1.8 and 1.9
together with the assumptions on f. Hence necessarily v§ =n — 2.

Take local orthonormal vector fields X and Y in V" orthogonal to ker B
such that X is an eigenfield of A. Then A and B have the expressions

A0
f4‘kc1r‘BL = |:O O:| and 'B‘kchl = |:l; g:|

with respect to the frame {X,Y} and A # 0 # p.
Given T € T'(A) let ¢ be defined by CrX = erX. Since X is parallel
along the relative nullity leaves, we have

(Vx'B)Y = (X(p) + Cyu)X + 2cypY + P(VXX)kerB

and
(VyB)X =Y ()X +Y(p)Y + pVyY.

In particular, the Codazzi equation for B yields
Y(p) = 2cyp. (6.8)

Recall that each leaf of A in V" is foliated by leaves of A* that are
complete. Hence the integral curves of Y are geodesics. Let W] C W; be
the dense subset where the relative nullity leaves are not complete. Take a
point z € V" N W/. Since the leaf of the relative nullity foliation through
x is not complete, there is a geodesic §: [0,b] — M™ contained in that
leaf tangent to Y such that §([0,0)) C V" and 4(b) ¢ V. Then, either
d(b) € V' and rank B(4(b)) = 1 or §(b) ¢ V’. In the former case we have
that p(d(b)) = 0 and it follows from (6.8) that p = 0 along §, which is a
contradiction. In the latter case, by the same transversality argument as
above we have that B(5(b))=0, and hence p(d(b)) = 0 leading again to a
contradiction. This proves the claim that V' is empty and concludes the
proof. O
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Proposition 6.7. Let f: M™ — R™*! be an isometric immersion of a
simply connected Riemannian manifold M™ satisfying the hypothesis of
Theorem 6.2. If T is a nontrivial infinitesimal bending of f, then T is the
variational field of an isometric bending.

Proof. Let B be the symmetric tensor associated to the infinitesimal
bending T. The symmetric tensors A + tB, t € R, satisfy the Gauss and
Codazzi equations (see Exercise 6.2). Then, they give rise to an isometric
variation of f whose variational field J° has B as associated tensor. Thus
T — T’ is trivial, and this concludes the proof. O

6.3 Exercises

Exercise 6.1. Let U: [0,b] = M, (R) be a solution of the ODE U’(s) =
T(s)U(s) where T': [0,b] — M, (R) is continuous. Show that the rank U(s)
is constant on [0, b].
Hint: Take v € R™ and define v(s) = U(s)v for s € [0,b]. Observe that
v(s) satisfies

v'(s) =U'(s)v = T(s)v(s).

From that conclude that the dimension of the kernel of U(s) is constant
on [0, b].

Exercise 6.2. Fill the details in the proof of Corollary 6.7.

Hint: Use (2.21), (6.4) and the Gauss equation for A to show that the
symmetric tensors A+tB, t € R, satisfy the Gauss equation. That A +tB
satisfies the Codazzi equation follows from the Codazzi equations for A
and B.



Chapter 7

Conformal infinitesimal
variations

This chapter is about smooth variations of an Euclidean submanifold by
immersions that are infinitesimally conformal. This concept belongs to
conformal geometry since the class of conformal infinitesimal variations
is invariant by conformal transformations of the ambient space. The
main contents of this chapter are a Fundamental Theorem for conformal
infinitesimal variations and a rigidity theorem, both results due to Dajczer-
Jimenez [17].

7.1 Conformal infinitesimal variations

In this section, the notions of conformal infinitesimal variation and
conformal infinitesimal bending of an Euclidean submanifold are
introduced and shown that they belong to the realm of conformal geometry.

A conformal variation of a given isometric immersion f: M"™ — R™ is

a smooth variation F: I x M™ — R" where 0 € I C R is an open interval

and each f; = F(t,-) with fo = f is a conformal immersion for any ¢ € I.

Hence, there is a positive function v € C*(I x M) with v(0,z) = 1 such
that

vt ) (fee X, fruY) = (X, Y) (7.1)

for any X,Y € X(M). The derivative of (7.1) with respect to ¢ computed
at t = 0 gives that the variational vector field T = F,.0/0t|¢=o of F satisfies
the condition

(VXT, L.Y) + (£ X, VyT) = 2p(X,Y), (7:2)

97
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where p € C°°(M) is given by p(z) = —(1/2)0v/0t(0, x).

A trivial conformal wariation of an isometric immersion is the
composition of the immersion with a smooth family of conformal
transformations of the Euclidean ambient space. Recall that conformal
transformations of FEuclidean space are characterized by Liouville’s
classical theorem. In this case, the variational vector field is, at least
locally, the restriction of a conformal Killing vector field of the ambient
Euclidean space to the submanifold.

A smooth variation F: I x M™ — R™ of an isometric immersion
f: M™ — R™ is called a conformal infinitesimal variation if there is a
function v € C*°(I x M) satistying v(0,2) = 1 and

2 ot )X ) =0 (73)

for any X, Y € X(M). This concept is just the infinitesimal analogue of a
conformal variation.

The notion of conformal infinitesimal variation is indeed a concept in
conformal geometry. In fact, let F: I x M™ — R™ be a conformal
infinitesimal variation of f: M™ — R™. Then, let §: I x M™ — R™
be the variation given by § = 1) o F where v is a conformal transformation
of R™ with positive conformal factor A € C*>°(R™). We argue that G is a
conformal infinitesimal variation of g = ¢ o f where

i(tvx) = ’Y(tvx) - 2t<(‘T(x)? @log)\(f(m)))

In fact, we have using (7.3) that

0
a|t:0’~7<9t*X7 9t+Y)
0
ot
0 0 -
= (X Y) D N(F (1) — 2 oot NT. T Log X) (i X, £ )
AT, TN (X, LY) — 23T, T log ) (£ X, £Y)

((v(t,2) — 26(T(2), V1og A(f (2)))A*(F(t, 2))(fuu X, fuY))

as we wished.

As already seen in the case of infinitesimal variations, in order to study
conformal infinitesimal variations one has to deal with the variational
vector field. That the variational field satisfies (7.2) leads to the following
definition.

A conformal infinitesimal bending T with conformal factor p € C*°(M)
of an isometric immersion f: M™ — R™ is a smooth section T €
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L(f*TR™) that satisfies the condition
(VxT, £.Y) + (£.X,VyT) = 2p(X,Y) (7.4)
for any X,Y € X(M).

On one hand, there is a conformal infinitesimal bending associated to
any conformal infinitesimal variation. On the other hand, associated to a
conformal infinitesimal bending we have the variation F: R x M™ — R™
given by

F(t,z) = f(z) +tT(x). (7.5)

This is a conformal infinitesimal variation with variational vector field
T since (7.3) is satisfied for v(t,2) = e 2%, By no means (7.5) is
unique with this property, although it may be seen as the simplest one.
In fact, new conformal infinitesimal variations with variational vector field
T are obtained by adding to (7.5) terms of the type t*, k > 1, where
0 € I(f*TR™) and, maybe, for restricted values of the parameter ¢.

In view of the above, we call a conformal infinitesimal variation of
f: M™ — R™ a trivial conformal infinitesimal variation if the associated
conformal infinitesimal bending is trivial. In turn, that a conformal
infinitesimal bending is t¢rivial means that at least locally it is the
restriction of a conformal Killing vector field of the Euclidean ambient
space to the submanifold. Finally, if any conformal infinitesimal variation
of f is trivial we say that the submanifold is conformally infinitesimally
rigid.

We conclude this section with some nontrivial examples of conformal
infinitesimal variations that are of rather simple geometric nature.

Examples 7.1. (i) If f: M™ — R™ is an isometric immersion then a
conformal Killing vector field of M™ is a conformal infinitesimal bending
of f.

(i1) Let g: M™ — S™ be an isometric immersion. Then T = ¢f is
a conformal infinitesimal bending of f = i 0 g: M™ — R™*! where
@ € C®(M) and i: S™ — R™*! is the inclusion.

7.2 The associated pair

In this section, given a conformal infinitesimal bending T € T'(f*TR™)
with conformal factor p € C°°(M) of an isometric immersion f: M™ —
R™, we show that the bending together with the second fundamental form
of f determine an associate pair of tensors (3, &) where §: TM x TM —
Ny M is symmetric and €: TM x Ny M — Ny M satisfies the compatibility
condition

(€(X,n), &) + (&(X,€),m) =0 (7.6)
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for any X € X(M) and n,§ € T'(NyM).
Let L € T(Hom(TM, f*TR™)) be the tensor defined by
LX =VxT —pf. X =T.X — pf. X
for any X € X(M). Notice that (7.4) in terms of L has the form
(LX, f.Y) + (f.X,LY) = 0 (7.7)

for any X,Y € X(M). Let B: TM x TM — f*TR™ be the tensor given
by
B(X,Y)= (VxL)Y =VxLY — LVxY

for any X,Y € X(M). Then, the tensor 8: TM x TM — N;M is defined
by
BX,Y) = (B(X,Y))n,um

for any X,Y € X(M). Flatness of the ambient space and that
BX,Y) = (VxVyT = Vy,vT)n,m — pa(X,Y)

give that § is symmetric.
Let Y € T'(Hom(N;M,TM)) be defined by

(Yn, X) + (n, LX) =0 (7.8)

for any X € X(M). Then, let £: TM x NyM — Ny M be the tensor given
by

We have

(E(X,m),&) = (a(X,Yn) + LA, X, §)
= (A X, Yn) — (Y&, 4, X)
= —(LAcX,n) — (a(X, YE), n)
= —(&(X,§),m),

and thus condition (7.6) is satisfied.
Proposition 7.2. It holds that
(B(X,Y))p.rm = fo(Ya(X,Y) + (X AVp)Y)

for any XY € X(M).
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Proof. We have to show that
vanishes for any X,Y,Z € X(M). The derivative of (7.7) gives
0= (VZLX, f.Y) + (LX, V2 f.Y) + (VZLY, f.X) + (LY, V2 £.X)
=(B(Z,X), .Y) + (LX,a(Z,Y)) + (B(Z,Y), f.X) + (LY, a(Z, X))
On the other hand,
(B(X,Y), f.Z) = (VxVyT = Vy.vT, fr Z) — (X, V)Y, Z).
It follows that
CX,,Z2)=C(Y,X,Z) and C(Z,X,Y)=-C(Z,Y,X)
for any X,Y,Z € X(M). Then
= C(Ya ZaX) = 7C(Y7XaZ) = 7C(X3YEZ)
=0,

as we wished. O

7.3 The fundamental equations

In this section, we determine the set of fundamental equations for a
conformal infinitesimal variation.

Proposition 7.3. The pair (8, &) associated to a conformal infinitesimal
bending satisfies the system of equations
Apv,yX + Bav,2y X — Apx,2)Y — Bua(x,2)Y
+(XAHY -YANHX)Z=0 (7.9)
(VxB)(Y, Z) — (V¥B)(X, Z) = &(Y, a(X, Z)) — &(X, (Y, Z))
+(Y, Z)a(X, Vp) - (X, Z)a(Y,Vp) (7.10)
(VxE)Y.m) = (Vy&)(X,n) = (X, ApY) — 6<Anx, Y)
+ta(X,B,Y) —a(B,X,Y), (7.11)
where X,Y,Z € X(M) and n € T'(N;M). Moreover, we have that
B,,H € I'(End(TM)) are given, respectively, by

(B,X,Y)=(B(X,Y),n) and HX = VxVp.
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Proof. We first show that

(Vx¥)n = —fuByX — LAX + E(X, 1), (7.12)
where ) 3

(VxY)n = Vxfdn — fYVx.
Taking the derivative of (7.8), we have from (7.7) and (7.8) that
0= (Vxfi¥n, £Y)+ (Y, VxY) + (VxLY,n) + (LY, Vxn)
= (Vx¥)n, £Y) + (B X.Y) + (LA, X, £.Y).

Since (f.Yn, &) = 0, then

0= (VxfYn,€) + (f.Yn, Vx&)

= ((VxY)n, &) — (a(X,Yn), &)
= ((Vx¥)n, &) + (LA, X — E(X, ), €)

for any X € X(M) and n,§ € I'(NyM), and hence (7.12) follows.

Since
(VxB)(Y,Z) =Vx(VyL)Z — (Vy,vL)Z — (VyL)VxZ,  (7.13)
it is easy to see that
(VxB)(Y,Z) - (VyB)(X,Z) = —LR(X,Y)Z (7.14)
for any X,Y,Z € X(M). It follows using Proposition 7.2 that
(VxB)(Y.Z), [.W)

= {(VxaY, Z) + £H(Vxa)(YZ) — felprv, )X, [ W)
+ (Y, W)YHessp(Z,X) — (Y, Z)Hess p(X, W)
for any X,Y,Z, W € X(M). Then (7.14) and the Gauss and Codazzi
equations give
<(@Xy)0[(Y, Z) - (@Yg)a()Q Z)7 f*W>
= (LAyx,2)Y — LAy, 2) X + [ Apv, ) X — foApx, )Y, fx W)

+{Y,Z)Hess p(X, W) — (Y, W)Hess p(Z, X)

+ (X, W)Hessp(Y,Z) — (X, Z)Hess p(Y,W).
On the other hand, it follows from (7.12) that

<(6XH)O‘(Y7 Z) - (ﬁyy)a(Xv Z)7 .f*W>
= (fsBax,2)Y + LAy x,2)Y — fsBa,2)X — LAaiy, ) X, [ W).
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The last two equations give

(Ba(x,2)Y — Bayv,2) X, i W)

= <Aﬁ(Y,Z)X - Aﬂ(X,Z)Y7 W> + <Ya Z>H€SS/)(X, W) - <YY7 W>H€SSp(Z, X)
+ (X, W)Hessp(Y,Z) — (X, Z)Hessp(Y, W),

and this is (7.9).
Using (7.13) we obtain

(VxB)(Y, 2))n,m =a(X, Ya(Y, Z)) + (VxB)(Y, Z)
+ <Z’ Vp>O¢(X, Y) - <K Z>04(X, Vp)
Then, we have from (7.14) and the Gauss equation that

(VxB)(Y, Z) - (Vi B)(X, 2)
= (LR(Y> X)Z)NfM - a(Xa HO&(Y, Z)) + a(Y> %OL(X, Z))

+ (Y, Z)a(X, Vp) — (X, Z)a(Y, Vp)
= (LAxx,2)Y — LAay, 2y X)nyu — (X, Ya(Y, 2)) + oY, Yo (X, Z))

(Y, Z)a(X, Vp) — (X, Z)a(Y, Vp),

and this is (7.10).
We have

= (Vxa)(Y,Yn) + (L(Vx A)(Y,n)) v, ar + a(Y, VxYn)
—a(Y,YVxn) = (LVxA)Y )N + Vi (LAY )N -
Then (7.12) yields
(Vx&)(Yon) = (Vxa) (Y, Yn) + (L(VxA)(Y.0) N, — oY, ByX)
—a(Y, (LA, X)) — (LVxAyY )N, v + V(LAY )N, v
Using the Codazzi equation, we obtain
(Vx&)(Yo) — (Vy€)(X,n)
=a(X,B,)Y)—a(Y,B,X) + (X, (LAY )rm)
—a(Y, (LA X)rn) = (LVxAyY )N, + V)L((LAUY)NJ:M
+ (LVy Ay X) Ny — Vi (LA X) vy -
Since
B(X,A)Y) = a(X, (LAY )rm) — (LVx AyY)nyi + Vi (LAY ) Ny s

then (7.11) follows. O
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7.4 Trivial infinitesimal variations

In this section, we characterize the trivial conformal infinitesimal bendings
in terms of the associated pair of tensors.

It is well-known that any trivial conformal infinitesimal bending of an
isometric immersion f: M™ — R™ is, at least locally, of the form

T(z) = (f(2),0) + N f (@) = 1/2|f(@)|[*v + Df () + w,

where A € R, v,w € R™ and D € End(R™) is skew-symmetric. Moreover,
the conformal factor is p(x) = (f(z),v) + A; cf. [35] for details.
Then

LX = (f.X,v)f(x) = (f X, f(z))v + Df. X.

Hence
(VxL)Y = (£.Y,0) fo X —(X, Yo+ (a(X,Y),0) f(z)— (X, V), f(2))v+Da(X,Y).
If D’ € T(End(f*TR™)) is the skew-symmetric map given by

D'o = (o,v) f(x) — (o, f(x))v + Do,
then LX = D' f,X. Moreover, we have f.Yn = (D'n);.rar and

(VxL)Y = (f£.Y,0) f. X — (X,Y)v+ D'a(X,Y).

Let DV € I'(End(NyM)) be given by DV = (D'¢)n, . Then

BX,Y) =DVa(X,Y) — (X,Y)on,

where vy = (V)n; M-
We have
(6){@’)0’ = 6){@’0’ — D/ﬁxo'
= (0,0) [ X — (o, fu X)v
for any X € X(M) and o € T'(f*TR™). Thus
E(X, &) = a(X, Y8) + (LA X) Ny
= (@X'D/f - @XDNf)NfM + (LAEX)NfM
(VxDNE+D'Vx€—VxDVE+ LAX) N, m
= —(VxDY)¢

for any X € X(M) and £ e I'(NyM).
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Proposition 7.4. A conformal infinitesimal bending T of f: M" —
R™, n >3, is trivial if and only if there exist § € T'(N;M) and C €
T(End(NyM)) skew-symmetric such that the associated pair has the form

B(X,Y)=Ca(X,Y) —(X,Y)d and &(X,&) = —(VxO)E.  (7.15)

Proof. For (3,¢&) as in (7.15) and if p is the conformal factor of T, then
(7.9) gives

(X, Z) (Y, W), 6) — Hess p(Y, W)) + (Y, W) ((a(X, Z),6) — Hess p(X, Z))

- <X7 W>(<Q(Y, Z),6>—H€SSp(Y, Z))_<Y7 Z>(<Oé(X, W)75>_H655p(X7 W)) =0
for any X, Y, Z, W € X(M). For X,Y,W orthonormal and Z = X it

follows that
(a(Y,W),8) = Hess p(Y, W)

whereas for X = Z and Y = W orthonormal we have
(a(X,X),0) — Hessp(X, X) = —(a(Y,Y),d) + Hessp(Y,Y) = 0.
Thus
(a(X,Y),d) = Hessp(X,Y) (7.16)

for any X, Y € X(M).
Since 8 and & have the form (7.15) we obtain from (7.10) and the
Codazzi equation that

(X,Z)(Vyd +a(Y,Vp)) = (Y, Z2)(Vx§ + a(X, Vp).
Hence
V%0 +a(X,Vp)=0 (7.17)

for any X € X(M). Equations (7.16) and (7.17) are equivalent to
f+Vp + 6 = v being constant along f. In particular p(z) = (f(z),v) + A
for some A € R.

Let T; € T'(f*TR™) be the trivial conformal infinitesimal bending

Ti(z) = ((f(2),0) + A)f(z) = 1/2] f(2)]*.

Notice that T and J7 have the same conformal factor, then To = T—T7 is an
infinitesimal bending. If L and L; are associated to T and T, respectively,
then the tensor Lo associated to T5 is given by

12X =VxTo=LX — 1 X.

Hence, the tensors (f2,E&2) associated to To satisfy fo = [ — (1 and
&€y = & — &1, where the pair (8;,&;) is associated to T7. Recall that
6 = (v)n; M, then (B2, E2) is as in (2.19) and thus Ts is trivial. O
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Remark 7.5. Two conformal infinitesimal bendings T;, ¢ = 1,2, of a
submanifold f: M™ — R™ differ by a trivial one if and only if the
associated pairs (3;,&;), i = 1,2, differ by tensors as in (7.15).

Let f: M™ — R"! be a hypersurface with shape operator A
corresponding to the Gauss map N € I'(N;M). Associated to a conformal
infinitesimal bending we are now reduced to consider the tensor B €
I'(End(TM)) given by

B(X,Y)=(BX,Y)N.
Then the fundamental system of equations takes the form
BXANAY —BYNAX+XANHY -YANHX =0 (7.18)

and
(VxB)Y — (VyB) X+ (X AY)AVp =0 (7.19)

for any X,Y € X(M).

Corollary 7.6. A conformal infinitesimal bending T of f: M"™ — R*+1,
n > 3, is trivial if and only if its associated tensor B has the form B = oI
for ¢ € C>=(M).

Proof. For a hypersurface, the tensor & vanishes. Then T is trivial if and
only if
ﬂ(Xv Y) = 7<X7 Y>5

for some 6 € I'(NM). This is equivalent to B = oI for p = —(6, N). O

7.5 The Fundamental Theorem

This section is devoted to the Fundamental Theorem for conformal
infinitesimal variations of Euclidean submanifolds.

Let V™1 C L™*2 denote the light cone of the standard flat Lorentz
space form L™12 defined by

vV = {v € L™ (v,0) = 0,v # 0}.
Given w € V™1, then
E™ = {ve V" (v,w) = 1}

is a model of Euclidean space R™ in L™*2. In fact, given v € E™ and
a linear isometry C: R™ — (span{v,w})* C L™*2 the map ¥: R™ —
ym+l ¢ L™+2 given by

U(r)=v+Cx— %HxHQw (7.20)
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is an isometric embedding such that U(R™) = E™. From Exercise 7.4 we
have that the normal bundle of ¥ is NgR™ = span{¥,w} and that its
second fundamental form is given by

(U, V) = —(U,VIw (7.21)

for any U,V € TR™.

The sum of any two conformal infinitesimal bendings is again a
conformal infinitesimal bending. In the following result and afterward,
we identify two conformal infinitesimal bendings if they differ by a trivial
conformal infinitesimal bending.

Theorem 7.7. Let f: M"™ — R™, n > 3, be an isometric immersion of a
stmply connected Riemannian manifold. A triple (8, &, p) # 0, formed by a
symmetric tensor f: TMxTM — NyM, a tensor &: TM XNy M — Ny M
for which (7.6) holds and p € C°(M), that satisfies system (S) determines
a unique conformal infinitesimal bending of f.

Proof. Let F: M™ — V™+! c L™*2 be the isometric immersion F = o f,
where ¥ is given by (7.20). By (7.21) the second fundamental form of F
satisfies
dF(X,Y) = T,a(X,Y) - (X,Y)w (7.22)
for any X,Y € X(M).
Let 3 :TM x TM — NpM be the symmetric tensor given by

B(X,Y) = W.B(X,Y) — Hess p(X,Y)F

for any X,Y € X(M). Then (7.9) is equivalent to
F
As

X+ BaF(Y,Z)X — AY Y — BaF(X,Z)Y =0, (723)

Y,Z) B(X,2)

where Ag is the shape operator of F' with respect to £ € I'(Np M) and Bg
is given by

Let &: TM x NpM — NpM be the tensor defined by

A

E(X,V.n) = V.E(X,n) — (X, Vp),n)F,

&(X,w) = ¥,a(X,Vp) and &(X,F)=0.

Since & satisfies (7.6) then also does &. For simplicity, from now on we
just write n for n € T'(IN; M) as well as its image under ¥,. We have

(VEBY, Z2) = (VxB)(Y, Z) — (Vx Hess p)(Y, Z) F,
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where V' is the normal connection of F. Then
(VEB)Y, 2) = (VyB)(X, Z)

= (VxB)(Y, 2) — (V¥B)(X, Z)
+ ((VyHessp)(X,Z) — (VxHessp)(Y,Z))F.

It follows from Hessp(X,Y) = (VxVp,Y) and the Gauss equation that

(VyHessp)(X,Z) — (VxHessp)(Y, Z)
= (R(Y,X)Vp, Z) (7.24)
= <0é(}/, Z)’ Oé(X, vf))> - <Oé(Y, VIO)7 Oé(X, Z)>a

where R is the curvature tensor of M™. Thus, from (7.10) and (7.24) we
have

(VEB)Y, Z) = (V¥ B)(X, Z)
=&Y, (X, 2)) = &(X,a(Y, Z)) + (Y, Z)a(X, Vp) — (X, Z)a(Y, Vp)
<04( ) )7 (X, Vp)> — (a(Y, VP)>a(X7 Z)>F7

and hence
(VEB)(Y,2) - (Vi B)(X, Z2) = E(Y,a (X, Z)) - &(X, " (Y, Z)) (7.25)

for any X,Y,Z € X(M).
From the definition of é, it follows that

(V%é)(Y’ 77) = (V)L((g)(y? 77) - <(V)L(a)(y7 VP)=77>F - <a(Y> VXVP)777>F

for any X,Y € X(M) and n € I'(NyM). Using the Codazzi equation, we
obtain

(VEE(Y,n) — (V&) (X,n) = (VXE)(Y,n) — (V$E)(X,n)
+ (<Q(Xa VYVP)an> - <Oé(}/7 VXVﬂ),TD)F

On the other hand, we have

BX,ALY) — B(AFX,Y) + o¥ (X, B,Y) — o"'(B,X,Y)
=f[(X,A,)Y) — Hessp(X,A,)Y)F — B(A,X,Y) + Hess p(A, X,Y)F
+ao(X,B,Y) —(X,B,)Y)w — a(B,X,Y) + (B, X,Y)w

From (7.11), the symmetry of § and that

Hessp(X, AnY) = <a(Ya VXVp)7 77>7
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it follows that

(Vx H&)(Y,n) — (ViHE) (X, ) (7.26)
=B(X,AFX) - BAFXY) + o (X, B,Y) — " (B, X,Y).
Using the Codazzi equation again, we obtain

(VEE) (Y, w) — (V) (X, w) = a(Y, VxVp) — a(X, Vy Vp).
Notice that AE =0 and B,X = —VxVp for any X € X(M). Then

BX,AFX) — BALX,Y) + of (X, B,Y) — af (B, X,Y)
=aY,VxVp) —(Y,VxVp)w — a(X,VyVp) + (X, VyVp)w

and hence
(Vi &)(V,w) = (Vi &)(X,w) (727
= B(X,AEY) = BAEX,Y) + aF (X, B,Y) — oF (B,X,Y).
Since By =0, ALX = —X, &(X,F) =0 and V¢ F = 0, then
(VREY,F) = (Vy€)(X, F) (7.28)
= B(X,ALY) — B(AEX.Y) + oF (X, BpY) — oF (BpX,Y)

trivially holds.

Summarizing, we have that B is symmetric, that & satisfies (7.6) and that
the pair verifies (7.23),(7.25),(7.26), (7.27) and (7.28). In this situation,
we have that Theorem 2.8 applies. Recall that in Remark 2.9 it is observed
that this result holds for ambient spaces of any signature, in particular,
for the Lorentzian space considered here. We conclude that there is an
infinitesimal bending T € T'(F*(TL™*2)) of F whose associated pair (5, &)
satisfies

B=B+Caf and &=¢— V/lé, (7.29)

where C' € T'(End(NzM)) is skew-symmetric. Moreover, we have that T
is unique up to a trivial infinitesimal bending. Write T as

T =0T+ (T, w)F + (T, F)w
Since T is an infinitesimal bending of F, we have
(VAT F.Y) + (VL T, F.X) =0
for all X,Y € X(M), where V' is the connection in L™+2. Then

(VxT, f.Y) + (VyT, £.X) + 2(T,w)(X,Y) =0
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for all X,Y € X(M). Hence, setting p; = —(T,w) we have that T is a
conformal infinitesimal bending of f with conformal factor p;.

Let 8/ and &' be the tensors associated to the conformal infinitesimal
bending T of f. Notice that

(@lX‘j‘)\y*TRm = \I/*@X‘I - plF*X (730)

for any X € X(M). Thus (B)y,n;m coincides with '. Let C €
I'(End(NyM)) be given by Cn = (Cn)w, v, m for any n € I'(NyM). Then
C' is skew symmetric. It follows from (7.22) and (7.29) that the tensor 8’
satisfies

where § = (C’w)q;*NfM.

Let L be associated to T and let Y be given by (2.10) with respect to L.
Given n € I'(NyM) we have

<I~’X7’r]> = <@X7777> = <LX777>7

and then Yn = Yn, here L and Y are associated to T. Notice that
(7.30) is just (LX)y.rrm = W,LX. This together with (7.22) imply
that (S(X,T]))\p*]\[fM coincides with &'(X,n) for any X € X(M) and
n € I'(NyM). Notice also that ¥, N;M is parallel with respect to v'L
thus we have from (7.29) that

g&=&-Vic. (7.32)

Finally it follows from (7.31), (7.32) and Proposition 7.4 that any other
conformal infinitesimal bending arising in this manner differs from T by a
trivial conformal infinitesimal bending, and this concludes the proof. [

Theorem 7.7 takes a rather simpler form in the hypersurface case.

Corollary 7.8. Let f: M™ — R™1, n > 3, be an isometric immersion
of a simply connected Riemannian manifold. Then a symmetric tensor
0 # B e I'(End(TM)) and p € C®(M) that satisfy (7.18) and (7.19)

determine a unique conformal infinitesimal bending of f.

Proof. In this case € vanishes and (BX,Y) = (5(X,Y), N). Thus (7.11)
holds trivially for 8 and € = 0. Moreover, by the assumptions on B we
have that (3,0, p) satisfies (7.9) and (7.10). Hence, Theorem 7.7 gives that
(8,0, p) determines a unique conformal infinitesimal bending T of f. O
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7.6 Conformal infinitesimal rigidity

In this section, we give a rigidity theorem for conformal infinitesimal
variations of Euclidean submanifolds that lie in low codimension. This
result is the infinitesimal version of the conformal rigidity result due to do
Carmo-Dajczer given in [5].

The notion of conformal s-nullity given next is a concept in conformal
geometry since it is easily seen to be invariant under a conformal change
of the metric of the ambient space.

The conformal s-nullity vé(z), 1 < s < p, of an immersion f: M™ —
R™"*P at € M™ is defined as
vi(z) = max{dimN(ay- — (, Y¢)(x): U° C NyM(z) and € U},

where ays = mys o o and 7ys: Ny M — U? is the orthogonal projection
onto the normal subspace U?.

The next is the version of Proposition 2.15 for conformal infinitesimal
variations.

Theorem 7.9. Let f: M™ — R*"P n > 2p+3, be an isometric immersion
with codimension 1 < p < 4. If the conformal s-nullities of [ satisfy
v <m—2s—1 foralll < s <p at any point of M", then f is conformally
infinitesimally rigid.

By the above result, in the case of a hypersurface f: M"™ — R**+1, n > 5,
the existence of a nontrivial conformal infinitesimal variation requires the
presence of a principal curvature of multiplicity at least n — 2 at any point.

The proof of Theorem 2.17 for infinitesimal variations was quite short
due to the use of the classical trick given by Proposition 2.12. But this
strategy fails completely in the conformal case and this is why, in sharp
contrast, the proof of the above result requires several lemmas.

Lemma 7.10. Let T be a conformal infinitesimal bending of an isometric
immersion f: M™ — R"P with conformal factor p and associated pair
(8,€). Then, at any point of M™ the bilinear form 6: TM x TM —
NiMO®R® Ny M SR defined by

9=(a+6,<,>—|—Hessp,a—B,<,>—Hessp) (733)

is flat with respect to the inner product ((,)) of signature (p + 1,p + 1)
given by

(&1, a1,m1,01), (§2,a2,m2,b2))) = (&1, &) Ny + @102 — (N1, M2) Ny ar — brba.
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Proof. A straightforward computation yields

S (QOCX W), 60, 2)) — (6(X, 2), 60, W)

(
—(BX, W), a(Y, Z)) + a(X, W), B(Y, 2))
— (B(X, 2), a(Y, W) — (a(X, 2), B(Y, W)
+ (X, W)Hessp(Y,Z) + (Y, Z)Hess p(X, W)
— (X, Z)Hessp(Y,W) — (Y,W)Hessp(X, Z)

for any X,Y, Z, W € X(M), and the proof follows from (7.9). O

Lemma 7.11. Let f: M™ — R™ be an isometric immersion. Let
Z1,Zy € Ty M be nonzero vectors satisfying either Zy = Zy or (Z1, Zs) = 0.
Ifn >4 and v{(z) < n —3, then

NiM(x) = span{a(X,Y): X, Y € T,M;(X,Y) = (X, Zy) = (Y, Z3) = 0}.

Proof. First assume that (7, Z3) = 0. Let U® C Ny M (z) be the subspace
given by U® L «o(X,Y) for any X,Y € T, M as in the statement. If, in
addition, we have (X, Zs) = (Y,Z;) = 0 and || X|| = ||Y||, then that
a(X+Y, X —Y)ys =0 gives

Qys ()(7 X) = Qys (Y, Y)
Thus, there is ¢ € U® such that
ays(X,Y) = (X,Y)¢

for any X,Y € span{Z;,Zy}" . By assumption ays(W,Z;) =
ays (W, Zy) = 0 for any W € span{Z;, Zo}*+. Then

span{Zl,Zg}L C N(ags — (, ){),

and this contradicts our assumption on v{ unless s = 0.
If Z1 = Z5 we again have that there is ( € U® such that

ays (X, Y) = (X, Y)¢

for any X,Y € span{Z;}t. It follows that A, has an eigenspace of
multiplicity at least n — 2 again contradicting the assumption on v{. O

Lemma 7.12. Let f: M"™ — R™, n > 4, be an isometric immersion and
let T be a conformal infinitesimal bending of f with conformal factor p
and associated pair (8,&). If vi(x) <n—3 at any x € M™, then & is the
unique tensor satisfying (7.6) as well as an equation of the form

(VO Z2) = (VyB)(X, Z) = (Y, a(X, Z)) - E(X, (Y, Z))

Y Zp(X) - (X, 2y, Y

where ¢ € T'(Hom(TM,NyM)).
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Proof. If also €g: TM x NyM — NgM satisfies (7.6) and (7.34), then
(7.10) gives

(€ —&o)(X,a(Y, Z)) — (€ = &o)(Y, a(X, 2))
+ (Y, 2)(W(X) = a(X, Vp)) = (X, 2)($(Y) — a(Y, Vp)) = 0.

Hence
(€ =&)X, a(Y,Z)) = (€ - &) (Y, (X, Z))

if Z is orthogonal to X and Y. Writing
(& — €0)(X1, (X2, X3)), a( Xy, X5)) = (X1, Xo, X3, Xy, X5)

and taking (X1, X3) = (Xo,X3) = 0, we have symmetry in the pairs
{X1, X2}, {X2, X3} and {X4, X5}. Moreover, since £ and & verify (7.6)
we obtain

(X1, X9, X3, X4, X5) = — (X3, X4, X5, Xo, X3).
Hence, if {X;}1<i<5 satisfies
(X1, X3) = (X1, Xy) = (X0, X3) = (X0, X5) = (X4, X5) =0, (7.35)
then

(XlaX27X31X47X5) = _(X17X47X57X27X3) = _(X57X47X17X27X3)

= (X57X25X37X43X1) == (X3;X27X53X47X1)
= —(X3, Xy, X1, X, X5) = —(Xy4, X3, X1, X2, X5)
= (X4, X2, X5, X3, X1) = (X2, X4, X5, X3, X1)
— _(X23X37X17X4,X5) = _(X17X27X37X4;X5)
=0.

Thus

((€ = &0) (X1, (X2, X3)), (X4, X5)) =0
if (7.35) holds. We already have that
(X1, Xyq) = (Xo, X5) = (X4, X5) = 0.

Hence, if also (X7, X5) = 0, we obtain from Lemma 7.11 that

(8 — 80)(X1,CE(X2,X3)) = 0

for any X1, X5, X3 € X(M) with (X1, Xo) = (X3, X3) = (X2, X3) = 0.
Now using Lemma 7.11 again, it follows that

(8 - 80)(Xa 77) =0
for any X € X(M) and n € T'(N;M). O
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Lemma 7.13. Let S C R™ be a vector subspace and let Ty: S — R™
be a linear map that is an isometry between S and Ty(S). Assume that
there is mo vector 0 # v € S such that Tov = —v. Then there is an
isometry T € End(R™) that extends Ty and has 1 as the only possible real
etgenvalue.

Proof. Extend Ty to an isometry 7" of R™. Suppose that the eigenspace of
the eigenvalue —1 of T satisfies dim F_; = k > 0. By assumption we have
that

E 1NnS=E_1NTy(S)=0.

Let eq,..., e, be an orthonormal basis of F_; and set
P =Ty(S) ®span{es, ..., ex}.

Let £ € P+ be a unit vector collinear with the P--component of e;. Let
n € R™ be such that Tn = ¢ and let H be the hyperplane {n}+. If R
is the reflection with respect to the hyperplane {£}+, then the isometry
Ty = RT satisfies Tyv = T for any v € H since Tv € {£}+.
Since (n,e1) = —(&, e1) # 0, there is v € H such that n + v is collinear
with e;. Hence
Tn+v)=6+Tv=—n—w.

We claim that no vector of the form n + u, u € H, is an eigenvector of T}
associated to —1. If otherwise

Tiln+u)=—-€+Tu=-n—u
for some u € H. We obtain from the last two equations that
T(u+v)=-2n—(u+t+w).

Then
IT(u+0)|* =4+ [Ju+v|?

which contradicts that T is an isometry and proves the claim.
We have proved that the eigenspace of T associated to —1 is contained

in H, in fact, that it is span{es......,egx}. Therefore, by composing T
with k appropriate reflections we obtain an isometry as required by the
statement. O

Lemma 7.14. Let T be a conformal infinitesimal bending of an isometric
immersion f: M™ — R™. If T is trivial then 0 is null. Conversely, if 0 is
null, n >4 and v$(z) <n—3 at any x € M"™ then T is trivial.

Proof. If T is a trivial conformal infinitesimal bending of f, then

T(x) = ({(f(2),v) + N f (@) = 1/2| f(@)[*v + Df (&) +w
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for A € R, v,w € R™ and D € End(R™) skew-symmetric. Since
p(x) = (f(x),v) + A, then f.Vp = vry. Hence

(Vxv, £,Y) = Hess p(X,Y) — (Ayy 0, X, Y) =0 (7.36)

’UNf]VT
for any X,Y € X(M). Moreover, we have seen that
B(X,Y)=Ca(X,Y)— (X,Y)un,n,

where C' € T'(End(NyM)) is skew-symmetric. Using (7.36) and that C is
skew-symmetric, we obtain that the bilinear form 6 is null. In fact,

1<<¢9(X, Y),0(2,W)) = (a(X,Y), 8(Z,W)) + (B(X,Y), a(Z,W))

2
+(X,Y)Hessp(Z, W)+ (Z,W)Hessp(X,Y)
= _<Z7 W><a(X7Y)7UNfM> - <X,Y><06(Z, W)aUNf]W>
+ (X,Y)Hessp(Z, W)+ (Z,W)Hessp(X,Y)
=0.
For the converse, that 6 is null means that
(a(X,Y), B(Z,W)) + (B(X,Y),a(Z,W))

+(X,Y)Hess p(Z,W) + (Z,W)Hess p(X,Y) = 0 (7.37)

for any X,Y,Z, W € X(M). Let S C NyM(z) @ R be the subspace given
by
S =span{(a(X,Y) + 8(X,Y),(X,Y) + Hessp(X,Y)): X, Y € T,M}.
Then, the map T, defined by
To(O[(X, Y) + B(Xa Y)3<Xa Y> + H@SSp(X, Y))
= (a(X,Y) - B(X,Y),(X,Y) — Hessp(X,Y))

is an isometry between S and T'(.S). We claim that —1 is not an eigenvalue
of Ty. Suppose that Tov = —v where

viz XlaY +B(XlﬂY) <Xi,Y;>+HGSSp(Xi,Y;)) €S.

Hence ), o(X;,Y;) =0 and ). (X;,Y;) = 0. Now (7.37) gives

D (B(Xi, i), a(Z, W) + (2, W) > Hess p(X;,Y;) =0
for any Z,W € X(M). That is, we have that A, = —hl where

n=>,0(X;Y;) and h = ), Hessp(X;,Y;). From our assumption on
v{ we obtain 7 = h = 0, hence v = 0 proving the claim.



116 Marcos Dajczer and Miguel I. Jimenez

Let T be the isometry of Ny M (z)@®R extending Ty given by Lemma 7.13.
Then
(I+THI-T)=(T"'-T)=—-(I-TH(I+T),

where T is the transpose of T. Thus
I-T)I+T) ' =-I+TH "I -TH=~((I-T)I+T) ",

that is, (/—T)(I+T)~" is a skew-symmetric endomorphism of N¢M (z)BR.
It is easy to see that

(I-T)YI+T)  a(X,Y),0) = (B(X,Y), Hessp(X,Y))

for any X,Y € T,M such that (X,Y) = 0. Thus, there is C €
End(N;M(z)) skew-symmetric such that

B(X,Y)=Cua(X,Y)
for any X,Y € T, M with (X,Y) = 0. Since
BX+Y,X-Y)=Ca(X+Y,X-Y)
for any orthonormal vectors X,Y € T, M, it follows that
B(X, X) — Ca(X, X) = (¥, Y) - Ca(Y,Y).
Hence, there is ¢ € NyM(x) such that
B(X,Y) = Ca(X,Y) — (X,Y)5 (7.38)

for any X, Y € T, M.

By Lemma 7.11 there are smooth local vector fields X;,Y;, 1 < i < p,
satisfying (X;,Y;) = 0 such that the vectors a(X;,Y;), 1 <14 < p, span the
normal bundle. Thus C and § are smooth.

Define €¢: TM x NyM — NyM by

Eo(X,n) = —(VxCO)n.
It follows from (7.38) that
(VxB)(Y, Z) = (VB)(X, Z) = & (Y, (X, Z)) — Eo(X, Y, Z))
— (Y, Z)V%6 + (X, Z)V0.

Then Lemma 7.12 gives € = &g, and thus T is trivial by Proposition 7.4.
O

Proof of Theorem 7.9: Let T be a conformal infinitesimal bending of f
such that the flat bilinear 6 given by (7.33) is not null at z € M™. Since
N(6) = 0, there is an orthogonal decomposition

W22 = Ny M(2z) ®R& Ny M(z) &R = Wl g Wr— e =51 1 <y <y
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such that 0 splits as § = 67 + 62 as in Theorem 1.11. Denoting A = N(62),
we have dim A > n—2(p—¢+1). Thus 0(Z,X) = 61(Z,X) for any Z € A
and X € T, M.

Let S C NyM(x) @ R be the vector subspace given by

S = span{(a(Z, X)+8(Z, X),{Z, X)+Hessp(Z,X)): Z € Aand X € T, M}.

If IT; denotes the orthogonal projection from VVO2 P2 onto the first copy of
Ny M(x) @R, then S C I1; (8(0) N 8(H)*) and, in particular, dim S < .
That 6, is null means that the map T': § — N;yM(z) @ R defined by

T(a(Z, X)+B(Z, X),{Z, X) + Hessp(Z, X))
= (OZ(Z,X) - ﬁ(ZvX)a <Z7X> - Hessp(Z,X))

is an isometry between S and T'(S). We have that
1
§(I+T)(Q(Z5X) +/B(ZaX)7 <ZvX> + Hessp(Z,X)) = (OK(Z, X)? <ZaX>)

IfS; = ((I+T)(S))t € NyM xR, then dim S; > p—¢+1. For (n,a) € S
we have that

((Z, X),m)+a(X,Z)=0 (7.39)

forany Z € Aand X € T, M. Let U C NyM be the orthogonal projection
of S1 in NyM. Since S; does not posses elements of the form (0, a) with
0 # a € R, then

dimU >p—{(+ 1.
It follows from (7.39) that there exists & € U such that
aU(Z7X) = <Z,X>§

forany Z € A and X € T, M. Hence ay — (, )¢ has a kernel of dimension
at least dimA > n — 2(p — £+ 1). But this is in contradiction with the
assumption on the conformal s-nullities, and hence 6 is necessarily null at
any point. Finally, Lemma 7.14 gives that T is trivial. O

7.7 Exercises

Exercise 7.1. Prove the statements in Examples 7.1.

Exercise 7.2. Let f,g: M™ — R™ be conformal immersions such that
the map h = f+¢g: M™ — R™ is also a conformal immersion. Then show
that T = f — g is a conformal infinitesimal bending of h.
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Exercise 7.3. Prove that (7.10) is equivalent to the equation

(VxB,)Y—(VyB,)X — ByL,Y + Byy, X
= Aex)Y — Aev X + (A X, V)Y — (4,Y,Vp) X

for any X,Y € X(M) and n € T'(N;M).
Exercise 7.4. Show that the normal bundle of the map ¥: R™ — Y™+ C

L™*2 defined by (7.20) is NgR™ = span{¥,w} and that its second
fundamental form is given by (7.21).

Exercise 7.5. Let f: M™ — R™, n > 3, be an isometric immersion
of a simply connected Riemannian manifold. Let (8,€,p) # 0 be a
triple formed by a symmetric tensor 3: TM x TM — N¢M, a tensor
E&:TM x NyM — NyM that verifies (7.6) and p € C°°(M) that
satisfies system (5). Show that the triple determines a unique conformal
infinitesimal bending of f with conformal factor p.

Hint: Given a pair (8,&) as in the statement, show that there is D €
T'(End(f*TR™)) satisfying
(VxD)(Y +n) = f((Y, Vo)X = (X,Y)Vp - B, X) + B(X,Y) + E(X,n)

for any X, Y € X(M) and n € I'(NyM). For that check that its
integrability condition

(VxVyD = VyVxD - VixyD)(Z+n)=0

holds for any X,Y,Z € X(M) and n € T'(N;M). Then, as in the proof of
Theorem 2.8, show that D can be assumed to be skew-symmetric. Define
L € T(Hom(TM, f*TR™)) by L(z) = D(x)|r,a- Then prove that there
is a vector field T € T'(f*TR™) such that VxT = LX + pX for any
X € X(M). Conclude that T is a conformal infinitesimal bending of f
with conformal factor p whose associate pair (B , é) is

BX,Y) =B(X,Y)+DVa(X,Y) and E(X,n) = &(X,n) — (VxDV)n,

where DNy = (Dn)n, ar for any n € D(NgM).



Chapter 8

Conformal variations of
hypersurfaces

The main purpose of this chapter is to parametrically classify the
hypersurfaces in Euclidean space f: M™ — R"*l n > 5, that admit
nontrivial conformal infinitesimal variations. The key ingredient in the
classification is a class of surfaces that is discussed in the first section.
In the special case of conformal variations, such a classification was first
considered by Cartan [7] and by Dajczer-Tojeiro [20] in a modern form.
The contains of this chapter are due to Dajczer-Jimenez-Vlachos [18].

8.1 Special surfaces

The classification of the Euclidean hypersurfaces that admit nontrivial
conformal infinitesimal variations will be given by means of the conformal
Gauss parametrization in terms of a class of spherical surfaces discussed
in this section.

Recall that (E™*1 (,)) stands for either Euclidean space R™™1 or
Lorentzian space L™ with the standard flat metric. Then S™ C E™+!,
€ = 0,1, is either the Euclidean unit sphere SJ* € R™*! or the Lorentzian
unit sphere (or de Sitter space) S7* C L™+ that is,

S ={X e E™: (X, X) = 1}.

Moreover, we always denote by i: S” — E™F! the isometric umbilical
inclusion.

In the sequel, let g: L? — S™, m > 4, be a space-like surface with
second fundamental form a9: TL x TL — NyzL. Assume that g has full
first normal spaces of dimension two. Hence, given a basis X,Y of T, L

119
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there exists 0 # (a, b, ¢) € R? such that the second fundamental form of g
satisfies

ac? (X, X) 4+ 2ca?(X,Y) + ba?(Y,Y) = 0.
The surface g is said to be hyperbolic (respectively, elliptic) at x € L? if
ab — ¢ < 0 (respectively, ab — ¢ > 0). In Exercise 8.2 it is shown that
this condition is independent of the given basis. Moreover, the condition is

equivalent to the existence of a unique endomorphism J on T, L satisfying
J # I and J? = I (respectively, J2 = —I) and

9(JX,Y) =a’X,JY) (8.1)

forall X,Y € T, L.

The surface g is said to be hyperbolic (respectively, elliptic) if it is
hyperbolic (respectively, elliptic) at every point of L?. In this case,
the endomorphisms J on each tangent space give rise to a tensor J €
I'(End(T'L)) such that (8.1) holds for all X,Y € X(L).

A local system of coordinates (u,v) on L? is said to be real conjugate
for a given surface g: L? — S™ if the condition

a9(0y,0,) =0

holds for the coordinate vector fields 9, = 9/0u and 9, = 9/9v. The local
coordinate system (u,v) is said to be complex conjugate for g if

a9(0,,0z) =0,
where z = u + v and 9, = (1/2)(9,, — i0,), that is, if
a?(Oy, 0y) + a?(0y, 0y) = 0.

In the case of real conjugate coordinates, we denote F' = (9,,0,) and
I'', I'? are the Christoffel symbols defined by

Va, 0, =10, +T2%0,. (8.2)

In the case of complex conjugate coordinates, we denote F' = (0,,0z)
where (, ) also stands for the C-bilinear extension of the metric of L?, and
we have that

Vaz 85 == F@Z + fag, (83)

where V also denotes the C-bilinear extension of the Riemannian
connection.

Proposition 8.1. Let g: L? — S™ be a space-like surface and h =
iog: L? = E™tL. Then the following assertions are equivalent:

(i) The coordinates (u,v) are either real conjugate or complex conjugate
forg.
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(i) The position vector of h satisfies
By — T hy —T%hy + Fh =0 (8.4)
in the case of real conjugate coordinates and
h.; —Th, —Th: + Fh=0 (8.5)
in the case of complex conjugate coordinates.

Proof. The condition a?(d,,d,) = 0 is equivalent to
a"(8y,0y) + Fh =0

whereas that a9(9,,0z) = 0 is equivalent to
a(8.,0:) + Fh = 0.

The preceding two equations can also be written as (8.4) and (8.5),
respectively. O

Proposition 8.2. If the surface g: L?> — S™ is hyperbolic (respectively,
elliptic), then there exists locally a real conjugate (respectively, complex
conjugate) system of coordinates on L? for g. Conversely, if there exists a
real conjugate (respectively, complex conjugate) system of coordinates on
L2, then g: L?> — S™ is hyperbolic (respectively, elliptic).

Proof. Assume that g is hyperbolic, and let X, Y be a frame of eigenvectors
of J associated with the eigenvalues 1 and —1, respectively. Then there
exists a local system of coordinates (u,v) in L? such that the coordinate
vector fields 0,, and 9, are collinear with X and Y, respectively. Hence

a9 (0y, Oy) = a9(J0y, 0y) = (04, JO,) = —a?(Dy, 0,) = 0.

Conversely, if (u,v) are real conjugate coordinates on L? for g, let J be
the tensor defined by Jd, = 9, and J9, = —0,. Then J? = I and (8.1)
holds, since this is satisfied for X, Y € {0,,,}. Thus g is hyperbolic with
respect to J. The proof for the elliptic case is similar. O

We call a hyperbolic surface g: L? — S™ endowed with a system of real
conjugate coordinates as in Proposition 8.2 a special hyperbolic surface if
the Christoffel symbols I't, T'? given by (8.2) satisfy the condition

rl=r12 (8.6)

Proposition 8.3. Let g: L? — S™ be a simply connected special hyperbolic
surface and, up to a constant factor, let p € C*°(L) be the unique positive
solution of

dp 4 2pw = 0, (8.7)
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where w = T?du + I''dv. Then ¢ € C*°(L) is a solution of the equation
Yo — Troy =T, + Fo =0 where F = (9,,0,) (8.8)

if and only if ¢ = \/jp satisfies

Yyw + M) =0, (8.9)
where i i
M — F _ uv urMv . .1
o + 12 (8.10)

In particular, the map k = \/uh: L* — E™* where h =i o g, satisfies
kyo + MKk = 0.

Conversely, for a system of coordinates (u,v) on an open subset U C R?
let {k1,...,kms1} be a set of solutions of the equation (8.9) for M €
C>(U). Assume that the map k = (k1,...,km+1): U — E™TL satisfies
w=|k||> > 0 and that the map h = (1/\/p) k: U — E™ ! is a space-like
immersion if € = 1. Then g: U — ST* defined by h = i 0 g is a special
hyperbolic surface.

Proof. Notice that (8.6) is the integrability condition of (8.7). Since
w e C™(U) is a solution of (8.7), it satisfies

't = 75—” and I'? = M,

% 2p
Hence (8.8) becomes
‘puv—i‘&‘puJ"&S@v"’F@:O
21 21
which takes the form (8.9) for ¢ = \/li¢ and M given by (8.10).

We now prove the converse. It is easily seen that h = (1/\/p)k: U —
L™+ satisfies

o i
o + —hy + —h, + Fh =0, 8.11
+ Gt gkt (8.11)
where F' = M + ‘;ﬁ - %. If h is a space-like immersion and g: U — S™

is the surface defined by h =i o g, then (8.11) implies that (u,v) are real

conjugate coordinates for g and that the Christoffel symbols of the metric
induced by g are

Moy 2 M

M'=-2"and 1’ = - 2%

2u a 21

It follows that (8.6) is satisfied and that 4 is a positive solution of (8.7). O
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We call an elliptic surface g: L? — S endowed with a system of complex
conjugate coordinates as in Proposition 8.2 a special elliptic surface if the
Christoffel symbol T given by (8.3) satisfies the condition

I, =T, (8.12)
that is, if ', is real-valued.

Proposition 8.4. Let g: L? — S™ be a simply connected special elliptic
surface and, up to a constant factor, let u € C°°(L) be the unique real-
valued positive solution of

pz +2ul = 0. (8.13)
Then ¢ € C*>*(L) is a solution of

2z =Dy, =Tz + Fp =0 where F =(0;,0z) = (1/4)([0u]* + [10.]%)

(8.14)
if and only if ¢ = \/up satisfies
Yzz+ My =0, (8.15)
where ) )
M=F -t el (8.16)

24 442
In particular, the map k = \/jpph: L? — E™t! where h =1 o g, satisfies

k.: + Mk =0.

Conversely, for a system of coordinates (u,v) on an open subset U C R?
let {k1,...,kms1} be a set of solutions of (8.15) where M € C*(U).
Assume that the map k = (k1,...,kmi1): U — E™T! satisfies that
pw = ||k||> > 0 and that the map h = (1/\/p)k: U — E™" is a space-
like immersion if e =1. Then g: U — S defined by h =io0 g is a special
elliptic surface.

Proof. Notice that (8.12) is the integrability condition of (8.13). Since
€ C*(L) is a real-valued solution of (8.13) then I = —(1/2u)pz. Hence
(8.14) becomes

ozt 20z + L2 + Fp =0
2u 2u
which takes the form (8.15) for k = /¢ and M given by (8.16).
We prove the converse. It is easily seen that h = (1//p) k: L? — E™*!

satisfies u s
hzg ih,g ihz Fh:O, 817
=+ 0 + o + ( )
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where F = M + ‘;z; — ’fof. If h is a space-like immersion and g: L? — S™
is the surface defined by h = iog, then (8.17) implies that (u,v) are complex
conjugate coordinates for g and that the complex Christoffel symbol of the
metric induced by ¢ is T' = —(1/2u)pz. The equality (8.12) is satisfied and

u is a positive solution of (8.13). O

Proposition 8.5. For a simply connected surface g: L> — S™ the
following assertions are equivalent:

(i) The surface g is special hyperbolic (respectively, special elliptic).

(i) The surface g is hyperbolic (respectively, elliptic) with respect to a
tensor J € T'(End(TL)) that satisfies J> = I and J # I (respectively,
J? = —1) and there is a nowhere vanishing function i € C°°(L) such
that D = pJ is a Codazzi tensor on L2, that is,

(VxD)Y = (Vy D)X
for any XY € X(L).

Proof. Let g be a hyperbolic surface as in part (i7) and let (u,v) be local
real conjugate coordinates on L? given by Proposition 8.2. Then the
equation

(Vo,D) 0y — (Vo,D) 0y =0 (8.18)

is easily seen to be equivalent to (8.7).

Conversely, if g is special hyperbolic with real conjugate coordinates
(u,v), J € T(End(TL)) is given by J9, = 9, and JO, = —08,, and
u € C°°(L) satisfies (8.7), then D = uJ satisfies (8.18) in view of (8.7),
and hence is a Codazzi tensor on L2. The proof for the elliptic case is
similar. O

Given a surface g: L? — S;’”l, fix a pseudo-orthonormal basis
€1y, emaz of L™*2 which means that

lex]] = 0 = [lemall, (€1, €m2) = —1/2 and (e, e5) = d;; if i# 1,m+2,

(8.19)
and set ¢ = (91,92, -, 9msz2): L? — ST C L™+2 in terms of this
basis. Assume that g, # 0 everywhere, and let the map h: L? — R™ and
r € C*°(L) be given by

h=71(g2,.--s9m+1) and r=1/g;. (8.20)
Notice that g can be recovered from the pair (h,r) by taking

g=r"1(1,h, ||hH2—T2). (8.21)
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Proposition 8.6. We have g is a space-like immersion if and only if h
is an immersion and the gradient V"r of r in the metric induced by h
satisfies | Vr|| < 1.

Proof. This is Exercise 8.1. O

We call the pair (h,r) formed by a surface h: L? — R™ and a function
r € C®(L) a special hyperbolic pair (respectively, special elliptic pair)
if there exists a special hyperbolic surface (respectively, special elliptic
surface) g: L? — ST such that (h,r) are given by (8.20).

8.2 The classification

The classification of Euclidean hypersurfaces that admit nontrivial
conformal infinitesimal bendings is parametric in nature and given in terms
of the conformal Gauss parametrization. This parametrization is discussed
next limited to the conditions in which it is used here; see [21] for additional
details. Then the classification result is given by means of two statements.

Let f: M™ — R"*!, n > 4, be a given oriented hypersurface with Gauss
map N: M™ — S™ C R™"!. Assume that at each point of M™ there is a
principal curvature A > 0 of multiplicity n — 2. It follows from Proposition
1.5 that the corresponding eigenspaces form an integrable distribution and
that X is constant along the spherical leaves. Moreover, the so-called focal
map, namely, the map f+rN: M™ — R r =1/}, induces an isometric
immersion h: L? — R™!, where the surface L? with the induced metric

is the quotient space of leaves and r» € C°°(L?) turns out to satisfy that
|Vir| < 1.

The conformal Gauss parametrization goes as follows: The hypersurface
f can be locally parametrized along the unit normal bundle Ny L of h by
the map

X(&) =h—r(hV"r + /1 —||Vhr|2€).
Conversely, given a surface h: L? — R™! and a positive function
r € C°°(L?) whose gradient satisfies || V7| < 1, then on the open subset

of regular points the parametrized hypersurface determined as above by
the pair (h,r) has, with respect to the Gauss map

N = hVhr 4+ /1 — || Vhr|2 €,
the principal curvature A = 1/r of multiplicity n — 2.

A hypersurface f: M™ — R is said to be conformally surface-like if
it is conformally congruent to either a cylinder or a rotation hypersurface
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over a surface in R? or a cylinder over a three-dimensional hypersurface of
R* that is a cone over a surface in the sphere S? C R*. The hypersurface
is called conformally ruled if M™ carries an integrable (n — 1)-dimensional
distribution such that the restriction of f to each leaf is an umbilical
submanifold of R"+1.

The first classification result given next excludes the case of conformally
ruled hypersurfaces considered in the sequel.

Theorem 8.7. Let f: M™ — R", n > 5, admit a nontrivial conformal
infinitesimal variation. Assume that f is neither conformally surface-
like nor conformally flat nor conformally ruled on any open subset of
M™. Then, on each connected component of an open dense subset of
M™, the hypersurface can be parametrized in terms of the conformal Gauss
parametrization by either a special hyperbolic or a special elliptic pair.

Conwersely, any hypersurface f: M"™ — R" 1 n > 5, given in terms
of the conformal Gauss parametrization by either a special hyperbolic or
special elliptic pair admits a nontrivial conformal infinitesimal variation.
Moreover, the conformal infinitesimal bendings associated to any pair
of nontrivial conformal infinitesimal variations of f differ by a trivial
conformal infinitesimal bending.

For the case of conformally ruled hypersurfaces, we have that the
conformal variations being infinitesimal or not does not make a difference.

Theorem 8.8. Let f: M™ — R™' n > 5, be a conformally ruled
hypersurface that is neither conformally surface-like nor conformally flat
on any open subset of M™. Then f admits on each connected component
of an open dense subset of M™ a family of conformal infinitesimal bendings
that are in one-to-one correspondence with the set of smooth functions on
an interval. Moreover, any such bending is the variational vector field of
a conformal variation.

Let T be a conformal infinitesimal bending of f: M™ — R™*! with
conformal factor p. At any point of M"™ we have from Lemma 7.10 that
the associated bilinear form 8: TM x TM — R* defined by

(8.22)
is flat with respect to the inner product ((, )) of signature (2,2).

Proposition 8.9. Let f: M™ — R™"t! n > 3, be an isometric immersion
free of umbilical points. If T is a conformal infinitesimal bending of f such
that the associated flat bilinear form 6 given by (8.22) is null at any point
of M™ then T is trivial.
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Proof. That 6 is null is equivalent to
(AX, )B4+ (BX,Y)A+ (X, YYH +(HX,Y)I =0

for any X,Y € X(M). Fix z € M™. From our assumptions we have
that A(x) is not a multiple of the identity. It follows from the above that
A(z),B(z) and H(xz) commute, that is, there exists an orthonormal basis
{Xiti<i<n of T, M that diagonalizes simultaneously all of them. If \;, b;
and h; are the respective eigenvalues of A(z), B(x) and H(x) corresponding
to X;, 1 <1 < n, then

AiB+b;A+ H+ h;I =0.
If /\1 7é )‘jv then
(A —Xj)B+ (b —bj)A+ (h; — h;)I =0.
Hence
(X = Aj)bi + (bi = bj)Xi + hi — hj = 0 = (Ai = Aj)bj + (bi — bj)Aj + hi — hy,
and thus
(Ai = Aj)(bi = b;) =0
which gives b; = b;. If \; = A; for i # j, then

(bi — b)) A+ (hi — hj)I =0.

But since f has no umbilical points, we necessarily have b; = b; and hence
B = bl at any z € M"™. We conclude from Proposition 7.6 that T is
trivial. U

Lemma 8.10. Let f: M™ — R" n > 5, be an isometric immersion
free of umbilical points and let T be a nontrivial conformal infinitesimal
bending of f. On the connected components of an open and dense subset
A, B and H share a common eigenbundle A such that dim A > n — 2.

Proof. By Proposition 8.9 the bilinear form 6 is not null. Then, by
Theorem 1.11 there is an orthogonal decomposition R* = R%?2 = RLIgRY!
such that 6§ = 0, + 05 where 61 is nonzero but null and 6, is flat and
dimN(62) > n — 2.

We denote A = N(fz) and restrict ourselves to connected components
of an open and dense subset where dim A > n — 2 is constant. Since we
have that

0T, X)=0,(T,X)

for any T € T'(A) and X € X(M), then

(0T, X),0(Y,Z)) =0
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for any T € T'(A) and X,Y, Z € X(M). Equivalently,
(AT, X)B + (BT, X)A + (T, X)H + (HT, X)I = 0 (8.23)
for any T € T'(A) and X € X(M). Taking X orthogonal to T' we see that
(AT, X)B + (BT, X)A+ (HT, X)I = 0. (8.24)

Fix x € M™ and assume, by contradiction, that there exists T' € A(z)
and X € T, M such that (X,T) = 0 and (BT, X) # 0. From (8.24) and
since f is free of umbilic points, we obtain that A commutes with B, and
hence also does H. Let {X;}1<;<, be an orthonormal basis of T, M of
common eigenvectors of A, B and H with corresponding eigenvalues A;, b;
and h;. Since (BT, X) # 0 with (X,T) = 0, then 7' is not an eigenvector.
Hence, there are two eigenvalues by # be such that (T, X1) # 0 # (T, Xa).
Thus, we have from (8.23) that

MB+b01A+H+hI=0 and \ogB +bA+ H+ hol =0.

Hence
()\1 — )\2)3 + (b1 - bg)A + (hl - hz)[ =0, (825)

from where we obtain that
(A1 —A2)bj + (b1 —b2)Aj +h1 —hy =0, 1<j<n.
Taking the difference between the cases j = 1 and j = 2 we have
(A — A2)(by — b2) =0,

and hence A\ = Ag. It follows from (8.25) that A is a multiple of the
identity which is a contradiction.

Therefore (BT, X) = 0forany T € A(z) and X € T, M with (X,T) = 0.
This implies that A is an eigenspace of B. If (AT, X) # 0, for some
T € A(z) and X € T, M with (T, X) = 0, then we obtain from (8.24) that
B is a multiple of the identity and this is contradiction. Hence A is also
an eigenspace of A, and consequently of H. O

Let f: M™ — R™*! be a hypersurface that carries a principal curvature
of constant multiplicity n — 2 with corresponding eigenbundle A. In what
follows, we write VAX = (VrX)ar for T € T(A) and X € T(A1).
If f is not conformally surface-like on any open subset of M", we say
that f is hyperbolic (respectively, parabolic or elliptic) if there exists
J € T'(End(A%)) satisfying the following conditions:

(i) J?2 =1 and J # I (respectively, J? = 0 with J # 0, or J? = —1I),
(ii) VAJ =0 for all T € T'(A),
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(iii) Cr € span{I,J} for all T € T'(A).

Let f: M» — R"™1 n > 5 be an oriented hypersurface with a
principal curvature A of constant multiplicity n —2. By composing with an
appropriate inversion, if necessary, and given that f is orientable, we can
always assume that A > 0 at any point of M™. Recall that an inversion
@: R* 5 R**+1 with respect to the hypersphere of radius r > 0 centered
at xop € R"*! is the conformal map given by

2 T — X0
r)=x0+r ——m5-"
o) EEEE

Let A be the second fundamental form associated to the Gauss map
N of f and let A(z) C T, M be the eigenspace corresponding to A\(x) at
x € M"™. Fix an embedding ¥ as in (7.20) and let S: M™ — L""3 be the
map given by

S(z) = Mx)U(f(z)) + V.N(z). (8.26)

Then S(x) € S} c L™ and
S X = X(\)U(F(2) — o fo(A — A)X (8.27)

for any X € X(M). From (8.27) it follows that S is constant along
the leaves of A. Let L? be the quotient space of leaves of A and let
7: M™ — L? be the canonical projection. Thus S induces an immersion
s: L? — ST € L"*3 such that S = s o 7. Moreover, the metric (, )’ on
L? induced by s satisfies

(X,)YY ={(A=AD)X, (A=Y, (8.28)

where X,Y € X(M) are the horizontal lifts of X,Y € X(L).

A tensor D € T'(End(A™1)) is said to be projectable with respect to
m: M™ — L2 if it is the horizontal lift of a tensor D on L2, that is, if

mDX =Dn,X=DXor if mX=Xom.
The following result is Corollary 11.7 of [21].
Lemma 8.11. A tensor D € T'(End(A1)) is projectable if and only if
V4D =D, Cr]
for all T € T(A).

Proposition 8.12. Let f: M* — R""', n > 5, be an oriented
hypersurface and let T be a nontrivial conformal infinitesimal bending of f.
Assume that the principal curvature A > 0 of A determined by A in Lemma
8.10 has constant multiplicity n — 2. Then, on each connected component
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of an open dense subset of M™ either f is conformally surface-like or f is
hyperbolic, parabolic or elliptic with respect to J € T'(End(AL)) and there
exists p € C*°(M) nowhere vanishing and constant along the leaves of A
such that D = pJ € T'(End(A1)) satisfies:

(i) (A— XI)D is symmetric,
(i5) VhD =0,
(iii) (Vx(A—=X)D)Y — (Vy(A—X)D)X = X ANY(D'V)),

(iv) ((VyD)X — (VxD)Y,V\) + Hess A\(DX,Y) — Hess A(X, DY)
= M(AX, (A= AI)DY) — ((A — AXI)DX, AY)),

() (A= X)DX A (A= A)Y — (A= X)DY A(A— X)X =0

for any T € T(A) and X,Y € T(A1).

Conversely, assume that f as above is either hyperbolic, parabolic or
elliptic with respect to J € T'(End(A*)) and that there is 0 # D = pJ €
[(End(AY)) that satisfies conditions (i) through (v). If M™ is simply
connected there exists a nontrivial conformal infinitesimal bending T of
f determined by D that is unique up to trivial conformal infinitesimal
bendings.

Proof. We have from Lemma 8.10 that A is a common eigenbundle for A,
B and H. Thus B|a = bl and H|a = hl where b,h € C*°(M). We obtain
from (8.23) that

bA+ B+ H + hl =0.

In particular Ab+ h = 0, and thus locally
bA+ X(B—-0bI)+ H =0. (8.29)
From (7.19) we have
Th—Ap)=T(b)—NT(p)=0 (8.30)
for any T' € T'(A). Notice that (7.19) is equivalent to
(Vx(B-=bD)Y —(Vy(B-bI) X+ (X AY)(AVp—Vb)=0. (8.31)
Then it follows from (8.30) and (8.31) that
(VE(B —bI)X = (B —bI)Cr X (8.32)

for any X € I'(At) and T € T(A).
We regard A — Al and B — bl as tensors on A+. We obtain from (8.32)
and the Codazzi equation VA A = (A — AI)Cr that

(B — bI)Cp = CH(B — bI) and (A — AI)Cp = CL(A— \I).
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We have that D € I'(End(A*1)) defined by
D= (A—X)"Y(B-bI)
satisfies D # 0 since T is nontrivial. Hence

(A= X)DCp = (B —bI)Cp = CL(B —bl) = CL(A— NI)D
= (A= A)CrD,
and therefore
[D,Cr] = 0. (8.33)

We also have
(A= XI)CrD = (VEA)D

and
(A= XI)DCp = (B —bI)Cp = V(B —bl) = VA((A - \I)D)
= VA(AD) — A\VED.
Thus
(A= XIVAD = (A - AI)[D,Cr],
and hence

VAD =0 (8.34)

for any T € T'(A).

It follows from (8.33), (8.34) and Lemma 8.11 that D is projectable with
respect to m: M™ — L2, that is, the horizontal lift of a tensor D on L2.
Since H = A\(bI — B) — bA from (8.29), we have from (7.18) that

(B—bI)X A (A= A)Y —(B—bI)Y A(A—A)X =0 (8.35)
for any X,Y € X(M). From (8.35) and the definition of D we obtain that
(A=A DXANA-X)Y—A-X)DYNA-XN)X)(A-X)Z, (A= D) W)=0
for any X,Y, Z,W € I'(A'). This implies that

(DX AY — DY A X)Z, WY =0
for any X, Y, Z, W € X(L). In other words, we have
DXAY -DYANX =0
with respect to the metric (, )’. Thus trD = 0.
We have that D has either two smooth distinct real eigenvalues, a single

real eigenvalue of multiplicity two or a pair of smooth complex conjugate
eigenvalues. Thus there is 1 € C°°(L) such that D = pJ, J # I, where



132 Marcos Dajczer and Miguel I. Jimenez

the tensor J € T'(End(T'L)) satisfies J? = eI, for ¢ = 1,0 or —1. Hence
D = uJ where J is the lifting of J and i = p o 7. In particular trD = 0.
If span{Cr : T € A} C span{I} we have from Corollary 9.33 in [21]
that f is conformally surface-like. Hence, we assume span{Cr : T € A} ¢
span{I} and obtain from (8.33) that Cr € span{I, J} for any T € T'(A).
Since J is projectable, being the lifting of .J, we have from Lemma 8.11
that
VipJ = [J,Cr]

for all T € A. Then (8.33) gives that V/.J = 0 and hence the hypersurface
f is either hyperbolic, parabolic or elliptic.
We have from (8.29) that

X(b)AY + X(N\)BY — X(Ab)Y + b(VxA)Y + A(VxB)Y + (VxH)Y = 0.
On the other hand, the Gauss equation yields (8.36)
(VxH)Y = (Vy H)X = R(X,Y)Vp = (AY, Vp)AX — (AX,Vp)AY.
Then (7.19), (8.36), (8.37) and the Codazzi equation imply that (337

X(b)AY + X(\)BY — X(AD)Y — Y (D)AX — Y (\)BX + Y (\))X
—MX AY)AVp+ (AY, Vp)AX — (AX,Vp)AY =0

for any X,Y € X(M). Then

(X,Vb— AVp)(A — AI)Y — (Y, Vb — AVp)(A — M) X
+ (X, VA)B — bI)Y — (Y, VA)(B —bI)X =0

for any X,Y € X(M). For X,Y € (A1) we have
(X,Vb—AVp)Y — (Y, Vb— AVp)X + (X,VNDY — (Y,VA)DX = 0.

Taking X and Y orthonormal, we obtain

(Y,Vb— AVp) — (X, VA)(DY, X) + (Y, VA)(DX, X) =0
and

(X,Vb— AVp) + (X, VA)(DY,Y) — (Y, VA)(DX,Y) = 0.
Using that trD = 0 this gives

D'V = Vb— AVp, (8.38)

where D? denotes the transpose of D.
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So far we have that (i) holds from the definition of D, (ii) is (8.34),
(#31) follows from (8.31) and (8.38), and (v) is (8.35). Thus, it remains
to prove that (iv) holds. To do this, fix a pseudo-orthonormal basis
e1...,enr3 of L3 as in (8.19), and set v = e; and w = —2e,,3. Let
U: ReFL 5 yrt2 ¢ L3 and S0 M™ — LT3 be given by (7.20) and
(8.26) respectively. We see next that the immersion s: L? — STT2 ¢ L"+3
induced by S satisfies s = g, where g is given by (8.21), h: L? — R"*! is
induced by f+rN and r = A~!1. In fact, we have that ¥(y) = (1,y, ||y|?)-
Then

S(z) = AL, f(@), [ f(@)|I*) + (0, N(x), 2(f (=),
= ML, f(z) + 7N, | f(2) | + 2r(f(z), N(2))).
Since hom = f 4+ rN, it follows that
s=r" 1,h 0] =7 =g.
Let X,Y € T'(A+) be the horizontal lifts of X,Y € X(L). We have

V%S8.DY =V, xg.mDY =Vsg.DY
=g.V3DY +a?(X,DY) — (X,DY)gorm,
where V/ and V' are the connections in L."*3 and L2, respectively. From
(8.27) we obtain that

ViU, f.(A = A)DY = X(DY,V\)¥o f 4+ (DY, VN, f,. X
— 9:V'sDY —a9(X,DY) + ((A— X)X, (A= MN)DY)(AW o f + ¥, N).

On the other hand, using (7.21) and (8.27) it follows that

Vi . f.(A = AI)DY
= U, Vxf(A—A)DY + ¥ (f.X, fo.(A— XI)DY)
= U, f,Vx(A—=A)DY + (AX, (A~ M)DY)U,N — (X, (A~ AI)DY)w
= U, fi(Vx(A=A)D)Y + U, f.(A— N)DVxY

+(AX, (A= A)DY)U,N — (X, (A~ \)DY)w

U, f.(Vx(A—=A)D)Y +(DVxY,V\Wo f — g.Dr.VxY

+ (AX, (A~ M)DY)U,N — (X, (A~ \)DY)w.

We obtain from the last two equations that
(DY, V A\ fo X — (Vg D)Y — g.DVLY
—a?(X,DY) — MX, (A - XI)DY)¥,N
+ (((VxD)Y,VA) + (DY, VxVA) + M((A—= M) X, (A= AN)DY))To f
=V, f.(Vx(A=AX)D)Y — g.Dm.VxY — (X, (A — A\I)DY)w.
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Hence, we have from 7,[X,Y] = [X,Y] that
0.(V5 D)X — (Vi D)) + a(¥, DX) — a(X, DY)

— WL LQXY) = XX, Y)ULN + o(X, Y)W o f + (X, Y ),
where

QX,Y) = (Vx(A—A)D)Y — (Vy (A — AI)D)X — X AY(D'V)),
(8.39)
$(X,Y) = (Y, (A - \X[)DX) — (X, (A — AI)DY), (8.40)
o(X,Y) = ((VyD)X — (VxD)Y,VA) + Hess \(DX,Y) — Hess \(X, DY)
“A{((A=ADX, (A= X)DY) — (A= A)DX, (A — AI)Y)).
(8.41)

It follows from (8.31) and (8.38) that Q vanishes. The symmetry of B
yields ¥ = 0. Hence

9.(VeD)X — (VeD)Y)+a?(Y,DX) — a?(X,DY) = o(X,Y)¥o f.

Since the term on the left-hand side is constant along the leaves of A then
© has to vanish, and this proves (iv).

We prove the converse. Let D = pJ € T'(End(A*1)) verify the conditions
(i) through (v). In the sequel, we extend D to an element of End(T'M)
defining DT = 0 for any T' € I'(A). Then (v) holds for any X,Y € X(M).

Set F=Wo f: M™ — V"2 C L"*3. Let 8: TM x TM — NpM be
the symmetric tensor defined by

B(X,Y) = (A= A[)DX,Y)(U,N + AF), (8.42)
where N is a Gauss map of f. Then let B, € I'(End(7'M)) be given by
(ByX,Y) = (B(X,Y),n)

for any n € T'(NpM). For simplicity, we write N = ¥,N. We have
By = (A—AI)D and B,, = ABy. Since

o (X,Y) = (AX,Y)N — (X,Y)u, (8.43)
we obtain from (v) and A|a = Al that
Ay, )X + Barv, )X = Afx 7)Y — Bar(x,2)Y =0 (8.44)

for any XY, Z € X(M), where Af; is the shape operator with respect to
n e (NgpM).
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We define £&: TM x Ng M — NpM by

E(X,N)=(DX,VNF, £&X,w)=—(DX,VA)N and E(X,F)=0
(8.45)
for any X € X(M). Observe that € satisfies the condition

(€(X,n),&) = —(&(X,6),m) (8.46)

for any X € X(M) and n,£ € T'(NpM).
It follows from (7ii) that

(VxBy)Y — (VyBy)X = (DY, V)X — (DX, VA)Y (8.47)
for any X,Y € I'(A1). Using (i) and that [D,Cr] = 0, we obtain

(VxBN)T = (VrBx)X = ByCrX —(Vr(A = M)DX — (A= \)(VrD)X
= (A—-M)CrDX — (Vr(A - X))DX

for any T' € T'(A). Now using the Codazzi equation, we have
(VxBN)T — (VrByn)X
=(A-M)CrDX — (VpxA)T
=(A-\)CrDX — (DX, VT — (A—-X)CrDX
= —(DX,VNT. (8.48)

Since A is integrable, we obtain
(VrBn)S — (VgBnN)T =0 (8.49)
for any T, S € I'(A). It follows from (8.47), (8.48) and (8.49) that
(VxBN)Y = (VyBN)X = Af x Y — Af iy X (8.50)

for any X, Y € X(M).
We have from (8.47) that

(VxBw)Y — (VyBy)X = (X, VA)ByY — (Y, VA)By X
+ MDY, VA X — M(DX,VA)Y

for any X,Y € I'(A+). Let 0 € T(A') be given by VA = (A — \)o.
Using (v) we obtain

(VxBw)Y — (VyBw)X = (ByY,0)(A— A)X — (ByX,0)(A— AI)Y
+ MDY, VA X — AM(DX, V)Y
= (DY, VA)(A— ADX — (DX, VA)Y + A(DY,VA)X — A\(DX, VA)Y
= (DY, VA)AX — (DX, VA)AY. (8.51)
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Using (8.48) it follows that
(VxBo)T — (VpBy)X = M(Vx By)T — (VrBy)X)

8.52
=—(DX,VN)AT (8.52)

for any T € T'(A). As before, we have that
(VrBy)S — (VsBy)T =0 (8.53)

for any S, T € T(A). We conclude from (8.51), (8.52) and (8.53) that
(VxBuw)Y = (VyBu)X = A (x )Y — AL (v X (8.54)

for any X, Y € X(M).
We have that Bp = 0 = £(X, F'), and hence it holds trivially that

(VxBrp)Y = (VyBrp)X = Af x ;Y — Af v,y X (8.55)

for any X,Y € X(M).
Next we focus on the covariant derivative of & Let V' denote the
normal connection on NgM. We have

(VZE)(Y.N) = VR E(Y,N) — E(VxY,N)
— X(DY,VAF — (DVxY, VA F
(((VxD)Y,VA) + Hess \(DY, X)) F

for any X,Y € X(M). Then

(VZ&)(Y.N) = (Vi €)(X,N) = (VxD)Y = (Vy D)X, V)

+ Hess \(DY, X)) — Hess \(DX,Y))F

for all X,Y € X(M). From (iv) we have

(V)Y N) — (VHE)(X, N) = A(Bx X, AY) — (AX, ByY)F (8.50)
for all X,Y € T'(At). Using (ii) and that [D,C7] = 0, we obtain

(VZ&)T,N) = (Vi €)(X,N)
= &([T, X],N) = Vi &(X, N)

(DCrX — (V1D)X,VA) — Hess \(DX,T))F
((CrDX, V) — Hess \(DX, T))F
(T, Vpx VA) — Hess \(DX, T))F
0

(8.57)

for any X € I'(A+) and T € T'(A). We also have
(Vi €)(S,N) = (V5 &)(T,N) =0 (8.58)
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for any S,T € I'(A). On the other hand, from (8.42) and (8.43) we obtain

B(X,AY) — B(AX,Y) + o (X,BnY) — oF (BN X,Y)

8.59
= A((Bn X, AY) — (AX, ByY))F (8.59)
for all X,Y € X(M). From (8.56) through (8.59) we conclude that

(VR EY,N) = (VFE)(X,N)

B B (8.60)
= B(X,AY) — B(AX,Y) + o (X, ByY) — oF (By X, Y)
for any X,Y € X(M). Similarly as above, we obtain

(Vi &)Y, w)—(Viy&)(X,w) = (Vy D)X — (VxD)Y, VAN
+ (Hess\(DX,Y) — Hess \(DY, X))N

for all X,Y € X(M). From (iv) it follows that
(V&) (Y, ) —(VE)(X, 1) = A((AX, (A-AT)DY)—{(A-AI)DX, AY))N
for X, Y € T(A1). As before, we have from (ii) and [D,Cy] = 0 that

(VEENT, w) — (VFE)(X,w) = (—(CrDX, V) 4+ Hess \(DX,T))N

(—
(—(T,VpxA)+ Hess \(DX,T))N
0

and
(Vi €)(S,w) = (V5 &)(T,w) =0

for any T, S € I'(A). In addition, we have

BX,AEY) - B(AE X, Y) + o (X, B,Y) — o (B, X,Y)
= M(AX, BNY) — (ByX, AY))N

for all X,Y € X(M). Thus

(V&) (Y w) — (Vi €)(X,w) (8.61)
= B(X,ALY) - B(AEX,Y) + o¥(X, B,Y) — of (B, X,Y)
for all X,Y € X(M). Finally, we have

B(X,ALY) — B(ALX,Y) + o (X, BFY) — o (BpX,Y) =0
for all X,Y € X(M). Since (X, F') =0, then

(VREY,F) — (V5 &) (X, F)

— B(X, AEY) — BAEX,Y) + " (X, BY) — o" (BrX,Y) (8.62)
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for all X,Y € X(M) holds trivially.

We have that § is symmetric and that the tensor £ satisfies condition
(8.46). Moreover, the pair (€, 3) also satisfies (8.44), (8.50), (8.54), (8.55),
(8.60), (8.61) and (8.62). In this situation Theorem (2.8) applies. We
conclude that there is an infinitesimal bending T € T'(F*(TL"t3)) of F
whose associated pair (3, é) satisfies

B=p+Ca" and &€=¢€-V'C, (8.63)

where C' € T(End(NpM)) is skew-symmetric. Moreover, we have that T
is unique up to trivial isometric infinitesimal bendings.
Write T as
T =0T+ (T, w)F + (T, F)w.

Being T an isometric infinitesimal bending of F', we have
(VT F.Y) + (Vy T, F.X) =0
for all X,Y € X(M). Then
(VxT, £.Y) 4+ (VyT, . X) + 2(T,w)(X,Y) =0

for all X,Y € X(M). Hence, setting p = —(T,w) we have that T is a
conformal infinitesimal bending of f with conformal factor p. Notice that

(6/)(‘})\11*TR”+1 =W, VxT - pF. X

for any X € X(M). It follows from (8.63) that the symmetric tensor
B € I'(End(T'M)) associated to T has the form B = By + ¢I, where
¢ = —(Cw, N). Since By|a1 # 0 we conclude that T is not trivial.

Any other conformal infinitesimal bending 7’ arising in this manner has
the associated tensor B’ = By + ¢’'I. Then Corollary 7.6 gives that T — T’
is trivial, and this concludes the proof. O

Proposition 8.13. Any parabolic hypersurface f: M™ — R**!1 n > 5,
that admits a montrivial conformal infinitesimal variation is conformally
ruled.

Conversely, let f: M™ — Rt n > 5, be a simply connected
conformally ruled hypersurface free of points with a principal curvature of
multiplicity at least n — 1 and that is not conformally surface-like on any
open subset of M™. Then f is parabolic and admits a family of conformal
infinitesimal bendings that are in one-to-one correspondence with the set
of smooth functions on an interval.

Proof. From the proof of Proposition 8.12, we have in this case that
D = puJ where J2 = 0. Let Y € T'(A') be of unit-length such that
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JY =0 and let X € I'(A') be orthogonal to Y satisfying JX =Y. Note
that V24.J = 0 for any T € I'(A) is equivalent to

VAY =0=ViX (8.64)

for all T' € T'(A). Hence, replacing J by ||X||.J, one can assume that X is
of unit-length.
For the sequel, we extend J to T'M as being zero on A. Recall that

B — bl = (A~ \)D = p(A — \I)J
is symmetric. Then
(A= AD)Y,Y) = (A— \)JX,Y) = 0. (8.65)
Hence (A — AI)Y = vX where v = (AX,Y) # 0 by assumption. Then
(Vxpu(A=XDJ)Y — (Vyu(A=MNJ)X = —pu(A—=X)JVxY —Vy (uvX).
On the other hand, we obtain from (ii7) that
(Vxu(A = ADJ)Y — (Vypu(A—ADJ)X = —pY (VY- (8.66)

Hence
p(A—=ANJVxY + Vy(uwX) = pY (VY.

Taking the inner product with X and Y, respectively, gives
Y(pv) = p(Vx X,Y) (8.67)

and
Y(\) = —v(VyY, X). (8.68)

Since Cr € span{I, J}, we obtain
(VyT,X) = —(CrY,X) =0 (8.69)

for any T € T'(A). Let T € T'(A) have unit length. The inner product of
the Codazzi equation

(V7 A)Y — (Vy AT =0
with T easily gives
Y(\) = —v(VrT, X). (8.70)

It follows from (8.64), (8.68), (8.69) and (8.70) that the subspaces
A @ span{Y} form an umbilical distribution. Moreover, we have from
(8.65) that f restricted to any leaf of A @ span{Y} is umbilical in R"*1.
Thus f is conformally ruled.



140 Marcos Dajczer and Miguel I. Jimenez

We now prove the converse. Let L be an (n — 1)-dimensional umbilical
distribution of M™ such that the restriction of f to any leaf is also
umbilical. Therefore, there is A € C*°(M) such that L C ker((A — AI)1),
that is, (A — AI)(L) C L*. By assumption, we have that A = ker(A4 — \I)
satisfies dim A =n — 2.

Let X,Y be an orthonormal frame of A+ with X orthogonal to L. Hence

(A= \D)Y,Y) =0. (8.71)

We have that J € I'(End(A*1)) defined by JX =Y and JY = 0 verifies
J? = 0. It follows from (8.71) that (A — AI)J is symmetric. Now, since L

is umbilical, we have
vhy =0, (8.72)

and this is equivalent to VA&J = 0 for any T € T'(A). To see that
C(T'(A)) C span{I, J} it suffices to prove that Cp o J = J o Cr for any
T € T'(A). This is equivalent to

(VyT,X)=0 and (VxX,T)= (VyY,T) (8.73)

for all T € T'(A). The first equation holds since L is umbilical. From
(8.71) we have
(A-X)Y =vX, (8.74)

where v = (AX,Y) # 0. From the Codazzi equation we obtain
VhA=(A—-\)Cr,
and hence the right-hand side is symmetric. We have
(A=ADNCrX.,Y) =v(VxX,T) and ((A—A)CrY,X)=v(VyY,T).

This implies
<VXX7 T> = <VYY5 T>

for any T € T'(A). Thus f is parabolic with respect to J.

To show that f admits a nontrivial conformal infinitesimal bending it
suffices to prove the existence of a smooth function p such that the tensor
D = pJ € T'(End(A1)) satisfies all conditions in Proposition 8.12. We
already know that (A — AI)J is symmetric, hence condition () is satisfied
for any function p. We assume that u is constant along the leaves of A,
and now condition (i%) follows from (8.72). From the definition of D it is
easy to see that also (v) holds.

Condition (#) is just (8.66). Since A = ker(A — AI) and (8.74) holds,
then the inner product of the Codazzi equation

(V7 A)Y — (Vy AT =0
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with T' € T'(A) of unit-length gives that (8.70) holds for any such T Since
L = A@span{Y} is an umbilical distribution we obtain that (8.68) holds.
But (8.68) is just the Y-component of (8.66). The X-component of (8.66)
is (8.67), which can be stated as

Y(loguv) = (VxX,Y).

After choosing an arbitrary function as initial condition along one maximal
integral curve of X, there exists a unique function p such that T'(x) = 0 for
all T € T'(A) and pv is a solution of the preceding equation. Therefore,
there are as many tensors D satisfying (i#i) as smooth functions on an
open interval.

We have that

(Vy ) X —~(Vx ] )Y, VA) = (¥ (1)~ p(Vx X, Y)Y (N +4(Vy Y, X)X ().
Choose any D satisfying condition (iii). Then (8.67) and (8.68) yield
(Vy )X = (Vxpd)Y. V) = =S¥ )(¥ () + X (V).
We have using (8.68) that
Hess \(uJX,Y) — Hess (X, 1 JY) = p(YY (A) — (VyY, X)X (N))
= WYY () + LY ()X()
and using (8.74) that
M{(A = ADpJ X, AY) — (AX, (A = AD)pJY)) = .

The last three equations give that condition (iv) is equivalent to

1

YY(Y) - ;Y(A)Y(u) = -2
that can also be written as
Y((1/v)Y (X)) = = (8.75)

To conclude, we show that (8.75) is just the Gauss equation

(R(Y,T)T, X) = (AT, T){AY, X) — (AY,T) (AT, X)
= .

In fact, using (8.70) and (8.73) we have

(VyVeT, X) =Y VT, X) + (V7T,Y){VyY, X)
==Y ((1/v)Y(N) + (VrT,Y)(VyY, X).
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Also, since L is an umbilical distribution, we have
(VrVyT,X) = —(VyT,VrX) =0.
Using (8.72) we obtain

(Viy,nT, X) = —(Vv,vyT, X)
= <VTT7 Y><VTT7 X>

The last three equations yield
(R(Y,T)T, X) = =Y/((1/v)Y (X))
Now the proof follows from Proposition 8.12. [

Proof of Theorem 8.7: If f admits a nontrivial conformal infinitesimal
bending and is not conformally surface-like nor conformally flat nor
conformally ruled, we obtain from Proposition 8.12 and Proposition 8.13
that f is either hyperbolic or elliptic. From the proof of Proposition 8.12
we have that D = pJ is the lifting of a tensor D = fi.J on L?. Also from
that proof, we that

9.(Vy D)X — (Vi D)Y) + o?(Y,DX) — (X, DY) (8.76)

=V LQXY) = M(XY)UN + (X, Y)Vo f+ (X, Y)w,
where X,Y € I'(A') are the liftings of X,Y € X(L) and Q, 1 and ¢ are
given by (8.39), (8.40) and (8.41) respectively. Recall that D satisfies the
conditions () through (v). Therefore, we have

(V’XD)Y = (V%,D)X (8.77)
and, since D = jiJ, that
a9(X, V) = a9(JX, V).

Finally, that ¢ is a special hyperbolic or elliptic surface follows from
Proposition 8.5 and the integrability condition of j in (8.77).

Conversely, take f: M™ — R"*! to be parametrized by the conformal
Gauss parametrization in terms of a special hyperbolic or a special elliptic
pair. Then f has a nowhere vanishing principal curvature A\(x) at © € M"
of constant multiplicity n — 2 and corresponding eigenspace A(x). Take
v=-e, w=—2e,,3 and let ¥: R"*1 — Y72 C L"*3 be the embedding
given by (7.20). Then S: M™ — S} given by (8.26) induces a map
s: L? — ST on the (local) space of leaves L? of A. Moreover, by the
choice of v and w we have that s = g.
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We obtain from Proposition 8.5 that, at least locally, there is a nowhere
vanishing function ji € C°°(L?) such that D = ji.J is a Codazzi tensor. Let
X,Y € I'(A') be the liftings of X,Y € X(L). If D = p.J is the lifting of D
we have as before that (8.76) holds. Given that g is special hyperbolic or
special elliptic, it follows that = = ¢ = 0. In other words, we obtain
that conditions (i), (#i) and (iv) are satisfied.

We recall that

(DXANY —DXAY)Z, W) =0
for any X,Y,Z, W € X(L). Tt follows from (8.28) that
((A=X)DXN(A=N)Y —(A=XI)DY AN(A=XD) X)(A=A)Z, (A=X)W) =0,
where X,Y, Z, W € T(A1) are the liftings of X,Y, Z and W. Then
(A= XN)DX AN(A=X)Y — (A= X)DY AN(A= XX =0

for any X,Y € T'(A1), and hence (v) holds. Given that D is projectable
we have from Lemma 8.11 that VAD = [D,Cr] = 0 for all T € T(A).
Hence (i¢) also holds. Now the proof follows from Proposition 8.12. O

Proposition 8.14. Let f: M™ — R™! n > 5, be a simply connected
conformally ruled hypersurface free of points with a principal curvature of
multiplicity at least n — 1 and that is not conformally surface-like on any
open subset of M™. Then any conformal infinitesimal bending of f is the
variational vector field of a conformal variation.

Proof. We have seen that the conformal infinitesimal bendings of f are
in one-to-one correspondence with the tensors D given in the proof of
Proposition 8.13. Take such a D and let F: M™» — Yn+2 c L»+3
be the immersion F' = W o f, where ¥ was given in (7.20). Let
B:TM xTM — NpM and &: TM x NpM — NpM be given by (8.42)
and (8.45), respectively. The pair (3, €) is associated to an infinitesimal
bending of F', say T, which determines a conformal infinitesimal bending
Tof f. Let a': TM x TM — NpM, t € (—¢,€), be the symmetric tensor
defined by
O‘t(Xa Y)= QF(Xa Y)+t8(X,Y)

for any X,Y € X(M). Since € satisfies (8.46) then
Vin = Vi +t€(X,1)

is a connection on Nr M that is compatible with the induced metric, where

X € X(M), n € T(NpM) and V'* denotes the normal connection of F.
It follows from (8.44), (8.50), (8.54), (8.55), (8.60), (8.61) and (8.62)

together with the Gauss, Codazzi and Ricci equations for F' that a! and



144 Marcos Dajczer and Miguel I. Jimenez

V! verify the Gauss, Codazzi and Ricci equations (see Exercise 8.6). Hence,
there is a family of isometric immersions F;: M™ — L"+3 with Fy = F
together with vector bundle isometries ®;: NgpM — Np, M satisfying

aft = & and VIO, = &,(VH),
where of% and V!'' are the second fundamental form and normal
connection of F;. Hence, we have

Al pX =-X and VYO, F = &, (VK F) =0,

where Af] denotes the shape operator of F; in the direction of n €
I'(Np,M). Then F, — &, F = v; is a constant vector field along F; for
any t. Since

<Ft — ’Ut,Ft — ’Ut> = 0,

we obtain that F; — v; determines an isometric variation of Fy = F in
Vnt+2 c L3, Hence, we assume that Fy(z) € V*+2 for all z € M™. The
variational vector field T/ = 0/0¢|t=oFy is clearly an infinitesimal bending
of F and the tensor 8 associated to T satisfies

B = (8/0|t=0a™) Npnr

(see Exercise 2.1).

Next we define ' € I'(End(NpM)) as follows. Given n € I'(NpM) we
set 1y = ®;m € T'(Ng, M). Then, regarding n; as an element of L"3 we
define

(I)/77 = (0/04|t=0Mt) Np M-

Given that ®; is an isometry for any ¢, it follows that ®’ is skew symmetric.
Since aft = ®;(af" 4 t3) we have from the above that

B/:ﬁ_i_q)/aF.

Let I1: V"2 \ Rw — E™*+! = U(R"*1) be the map (u) = (1/{u, w))u.
Then each F; induces an immersion f;: M™ — R"*! such that ¥ o f, =
IT o F; for any t. Observe that the metric induced by f; satisfies

(fe X, fexY) (@) = (o F,). X, (Lo }).Y) (x) = (Fy(2), w) (X, Y)(x)

at any x € M". Hence, the variation f; determines a conformal variation
of f in R**!. The variational vector field 7’ is a conformal infinitesimal
bending of f with associated tensor B’ = By — (®'w, N)I, where By =
(A —XI)D. Hence T — T’ is trivial, and this concludes the proof. O

Proof of Theorem 8.8: The proof follows from Propositions 8.13 and
8.14. O
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Remark 8.15. To obtain in terms of the conformal Gauss parametrization
that a nontrivial conformal infinitesimal bending is, in fact, the variational
vector field of a conformal variation one has to require the special
hyperbolic or special elliptic surface to satisfy a strong additional
condition, namely, that 'L = I'? = 2I''T'? in the former case and that
I, = 2I'T in the latter case, see [20] or [21] for details.

8.3 From conformal to isometric

In this section, it is shown how the classification of the Euclidean
hypersurfaces that admit nontrivial infinitesimal variations can be
obtained from the classification result given in the preceding section.

Let f: M™ — R"! be a hypersurface of constant rank two, this
is, a hypersurface with constant index of relative nullity v = n — 2.
Then let m: M™ — L? denote the projection onto the quotient space of
relative nullity leaves of f. The Gauss map N of f induces an immersion
g: L? — S™ and the support function v € C®(M) of f, defined as
~v(z) = (f(x), N(x)), induces a function 4 € C*°(L) such that N =gon
and v =7yom. Set h =io0g. Then, at least locally, we can recover f from
the pair {g,~v} by means of the Gauss parametrization described next.

Let g: L? — S™ be an isometric immersion and let v € C*°(L). Set
h =io0gand let A = NyL denote the normal bundle of g. On the open
subset of regular points the map 1: A — R"*! given by

Yy, w) = v(y)h(y) + hVy(y) + isw,

parametrizes a hypersurface of constant rank two, where V~ is the gradient
of v on L?. Conversely, any hypersurface with constant rank two can be
locally parametrized in this way by means of the pair (g,7) determined by
the Gauss map and the support function. We refer to Section 7.3 in [21]
for details.

We say that a pair (g,~) formed by a surface g: L? — S™ and v € C*°(L)
is an special hyperbolic pair (respectively, special elliptic pair), if g is
an special hyperbolic surface (respectively, special elliptic surface) and
v satisfies

(Hess (v) + 1) 0 J = J* o (Hess () + 1),

where Hess () also denotes the endomorphism of T'L determined by the
Hessian of 7.

A hypersurface f: M™ — R**! is said to be surface-like if it is a cylinder
over either a surface in R3 or over a cone of a surface in S3(r) C R*.
The following result holds for dimensions n = 3,4 as shown in [23]. The
limitation to n > 5 is due to the use of Theorem 8.7.
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Theorem 8.16. Let f: M™ — R* ! n > 5, be a hypersurface of constant
rank 2 that admits a nontrivial infinitesimal variation. Assume that f is
neither surface-like nor ruled on any open subset of M™. Then, on each
connected component of an open dense subset of M™, the hypersurface can
be given in terms of the Gauss parametrization by a special hyperbolic or
a special elliptic pair.

Conversely, any hypersurface f: M™ — R™1, n > 3, given in terms
of the Gauss parametrization by a special hyperbolic or special elliptic pair
admits a nontrivial infinitesimal variation. Moreover, the infinitesimal
bendings associated to any pair of nontrivial infinitesimal variations of f
differ by a trivial infinitesimal bending.

Proof. Let f: M™ — R™"! be a hypersurface of constant rank 2 that
admits a nontrivial infinitesimal variation, and let 7 be the corresponding
nontrivial infinitesimal bending. We may assume that f(M) does not
contain the origin 0 € R"*1. Let p: R**1\ {0} — R"*! be the inversion
with respect to the unit sphere S™. Recall that N is constant along the
leaves of A, and let n: L? — S™ be the map induced on the space of leaves
of A. We can assume that the support function satisfies v > 0, at least
locally. Consider the 2-parameter family of tangent affine hyperplanes
given by P(x) = f.T,M at x € M™. Notice that y(z) coincides with the
distance from the origin 0 to P(x). Applying the inversion ¢ we obtain a
2-parameter family of spheres, all of which have the origin as a common
point.

Let h: L? — R™*! denote the map describing the centers and r € C*°(L)
the radius of the 2-parameter family of hyperspheres o(P(x)). Since all the
spheres contain the origin we have that »~'h has unit length and satisfies
n = r~'h. In addition, we have that

2y =1, (8.78)

where 4 € C*°(L) is induced by the support function v. The map f=opof
is an immersion with a principal curvature A of multiplicity n — 2 having
A as its corresponding eigenspace. Then r and h coincide with the maps
induced on L? by A~! and the focal map of f , respectively. The vector
field T = ¢, T is a nontrivial conformal infinitesimal bending of f. From
now on, we assume that f is neither surface-like nor ruled. Since f is not
surface-like, by Propositions 7.4 and 7.6 of [21] the splitting tensor of A
with respect to the metric induced by f satisfies span{Cr : T € A} ¢
span{I}. The metrics induced by f and f are conformal, then we have
from the relation between their Levi-Civita connections that the splitting
tensor of A with respect to the metric induced by f also satisfies that
span{Cr : T € A} ¢ span{I}, and hence f is not conformally surface-like.
If f is conformally ruled, then f is also conformally ruled, that is, there is
an (n — 1)-dimensional integrable distribution R whose leaves are mapped
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by f into umbilical submanifolds of R®*!. Since f has rank 2 we have that
AN R is not trivial. Therefore f is ruled and that is a contradiction. Thus
f is neither conformally surface-like nor conformally ruled.

On connected components of an open dense subset of M™, in terms of
the conformal Gauss parametrization we have from Theorem 8.7 that f is
parametrized by the special hyperbolic or special elliptic pair determined
by h and r.

Fix a pseudo-orthonormal basis e; ...,e,43 of L""3 as in (8.19) with
v=-e and w = —2¢,,3. Let ¥: R*"*! — Yy*+2 C ,"*3 and S: M" —
"3 be given by (7.20) and (8.26) respectively. Then, as in the proof
of Proposition 8.12, the immersion s: L? — S;”rz C L"*3 induced by S
satisfies s = g, where g is given by (8.21), that is, ¢ = A(1, h,0) where
p = 1/r. Notice that both g and 7 = ph induce the same metric on L?.
Since ¢ is a special hyperbolic (respectively, special elliptic) surface, the
corresponding position vector in L3 satisfies (8.4) (respectively, (8.5))
with respect to a system of coordinates (u,v). In particular, the position
vector of n € S* C R"*! also satisfies (8.4) (respectively, (8.5)) with
respect to the same coordinate system. Hence (u,v) is a system of real
(respectively, complex) conjugate coordinates for 7, and thus we have
a hyperbolic (resp. elliptic) surface. Moreover, from Proposition 8.5 it
follows that 7 determines a special hyperbolic (resp. elliptic) surface.

Since g(L?) C S7** and (g, w) = p, then

Hess (p)(X,Y) = (a?(X,Y),w) — p(X,Y)

for any X,Y € X(L). Since g is hyperbolic (elliptic) with respect to
J € T(End(TL)) satisfying J # I and J? =1 (J? = —I), we have that

(Hess (p) + pI) o J = J" o (Hess (p) + pI),

where Hess (p) also denotes the endomorphism of T'L determined by the
Hessian of p. Then, we obtain from (8.78) that ¥ satisfies

(Hess () + 1) o J = J" o (Hess () + 7I).

Thus f is parametrized in terms of the Gauss parametrization by a especial
hyperbolic or special elliptic pair (1, 7).

We outline the proof of the converse. Let f: M™ — R"! be
parametrized by means of the Gauss parametrization in terms of a special
hyperbolic or special elliptic pair (g,v). Then f has constant index of
relative nullity v = n — 2. As in the proof of Theorem 8.7, we obtain from
Proposition 8.5 that, at least locally, there is a nowhere vanishing function
ji € C*(L?) such that D = ji.J is a Codazzi tensor. Let D = pu.J be the
lifting of D and define the tensor B € T'(End(T'M)) by

B‘AJ_ = AD and B‘A =0.
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Then B # 0 is a symmetric Codazzi tensor that satisfies (2.21). Hence
it follows from Theorem 2.11 that B determines a unique infinitesimal
bending of f. O

In the case of ruled hypersurfaces, in analogy with Propositions 8.13
and 8.14, we have the following. A simply connected ruled hypersurface
f: M™ = R n > 3, free of flat points and that is not surface-like on any
open subset, admits a family of nontrivial conformal infinitesimal bendings
that is in one-to-one correspondence with the set of smooth functions on
an interval. Moreover, any of its infinitesimal bendings is the variational
vector field of an isometric variation. Again, the proofs of these facts can
be seen in [21].

8.4 Exercises

Exercise 8.1. Prove the statement given by Proposition 8.6.

Exercise 8.2. Let V and W be vector spaces of dimensions 2 and p > 2,
respectively, and let ac: V XV — W be a symmetric bilinear form. Assume
that there exist a basis X,Y of V and a, b, ¢ € R such that a® +b*4c? # 0
and

ac(X, X) + 2ca(X,Y) + ba(Y,Y) = 0.

Show that ab — ¢? being positive (respectively, negative) is independent
of the basis X,Y, and that it is equivalent to the existence of an
endomorphism J # I of V such that J? = eI with e = —1 (respectively,
e=1) and

a(JX,)Y) =a(X,JY)
forall X, Y € V.
Hint: See hint of Exercise 11.2 in [21].
Exercise 8.3. Let f: M™ — N™ be an isometric immersion and let
g € C°(N). Show that the gradient and Hessian of g and h = go f

are related by
fograd h = (grad g)T

and
Hessh(X,Y) = Hessg(f. X, f.Y) + (grad g, (X, Y))

for all z € M™ and X,Y € T,M. Let f: M™ — R™ be an isometric
immersion and let h” € C°°(M) be the height function

h*(z) = (f(z),v)
with respect to the hyperplane normal to v € R™. Show that
Hessh"(z)(X,Y) = (o (X,Y),v)
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forallx € M™ and X,Y € T, M.
Hint: See Proposition 1.2 and Corollary 1.3 in [21].

Exercise 8.4. Given a surface g: L? — S" set h = i o g: L2 — E"tL,
Show that the condition (8.1) holds if and only for any v € E™*! the height
function h? = (h,v) satisfies

(Hessh' + h"I)o J = J" o (Hessh” + h"I),

where Hessh” denotes the endomorphism of T'L associated with the
Hessian of hY with respect to the induced metric.

Exercise 8.5. Give proofs of Propositions 8.2 and 8.5 in the elliptic case.

Exercise 8.6. Verify that the symmetric tensor o' and the connection
V! defined in the proof of Proposition 8.14 satisfy the Gauss, Codazzi and
Ricci equations.

Hint: Use the Gauss, Codazzi and Ricci equations together with the fact
that 8 and & satisfy (2.12), (2.13) and (2.14). Also use that in this case
D has kernel in AL,

Exercise 8.7. Let L? be a Riemannian surface carrying a tensor J €
['(End(T'L)) satisfying J # I and J? = I. Decompose TL =T'L & T"L
where T'L and T" L are the eigenbundles corresponding to the eigenvalues
1 and —1 of J, respectively. For X € X(L) write X = X’ + X" according
to that decomposition. Let g: L? — S™, m > 4, be an isometric
immersion with second fundamental form o9: TL x TL — NyL. The
(p, q)-components of af for p + ¢ = 2 are given by

aV(X,Y) = (X" Y"), a®P(X,Y) = (X", Y")

and
a(l’l)(X, Y) — Ozg(X’,Y”) 4 ozg(X”,Y’)’

for any X,Y € X(L).
(i) Show that 2X’' = X 4+ JX and 2X" =X — JX.
(ii) Prove that g is hyperbolic if and only if ab) =0,

Exercise 8.8. Let L? be a Riemannian surface carrying a tensor J €
I'(End(T'L)) satisfying J? = —I (almost complex structure). Let TM @ C
be the complexified tangent bundle of L and decompose TL @ C =
T'L & T"L where T'L and T"L are the eigenbundles corresponding to
the eigenvalues 7 and —i of J, respectively. For X € I'(TM ® C) write
X = X' + X" according to that decomposition. Let g: L? — S™, m > 4,
be an isometric immersion with second fundamental form o9: TL x TL —
NyL and let the (p, g)-components of « for p+ ¢ = 2 given in Exercise 8.7.
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(i) Show that 2X’ = X — iJX and 2X” = X +iJX.

(ii) Prove that g is elliptic if and only if a"1) = 0.
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1-regular submanifold, 41 extrinsic product of immersions,
80
adapted to the product
structure, 81 first normal space, 30
ambient space, 10 flat bilinear form, 18
associate pair of tensors, 25, 99 focal map, 125
) full first normal spaces, 30
Codazzi fundamental system of
equation, 11 equations, 27
tensor, 34
codimension, 10 Gauss
complex conjugate coordinates, equation, 11
120 formula, 10
condition (x), 44, 73 map, 12
cone, 70 parametrization, 145
conformal genuine infinitesimal
factor, 98 bending, 40, 69
Gauss parametrization, 125 variation, 40
infinitesimal variation, 98 genuinely infinitesimally
s-nullity, 111 bendable, 40, 69
variation, 97 rigid, 40, 69
conformally
infinitesimally rigid, 99 hyperbolic
ruled, 126 hypersurface, 128
surface-like, 125 surface, 120

curvature tensor, 9

cylinder, 18 immersion, 10

index of relative nullity, 14

elliptic infinitesimal
hypersurface, 128 bending, 24, 55
surface, 120 variation, 23
extension in the singular sense, infinitesimally
40, 69 rigid, 35
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Inversion, 129

isometric
immersion, 10
variation, 23

light cone, 106

normal
bundle, 10
connection, 11
curvature tensor, 11
null bilinear form, 19

parabolic hypersurface, 128
principal

curvature, 15

normal vector field, 15
projectable tensor, 129

r-ruled submanifold, 40, 69
rank of an hypersurface, 87
real conjugate coordinates, 120
regular element, 18
relative nullity, 14
foliation, 14
Ricci
curvature, 9
equation, 12
tensor, 9
ruled
hypersurface, 87
strip, 87

s-nullity, 36
second fundamental form, 10, 12
shape operator, 10
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signature (p, q), 18
singular extension, 39, 69
smooth variation, 22
space form, 12
special
elliptic
pair, 125, 145
surface, 123
hyperbolic
pair, 125, 145
surface, 121
spherical distribution, 15
splitting tensor, 15
support function, 145
surface-like hypersurface, 145

totally geodesic
distribution, 14
submanifold, 14
trivial
conformal
infinitesimal bending, 99
infinitesimal variation, 99
variation, 98
infinitesimal bending, 24, 60
isometric variation, 23
type number, 36

umbilical
distribution, 15
submanifold, 14

variational vector field, 23, 97

Weingarten formula, 11
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