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Abstract. The main purpose of these lecture notes is to present recent
results in the theory of infinitesimal variations of submanifolds. The
smooth variations under consideration are infinitesimally isometric or, in
greater generality, infinitesimally conformal. The concept of infinitesimal
variation is the infinitesimal analogue of an isometric variation and refers to
smooth variations that preserve lengths “up to the first order”. In the more
general case of conformal infinitesimal variations, lengths are preserved
similarly but now up to a conformal factor. The study of such variations
is realized by means of the corresponding variational vector fields, called
infinitesimal bendings and conformal infinitesimal bendings respectively.
Hence, these lecture notes contain results about nontrivial infinitesimal
bendings and the geometry of the submanifolds that carry them.
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Preface

The main purpose of these lecture notes is to present recent results in the
theory of infinitesimal variations of submanifolds. The smooth variations
under consideration are infinitesimally isometric or, in greater generality,
infinitesimally conformal. For the most part, we are devoted to Euclidean
submanifolds but there is one chapter where the round sphere and the
hyperbolic space are the ambient spaces. The results contained in this
chapter have not been published elsewhere, at least, in the present form.
The concept of infinitesimal variation is the infinitesimal analogue of an

isometric variation and refers to smooth variations that preserve lengths
“up to the first order”. In the more general case of conformal infinitesimal
variations, lengths are preserved similarly but now up to a conformal
factor. It is already known from classical differential geometry that the
convenient approach to study infinitesimal variations is to focus on the
variational vector field of the variation. We call these vector fields in
the isometric case an infinitesimal bending, and a conformal infinitesimal
bending in the more general conformal case. Consequently, the arguments
in these lecture notes are mostly about nontrivial infinitesimal bendings
and the geometry of the submanifolds that carry them.
The study of smooth variations of Euclidean surfaces was already a hot

topic in differential geometry in the 19th century. In fact, initially there
was no distinction made between isometric variations and the ones that
are only infinitesimally isometric, but that changed mostly due to the
work of G. Darboux. The subject of isometric variations of surfaces was
proposed for competition by the French Academy of Sciences in 1859, the
main problem being to establish the differential equations that determine
all the surfaces isometric to a given one. The prize was obtained by a
young engineer called E. Bour, while competing with O. Bonnet and the
Italian geometer D. Codazzi. Even though Bonnet had already solved
the problem, it was Bour who won because for surfaces of revolution he
managed to integrate the differential equations. Part of Bour’s work was
published in [4]. For a modern account of some aspects of the theory of
variations of surfaces we refer to the book of Spivak [36].
The study of isometric variations of hypersurfaces Mn, n ≥ 3, in
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Euclidean space Rn+1 is also a classical subject going back to the first
part of the last century. In fact, the local classification of isometrically
deformable hypersurfaces, by means of two alternative parametrizations,
is due to U. Sbrana [34] in 1909 and E. Cartan [6] in 1916. Sbrana seems
to have been a student of L. Bianchi [2], who in 1905 already considered
the three-dimensional case. A modern presentation of the local parametric
classifications by Sbrana and Cartan, as well as several further results, have
been given by Dajczer-Florit-Tojeiro [12], and can also be seen in [21].
Although produced later but published earlier than his other work, the

case of infinitesimal variations of hypersurfaces was taken up by Sbrana
[33] in 1908. It turns out that the class of hypersurfaces that admit an
infinitesimal variation is much larger than the class that allow an isometric
variation, a fact that may be seen as a surprise. A complete classification
was given by Dajczer-Vlachos [23]. Finally, as for complete hypersurfaces
see Dajczer-Gromoll for isometric variations [13] and Jimenez [28] in the
infinitesimal case. The latter work is also part of these lecture notes.
In a rather long and very difficult paper, Cartan [6] in 1917 gave

a parametric classification of the conformally deformable Euclidean
hypersurfacesMn of dimension n ≥ 5 with the use of the method of moving
frames. These are smooth variations of a hypersurface by conformal ones.
A modern version of his result, as well as an alternative classification, has
been given by Dajczer-Tojeiro [20]. This result is also contained in [21].
The case n = 4 was subsequently treated by Cartan in [8] but only in a
special case, thus the full classification remains an open problem. Finally,
the parametric classification of the Euclidean hypersurfaces that admit
conformal infinitesimal bendings is due to Dajczer-Jimenez-Vlachos [18],
and is one of the topics considered here.
In these lecture notes we discuss the case of submanifolds other than

surfaces. A so-called Fundamental Theorem for infinitesimal bendings,
extending to any codimension the result for hypersurfaces in [23],
was obtained by Dajczer-Jimenez [15]. As in the theory of isometric
immersions, a system formed by three equations, called the fundamental
equations, is given. These equations are obtained in terms of a pair of
tensors associated to the bending and are shown to be the integrability
conditions for the equations that determine an infinitesimal bending. A
Fundamental Theorem in the more general case of conformal infinitesimal
bendings is due to Dajczer-Jimenez [17], and is also part of these lecture
notes.
Dajczer and Rodríguez [19] showed that submanifolds in low

codimension are generically infinitesimally rigid, that is, generically
only trivial infinitesimal variations are possible. In fact, they proved
that certain algebraic conditions on the second fundamental form of an
immersion, known to give isometric rigidity, yield infinitesimal rigidity as
well. For instance, a necessary condition (but far from being sufficient!)
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for a hypersurface Mn in Rn+1 to admit an infinitesimal variation is to
have at any point at most two nonzero principal curvatures. In fact,
this result is already contained in the book of Cesàro [9] published in
1886. For higher codimension, algebraic conditions that yield rigidity are
rather strong requirements. They are given in terms of either the type
number or the s-nullities of the immersion. A rigidity result for conformal
infinitesimal variations is due to Dajczer-Jimenez in [17]. The proof turns
out to be much more elaborate than in the case of infinitesimal variations
and is also part of these lecture notes.

A brief outline of each chapter is given next.

Chapter 1 establishes several basic facts of the theory of submanifolds
that are intensively used throughout the rest of these lecture notes. First,
the second fundamental form and normal connection of an isometric
immersion are recalled by means of the Gauss and Weingarten formulas,
and their compatibility equations are given, namely, the Gauss, Codazzi
and Ricci equations. Then the so-called Fundamental Theorem for
isometric immersions is stated, according to which these data are sufficient
to determine uniquely any Euclidean submanifold. One topic covered in
this chapter is the most basic but fundamental result in the theory of flat
bilinear forms. Another topic is the differential equations satisfied by the
splitting tensor of a submanifold carrying a foliation of relative nullity, and
some of their consequences.

The remaining of these lecture notes can be seen as formed by two
parts. Constituted of five chapters, the first part is devoted to infinitesimal
variations of submanifolds, whereas the second part of two chapters deals
with the more general class of conformal infinitesimal variations.

Chapter 2 first introduces the notion of infinitesimal variation of an
Euclidean submanifold. It is then discussed why, in order to study
infinitesimal variations, one has to understand their variational vectors
fields, called infinitesimal bendings. The first result is a Fundamental
Theorem for infinitesimal variations. It is shown that a certain system
of three equations for two tensors are the integrability conditions for the
equations that determine an infinitesimal bending. Moreover, it turns out
that this infinitesimal bending is unique in a precise sense. The second part
of the chapter deals with the rigidity problem of infinitesimal variations
for submanifolds in low codimension. It is shown that certain conditions
on the second fundamental form of the submanifold imply rigidity in the
sense that any infinitesimal variation has to be trivial.

Chapter 3 first observes that, if an Euclidean submanifold admits an
infinitesimal variation, then any embedded submanifold of that manifold
inherits, by composition of immersions, an infinitesimal variation. Thus, in
order to study the geometry of the submanifolds that admit a nontrivial
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infinitesimal variation, this situation should somehow be excluded, and
this leads to the concept of genuine infinitesimal variation. The main
purpose of this chapter is to characterize the Euclidean submanifolds in
low codimension that admit a genuine infinitesimal variations. Two local
and one global results are given, the latter for compact submanifolds.
Chapter 4 considers the case when the ambient space is either the round

sphere or the hyperbolic space. Some results of the previous chapters are
extended by means of similar techniques to submanifolds of these space
forms.
Chapter 5 is devoted to analyzing the structure of the infinitesimal

variation of an Euclidean submanifold that is intrinsically a Riemannian
product of manifolds. Conditions are given, both local and global, that
imply that any infinitesimal variation of the submanifold has to be the sum
of infinitesimal variations of isometric immersions of each of the factors.
Chapter 6 is about the classification of the complete Euclidean

hypersurfaces that admit nontrivial infinitesimal variations. It is shown
that the variations can only occur along a ruled strip. A ruled strip is
a ruled hypersurface with complete rulings, and possible boundary, such
that the rulings are tangent to the boundary. In other words, it is an affine
vector bundle over a curve with or without end points.
Chapter 7 deals with conformal infinitesimal variations. This concept

belongs to the realm of conformal geometry since, by composing the
submanifold with a conformal transformation of the ambient Euclidean
space, we obtain a new conformal infinitesimal variation. This class of
variations had received limited attention until recently; see Yano [37]
for an exception. The main contents of the chapter are a Fundamental
Theorem for conformal infinitesimal variations and a rigidity theorem for
these objects. Both results are in a similar spirit than in the case of
infinitesimal variations discussed above.
Chapter 8 gives a parametric classification of the Euclidean

hypersurfaces of dimension at least five that admit nontrivial conformal
infinitesimal variations. The key ingredients in the classification are the so-
called conformal Gauss parametrization and a class of surfaces in either the
Euclidean or Lorentzian sphere. Finally, the classification in the conformal
case is used to give a parametric classification of the hypersurfaces that
admit nontrivial infinitesimal variations.

Finally, we point out that results already contained in [21] that strongly
relate to the subjects in these lecture notes will be described or referred
to but not proved again, at least, with a similar proof.



Chapter 1

Preliminaries

The purpose of this chapter is to recall several concepts and basic results
concerning isometric immersions between Riemannian manifolds.

Let Mn be an n-dimensional connected differentiable manifold endowed
with a Riemannian metric 〈 , 〉 and denote by ∇ the associated Levi-Civita
connection. The latter is the only torsion-free connection on the tangent
bundle TM of the manifold compatible with the metric, that is, it satisfies
the conditions

X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉

and
∇XY −∇YX = [X,Y ] (1.1)

for any X,Y, Z ∈ X(M). Here and elsewhere X(M) stands for the set of
smooth local vector fields of Mn. The set of smooth local sections of a
more general vector bundle E overMn is denoted by Γ(E). The curvature
tensor of Mn is defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

where X,Y, Z ∈ X(M). The Ricci tensor is defined by

Ric(X,Y ) = tr (Z → R(Z,X)Y ),

where X,Y ∈ X(M) and tr denotes taking the trace. The Ricci curvature
in the direction of a unit vector field X ∈ X(M) is given by

Ric(X) = 1
n− 1Ric(X,X).

9
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1.1 Isometric immersions

A smooth map f : Mn → M̃m between two differentiable manifolds is
called an immersion if the differential f∗ : TxM → Tf(x)M̃ is injective for
all x ∈ Mn. Usually f(M), or just f for simplicity, is referred to as a
submanifold of M̃m. The manifold M̃m is called the ambient space and
m− n the codimension of f .
An immersion f : Mn → M̃m between Riemannian manifolds is said to

be an isometric immersion if the metric induced by f coincides with that
of Mn, that is, if

〈f∗X, f∗Y 〉M̃ = 〈X,Y 〉M (1.2)

holds for any X,Y ∈ X(M). For simplicity of notation, in the sequel we
drop the subindices of the inner products.
Let f : Mn → M̃m be an isometric immersion. The orthogonal

complement of f∗TxM in Tf(x)M̃ at x ∈ Mn is denoted by NfM(x)
and called the normal vector space of f at x. Hence, according
to this decomposition the pull-back vector bundle f∗TM̃ decomposes
orthogonally as

f∗TM̃ = f∗TM ⊕NfM,

where NfM is called the normal bundle. The Levi-Civita connection ∇̃ of
M̃m induces a connection on f∗TM̃ which, for simplicity, is also denoted
by ∇̃. GivenX,Y ∈ X(M) and taking the tangent and normal components
of ∇̃Xf∗Y , we obtain the relation

∇̃Xf∗Y = f∗∇XY + α(X,Y )

known as the Gauss formula.
The map α : X(M) × X(M) → Γ(NfM) above is called the second

fundamental form of f . Since [f∗X, f∗Y ] = f∗[X,Y ] and both ∇̃ and
∇ satisfy (1.1), then we have that α is symmetric. It is easily seen that α
is C∞-bilinear, hence it can be regarded as a symmetric tensor, namely,
that α ∈ Hom2(TM, TM ;NfM).
Fix x ∈Mn and let ξ ∈ NfM(x), then the shape operator Aξ of f at x

in the direction of ξ is defined by

〈AξX,Y 〉 = 〈α(X,Y ), ξ〉

for any X,Y ∈ TxM . Notice that Aξ is symmetric. Hence, any
ξ ∈ Γ(NfM) determines a symmetric endomorphism Aξ of TM . If
X,Y ∈ X(M) and ξ ∈ Γ(NfM), then taking the derivative of 〈f∗Y, ξ〉 = 0
in the direction of X ∈ X(M) gives

〈AξX,Y 〉 = −〈f∗Y, ∇̃Xξ〉.
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Thus −AξX is the tangent component of ∇̃Xξ. The normal component of
∇̃Xξ for ξ ∈ Γ(NfM) determines a connection on NfM compatible with
the induced metric from M̃m. Denoted by ∇⊥ this Riemannian connection
is called the normal connection of f . Then, we have the Weingarten
formula given by

∇̃Xξ = −f∗AξX +∇⊥Xξ
for any X ∈ X(M) and ξ ∈ Γ(NfM).
Finally, the normal curvature tensor is the curvature tensor of the

normal connection and thus given by

R⊥(X,Y )ξ = ∇⊥X∇⊥Y ξ −∇⊥Y∇⊥Xξ −∇⊥[X,Y ]ξ,

where X,Y ∈ X(M) and ξ ∈ Γ(NfM).

1.2 The fundamental equations

Given an isometric immersion f : Mn → M̃m, then comparing the
curvature tensors of both manifolds yields a set of three equations called
the fundamental equations of the immersion. In fact, if the ambient space
possesses constant sectional curvature then these are the compatibility
equations of an isometric immersion, namely, of equation (1.2).
Using the Gauss and Weingarten formulas gives

∇̃X∇̃Y f∗Z = ∇̃Xf∗∇Y Z + ∇̃Xα(Y,Z)

= f∗(∇X∇Y Z −Aα(Y,Z)X) + α(X,∇Y Z) +∇⊥Xα(Y,Z) (1.3)

for any X,Y, Z ∈ X(M). Let R̃ and R denote the curvature tensors of M̃m

and Mn respectively. Taking the tangent component of R̃(X,Y )f∗Z and
using (1.3) yields

(R̃(X,Y )f∗Z)f∗TM
= (∇̃X∇̃Y f∗Z − ∇̃Y ∇̃Xf∗Z − ∇̃[X,Y ]f∗Z)f∗TM
= f∗(∇X∇Y Z −Aα(Y,Z)X −∇Y∇XZ +Aα(X,Z)Y −∇[X,Y ]Z)
= f∗(R(X,Y )Z −Aα(Y,Z)X +Aα(X,Z)Y )

for any X,Y, Z ∈ X(M). The Gauss equation is obtained taking the inner
product of both sides of the proceeding equation with W ∈ X(M), that is,

〈R(X,Y )Z,W 〉 = 〈R̃(X,Y )Z,W 〉+〈α(X,W ), α(Y,Z)〉−〈α(X,Z), α(Y,W )〉,

where f∗W and W have been identified for simplicity.
Computing the normal component of R̃(X,Y )Z yields the Codazzi

equation
(R̃(X,Y )Z)⊥ = (∇⊥Xα)(Y,Z)− (∇⊥Y α)(X,Z),
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where

(∇⊥Xα)(Y,Z) = ∇⊥Xα(Y,Z)− α(∇XY,Z)− α(Y,∇XZ)

is the covariant derivative of the second fundamental form.
Taking the normal component of R̃(X,Y )ξ for ξ ∈ Γ(NfM) and using

the Gauss and Weingarten formulas gives

(R̃(X,Y )ξ)⊥ = R⊥(X,Y )ξ − α(X,AξY ) + α(AξX,Y ).

This equation is known as the Ricci equation. After taking the inner
product with η ∈ NfM it takes the form

〈R⊥(X,Y )ξ, η〉 = 〈R̃(X,Y )ξ, η〉+ 〈[Aξ, Aη]X,Y 〉,

where [ , ] stands for the commutator of operators.
Next we focus on immersions f : Mn → Qmc , where Qmc denotes a simply

connected complete space form with sectional curvature c, that is, the
Euclidean space Rm, the sphere Smc or the hyperbolic space Hmc , according
to whether c = 0, c > 0 or c < 0, respectively. The ambient space is
endowed with the usual metric given by the inner product denoted by 〈 , 〉.
In fact, we also use 〈 , 〉 for the metric induced by f on Mn. In this case,
the fundamental equations take the following forms:

The Gauss equation

〈R(X,Y )Z,W 〉 = c〈(X ∧ Y )Z,W 〉+ 〈α(X,W ), α(Y,Z)〉 − 〈α(X,Z), α(Y,W )〉,
(1.4)

or equivalently

R(X,Y )Z = c(X ∧ Y )Z +Aα(Y,Z)X −Aα(X,Z)Y.

The Codazzi equation

(∇⊥Xα)(Y, Z) = (∇⊥Y α)(X,Z). (1.5)

The Ricci equation

〈R⊥(X,Y )ξ, η〉 = 〈[Aξ, Aη]X,Y 〉. (1.6)

The fundamental equations for a hypersurface f : Mn → Qn+1
c have a

simpler form. Let N ∈ Γ(NfM) be a (local) unit normal vector field. If
c = 0, we can also regard N as the smooth map N : Mn → Sn1 called the
Gauss map of f . Associated to N we have the shape operator AN , which
we just denote by A. In this case, we also call A the second fundamental
form of f . Since the Ricci equation in this case is clearly trivial, then the
fundamental equations written in terms of A are as follows:
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The Gauss equation

R(X,Y )Z = c(X ∧ Y )Z + (AX ∧AY )Z.

The Codazzi equation

(∇XA)Y = (∇YA)X.

The Fundamental Theorem of submanifolds is only stated while a proof
can be seen in [21].

Theorem 1.1. Existence: Let Mn be a simply connected Riemannian
manifold, let E be a Riemannian vector bundle of rank p over Mn

with compatible connection ∇E and curvature tensor RE, and let αE ∈
Γ(Hom2(TM, TM ;E)) be a symmetric tensor. For each ξ ∈ Γ(E), define
AE
ξ ∈ Γ(End(TM)) by

〈AE
ξX,Y 〉 = 〈αE(X,Y ), ξ〉.

If (∇E, αE, AE
ξ ) satisfies the Gauss, Codazzi and Ricci equations, then there

exist an isometric immersion f : Mn → Qn+p
c and a vector bundle isometry

φ : E→ NfM such that ∇⊥φ = φ∇E and αf = φ ◦ αE.
Uniqueness: Let f, g : Mn → Qm+p

c be isometric immersions of a
Riemannian manifold Mn. Assume that there is a vector bundle isometry
φ : NfM → NgM such that φf∇⊥ =g∇⊥φ and φ ◦ αf = αg. Then there
is an isometry τ : Qn+p

c → Qn+p
c such that τ ◦ f = g and τ∗|NfM = φ.

In the case of hypersurfaces the above result is as follows.

Theorem 1.2. Existence: Let Mn be a simply connected Riemannian
manifold, and let A ∈ Γ(End(TM)) be a symmetric tensor satisfying the
Gauss and Codazzi equations. Then there exist an isometric immersion
f : Mn → Qn+1

c and a unit normal vector field N such that A coincides
with the shape operator AN of f with respect to N .
Uniqueness: Let f, g : Mn → Qn+1

c be isometric immersions of an
orientable Riemannian manifold Mn with, respectively, unit normal vector
fields Nf and Ng. If the corresponding shape operators satisfy Af = ±Ag,
then there exists an isometry τ : Qn+1

c → Qn+1
c such that τ ◦ f = g and

τ∗N
f = ±Ng.

Remark 1.3. The compatibility conditions (1.4), (1.5) and (1.6) also hold
when we consider an isometric immersion f : Mn → Lm of a Riemannian
manifold Mn into the standard flat Lorentzian space form Lm. Moreover,
Theorem 1.1 also holds if we let E be a semi-Riemannian vector bundle
over Mn. More precisely, if the metric on E is Lorentzian then Theorem
1.1 holds with Ln+p as ambient space.
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1.3 The relative nullity

An isometric immersion f : Mn → M̃m is said to be totally geodesic at
x ∈Mn if its second fundamental form α at x vanishes. The submanifold
f is called totally geodesic if it is totally geodesic at every point, that is,
if α is identically zero. An isometric immersion f : Mn → M̃m is said
to be umbilical at x ∈ Mn if there is η ∈ NfM(x) such that the second
fundamental form satisfies

α(X,Y )(x) = 〈X,Y 〉η

for any X,Y ∈ TxM . Then a submanifold is said to be umbilical if it is
umbilical at every point. Of course, totally geodesic submanifolds are also
umbilical.
The totally geodesic (respectively, umbilical) submanifolds of Rm are

open subsets of affine subspaces (respectively, round spheres). Regarding
the sphere Smc as a hypersurface of Rm+1, its totally geodesic (respectively,
umbilical) submanifolds are open subsets of the intersections of Smc with
linear (respectively, affine) subspaces of Rm+1, and similarly for the
hyperbolic space Hmc seen as a hypersurface of the Lorentzian space Lm+1.

Given a symmetric bilinear form γ : V × V → W , where V and W are
finite dimensional real vector spaces, the nullity subspace N(γ) ⊂ V of γ
is

N(γ) = {X ∈ V : γ(X,Y ) = 0 for all Y ∈ V }.
The relative nullity subspace ∆(x) ⊂ TxM at x ∈ Mn of an isometric

immersion f : Mn → M̃m is ∆(x) = N(α)(x). The dimension ν(x) of ∆(x)
is called the index of relative nullity of f at x.
A smooth distribution E ⊂ TM on a Riemannian manifold Mn is said

to be totally geodesic if ∇TS ∈ Γ(E) for any S, T ∈ Γ(E).
Proposition 1.4. Let f : Mn → Qmc be an isometric immersion. Then
the index of relative nullity is ν upper semi-continuous. In particular, the
subset

M0 = {x ∈Mn : ν(x) = ν0},
where ν attains its minimum value ν0 is open. Moreover, on any open
subset U ⊂ Mn where ν is constant ∆(x) determines a smooth totally
geodesic distribution. Thus ∆ is integrable on U and the restriction of f
to each leaf is a totally geodesic submanifold.
Proof. This is Exercise 1.1.

The leaves of the relative nullity distribution on an open subset U ⊂Mn

where the index of relative nullity ν > 0 is constant form the relative nullity
foliation of U .
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For an isometric immersion f : Mn → Rm, a vector η ∈ NfM(x) is
called a principal normal of f at x ∈Mn if the subspace

Eη(x) = {T ∈ TxM : α(T,X) = 〈T,X〉η for all X ∈ TxM}

is nontrivial. A normal vector field η ∈ Γ(NfM) is called a principal
normal vector field of f with multiplicity q > 0 if Eη(x) has dimension q
at any point x ∈ Mn. In particular, if f : Mn → Rn+1 is a hypersurface
with Gauss map N , then a normal vector field η(x) = λ(x)N(x) is a
principal normal at x if and only if λ(x) is a principal curvature of f at x,
that is, if and only if λ(x) is an eigenvalue of A(x).
A smooth distribution E ⊂ TM of a Riemannian manifold is called

umbilical if there exists a smooth section δ ∈ Γ(E⊥) such that

〈∇TS,X〉 = 〈T, S〉〈δ,X〉

for all T, S ∈ Γ(E) and X ∈ Γ(E⊥). It follows that an umbilical
distribution is integrable and its leaves are umbilical submanifolds of Mn.
For an umbilical distribution E of Mn, if the vector field δ ∈ Γ(E⊥) as
above satisfies that

(∇T δ)E⊥ = 0

for all T ∈ Γ(E) then we say that E is a spherical distribution.

Proposition 1.5. Let f : Mn → Rm be an isometric immersion with a
principal normal vector field η of multiplicity q. Then Eη is a smooth
distribution. Moreover, if q ≥ 2 then Eη is a spherical distribution and the
restriction of f to each leaf is an umbilical submanifold of Rm.

Proof. See Exercise 1.2.

1.4 The splitting tensor
Let D ⊂ TM denote a tangent smooth distribution of a Riemannian
manifold Mn. Then the tangent bundle splits orthogonally as TM =
D ⊕D⊥ and any tangent vector field X ∈ X(M) decomposes accordingly
as

X = XD +XD⊥ .

The splitting tensor C : Γ(D)× Γ(D⊥)→ Γ(D⊥) of D is defined by

C(T,X) = CTX = −(∇XT )D⊥ .

Clearly the tensor is C∞(M)-linear with respect to the second variable.
This is also the case for the first variable since

(∇XϕT )D⊥ = ϕ(∇XT )D⊥
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for any ϕ ∈ C∞(M). Thus the value of CTX(x) only depends on the values
of T and X at x ∈ Mn. Any T ∈ D(x) determines an endomorphism
CT : D⊥(x) → D⊥(x) called the splitting tensor of D at x ∈ Mn with
respect to T .
The splitting tensor encodes information of the distribution D⊥. For

instance D⊥ is integrable if and only if CT is self-adjoint for any T ∈ Γ(D),
in which case CT is the shape operator with respect to T of the inclusion
of the leaves of D⊥. Then the distribution D⊥ is totally geodesic if and
only if C vanishes. More generally, D⊥ is umbilical if and only if there is
S ∈ Γ(D) such that

CT = 〈T, S〉I

for any T ∈ Γ(D). The proofs of these facts are left as Exercise 1.3.
We now focus on the properties of the splitting tensor of the relative

nullity distribution ∆ of an isometric immersion f : Mn → Rm. In fact,
we consider the slightly more general case of a totally geodesic distribution
D ⊂ ∆ of Mn with splitting tensor C. In the sequel ∇h stands for the
induced connection on D⊥ and ∇TCS denotes the tensor

(∇TCS)X = (∇TCSX)D⊥ − CS(∇TX)D⊥ ,

where S, T ∈ Γ(D) and X ∈ Γ(D⊥).

Proposition 1.6. The splitting tensor of D ⊂ ∆ satisfies the equations:

∇TCS = CSCT + C∇TS , (1.7)

(∇hXCT )Y − (∇hY CT )X = C(∇XT )D
Y − C(∇Y T )D

X (1.8)

and
∇TAξ = AξCT +A∇⊥

T
ξ (1.9)

for any S, T ∈ Γ(D), X,Y ∈ Γ(D⊥) and ξ ∈ Γ(NfM). In particular, we
have that

D

dt
Cγ′ = C2

γ′ , (1.10)

where γ = γ(t) is a unit speed geodesic contained in a leaf of D.

Proof. See Exercise 1.4.

Proposition 1.7. Given an isometric immersion f : Mn → Rm and
a smooth symmetric bilinear form β : TM × TM → NfM assume that
∆∗(x) = ∆ ∩ N(β)(x) has constant dimension ν∗ > 0 on an open subset
U ⊂Mn. Suppose further that on U the smooth distribution ∆∗ is totally
geodesic with splitting tensor C and that

(∇⊥Xβ)(Y,Z) = (∇⊥Y β)(X,Z) (1.11)
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holds for any X ∈ Γ(∆∗) and Y,Z ∈ X(M). If γ : [0, b] → Mn is a unit
speed geodesic such that γ([0, b)) is contained in a leaf of ∆∗ in U , then
∆∗(γ(b)) = Pb0(∆∗(γ(0))) where Pt0 is the parallel transport along γ from
γ(0) to γ(t). In particular, we have that ν∗(γ(b)) = ν∗(γ(0)) and the
tensor Cγ′ extends smoothly to [0, b].

Proof. Let E be given by the orthogonal decomposition TM = ∆∗ ⊕ E.
Define the tensor J : E → E as the solution in [0, b) of

D

dt
J + Cγ′ ◦ J = 0

with initial condition J(0) = I. In fact, if we take the parallel transport
along γ of an orthonormal basis of E(γ(0)), the previous equation can be
seen as an ordinary differential matrix equation. We have from (1.10) that
D2J/dt2 = 0, and hence J extends smoothly to Pb0(E(0)) in γ(b). Let
Y and Z be parallel vector fields along γ such that Y (t) ∈ E(t) for each
t ∈ [0, b). Since γ′ ∈ ∆∗, it follows from (1.11) and the definition of J that

∇⊥γ′β(JY, Z) = (∇⊥γ′β)(JY, Z) + β(DJY/dt, Z)
= (∇⊥JY β)(γ′, Z) + β(DJY/dt, Z)
= β(Cγ′JY +DJY/dt, Z)
= 0.

Thus β(JY, Z) and α(JY, Z) are parallel along γ. In particular J is
invertible in [0, b]. By continuity Pb0(∆∗(γ(0))) ⊂ ∆∗(γ(b)), and then
Pb0(∆∗(γ(0))) = ∆∗(γ(b)). Finally the tensor Cγ′ extends to [0, b] as
Cγ′ = −DJ/dt ◦ J−1.

If the leaves of the relative nullity foliation are complete manifolds we
have the following result.

Proposition 1.8. Let f : Mn → Rn+p be an isometric immersion.
Assume that U ⊂Mn is an open subset where the index of relative nullity
ν(x) = ν0 is constant and the relative nullity leaves are complete. Then,
for any x0 ∈ U and T0 ∈ ∆(x0) the only possible real eigenvalue of CT0 is
zero. Moreover, if γ(t) is a geodesic through x0 tangent to T0 then

Cγ′(t) = Pt0CT0(I − tCT0)−1(Pt0)−1,

where Pt0 is the parallel transport along γ from x0. In particular, kerCγ′
is parallel along γ.

Proof. This is Exercise 1.5.
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An isometric immersion g : Mn × Rk → Rm × Rk of a Riemannian
product manifold Mn × Rk is called a k-cylinder (or just a cylinder) over
the isometric immersion f : Mn → Rm if it factors as

g = f × I : Mn × Rk → Rm+k,

where I : Rk → Rk is the identity map.
Cylinders are the simplest examples of Euclidean submanifolds carrying

a totally geodesic distribution contained in the relative nullity subspaces.
In fact, we have that {x}×Rk is contained in the relative nullity subspace
of g at (x, y) ∈Mn × Rk.

Proposition 1.9. Let f : Mn → Rm be an isometric immersion and let
D be a totally geodesic tangent distribution of rank k such that D ⊂ ∆.
If the splitting tensor of D vanishes then f is locally a k-cylinder over an
isometric immersion g : Ln−k → Rm−k.

Proof. We have from Exercise 1.3 that the distribution D⊥ is totally
geodesic. In particular, it is integrable. Since D ⊂ ∆, we have that
f∗D is a constant subspace along Mn in Rm. Let i : Ln−k → Mn be the
inclusion of a leaf of D⊥. Since f∗D is constant, then g = f ◦ i satisfies
g(L) ⊂ Rm−k where Rm−k = (f∗D)⊥, and hence f coincides locally with
the k-cylinder over g.

1.5 Flat bilinear forms
Flat bilinear forms were introduced by J. D. Moore [31] after the pioneering
work of E. Cartan as a tool to deal with rigidity questions on isometric
immersions in space forms. In fact, they are also very helpful in the study
of similar questions for infinitesimal variations of submanifolds.
Let V n and Um denote finite dimensional real vector spaces and letW p,q

be a real vector space of dimension p+ q endowed with an indefinite inner
product 〈 , 〉 of signature (p, q). This means that p (respectively, q) is the
maximal dimension of a subspace of W p,q restricted to which the inner
product is positive definite (respectively, negative definite).
Let γ : V n × Um → W p,q be a bilinear form. An element X ∈ V n is

called a (left) regular element of γ if

dim γX(U) = max{dim γY (U) : Y ∈ V n},

where γX(Y ) = γ(X,Y ) for any Y ∈ Um. It is easy to see that the set
RE(γ) of regular elements of γ is open and dense in V n.
A bilinear form γ : V n × Um →W p,q is said to be flat if

〈γ(X,Z), γ(Y,W )〉 − 〈γ(X,W ), γ(Y,Z)〉 = 0
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for all X,Y ∈ V n and W,Z ∈ Um. The bilinear form γ is called null if

〈γ(X,Z), γ(Y,W )〉 = 0

for all X,Y ∈ V n and W,Z ∈ Um. Thus null bilinear forms are trivially
flat.
The following basic fact was observed by Moore [31].

Proposition 1.10. Let γ : V n × Um → W p,q be a flat bilinear form. If
X ∈ RE(γ) then

γ(Y, ker γX) ⊂ γX(U) ∩ γX(U)⊥

for any Y ∈ V n.

If γ : V n × V n → W p,q is a bilinear form its image is the subspace
S(γ) ⊂W p,q given by

S(γ) = span{γ(X,Y ) : X,Y ∈ V n}.

We conclude this chapter with a fundamental result in the theory of
symmetric flat bilinear forms. It turns out to be false for p ≥ 6, as shown
in [11] by means of a counterexample.

Theorem 1.11. Let γ : V n × V n → W p,q, 1 ≤ p ≤ 5 and p + q < n, be
a symmetric flat bilinear form. If dimN(γ) ≤ n − p − q − 1 there is an
orthogonal decomposition

W p,q = W `,`
1 ⊕W p−`,q−`

2 , 1 ≤ ` ≤ p,

such that the Wj-components γj of γ satisfy:

(i) γ1 is nonzero but is null since S(γ1) = S(γ) ∩ S(γ)⊥.

(ii) γ2 is flat and dimN(γ2) ≥ n− p− q + 2`.

Proof. See Theorem 3 in [10] or Lemma 4.22 in [21].

1.6 Exercises
Exercise 1.1. Prove Proposition 1.4.
Hint: Given x ∈Mn observe that

∆⊥(x) = span{AξX : X ∈ TxM, ξ ∈ NfM(x)}.

Let {Xi}1≤i≤n−ν ∈ TxM and {ξi}1≤i≤n−ν ∈ NfM(x) be such that the set
of vectors {Aξi

Xi}1≤i≤n−ν span ∆⊥(x). Then the smooth extensions of
these vectors on a small neighborhood of x are linearly independent vector
fields. Use this to prove the first assertions whereas for last one use the
Codazzi equation.
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Exercise 1.2. Prove Proposition 1.5. If the hypersurface f : Mn → Rn+1

has a principal curvature λ of multiplicity q ≥ 2 conclude that λ is constant
along the spherical leaves.
Hint: That Eη is smooth follows from similar arguments as in Exercise
1.1. Set η = λζ where ζ ∈ Γ(NfM) has unit length. Use the assumption
that q ≥ 2 and the Codazzi equation to prove that T (λ) = 0 and ∇⊥T ζ = 0
for T ∈ Γ(Eη). Now use the Codazzi to show that

(Aζ − λI)∇TS = −〈T, S〉gradλ and 〈Aξ∇TS,X〉 = λ〈T, S〉〈∇⊥Xξ, ζ〉

for any S, T ∈ Γ(Eη), X ∈ X(M) and ξ ∈ Γ(NfM) with 〈ξ, η〉 = 0. From
this and the definition of Eη conclude that Eη is an umbilical distribution.
In fact, show that

〈∇TS,X〉 = 〈T, S〉〈δ,X〉 (1.12)

for all T, S ∈ Γ(Eη) and X ∈ E⊥η where δ satisfies

(Aζ − λI)δ = −gradλ and 〈Aξδ,X〉 = λ〈∇⊥Xξ, ζ〉.

Now use the above equations together with the Codazzi and Ricci
equations to prove that ∇T δ ∈ Γ(Eη) for any T ∈ Γ(η), and thus that
Eη is spherical. Finally, from the definition of Eη and (1.12) see that the
restriction of f to a leaf of Eη is an umbilical submanifold of Rm.

Exercise 1.3. Let D ⊂ TM be a tangent distribution of a Riemannian
manifold Mn and let C be its splitting tensor.

(i) Prove that D⊥ is integrable if and only if CT is self-adjoint for any
T ∈ Γ(D).

(ii) Show that D⊥ is umbilical if and only if there is S ∈ Γ(D) such
that CT = 〈T, S〉I for any T ∈ Γ(D). Conclude that D⊥ is totally
geodesic if and only if C vanishes.

Exercise 1.4. Prove Proposition 1.6.
Hint: Equations (1.7) and (1.8) follow from the facts that D is totally
geodesic, D ⊂ ∆ and the Gauss equation. As for (1.9) use the Codazzi
equation. See Propositions 7.1, 7.2 and 7.3 in [21].

Exercise 1.5. Prove Proposition 1.8.
Hint: Assume on the contrary that C0 = CT0 has nonzero real eigenvalues
λi, 1 ≤ i ≤ k, and let τ−1 = maxi |λi|. Then I − tC0 is invertible for
−τ < t < τ . Show that

Ct = Pt0CT0(I − tCT0)−1(Pt0)−1
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solves the equation
D

dt
Ct = C2

t

with initial condition C0 at t = 0. Use (1.10) to show that Cγ′(t) coincides
with Ct. Observe that (τ − t)−1 or −(τ + t)−1 is an eigenvalue of Cγ′(t)
which diverges as t tends to τ or −τ respectively. Reach to a contradiction
with the fact that Cγ′(t) is well defined for all t ∈ R from the completeness
assumption. See also Proposition 13.8 in [21].



Chapter 2

Infinitesimal variations

The first part of this chapter is devoted to introduce the notion of
an infinitesimal variation of an Euclidean submanifold and to establish
a Fundamental Theorem for that class of variations. In the theory
of isometric immersions, the so-called Fundamental Theorem, discussed
in Chapter 1, shows that the Gauss-Codazzi-Ricci equations are the
integrability conditions for the system of differential equations that gave
the existence of an isometric immersion of a given Riemannian manifold
into Euclidean space. A similar result is given here for the class of
infinitesimal variations. In fact, it is shown that a system of three equations
involving two tensors are the integrability conditions for the equations that
determine the infinitesimal variations, and that in a certain sense there is
uniqueness.
The second part of the chapter deals with the rigidity problem for

submanifolds in low codimension. It is shown that certain conditions on
the second fundamental form of the submanifold, that are well-known to
yield isometric rigidity in the usual sense, also give rigidity for infinitesimal
variations.

2.1 Infinitesimal variations
In this section, the notions of infinitesimal variation and infinitesimal
bending of an Euclidean submanifold are introduced. Then, it is explained
why the study of the infinitesimal variations of a submanifold is done by
analyzing the possible infinitesimal bendings.
Let f : Mn → Rm be an isometric immersion of a Riemannian manifold

into Euclidean space. A smooth variation of f is a smooth map
F : I × Mn → Rm, where 0 ∈ I ⊂ R is an open interval, such that
ft = F(t, ·) : Mn → Rm is an immersion for any t ∈ I and f0 = f . The

22
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variational vector field of a variation F of f is the section T ∈ Γ(f∗TRm)
defined as

T = F∗∂/∂t|t=0 = ∇̃∂/∂tft|t=0.

Let X,Y still denote the extensions in a trivial way of vector fields
X,Y ∈ X(M) to vector fields in X(I ×M). Since

[X, ∂/∂t] = 0 = [Y, ∂/∂t]

holds and the ambient space is flat, we have

∂

∂t
〈ft∗X, ft∗Y 〉 = 〈∇̃∂/∂tF∗X,F∗Y 〉+ 〈F∗X, ∇̃∂/∂tF∗Y 〉

= 〈∇̃XF∗∂/∂t,F∗Y 〉+ 〈F∗X, ∇̃Y F∗∂/∂t〉.
(2.1)

An isometric variation of f : Mn → Rm is a smooth variation F : I ×
Mn → Rm such that ft : Mn → Rm is an isometric immersion for any
t ∈ I.
Given an isometric variation F of f : Mn → Rm, we have that

∂

∂t
〈ft∗X, ft∗Y 〉 = 0 (2.2)

for any X,Y ∈ X(M) and t ∈ I. In particular, it follows from (2.1) that
the variational vector field T of F satisfies the condition

〈∇̃XT, f∗Y 〉+ 〈f∗X, ∇̃Y T〉 = 0

for any X,Y ∈ X(M).
An isometric variation can be produced by composing an isometric

immersion f : Mn → Rm with a family of isometries of Rm as follows:
Let C : I → O(m) be a smooth family of orthogonal transformations of
Rm and let v : I → Rm be a smooth map such that (C(0), v(0)) = (I, 0).
Then, we define an isometric variation F of f by

F(t, x) = C(t)f(x) + v(t)

for all (t, x) ∈ I ×Mn. Such an F is called a trivial isometric variation.
An infinitesimal variation is the infinitesimal analogue of an isometric

variation. In fact, as seen next these are the variations that preserve
lengths but just “up to the first order”.
A smooth variation F : I × Mn → Rm of an isometric immersion

f : Mn → Rm is called an infinitesimal variation if it satisfies the condition

∂

∂t
|t=0〈ft∗X, ft∗Y 〉 = 0 (2.3)
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for any X,Y ∈ X(M).
It is known from classical differential geometry that the convenient

approach to study variations is to look at the variational vector fields.
That this is the way to proceed in the case of infinitesimal variations is
justified in the sequel.
A section T of f∗TRm is called an infinitesimal bending of an isometric

immersion f : Mn → Rm if the condition

〈∇̃XT, f∗Y 〉+ 〈f∗X, ∇̃Y T〉 = 0 (2.4)

holds for any tangent vector fields X,Y ∈ X(M).
Since the condition (2.3) gives (2.4), then there is an infinitesimal

bending associated to any infinitesimal variation. On the other hand,
associated to an infinitesimal bending T of f : Mn → Rm we have that the
infinitesimal variation F : R×Mn → Rm given by

F(t, x) = f(x) + tT(x) (2.5)

has variational vector field T. But by no means (2.5) is unique with
this property, although it may be seen as the simplest one. In fact,
new infinitesimal variations with variational vector field T are obtained
by adding to (2.5) terms of the type tkδ, k > 1, where δ ∈ Γ(f∗TRm) and,
maybe, for restricted values of the parameter t.
We say that an infinitesimal bending is trivial if it is induced by a

trivial isometric variation. More precisely, a trivial infinitesimal bending is
the restriction to the submanifold of a Killing vector field of the ambient
space. That is, there is a skew-symmetric linear endomorphism D of Rm
and a vector w ∈ Rm such that T = Df + w. Conversely, given a trivial
infinitesimal bending we have that

F(t, x) = etDf(x) + tw

is a trivial isometric variation of f .
Multiplying an infinitesimal bending by a constant and adding a trivial

infinitesimal bending yields a new infinitesimal bending. Since it is not
convenient to distinguish between these two bendings, from now on we
identify two infinitesimal bendings T1 and T2 if there exists 0 6= c ∈ R and
a trivial infinitesimal bending T0 such that

T2 = T0 + cT1. (2.6)

Then (2.5) will be seen as the representative of the class of infinitesimal
variations that share a common infinitesimal bending.
To conclude this section we observe that, beside the trivial infinitesimal

bendings, there are the following examples of infinitesimal bendings of a
rather simple geometric nature.
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Examples 2.1. (i) Let f : Mn → Rm be an isometric immersion. If
Z ∈ X(M) is a Killing vector field of Mn and ξ ∈ Γ(NfM) satisfies
Aξ = 0, then T = f∗Z + ξ is an infinitesimal bending of f . In particular,
if f is contained in an affine subspace, say f(M) ⊂ R` ⊂ Rm, then any
vector field η normal to R` determines an infinitesimal bending of f .
(ii) Given two isometric immersions f, g : Mn → Rm suppose that the map
h = f + g is an immersion. Then the map T = f − g is an infinitesimal
bending of h.

2.2 The associated pair
We show next that an infinitesimal bending T ∈ Γ(f∗TRm) of an isometric
immersion f : Mn → Rm together with its second fundamental form
α : TM × TM → NfM determine an associate pair of tensors (β,E) to T,
where β : TM × TM → NfM is symmetric and E : TM ×NfM → NfM
satisfies the compatibility condition

〈E(X, η), ξ〉+ 〈E(X, ξ), η〉 = 0 (2.7)

for any X ∈ X(M) and η, ξ ∈ Γ(NfM).
Let L ∈ Γ(Hom(TM, f∗TRm)) be the tensor defined by

LX = ∇̃XT = T∗X

for any X ∈ X(M). Notice that in terms of this tensor (2.4) acquires the
form

〈LX, f∗Y 〉+ 〈f∗X,LY 〉 = 0 (2.8)

for any X,Y ∈ X(M). Let B : TM × TM → f∗TRm be the tensor given
by

B(X,Y ) = (∇̃XL)Y = ∇̃XLY − L∇XY (2.9)

for any X,Y ∈ X(M). The flatness of the ambient space and

B(X,Y ) = ∇̃X∇̃Y T − ∇̃∇XY T

yield that B is symmetric. Hence, the tensor β : TM × TM → NfM
defined by

β(X,Y ) = (B(X,Y ))NfM

is also symmetric. For later use, associated to a given ξ ∈ Γ(NfM) we
define the symmetric tensor Bξ ∈ Γ(End(TM)) by

〈BξX,Y 〉 = 〈β(X,Y ), ξ〉

for any X,Y ∈ X(M).
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Let Y ∈ Γ(Hom(NfM,TM)) be given by

〈Yη,X〉+ 〈η, LX〉 = 0. (2.10)

Then, we define the tensor E : TM ×NfM → NfM by

E(X, η) = α(X,Yη) + (LAηX)NfM .

Hence, we have

〈E(X, η), ξ〉 = 〈α(X,Yη) + LAηX, ξ〉
= 〈AξX,Yη〉 − 〈Yξ, AηX〉
= −〈LAξX, η〉 − 〈α(X,Yξ), η〉
= −〈E(X, ξ), η〉,

and thus the compatibility condition (2.7) is satisfied.

Proposition 2.2. We have that

B(X,Y ) = f∗Yα(X,Y ) + β(X,Y ) (2.11)

for any X,Y ∈ X(M).

Proof. We need to show that

C(X,Y, Z) = 〈(B − f∗Yα)(X,Y ), f∗Z〉

vanishes for any X,Y, Z ∈ X(M). Equation (2.8) and its derivative give

0 = 〈∇̃ZLX, f∗Y 〉+ 〈LX, ∇̃Zf∗Y 〉+ 〈∇̃ZLY, f∗X〉+ 〈LY, ∇̃Zf∗X〉
= 〈B(Z,X), f∗Y 〉+ 〈L∇ZX, f∗Y 〉+ 〈LX, f∗∇ZY + α(Z, Y )〉
+ 〈B(Z, Y ), f∗X〉+ 〈L∇ZY, f∗X〉+ 〈LY, f∗∇ZX + α(Z,X)〉

= 〈B(Z,X), f∗Y 〉+ 〈LX,α(Z, Y )〉+ 〈B(Z, Y ), f∗X〉+ 〈LY, α(Z,X)〉
= 〈(B − f∗Yα)(Z,X), f∗Y 〉+ 〈(B − f∗Yα)(Z, Y ), f∗X〉.

From the symmetry of B and the above, we obtain

C(X,Y, Z) = C(Y,X,Z) and C(Z,X, Y ) = −C(Z, Y,X)

for any X,Y, Z ∈ X(M). Then

C(X,Y, Z) = −C(X,Z, Y ) = −C(Z,X, Y ) = C(Z, Y,X)
= C(Y,Z,X) = −C(Y,X,Z) = −C(X,Y, Z)
= 0,

as we wished.

Remark 2.3. The last manipulation in the above proof is known as the
Braid Lemma.
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2.3 The fundamental equations
In this section, it is shown that the pair of tensors associated to an
infinitesimal bending satisfy a set of three equations that form the
Fundamental system of equations of an infinitesimal variation. The term
fundamental means that they are the integrability condition of the system
of differential equations whose solutions yield an infinitesimal bendings, a
fact that is proved in the following section.

Proposition 2.4. The pair (β,E) associated to an infinitesimal bending
T satisfies the following system of three equations:

Aβ(Y,Z)X +Bα(Y,Z)X = Aβ(X,Z)Y +Bα(X,Z)Y, (2.12)

(∇⊥Xβ)(Y,Z)− (∇⊥Y β)(X,Z) = E(Y, α(X,Z))− E(X,α(Y, Z)) (2.13)

and

(∇⊥XE)(Y, η)− (∇⊥Y E)(X, η)
= β(X,AηY )− β(AηX,Y ) + α(X,BηY )− α(BηX,Y )

(2.14)

for all X,Y, Z ∈ X(M) and η ∈ Γ(NfM). Moreover, equation (2.13) is
equivalent to

(∇XBη)Y −(∇YBη)X−B∇⊥
X
ηY +B∇⊥

Y
ηX = AE(X,η)Y −AE(Y,η)X (2.15)

for all X,Y, Z ∈ X(M) and η ∈ Γ(NfM).

Proof. We first show that

(∇̃XY)η = −f∗BηX − LAηX + E(X, η) (2.16)

for any X ∈ X(M) and η ∈ Γ(NfM), where we used the notation

(∇̃XY)η = ∇̃Xf∗Yη − f∗Y∇⊥Xη.

Taking the derivative of (2.10), we have from (2.8) and (2.10) that

0 = 〈∇̃Xf∗Yη, f∗Y 〉+ 〈Yη,∇XY 〉+ 〈∇̃XLY, η〉+ 〈LY, ∇̃Xη〉
= 〈(∇̃XY)η, f∗Y 〉+ 〈BηX,Y 〉+ 〈LAηX, f∗Y 〉.

Since 〈f∗Yη, ξ〉 = 0, we obtain

0 = 〈∇̃Xf∗Yη, ξ〉+ 〈f∗Yη, ∇̃Xξ〉 = 〈(∇̃XY)η, ξ〉 − 〈α(X,Yη), ξ〉
= 〈(∇̃XY)η, ξ〉+ 〈LAηX − E(X, η), ξ〉

for any X ∈ X(M) and η, ξ ∈ Γ(NfM), and hence (2.16) follows.
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Using

(∇̃XB)(Y,Z) = ∇̃X(∇̃Y L)Z − (∇̃∇XY L)Z − (∇̃Y L)∇XZ (2.17)

it is easy to see that

(∇̃XB)(Y,Z)− (∇̃YB)(X,Z) = −LR(X,Y )Z (2.18)

for all X,Y, Z ∈ X(M). It follows using (2.11) that

〈(∇̃XB)(Y,Z), f∗W 〉 = 〈(∇̃XY)α(Y,Z) + f∗Y(∇⊥Xα)(Y,Z)− f∗Aβ(Y,Z)X, f∗W 〉

for any X,Y, Z,W ∈ X(M). Then (2.18) and the Codazzi equation give

〈(∇̃XY)α(Y,Z)−(∇̃Y Y)α(X,Z), f∗W 〉 = 〈LR(Y,X)Z+Aβ(Y,Z)X−Aβ(X,Z)Y,W 〉.

Now using the Gauss equation, we obtain

〈(∇̃XY)α(Y,Z)− (∇̃Y Y)α(X,Z), f∗W 〉
= 〈LAα(X,Z)Y − LAα(Y,Z)X +Aβ(Y,Z)X −Aβ(X,Z)Y, f∗W 〉.

On the other hand, it follows from (2.16) that

〈(∇̃XY)α(Y, Z)− (∇̃Y Y)α(X,Z), f∗W 〉
= 〈Bα(X,Z)Y + LAα(X,Z)Y −Bα(Y,Z)X − LAα(Y,Z)X, f∗W 〉.

From the last two equations, we obtain

〈Bα(X,Z)Y −Bα(Y,Z)X, f∗W 〉 = 〈Aβ(Y,Z)X −Aβ(X,Z)Y,W 〉,

and this is (2.12).
From (2.11) and (2.17) we obtain

((∇̃XB)(Y, Z))NfM = α(X,Yα(Y, Z)) + (∇⊥Xβ)(Y,Z).

Then, we have from (2.18) and the Gauss equation that

(∇⊥Xβ)(Y,Z)− (∇⊥Y β)(X,Z)
= (LR(Y,X)Z)NfM − α(X,Yα(Y,Z) + α(Y,Yα(X,Z)
= (LAα(X,Z)Y − LAα(Y,Z)X)NfM − α(X,Yα(Y,Z) + α(Y,Yα(X,Z),

and this is (2.13). Since E satisfies the compatibility condition (2.7), then

〈E(X,α(Y,Z)), η〉 = −〈AE(X,η)Y, Z〉,

and this gives (2.15).
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We have

(∇⊥XE)(Y, η) = ∇⊥XE(Y, η)− E(∇XY, η)− E(Y,∇⊥Xη)
= (∇⊥Xα)(Y,Yη) + (L(∇XA)(Y, η))NfM + α(Y,∇XYη)
− α(Y,Y∇⊥Xη)− (L∇XAηY )NfM +∇⊥X(LAηY )NfM .

Then (2.16) gives

(∇⊥XE)(Y, η) = (∇⊥Xα)(Y,Yη) + (L(∇XA)(Y, η))NfM − α(Y,BηX)
− α(Y, (LAηX)TM )− (L∇XAηY )NfM +∇⊥X(LAηY )NfM .

Using the Codazzi equation, we obtain

(∇⊥XE)(Y, η)− (∇⊥Y E)(X, η)
= α(X,BηY )− α(Y,BηX) + α(X, (LAηY )TM )
− α(Y, (LAηX)TM )− (L∇XAηY )NfM +∇⊥X(LAηY )NfM

+ (L∇YAηX)NfM −∇⊥Y (LAηX)NfM .

Since

β(X,AηY ) = α(X, (LAηY )TM )− (L∇XAηY )NfM +∇⊥X(LAηY )NfM ,

then (2.14) follows.

Remark 2.5. An alternative way to obtain the equations in Proposition
2.4 would be to follow the “classical procedure”, which goes as follows.
Since the metrics gt induced by the infinitesimal variation ft = f + tT
satisfy ∂/∂t|t=0gt = 0, hence the Levi-Civita connections and curvature
tensors of gt satisfy

∂/∂t|t=0∇tXY = 0

and
∂/∂t|t=0gt(Rt(X,Y )Z,W ) = 0

for any X,Y, Z,W ∈ X(M). Then this is used to compute the derivatives
with respect to t at t = 0 of the Gauss, Codazzi and Ricci equations for
ft. In fact, this works quite nicely to obtain (2.12) since we have that

B(X,Y ) = ∂/∂t|t=0α
t(X,Y ),

where αt is the second fundamental form of ft. On the other hand,
the computation for the other two equations becomes really cumbersome
outside the hypersurface case. For hypersurfaces this was done in [21] and
[23]. See also Exercise 2.1. A result in coordinates for general codimension
was stated in [29].
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The first normal space N1(x) ⊂ NfM(x) at x ∈ Mn of an isometric
immersion f : Mn → Rm is the vector subspace given by

N1(x) = span{α(X,Y ) : X,Y ∈ TxM}.

We say that f has full first normal spaces if N1(x) = NfM(x) at any
x ∈Mn.
The following result shows that for a submanifold with full first normal

spaces the tensor β determines E.

Proposition 2.6. Let f : Mn → Rm be an isometric immersion with full
first normal spaces. If (β,E) is the associated pair to an infinitesimal
bending T of f then E is the unique tensor that satisfies (2.7) and (2.13).

Proof. If E0 : TM × NfM → NfM is a tensor that satisfies (2.7) and
(2.13), it follows from (2.13) that

(E− E0)(X,α(Y,Z)) = (E− E0)(Y, α(X,Z))

for any X,Y, Z ∈ X(M). Since both E and E0 satisfy (2.7), we have

〈(E− E0)(X1, α(X2, X3)), α(X4, X5)〉=−〈(E− E0)(X1, α(X4, X5)), α(X2, X3)〉,

where Xi ∈ X(M), 1 ≤ i ≤ 5. We denote

〈(E− E0)(X1, α(X2, X3)), α(X4, X5)〉 = (X1, X2, X3, X4, X5).

It follows from the relations above and the symmetry of α that

(X1, X2, X3, X4, X5) = −(X1, X4, X5, X2, X3) = −(X5, X4, X1, X3, X3)
= (X5, X2, X3, X4, X1) = (X3, X2, X5, X4, X1) = −(X3, X4, X1, X2, X5)
= −(X4, X3, X1, X2, X5) = (X4, X2, X5, X3, X1) = (X2, X4, X5, X3, X1)
= −(X2, X3, X1, X4, X5) = −(X2, X1, X3, X4, X5) = −(X1, X2, X3, X4, X5)
= 0,

and thus E− E0 = 0.

Finally, we characterize trivial infinitesimal bending in terms of the
associated pair of tensors.
Let T be a trivial infinitesimal bending f : Mn → Rm, that is, we have

that
T = Df + w,

where D ∈ End(Rm) is skew-symmetric and w ∈ Rm. Then, we obtain
that

L = D|f∗TM and B(X,Y ) = Dα(X,Y ).
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Let DN ∈ Γ(End(NfM)) be skew-symmetric and given by

DNη = (Dη)NfM

for any η ∈ Γ(NfM). Then, we have

β(X,Y ) = DNα(X,Y ) and E(X, η) = −(∇⊥XDN )η,

where the second equation follows computing (∇̃XD)η = 0.

Proposition 2.7. An infinitesimal bending T of f is trivial if and only if
there is a skew-symmetric C ∈ Γ(End(NfM)) such that

β(X,Y ) = Cα(X,Y ) and E(X, η) = −(∇⊥XC)η. (2.19)

Proof. Define D ∈ Γ(End(f∗TRm)) by

D(x)X = L(x)X and D(x)η = Y(x)η + C(x)η

for any X ∈ TxM and η ∈ Nf(x)M . Using the assumption on β, we obtain
that

∇̃XDY = (∇̃XL)Y + L∇XY
= f∗Yα(X,Y ) + Cα(X,Y ) + L∇XY
= D∇̃XY

for any X,Y ∈ X(M). The assumptions on E and (2.16) give

∇̃XDη = ∇̃Xf∗Yη + ∇̃XCη
= (∇̃XY)η + f∗Y∇⊥Xη + (∇⊥XC)η + C∇⊥Xη − f∗ACηX
= −f∗BηX − LAηX + f∗Y∇⊥Xη + C∇⊥Xη − f∗ACηX

for any X ∈ X(M) and η ∈ Γ(NfM). But Bη = −ACη from β = Cα,
hence

∇̃XDη = −LAηX + f∗Y∇⊥Xη + C∇⊥Xη = D∇̃Xη.

Therefore, we have shown that D(x) = D is constant along Mn, and thus
the map T −Df is constant.
In accordance with the identification (2.6), from now on we also identify

two pairs (β1,E1) and (β2,E2) if there is 0 6= c ∈ R such that the pair
(β1 − cβ2,E1 − cE2) has the form (2.19).

2.4 The Fundamental Theorem
This section gives the Fundamental Theorem of infinitesimal variations.



32 Marcos Dajczer and Miguel I. Jimenez

Theorem 2.8. Let f : Mn → Rm be an isometric immersion of a
simply connected Riemannian manifold. Let β : TM × TM → NfM be
a symmetric tensor and let the tensor E : TM ×NfM → NfM satisfy the
compatibility condition (2.7). If the pair (β,E) 6= 0 satisfies (2.12), (2.13)
and (2.14), then there is a unique infinitesimal bending T of f having (β,E)
as associated pair.

Proof. Given (β,E) as in the statement, we argue that there is D ∈
Γ(End(f∗TRm)) satisfying

(∇̃XD)(Y + η) = −f∗BηX + β(X,Y ) + E(X, η) (2.20)

for any X,Y ∈ X(M) and η ∈ Γ(NfM). To prove this, henceforth we
check the integrability condition of (2.20), namely, that

(∇̃X∇̃YD− ∇̃Y ∇̃XD− ∇̃[X,Y ]D)(Z + η) = 0

holds for any X,Y, Z ∈ X(M) and η ∈ Γ(NfM). For simplicity, in the
following we write X instead of f∗X. We have

(∇̃X∇̃YD− ∇̃Y ∇̃XD− ∇̃[X,Y ]D)(Z + η)
= ∇̃X(∇̃YD)(Z + η)− (∇̃YD)∇̃X(Z + η)− ∇̃Y (∇̃XD)(Z + η)
+ (∇̃XD)∇̃Y (Z + η)− (∇̃[X,Y ]D)(Z + η)

= ∇̃X [−BηY + β(Y,Z) + E(Y, η)] +Bα(X,Z)+∇⊥
X
ηY − β(Y,∇XZ −AηX)

− E(Y, α(X,Z) +∇⊥Xη) + ∇̃Y [BηX − β(X,Z)− E(X, η)]
−Bα(Y,Z)+∇⊥

Y
ηX + β(X,∇Y Z −AηY ) + E(X,α(Y, Z) +∇⊥Y η)

+Bη[X,Y ]− β([X,Y ], Z)− E([X,Y ], η).

Hence

(∇̃X∇̃YD− ∇̃Y ∇̃XD− ∇̃[X,Y ]D)(Z + η)
= −Aβ(Y,Z)X +Bα(X,Z)Y +Aβ(X,Z)Y −Bα(Y,Z)X

+ (∇⊥Xβ)(Y,Z)− (∇⊥Y β)(X,Z) + E(X,α(Y,Z))− E(Y, α(X,Z))
− (∇XBη)Y + (∇YBη)X +B∇⊥

X
ηY −B∇⊥

Y
ηX −AE(Y,η)X +AE(X,η)Y

+ (∇⊥XE)(Y, η)− (∇⊥Y E)(X, η)− α(X,BηY ) + α(Y,BηX)
+ β(Y,AηX)− β(X,AηY )

= 0,

where to obtain the final conclusion we made use of (2.12) to (2.15).
Fix x0 ∈ Mn and a solution D∗ ∈ Γ(End(f∗TRm)) of (2.20). Set

D0 = D∗(x0) and let φ : f∗TRm × f∗TRm → R be the tensor defined by

φ(ρ, σ) = 〈(D∗ −D0)ρ, σ〉+ 〈(D∗ −D0)σ, ρ〉.
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Using (2.7) and (2.20) we obtain

(∇̃Xφ)(ρ, σ) = X(φ(ρ, σ))− φ(∇̃Xρ, σ)− φ(ρ, ∇̃Xσ)
= 〈(∇̃XD∗)ρ, σ〉+ 〈(∇̃XD∗)σ, ρ〉
= 0.

Hence we have φ = 0, and therefore the map D(x) = D∗(x) − D0 is a
skew-symmetric endomorphism of Rm.
Define L ∈ Γ(Hom(TM, f∗TRm)) by L(x) = D(x)|TxM . Using (2.20)

we obtain

(∇̃XL)Y = ∇̃XDY −D∇XY
= β(X,Y ) + Dα(X,Y ).

Thus
(∇̃XL)Y = (∇̃Y L)X.

Hence, there is T ∈ Γ(f∗TRm) such that

∇̃XT = LX

for any X ∈ X(M). Since D is skew-symmetric then L satisfies

〈LX, Y 〉+ 〈LY,X〉 = 0,

and thus T is an infinitesimal bending of f . Moreover, its associate pair
(β̃, Ẽ) is

β̃(X,Y ) = β(X,Y ) + DNα(X,Y ) and Ẽ(X, η) = E(X, η)− (∇⊥XDN )η.

In fact, in this case Yη = (Dη)TM . Using (2.20), we have

Ẽ(X, η) = α(X, (Dη)TM ) + (LAηX)NfM

= (∇̃X(Dη)TM )NfM + (LAηX)NfM

= (∇̃XDη)NfM −∇⊥XDNη + (LAηX)NfM

= E(X, η) + (D∇̃Xη)NfM −∇⊥XDNη + (LAηX)NfM

= E(X, η)− (LAηX)NfM − (∇⊥XDN )η + (LAηX)NfM

= E(X, η)− (∇⊥XDN )η.

Another solution D∗1 of (2.20) gives rise to an infinitesimal bending T1 of
f . It now follows from Proposition 2.7 that T−T1 is a trivial infinitesimal
bending.
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Remark 2.9. Let f : Mn → Lm be an isometric immersion of a
Riemannian manifold Mn into the Lorentzian space form Lm. Recall
that Lm has Rm as underlying space and that its Levi-Civita connection
coincides with the Euclidean one. Hence, the arguments in the proof of
Theorem 2.8 also hold in this case. In fact, they hold for an immersion of
a Riemannian manifold Mn into Rm where the latter is endowed with any
possible indefinite metric.

2.5 The hypersurfaces case
Let f : Mn → Rn+1 be a hypersurface with shape operator A
corresponding to the Gauss map N ∈ Γ(NfM). If T is an infinitesimal
bending of f , then associated to T we have the symmetric tensor B ∈
Γ(End(TM)) given by

β(X,Y ) = 〈BX,Y 〉N.

In codimension one, any tensor E : TM × NfM → NfM satisfying (2.7)
vanishes. Therefore, the fundamental equations of an infinitesimal bending
take the form

BX ∧AY −BY ∧AX = 0 (2.21)

and
(∇XB)Y = (∇YB)X

for anyX,Y ∈ X(M). Notice that the second equation says that B satisfies
the condition of being a Codazzi tensor .
Proposition 2.7 gives the following characterization of trivial

infinitesimal bendings of hypersurfaces.

Proposition 2.10. An infinitesimal bending T of an hypersurface
f : Mn → Rn+1 is trivial if and only if its associated tensor B vanishes.

The Fundamental Theorem for infinitesimal variations of hypersurfaces
goes as follows.

Theorem 2.11. Let f : Mn → Rn+1 be an isometric immersion of a
simply connected Riemannian manifold. Let 0 6= B ∈ Γ(End(TM)) be a
symmetric Codazzi tensor that satisfies (2.21). Then there exists a unique
infinitesimal bending T of f having B as associated tensor.

Proof. Let β : TM × TM → NfM be the symmetric tensor given by

β(X,Y ) = 〈BX,Y 〉N.

Then (2.14) trivially holds for β and E = 0. Moreover, by the assumptions
on B we have that (β, 0) satisfies (2.12) and (2.13). Thus, by Theorem 2.8
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there is a unique infinitesimal bending T of f having (β, 0) as associated
pair.

2.6 Infinitesimal rigidity
That a submanifold f : Mn → Rm is infinitesimally rigid means that any
infinitesimal bending of f is trivial. The goal of this section is to provide
conditions on the submanifold that yield infinitesimal rigidity.
The proof of the rigidity theorems in this section will make use of

an elementary but very useful result already contained in the classical
literature of infinitesimal variations of surfaces, for instance, see Bianchi
[3].

Proposition 2.12. Let T be an infinitesimal bending of an isometric
immersion f : Mn → Rm and let Gt : Mn → Rm, t ∈ R, be the map defined
by

Gt(x) = f(x) + tT(x). (2.22)
The following assertions hold:

(i) The maps Gt and G−t are immersions that induce the same metric.

(ii) If f is substantial and there exists 0 6= t0 ∈ R such that Gt0 and
G−t0 are congruent then T is trivial.

Proof. The assertion in part (i) follows from

‖Gt∗X‖2 = ‖f∗X‖2 + t2‖T∗X‖2.

By the assumption of part (ii) there exist an orthogonal transformation S
of Rm and a vector w ∈ Rm such that

f + t0T = S(f − t0T) + w.

Thus
f∗X + t0∇̃XT = S(f∗X − t0∇̃XT),

and hence
t0(S + I)∇̃XT = (S − I)f∗X (2.23)

for all X ∈ X(M).
Suppose that S + I is not invertible, that is, that there exists

0 6= δ ∈ ker(S + I) = ker(S + I)t,

where ( )t denotes taking the transpose. Then (S − I)tδ = −2δ. Taking
the inner product of (2.23) with δ gives

〈f∗X, δ〉 = 0
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for all X ∈ X(M), contradicting the fact that f is substantial.
Thus S + I is invertible, and hence (2.23) yields

∇̃XT = Df∗X, (2.24)

where
D = 1

t0
(S + I)−1(S − I).

Since f is substantial, it follows from

〈∇̃XT, f∗Y 〉+ 〈f∗X, ∇̃Y T〉 = 0

and (2.24) that D is skew-symmetric. Moreover, since Df∗X = ∇̃XDf
then (2.24) also yields

∇̃X(T −Df) = 0
for all X ∈ X(M), thus showing that T is trivial.

Proposition 2.12 was used to prove the following global result due to
Dajczer-Rodríguez [19]. The proof is also contained in [21].

Theorem 2.13. Let f : Mn → Rn+1, n ≥ 3, be an isometric immersion
of a compact Riemannian manifold such that there are no open subsets of
Mn where f is totally geodesic. Then f is infinitesimally rigid.

Next we state two well-known rigidity results for submanifolds. Recall
that an isometric immersion f : Mn → Rm is said to be rigid if any other
isometric immersion g : Mn → Rm is congruent to f by an isometry of
Rm. That is, there is an isometry (rigid motion) τ : Rm → Rm such that
g = τ ◦ f . The first result is the classical Allendoerfer’s theorem and the
second is due to do Carmo-Dajczer [5]. The proofs of both results can be
seen in [21].
It is said that an isometric immersion f : Mn → Rn+p has type number

τ ≥ 3 if at any point x ∈ Mn there are three vectors X1, X2, X3 ∈ TxM
and a basis ξ1, . . . , ξp of NfM(x) such that the 3p vectors AξjXi 1 ≤ i ≤
3, 1 ≤ j ≤ p, are linearly independent. This condition is independent of
the normal basis.

Proposition 2.14. An isometric immersion f : Mn → Rn+p with type
number τ ≥ 3 is rigid.

The s-nullity νs(x), 1 ≤ s ≤ p, of an immersion f : Mn → Rn+p at
x ∈Mn is defined as

νs(x) = max
Us⊂NfM(x)

{dimN(αUs)},

where αUs = πUs ◦ α and πUs : NfM → Us is the orthogonal projection
onto the normal subspace Us.
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Proposition 2.15. An isometric immersion f : Mn → Rn+p, p ≤ 5,
whose s-nullities satisfy νs ≤ n− 2s− 1 for all 1 ≤ s ≤ p at any point of
Mn is rigid.

Remark 2.16. It is easy to see that the assumption on the s-nullities
is weaker than the one on the type number. In fact, that τ ≥ 3 implies
νs ≤ n−3s, 1 ≤ s ≤ p. On the other hand, it is not known if the Theorem
2.15 holds for higher codimensions since its

The following is the infinitesimal version of the above two results.

Theorem 2.17. An isometric immersion f : Mn → Rm which satisfies the
conditions in either Proposition 2.14 or Proposition 2.15 is infinitesimally
rigid.

Proof. Let T be an infinitesimal bending of f and let Gt : Mn → Rm be
defined by (2.22) for any t ∈ R. By Proposition 2.12, the immersions
Gt and G−t are isometric. Moreover, any point of Mn lies in an open
neighborhood U where Gt still satisfies the assumptions if t is small
enough. By either Proposition 2.14 or Proposition 2.15, we have that
the restrictions Gt|U and G−t|U are congruent, and hence T is trivial on
U by Proposition 2.12 since the assumptions include that f |U has full first
normal spaces and thus is substantial.
We have seen that T is locally trivial, that is, each point of Mn lies in

an open subset U such that ∇̃XT = DUf∗X along U . If two such open
subsets U and V intersect, then

(DU −DV )|f∗TxM = 0 for all x ∈ U ∩ V.

Since f |U∩V is substantial,

span{f∗TxM : x ∈ U ∩ V } = Rm.

Hence DU = DV , and thus T is globally trivial.

2.7 Exercises
Exercise 2.1. Given an infinitesimal bending T of a submanifold
f : Mn → Rm, let F : I×Mn → Rm be a variation of f = f0 by immersions
ft : Mn → Rm with variational vector field T.

(i) Show that the Levi-Civita connections and curvature tensors of the
metrics gt induced by ft for t ∈ I satisfy

∂/∂t|t=0∇tXY = 0
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and
∂/∂t|t=0gt(Rt(X,Y )Z,W ) = 0

for any X,Y, Z,W ∈ X(M).

(ii) If αt denotes the second fundamental form of ft for t ∈ I prove that

B(X,Y ) = ∂/∂t|t=0α
t(X,Y ).

(iii) Extend η ∈ Γ(NfM) to a map η(t) ∈ Γ(Nft
M), t ∈ I. Show that

f∗Yη = (∂/∂t|t=0η(t))f∗TM .

(iv) Give an alternative proof of (2.11) using the above items.

(v) Using the above give an alternative proof of (2.12).

Exercise 2.2. Let F : I ×M → Rm be an infinitesimal variation of an
isometric immersion f : Mn → Rm. Let {Xt

1, . . . , X
t
n} be a one-parameter

family of tangent vectors fields such that for each t fixed {Xt
1, . . . , X

t
n}

is an orthonormal frame for the metric induced by ft. Let X ′i ∈ X(M),
1 ≤ i ≤ n, be given at each point x ∈Mn by

X ′i(x) = ∂

∂t
|t=0X

t
i (x).

(i) Prove that
〈X ′i, Xj〉+ 〈X ′j , Xi〉 = 0

for any 1 ≤ i, j ≤ n.

(ii) Assume further that f is minimal and let Ht = 1
n

∑n
i=1 α

t(Xt
i , X

t
i )

be the mean curvature vector field of ft, t ∈ I. Show that

∂

∂t
|t=0H

t = 0

if and only if the tensor β associated to the corresponding
infinitesimal bending satisfies

n∑
i=1

β(Xi, Xi) = 0.

Hint: For (ii) use the previous item, part (ii) of Exercise 2.1 and (2.11).

Exercise 2.3. Prove the statements in Examples 2.1.



Chapter 3

Genuine infinitesimal
variations

If an isometric immersion of a Riemannian manifold into Euclidean
space admits an isometric deformation, then any submanifold of that
manifold inherits an isometric deformation obtained via the composition
of immersions. Therefore, to study the geometry of the isometrically
deformable submanifolds that lie in codimension larger than one it is
clear that deformations produced via compositions should somehow be
excluded. Consequently, it is convenient to restrict the study to the class
of isometric deformations called genuine. For results in this direction we
refer to Chapter 12 of [21]. The goal of this chapter is to deal with local
and global infinitesimal variations of submanifolds by means of a similar
approach.

Let T̃ be an infinitesimal bending of an isometric immersion F : M̃n+` →
Rn+p, 0 < ` < p, and let j : Mn → M̃n+` be an embedding. Then
T = T̃|j(M) is an infinitesimal bending of f = F ◦ j : Mn → Rn+p.
This observation motivates the following definitions where a more general
situation is considered since certain singularities are allowed. In fact,
the necessity to admit the existence of singularities of F along j(M) for
isometric deformations, in the local as well as in the global situation, was
already well established in [14] and [26].

A smooth map F : M̃n+` → Rn+p, 0 < ` < p, from a differentiable
manifold into Euclidean space is said to be a singular extension of a
given isometric immersion f : Mn → Rn+p if there is an embedding
j : Mn → M̃n+`, 0 < ` < p, such that F is an immersion along M̃n+`\j(M)
and f = F ◦ j. Hence, the map F may fail (but not necessarily) to be an
immersion along points of j(M).

39
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It is said that an infinitesimal bending T of an isometric immersion
f : Mn → Rn+p extends in the singular sense if there is a singular extension
F : M̃n+` → Rn+p of f and a smooth map T̃ : M̃n+` → Rn+p such that T̃
is an infinitesimal bending of F |M̃\j(M) and T = T̃|j(M).

An infinitesimal bending T of an isometric immersion f : Mn → Rn+p,
p ≥ 2, is called a genuine infinitesimal bending if T does not extend
in the singular sense when restricted to any open subset of Mn. If f
admits such a bending we say that it is genuinely infinitesimally bendable.
By a genuine infinitesimal variation we mean an infinitesimal variation
whose associated infinitesimal bending is genuine. Finally, we say that
f is genuinely infinitesimally rigid if given any infinitesimal bending T

of f there is an open dense subset of Mn such that T restricted to any
connected component extends in the singular sense.
As one may expect trivial infinitesimal bendings are never genuine.

Moreover, if we have that f(M) ⊂ Rn+` ⊂ Rn+p, ` < p, and that e ∈ Rn+p

is orthogonal to Rn+`, then T = φe for φ ∈ C∞(M) is another example of
an infinitesimal bending that it is not genuine.

3.1 The local results
What can be said about the geometry of an Euclidean submanifold in
low codimension that admits an genuine infinitesimal variation? In this
section, we give two answers to the local version of this question. The case
when the submanifold is compact is treated in the subsequent section.
The following is the first main local result of this section. An isometric

immersion f : Mn → Rm is r-ruled if Mn carries a smooth r-dimensional
totally geodesic tangent distribution whose leaves (called rulings) are
mapped diffeomorphically by f to open subsets of affine subspaces of Rm.

Theorem 3.1. Let f : Mn → Rn+p, n > 2p ≥ 4, be an isometric
immersion and let T be an infinitesimal bending of f . Then along each
connected component of an open dense subset either T extends in the
singular sense or f is r-ruled with r ≥ n− 2p.

An immediate consequence is the following result.

Corollary 3.2. Let f : Mn → Rn+p, n > 2p ≥ 4, be a genuinely
infinitesimally bendable isometric immersion. Then f is r-ruled with
r ≥ n− 2p along connected components of an open dense subset of Mn.

Theorem 3.1 also has the next two immediate consequences since the
possibility of the submanifold being ruled is excluded by the assumptions.
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Corollary 3.3. Let f : Mn → Rn+p, n > 2p ≥ 4, be an isometric
immersion. If Mn has positive Ricci curvature then f is genuinely
infinitesimally rigid.

Corollary 3.4. Let g : Mn → Sn+p−1, n > 2p ≥ 4, be an isometric
immersion and let f = i◦g where i : Sn+p−1 → Rn+p denotes the umbilical
inclusion. Then f is genuinely infinitesimally rigid.

A key ingredient in the proofs of the theorems in this section is the next
result due to Florit-Guimarães [26]; see also [21].

Proposition 3.5. Let f : Mn → Rm be an isometric immersion and let
D be a smooth tangent distribution of dimension d > 0. Assume that there
does not exist an open subset U ⊂Mn and Z ∈ Γ(D|U ) such that the map
F : U × R→ Rm given by

F (x, t) = f(x) + tf∗Z(x)

is a singular extension of f on an open neighborhood of U×{0}. Then, for
any x ∈ Mn there is an open neighborhood V of the origin in D(x) such
that f∗(x)V ⊂ f(M). Hence f is d-ruled along each connected component
of an open dense subset of Mn.

Next we associate to an infinitesimal bending a flat bilinear form.

Proposition 3.6. Let f : Mn → Rm be an isometric immersion and let T
be an infinitesimal bending with associated pair (β,E). Then, at any point
of Mn the bilinear form θ : TM × TM → NfM ⊕NfM defined by

θ(X,Y ) = (α(X,Y ) + β(X,Y ), α(X,Y )− β(X,Y )) (3.1)

is flat with respect to the inner product in NfM ⊕NfM given by

〈〈(ξ1, η1), (ξ2, η2)〉〉NfM⊕NfM = 〈ξ1, ξ2〉NfM − 〈η1, η2〉NfM .

Proof. A straightforward computation shows that

1
2 (〈〈θ(X,Z), θ(Y,W )〉〉 − 〈〈θ(X,W ), θ(Y, Z)〉〉) = 〈β(X,Z), α(Y,W )〉

+ 〈α(X,Z), β(Y,W )〉 − 〈β(X,W ), α(Y,Z)〉 − 〈α(X,W ), β(Y, Z)〉,

and the proof follows from (2.12).

An isometric immersion f : Mn → Rn+p is called 1-regular if the first
normal spaces N1(x), x ∈ Mn, have constant dimension k ≤ p on Mn

and thus form a subbundle N1 of rank k of the normal bundle. Under the
1-regularity assumption we have the following statement that is equivalent
to the above one.
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Proposition 3.7. Let f : Mn → Rm be 1-regular and let β1 : TM×TM →
N1 be the N1-component of β. Then the bilinear form θ̂ : TM × TM →
N1 ⊕N1 defined at any point by

θ̂(X,Y ) = (α(X,Y ) + β1(X,Y ), α(X,Y )− β1(X,Y )) (3.2)

is flat with respect to the inner product induced on N1 ⊕N1.

Proof of Theorem 3.1: Let T be an infinitesimal bending of f . From (2.10)
we have

〈α(X,Y ), LZ〉+ 〈Yα(X,Y ), Z〉 = 0. (3.3)

Then, we easily obtain using (2.8) that

〈f∗X + ∇̃XY, LX + ∇̃XLY 〉 = 〈α(X,Y ), β(X,Y )〉 (3.4)

for any X,Y ∈ X(M).
By Proposition 3.6 we have that the symmetric tensor θ is flat at

any point of Mn. Given Y ∈ RE(θ(x)) ⊂ TxM at x ∈ Mn, denote
D = ker θY where θY (X) = θ(Y,X). Notice that Z ∈ D means that
α(Y,Z) = 0 = β(Y,Z).
Let U ⊂ Mn be an open subset where Y ∈ X(U) satisfies Y ∈ RE(θ)

and D has dimension d at any point. Proposition 1.10 gives

〈〈θ(X,Z), θ(X,Z)〉〉 = 0

for any X ∈ X(U) and Z ∈ Γ(D). Equivalently, the right hand side of
(3.4) vanishes and hence

〈f∗X + ∇̃XZ,LX + ∇̃XLZ〉 = 0 (3.5)

for any X ∈ X(U) and Z ∈ Γ(D).
Assume that there exists a nowhere zero Z ∈ Γ(D) defined on an open

subset V of U such that F : V × (−ε, ε)→ Rn+p given by

F (x, t) = f(x) + tf∗Z(x)

is a singular extension of f |V . The map T̃ : V × (−ε, ε)→ Rn+p given by

T̃(x, t) = T(x) + tLZ(x)

extends T|V and is an infinitesimal bending of F on the open subset where
F is an immersion. In fact,

〈F∗∂/∂t, ∇̃∂/∂tT̃〉 = 〈f∗Z,LZ〉 = 0,

〈∇̃∂/∂tT̃, F∗X〉+〈∇̃X T̃, F∗∂/∂t〉 = 〈LZ, f∗X+t∇̃XZ〉+〈LX+t∇̃XLZ, f∗Z〉 = 0
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and
〈F∗X, ∇̃X T̃〉 = 〈f∗X + t∇̃XZ,LX + t∇̃XLZ〉 = 0,

where the last equality follows from (3.5).
Let W ⊂ U be an open subset such that Z ∈ Γ(D) as above does not

exist along any open subset of W . By Proposition 3.5 the immersion is
d-ruled along any connected component of an open dense subset of W .
Moreover, we have that d = dimD = n− dim Im(θY ) ≥ n− 2p.

Remark 3.8. In Theorem 3.1 assume further that f is 1-regular with
dimN1 = q < p. Then we obtain the better lower bound r ≥ n− 2q since
the proof still works making use of Proposition 3.7 instead of Proposition
3.6.

In the case of low codimension the following result, obtained with a
substantial additional effort, gives a better lower bound for the dimension
of the rulings. The proof is given at the end of this section after several
considerations.

Theorem 3.9. Let f : Mn → Rn+p, n > 2p, be a genuinely infinitesimally
bendable isometric immersion. If 2 ≤ p ≤ 5, then one of the following facts
holds along any connected component, say U , of an open dense subset of
Mn:

(i) f |U is ν-ruled by leaves of relative nullity with ν ≥ n− 2p.

(ii) f |U has index of relative nullity ν < n− 2p at any point of U and is
r-ruled with r ≥ n− 2p+ 3.

Remark 3.10. For p = 2 we are always in case (i) since a (n − 1)-ruled
submanifold in that codimension has index of relative nullity ν ≥ n− 3 at
any point.

Let F : M̃n+1 → Rn+p be an isometric immersion and let T̃ be an
infinitesimal bending of F . Given an isometric embedding j : Mn → M̃n+1

consider the composition of isometric immersions f = F ◦ j : Mn → Rn+p.
Then T = T̃|j(M) is an infinitesimal bending of f . It is easy to see that the
corresponding tensors B and B̃ given by (2.9) have the relation

B(X,Y ) = B̃(X,Y ) + 〈∇̃XY, F∗η〉L̃η,

where η ∈ Γ(NjM) is of unit length and X,Y ∈ X(M). Then (3.3) gives

〈β(X,Y ), F∗η〉+ 〈αf (X,Y ), L̃η〉 = 0

for any X,Y ∈ X(M). We will see that satisfying a condition of this type
may guarantee that an infinitesimal bending is not genuine. In fact, this
was already proved by Florit [25] in a special case.
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We say that an infinitesimal bending of an isometric immersion
f : Mn → Rn+p, p ≥ 2, satisfies the condition (∗) if there is η ∈ Γ(NfM)
of unit length and ξ ∈ Γ(R), where R is determined by the orthogonal
splitting NfM = P ⊕R and P = span{η}, such that

Bη +Aξ = 0, (3.6)

where Bη = 〈β, η〉. Thus, that (3.6) holds means that

〈β(X,Y ), η〉+ 〈α(X,Y ), ξ〉 = 0 (3.7)

for any X,Y ∈ X(M).

The following result proved below is of independent interest since it does
not require the codimension to satisfy p ≤ 5 as is the case in Theorem 3.9.

Theorem 3.11. Let f : Mn → Rn+p, p ≥ 2, be an isometric immersion
and let T be an infinitesimal bending of f that satisfies the condition (∗).
Then along each connected component of an open dense subset ofMn either
T extends in the singular sense or f is r-ruled with r ≥ n− 2p+ 3.

Similarly as above, there is the following immediate consequence.

Corollary 3.12. Let f : Mn → Rn+p, p ≥ 2, be an isometric immersion
and let T be a genuine infinitesimal bending of f that satisfies the condition
(∗). Then f is r-ruled with r ≥ n− 2p+ 3 on connected components of an
open dense subset of Mn.

In the case that T satisfies the condition (∗) we may extend the tensor
L to a tensor L̄ ∈ Γ(End(TM ⊕ P, f∗TRn+p) by defining

L̄η = f∗Yη + ξ.

Then L̄ satisfies
〈L̄X, η〉+ 〈f∗X, L̄η〉 = 0 (3.8)

for any X ∈ X(M).
Given λ ∈ Γ(f∗TU ⊕ P ) nowhere vanishing along an open subset U of

Mn, let the map F : U × (−ε, ε)→ Rn+p be given by

F (x, t) = f(x) + tλ(x). (3.9)

Notice that at least for t = 0 the map F is not an immersion at points
where λ is tangent to U . Then let T̃ : U × (−ε, ε) → Rn+p be the map
given by

T̃(x, t) = T(x) + tL̄λ(x). (3.10)

We have
〈F∗∂/∂t, ∇̃∂/∂tT̃〉 = 0.
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Moreover, since 〈L̄λ, λ〉 = 0 we obtain

〈∇̃∂/∂tT̃, F∗X〉+ 〈∇̃X T̃, F∗∂/∂t〉 = 〈L̄λ, f∗X〉+ 〈LX, λ〉+ tX〈L̄λ, λ〉 = 0

for any X ∈ X(M) and t ∈ (−ε, ε). Thus T̃ is an infinitesimal bending of
F on the open subset Ũ of U× (−ε, ε) where F is an immersion if and only
if

〈F∗X, ∇̃X T̃〉 = 0,

or equivalently, if and only if

〈f∗X + t∇̃Xλ, LX + t∇̃X L̄λ〉 = 0

for any X ∈ X(M).
In the sequel, we take F restricted to Ũ . By the above, in order to have

that T̃ is an infinitesimal bending of F the strategy is to make use of the
condition (∗) to construct a subbundle D ⊂ f∗TM ⊕ P such that

〈f∗X + ∇̃Xλ, LX + ∇̃X L̄λ〉 = 0

for any X ∈ X(M) and any λ ∈ Γ(D).

Lemma 3.13. Assume that T satisfies the condition (∗). Then

〈f∗X + ∇̃Xλ, LX + ∇̃X L̄λ〉 = 〈(∇̃Xλ)R, (∇̃X L̄)λ〉, (3.11)

where X ∈ X(M), λ ∈ Γ(f∗TM ⊕ P ) and

(∇̃X L̄)λ = ∇̃X L̄λ− L̄∇′Xλ,

being ∇′ the connection induced on f∗TM ⊕ P .

Proof. We have that

〈f∗X+∇̃Xλ, LX+∇̃X L̄λ〉 = 〈∇̃Xλ, ∇̃X L̄λ〉+〈∇̃Xλ, LX〉+〈f∗X, ∇̃X L̄λ〉.

Set λ = f∗Z +φη where Z ∈ X(M) and φ ∈ C∞(M). We have from (2.8),
(2.10), (3.7) and (3.8) that

〈∇̃Xλ,LX〉+ 〈f∗X, ∇̃X L̄λ〉
= 〈∇̃Xλ, LX〉+X〈f∗X, L̄λ〉 − 〈∇̃Xf∗X, L̄λ〉
= − 〈∇̃Xf∗X, L̄λ〉 − 〈λ, ∇̃XLX〉
= − 〈f∗∇XX, L̄λ〉 − 〈α(X,X), L̄λ〉 − 〈λ, L∇XX〉 − 〈λ, (∇̃XL)X〉
= − 〈α(X,X), LZ + φξ〉 − 〈f∗Z + φη, f∗Yα(X,X) + β(X,X)〉
= 0.
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Thus
〈f∗X + ∇̃Xλ, LX + ∇̃X L̄λ〉 = 〈∇̃Xλ, ∇̃X L̄λ〉.

For simplicity, from now on we write X for both X ∈ X(M) and its image
under f∗. Calling Y = (∇̃Xλ)f∗TM = ∇XZ − φAηX, we have
〈∇̃Xλ, ∇̃X L̄λ〉
= 〈Y + (∇̃Xλ)P + (∇̃Xλ)R, ∇̃X L̄λ〉
= 〈Y, (∇̃XL)Z + L∇XZ +X(φ)L̄η + φ∇̃X L̄η〉+ 〈(∇̃Xλ)R, ∇̃X L̄λ〉

+ (〈AηX,Z〉+X(φ))〈η, (∇̃XL)Z + L∇XZ +X(φ)L̄η + φ∇̃X L̄η〉

(3.12)

for any X ∈ X(M). Using (2.8), (2.11) and (3.3) we obtain

〈Y, (∇̃XL)Z + L∇XZ〉 = −〈LY, α(X,Z)〉 − φ〈AηX,L∇XZ〉 (3.13)
and
〈Y,X(φ)L̄η + φ∇̃X L̄η〉 = φ〈Y,∇XYη〉 −X(φ)〈LY, η〉 − φ〈α(X,Y ), ξ〉, (3.14)

where using (3.7) for the first term in the right hand side of (3.14) gives

〈Y,∇XYη〉 = X〈Y,Yη〉 − 〈∇XY,Yη〉
= −X〈LY, η〉+ 〈L∇XY, η〉
= −〈(∇̃XL)Y, η〉 − 〈LY, ∇̃Xη〉
= 〈α(X,Y ), ξ〉 − 〈LY, ∇̃Xη〉. (3.15)

Moreover,

〈η, (∇̃XL)Z + L∇XZ〉 = −〈α(X,Z), ξ〉+ 〈η, L∇XZ〉 (3.16)

and

〈η,X(φ)L̄η + φ∇̃X L̄η〉 = −φ〈∇̃Xη, L̄η〉
= −φ〈LAηX, η〉 − φ〈∇⊥Xη, ξ〉. (3.17)

Now, a straightforward computation replacing (3.13) through (3.17) in
(3.12) and using (2.8) yields

〈f∗X + ∇̃Xλ,LX + ∇̃X L̄λ〉
= 〈(∇̃Xλ)R, ∇̃X L̄λ〉 − 〈LY, α(X,Z)R〉 − φ〈LY,∇⊥Xη〉
− 〈α(X,Z), L̄(∇̃Xλ)P 〉 − φ〈∇⊥Xη, L̄(∇̃Xλ)P 〉

= 〈(∇̃Xλ)R, (∇̃X L̄)λ〉

as we wished.
In view of (3.11) the next step is to construct a subbundle D ⊂

f∗TM ⊕ P that satisfies that

〈(∇̃Xλ)R, (∇̃X L̄)λ〉 = 0 (3.18)

for any X ∈ X(M) and λ ∈ Γ(D).
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Lemma 3.14. Assume that T satisfies the condition (∗). Then, the
bilinear form ϕ : TM × f∗TM ⊕ P → R⊕R defined by

ϕ(X,λ) = ((∇̃Xλ)R + ((∇̃X L̄)λ)R, (∇̃Xλ)R − ((∇̃X L̄)λ)R)

is flat with respect to the indefinite inner product given by

〈〈(ξ1, µ1), (ξ2, µ2)〉〉R⊕R = 〈ξ1, ξ2〉R − 〈µ1, µ2〉R.

Proof. We need to show that

Θ = 〈〈ϕ(X,λ), ϕ(Y, δ)〉〉 − 〈〈ϕ(X, δ), ϕ(Y, λ)〉〉 = 0

for any X,Y ∈ X(M) and λ, δ ∈ f∗TM ⊕ P . We have

1
2Θ = 〈(∇̃Xλ)R, ((∇̃Y L̄)δ)R〉+ 〈(∇̃Y δ)R, ((∇̃X L̄)λ)R〉

− 〈(∇̃Xδ)R, ((∇̃Y L̄)λ)R〉 − 〈(∇̃Y λ)R, ((∇̃X L̄)δ)R〉.

Clearly Θ = 0 if λ, δ ∈ Γ(P ). If λ, δ ∈ X(M), then

1
2Θ = 〈α(X,λ)R, ((∇̃Y L̄)δ)R〉+ 〈α(Y, δ)R, ((∇̃X L̄)λ)R〉

− 〈α(X, δ)R, ((∇̃Y L̄)λ)R〉 − 〈α(Y, λ)R, ((∇̃X L̄)δ)R〉
= 〈α(X,λ)R, ((∇̃Y L)δ)R〉 − 〈AηY, δ〉〈α(X,λ)R, L̄η〉
+ 〈α(Y, δ)R, ((∇̃XL)λ)R〉 − 〈AηX,λ〉〈α(Y, δ)R, L̄η〉
− 〈α(X, δ)R, ((∇̃Y L)λ)R〉+ 〈AηY, λ〉〈α(X, δ)R, L̄η〉
− 〈α(Y, λ)R, ((∇̃XL)δ)R〉+ 〈AηX, δ〉〈α(Y, λ)R, L̄η〉.

Using first (3.7) and then (2.12) we obtain that

1
2Θ = 〈α(X,λ), β(Y, δ)〉+ 〈α(Y, δ), β(X,λ)〉

− 〈α(X, δ), β(Y, λ)〉 − 〈α(Y, λ), β(X, δ)〉
= 0.

Finally, we consider the case λ = η and δ = Z ∈ X(M). Then

1
2Θ = 〈∇⊥Xη, ((∇̃Y L)Z)R〉 − 〈AηY,Z〉〈∇⊥Xη, L̄η〉+ 〈α(Y,Z)R, ((∇̃X L̄)η)R〉

− 〈∇⊥Y η, ((∇̃XL)Z)R〉+ 〈AηX,Z〉〈∇⊥Y η, L̄η〉 − 〈α(X,Z)R, ((∇̃Y L̄)η)R〉

= 〈∇⊥Xη, β(Y,Z)〉 − 〈AηY,Z〉〈∇⊥Xη, ξ〉+ 〈α(Y,Z)R, (∇̃X L̄η + LAηX)R〉

− 〈α(X,Z)R, (∇̃Y L̄η + LAηY )R〉 − 〈∇⊥Y η, β(X,Z)〉+ 〈AηX,Z〉〈∇⊥Y η, ξ〉.
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Notice that

(∇̃X L̄η + LAηX)R = (α(X,Yη) + LAηX)R + (∇⊥Xξ)R
= E(X, η)R + (∇⊥Xξ)R
= E(X, η) + (∇⊥Xξ)R,

where the last step follows from (2.7). Then

1
2Θ = 〈∇⊥Xη, β(Y,Z)〉 − 〈AηY,Z〉〈∇⊥Xη, ξ〉+ 〈α(Y,Z)R,E(X, η) + (∇⊥Xξ)R〉

− 〈α(X,Z)R,E(Y, η) + (∇⊥Y ξ)R〉 − 〈∇⊥Y η, β(X,Z)〉+ 〈AηX,Z〉〈∇⊥Y η, ξ〉
= X〈η, β(Y,Z)〉 − 〈η,∇⊥Xβ(Y,Z)〉+ 〈α(Y,Z),E(X, η)〉+ 〈α(Y,Z),∇⊥Xξ〉
− 〈α(X,Z),E(Y, η)〉 − 〈α(X,Z),∇⊥Y ξ〉 − Y 〈η, β(X,Z)〉+ 〈η,∇⊥Y β(X,Z)〉.

Now using (3.7) we obtain

1
2Θ = −X〈ξ, α(Y, Z)〉 − 〈η,∇⊥Xβ(Y,Z)〉+ 〈α(Y,Z),E(X, η)〉+ 〈α(Y, Z),∇⊥Xξ〉

− 〈α(X,Z),E(Y, η)〉 − 〈α(X,Z),∇⊥Y ξ〉+ Y 〈ξ, α(X,Z)〉+ 〈η,∇⊥Y β(X,Z)〉
= −〈ξ, (∇⊥Xα)(Y,Z))〉 − 〈η, (∇⊥Xβ)(Y,Z)〉+ 〈α(Y,Z),E(X, η)〉
− 〈α(X,Z),E(Y, η)〉+ 〈ξ, (∇⊥Y α)(X,Z)〉+ 〈η, (∇⊥Y β)(X,Z)〉

= 0,

where the last equality follows from (2.7), (2.13) and the Codazzi equation.

Proof of Theorem 3.11: By Lemma 3.14 there is the flat bilinear form
ϕ. Let U be an open subset of Mn where there is Y ∈ X(U) such
that Y ∈ RE(ϕ) and D = kerϕY has dimension d at any point. Then
Proposition 1.10 gives

〈〈ϕ(X,λ), ϕ(X,λ)〉〉 = 0

for any X ∈ X(U) and λ ∈ Γ(D). Notice that this implies that (3.18)
holds for any λ ∈ Γ(D). Whenever there is a nonvanishing λ ∈ Γ(D) on
an open subset V ⊂ U such that (3.9) defines a singular extension of f |V ,
then T|V extends in the singular sense by means of (3.10).
Let W ⊂ U be an open subset where λ ∈ Γ(D) as above does not exist

along any open subset of W . Hence D must be a tangent distribution on
W , and Proposition 3.5 gives that f |W is d-ruled on connected components
of an open dense subset of W . Moreover, the dimension of the rulings is
bounded from below by n+ 1− dim Im(ϕY ) ≥ n− 2p+ 3.

Proof of Theorem 3.9: We work on the open dense subset of Mn where f
is 1-regular on any connected component. Consider an open subset of a
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connected component where the index of relative nullity is ν ≤ n− 2p− 1
at any point. Theorem 1.11 applies and thus the flat bilinear form θ̂
in (3.2) decomposes at any point as θ̂ = θ1 + θ2 where θ1 is as in part
(i) of that result. Hence, on any open subset where the dimension of
S(θ1) = S(θ̂) ∩ S(θ̂)⊥ is constant, there are smooth local unit vector fields
ζ1, ζ2 ∈ N1 such that (ζ1, ζ2) ∈ S(θ1). Equivalently, we have

〈β(X,Y ), ζ1 + ζ2〉+ 〈α(X,Y ), ζ1 − ζ2〉 = 0 (3.19)

for any X,Y ∈ X(M). Then ζ1 + ζ2 6= 0 since otherwise ζ1 − ζ2 ∈ N⊥1 .
Hence T satisfies the condition (∗) and the proof follows from Corollary
3.12.

3.2 The global result

Dajczer-Gromoll [14] proved that along connected components of an open
dense subset an isometrically deformable compact Euclidean submanifold
in codimension two and of dimension at least five is either isometrically
rigid or it is contained in a deformable hypersurface (with possible
singularities) and that any isometric deformation of the former is given
by an isometric deformation of the latter. This result was extended by
Florit-Guimarães [26] to other low codimensions. The next result that
concerns infinitesimal bendings of submanifolds in codimension two is of a
similar nature.

Theorem 3.15. Let f : Mn → Rn+2, n ≥ 5, be an isometric immersion of
a compact Riemannian manifold that does not contain an open flat subset.
For any infinitesimal bending T of f at least one of the following facts
holds along any connected component, say U , of an open dense subset of
Mn:

(i) The infinitesimal bending T|U extends in the singular sense.

(ii) There is an orthogonal splitting Rn+2 = Rn+1 ⊕ span{e} so that
f(U) ⊂ Rn+1 and T|U = T1 + T2 is a sum of infinitesimal bendings
that extend in the singular sense where T1 ∈ Rn+1 and T2 = φe for
φ ∈ C∞(U).

It will follow from the proof that the assumption on the open flat subset
can be replaced by the weaker hypothesis that there is no open subset of
Mn where the index of relative nullity satisfies ν ≥ n − 1. Moreover, we
will see that cases (i) and (ii) are not disjoint.
For the proof the following two results of independent interest are used.
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Proposition 3.16. Let T be an infinitesimal bending of f : Mn → Rn+p

and let θ be the flat bilinear form defined by (3.1). At x ∈ Mn denote
ν∗(x) = dim ∆∗(x) where

∆∗(x) = N(θ)(x) = ∆ ∩N(β)(x).

Then, on any open subset of Mn where ν∗ is constant the distribution ∆∗
is totally geodesic and its leaves are mapped by f onto open subsets of
affine subspaces of Rn+p.

Proof. We have from (2.13) and the definition of ∆∗ that

(∇⊥Xβ)(Z, Y ) = (∇⊥Zβ)(X,Y ) = 0

for any X,Y ∈ Γ(∆∗) and Z ∈ X(M). Let ∇∗ = (∇⊥,∇⊥) be the
compatible connection in NfM ⊕NfM . Hence

0 = (∇∗Xθ)(Z, Y ) = θ(Z,∇XY )

for any X,Y ∈ Γ(∆∗) and Z ∈ X(M). Thus ∆∗ ⊂ ∆ is totally geodesic.

On an open subset U ⊂ Mn where ν∗ > 0 is constant, consider the
orthogonal splitting TM = ∆∗ ⊕ E. Then let C : Γ(∆∗) × Γ(E) → Γ(E)
be the splitting tensor of ∆∗. Notice that E(T, η) = 0 for any T ∈ Γ(∆).
Then, we have from (2.13) that β verifies the conditions on Proposition
1.7, in fact, we have the following result.

Lemma 3.17. If γ : [0, b]→Mn is a unit speed geodesic such that γ([0, b))
is contained in a leaf of ∆∗ in U , then ∆∗(γ(b)) = Pb0(∆∗(γ(0))) where Pt0
is the parallel transport along γ from γ(0) to γ(t). In particular, we have
ν∗(γ(b)) = ν∗(γ(0)) and that the tensor Cγ′ extends smoothly to [0, b].

We also need the following result.

Lemma 3.18. Let f : Mn → Rn+p, p ≤ 5 and n > 2p, be an isometric
immersion of a compact Riemannian manifold and let T be an infinitesimal
bending of f . Then, at any x ∈ Mn there is a pair of vectors ζ1, ζ2 ∈
NfM(x) of unit length such that (ζ1, ζ2) ∈ (S(θ))⊥(x) where

S(θ)(x) = span {θ(X,Y ) : X,Y ∈ TxM}.

Moreover, on any connected component of an open dense subset of Mn

the pair ζ1, ζ2 at x ∈Mn extend to smooth vector fields ζ1 and ζ2 parallel
along ∆∗ that satisfy the same conditions.
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Proof. We claim that the subset U ⊂ Mn of points where there is not
a pair ζ1, ζ2 as in the statement, that is, where the metric induced on
(S(θ))⊥ is positive or negative definite, is empty. We first argue that
U is open. If otherwise, there exists a sequence {xi}i∈N of points in
Mn \ U that converges to x ∈ U . Hence, at each xi there is a pair of
unit vectors ζi1, ζi2 ∈ NfM(xi) such that 〈〈θ(X,Y )(xi), (ζi1, ζi2)〉〉 = 0 for all
X,Y ∈ Txi

M . This determines a sequence {(xi, ζi1, ζi2)}i∈N ⊂ V × Sn × Sn
where V is a small neighborhood of x. Take a subsequence {(xj , ζj1 , ζ

j
2)}j∈N

such that {(ζj1 , ζ
j
2)}j∈N converges to some (ζ1, ζ2) in Sn × Sn. Then, we

have that 〈〈θ(X,Y )(x), (ζ1, ζ2)〉〉 = 0 for any X,Y ∈ TxM , and this is a
contradiction.
From Theorem 1.11 we have ν∗ > 0 in U . Let V ⊂ U be the open

subset where ν∗ = ν∗0 is minimal. Take x0 ∈ V and a unit speed geodesic
γ in Mn contained in a maximal leaf of ∆∗ with γ(0) = x0. Since Mn is
compact, there is b > 0 such that γ([0, b)) ⊂ V and γ(b) /∈ V . Lemma 3.17
gives ν∗(γ(b)) = ν∗0 which implies γ(b) /∈ U . Hence, there are unit vectors
ζ1, ζ2 ∈ NfM(γ(b)) such that (ζ1, ζ2) ∈ (S(θ))⊥(γ(b)).
Let ζi(t) be the parallel transport along γ = γ(t) of ζi, i = 1, 2. Then

〈〈θ(X,Y ), (ζ1, ζ2)〉〉 = 〈(Aζ1−ζ2 +Bζ1+ζ2)X,Y 〉.

It follows from (2.13) and the Codazzi equation that

(∇∗T θ)(X,Y ) = (∇∗Xθ)(T, Y ), (3.20)

where T ∈ Γ(∆∗) extends γ′ and X,Y ∈ X(M). Along γ this gives

D

dt
Cζ1,ζ2 = Cζ1,ζ2Cγ′ = Ctγ′Cζ1,ζ2 ,

where Cζ1,ζ2 = Aζ1−ζ2 +Bζ1+ζ2 and Ctγ′ is the transpose of Cγ′ . Moreover,
by Lemma 3.17 this ODE holds on [0, b]. Given that Cζ1,ζ2(γ(b)) = 0, then
Cζ1,ζ2 vanishes along γ. This is a contradiction and proves the claim.
We have from (3.20) that

(∇∗T θ)(X,Y ) = −θ(∇XT, Y ) ∈ Γ(S(θ))

for any T ∈ Γ(∆∗) and X,Y ∈ X(M). Thus S(θ) is parallel along the leafs
of ∆∗. Let U0 be a connected component of the open dense subset of Mn

where the dimensions of ∆∗, S(θ), S(θ) ∩ S(θ)⊥ as well as the index of the
metric induced on S(θ)⊥×S(θ)⊥ are all constant. Hence, on U0 the vector
fields ζ1, ζ2 can be taken parallel along the leafs of ∆∗.

Finally, for the proof of Theorem 3.15 we also need a result about
extensions of submanifolds in codimension two.
Let f : Mn → Rn+2 be an isometric immersion. Assume that there

is a smooth line subbundle R ⊂ NfM , such that the tangent subspace
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D(x) = N(αR)(x) has dimension n− k at every point x ∈Mn. Then D is
a smooth tangent distribution. Assume further that R is parallel along D
with respect to the normal connection. Then, we have that R is constant
along D. Decompose the tangent and normal bundles orthogonally as

TM = D ⊕ E, NfM = P ⊕R.

At each point x ∈Mn, define

Γ(x) = span{(∇̃Xη)f∗E⊕P : X ∈ E(x), η ∈ R(x)}.

Then it follows from our assumptions that Γ is a smooth rank-k subbundle
of f∗E ⊕ P . Let Λ be given by the orthogonal decomposition f∗E ⊕ P =
Γ⊕Λ and let λ ∈ Γ(Λ) be a nowhere vanishing section of Λ. The following
holds.

Proposition 3.19. The map F : Mn × (−ε, ε) → Rn+2 given, for some
ε > 0, by

F (x, t) = f(x) + tλ(x)

parametrizes a hypersurface whose second fundamental form has constant
rank k. Moreover, its relative nullity subspaces are ∆F = D⊕span{∂/∂t}.

Proof. F is an immersion since λ is nowhere tangent to f . We have

F∗Z = f∗Z + t∇̃Zλ

for any Z ∈ X(M). From the definition of Λ we obtain 〈∇̃Zλ, η〉 = 0 for
η ∈ Γ(R). Thus, the normal space of F at (x, t) coincides with the parallel
transport of R along the segment parameterized by t. In particular, we
have that ∆F = D⊕ span{∂/∂t}, and hence the second fundamental form
of F has constant rank k.

Proof of Theorem 3.15: We assume that there is no open subset of
Mn where the index of relative nullity satisfies ν ≥ n − 1. By Lemma
3.18, on connected components of an open dense subset of Mn there are
ζ1, ζ2 ∈ Γ(NfM) with ‖ζ1‖ = ‖ζ2‖ = 1 that are parallel along the leaves
of ∆∗ and

〈〈θ(X,Y ), (ζ1, ζ2)〉〉 = 0

for any X,Y ∈ X(M). It follows from (3.1) that (3.19) holds on connected
components of an open dense subset of Mn. Let U ⊂ Mn be an open
subset where ζ1, ζ2 are smooth and ζ1 + ζ2 6= 0. Thus T|U satisfies
the condition (∗). Let Ṽ ⊂ U be an open subset where T is a genuine
infinitesimal bending. By Corollary 3.12 we have that f is (n − 1)-ruled
on each connected component V of an open dense subset of Ṽ . Since our
goal is to show that V is empty we assume otherwise.
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Proposition 3.5 and the proof of Theorem 3.11 yield that the rulings
on V are determined by the tangent subbundle D = kerϕX where ϕ was
given in Lemma 3.14 and X ∈ RE(ϕ). Also from that proof we have
dim Im(ϕX) = 2, and therefore Im(ϕX) = R⊕R where NfM = P ⊕R as
in Lemma 3.14. Proposition 1.10 gives

ϕY (D) ⊂ Im(ϕX) ∩ Im(ϕX)⊥ = 0

for any Y ∈ X(M), that is, D = N(ϕ). In particular, from the definition
of ϕ it follows that D ⊂ N(αR). Hence, by dimension reasons either
N(αR) = TM or D = N(αR). Next we contemplate both possibilities.
Let V1 ⊂ V be an open subset where N(αR) = TM holds, that is,

N1 = P . Thus N1 is parallel relative to the normal connection since,
otherwise, the Codazzi equation gives ν = n − 1, and that has been
ruled out. Hence f |V1 reduces codimension, that is, f(V1) is contained
in an affine hyperplane Rn+1. Decompose T = T1 + T2 where T1 and T2
are tangent and normal to Rn+1, respectively. It follows that T1 is an
infinitesimal bending of f |V1 in Rn+1. Since T satisfies the condition (∗)
it follows from Proposition 2.10 that T1 is trivial, that is, the restriction
of a Killing vector field of Rn+1 to f(V1). Extending T2 as a vector field
normal to Rn+1 we have that T|V1 extends in the singular sense, and this
is a contradiction.
Let V2 ⊂ V be an open subset where D = N(αR). By assumption

D 6= ∆. Let D̂ be the distribution tangent to the rulings in a neighborhood
V ′2 of x0 ∈ V2. From Proposition 3.5 we have D(x0) = D̂(x0). LetW ⊂ V ′2
be an open subset where D 6= D̂, that is, where D is not totally geodesic.
Then there are two transversal (n−1)-dimensional rulings passing through
any point y ∈ W . It follows easily that N1 = P on W . As above, we
obtain that T|W extends in the singular sense leading to a contradiction.
Let V3 ⊂ V2 be the interior of the subset where D is totally geodesic. On
V3 the Codazzi equation gives

∇⊥Xα(Z, Y ) ∈ Γ(P )

for all X,Y ∈ Γ(D) and Z ∈ X(M). Thus R is parallel along D relative
to the normal connection. We have from Proposition 3.19 that f admits
a singular extension

F (x, t) = f(x) + tλ(x)
for λ ∈ Γ(f∗TM⊕P ) as a flat hypersurface. Moreover, F has R as normal
bundle and ∂/∂t belongs to the relative nullity distribution. Therefore
(∇̃Xλ)R = 0 for any X ∈ X(V3). Hence (3.18) is satisfied and thus T|V3

extends in the singular sense. This is a contradiction which shows that V
is empty, and hence also is Ṽ .
It remains to consider the existence of an open subset U ′ ⊂ Mn where

ζ1, ζ2 are smooth and ζ1 + ζ2 = 0. It follows from (3.19) that ζ1− ζ2 ⊥ N1.
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Once more, we obtain that f(U ′) ⊂ Rn+1. Thus, we have an orthogonal
decomposition of T|U ′ as in part (ii) of the statement and T1,T2 extend in
the singular sense as follows:

(i) T̄1(x, t) = T1(x) to F : U × R→ Rn+2 where F (x, t) = f(x) + te.

(ii) For instance locally as T̄2(x, t) = T2(x) to F : U × I → Rn+2 where
F (x, t) = f(x)+tN beingN is a unit normal field to f |U in Rn+1.

Remarks 3.20. (1) In case (ii) of Theorem 3.15 if T1 is trivial then T1
and T2 extend in the same direction, and thus T also extends. Therefore
we are also in case (i).
(2) Notice that for p = 2 we have shown as part of the proof that an
infinitesimal bending of a submanifold without flat points as in part (ii)
of Theorem 3.9 cannot be genuine.

3.3 Exercises
Exercise 3.1. Prove the Corollary 3.3.

Exercise 3.2. Verify the assertion in Remark 3.8.

Exercise 3.3. Verify the assertion in Remark 3.10.



Chapter 4

Nonflat ambient spaces

In this chapter, we extend several results from the previous chapters to the
case of submanifolds of simply connected complete space form Qmc with
sectional curvature c 6= 0, that is, either the sphere or the hyperbolic space
according to whether c > 0 or c < 0, respectively.

A section T of f∗TQmc is called an infinitesimal bending of an isometric
immersion f : Mn → Qmc if the condition

〈∇̃XT, f∗Y 〉+ 〈f∗X, ∇̃Y T〉 = 0

holds for any X,Y ∈ X(M). Here ∇̃ denotes the Levi-Civita connection
of Qmc . Then

〈LX, f∗Y 〉+ 〈f∗X,LY 〉 = 0, (4.1)

where L ∈ Γ(Hom(TM, f∗TQmc )) is defined by

LX = ∇̃XT

for any X ∈ X(M).
Let B : TM × TM → f∗TQmc be given by

B(X,Y ) = (∇̃XL)Y (4.2)

for any X,Y ∈ X(M). Now B is not symmetric differently to the case of
the Euclidean ambient space. In fact, we have

B(X,Y )−B(Y,X) = ∇̃X∇̃Y T − ∇̃Y ∇̃XT − ∇̃[X,Y ]T

= R̃(X,Y )T
= c(f∗X ∧ f∗Y )T, (4.3)

where R̃ denotes the curvature tensor of the ambient space.

55
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Let β : TM × TM → NfM be the tensor defined by

β(X,Y ) = (B(X,Y ) + c〈X,Y 〉T)NfM

for any X,Y ∈ X(M). It follows from (4.3) that β is symmetric. Hence,
the tensor Bξ ∈ Γ(End(TM)) associated to ξ ∈ Γ(NfM) given by

〈BξX,Y 〉 = 〈β(X,Y ), ξ〉

is also symmetric.
Let Y ∈ Γ(Hom(NfM,TM)) be defined by

〈Yη,X〉+ 〈LX, η〉 = 0 (4.4)

for any X ∈ X(M) and η ∈ Γ(NfM). Then, the tensor E : TM ×NfM →
NfM given by

E(X, η) = α(X,Yη) + (LAηX)NfM

satisfies
〈E(X, η), ξ〉+ 〈E(X, ξ), η〉 = 0 (4.5)

for any X ∈ X(M) and η, ξ ∈ Γ(NfM).

Proposition 4.1. We have that

B(X,Y ) = f∗Yα(X,Y ) + β(X,Y ) + c(f∗X ∧ T)f∗Y (4.6)

for any X,Y ∈ X(M).

Proof. We have to show that

C(X,Y, Z) = 〈(B−f∗Yα)(X,Y ), f∗Z〉+c〈X,Y 〉〈T, f∗Z〉−c〈X,Z〉〈T, f∗Y 〉

vanishes for any X,Y, Z ∈ X(M). The derivative of (4.1) gives

0 = 〈∇̃ZLX, f∗Y 〉+ 〈LX, ∇̃Zf∗Y 〉+ 〈∇̃ZLY, f∗X〉+ 〈LY, ∇̃Zf∗X〉
= 〈B(Z,X), f∗Y 〉+ 〈L∇ZX, f∗Y 〉+ 〈LX, f∗∇ZY + α(Z, Y )〉
+ 〈B(Z, Y ), f∗X〉+ 〈L∇ZY, f∗X〉+ 〈LY, f∗∇ZX + α(Z,X)〉

= 〈B(Z,X), f∗Y 〉+ 〈LX,α(Z, Y )〉+ 〈B(Z, Y ), f∗X〉+ 〈LY, α(Z,X)〉
= 〈(B − f∗Yα)(Z,X), f∗Y 〉+ 〈(B − f∗Yα)(Z, Y ), f∗X〉.

It follows that
C(Z,X, Y ) = −C(Z, Y,X)

for any X,Y, Z ∈ X(M). On the other hand, from (4.3) we obtain that

C(X,Y, Z)− C(Y,X,Z) = 〈B(X,Y )−B(Y,X), Z〉 − c〈T, f∗Y 〉〈X,Z〉
+ c〈T, f∗X〉〈Y, Z〉

= 0.
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By the above, we have

C(X,Y, Z) = −C(X,Z, Y ) = −C(Z,X, Y ) = C(Z, Y,X)
= C(Y,Z,X) = −C(Y,X,Z) = −C(X,Y, Z)
= 0,

as we wished.

Proposition 4.2. The pair (β,E) associated to an infinitesimal bending
T of an isometric immersion f : Mn → Qmc satisfies the following system
of three equations:

Aβ(Y,Z)X +Bα(Y,Z)X = Aβ(X,Z)Y +Bα(X,Z)Y, (4.7)

(∇⊥Xβ)(Y,Z)− (∇⊥Y β)(X,Z) = E(Y, α(X,Z))− E(X,α(Y,Z)) (4.8)

and

(∇⊥XE)(Y, η)− (∇⊥Y E)(X, η) = β(X,AηY )− β(AηX,Y )
+α(X,BηY )− α(BηX,Y )

(4.9)

for any X,Y, Z ∈ X(M) and η ∈ Γ(NfM).

Proof. We first show that

(∇̃XY)η = c〈T, η〉f∗X − f∗BηX − LAηX + E(X, η) (4.10)

for any X ∈ X(M) and η ∈ Γ(NfM), where

(∇̃XY)η = ∇̃Xf∗Yη − f∗Y∇⊥Xη.

From the derivative of (4.4) we have using (4.1) and (4.6) that

0 = 〈∇̃Xf∗Yη, f∗Y 〉+ 〈Yη,∇XY 〉+ 〈∇̃XLY, η〉+ 〈LY, ∇̃Xη〉
= 〈(∇̃XY)η, f∗Y 〉+ 〈BηX,Y 〉 − c〈T, η〉〈X,Y 〉+ 〈LAηX, f∗Y 〉.

Since 〈f∗Yη, ξ〉 = 0, we obtain

0 = 〈∇̃Xf∗Yη, ξ〉+ 〈f∗Yη, ∇̃Xξ〉 = 〈(∇̃XY)η, ξ〉 − 〈α(X,Yη), ξ〉
= 〈(∇̃XY)η, ξ〉+ 〈LAηX − E(X, η), ξ〉

for any X ∈ X(M) and η, ξ ∈ Γ(NfM), and (4.10) follows.
Since

(∇̃XB)(Y,Z) = ∇̃X(∇̃Y L)Z − (∇̃∇XY L)Z − (∇̃Y L)∇XZ
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it is easy to see that

(∇̃XB)(Y, Z)− (∇̃YB)(X,Z) = R̃(X,Y )LZ − LR(X,Y )Z
= c(X ∧ Y )LZ − LR(X,Y )Z (4.11)

for any X,Y, Z ∈ X(M). It follows using (4.6) that

(∇̃XB)(Y, Z) = (∇̃XY)α(Y,Z) + f∗Y(∇⊥Xα)(Y,Z) + (∇⊥Xβ)(Y,Z)
+ c〈Z,T〉α(X,Y )− c〈Y,Z〉LX − f∗Aβ(Y,Z)X

+ c(〈α(X,Z),T〉+ 〈f∗Z,LX〉)f∗Y

for any X,Y, Z ∈ X(M). Then, the Codazzi equation gives

〈(∇̃XB)(Y, Z)− (∇̃YB)(X,Z), f∗W 〉
= 〈(∇̃XY)α(Y,Z)− (∇̃Y Y)α(X,Z), f∗W 〉+ c(〈α(X,Z),T〉

+ 〈f∗Z,LX〉)〈Y,W 〉 − c(〈α(Y, Z),T〉+ 〈f∗Z,LY 〉)〈X,W 〉
+ 〈Aβ(X,Z)Y −Aβ(Y,Z)X,W 〉 − 〈cL(X ∧ Y )Z, f∗W 〉

for any X,Y, Z,W ∈ X(M). Hence (4.1), (4.11) and the Gauss equation
(1.4) yield

〈(∇̃XY)α(Y,Z)− (∇̃Y Y)α(X,Z), f∗W 〉
= c〈α(Y,Z),T〉〈X,W 〉 − c〈α(X,Z),T〉〈Y,W 〉

+ 〈LAα(X,Z)Y − LAα(Y,Z)X, f∗W 〉+ 〈Aβ(Y,Z)X −Aβ(X,Z)Y,W 〉.

On the other hand, it follows from (4.10) that

〈(∇̃XY)α(Y, Z)− (∇̃Y Y)α(X,Z), f∗W 〉
= c〈α(Y,Z),T〉〈X,W 〉 − c〈α(X,Z),T〉〈Y,W 〉

+ 〈LAα(X,Z)Y − LAα(Y,Z)X, f∗W 〉+ 〈Bα(X,Z)Y −Bα(Y,Z)X,W 〉.

The last two equations give

〈Aβ(Y,Z)X −Aβ(X,Z)Y,W 〉 = 〈Bα(X,Z)Y −Bα(Y,Z)X,W 〉,

and this is (4.7).
Using (4.6) we obtain

((∇̃XB)(Y, Z))NfM = α(X,Yα(Y, Z)) + (∇⊥Xβ)(Y,Z)
+ c〈f∗Z,T〉α(X,Y )− c〈Y, Z〉(LX)NfM .

Then, we have from (4.11) and the Gauss equation that

(∇⊥Xβ)(Y,Z)− (∇⊥Y β)(X,Z)
= (LR(Y,X)Z)NfM − α(X,Yα(Y,Z)) + α(Y,Yα(X,Z))

+ c〈Y,Z〉(LX)NfM − c〈X,Z〉(LY )NfM

= (LAα(X,Z)Y − LAα(Y,Z)X)NfM

− α(X,Yα(Y, Z)) + α(Y,Yα(X,Z)),
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and this is (4.8).
We have

(∇⊥XE)(Y, η) = ∇⊥XE(Y, η)− E(∇XY, η)− E(Y,∇⊥Xη)
= (∇⊥Xα)(Y,Yη) + (L(∇XA)(Y, η))NfM + α(Y,∇XYη)
− α(Y,Y∇⊥Xη)− (L∇XAηY )NfM +∇⊥X(LAηY )NfM .

Then (4.10) gives

(∇⊥XE)(Y, η) = (∇⊥Xα)(Y,Yη) + (L(∇XA)(Y, η))NfM − α(Y,BηX)
− α(Y, (LAηX)TM )− (L∇XAηY )NfM

+∇⊥X(LAηY )NfM + c〈T, η〉α(X,Y ).

Using the Codazzi equation, we have

(∇⊥XE)(Y, η)− (∇⊥Y E)(X, η)
= α(X,BηY )− α(Y,BηX) + α(X, (LAηY )TM )− α(Y, (LAηX)TM )
− (L∇XAηY )NfM +∇⊥X(LAηY )NfM

+ (L∇YAηX)NfM −∇⊥Y (LAηX)NfM .

From (4.6) and the definition of B we obtain

β(X,AηY )− c〈X,AηY 〉(T)NfM

= α(X, (LAηY )TM )− (L∇XAηY )NfM +∇⊥X(LAηY )NfM ,

and then (4.9) follows.

Let T be an infinitesimal bending of f : Mn → Qmc . Let i : Qmc → Em+1

stand for the isometric umbilical inclusion, where Em+1 denotes either the
Euclidean space Rm+1 (c > 0) or Lorentzian space Lm+1 (c < 0) with the
standard flat metric. Recall that the position vector f̂ = i ◦ f in Em+1 lies
in Nf̂M . Hence, for simplicity we write f ∈ Γ(Nf̂M). Let ∇̂ denote the
Levi-Civita connection on Em+1 and regard T̂ = i∗T as an infinitesimal
bending of f̂ . Then the tensor L̂X = ∇̂X T̂ satisfies

L̂X = i∗LX − c〈f∗X,T〉f (4.12)

for any X ∈ X(M).

Lemma 4.3. The pair (β̂, Ê) associated to T̂ is given by

β̂(X,Y ) = i∗β(X,Y )− c〈X,Y 〉i∗(T)NfM − c〈α(X,Y ),T〉f,

Ê(X, i∗η) = i∗E(X, η)− c (〈X,Yη〉+ 〈f∗AηX,T〉) f
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and
Ê(X, f) = −i∗∇⊥X(T)NfM

for any X,Y ∈ X(M) and η ∈ Γ(NfM).

Proof. Let ∇̂ denote the Levi-Civita connection in Em+1. We have that

∇̂X L̂Y − L̂∇XY = ∇̂X(i∗LY − c〈f∗Y,T〉f)− i∗L∇XY + c〈f∗∇XY,T〉f

= i∗(∇̃XL)Y − c〈f∗Y,T〉f̂∗X − c〈α(X,Y ),T〉f,

where for the last step we used (4.1). Recall that β̂ is the normal
component of ∇̂L̂. It follows from (4.6) that

β̂(X,Y ) = i∗β(X,Y )− c〈X,Y 〉i∗(T)NfM − c〈α(X,Y ),T〉f

for any X,Y ∈ X(M).
Let Ŷ associated to T̂ be given by (2.10). We have from (4.12) that

Ŷi∗η = Yη

for any η ∈ Γ(NfM). It also follows from (4.12) that

f∗Ŷf = (T)f∗TM .

Therefore, we obtain that

Ê(X, i∗η) = α̂(X,Yη) + (L̂AηX)Nf̂M

= i∗α(X,Yη)− c〈X,Yη〉f + i∗(LAηX)NfM − c〈f∗AηX,T〉f
= i∗E(X, η)− c(〈X,Yη〉+ 〈f∗AηX,T〉)f.

As for the position vector f , we have

Ê(X, f) = α̂(X, Ŷf) + (L̂ÂfX)Nf̂M

= α̂(X, (T)TM )− (L̂X)Nf̂M

= −i∗∇⊥X(T)NfM ,

and the proof follows.

An infinitesimal bending T of an isometric immersion f : Mn → Qmc is
said to be a trivial infinitesimal bending if it is of the form T = Z + w,
where Z is the restriction to f(M) of a Killing vector field of Qmc and
w ∈ Γ(NfM) is parallel along f with respect to the ambient connection,
that is, if ∇̃Xw = 0 for any X ∈ X(M). Notice that if w 6= 0 then f
necessarily reduces codimension.
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Proposition 4.4. An infinitesimal bending T of f : Mn → Qmc is trivial
if and only if there is a skew-symmetric tensor C ∈ Γ(End(NfM)) such
that the associated pair (β,E) has the form

β(X,Y ) = Cα(X,Y ) and E(X, η) = −(∇⊥XC)η. (4.13)

Proof. If T is trivial it has the form T = Z + w where Z is the restriction
to the submanifold of a Killing vector field Z of Qmc and w ∈ Γ(NfM) is
parallel along f . Then the associated tensor L satisfies

LX = LX

for any X ∈ X(M), where L is given by LU = ∇̃UZ for any U ∈ X(Qmc ).
Since Z is a Killing vector field it satisfies

〈LU, V 〉+ 〈LV,U〉 = 0

for any U, V ∈ X(Qmc ). Thus, we have

(∇̃XL)Y = ∇̃XLY − L∇XY = ∇̃X∇̃Y T − ∇̃∇XY T

= ∇̃X∇̃Y Z− ∇̃∇̃XY
Z + ∇̃α(X,Y )Z

= ∇̃X∇̃Y Z− ∇̃∇̃XY
Z + Lα(X,Y )

for any X,Y ∈ X(M). It follows from Exercise 4.1 that

(∇̃XL)Y = c(f∗X ∧ T)f∗Y + Lα(X,Y )

for any X,Y ∈ X(M). Hence, we obtain from (4.6) that

c(f∗X ∧ T)f∗Y + Lα(X,Y ) = f∗Yα(X,Y ) + β(X,Y ) + c(f∗X ∧ T)f∗Y.

Then, calling C = (L|NfM )NfM we have

β(X,Y ) = Cα(X,Y ).

Since Z is a Killing vector field, then f∗Yη = (Lη)f∗TM where η ∈
Γ(NfM). This implies that

(∇̃XL)η = ∇̃XLη − L∇̃Xη
= ∇̃X(f∗Yη + (Lη)NfM ) + L(f∗AηX −∇⊥Xη).

Taking normal components, we obtain

((∇̃XL)η)NfM = α(X,Yη) +∇⊥X(Lη)NfM + (LAηX −∇⊥Xη)NfM

= E(X, η) +∇⊥X(Lη)NfM − (L∇⊥Xη)NfM .
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On the other hand, we have from Exercise 4.1 that

(∇̃XL)η = c(f∗X ∧ T)η = c〈η,T〉f∗X,

which implies that

E(X, η) +∇⊥X(Lη)NfM − (L∇⊥Xη)NfM = 0.

Thus the previous equation is just

E(X, η) + (∇⊥XC)η = 0,

and hence (4.13) holds.

Assume that T is an infinitesimal bending of f : Mn → Qmc whose
associated pair verifies (4.13) and regard T̂ = i∗T as an infinitesimal
bending of f̂ = i ◦ f : Mn → Em+1. We claim that that the tensors
associated to T̂ have the form (2.19). In fact, let Ĉ ∈ Γ(End(Nf̂M)) be
given by

Ĉi∗η = i∗Cη − c〈η,T〉f and Ĉf = i∗(T)NfM

for any X ∈ X(M) and η ∈ Γ(NfM). Then, it follows from Lemma 4.3
that

β̂(X,Y ) = i∗β(X,Y )− c〈X,Y 〉i∗(T)NfM − c〈α(X,Y ),T〉f
= i∗Cα(X,Y )− c〈X,Y 〉Ĉf − c〈α(X,Y ),T〉f
= Ĉα̂(X,Y )

for any X,Y ∈ X(M). As for Ê, we also have from Lemma 4.3 that

Ê(X, i∗η) = i∗E(X, η)− c(〈X,Yη〉+ 〈f∗AηX,T〉)f
= −i∗(∇⊥XC)η − c(〈X,Yη〉+ 〈f∗AηX,T〉)f
= i∗(C∇⊥Xη −∇⊥XCη)− c(〈X,Yη〉+ 〈f∗AηX,T〉)f
= i∗(C∇⊥Xη −∇⊥XCη) + c(〈LX, η〉+ 〈∇̃Xη,T〉 − 〈∇⊥Xη,T〉)f
= Ĉi∗∇⊥Xη − i∗∇⊥XCη + cX〈η,T〉f
= Ĉi∗∇⊥Xη − ∇̂⊥XĈi∗η
= −(∇̂⊥XĈ)i∗η,

where ∇̂⊥ denotes the normal connection of f̂ . From the definition of Ĉ
it is not hard to see that

(∇̂⊥XĈ)f = i∗∇⊥X(T)NfM .

Hence, we also have from Lemma 4.3 that Ê = −∇̂⊥Ĉ, and this proves
the claim.
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It now follows from Proposition 2.7 that T̂ is a trivial infinitesimal
bending of f̂ , that is, that

T̂(x) = Df̂(x) + w,

where D is a skew-symmetric linear map of Em+1 and w ∈ Em+1 is
constant. Since T̂ = i∗T is tangent to Qmc , then w is orthogonal to the
position vector f̂ , hence it determines a parallel vector field normal to f
and therefore T is trivial. In particular, if f does not reduce codimension
then w = 0.

From now on, we identify two infinitesimal bendings T1 and T2 of an
isometric immersion f : Mn → Qmc if there exist 0 6= k ∈ R and a trivial
infinitesimal bending T0 such that T2 = T0 + kT1. Accordingly, we also
identify pairs of tensors (β1,E1) and (β2,E2) if there is 0 6= k ∈ R such
that (β1 − kβ2,E1 − kE2) has the form (4.13).

4.1 The Fundamental Theorem
In this section we give the Fundamental Theorem for infinitesimal
variations of submanifolds in nonflat ambient spaces.

Theorem 4.5. Let f : Mn → Qmc be an isometric immersion of a
simply connected Riemannian manifold. Let β : TM × TM → NfM be
a symmetric tensor and let the tensor E : TM ×NfM → NfM satisfy the
compatibility condition (4.5). If the pair 0 6= (β,E) satisfies (4.7), (4.8)
and (4.9), then there is a unique infinitesimal bending T of f having (β,E)
as associated pair.

Proof. Set f̂ = i◦f : Mn → Em+1 and define the tensors β̂ : TM ×TM →
Nf̂M and Ê : TM ×Nf̂M → Nf̂M by

β̂(X,Y ) = i∗β(X,Y ), Ê(X, i∗η) = i∗E(X, η) and Ê(X, f) = 0

for any X,Y ∈ X(M) and η ∈ Γ(NfM). Notice that at any point both
tensors do not have a component in the direction of the position vector
f . This already implies that β̂ verifies (2.12) since β satisfies (4.7). Also
notice that ∇̂⊥Xf = 0 and that

∇̂⊥X i∗η = i∗∇⊥Xη

for any X ∈ X(M) and η ∈ Γ(NfM). It follows from (4.8) and (4.9) that
β̂ and Ê verify (2.13) and (2.14) for any X,Y ∈ X(M) and η ∈ Γ(NfM).
Since Ê(X, f) = 0 and Âf = −I, then (2.14) also holds for f . Therefore
the integrability conditions of equation (2.20) are satisfied.
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Similarly as in the proof of Theorem 2.8, we take a skew-symmetric
solution D ∈ Γ(End(f̂∗TEm+1)) of (2.20) along f̂ . We claim that
T ∈ Γ(f∗TQmc ) given by

i∗T(x) = D(x)f(x)

is an infinitesimal bending of f . For simplicity, from now on we write
U instead of i∗U when considering U ∈ Γ(f∗TQmc ) as an element of
Γ(f̂∗TEm+1) and, similarly, we write X instead f∗X for tangent vector
fields. Recall that ∇̃ denotes the Levi-Civita connection of Qmc and ∇̂ the
one of Em+1. Also recall that

〈DU, f〉+ 〈T, U〉 = 0

for any U ∈ Γ(f∗TQmc ). Then

DU = (DU)TQm
c
− c〈U,T〉f. (4.14)

Thus we have

∇̃XT = ∇̂XT + c〈X,T〉f
= ∇̂XDf + c〈X,T〉f
= (∇̂XD)f + DX + c〈X,T〉f.

We obtain from (2.20) and (4.14) that

∇̃XT = −B̂fX + Ê(X, f) + (DX)TQm
c
.

Notice that 〈B̂fX,Y 〉 = 〈β̂(X,Y ), f〉 = 0 and that Ê(X, f) = 0 by the
definition of the tensors β̂ and Ê. Hence

∇̃XT = (DX)TQm
c
.

Since D is skew symmetric we have from the previous equation that T

verifies (4.1), and the claim follows. Also observe that from the previous
equation the tensor L associated to T is (D|TM )TQm

c
. Then

∇̂XDY = ∇̂X(LY − c〈Y,T〉f)
= ∇̃XLY − c〈X,LY 〉f − c〈∇̃XY,T〉f − c〈Y,LX〉f − c〈Y,T〉f∗X
= ∇̃XLY − c〈∇̃XY,T〉f − c〈Y,T〉f∗X,
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where in the last step we made use of (4.1). Using (4.14) we have that

(∇̂XD)Y = ∇̂XDY −D∇̂XY
= ∇̃XLY − c〈∇̃XY,T〉f − c〈Y,T〉f∗X −D∇̃XY + c〈X,Y 〉T
= ∇̃XLY − c〈∇̃XY,T〉f − c〈Y,T〉f∗X
−D∇XY −Dα(X,Y ) + c〈X,Y 〉T

= (∇̃XL)Y − c〈∇̃XY,T〉f − c〈Y,T〉f∗X
+ c〈∇XY,T〉f −Dα(X,Y ) + c〈X,Y 〉T

= (∇̃XL)Y − c〈α(X,Y ),T〉f − c〈Y,T〉f∗X
−Dα(X,Y ) + c〈X,Y 〉T

= (∇̃XL)Y − (Dα(X,Y ))TQm
c
− c〈Y,T〉f∗X + c〈X,Y 〉T.

It follows from (2.20) and the above that

(∇̃XL)Y = β(X,Y ) + (Dα(X,Y ))TQm
c

+ c〈Y,T〉f∗X − c〈X,Y 〉T.

Thus, we have that the symmetric tensor β̃ associated to T is given by

β̃ = β + Cα,

where C ∈ Γ(End(NfM)) is the skew-symmetric tensor defined as Cη =
(Dη)NfM for any η ∈ Γ(NfM). As for the tensor Ẽ associated to T, we
have

Ẽ(X, η) = α(X,Yη) + (LAηX)NfM

= (∇̃X(Dη)TM )NfM + (DAηX)NfM

= (∇̃X(Dη)TQm
c

)NfM −∇⊥XCη − (D∇̃Xη)NfM + C∇⊥Xη
= (∇̂XDη)NfM − (D∇̂Xη)NfM − (∇⊥XC)η
= E(X, η)− (∇⊥XC)η,

where for the last step we used (2.20). Therefore Ẽ = E−∇⊥C, and this
concludes the proof.

4.2 The hypersurfaces case
Let f : Mn → Qn+1

c be an isometric immersion with second fundamental
form A ∈ Γ(End(TM)) with respect to a unit normal map N ∈ Γ(NfM).
Associated to an infinitesimal bending T of f there is the symmetric tensor
B ∈ Γ(End(TM)) defined by

〈BX,Y 〉N = β(X,Y ).
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In codimension one, a tensor E : TM × NfM → NfM satisfying (4.5)
vanishes. Hence, the fundamental equations of an infinitesimal bending
take the form

BX ∧AY −BY ∧AX = 0 (4.15)

and
(∇XB)Y = (∇YB)X

for any X,Y ∈ X(M).
Analogously to the case of the flat ambient space we have the following

result.

Proposition 4.6. An infinitesimal bending T of an hypersurface f : Mn →
Qn+1
c is trivial if and only if its associated tensor B vanishes.

For hypersurfaces the Fundamental Theorem takes the following form.

Theorem 4.7. Let f : Mn → Qn+1
c be an isometric immersion of a

simply connected Riemannian manifold. Let 0 6= B ∈ Γ(End(TM)) be a
symmetric Codazzi tensor that satisfies (4.15). Then there exists a unique
infinitesimal bending T of f having B as associated tensor.

4.3 Infinitesimal rigidity
In this section, we give rigidity results analogous to the ones in Chapter 2
for the flat ambient space.

Proposition 4.8. Let T be an infinitesimal bending of a given isometric
immersion f : Mn → Qmc . Then let Gt : Mn → Em+1 for t ∈ I ⊂ R be the
map defined by

Gt(x) = (1 + ct2‖T(x)‖2)−1/2(f̂(x) + ti∗T(x)), (4.16)

where f̂ = i ◦ f : Mn → Em+1. The following assertions hold:

(i) The maps Gt and G−t determine (locally if c < 0 and I is small
enough) immersions in Qmc that induce the same metric.

(ii) If f is substantial and there is 0 6= t0 ∈ I such that Gt0 and G−t0
are congruent as immersions in Qmc then T is trivial.

Proof. We compute in Em+1 and write T instead of i∗T for simplicity.
Since the position vector f̂ is orthogonal to Qmc , then

‖f̂(x) + tT(x)‖2 = ‖f̂(x)‖2 + t2‖T(x)‖2 (4.17)

= 1
c

+ t2‖T(x)‖2. (4.18)
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If c < 0, we restrict ourselves to open subsets U of Mn where there is a
constant K > 0 such that K2 > −c‖T‖2. Therefore 1 + ct2‖T(x)‖2 > 0 on
U when taking t ∈ I = (−K−1,K−1). Hence

‖Gt(x)‖2 = 1
1 + ct2‖T(x)‖2

(
1/c+ t2‖T(x)‖2

)
= 1
c

and thus Gt(x) ∈ Qmc for any x ∈Mn (x ∈ U if c < 0).
Setting

φt(x) = (1 + ct2‖T(x)‖2)−1/2,

we have
Gt∗X = X(φt)(f̂ + tT) + φt(f̂∗X + t∇̂XT)

for any X ∈ X(M). Using (4.1) we obtain

‖Gt∗X‖2

= ‖X(φt)(f̂ + tT) + φt(f̂∗X + t∇̂XT)‖2

= X(φt)2‖f̂ + tT‖2 + 2φtX(φt)〈f̂ + tT, f̂∗X + t∇̂XT〉+ φ2
t‖f̂∗X + t∇̂XT‖2

= X(φt)2(1/c+ t2‖T‖2) + 2φtX(φt)(t〈f̂ , ∇̂XT〉+ t〈f∗X,T〉+ t2〈∇̃XT,T〉)
+ φ2

t (‖f∗X‖2 + t2‖∇̂XT‖2)
= (1/c)X(φt)2φ−2

t + 2φtX(φt)t2〈∇̃XT,T〉+ φ2
t (‖f∗X‖2 + t2‖∇̂XT‖2)

for any X ∈ X(M). Since

X(φt) = −ct2φ3
t 〈∇̃XT,T〉,

then
‖Gt∗X‖2 = φ2

t (‖f∗X‖2 + t2‖∇̂XT‖2 − ct4φ2
t 〈∇̃XT,T〉2)

for any X ∈ X(M), and this proves part (i).
Now assume that the immersions Gt0 and G−t0 are congruent in Qmc

for t0 ∈ I, that is, there is a linear isometry S of Em+1 such that
Gt0 = S ◦G−t0 . Thus

φt0(f̂ + tT) = φ−t0S(f̂ − t0T),

and since φt0 = φ−t0 , we have

(S − Id)f̂ = t0(S + Id)T, (4.19)

where Id is the identity map in Em+1.
We claim that S + Id is invertible. If otherwise, there is 0 6= δ ∈

ker(S + Id). Since S∗ = S−1, where S∗ denotes the adjoint operator of



68 Marcos Dajczer and Miguel I. Jimenez

S, then δ ∈ ker(S∗ + Id) and hence (S − Id)∗δ = −2δ. Then the inner
product of (4.19) with δ gives

〈f̂(x), δ〉 = 0 for any x ∈Mn.

For c < 0 since we have 〈f̂ , f̂〉 < 0, then 〈δ, δ〉 > 0. It follows that
f̂ is contained in an hyperplane orthogonal to δ in contradiction to the
assumption that f is substantial, and this proves the claim.
We have that S + Id is invertible, and hence T = Df̂ where

D = 1
t0

(S + Id)−1(S − Id).

To conclude the proof of part (ii) it remains to show that D is skew-
symmetric. For this, first notice that

(S − Id)(S∗ + Id) = S − S∗ = −(S + Id)(S∗ − Id).

Then

(S + Id)−1(S − Id) = (S + Id)−1(S − Id)(S∗ + Id)(S∗ + Id)−1

= −(S + Id)−1(S + Id)(S∗ − Id)(S∗ + Id)−1

= −(S∗ − Id)(S∗ + Id)−1

= −((S + Id)−1(S − Id))∗

as we wished.

A submanifold f : Mn → Qmc is said to be infinitesimally rigid if it
admits only trivial infinitesimal bendings. Since Propositions 2.14 and
2.15 also hold when the ambient space is Qmc , then using the above we
have the following result.

Theorem 4.9. Let f : Mn → Qn+p
c be an isometric immersion such that

either p ≤ 5 and the s-nullities satisfy νs ≤ n− 2s− 1 for all 1 ≤ s ≤ p or
the type number satisfies τ ≥ 3. Then f is infinitesimally rigid.

Proof. Let T be an infinitesimal bending of f . Define the maps Gt by
(4.16). Then any point of Mn is contained in a neighborhood U such that
for t is small enough the immersions Gt|U and G−t|U are congruent. Hence
T is trivial on U and the tensor β associated to T satisfies β = CUα for
some skew symmetric endomorphism CU ∈ Γ(End(NfU)). In particular,
from the assumptions we have that f has full first normal spaces. Thus, if
two such open subsets U and V intersect then CU = CV . Therefore, the
pair (β,E) associated to T has everywhere the form (4.13), and hence T is
globally trivial.
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4.4 The genuine case
In this section, it is shown that several results from the previous chapter
also hold when the ambient space is a space form of nonflat sectional
curvature.

Several definitions given previously for the Euclidean ambient space
extend to the new situation with minor adaptations.
A smooth map F : M̃n+` → Qn+p

c , 0 < ` < p, from a differentiable
manifold M̃n+` is said to be a singular extension of a given isometric
immersion f : Mn → Qn+p

c if there is an embedding j : Mn → M̃n+`,
0 < ` < p, such that F is an immersion along M̃n+` \ j(M) and f = F ◦ j.
Hence, the map F may fail (but not necessarily) to be an immersion along
points of j(M).
An infinitesimal bending T of an isometric immersion f : Mn →

Qn+p
c extends in the singular sense if there is a singular extension

F : M̃n+` → Qn+p
c of f and a smooth map T̃ : M̃n+` → Em+1 such that

T̃ is tangent to Qmc and is an infinitesimal bending of F |M̃\j(M) with
T = T̃|j(M).
That an isometric immersion f : Mn → Qmc is r-ruled means that there is

a smooth r-dimensional totally geodesic tangent distribution whose leaves
are mapped diffeomorphically by f to open subsets of totally geodesic
submanifolds of Qmc .
An infinitesimal bending T of an isometric immersion f : Mn → Qn+p

c ,
p ≥ 2, is called a genuine infinitesimal bending if T does not extend in
the singular sense when restricted to any open subset of Mn. If f admits
such a bending we say that it is genuinely infinitesimally bendable. Finally,
we say that f is genuinely infinitesimally rigid if given any infinitesimal
bending T of f there is an open dense subset of Mn such that T restricted
to any connected component extends in the singular sense.
A key ingredient in this section is the following result obtained as

a consequence of Proposition 3.5. In what follows f̂ = i ◦ f where
f : Mn → Qmc is an isometric immersion and i : Qmc → Em+1 is the usual
umbilical inclusion. Moreover, expp : TpQmc → Qmc denotes the exponential
map at p ∈ Qmc .

Proposition 4.10. Let f : Mn → Qmc be an isometric immersion and let
D be a smooth tangent distribution of dimension d > 0. Assume that there
is no open subset U ⊂ Mn and Z ∈ Γ(D|U ) with ‖Z‖2 = 1/|c| such that
the map F : U × I → Qmc ⊂ Em+1 given by

F (x, t) =
{

cos tf̂(x) + sin tf̂∗Z if c > 0,

cosh tf̂(x) + sinh tf̂∗Z if c < 0
(4.20)
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is a singular extension of f on an open neighborhood of U × {0}. Then,
for any x ∈ Mn there is an open neighborhood V of the origin in D(x)
such that expf(x)(f∗V ) ⊂ f(M). Hence f is d-ruled along each connected
component of an open dense subset of Mn.

Proof. Given a smooth map g : Nn → Qmc from a differentiable manifold
Nn, by the cone over g we mean the map g̃ : N × R+ → Em+1 given by

g̃(y, s) = sg(y).

Observe that if g is an immersion then also is g̃.
On an open subset U ⊂ M take Z ∈ X(U) with ‖Z‖ = 1/|c|. Then let

f̃ be the cone over f and let F̄ : U × R+ × I → Em+1 be given by

F̄ (x, s, t) = sf̂(x) + tf̂∗Z. (4.21)

Assume that there is an open neighborhood of (x, 1, 0) in U×R+×I where
F̄ is a singular extension of f̃ . Then the intersection of its image with Qmc
determines a singular extension of f . In fact, taking s 6= 1 and t such
that s2 + sign(c)t2 = 1 we have that F̄ (x, s, t) ∈ Qmc . Moreover, for such
pair (s, t) if close enough to (1, 0), then F̄ is transversal to Qmc and thus
F̄ (U × I × I) ∩Qmc is a singular extension of f .
Take Z ∈ Γ(D) with ‖Z‖2 = 1/|c| and let F : U × I → Qmc ⊂ Em+1 be

given by (4.20). Notice that the cone over F , say F̃ , can be parametrized
by (4.21). Therefore, our assumptions and the discussion above imply that
there does not exist an open subset U and Z ∈ Γ(D|U ), ‖Z‖2 = 1/|c|, such
that F̃ is a singular extension of f̃ . Hence, it follows from Proposition 3.5
that for any x ∈ Mn there is an open neighborhood V of the origin in
D(x) such that f̃∗V ⊂ f̃(M×R+). In other words, locally the cone over F
is contained in the cone over f . Thus the piece of geodesic in Qmc passing
through f(x) in the direction of Z is contained in f(M), and the proof
follows.

Proposition 4.11. Let f : Mn → Qmc be an isometric immersion and let
T be an infinitesimal bending with associated pair (β,E). Then, at any
point of Mn the bilinear form θ : TM × TM → NfM ⊕NfM defined by

θ(X,Y ) = (α(X,Y ) + β(X,Y ), α(X,Y )− β(X,Y ))

is flat with respect to the inner product in NfM ⊕NfM given by

〈〈(ξ1, η1), (ξ2, η2)〉〉NfM⊕NfM = 〈ξ1, ξ2〉NfM − 〈η1, η2〉NfM .

Proof. Follows from (4.7).

Similarly to the case of the Euclidean ambient space, we have the
following fact.
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Proposition 4.12. Let f : Mn → Qmc be 1-regular and let β1 : TM ×
TM → N1 be the N1-component of β. Then the bilinear form θ̂ : TM ×
TM → N1 ⊕N1 defined at any point by

θ̂(X,Y ) = (α(X,Y ) + β1(X,Y ), α(X,Y )− β1(X,Y ))

is flat with respect to the inner product induced on N1 ⊕N1.

Theorem 4.13. Let f : Mn → Qn+p, n > 2p ≥ 4, be an isometric
immersion and let T be an infinitesimal bending of f . Then along each
connected component of an open and dense subset either T extends in the
singular sense or f is r-ruled with r ≥ n− 2p.

Proof. By Proposition 4.11 the symmetric tensor θ is flat at any point
of Mn. Given Y ∈ RE(θ) denote D = ker θY where θY (X) = θ(Y,X).
Notice that Z ∈ D means that α(Y, Z) = 0 = β(Y, Z).
Let U ⊂ Mn be an open subset where Y ∈ X(U) satisfies Y ∈ RE(θ)

and D has dimension d at any point. Proposition 1.10 gives

〈〈θ(X,Z), θ(X,Z)〉〉 = 0

for any X ∈ X(U) and Z ∈ Γ(D). Equivalently, we have

〈α(X,Z), β(X,Z)〉 = 0 (4.22)

for any X ∈ X(U) and Z ∈ Γ(D).
Assume that there is Z ∈ Γ(D), ‖Z‖2 = 1/|c|, defined in an open subset

V of U such that F : V × (−ε, ε) given by (4.20) is a singular extension of
f . Let L̂ be given by (4.12) and define T̃ : M × (−ε, ε)→ Em+1 by

T̃(x, t) =
{

cos ti∗T(x) + sin tL̂(x)Z(x) if c > 0,

cosh ti∗T(x) + sinh tL̂(x)Z(x) if c < 0.

We claim that T̃ is an infinitesimal bending of F on the open subset where
F is an immersion. In what follows ∇̂ denotes the Levi-Civita connection
of Em+1. We only argue the case c > 0 since the computations for c < 0
are similar. First notice that

〈F (x, t), T̃(x, t)〉 = 〈cos tf̂ + sin tf̂∗Z, cos ti∗T + sin tL̂Z〉
= cos t sin t〈f̂ , L̂Z〉+ cos t sin t〈f∗Z,T〉
= − cos t sin t〈f∗Z,T〉+ cos t sin t〈f∗Z,T〉
= 0,

and hence T̃ is tangent to Qmc .
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We have that

〈F∗∂/∂t, ∇̂∂/∂tT̃〉 = 〈− sin tf̂ + cos tf̂∗Z,− sin ti∗T + cos tL̂Z〉
= 0.

We obtain using (4.1) that

〈F∗∂/∂t,∇̂X T̃〉+ 〈F∗X, ∇̂∂/∂tT̃〉
= 〈− sin tf̂ + cos tf̂∗Z, cos tL̂X + sin t∇̂X L̂Z〉

+ 〈cos tf̂∗X + sin t∇̂X f̂∗Z,− sin ti∗T + cos tL̂Z〉
= cos t sin t〈f∗X,T〉 − sin2 t〈f̂ , ∇̂X L̂Z〉+ cos2 t〈f∗Z,LX〉

+ cos t sin t〈f̂∗Z, ∇̂X L̂Z〉 − cos t sin t〈f∗X,T〉+ cos2 t〈f∗X,LZ〉

− sin2 t〈f̂∗∇XZ + α(X,Z),T〉+ cos t sin t〈∇̂X f̂∗Z, L̂Z〉
= − sin2 t〈f̂ , ∇̂X L̂Z〉+ cos t sin t〈f̂∗Z, ∇̂X L̂Z〉
− sin2 t〈f̂∗∇XZ + α(X,Z),T〉+ cos t sin t〈∇̂X f̂∗Z, L̂Z〉

= − sin2 t〈f̂ , (∇̂X L̂)Z〉 − sin2 t〈α(X,Z),T〉+ cos t sin tX〈f̂∗Z, L̂Z〉
= 0

for anyX ∈ X(M), where for the last step we used Lemma 4.3. In addition,
we have using (2.11), (2.10) and Lemma 4.3 that

〈F∗X,∇̂X T̃〉

= 〈cos tf̂∗X + sin t∇̂X f̂∗Z, cos tL̂X + sin t∇̂X L̂Z〉
= cos t sin t(〈f̂∗X, ∇̂X L̂Z〉+ 〈∇̂X f̂∗Z, L̂X〉) + sin2 t〈∇̂X f̂∗Z, ∇̂X L̂Z〉

= cos t sin t(〈f̂∗X, (∇̂X L̂)Z〉+ 〈α̂(X,Z), L̂X〉)
+ sin2 t(〈f̂∗∇XZ, (∇̂X L̂)Z〉+ 〈α̂(X,Z), ∇̂X L̂Z〉)

= sin2 t(〈f̂∗∇XZ, Ŷα̂(Y,Z)〉+ 〈α̂(X,Z), ∇̂X L̂Z〉)
= sin2 t〈α̂(X,Z), (∇̂X L̂)Z〉
= sin2 t〈α̂(X,Z), β̂(X,Z)〉
= sin2 t〈α(X,Z), β(X,Z)〉
= 0,

where the last steps follows from (4.22), and this proves the claim.
Let W ⊂ U be an open subset such that Z ∈ Γ(D) as above does not

exist along any open subset of W . By Proposition 4.10 the immersion is
d-ruled along any connected component of an open dense subset of W .
Moreover, we have that d = dimD = n− dim Im(θY ) ≥ n− 2p.
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Let F : M̃n+1 → Qn+p
c be an isometric immersion and let T̃ be an

infinitesimal bending of F . Given an isometric embedding j : Mn → M̃n+1

consider the composition of isometric immersions f = F ◦ j : Mn → Qn+p
c .

Then T = T̃|j(M) is an infinitesimal bending of f . It is easy to see that the
corresponding tensors B and B̃ given by (4.2) satisfy along f that

B(X,Y ) = B̃(X,Y ) + 〈∇̃XY, F∗η〉L̃η

for η ∈ Γ(NjM) of unit length and any X,Y ∈ X(M). It follows from
(4.6) that

〈B(X,Y ), F∗η〉 = 〈β(X,Y ), F∗η〉 − c〈X,Y 〉〈T, F∗η〉

and similarly using (4.4) that

〈B̃(X,Y ), F∗η〉 = −〈αF (X,Y ), L̃η〉 − c〈X,Y 〉〈T, F∗η〉.

Hence, it follows from (4.1) and the equations above that

〈β(X,Y ), F∗η〉+ 〈α(X,Y ), L̃η〉 = 0

for all X,Y ∈ X(M). As in the case of the Euclidean ambient space,
satisfying a condition of this type may guarantee that the infinitesimal
bending is not genuine.
We say that an infinitesimal bending of an isometric immersion

f : Mn → Qn+p
c , p ≥ 2, satisfies the condition (∗) if there is η ∈ Γ(NfM)

of unit length and ξ ∈ Γ(R), where R is determined by the orthogonal
splitting NfM = P ⊕R and P = span{η}, such that

Bη +Aξ = 0, (4.23)

where Bη = 〈β, η〉. Thus, that (3.6) holds means that

〈β(X,Y ), η〉+ 〈α(X,Y ), ξ〉 = 0 (4.24)

for any X,Y ∈ X(M).
Assume that T satisfies the condition (∗) and extend the tensor L to a

tensor L̄ ∈ Γ(End(TM ⊕ P, f∗TQn+p
C )) by defining

L̄η = f∗Yη + ξ.

Then L̄ satisfies
〈L̄X, η〉+ 〈f∗X, L̄η〉 = 0

for any X ∈ X(M). Define Ȳ : R→ TM ⊕ P by

Ȳδ = Yδ − 〈δ, ξ〉η,
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where δ ∈ Γ(R). Then

〈Ȳδ, λ〉+ 〈L̄λ, δ〉 = 0

for any λ ∈ Γ(TM ⊕ P ) and δ ∈ Γ(NfM). Let

(∇X L̄)λ = ∇̃X L̄λ− L̄∇′Xλ,

where X ∈ X(M), λ ∈ Γ(TM ⊕ P ) and ∇′ is the connection induced on
TM ⊕ P . Then let β̄ : TM × (TM ⊕ P )→ R be given by

β̄(X,λ) = ((∇̃X L̄)λ)R + c〈X,λ〉TR.

Proposition 4.14. We have that

(∇̃X L̄)λ = Ȳ(∇̃Xλ)R + β̄(X,λ) + c(f∗X ∧ T)λ (4.25)

for any X ∈ X(M) and λ ∈ Γ(TM ⊕ P ).

Proof. Observe that

(∇̃X L̄)Y = (∇̃XL)Y − 〈α(X,Y ), η〉L̄η,

where X,Y ∈ X(M). Then (4.4) and (4.6) give

〈(∇̃X L̄)Y,Z〉 = 〈Yα(X,Y ), Z〉+ c〈(X ∧ T)Y,Z〉 − 〈α(X,Y ), η〉〈L̄η, Z〉
= 〈Ȳα(X,Y )R, Z〉+ c〈(X ∧ T)Y,Z〉.

Since T satisfies the condition (∗) it follows from (4.6) that

〈(∇̃X L̄)Y, η〉 = 〈β(X,Y ), η〉 − c〈X,Y 〉〈T, η〉
= −〈α(X,Y ), ξ〉 − c〈X,Y 〉〈T, η〉
= 〈Ȳα(X,Y )R, η〉 − c〈X,Y 〉〈T, η〉.

Then (4.25) holds when λ = Y ∈ X(M).
Taking the derivative of

〈L̄η, Y 〉+ 〈η, L̄Y 〉 = 0

in the direction of X we obtain

〈(∇̃X L̄)η, Y 〉+ 〈L̄η, α(X,Y )R〉+ 〈∇⊥Xη, L̄Y 〉+ 〈η, (∇̃X L̄)Y 〉 = 0.

Using that (4.25) holds for λ = Y gives

〈(∇̃X L̄)η, Y 〉+ 〈∇⊥Xη, L̄Y 〉 − c〈X,Y 〉〈T, η〉 = 0.

Then
〈(∇̃X L̄)η, Y 〉 = 〈Ȳ∇⊥Xη, Y 〉+ c〈T, η〉〈X,Y 〉.
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Finally, taking the derivative of 〈L̄η, η〉 = 0 yields

〈(∇̃X L̄)η, η〉 = 〈Ȳ∇⊥Xη, η〉,

and this concludes the proof.

Assume that T satisfies the condition (∗). Given λ ∈ Γ(TU ⊕ P ),
‖λ‖2 = 1/|c|, where U is an open subset of Mn, define the map
F : U × (−ε, ε)→ Qn+p

c by

F (x, t) =
{

cos tf̂(x) + sin ti∗λ(x) if c > 0,

cosh tf̂(x) + sinh ti∗λ(x) if c < 0
(4.26)

and the map T̃ : U × (−ε, ε)→ Em+1 by

T̃(x, t) =
{

cos ti∗T(x) + sin t(i∗L̄(x)λ(x)− c〈λ(x),T(x)〉f̂(x)) if c > 0,

cosh ti∗T(x) + sinh t(i∗L̄(x)λ(x)− c〈λ(x),T(x)〉f̂(x)) if c < 0.
(4.27)

Observe that 〈F (x, t), T̃〉 = 0 and hence T̃ is tangent to Qmc . Assume that
c > 0 being the computations when c < 0 similar. Since 〈L̄λ, λ〉 = 0 then

〈F∗∂/∂t, ∇̂∂/∂tT̃〉 = 0.

We have

〈F∗X,∇̂∂/∂tT̃〉

= 〈cos tf̂∗X + sin t∇̂X i∗λ,− sin ti∗T + cos t(i∗L̄λ− c〈λ,T〉f̂)〉
= − cos t sin t〈f∗X,T〉+ cos2 t〈f∗X, L̄λ〉 − sin2 t〈∇̃Xλ,T〉

+ cos t sin t〈∇̃Xλ, L̄λ〉+ c cos t sin t〈λ,T〉〈X,λ〉

and

〈F∗∂/∂t, ∇̂X T̃〉

= 〈− sin tf̂ + cos ti∗λ, cos t∇̂X i∗T + sin t(∇̂X i∗L̄λ− c〈λ,T〉f̂∗X − cX〈λ,T〉f̂)〉
= cos t sin t〈f∗X,T〉+ sin2 t〈f∗X, L̄λ〉+ sin2 tX〈λ,T〉+ cos2 t〈λ, ∇̃XT〉

+ cos t sin t〈λ, ∇̃X L̄λ〉 − c cos t sin t〈λ,T〉〈X,λ〉
= cos t sin t〈f∗X,T〉+ sin2 t〈∇̃Xλ,T〉+ cos2 t〈λ, LX〉

+ cos t sin t〈λ, ∇̃X L̄λ〉 − c cos t sin t〈λ,T〉〈X,λ〉

for any X ∈ X(U). Adding the above expressions gives

〈F∗X, ∇̂∂/∂tT̃〉+ 〈F∗∂/∂t, ∇̂X T̃〉 = cos t sin t〈∇̃Xλ, L̄λ〉+ cos t sin t〈λ, ∇̃X L̄λ〉
= cos t sin tX〈λ, L̄λ〉
= 0.
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Therefore, if F is an immersion on some open subset of U × (−ε, ε), we
have that T̃ is an infinitesimal bending of F if and only if

〈F∗X, ∇̂X T̃〉 = 0 (4.28)

for any X ∈ X(M).

Lemma 4.15. Assume that T satisfies the condition (∗). Then

〈F∗X, ∇̂X T̃〉 =
{

sin2 t〈(∇̃Xλ)R, β̄(X,λ)〉 if c > 0,

sinh2(t)〈(∇̃Xλ)R, β̄(X,λ)〉 if c < 0
(4.29)

for any X ∈ X(M) and λ ∈ Γ(TM ⊕ P ) with ‖λ‖2 = 1/|c|.

Proof. Again, we only argue the case c > 0. We have

〈F∗X, ∇̂X i∗T〉

= 〈cos tf̂∗X + sin t∇̂X i∗λ, cos t∇̂X i∗T + sin t(∇̂X i∗L̄λ
− c〈λ,T〉f̂∗X − cX〈λ,T〉f̂)〉

= cos t sin t〈f∗X, ∇̃X L̄λ〉 − c cos t sin t〈λ,T〉‖X‖2 + cos t sin t〈∇̃Xλ, LX〉
+ c cos t sin t〈X,λ〉〈f∗X,T〉+ sin2 t〈∇̃Xλ, ∇̃X L̄λ〉+ c sin2 t〈X,λ〉〈f∗X, L̄λ〉
− c sin2 t〈λ,T〉〈f∗X, ∇̃Xλ〉+ c sin2 tX〈λ,T〉〈X,λ〉

= cos t sin t(〈f∗X, (∇̃X L̄)λ〉+ 〈(∇̃xλ)R, LX〉 − c〈λ,T〉‖X‖2 + c〈X,λ〉〈f∗X,T〉)
+ sin2 t(〈∇′Xλ, (∇̃X L̄)λ〉+ 〈(∇̃Xλ)R, ∇̃X L̄λ〉 − c〈λ,T〉〈f∗X, ∇̃Xλ〉
+ c〈X,λ〉〈∇̃Xλ,T〉).

From (4.25) we obtain that

〈F∗X, ∇̂X i∗T〉
= cos t sin t(〈f∗X, Ȳ(∇̃Xλ)R + c(f∗X ∧ T)λ〉+ 〈(∇̃Xλ)R, LX〉
− c〈λ,T〉‖X‖2 + c〈X,λ〉〈f∗X,T〉)
+ sin2 t(〈∇′Xλ, Ȳ(∇̃Xλ)R + c(f∗X ∧ T)λ〉+ 〈(∇̃Xλ)R, ∇̃X L̄λ〉
− c〈λ,T〉〈f∗X, ∇̃Xλ〉+ c〈X,λ〉〈∇̃Xλ,T〉)

= sin2 t(−〈L̄∇′Xλ, (∇̃Xλ)R〉+ 〈(∇̃Xλ)R, ∇̃X L̄λ〉+ c〈X,λ〉〈(∇̃Xλ)R,T〉)
= sin2 t(〈(∇̃Xλ)R, (∇̃X L̄)λ+ c〈X,λ〉T〉)
= sin2 t〈(∇̃Xλ)R, β̄(X,λ)〉,

and this concludes the proof.
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Lemma 4.16. Assume that T satisfies the condition (∗). Then, the
bilinear form ϕ : TM × f∗TM ⊕ P → R⊕R defined by

ϕ(X,λ) = ((∇̃Xλ)R + β̄(X,λ), (∇̃Xλ)R − β̄(X,λ))

is flat with respect to the indefinite inner product given by

〈〈(ξ1, µ1), (ξ2, µ2)〉〉R⊕R = 〈ξ1, ξ2〉R − 〈µ1, µ2〉R.

Proof. We need to show that

Θ = 〈〈ϕ(X,λ), ϕ(Y, δ)〉〉 − 〈〈ϕ(X, δ), ϕ(Y, λ)〉〉 = 0

for any X,Y ∈ X(M) and λ, δ ∈ f∗TM ⊕ P . We have
1
2Θ = 〈(∇̃Xλ)R, β̄(Y, δ)〉+ 〈(∇̃Y δ)R, β̄(X,λ)〉

−〈(∇̃Xδ)R, β̄(Y, λ)〉 − 〈(∇̃Y λ)R, β̄(X, δ)〉.

Clearly Θ = 0 if λ, δ ∈ Γ(P ).
From the definitions of β̄ and β we obtain

β̄(X,Y ) = ((∇̃X L̄)Y )R + c〈X,Y 〉TR
= ((∇̃XL)Y )R − 〈AηX,Y 〉(L̄η)R + c〈X,Y 〉TR
= β(X,Y )R − 〈AηX,Y 〉ξ

for any X,Y ∈ X(M). Then
1
2Θ = 〈α(X,λ)R, β(Y, δ)R − 〈AηY, δ〉ξ〉+ 〈α(Y, δ)R, β(X,λ)R − 〈AηX,λ〉ξ〉

− 〈α(X, δ)R, β(Y, λ)R − 〈AηY, λ〉ξ〉 − 〈α(Y, λ)R, β(X, δ)R − 〈AηX, δ〉ξ〉

if δ, λ ∈ X(M). Then (4.7) and (4.24) give
1
2Θ = 〈α(X,λ), β(Y, δ)〉+ 〈α(Y, δ), β(X,λ)〉

− 〈α(X, δ), β(Y, λ)〉 − 〈α(Y, λ), β(X, δ)〉
= 0.

Finally, if λ = η and δ = Z ∈ X(M) then
1
2Θ = 〈∇⊥Xη, β̄(Y,Z)〉+ 〈α(Y,Z), β̄(X, η)〉 − 〈α(X,Z), β̄(Y, η)〉 − 〈∇⊥Y η, β̄(X,Z)〉

= 〈∇⊥Xη, β(Y,Z)〉 − 〈AηY,Z〉〈∇⊥Xη, ξ〉+ 〈α(Y,Z)R, (∇̃X L̄η + LAηX)R〉

− 〈α(X,Z)R, (∇̃Y L̄η + LAηY )R〉 − 〈∇⊥Y η, β(X,Z)〉+ 〈AηX,Z〉〈∇⊥Y η, ξ〉

= X〈η, β(Y,Z)〉 − 〈η,∇⊥Xβ(Y,Z)〉+ 〈AηY,Z〉〈η,∇⊥Xξ〉

+ 〈α(Y,Z)R,E(X, η)R + (∇⊥Xξ)R〉 − 〈α(X,Z)R,E(Y, η)R + (∇⊥Y ξ)R〉

− Y 〈η, β(X,Z)〉+ 〈η,∇⊥Y β(X,Z)〉 − 〈AηX,Z〉〈η,∇⊥Y ξ〉

= X〈η, β(Y,Z)〉 − 〈η,∇⊥Xβ(Y,Z)〉+ 〈α(Y,Z)R,E(X, η)R〉+ 〈α(Y,Z),∇⊥Xξ〉

− 〈α(X,Z)R,E(Y, η)R〉 − 〈α(X,Z),∇⊥Y ξ〉 − Y 〈η, β(X,Z)〉+ 〈η,∇⊥Y β(X,Z)〉.
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Now using (4.5) and (4.24) we obtain

1
2Θ = −X〈ξ, α(Y,Z)〉 − 〈η,∇⊥Xβ(Y,Z)〉+ 〈α(Y,Z),E(X, η)〉+ 〈α(Y,Z),∇⊥Xξ〉

− 〈α(X,Z),E(Y, η)〉 − 〈α(X,Z),∇⊥Y ξ〉+ Y 〈ξ, α(X,Z)〉+ 〈η,∇⊥Y β(X,Z)〉

= − 〈ξ, (∇⊥Xα)(Y,Z))〉 − 〈η, (∇⊥Xβ)(Y,Z)〉+ 〈α(Y,Z),E(X, η)〉

− 〈α(X,Z),E(Y, η)〉+ 〈ξ, (∇⊥Y α)(X,Z)〉+ 〈η, (∇⊥Y β)(X,Z)〉
= 0,

where the last equality follows from (4.5), (4.8) and the Codazzi
equation.

Theorem 4.17. Let f : Mn → Qn+p
c , p ≥ 2, be an isometric immersion

and let T be an infinitesimal bending of f that satisfies the condition (∗).
Then along each connected component of an open and dense subset of Mn

either T extends in the singular sense or f is r-ruled with r ≥ n− 2p+ 3.

Proof. From Lemma 4.16 the bilinear form ϕ is flat. Let U ⊂ Mn be
an open subset where there is Y ∈ X(U) such that Y ∈ RE(ϕ) and
D = kerϕY has dimension d at any point. Then Proposition 1.10 gives

〈〈ϕ(X,λ), ϕ(X,λ)〉〉 = 0

for any X ∈ X(U) and λ ∈ Γ(D). This and (4.29) imply that (4.28) holds
for any λ ∈ Γ(D). Whenever there is λ ∈ Γ(D), ‖λ‖2 = 1/‖c‖, on an open
subset V ⊂ U such that (4.26) defines a singular extension of f |V , then
T|V extends in the singular sense by means of (4.27).
Let W ⊂ U be an open subset where λ ∈ Γ(D) as above does

not exist along any open subset of W . Hence D must be a tangent
distribution on W , and from Proposition4.10 it follows that f |W is d-
ruled on connected components of an open dense subset of W . Moreover,
we have that the dimension of the rulings is bounded from below by
n+ 1− dim Im(ϕY ) ≥ n− 2p+ 3.

Corollary 4.18. Let f : Mn → Qn+p
c , p ≥ 2, be an isometric immersion

and let T be a genuine infinitesimal bending of f that satisfies the condition
(∗). Then f is r-ruled with r ≥ n− 2p+ 3 on connected components of an
open dense subset of Mn.

Finally, we have the following result.

Theorem 4.19. Let f : Mn → Qn+p
c , n > 2p, be a genuinely

infinitesimally bendable isometric immersion. If 2 ≤ p ≤ 5, then one
of the following facts holds along any connected component, say U , of an
open dense subset of Mn:

(i) f |U is ν-ruled by leaves of relative nullity with ν ≥ n− 2p.
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(ii) f |U has index of relative nullity ν < n− 2p at any point of U and is
r-ruled with r ≥ n− 2p+ 3.

Proof. The proof follows along similar arguments as the proof of Theorem
3.9 using Corollary 4.12 and Corollary 4.18.

4.5 Exercises
Exercise 4.1. Let Z be a Killing vector field of a Riemannian manifold
Mn and let L ∈ Γ(End(TM)) be the tensor defined by LX = ∇XZ. Prove
that L satisfies

(∇XL)Y = R(X,Z)Y

for any X,Y ∈ X(M).
Hint: First prove that the 1-form defined by ω(X) = 〈X,Z〉 satisfies

dω(X,Y ) = 2〈LX,Y 〉

for any X,Y ∈ X(M) and conclude that the 2-form 〈LX,Y 〉 is closed.
Then show that

〈(∇XL)Y,Z〉 − 〈(∇Y L)X,Z〉+ 〈(∇ZL)X,Y 〉 = 0.

Finally, prove and use that

(∇XL)Y − (∇Y L)X = R(X,Y )Z

for any X,Y ∈ X(M).

Exercise 4.2. Let f : Mn → Qn+1
c , n ≥ 4, be an isometric immersion

of a compact Riemannian manifold Mn. Assume that there are no open
subsets of Mn where f is totally geodesic. Prove that f is infinitesimally
rigid.
Hint: Use Proposition 4.8 and Theorem 13.2 in [21].



Chapter 5

Variations of product
manifolds

This chapter is about infinitesimal variations of submanifolds that are
intrinsically a Riemannian product of manifolds. The study of such
variations is done analyzing the structure of the possible infinitesimal
bendings. The results obtained provide local and global conditions under
which the submanifold splits as an extrinsic product of immersions and any
infinitesimal bending of the submanifold has to be the sum of infinitesimal
bendings of each of the factors.

Let Mn = Mn1
1 × · · · ×Mnr

r be a Riemannian product of Riemannian
manifolds of dimensions ni ≥ 2, 1 ≤ i ≤ r. The extrinsic product
f : Mn → Rm of the set of isometric immersions fi : Mni

i → Rmi ,
1 ≤ i ≤ r, is the isometric immersion given by

f(x) = (f1(x1), . . . , fr(xr)),

where x = (x1, . . . , xr) ∈Mn and Rm = ⊕ri=1Rmi .
Let ιx̄i : Mni

i → Mn denote the inclusion map for x̄ = (x̄1 . . . , x̄r), that
is,

ιx̄i (xi) = (x̄1, . . . , xi, . . . , x̄r).

Then let ι̃yi be the inclusion of Rmi into Rm defined in a similar manner.
The normal space of f at x = (x1, . . . , xr) ∈Mm is

NfM(x) = ⊕ri=1Nfi
Mi(xi),

where NfiMi(xi) is the normal space of fi at xi ∈ Mni
i , 1 ≤ i ≤ r. If αi

is the second fundamental form of fi at xi ∈ Mni
i , 1 ≤ i ≤ r, then the

80
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second fundamental form α of f at x = (x1, . . . , xr) ∈Mn is given by

α(ιxi∗X, ιxj∗Y ) =
{
ι̃
f(x)
i∗ αi(X,Y ) if i = j,

0 if i 6= j,
(5.1)

where X ∈ X(Mi) and Y ∈ X(Mj), 1 ≤ i, j ≤ r.
Let Ti be an infinitesimal bending of fi in Rmi , 1 ≤ i ≤ r, and let (βi,Ei)

be its associated pair. Then T(x) =
∑r
i=1 ι̃

f(x)
i∗ Ti(xi) is an infinitesimal

bending of f in Rm. Let L be associated to T and let Li be associated to
Ti. Then

Lιxi∗X = ι̃
f(x)
i∗ LiX (5.2)

for any X ∈ X(Mi). If Bi is associated to Ti, it follows that

B(ιxi∗X, ιxj∗Y ) = (∇̃ιx
i∗X

L)ιxj∗Y =
{
ι̃
f(x)
i∗ Bi(X,Y ) if i = j,

0 if i 6= j,

where X ∈ X(Mi) and Y ∈ X(Mj). In particular,

β(ιxi∗X, ιxj∗Y ) =
{
ι̃
f(x)
i∗ βi(X,Y ) if i = j,

0 if i 6= j
(5.3)

and

E(ιxi∗X, ι̃
f(x)
j∗ η) =

{
ι̃
f(x)
i∗ Ei(X, η) if i = j,

0 if i 6= j
(5.4)

for any X ∈ X(Mi), Y ∈ X(Mj) and η ∈ Γ(NfjMj), where (5.4) follows
from (5.1), (5.2) and the definition (2.10) of Y in terms of which E is given.

If (β,E) is the pair associated to an infinitesimal bending T of an
extrinsic product f = (f1, . . . , fr), we say that β is adapted to the product
structure if

β(ιxi∗X, ιxj∗Y ) = 0

for any X ∈ X(Mi) and Y ∈ X(Mj) with i 6= j.

Proposition 5.1. Let f : Mn → Rm be an extrinsic product of isometric
immersions fi : Mni

i → Rmi , ni ≥ 2, 1 ≤ i ≤ r, with full first normal
spaces. If the tensor β in the pair associated to an infinitesimal bending
T of f is adapted, then there exist locally infinitesimal bendings Ti of fi,
1 ≤ i ≤ r, such that T(x) =

∑r
i=1 ι̃

f(x)
i∗ Ti(xi).

Proof. From (2.12) we obtain

〈β(ιxi∗X, ιxi∗Y ), α(ιxj∗Z, ιxj∗W )〉+ 〈α(ιxi∗X, ιxi∗Y ), β(ιxj∗Z, ιxj∗W )〉 = 0 (5.5)
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for any X,Y ∈ X(Mi) and Z,W ∈ X(Mj) with i 6= j.
Let αi(Xk, Yk), 1 ≤ k ≤ dimNfiMi, with Xk, Yk ∈ X(Mi) be a basis of

NfiMi. Set

Cijαi(Xk, Yk) = βNfj
Mj (ιxi∗Xk, ι

x
i∗Yk), i 6= j,

where βNfj
Mj

denotes the Nfj
Mj-component of β. We claim that the

linear extension to a map Cij : Nfi
Mi → Nfj

Mj , i 6= j, satisfies

Cijαi(X,Y ) = βNfj
Mj

(ιxi∗X, ιxi∗Y )

for any X,Y ∈ X(Mi). In fact, if

αi(X,Y ) =
∑
k

ckαi(Xk, Yk)

for X,Y ∈ X(Mi) and ck ∈ R, 1 ≤ k ≤ dimNfiMi, we obtain from (5.5)
that

〈β(ιxi∗X, ιxi∗Y )−
∑
k

ckβ(ιxi∗Xk, ι
x
i∗Yk), α(ιxj∗Z, ιxj∗W )〉 = 0

for any Z,W ∈ X(Mj), i 6= j, and the claim follows.
We have from (5.5) that the map C ∈ Γ(End(NfM)) defined by

Cι̃
f(x)
i∗ ηi =

∑
j 6=i

ι̃
f(x)
j∗ Cijηi,

where ηi ∈ Γ(Nfi
Mi), 1 ≤ i ≤ r, is skew-symmetric. Then, we obtain that

β(ιxi∗X, ιxi∗Y ) decomposes orthogonally as

β(ιxi∗X, ιxi∗Y ) = βNfi
Mi

(ιxi∗X, ιxi∗Y ) + Cα(ιxi∗X, ιxi∗Y ) (5.6)

for any X,Y ∈ X(Mi).
Let Li : TMi → f∗i TRmi be given by

LiX = (Lιxi∗X)Rmi .

Since f is an extrinsic product of immersions, we have

∇̃ιx
j∗Y

ι̃
f(x)
i∗ LiX = ∇̃ιx

j∗Y
(Lιxi∗X)Rmi

= (∇̃ιx
j∗Y

Lιxi∗X)Rmi

= (B(ιxj∗Y, ιxi∗X))Rmi

= (f∗Yα(ιxj∗Y, ιxi∗X) + β(ιxj∗Y, ιxi∗X))Rmi

= 0



Chapter 5. Variations of product manifolds 83

for any X ∈ X(Mi) and Y ∈ X(Mj) with i 6= j, where the last steps follow
using (2.11) and the assumption on β. Thus the tensors Li are well defined
on Mni

i , 1 ≤ i ≤ r. Moreover, since B is symmetric, these tensors verify

(∇̃iXLi)Y = (∇̃iY Li)X

for any X,Y ∈ X(Mi), where ∇̃i is the connection in Rmi . Thus, there
exist locally vector fields Ti ∈ Γ(f∗i TRmi) with ∇̃iXTi = LiX for any
X ∈ X(Mi), 1 ≤ i ≤ r. In particular, since Li verifies (2.8), then Ti is an
infinitesimal bending of fi and, if βi belongs to the pair associated to Ti,
we have

ι̃
f(x)
i∗ βi(X,Y ) = βNfi

Mi
(ιxi∗X, ιxi∗Y ) (5.7)

for any X,Y ∈ X(Mi), 1 ≤ i ≤ r.
Define an infinitesimal bending T̃ of f by T̃ =

∑r
i=1 ι̃

f(x)
i∗ Ti. We have

from (5.3), (5.6) and (5.7) that T−T̃ has the associated tensor β−β̃ = Cα.
Since C is skew-symmetric the tensor ∇⊥C satisfies (2.7). Moreover, we
have

(∇⊥Xβ −∇⊥X β̃)(Y, Z) = (∇⊥XCα)(Y,Z)
= ∇⊥XCα(Y,Z)− Cα(∇XY,Z)− Cα(Y,∇XZ)
= (∇⊥XC)α(Y,Z) + C(∇⊥Xα)(Y,Z)

for any X,Y, Z ∈ X(M). Using the Codazzi equation, we obtain

(∇⊥Xβ −∇⊥X β̃)(Y,Z)− (∇⊥Y β −∇⊥Y β̃)(X,Z) = (∇⊥XC)α(Y,Z)− (∇⊥Y C)α(X,Z)

for any X,Y, Z ∈ X(M). Now Proposition 2.6 gives E− Ẽ = −(∇⊥C), and
the proof follows from Proposition 2.7.

The assumption in the above result that f has full first normal spaces
cannot be dropped. In fact, we observed in Examples 2.1 that if this is
not the case then a smooth normal vector field in N⊥1 is an infinitesimal
bending.

Proposition 5.2. Let f : Mn → Rn+p, p < n, be an extrinsic product
of isometric immersions fi : Mni

i → Rni+pi , ni ≥ 2 and 1 ≤ i ≤ r.
Assume that the s-nullities of f satisfy νs(x) < n − s, 1 ≤ s ≤ p, at any
x ∈ Mn. Then any infinitesimal bending T of f is locally of the form
T(x) =

∑r
i=1 ι̃

f(x)
i∗ Ti(xi), where Ti, 1 ≤ i ≤ r, is an infinitesimal bending

of fi.

Proof. Since f is an extrinsic product of immersions, then
∑
j 6=i ι

x
j∗TMj ⊂

N(αNfi
Mi

). Thus the assumption on the s-nullities yields
∑
j 6=i nj < n−pi,

that is,
pi < ni, 1 ≤ i ≤ r. (5.8)
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Take X ∈ X(Mi), W ∈ X(Mj) and Y,Z ∈ X(Mk) with i 6= j. If also
k 6= i, j, we obtain from (2.12) that

〈β(ιxi∗X, ιxj∗W ), α(ιxk∗Y, ιxk∗Z)〉 = 0. (5.9)

On the other hand, for k = i it follows from (2.12) that

〈β(ιxi∗X, ιxj∗W ), α(ιxi∗Y, ιxi∗Z)〉−〈β(ιxi∗Y, ιxj∗W ), α(ιxi∗X, ιxi∗Z)〉 = 0. (5.10)

Let βiW : TMi → NfiMi be given by

βiWX = β(ιxi∗X, ιxj∗W )Nfi
Mi
.

Suppose that dim ImβiW = s > 0. Then (5.8) gives dim kerβiW = ni − s >
0. It follows from (5.10) that

〈β(ιxi∗X, ιxj∗W ), α(ιxi∗T, ιxi∗Z)〉 = 0

for any T in kerβiW . This implies that νs ≥ n − s, which contradicts our
assumption and proves that β(ιxi∗X, ιxj∗W )Nfi

Mi = 0 for any X ∈ X(Mi)
and W ∈ X(Mj). This together with (5.9) imply that

β(ιxi∗X, ιxj∗W ) = 0 if i 6= j.

Thus β is adapted, and the proof now follows from Proposition 5.1.

For the proof of the next theorem we need the following result on
isometric immersions from [22]. It can also be seen as Theorem 8.14 in
[21].

Proposition 5.3. Let f : Mn = Mn1
1 × · · · × Mnr

r → Rn+p, 2p < n,
be an isometric immersion such that the s-nullities of f satisfy νs(x) <
n − 2s, 1 ≤ s ≤ p, at any x ∈ Mn. Then f is an extrinsic product of
isometric immersions.

The following is the main local result of this chapter.

Theorem 5.4. Let f : Mn → Rn+p, 2p < n, be an isometric immersion
of a Riemannian product Mn = Mn1

1 × · · · ×Mnr
r with nj ≥ 2, 1 ≤ j ≤ r.

Assume that the s-nullities of f satisfy νs(x) < n − 2s, 1 ≤ s ≤ p, at
any x ∈ Mn. Then f is an extrinsic product of isometric immersions
f = (f1, . . . , fr) and any infinitesimal bending T of f is locally of the
form T(x) =

∑r
i=1 ι̃

f(x)
i∗ Ti(xi), where Ti is an infinitesimal bending of

fi : Mni
i → Rmi , 1 ≤ i ≤ r.

Proof. From Proposition 5.3 we obtain that f is an extrinsic product of
isometric immersions, and the proof follows from Proposition 5.2.

Concerning isometric immersions of Riemannian products there is the
following basic rigidity result from [30]. It can also be seen as Theorem
8.10 in [21].
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Proposition 5.5. Let f : Mn → Rn+p be an isometric immersion of a
Riemannian product Mn = Mn1

1 ×· · ·×M
np
p , with ni ≥ 2 for all 1 ≤ i ≤ p.

If the subset of points of Mni
i , 1 ≤ i ≤ p, at which all the sectional

curvatures vanish has empty interior then f is an extrinsic product of
hypersurfaces f = (f1, . . . , fp).

The following is the corresponding version of the above result for
infinitesimal variations.

Theorem 5.6. Let f : Mn → Rn+p be an isometric immersion of a
Riemannian product Mn = Mn1

1 × · · · × M
np
p , ni ≥ 2 and 1 ≤ i ≤ p.

Assume that the subset of points of Mni
i , 1 ≤ i ≤ p, at which all the

sectional curvatures vanish has empty interior. Then f is an extrinsic
product of hypersurfaces fi : Mni

i → Rni+1, 1 ≤ i ≤ p, and any
infinitesimal T bending of f is locally of the form T(x) =

∑p
i=1 ι̃

f(x)
i∗ Ti(xi),

where Ti is an infinitesimal bending of fi, 1 ≤ i ≤ p.

Proof. The first statement follows from Proposition 5.5. Since each Mni
i

has no flat open subset then, in an open and dense subset M̃ ⊂ Mn,
the index of relative nullity of fi satisfies νi = dim ∆i ≤ ni − 2 for each
1 ≤ i ≤ p.
Fix x = (x1, . . . , xp) ∈ M̃ and let Us ⊂ NfM(x) = ⊕pi=1Nfi

Mi(xi)
be a subspace. Assume that X = (X1, . . . , Xp) ∈ N(πUs ◦ α)(x), where
Xi ∈ Txi

Mi, 1 ≤ i ≤ p, and πUs : NfM(x) → U is the orthogonal
projection. Let η = (η1, . . . , ηp) ∈ Us where ηi ∈ NfiMi(xi). Then
〈α(X,Y ), η〉 = 0 for any Y ∈ TxM . If ηi 6= 0, then taking Y =
(0, . . . , Yi, . . . , 0) for Yi ∈ Txi

Mi, we obtain that Xi ∈ ∆i. Therefore,
we have that (N(πUs ◦ α))Txi

Mi
⊂ ∆i.

If Us ⊂ NfjM
⊥
j for some j, we have that TxjMj ⊂ N(πUs ◦α)(x). Notice

that

dimN(πUs ◦ α) ≤
p∑
i=1

dim(N(πUs ◦ α))Txi
Mi .

By rearranging the factors, if necessary, we can assume that Us ⊂
⊕ki=1Nfi

Mi with 1 ≤ k ≤ p. Hence

dimN(πUs ◦ α) ≤
k∑
i=1

νi +
∑
j>k

nj

≤
k∑
i=1

(ni − 2) +
∑
j>k

nj ≤ n− 2k ≤ n− 2s

< n− s.

Thus νs < n−s, 1 ≤ s ≤ p, onMn, and the proof follows from Proposition
5.2.
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The following result on isometric immersions is Corollary 8.24 in [21].

Proposition 5.7. Let Mn1
1 , . . . ,M

np
p , ni ≥ 2, 1 ≤ i ≤ p, be compact and

nonflat Riemannian manifolds. Then any isometric immersion f : Mn →
Rn+p of the Riemannian product manifold Mn = Mn1

1 × · · · ×M
np
p is an

extrinsic product of hypersurfaces fi : Mni
i → Rni+1, 1 ≤ i ≤ p.

Finally, there is the following global version of Theorem 5.6.

Theorem 5.8. Let Mn1
1 , . . . ,M

np
p , ni ≥ 2, 1 ≤ i ≤ p, be compact

Riemannian manifolds and let f : Mn → Rn+p be an isometric immersion
of the Riemannian product Mn = Mn1

1 × . . . × M
np
p . Assume that the

subset of points of Mni
i , 1 ≤ i ≤ p, at which all the sectional curvatures

vanish has empty interior. Then f is an extrinsic product of hypersurfaces
fi : Mni

i → Rni+1, 1 ≤ i ≤ p, and f is infinitesimally rigid.

Proof. The first statement follows from Proposition (5.7). Let T be an
infinitesimal bending of f . Fix 1 ≤ i ≤ p as well as points yj ∈ M

nj

j for
any j 6= i. Then the vector field T̂i(xi) = (T(y1, . . . , xi, . . . , yp))Rni+1 is
an infinitesimal bending of fi. Since Mni

i is compact and posses no flat
open subset, then by Theorem 2.13 we have that fi is infinitesimally rigid.
Hence T̂i is trivial for each choice of yj .
On the other hand, we have from Theorem 5.6 that T(x) =∑p
i=1 ι̃

f(x)
i∗ Ti(xi) locally. Thus, we necessarily have that Ti = T̂i locally

for 1 ≤ i ≤ p, and thus Ti is trivial. Hence the associated tensors of T
have the form 2.19 at every point showing that T is trivial.



Chapter 6

Variations of complete
hypersurfaces

This chapter gives a classification of the complete Euclidean hypersurfaces
of dimension at least four that admit nontrivial infinitesimal variations. If
the hypersurface is compact, it does not admit even isometric variations
due to the classical result of Sacksteder [32]. Dajczer-Gromoll [13]
proved that if the hypersurface is a complete manifold that does not
contain a cylinder of a certain type as an open subset, then it allows
isometric variations only along ruled strips. Before we state and prove
the infinitesimal analogue of the latter result that is due to Jimenez [28],
we hold a discussion on ruled hypersurfaces whose rulings are complete
Euclidean spaces.

6.1 Ruled hypersurfaces

A hypersurface f : Mn → Rn+1, n ≥ 3, is said to be ruled if it is (n− 1)-
ruled. A hypersurface with possible boundary is said to be ruled if, in
addition, the rulings are tangent to the boundary. A connected component
of the subset ofMn where all the rulings are complete manifolds is called a
ruled strip. Therefore, a ruled strip is an affine vector bundle over a curve
with or without end points.
From now on the quantity dim ∆⊥(x) = n − ν(x) is called the rank of

the hypersurface f : Mn → Rn+1 at x ∈ Mn. Thus, the rank is just the
number of nonzero principal curvatures. The second fundamental form A
of a ruled hypersurface has rank at most two and, outside totally geodesic
points, the leaves of relative nullity are contained in the rulings.
Let f : Mn → Rn+1 be a ruled hypersurface and let c : I →Mn, c = c(s)

and s ∈ I ⊂ R, be a unit speed curve orthogonal to the rulings. The rulings
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form an affine vector bundle over c̃ = f ◦c in Rn+1. Let Ti(s), 1 ≤ i ≤ n−1,
be orthonormal tangent fields on the corresponding bundle along c which
are parallel with respect to the induced connection. Set f∗dc/ds = T̃0,
T̃i = f∗Ti and let N be a unit vector field along c normal to f . Then{

∇̃∂/∂sT̃0 = −ΣiϕiT̃i + θN,

∇̃∂/∂sT̃i = ϕiT̃0 + βiN,

where θ = 〈AT0, T0〉, ϕi = 〈∇T0Ti, T0〉 and βi = 〈ATi, T0〉, 1 ≤ i ≤ n− 1.
We parametrize a neighborhood of c̃(I) in f(M) by f̃ : W ⊂ I×Rn−1 →

Rn+1 given by

f̃(s, u1, . . . , un−1) = c̃(s) + ΣiuiT̃i(s). (6.1)

We have at (s, u1, . . . , un−1) that

f̃∗∂/∂s = (1 + Σiuiϕi)T̃0 + ΣiuiβiN.

Thus, the map f̃ has maximal rank if and only if

‖f̃∗∂/∂s‖2 = (1 + Σiuiϕi)2 + (Σiuiβi)2 6= 0.

Note that the directions ΣiuiTi(s) for which Σiuiβi = 0 are in the relative
nullity of f at c(s).

Proposition 6.1. Let f : Mn → Rn+1, n ≥ 3, be an isometric immersion
and let U ⊂Mn be an open subset where f has rank two. Assume that f |U
is ruled and that the relative nullity leaves are complete. Let δ : [0, a]→Mn

be a unit speed geodesic orthogonal to ∆ such that δ([0, a)) ⊂ U is contained
on a ruling. Then the rank of f at δ(a) is two. Moreover, every point in
U has a neighborhood V such that f |V extends to a ruled strip of constant
rank two.

Proof. Let W ⊂ I × Rn−1 be an open subset where the parametrization
(6.1) is defined and writeWs = W∩({s}×Rn−1). Assume that the geodesic
δ is contained on the ruling determined by f̃ |Ws and has Tn−1 as its tangent
vector field. Notice that r 7→ f̃(s, 0, . . . , 0, r) is a parametrization of δ.
Since βn−1(s) 6= 0, then the map f̃ has maximal rank along δ and we have
at δ(r) that

f̃∗(∂/∂s) = (1 + rϕn−1)T̃0 + rβn−1N.

Let Ñ(δ(r)) = α(r)T̃0 + N be a vector field normal to f along δ (not
necessarily unitary). Then

0 = 〈f̃∗(∂/∂s), αT̃0 +N〉 = α(r)(1 + rϕn−1) + rβn−1.



Chapter 6. Variations of complete hypersurfaces 89

Taking r ∈ (0, a] we have that 1 + rϕn−1 6= 0, then

α(r) = − rβn−1

(1 + rϕn−1) ·

Then, we obtain that

〈∇̃δ′(r)f̃∗(∂/∂s), Ñ(δ(r))〉 = 〈ϕn−1T̃0 + βn−1N,α(r)T̃0 +N〉

= βn−1

1 + rϕn−1
,

which does not vanish. Thus the rank of f̃ at δ(a) is two, and therefore
the same holds for f .
It remains to prove that f |U extends locally to a ruled strip. Fix x ∈ U

and let V ⊂ U be a neighborhood of x parametrized by (6.1). Extend f̃ to
I × Rn−1 with the same expression. We claim that this extension defines
a ruled strip of constant rank two. We first prove that f̃ has no singular
points. As seen previously, we have that f̃ is singular at points where

(1 + Σiuiϕi)2 + (Σiuiβi)2 = 0.

Then, it suffices to show that Σiuiϕi = 0 for any T = ΣiuiTi(s) ∈ ∆(c(s)).
Given T ∈ ∆(c(s)), we have

Σiuiϕi = 〈∇T0T, T0〉 = −〈CTT0, T0〉,

where CT is the splitting tensor of ∆ with respect to T . If CT vanishes
there is nothing to prove. Otherwise, let X be a unit vector field on V
tangent to a ruling and orthogonal to the relative nullity. Since each ruling
is totally geodesic and the only real eigenvalue of CT is zero by Proposition
1.8, then we have that CTX = 0 for any T ∈ Γ(∆). Finally, using
Proposition 1.8 once more, we have that 〈CTT0, T0〉 = 0, and therefore
f̃ has no singular points.
It follows from Proposition 1.7 that the open subset where f̃ has rank

two is a union of complete relative nullity leaves. From the previous
discussion we have that the rank of f̃ along any ruling is two, and the
claim follows.

6.2 The classification
The following is a classification of the complete hypersurfaces that admit
nontrivial infinitesimal variations.

Theorem 6.2. Let f : Mn → Rn+1, n ≥ 4, be an isometric immersion
of a complete Riemannian manifold. Assume that there is no open subset
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of Mn where f is either totally geodesic or a cylinder over a hypersurface
in R4 with complete one-dimensional leaves of relative nullity. Then f
admits nontrivial infinitesimal variations only along ruled strips.

If the hypersurface contains a ruled strip, a rather simple argument
given in [13] shows that there is a one-to-one correspondence between
the set of smooth functions on an open interval and the set of isometric
deformations of the hypersurface that act only along the ruled strip. Then
the same is true for the isometric variations obtained multiplying such a
function by a parameter. We show below that any infinitesimal bending
of the hypersurface is just the variational vector field of such an isometric
variation. Thus, the classification result for infinitesimal variations is the
same than for isometric variations.

Remark 6.3. Notice that Theorem 2.13 for n ≥ 4 is a corollary of the
above result.

For the proof of Theorem 6.2 we need several lemmas.

Lemma 6.4. Let f : Mn → Rn+1 be an isometric immersion. If U ⊂Mn

is an open subset where f has constant rank two and the leaves of the
relative nullity are complete, then the codimension of

C0 = {T ∈ ∆ : CT = 0} (6.2)

is at most one. Moreover, if dimC⊥0 = 1 and CT is invertible for
T ∈ Γ(C⊥0 ), then f |U is a cylinder over a hypersurface g : L3 → R4 that
carries a one-dimensional relative nullity distribution with complete leaves.

Proof. Assume that C⊥0 ⊂ ∆ has dimension at least two. Then, for
dimension reasons there is T ∈ ∆ such that CT 6= 0 is self adjoint, which
contradicts Proposition 1.8.
Now assume that dimC⊥0 = 1 and that CT is invertible for T ∈ Γ(C⊥0 ).

We have from (1.8) that

〈∇XS, T 〉CTY = 〈∇Y S, T 〉CTX

for all S ∈ Γ(C0) and X,Y ∈ Γ(∆⊥). Then

〈∇XS, T 〉Y − 〈∇Y S, T 〉X ∈ Γ(kerCT ).

Since CT is invertible, we necessarily have that

〈∇XS, T 〉Y − 〈∇Y S, T 〉X = 0.

Thus 〈∇XS, T 〉 = 0 for any X ∈ Γ(∆⊥). Note that

〈∇XS, Y 〉 = −〈CSX,Y 〉 = 0
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for any X,Y ∈ ∆⊥, and thus ∇XS ∈ Γ(C0).
On the other hand, it follows from (1.7) that

C∇RS = ∇RCS − CSCR = 0

for any R ∈ Γ(∆). Therefore C0 is a parallel distribution on U . Since
C0 ⊂ ∆ the proof follows from Proposition 1.9.

Let f : Mn → Rn+1 be an isometric immersion, and let T be an
infinitesimal bending of f with associated tensor B. Set ∆∗ = ∆ ∩ kerB.
Assume that the second fundamental form of f has rank A = 2. Then
(2.21) gives ∆ ⊂ kerB, hence rank B ≤ 2 and, in particular, we have
∆∗ = ∆. Since B is a Codazzi tensor, we obtain that

∇TB = BCT = C ′TB (6.3)

for any T ∈ Γ(∆∗), where C is the splitting tensor of ∆∗ = ∆.

Lemma 6.5. Let f : Mn → Rn+1 be a ruled hypersurface of constant rank
two with complete relative nullity leaves. Assume that the splitting tensor
of the relative nullity foliation does not vanish on any open subset. If T
is an infinitesimal bending of f , then its associated symmetric tensor B

satisfies

B|∆⊥ =
[
θ 0
0 0

]
(6.4)

with respect to a local orthonormal basis {Y,X} of ∆⊥ such that Y is
orthogonal to the rulings. Moreover, the smooth function θ verifies that

X(θ) = 〈∇Y Y,X〉θ. (6.5)

Proof. On the open dense subset where C 6= 0, let T ∈ Γ(C⊥0 ) be unitary,
where C0 is given by (6.2). Locally take X,Y ∈ Γ(∆⊥) orthonormal
such that Y is orthogonal to the rulings. We have seen in the proof of
Proposition 6.1 that X ∈ Γ(kerCT ). Moreover, Proposition 1.8 implies
that CT = µJ for some smooth function µ, where J ∈ Γ(End(∆⊥)) is
defined by JX = 0 and JY = X.
The restrictions of A and B to ∆⊥ are denoted by the same letters and

let D ∈ Γ(End(∆⊥)) be given by D = A−1B. From (1.9) and (6.3) we
have

ADCT = C ′TAD = ACTD.

Hence A[D,CT ] = 0, and thus D commutes with J . This gives D =
φ1I + φ2J and

B = φ1A+ φ2AJ.

Since the immersion is ruled, then A has the form

A =
[
λ ν
ν 0

]
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with respect to {Y,X}. We easily have from (2.21) that φ1 = 0, and
thereforeB has the form (6.4). Finally (6.5) follows fromB being a Codazzi
tensor.

The following fact is essential in the proof of Theorem 6.2.

Lemma 6.6. Let ν∗ > 0 be constant on an open subset U ⊂ Mn. If
γ : [0, b] → Mn is a unit speed geodesic such that γ([0, b)) is contained in
a leaf of ∆∗ in U , then (6.3) holds on [0, b].

Proof. The proof follows immediately from Proposition 1.7.

Proof of Theorem 6.2: Let T be a nontrivial infinitesimal bending of f and
let B be its associated symmetric tensor. We consider the subsets of Mn

defined by
Mi = {x ∈Mn : rank A(x) ≥ i}.

We have that M2 6= ∅. If otherwise, we have from Proposition 1.8
that the splitting tensor of ∆ vanishes. Then Proposition 1.9 gives
that f is a cylinder over a curve, but this is ruled out by assumption.
From Proposition 2.10 and Theorem 2.17 we have that B|M3 = 0. Let
V ⊂W2 = M2 \ M̄3 be the open subset of Mn defined by

V = {x ∈W2 : B(x) 6= 0} .

Since rank A = 2 on V it follows from (2.21) that ∆ = ∆∗.
We claim that the leaves of relative nullity in V are complete. Otherwise,

there is a geodesic γ : [0, b]→Mn contained in a leaf of the relative nullity
foliation such that γ([0, b)) ⊂ V and γ(b) /∈ V . From Lemma 6.6 we obtain
that B satisfies

∇γ′(s)B = C ′γ′(s)B (6.6)

on [0, b] with B(b) = 0, where C ′γ′ denotes the transpose of Cγ′ . Take a
parallel orthonormal basis of ∆⊥ along γ and regard (6.6) as a differential
equation of matrices. Since B(b) = 0 then B necessarily vanishes along γ
(see Exercise 6.1). This is a contradiction, and proves the claim.
We show next that f |V is ruled. By Lemma 6.4 the codimension of C0 in

∆ is at most one. The assumption that f(M) does not contain a cylinder
gives that the subset

V0 = {x ∈ V : C(x) = 0}

has empty interior. Let T ∈ Γ(∆) be a local unit vector field on the open
subset V1 = V \ V0 spanning the orthogonal complement of C0. Using
again Lemma 6.4 it follows that rank CT = 1. Moreover, we have from
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Proposition 1.8 that V1 and V0 are both union of complete relative nullity
leaves.
We claim that the smooth distribution ∆ ⊕ kerCT on V1 is totally

geodesic. If kerCT is locally spanned by a unit vector field X, then

(∇XT )∆⊥ = −CTX = 0.

Similarly (∇XS)∆⊥ = 0 for any S ∈ Γ(C0). We have from (1.7) that
∇RS ∈ Γ(C0) for any S ∈ Γ(C0) and R ∈ Γ(∆), thus the integral curves
of T are geodesics. Then Proposition 1.8 gives that that ∇TX = 0.
Moreover, we have from equation (1.7) that CT (∇SX)∆⊥ = 0 and then
(∇SX)∆⊥ = 0 for any S ∈ Γ(C0). It remains to show that 〈∇XX,Y 〉 = 0
where Y ∈ Γ(∆⊥) is a unit vector field orthogonal to X. Since the only
real eigenvalue of CT is zero, then CTY = µX for a smooth non vanishing
function µ. Equation 1.8 yields

(∇hXCT )Y = (∇hY CT )X,

which is equivalent to
X(µ) = 〈∇Y Y,X〉µ (6.7)

and
µ〈∇XX,Y 〉 = 0.

The last equation proves the claim.
Since CT is nilpotent, we have that kerC ′T = ImC ′T . From (1.9) we

obtain that C ′TA = ACT , which implies that C ′TAX = 0, and then that

〈AX,X〉 = 0.

Thus the leaves of ∆⊕ kerCT are totally geodesic submanifolds of Rn+1,
that is, f |V1 is ruled.
Recall that the leaves of relative nullity in V1 are complete. Next we

prove that the rulings contained in V1 are also complete. Assume, on
the contrary, that there is an incomplete ruling in V1. Thus, there is a
geodesic δ : [0, a] → Mn in the direction of X such that δ(a) /∈ V1. We
have from Proposition 6.1 that the rank of f at δ(a) is two. Moreover,
from the second statement on that result, it follows that (6.7) extends to
δ(a) where Y ∈ Γ(∆⊥) is as before. Since µ is not zero along δ we have
that δ(a) /∈ V0, and hence δ(a) /∈ V . On the other hand, Lemma 6.5 yields
that B has the form (6.4) with respect to {Y,X} and that θ ∈ C∞(M)
verifies (6.5). Using again Proposition 6.1 we obtain that (6.5) extends
smoothly to [0, a] with X = δ′. But then B has to vanish along δ, which
is a contradiction proving that the rulings on V1 are complete.
Let S be a connected component of V1 and let x ∈ ∂S̄ together with

a sequence xj ∈ S be such that xj → x. Let Lj be the affine subspace
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of Rn+1 determined by the ruling through f(xj). Since the rulings are
complete, there is an affine subspace L through f(x) which is the limit
of the sequence determined by Lj . In fact, suppose that there are two
subsequences L′j and L′′j converging to different subspaces L′ and L′′ that
intersect at f(x). Then, in a neighborhood of x different subspaces L′j and
L′′j would intersect, and this is a contradiction. Clearly L ⊂ f(∂S̄), and
thus f |S̄ is a ruled strip.
Notice that if two ruled strips have common boundary then their union

is also a ruled strip. Take x ∈ V0. Since V1 is dense in V , then
f(x) ∈ L ⊂ f(M) where L is an affine (n − 1)-dimensional subspace
of Rn+1 that is the limit of a sequence of rulings of V1. Suppose that there
exist two sequences of rulings L′j ⊂ f(V1) and L′′j ⊂ f(V1) converging to
affine subspaces L′ 6= L′′ that intersect at f(x). Then L′j intersects L′′
in a hyperplane for large values of j. Fixing j large enough, the same
holds for any ruling in a neighborhood of rulings of L′j . Let Z ′ and Z ′′ be
vector fields tangent to L′j and L′′, respectively, and let R be a vector field
tangent to L′′ ∩ L′j . Since ∇̃RZ ′ and ∇̃RZ ′′ have no normal components,
it follows that L′′ ∩ L′j is a complete relative nullity leaf. The same holds
for the nearby rulings. In a neighborhood of y ∈ L′′ ∩ L′j , as before take
unit vector fields T ∈ Γ(C⊥0 ), X ∈ Γ(kerCT ) and Y such that CTY = µX
with µ 6= 0. Let γ be the unit speed geodesic of Mn such that f ◦ γ lies in
L′′, f(γ(0)) = y and is orthogonal to ∆. Then γ′ = aX + bY with b 6= 0.
Hence

〈CT γ′, γ′〉 = 〈T,∇γ′γ′〉 = 0

is equivalent to abµ = 0. This yields a = 0, and thus γ′ = Y is orthogonal
to X. Since f∗∇γ′T is tangent to L′′ and f∗X is orthogonal to L′′,
then CTY = 0, and this is a contradiction. Hence, we have seen that
any sequence of points in V1 converging to x, determines the same affine
subspace L as the limit of the correspondent rulings. Moreover, we have
shown that L does not intersect f(V1). Take a neighborhood U0 of x
where f is an embedding, then L ∩ f(U0) determines a ruling through
f(x). Hence we have that f |V is ruled and has complete relative nullity
leaves. Using Lemma 6.5 as above, we obtain that the affine subspace L is
in fact contained in f(V0). Thus, every connected component of V defines
a ruled strip.
To conclude the proof of the theorem it remains to show that B = 0

on the open subset W1 = M1 \ M̄2, that is, that B vanishes outside ruled
strips. It follows from (2.21) that B(∆) ⊂ ImA on W1, hence rank B ≤ 2.
Let V ′ be the open subset of W1 defined as

V ′ = {x ∈W1 : B(x) 6= 0} ,

then ∆∗ = kerB on V ′.
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We claim that V ′ is empty. Suppose otherwise. Let V ′′ ⊂ V ′ be the open
subset where ν∗ = dim ∆∗ attains its minimum in V ′, say ν∗0 . We see next
that the leaves of ∆∗ are complete on V ′′. Suppose, on the contrary, that
there is a geodesic γ : [0, b]→Mn such that γ([0, b)) ⊂ V ′ is contained on
a leaf of ∆∗ and that γ(b) /∈ V ′′. By Propositions 1.8 and 1.7 we know that
ν(γ(b)) = n−1 and ν∗(γ(b)) = ν∗0 . Then B(γ(b)) 6= 0 and γ(b) ∈ M̄2. Take
a neighborhood of γ(b) where B 6= 0. Since γ(b) ∈ M̄2, there is a sequence
xk ∈ V such that xk → γ(b). Recall that each connected component of V
defines a ruled strip. Let Lk be the affine subspace of Rn+1 given by the
ruling through f(xk). As before, there is an affine subspace L of dimension
n−1 which is the limit of the sequence Lk and determines a ruling through
f(γ(b)). Since Aγ′(b) = 0 and the geodesic f ◦ γ is transversal to L, we
have that A(γ(b)) = 0, and this is a contradiction. Hence ∆∗ has complete
leaves in V ′′.
The leaves of the relative nullity foliation cannot be complete on any

open subset of W1. This follows easily from Propositions 1.8 and 1.9
together with the assumptions on f . Hence necessarily ν∗0 = n− 2.
Take local orthonormal vector fields X and Y in V ′′ orthogonal to kerB

such that X is an eigenfield of A. Then A and B have the expressions

A|kerB⊥ =
[
λ 0
0 0

]
and B|kerB⊥ =

[
µ ρ
ρ 0

]
with respect to the frame {X,Y } and λ 6= 0 6= ρ.
Given T ∈ Γ(∆) let cT be defined by CTX = cTX. Since X is parallel

along the relative nullity leaves, we have

(∇XB)Y = (X(ρ) + cY µ)X + 2cY ρY + ρ(∇XX)kerB

and
(∇YB)X = Y (µ)X + Y (ρ)Y + ρ∇Y Y.

In particular, the Codazzi equation for B yields

Y (ρ) = 2cY ρ. (6.8)

Recall that each leaf of ∆ in V ′′ is foliated by leaves of ∆∗ that are
complete. Hence the integral curves of Y are geodesics. Let W ′1 ⊂ W1 be
the dense subset where the relative nullity leaves are not complete. Take a
point x ∈ V ′′ ∩W ′1. Since the leaf of the relative nullity foliation through
x is not complete, there is a geodesic δ : [0, b] → Mn contained in that
leaf tangent to Y such that δ([0, b)) ⊂ V ′′ and δ(b) /∈ V ′′. Then, either
δ(b) ∈ V ′ and rank B(δ(b)) = 1 or δ(b) /∈ V ′. In the former case we have
that ρ(δ(b)) = 0 and it follows from (6.8) that ρ = 0 along δ, which is a
contradiction. In the latter case, by the same transversality argument as
above we have that B(δ(b))=0, and hence ρ(δ(b)) = 0 leading again to a
contradiction. This proves the claim that V ′ is empty and concludes the
proof.
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Proposition 6.7. Let f : Mn → Rn+1 be an isometric immersion of a
simply connected Riemannian manifold Mn satisfying the hypothesis of
Theorem 6.2. If T is a nontrivial infinitesimal bending of f , then T is the
variational field of an isometric bending.

Proof. Let B be the symmetric tensor associated to the infinitesimal
bending T. The symmetric tensors A + tB, t ∈ R, satisfy the Gauss and
Codazzi equations (see Exercise 6.2). Then, they give rise to an isometric
variation of f whose variational field T′ has B as associated tensor. Thus
T − T′ is trivial, and this concludes the proof.

6.3 Exercises
Exercise 6.1. Let U : [0, b] → Mn(R) be a solution of the ODE U ′(s) =
T (s)U(s) where T : [0, b]→Mn(R) is continuous. Show that the rank U(s)
is constant on [0, b].
Hint: Take v ∈ Rn and define v(s) = U(s)v for s ∈ [0, b]. Observe that
v(s) satisfies

v′(s) = U ′(s)v = T (s)v(s).

From that conclude that the dimension of the kernel of U(s) is constant
on [0, b].

Exercise 6.2. Fill the details in the proof of Corollary 6.7.
Hint: Use (2.21), (6.4) and the Gauss equation for A to show that the
symmetric tensors A+ tB, t ∈ R, satisfy the Gauss equation. That A+ tB
satisfies the Codazzi equation follows from the Codazzi equations for A
and B.



Chapter 7

Conformal infinitesimal
variations

This chapter is about smooth variations of an Euclidean submanifold by
immersions that are infinitesimally conformal. This concept belongs to
conformal geometry since the class of conformal infinitesimal variations
is invariant by conformal transformations of the ambient space. The
main contents of this chapter are a Fundamental Theorem for conformal
infinitesimal variations and a rigidity theorem, both results due to Dajczer-
Jimenez [17].

7.1 Conformal infinitesimal variations
In this section, the notions of conformal infinitesimal variation and
conformal infinitesimal bending of an Euclidean submanifold are
introduced and shown that they belong to the realm of conformal geometry.

A conformal variation of a given isometric immersion f : Mn → Rm is
a smooth variation F : I×Mn → Rm, where 0 ∈ I ⊂ R is an open interval
and each ft = F(t, ·) with f0 = f is a conformal immersion for any t ∈ I.
Hence, there is a positive function γ ∈ C∞(I ×M) with γ(0, x) = 1 such
that

γ(t, x)〈ft∗X, ft∗Y 〉 = 〈X,Y 〉 (7.1)

for any X,Y ∈ X(M). The derivative of (7.1) with respect to t computed
at t = 0 gives that the variational vector field T = F∗∂/∂t|t=0 of F satisfies
the condition

〈∇̃XT, f∗Y 〉+ 〈f∗X, ∇̃Y T〉 = 2ρ〈X,Y 〉, (7.2)

97
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where ρ ∈ C∞(M) is given by ρ(x) = −(1/2)∂γ/∂t(0, x).
A trivial conformal variation of an isometric immersion is the

composition of the immersion with a smooth family of conformal
transformations of the Euclidean ambient space. Recall that conformal
transformations of Euclidean space are characterized by Liouville’s
classical theorem. In this case, the variational vector field is, at least
locally, the restriction of a conformal Killing vector field of the ambient
Euclidean space to the submanifold.
A smooth variation F : I × Mn → Rm of an isometric immersion

f : Mn → Rm is called a conformal infinitesimal variation if there is a
function γ ∈ C∞(I ×M) satisfying γ(0, x) = 1 and

∂

∂t
|t=0γ(t, x)〈ft∗X, ft∗Y 〉 = 0 (7.3)

for any X,Y ∈ X(M). This concept is just the infinitesimal analogue of a
conformal variation.
The notion of conformal infinitesimal variation is indeed a concept in

conformal geometry. In fact, let F : I × Mn → Rm be a conformal
infinitesimal variation of f : Mn → Rm. Then, let G : I × Mn → Rm
be the variation given by G = ψ ◦F where ψ is a conformal transformation
of Rm with positive conformal factor λ ∈ C∞(Rm). We argue that G is a
conformal infinitesimal variation of g = ψ ◦ f where

γ̃(t, x) = γ(t, x)− 2t〈T(x), ∇̃ log λ(f(x))〉.

In fact, we have using (7.3) that

∂

∂t
|t=0γ̃〈gt∗X, gt∗Y 〉

= ∂

∂t
|t=0((γ(t, x)− 2t〈T(x), ∇̃ log λ(f(x))〉)λ2(F(t, x))〈ft∗X, ft∗Y 〉)

= 〈f∗X, f∗Y 〉
∂

∂t
|t=0λ

2(F(t, x))− 2 ∂
∂t
|t=0tλ

2〈T, ∇̃ log λ〉〈ft∗X, ft∗Y 〉

= 2λ〈T, ∇̃λ〉〈f∗X, f∗Y 〉 − 2λ2〈T, ∇̃ log λ〉〈f∗X, f∗Y 〉
= 0,

as we wished.
As already seen in the case of infinitesimal variations, in order to study

conformal infinitesimal variations one has to deal with the variational
vector field. That the variational field satisfies (7.2) leads to the following
definition.
A conformal infinitesimal bending T with conformal factor ρ ∈ C∞(M)

of an isometric immersion f : Mn → Rm is a smooth section T ∈
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Γ(f∗TRm) that satisfies the condition

〈∇̃XT, f∗Y 〉+ 〈f∗X, ∇̃Y T〉 = 2ρ〈X,Y 〉 (7.4)

for any X,Y ∈ X(M).
On one hand, there is a conformal infinitesimal bending associated to

any conformal infinitesimal variation. On the other hand, associated to a
conformal infinitesimal bending we have the variation F : R ×Mn → Rm
given by

F(t, x) = f(x) + tT(x). (7.5)
This is a conformal infinitesimal variation with variational vector field
T since (7.3) is satisfied for γ(t, x) = e−2tρ(x). By no means (7.5) is
unique with this property, although it may be seen as the simplest one.
In fact, new conformal infinitesimal variations with variational vector field
T are obtained by adding to (7.5) terms of the type tkδ, k > 1, where
δ ∈ Γ(f∗TRm) and, maybe, for restricted values of the parameter t.
In view of the above, we call a conformal infinitesimal variation of

f : Mn → Rm a trivial conformal infinitesimal variation if the associated
conformal infinitesimal bending is trivial. In turn, that a conformal
infinitesimal bending is trivial means that at least locally it is the
restriction of a conformal Killing vector field of the Euclidean ambient
space to the submanifold. Finally, if any conformal infinitesimal variation
of f is trivial we say that the submanifold is conformally infinitesimally
rigid.
We conclude this section with some nontrivial examples of conformal

infinitesimal variations that are of rather simple geometric nature.

Examples 7.1. (i) If f : Mn → Rm is an isometric immersion then a
conformal Killing vector field of Mn is a conformal infinitesimal bending
of f .
(ii) Let g : Mn → Sm be an isometric immersion. Then T = ϕf is
a conformal infinitesimal bending of f = i ◦ g : Mn → Rm+1 where
ϕ ∈ C∞(M) and i : Sm → Rm+1 is the inclusion.

7.2 The associated pair
In this section, given a conformal infinitesimal bending T ∈ Γ(f∗TRm)
with conformal factor ρ ∈ C∞(M) of an isometric immersion f : Mn →
Rm, we show that the bending together with the second fundamental form
of f determine an associate pair of tensors (β,E) where β : TM × TM →
NfM is symmetric and E : TM×NfM → NfM satisfies the compatibility
condition

〈E(X, η), ξ〉+ 〈E(X, ξ), η〉 = 0 (7.6)
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for any X ∈ X(M) and η, ξ ∈ Γ(NfM).

Let L ∈ Γ(Hom(TM, f∗TRm)) be the tensor defined by

LX = ∇̃XT − ρf∗X = T∗X − ρf∗X

for any X ∈ X(M). Notice that (7.4) in terms of L has the form

〈LX, f∗Y 〉+ 〈f∗X,LY 〉 = 0 (7.7)

for any X,Y ∈ X(M). Let B : TM × TM → f∗TRm be the tensor given
by

B(X,Y ) = (∇̃XL)Y = ∇̃XLY − L∇XY

for any X,Y ∈ X(M). Then, the tensor β : TM × TM → NfM is defined
by

β(X,Y ) = (B(X,Y ))NfM

for any X,Y ∈ X(M). Flatness of the ambient space and that

β(X,Y ) = (∇̃X∇̃Y T − ∇̃∇XY T)NfM − ρα(X,Y )

give that β is symmetric.
Let Y ∈ Γ(Hom(NfM,TM)) be defined by

〈Yη,X〉+ 〈η, LX〉 = 0 (7.8)

for any X ∈ X(M). Then, let E : TM ×NfM → NfM be the tensor given
by

E(X, η) = α(X,Yη) + (LAηX)NfM .

We have

〈E(X, η), ξ〉 = 〈α(X,Yη) + LAηX, ξ〉
= 〈AξX,Yη〉 − 〈Yξ, AηX〉
= −〈LAξX, η〉 − 〈α(X,Yξ), η〉
= −〈E(X, ξ), η〉,

and thus condition (7.6) is satisfied.

Proposition 7.2. It holds that

(B(X,Y ))f∗TM = f∗(Yα(X,Y ) + (X ∧∇ρ)Y )

for any X,Y ∈ X(M).
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Proof. We have to show that

C(X,Y, Z) = 〈(B − f∗Yα)(X,Y ), f∗Z〉+ 〈X,Y 〉〈Z,∇ρ〉 − 〈Y,∇ρ〉〈X,Z〉

vanishes for any X,Y, Z ∈ X(M). The derivative of (7.7) gives

0 = 〈∇̃ZLX, f∗Y 〉+ 〈LX, ∇̃Zf∗Y 〉+ 〈∇̃ZLY, f∗X〉+ 〈LY, ∇̃Zf∗X〉
= 〈B(Z,X), f∗Y 〉+ 〈L∇ZX, f∗Y 〉+ 〈LX, f∗∇ZY + α(Z, Y )〉
+ 〈B(Z, Y ), f∗X〉+ 〈L∇ZY, f∗X〉+ 〈LY, f∗∇ZX + α(Z,X)〉

= 〈B(Z,X), f∗Y 〉+ 〈LX,α(Z, Y )〉+ 〈B(Z, Y ), f∗X〉+ 〈LY, α(Z,X)〉
= 〈(B − f∗Yα)(Z,X), f∗Y 〉+ 〈(B − f∗Yα)(Z, Y ), f∗X〉.

On the other hand,

〈B(X,Y ), f∗Z〉 = 〈∇̃X∇̃Y T − ∇̃∇XY T, f∗Z〉 − 〈X,∇ρ〉〈Y, Z〉.

It follows that

C(X,Y, Z) = C(Y,X,Z) and C(Z,X, Y ) = −C(Z, Y,X)

for any X,Y, Z ∈ X(M). Then

C(X,Y, Z) = −C(X,Z, Y ) = −C(Z,X, Y ) = C(Z, Y,X)
= C(Y,Z,X) = −C(Y,X,Z) = −C(X,Y, Z)
= 0,

as we wished.

7.3 The fundamental equations
In this section, we determine the set of fundamental equations for a
conformal infinitesimal variation.
Proposition 7.3. The pair (β,E) associated to a conformal infinitesimal
bending satisfies the system of equations

(S)



Aβ(Y,Z)X +Bα(Y,Z)X −Aβ(X,Z)Y −Bα(X,Z)Y

+(X ∧HY − Y ∧HX)Z = 0

(∇⊥Xβ)(Y,Z)− (∇⊥Y β)(X,Z) = E(Y, α(X,Z))− E(X,α(Y,Z))
+ 〈Y,Z〉α(X,∇ρ)− 〈X,Z〉α(Y,∇ρ)

(∇⊥XE)(Y, η)− (∇⊥Y E)(X, η) = β(X,AηY )− β(AηX,Y )
+α(X,BηY )− α(BηX,Y ),

(7.9)

(7.10)

(7.11)

where X,Y, Z ∈ X(M) and η ∈ Γ(NfM). Moreover, we have that
Bη, H ∈ Γ(End(TM)) are given, respectively, by

〈BηX,Y 〉 = 〈β(X,Y ), η〉 and HX = ∇X∇ρ.
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Proof. We first show that

(∇̃XY)η = −f∗BηX − LAηX + E(X, η), (7.12)

where
(∇̃XY)η = ∇̃Xf∗Yη − f∗Y∇⊥Xη.

Taking the derivative of (7.8), we have from (7.7) and (7.8) that

0 = 〈∇̃Xf∗Yη, f∗Y 〉+ 〈Yη,∇XY 〉+ 〈∇̃XLY, η〉+ 〈LY, ∇̃Xη〉
= 〈(∇̃XY)η, f∗Y 〉+ 〈BηX,Y 〉+ 〈LAηX, f∗Y 〉.

Since 〈f∗Yη, ξ〉 = 0, then

0 = 〈∇̃Xf∗Yη, ξ〉+ 〈f∗Yη, ∇̃Xξ〉
= 〈(∇̃XY)η, ξ〉 − 〈α(X,Yη), ξ〉
= 〈(∇̃XY)η, ξ〉+ 〈LAηX − E(X, η), ξ〉

for any X ∈ X(M) and η, ξ ∈ Γ(NfM), and hence (7.12) follows.
Since

(∇̃XB)(Y,Z) = ∇̃X(∇̃Y L)Z − (∇̃∇XY L)Z − (∇̃Y L)∇XZ, (7.13)

it is easy to see that

(∇̃XB)(Y,Z)− (∇̃YB)(X,Z) = −LR(X,Y )Z (7.14)

for any X,Y, Z ∈ X(M). It follows using Proposition 7.2 that

〈(∇̃XB)(Y,Z), f∗W 〉
= 〈(∇̃XY)α(Y,Z) + f∗Y(∇⊥Xα)(Y Z)− f∗Aβ(Y,Z)X, f∗W 〉

+ 〈Y,W 〉Hess ρ(Z,X)− 〈Y,Z〉Hess ρ(X,W )

for any X,Y, Z,W ∈ X(M). Then (7.14) and the Gauss and Codazzi
equations give

〈(∇̃XY)α(Y,Z)− (∇̃Y Y)α(X,Z), f∗W 〉
= 〈LAα(X,Z)Y − LAα(Y,Z)X + f∗Aβ(Y,Z)X − f∗Aβ(X,Z)Y, f∗W 〉

+ 〈Y,Z〉Hess ρ(X,W )− 〈Y,W 〉Hess ρ(Z,X)
+ 〈X,W 〉Hess ρ(Y,Z)− 〈X,Z〉Hess ρ(Y,W ).

On the other hand, it follows from (7.12) that

〈(∇̃XY)α(Y,Z)− (∇̃Y Y)α(X,Z), f∗W 〉
= 〈f∗Bα(X,Z)Y + LAα(X,Z)Y − f∗Bα(Y,Z)X − LAα(Y,Z)X, f∗W 〉.
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The last two equations give

〈Bα(X,Z)Y −Bα(Y,Z)X, f∗W 〉
= 〈Aβ(Y,Z)X −Aβ(X,Z)Y,W 〉+ 〈Y,Z〉Hess ρ(X,W )− 〈Y,W 〉Hess ρ(Z,X)
+ 〈X,W 〉Hess ρ(Y, Z)− 〈X,Z〉Hess ρ(Y,W ),

and this is (7.9).
Using (7.13) we obtain

((∇̃XB)(Y,Z))NfM =α(X,Yα(Y, Z)) + (∇⊥Xβ)(Y,Z)
+ 〈Z,∇ρ〉α(X,Y )− 〈Y, Z〉α(X,∇ρ).

Then, we have from (7.14) and the Gauss equation that

(∇⊥Xβ)(Y,Z)− (∇⊥Y β)(X,Z)
= (LR(Y,X)Z)NfM − α(X,Yα(Y,Z)) + α(Y,Yα(X,Z))
+ 〈Y,Z〉α(X,∇ρ)− 〈X,Z〉α(Y,∇ρ)

= (LAα(X,Z)Y − LAα(Y,Z)X)NfM − α(X,Yα(Y,Z)) + α(Y,Yα(X,Z))
+ 〈Y,Z〉α(X,∇ρ)− 〈X,Z〉α(Y,∇ρ),

and this is (7.10).
We have

(∇⊥XE)(Y, η) = ∇⊥XE(Y, η)− E(∇XY, η)− E(Y,∇⊥Xη)
= (∇⊥Xα)(Y,Yη) + (L(∇XA)(Y, η))NfM + α(Y,∇XYη)
− α(Y,Y∇⊥Xη)− (L∇XAηY )NfM +∇⊥X(LAηY )NfM .

Then (7.12) yields

(∇⊥XE)(Y, η) = (∇⊥Xα)(Y,Yη) + (L(∇XA)(Y, η))NfM − α(Y,BηX)
− α(Y, (LAηX)TM )− (L∇XAηY )NfM +∇⊥X(LAηY )NfM .

Using the Codazzi equation, we obtain

(∇⊥XE)(Y,η)− (∇⊥Y E)(X, η)
= α(X,BηY )− α(Y,BηX) + α(X, (LAηY )TM )
− α(Y, (LAηX)TM )− (L∇XAηY )NfM +∇⊥X(LAηY )NfM

+ (L∇YAηX)NfM −∇⊥Y (LAηX)NfM .

Since

β(X,AηY ) = α(X, (LAηY )TM )− (L∇XAηY )NfM +∇⊥X(LAηY )NfM ,

then (7.11) follows.
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7.4 Trivial infinitesimal variations
In this section, we characterize the trivial conformal infinitesimal bendings
in terms of the associated pair of tensors.
It is well-known that any trivial conformal infinitesimal bending of an

isometric immersion f : Mn → Rm is, at least locally, of the form

T(x) = (〈f(x), v〉+ λ)f(x)− 1/2‖f(x)‖2v + Df(x) + w,

where λ ∈ R, v, w ∈ Rm and D ∈ End(Rm) is skew-symmetric. Moreover,
the conformal factor is ρ(x) = 〈f(x), v〉+ λ; cf. [35] for details.
Then

LX = 〈f∗X, v〉f(x)− 〈f∗X, f(x)〉v + Df∗X.

Hence

(∇̃XL)Y = 〈f∗Y, v〉f∗X−〈X,Y 〉v+〈α(X,Y ), v〉f(x)−〈α(X,Y ), f(x)〉v+Dα(X,Y ).

If D′ ∈ Γ(End(f∗TRm)) is the skew-symmetric map given by

D′σ = 〈σ, v〉f(x)− 〈σ, f(x)〉v + Dσ,

then LX = D′f∗X. Moreover, we have f∗Yη = (D′η)f∗TM and

(∇̃XL)Y = 〈f∗Y, v〉f∗X − 〈X,Y 〉v + D′α(X,Y ).

Let DN ∈ Γ(End(NfM)) be given by DNξ = (D′ξ)NfM . Then

β(X,Y ) = DNα(X,Y )− 〈X,Y 〉vN ,

where vN = (v)NfM .
We have

(∇̃XD′)σ = ∇̃XD′σ −D′∇̃Xσ
= 〈σ, v〉f∗X − 〈σ, f∗X〉v

for any X ∈ X(M) and σ ∈ Γ(f∗TRm). Thus

E(X, ξ) = α(X,Yξ) + (LAξX)NfM

= (∇̃XD′ξ − ∇̃XDNξ)NfM + (LAξX)NfM

= ((∇̃XD′)ξ + D′∇̃Xξ − ∇̃XDNξ + LAξX)NfM

= −(∇⊥XDN )ξ

for any X ∈ X(M) and ξ ∈ Γ(NfM).
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Proposition 7.4. A conformal infinitesimal bending T of f : Mn →
Rm, n ≥ 3, is trivial if and only if there exist δ ∈ Γ(NfM) and C ∈
Γ(End(NfM)) skew-symmetric such that the associated pair has the form

β(X,Y ) = Cα(X,Y )− 〈X,Y 〉δ and E(X, ξ) = −(∇⊥XC)ξ. (7.15)

Proof. For (β,E) as in (7.15) and if ρ is the conformal factor of T, then
(7.9) gives

〈X,Z〉(〈α(Y,W ), δ〉 −Hess ρ(Y,W )) + 〈Y,W 〉(〈α(X,Z), δ〉 −Hess ρ(X,Z))
− 〈X,W 〉(〈α(Y,Z), δ〉−Hess ρ(Y,Z))−〈Y,Z〉(〈α(X,W ), δ〉−Hess ρ(X,W )) = 0

for any X,Y, Z,W ∈ X(M). For X,Y,W orthonormal and Z = X it
follows that

〈α(Y,W ), δ〉 = Hess ρ(Y,W )

whereas for X = Z and Y = W orthonormal we have

〈α(X,X), δ〉 −Hess ρ(X,X) = −〈α(Y, Y ), δ〉+ Hess ρ(Y, Y ) = 0.

Thus
〈α(X,Y ), δ〉 = Hess ρ(X,Y ) (7.16)

for any X,Y ∈ X(M).
Since β and E have the form (7.15) we obtain from (7.10) and the

Codazzi equation that

〈X,Z〉(∇⊥Y δ + α(Y,∇ρ)) = 〈Y,Z〉(∇⊥Xδ + α(X,∇ρ).

Hence
∇⊥Xδ + α(X,∇ρ) = 0 (7.17)

for any X ∈ X(M). Equations (7.16) and (7.17) are equivalent to
f∗∇ρ + δ = v being constant along f . In particular ρ(x) = 〈f(x), v〉 + λ
for some λ ∈ R.
Let T1 ∈ Γ(f∗TRm) be the trivial conformal infinitesimal bending

T1(x) = (〈f(x), v〉+ λ)f(x)− 1/2‖f(x)‖2v.

Notice that T and T1 have the same conformal factor, then T2 = T−T1 is an
infinitesimal bending. If L and L1 are associated to T and T1, respectively,
then the tensor L2 associated to T2 is given by

L2X = ∇̃XT2 = LX − L1X.

Hence, the tensors (β2,E2) associated to T2 satisfy β2 = β − β1 and
E2 = E − E1, where the pair (β1,E1) is associated to T1. Recall that
δ = (v)NfM , then (β2,E2) is as in (2.19) and thus T2 is trivial.
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Remark 7.5. Two conformal infinitesimal bendings Ti, i = 1, 2, of a
submanifold f : Mn → Rm differ by a trivial one if and only if the
associated pairs (βi,Ei), i = 1, 2, differ by tensors as in (7.15).

Let f : Mn → Rn+1 be a hypersurface with shape operator A
corresponding to the Gauss map N ∈ Γ(NfM). Associated to a conformal
infinitesimal bending we are now reduced to consider the tensor B ∈
Γ(End(TM)) given by

β(X,Y ) = 〈BX,Y 〉N.

Then the fundamental system of equations takes the form

BX ∧AY −BY ∧AX +X ∧HY − Y ∧HX = 0 (7.18)

and
(∇XB)Y − (∇YB)X + (X ∧ Y )A∇ρ = 0 (7.19)

for any X,Y ∈ X(M).

Corollary 7.6. A conformal infinitesimal bending T of f : Mn → Rn+1,
n ≥ 3, is trivial if and only if its associated tensor B has the form B = ϕI
for ϕ ∈ C∞(M).

Proof. For a hypersurface, the tensor E vanishes. Then T is trivial if and
only if

β(X,Y ) = −〈X,Y 〉δ
for some δ ∈ Γ(NfM). This is equivalent to B = ϕI for ϕ = −〈δ,N〉.

7.5 The Fundamental Theorem
This section is devoted to the Fundamental Theorem for conformal
infinitesimal variations of Euclidean submanifolds.

Let Vm+1 ⊂ Lm+2 denote the light cone of the standard flat Lorentz
space form Lm+2 defined by

Vm+1 = {v ∈ Lm+2 : 〈v, v〉 = 0, v 6= 0}.

Given w ∈ Vm+1, then

Em = {v ∈ Vm+1 : 〈v, w〉 = 1}

is a model of Euclidean space Rm in Lm+2. In fact, given v ∈ Em and
a linear isometry C : Rm → (span{v, w})⊥ ⊂ Lm+2, the map Ψ: Rm →
Vm+1 ⊂ Lm+2 given by

Ψ(x) = v + Cx− 1
2‖x‖

2w (7.20)



Chapter 7. Conformal infinitesimal variations 107

is an isometric embedding such that Ψ(Rm) = Em. From Exercise 7.4 we
have that the normal bundle of Ψ is NΨRm = span{Ψ, w} and that its
second fundamental form is given by

αΨ(U, V ) = −〈U, V 〉w (7.21)

for any U, V ∈ TRm.
The sum of any two conformal infinitesimal bendings is again a

conformal infinitesimal bending. In the following result and afterward,
we identify two conformal infinitesimal bendings if they differ by a trivial
conformal infinitesimal bending.

Theorem 7.7. Let f : Mn → Rm, n ≥ 3, be an isometric immersion of a
simply connected Riemannian manifold. A triple (β,E, ρ) 6= 0, formed by a
symmetric tensor β : TM×TM → NfM , a tensor E : TM×NfM → NfM
for which (7.6) holds and ρ ∈ C∞(M), that satisfies system (S) determines
a unique conformal infinitesimal bending of f .

Proof. Let F : Mn → Vm+1 ⊂ Lm+2 be the isometric immersion F = Ψ◦f ,
where Ψ is given by (7.20). By (7.21) the second fundamental form of F
satisfies

αF (X,Y ) = Ψ∗α(X,Y )− 〈X,Y 〉w (7.22)

for any X,Y ∈ X(M).
Let β̂ : TM × TM → NFM be the symmetric tensor given by

β̂(X,Y ) = Ψ∗β(X,Y )−Hess ρ(X,Y )F

for any X,Y ∈ X(M). Then (7.9) is equivalent to

AF
β̂(Y,Z)X + B̂αF (Y,Z)X −AFβ̂(X,Z)Y − B̂αF (X,Z)Y = 0, (7.23)

where AFξ is the shape operator of F with respect to ξ ∈ Γ(NFM) and B̂ξ
is given by

〈B̂ξX,Y 〉 = 〈β̂(X,Y ), ξ〉.

Let Ê : TM ×NFM → NFM be the tensor defined by

Ê(X,Ψ∗η) = Ψ∗E(X, η)− 〈α(X,∇ρ), η〉F,

Ê(X,w) = Ψ∗α(X,∇ρ) and Ê(X,F ) = 0.

Since E satisfies (7.6) then also does Ê. For simplicity, from now on we
just write η for η ∈ Γ(NfM) as well as its image under Ψ∗. We have

(∇
′⊥
X β̂)(Y, Z) = (∇⊥Xβ)(Y, Z)− (∇XHess ρ)(Y,Z)F,
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where ∇′⊥ is the normal connection of F . Then

(∇
′⊥
X β̂)(Y,Z)− (∇

′⊥
Y β̂)(X,Z)

= (∇⊥Xβ)(Y, Z)− (∇⊥Y β)(X,Z)
+ ((∇YHess ρ)(X,Z)− (∇XHess ρ)(Y,Z))F.

It follows from Hess ρ(X,Y ) = 〈∇X∇ρ, Y 〉 and the Gauss equation that

(∇YHess ρ)(X,Z)− (∇XHess ρ)(Y, Z)
= 〈R(Y,X)∇ρ, Z〉
= 〈α(Y,Z), α(X,∇ρ)〉 − 〈α(Y,∇ρ), α(X,Z)〉,

(7.24)

where R is the curvature tensor of Mn. Thus, from (7.10) and (7.24) we
have

(∇
′⊥
X β̂)(Y,Z)− (∇

′⊥
Y β̂)(X,Z)

= E(Y, α(X,Z))− E(X,α(Y,Z)) + 〈Y, Z〉α(X,∇ρ)− 〈X,Z〉α(Y,∇ρ)
+ 〈α(Y, Z), α(X,∇ρ)〉F − 〈α(Y,∇ρ), α(X,Z)〉F,

and hence

(∇
′⊥
X β̂)(Y,Z)− (∇

′⊥
Y β̂)(X,Z) = Ê(Y, αF (X,Z))− Ê(X,αF (Y, Z)) (7.25)

for any X,Y, Z ∈ X(M).
From the definition of Ê, it follows that

(∇
′⊥
X Ê)(Y, η) = (∇⊥XE)(Y, η)− 〈(∇⊥Xα)(Y,∇ρ), η〉F − 〈α(Y,∇X∇ρ), η〉F

for any X,Y ∈ X(M) and η ∈ Γ(NfM). Using the Codazzi equation, we
obtain

(∇
′⊥
X Ê)(Y, η)− (∇

′⊥
Y Ê)(X, η) = (∇⊥XE)(Y, η)− (∇⊥Y E)(X, η)

+ (〈α(X,∇Y∇ρ), η〉 − 〈α(Y,∇X∇ρ), η〉)F.

On the other hand, we have

β̂(X,AFη Y )− β̂(AFη X,Y ) + αF (X, B̂ηY )− αF (B̂ηX,Y )
= β(X,AηY )−Hess ρ(X,AηY )F − β(AηX,Y ) + Hess ρ(AηX,Y )F

+ α(X,BηY )− 〈X,BηY 〉w − α(BηX,Y ) + 〈BηX,Y 〉w.

From (7.11), the symmetry of β and that

Hess ρ(X,AηY ) = 〈α(Y,∇X∇ρ), η〉,



Chapter 7. Conformal infinitesimal variations 109

it follows that

(∇X
′⊥Ê)(Y, η)− (∇

′⊥
Y Ê)(X, η)

= β̂(X,AFη X)− β̂(AFη X,Y ) + αF (X, B̂ηY )− αF (B̂ηX,Y ).
(7.26)

Using the Codazzi equation again, we obtain

(∇
′⊥
X Ê)(Y,w)− (∇

′⊥
Y Ê)(X,w) = α(Y,∇X∇ρ)− α(X,∇Y∇ρ).

Notice that AFw = 0 and B̂wX = −∇X∇ρ for any X ∈ X(M). Then

β̂(X,AFwX)− β̂(AFwX,Y ) + αF (X, B̂wY )− αF (B̂wX,Y )
= α(Y,∇X∇ρ)− 〈Y,∇X∇ρ〉w − α(X,∇Y∇ρ) + 〈X,∇Y∇ρ〉w,

and hence

(∇
′⊥
X Ê)(Y,w)− (∇

′⊥
Y Ê)(X,w)

= β̂(X,AFwY )− β̂(AFwX,Y ) + αF (X, B̂wY )− αF (B̂wX,Y ).
(7.27)

Since B̂F = 0, AFFX = −X, E(X,F ) = 0 and ∇′⊥X F = 0, then

(∇
′⊥
X Ê)(Y, F )− (∇

′⊥
Y Ê)(X,F )

= β̂(X,AFFY )− β̂(AFFX,Y ) + αF (X, B̂FY )− αF (B̂FX,Y )
(7.28)

trivially holds.
Summarizing, we have that β̂ is symmetric, that Ê satisfies (7.6) and that

the pair verifies (7.23),(7.25),(7.26), (7.27) and (7.28). In this situation,
we have that Theorem 2.8 applies. Recall that in Remark 2.9 it is observed
that this result holds for ambient spaces of any signature, in particular,
for the Lorentzian space considered here. We conclude that there is an
infinitesimal bending T̃ ∈ Γ(F ∗(TLm+2)) of F whose associated pair (β̃, Ẽ)
satisfies

β̃ = β̂ + C̃αF and Ẽ = Ê−∇
′⊥C̃, (7.29)

where C̃ ∈ Γ(End(NFM)) is skew-symmetric. Moreover, we have that T̃

is unique up to a trivial infinitesimal bending. Write T̃ as

T̃ = Ψ∗T + 〈T̃, w〉F + 〈T̃, F 〉w.

Since T̃ is an infinitesimal bending of F , we have

〈∇̃′X T̃, F∗Y 〉+ 〈∇̃′Y T̃, F∗X〉 = 0

for all X,Y ∈ X(M), where ∇̃′ is the connection in Lm+2. Then

〈∇̃XT, f∗Y 〉+ 〈∇̃Y T, f∗X〉+ 2〈T̃, w〉〈X,Y 〉 = 0
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for all X,Y ∈ X(M). Hence, setting ρ1 = −〈T̃, w〉 we have that T is a
conformal infinitesimal bending of f with conformal factor ρ1.
Let β′ and E′ be the tensors associated to the conformal infinitesimal

bending T of f . Notice that

(∇̃′X T̃)Ψ∗TRm = Ψ∗∇̃XT − ρ1F∗X (7.30)

for any X ∈ X(M). Thus (β̃)Ψ∗NfM coincides with β′. Let C ∈
Γ(End(NfM)) be given by Cη = (C̃η)Ψ∗NfM for any η ∈ Γ(NfM). Then
C is skew symmetric. It follows from (7.22) and (7.29) that the tensor β′
satisfies

β′(X,Y ) = β(X,Y ) + Cα(X,Y )− 〈X,Y 〉δ, (7.31)

where δ = (C̃w)Ψ∗NfM .
Let L̃ be associated to T̃ and let Ỹ be given by (2.10) with respect to L̃.

Given η ∈ Γ(NfM) we have

〈L̃X, η〉 = 〈∇̃XT, η〉 = 〈LX, η〉,

and then Ỹη = Yη, here L and Y are associated to T. Notice that
(7.30) is just (L̃X)Ψ∗TRm = Ψ∗LX. This together with (7.22) imply
that (Ẽ(X, η))Ψ∗NfM coincides with E′(X, η) for any X ∈ X(M) and
η ∈ Γ(NfM). Notice also that Ψ∗NfM is parallel with respect to ∇′⊥,
thus we have from (7.29) that

E′ = E−∇⊥C. (7.32)

Finally it follows from (7.31), (7.32) and Proposition 7.4 that any other
conformal infinitesimal bending arising in this manner differs from T by a
trivial conformal infinitesimal bending, and this concludes the proof.

Theorem 7.7 takes a rather simpler form in the hypersurface case.

Corollary 7.8. Let f : Mn → Rn+1, n ≥ 3, be an isometric immersion
of a simply connected Riemannian manifold. Then a symmetric tensor
0 6= B ∈ Γ(End(TM)) and ρ ∈ C∞(M) that satisfy (7.18) and (7.19)
determine a unique conformal infinitesimal bending of f .

Proof. In this case E vanishes and 〈BX,Y 〉 = 〈β(X,Y ), N〉. Thus (7.11)
holds trivially for β and E = 0. Moreover, by the assumptions on B we
have that (β, 0, ρ) satisfies (7.9) and (7.10). Hence, Theorem 7.7 gives that
(β, 0, ρ) determines a unique conformal infinitesimal bending T of f .
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7.6 Conformal infinitesimal rigidity
In this section, we give a rigidity theorem for conformal infinitesimal
variations of Euclidean submanifolds that lie in low codimension. This
result is the infinitesimal version of the conformal rigidity result due to do
Carmo-Dajczer given in [5].

The notion of conformal s-nullity given next is a concept in conformal
geometry since it is easily seen to be invariant under a conformal change
of the metric of the ambient space.
The conformal s-nullity νcs(x), 1 ≤ s ≤ p, of an immersion f : Mn →

Rn+p at x ∈Mn is defined as

νcs(x) = max{dimN(αUs − 〈 , 〉ξ)(x) : Us ⊂ NfM(x) and ξ ∈ Us},

where αUs = πUs ◦ α and πUs : NfM → Us is the orthogonal projection
onto the normal subspace Us.
The next is the version of Proposition 2.15 for conformal infinitesimal

variations.

Theorem 7.9. Let f : Mn → Rn+p, n ≥ 2p+3, be an isometric immersion
with codimension 1 ≤ p ≤ 4. If the conformal s-nullities of f satisfy
νcs ≤ n−2s−1 for all 1 ≤ s ≤ p at any point of Mn, then f is conformally
infinitesimally rigid.

By the above result, in the case of a hypersurface f : Mn → Rn+1, n ≥ 5,
the existence of a nontrivial conformal infinitesimal variation requires the
presence of a principal curvature of multiplicity at least n−2 at any point.

The proof of Theorem 2.17 for infinitesimal variations was quite short
due to the use of the classical trick given by Proposition 2.12. But this
strategy fails completely in the conformal case and this is why, in sharp
contrast, the proof of the above result requires several lemmas.

Lemma 7.10. Let T be a conformal infinitesimal bending of an isometric
immersion f : Mn → Rn+p with conformal factor ρ and associated pair
(β,E). Then, at any point of Mn the bilinear form θ : TM × TM →
NfM ⊕ R⊕NfM ⊕ R defined by

θ = (α+ β, 〈 , 〉+ Hess ρ, α− β, 〈 , 〉 −Hess ρ) (7.33)

is flat with respect to the inner product 〈〈 , 〉〉 of signature (p + 1, p + 1)
given by

〈〈(ξ1, a1, η1, b1), (ξ2, a2, η2, b2)〉〉 = 〈ξ1, ξ2〉NfM + a1a2 − 〈η1, η2〉NfM − b1b2.
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Proof. A straightforward computation yields
1
2(〈〈θ(X,W ), θ(Y, Z)〉〉 − 〈〈θ(X,Z), θ(Y,W )〉〉)

=〈β(X,W ), α(Y,Z)〉+ 〈α(X,W ), β(Y,Z)〉
− 〈β(X,Z), α(Y,W )〉 − 〈α(X,Z), β(Y,W )〉
+ 〈X,W 〉Hess ρ(Y,Z) + 〈Y,Z〉Hess ρ(X,W )
− 〈X,Z〉Hess ρ(Y,W )− 〈Y,W 〉Hess ρ(X,Z)

for any X,Y, Z,W ∈ X(M), and the proof follows from (7.9).

Lemma 7.11. Let f : Mn → Rm be an isometric immersion. Let
Z1, Z2 ∈ TxM be nonzero vectors satisfying either Z1 = Z2 or 〈Z1, Z2〉 = 0.
If n ≥ 4 and νc1(x) ≤ n− 3, then

NfM(x) = span{α(X,Y ) : X,Y ∈ TxM ; 〈X,Y 〉 = 〈X,Z1〉 = 〈Y, Z2〉 = 0}.

Proof. First assume that 〈Z1, Z2〉 = 0. Let Us ⊂ NfM(x) be the subspace
given by Us ⊥ α(X,Y ) for any X,Y ∈ TxM as in the statement. If, in
addition, we have 〈X,Z2〉 = 〈Y, Z1〉 = 0 and ‖X‖ = ‖Y ‖, then that
α(X + Y,X − Y )Us = 0 gives

αUs(X,X) = αUs(Y, Y ).

Thus, there is ζ ∈ Us such that

αUs(X,Y ) = 〈X,Y 〉ζ

for any X,Y ∈ span{Z1, Z2}⊥. By assumption αUs(W,Z1) =
αUs(W,Z2) = 0 for any W ∈ span{Z1, Z2}⊥. Then

span{Z1, Z2}⊥ ⊂ N(αUs − 〈 , 〉ζ),

and this contradicts our assumption on νc1 unless s = 0.
If Z1 = Z2 we again have that there is ζ ∈ Us such that

αUs(X,Y ) = 〈X,Y 〉ζ

for any X,Y ∈ span{Z1}⊥. It follows that Aζ has an eigenspace of
multiplicity at least n− 2 again contradicting the assumption on νc1.

Lemma 7.12. Let f : Mn → Rm, n ≥ 4, be an isometric immersion and
let T be a conformal infinitesimal bending of f with conformal factor ρ
and associated pair (β,E). If νc1(x) ≤ n− 3 at any x ∈Mn, then E is the
unique tensor satisfying (7.6) as well as an equation of the form

(∇⊥Xβ)(Y,Z)− (∇⊥Y β)(X,Z) = E(Y, α(X,Z))− E(X,α(Y,Z))
+ 〈Y,Z〉ψ(X)− 〈X,Z〉ψ(Y ),

(7.34)

where ψ ∈ Γ(Hom(TM,NfM)).
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Proof. If also E0 : TM × NfM → NfM satisfies (7.6) and (7.34), then
(7.10) gives

(E− E0)(X,α(Y,Z))− (E− E0)(Y, α(X,Z))
+ 〈Y, Z〉(ψ(X)− α(X,∇ρ))− 〈X,Z〉(ψ(Y )− α(Y,∇ρ)) = 0.

Hence
(E− E0)(X,α(Y,Z)) = (E− E0)(Y, α(X,Z))

if Z is orthogonal to X and Y . Writing

〈(E− E0)(X1, α(X2, X3)), α(X4, X5)〉 = (X1, X2, X3, X4, X5)

and taking 〈X1, X3〉 = 〈X2, X3〉 = 0, we have symmetry in the pairs
{X1, X2}, {X2, X3} and {X4, X5}. Moreover, since E and E0 verify (7.6)
we obtain

(X1, X2, X3, X4, X5) = −(X1, X4, X5, X2, X3).

Hence, if {Xi}1≤i≤5 satisfies

〈X1, X3〉 = 〈X1, X4〉 = 〈X2, X3〉 = 〈X2, X5〉 = 〈X4, X5〉 = 0, (7.35)

then

(X1, X2, X3, X4, X5) = −(X1, X4, X5, X2, X3) = −(X5, X4, X1, X2, X3)
= (X5, X2, X3, X4, X1) = (X3, X2, X5, X4, X1)
= −(X3, X4, X1, X2, X5) = −(X4, X3, X1, X2, X5)
= (X4, X2, X5, X3, X1) = (X2, X4, X5, X3, X1)
= −(X2, X3, X1, X4, X5) = −(X1, X2, X3, X4, X5)
= 0.

Thus
〈(E− E0)(X1, α(X2, X3)), α(X4, X5)〉 = 0

if (7.35) holds. We already have that

〈X1, X4〉 = 〈X2, X5〉 = 〈X4, X5〉 = 0.

Hence, if also 〈X1, X2〉 = 0, we obtain from Lemma 7.11 that

(E− E0)(X1, α(X2, X3)) = 0

for any X1, X2, X3 ∈ X(M) with 〈X1, X2〉 = 〈X1, X3〉 = 〈X2, X3〉 = 0.
Now using Lemma 7.11 again, it follows that

(E− E0)(X, η) = 0

for any X ∈ X(M) and η ∈ Γ(NfM).
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Lemma 7.13. Let S ⊂ Rm be a vector subspace and let T0 : S → Rm
be a linear map that is an isometry between S and T0(S). Assume that
there is no vector 0 6= v ∈ S such that T0v = −v. Then there is an
isometry T ∈ End(Rm) that extends T0 and has 1 as the only possible real
eigenvalue.

Proof. Extend T0 to an isometry T of Rm. Suppose that the eigenspace of
the eigenvalue −1 of T satisfies dimE−1 = k > 0. By assumption we have
that

E−1 ∩ S = E−1 ∩ T0(S) = 0.

Let e1, . . . , ek be an orthonormal basis of E−1 and set

P = T0(S)⊕ span{e2, . . . , ek}.

Let ξ ∈ P⊥ be a unit vector collinear with the P⊥-component of e1. Let
η ∈ Rm be such that Tη = ξ and let H be the hyperplane {η}⊥. If R
is the reflection with respect to the hyperplane {ξ}⊥, then the isometry
T1 = RT satisfies T1v = Tv for any v ∈ H since Tv ∈ {ξ}⊥.
Since 〈η, e1〉 = −〈ξ, e1〉 6= 0, there is v ∈ H such that η + v is collinear

with e1. Hence
T (η + v) = ξ + Tv = −η − v.

We claim that no vector of the form η + u, u ∈ H, is an eigenvector of T1
associated to −1. If otherwise

T1(η + u) = −ξ + Tu = −η − u

for some u ∈ H. We obtain from the last two equations that

T (u+ v) = −2η − (u+ v).

Then
‖T (u+ v)‖2 = 4 + ‖u+ v‖2

which contradicts that T is an isometry and proves the claim.
We have proved that the eigenspace of T1 associated to −1 is contained

in H, in fact, that it is span{e2 . . . ..., ek}. Therefore, by composing T
with k appropriate reflections we obtain an isometry as required by the
statement.

Lemma 7.14. Let T be a conformal infinitesimal bending of an isometric
immersion f : Mn → Rm. If T is trivial then θ is null. Conversely, if θ is
null, n ≥ 4 and νc1(x) ≤ n− 3 at any x ∈Mn then T is trivial.

Proof. If T is a trivial conformal infinitesimal bending of f , then

T(x) = (〈f(x), v〉+ λ)f(x)− 1/2‖f(x)‖2v + Df(x) + w
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for λ ∈ R, v, w ∈ Rm and D ∈ End(Rm) skew-symmetric. Since
ρ(x) = 〈f(x), v〉+ λ, then f∗∇ρ = vTM . Hence

〈∇̃Xv, f∗Y 〉 = Hess ρ(X,Y )− 〈AvNf M
X,Y 〉 = 0 (7.36)

for any X,Y ∈ X(M). Moreover, we have seen that

β(X,Y ) = Cα(X,Y )− 〈X,Y 〉vNfM ,

where C ∈ Γ(End(NfM)) is skew-symmetric. Using (7.36) and that C is
skew-symmetric, we obtain that the bilinear form θ is null. In fact,

1
2 〈〈θ(X,Y ), θ(Z,W )〉〉 = 〈α(X,Y ), β(Z,W )〉+ 〈β(X,Y ), α(Z,W )〉

+ 〈X,Y 〉Hess ρ(Z,W ) + 〈Z,W 〉Hess ρ(X,Y )
= −〈Z,W 〉〈α(X,Y ), vNfM 〉 − 〈X,Y 〉〈α(Z,W ), vNfM 〉
+ 〈X,Y 〉Hess ρ(Z,W ) + 〈Z,W 〉Hess ρ(X,Y )

= 0.

For the converse, that θ is null means that

〈α(X,Y ), β(Z,W )〉+ 〈β(X,Y ), α(Z,W )〉
+ 〈X,Y 〉Hess ρ(Z,W ) + 〈Z,W 〉Hess ρ(X,Y ) = 0

(7.37)

for any X,Y, Z,W ∈ X(M). Let S ⊂ NfM(x)⊕ R be the subspace given
by

S = span{(α(X,Y ) + β(X,Y ), 〈X,Y 〉+ Hess ρ(X,Y )) : X,Y ∈ TxM}.

Then, the map T0 defined by

T0(α(X,Y ) + β(X,Y ),〈X,Y 〉+ Hess ρ(X,Y ))
= (α(X,Y )− β(X,Y ), 〈X,Y 〉 −Hess ρ(X,Y ))

is an isometry between S and T (S). We claim that −1 is not an eigenvalue
of T0. Suppose that T0v = −v where

v =
∑
i

(α(Xi, Yi) + β(Xi, Yi), 〈Xi, Yi〉+ Hess ρ(Xi, Yi)) ∈ S.

Hence
∑
i α(Xi, Yi) = 0 and

∑
i〈Xi, Yi〉 = 0. Now (7.37) gives∑

i

〈β(Xi, Yi), α(Z,W )〉+ 〈Z,W 〉
∑
i

Hess ρ(Xi, Yi) = 0

for any Z,W ∈ X(M). That is, we have that Aη = −hI where
η =

∑
i β(Xi, Yi) and h =

∑
iHess ρ(Xi, Yi). From our assumption on

νc1 we obtain η = h = 0, hence v = 0 proving the claim.
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Let T be the isometry ofNfM(x)⊕R extending T0 given by Lemma 7.13.
Then

(I + T t)(I − T ) = (T t − T ) = −(I − T t)(I + T ),
where T t is the transpose of T . Thus

(I − T )(I + T )−1 = −(I + T t)−1(I − T t) = −((I − T )(I + T )−1)t,

that is, (I−T )(I+T )−1 is a skew-symmetric endomorphism ofNfM(x)⊕R.
It is easy to see that

(I − T )(I + T )−1(α(X,Y ), 0) = (β(X,Y ),Hess ρ(X,Y ))

for any X,Y ∈ TxM such that 〈X,Y 〉 = 0. Thus, there is C ∈
End(NfM(x)) skew-symmetric such that

β(X,Y ) = Cα(X,Y )

for any X,Y ∈ TxM with 〈X,Y 〉 = 0. Since

β(X + Y,X − Y ) = Cα(X + Y,X − Y )

for any orthonormal vectors X,Y ∈ TxM , it follows that

β(X,X)− Cα(X,X) = β(Y, Y )− Cα(Y, Y ).

Hence, there is δ ∈ NfM(x) such that

β(X,Y ) = Cα(X,Y )− 〈X,Y 〉δ (7.38)

for any X,Y ∈ TxM .
By Lemma 7.11 there are smooth local vector fields Xi, Yi, 1 ≤ i ≤ p,

satisfying 〈Xi, Yi〉 = 0 such that the vectors α(Xi, Yi), 1 ≤ i ≤ p, span the
normal bundle. Thus C and δ are smooth.
Define E0 : TM ×NfM → NfM by

E0(X, η) = −(∇⊥XC)η.

It follows from (7.38) that

(∇⊥Xβ)(Y, Z)− (∇⊥Y β)(X,Z) = E0(Y, α(X,Z))− E0(X,α(Y, Z))
− 〈Y,Z〉∇⊥Xδ + 〈X,Z〉∇⊥Y δ.

Then Lemma 7.12 gives E = E0, and thus T is trivial by Proposition 7.4.

Proof of Theorem 7.9: Let T be a conformal infinitesimal bending of f
such that the flat bilinear θ given by (7.33) is not null at x ∈ Mn. Since
N(θ) = 0, there is an orthogonal decomposition

W 2p+2
0 = NfM(x)⊕R⊕NfM(x)⊕R = W `,`

1 ⊕W
p−`+1,p−`+1
2 , 1 ≤ ` ≤ p,
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such that θ splits as θ = θ1 + θ2 as in Theorem 1.11. Denoting ∆ = N(θ2),
we have dim ∆ ≥ n−2(p− `+1). Thus θ(Z,X) = θ1(Z,X) for any Z ∈ ∆
and X ∈ TxM .
Let S ⊂ NfM(x)⊕ R be the vector subspace given by

S = span{(α(Z,X)+β(Z,X), 〈Z,X〉+Hess ρ(Z,X)) : Z ∈ ∆andX ∈ TxM}.

If Π1 denotes the orthogonal projection from W 2p+2
0 onto the first copy of

NfM(x)⊕ R, then S ⊂ Π1(S(θ) ∩ S(θ)⊥) and, in particular, dimS ≤ `.
That θ1 is null means that the map T : S → NfM(x)⊕ R defined by

T (α(Z,X)+β(Z,X), 〈Z,X〉+ Hess ρ(Z,X))
= (α(Z,X)− β(Z,X), 〈Z,X〉 −Hess ρ(Z,X))

is an isometry between S and T (S). We have that

1
2(I + T )(α(Z,X) + β(Z,X), 〈Z,X〉+ Hess ρ(Z,X)) = (α(Z,X), 〈Z,X〉).

If S1 = ((I+T )(S))⊥ ⊂ NfM×R, then dimS1 ≥ p−`+1. For (η, a) ∈ S1
we have that

〈α(Z,X), η〉+ a〈X,Z〉 = 0 (7.39)

for any Z ∈ ∆ and X ∈ TxM . Let U ⊂ NfM be the orthogonal projection
of S1 in NfM . Since S1 does not posses elements of the form (0, a) with
0 6= a ∈ R, then

dimU ≥ p− `+ 1.

It follows from (7.39) that there exists ξ ∈ U such that

αU (Z,X) = 〈Z,X〉ξ

for any Z ∈ ∆ and X ∈ TxM . Hence αU −〈 , 〉ξ has a kernel of dimension
at least dim ∆ ≥ n − 2(p − ` + 1). But this is in contradiction with the
assumption on the conformal s-nullities, and hence θ is necessarily null at
any point. Finally, Lemma 7.14 gives that T is trivial.

7.7 Exercises
Exercise 7.1. Prove the statements in Examples 7.1.

Exercise 7.2. Let f, g : Mn → Rm be conformal immersions such that
the map h = f + g : Mn → Rm is also a conformal immersion. Then show
that T = f − g is a conformal infinitesimal bending of h.
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Exercise 7.3. Prove that (7.10) is equivalent to the equation

(∇XBη)Y−(∇YBη)X −B∇⊥
X
ηY +B∇⊥

Y
ηX

= AE(X,η)Y −AE(Y,η)X + 〈AηX,∇ρ〉Y − 〈AηY,∇ρ〉X

for any X,Y ∈ X(M) and η ∈ Γ(NfM).

Exercise 7.4. Show that the normal bundle of the map Ψ: Rm → Vm+1 ⊂
Lm+2 defined by (7.20) is NΨRm = span{Ψ, w} and that its second
fundamental form is given by (7.21).

Exercise 7.5. Let f : Mn → Rm, n ≥ 3, be an isometric immersion
of a simply connected Riemannian manifold. Let (β,E, ρ) 6= 0 be a
triple formed by a symmetric tensor β : TM × TM → NfM , a tensor
E : TM × NfM → NfM that verifies (7.6) and ρ ∈ C∞(M) that
satisfies system (S). Show that the triple determines a unique conformal
infinitesimal bending of f with conformal factor ρ.
Hint: Given a pair (β,E) as in the statement, show that there is D ∈
Γ(End(f∗TRm)) satisfying

(∇̃XD)(Y + η) = f∗(〈Y,∇ρ〉X − 〈X,Y 〉∇ρ−BηX) + β(X,Y ) + E(X, η)

for any X,Y ∈ X(M) and η ∈ Γ(NfM). For that check that its
integrability condition

(∇̃X∇̃YD− ∇̃Y ∇̃XD− ∇̃[X,Y ]D)(Z + η) = 0

holds for any X,Y, Z ∈ X(M) and η ∈ Γ(NfM). Then, as in the proof of
Theorem 2.8, show that D can be assumed to be skew-symmetric. Define
L ∈ Γ(Hom(TM, f∗TRm)) by L(x) = D(x)|TxM . Then prove that there
is a vector field T ∈ Γ(f∗TRm) such that ∇̃XT = LX + ρX for any
X ∈ X(M). Conclude that T is a conformal infinitesimal bending of f
with conformal factor ρ whose associate pair (β̃, Ẽ) is

β̃(X,Y ) = β(X,Y ) + DNα(X,Y ) and Ẽ(X, η) = E(X, η)− (∇⊥XDN )η,

where DNη = (Dη)NfM for any η ∈ Γ(NfM).



Chapter 8

Conformal variations of
hypersurfaces

The main purpose of this chapter is to parametrically classify the
hypersurfaces in Euclidean space f : Mn → Rn+1, n ≥ 5, that admit
nontrivial conformal infinitesimal variations. The key ingredient in the
classification is a class of surfaces that is discussed in the first section.
In the special case of conformal variations, such a classification was first
considered by Cartan [7] and by Dajczer-Tojeiro [20] in a modern form.
The contains of this chapter are due to Dajczer-Jimenez-Vlachos [18].

8.1 Special surfaces
The classification of the Euclidean hypersurfaces that admit nontrivial
conformal infinitesimal variations will be given by means of the conformal
Gauss parametrization in terms of a class of spherical surfaces discussed
in this section.

Recall that (Em+1, 〈 , 〉) stands for either Euclidean space Rm+1 or
Lorentzian space Lm+1 with the standard flat metric. Then Smε ⊂ Em+1,
ε = 0, 1, is either the Euclidean unit sphere Sm0 ⊂ Rm+1 or the Lorentzian
unit sphere (or de Sitter space) Sm1 ⊂ Lm+1, that is,

Smε = {X ∈ Em+1 : 〈X,X〉 = 1}.

Moreover, we always denote by i : Smε → Em+1 the isometric umbilical
inclusion.
In the sequel, let g : L2 → Smε , m ≥ 4, be a space-like surface with

second fundamental form αg : TL × TL → NgL. Assume that g has full
first normal spaces of dimension two. Hence, given a basis X,Y of TxL
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there exists 0 6= (a, b, c) ∈ R3 such that the second fundamental form of g
satisfies

aαg(X,X) + 2cαg(X,Y ) + bαg(Y, Y ) = 0.
The surface g is said to be hyperbolic (respectively, elliptic) at x ∈ L2 if
ab − c2 < 0 (respectively, ab − c2 > 0). In Exercise 8.2 it is shown that
this condition is independent of the given basis. Moreover, the condition is
equivalent to the existence of a unique endomorphism J on TxL satisfying
J 6= I and J2 = I (respectively, J2 = −I) and

αg(JX, Y ) = αg(X, JY ) (8.1)

for all X,Y ∈ TxL.
The surface g is said to be hyperbolic (respectively, elliptic) if it is

hyperbolic (respectively, elliptic) at every point of L2. In this case,
the endomorphisms J on each tangent space give rise to a tensor J ∈
Γ(End(TL)) such that (8.1) holds for all X,Y ∈ X(L).
A local system of coordinates (u, v) on L2 is said to be real conjugate

for a given surface g : L2 → Smε if the condition

αg(∂u, ∂v) = 0

holds for the coordinate vector fields ∂u = ∂/∂u and ∂v = ∂/∂v. The local
coordinate system (u, v) is said to be complex conjugate for g if

αg(∂z, ∂z̄) = 0,

where z = u+ iv and ∂z = (1/2)(∂u − i∂v), that is, if

αg(∂u, ∂u) + αg(∂v, ∂v) = 0.

In the case of real conjugate coordinates, we denote F = 〈∂u, ∂v〉 and
Γ1, Γ2 are the Christoffel symbols defined by

∇∂u
∂v = Γ1∂u + Γ2∂v. (8.2)

In the case of complex conjugate coordinates, we denote F = 〈∂z, ∂z̄〉
where 〈 , 〉 also stands for the C-bilinear extension of the metric of L2, and
we have that

∇∂z
∂z̄ = Γ∂z + Γ̄∂z̄, (8.3)

where ∇ also denotes the C-bilinear extension of the Riemannian
connection.

Proposition 8.1. Let g : L2 → Smε be a space-like surface and h =
i ◦ g : L2 → Em+1. Then the following assertions are equivalent:

(i) The coordinates (u, v) are either real conjugate or complex conjugate
for g.
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(ii) The position vector of h satisfies

huv − Γ1hu − Γ2hv + Fh = 0 (8.4)

in the case of real conjugate coordinates and

hzz̄ − Γhz − Γ̄hz̄ + Fh = 0 (8.5)

in the case of complex conjugate coordinates.

Proof. The condition αg(∂u, ∂v) = 0 is equivalent to

αh(∂u, ∂v) + Fh = 0

whereas that αg(∂z, ∂z̄) = 0 is equivalent to

αh(∂z, ∂z̄) + Fh = 0.

The preceding two equations can also be written as (8.4) and (8.5),
respectively.

Proposition 8.2. If the surface g : L2 → Smε is hyperbolic (respectively,
elliptic), then there exists locally a real conjugate (respectively, complex
conjugate) system of coordinates on L2 for g. Conversely, if there exists a
real conjugate (respectively, complex conjugate) system of coordinates on
L2, then g : L2 → Smε is hyperbolic (respectively, elliptic).

Proof. Assume that g is hyperbolic, and letX,Y be a frame of eigenvectors
of J associated with the eigenvalues 1 and −1, respectively. Then there
exists a local system of coordinates (u, v) in L2 such that the coordinate
vector fields ∂u and ∂v are collinear with X and Y , respectively. Hence

αg(∂u, ∂v) = αg(J∂u, ∂v) = αg(∂u, J∂v) = −αg(∂u, ∂v) = 0.

Conversely, if (u, v) are real conjugate coordinates on L2 for g, let J be
the tensor defined by J∂u = ∂u and J∂v = −∂v. Then J2 = I and (8.1)
holds, since this is satisfied for X,Y ∈ {∂u, ∂v}. Thus g is hyperbolic with
respect to J . The proof for the elliptic case is similar.

We call a hyperbolic surface g : L2 → Smε endowed with a system of real
conjugate coordinates as in Proposition 8.2 a special hyperbolic surface if
the Christoffel symbols Γ1,Γ2 given by (8.2) satisfy the condition

Γ1
u = Γ2

v. (8.6)

Proposition 8.3. Let g : L2 → Smε be a simply connected special hyperbolic
surface and, up to a constant factor, let µ ∈ C∞(L) be the unique positive
solution of

dµ+ 2µω = 0, (8.7)
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where ω = Γ2du+ Γ1dv. Then ϕ ∈ C∞(L) is a solution of the equation

ϕuv − Γ1ϕu − Γ2ϕv + Fϕ = 0 where F = 〈∂u, ∂v〉 (8.8)

if and only if ψ = √µϕ satisfies

ψuv +Mψ = 0, (8.9)

where
M = F − µuv

2µ + µuµv
4µ2 · . (8.10)

In particular, the map k = √µh : L2 → Em+1 where h = i ◦ g, satisfies

kuv +Mk = 0.

Conversely, for a system of coordinates (u, v) on an open subset U ⊂ R2

let {k1, . . . , km+1} be a set of solutions of the equation (8.9) for M ∈
C∞(U). Assume that the map k = (k1, . . . , km+1) : U → Em+1 satisfies
µ = ‖k‖2 > 0 and that the map h = (1/√µ) k : U → Em+1 is a space-like
immersion if ε = 1. Then g : U → Smε defined by h = i ◦ g is a special
hyperbolic surface.

Proof. Notice that (8.6) is the integrability condition of (8.7). Since
µ ∈ C∞(U) is a solution of (8.7), it satisfies

Γ1 = −µv2µ and Γ2 = −µu2µ ·

Hence (8.8) becomes

ϕuv + µv
2µϕu + µu

2µϕv + Fϕ = 0

which takes the form (8.9) for ψ = √µϕ and M given by (8.10).
We now prove the converse. It is easily seen that h = (1/√µ) k : U →

Lm+1 satisfies
huv + µv

2µhu + µu
2µhv + Fh = 0, (8.11)

where F = M + µuv

2µ −
µuµv

4µ2 . If h is a space-like immersion and g : U → Smε
is the surface defined by h = i ◦ g, then (8.11) implies that (u, v) are real
conjugate coordinates for g and that the Christoffel symbols of the metric
induced by g are

Γ1 = −µv2µ and Γ2 = −µu2µ ·

It follows that (8.6) is satisfied and that µ is a positive solution of (8.7).
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We call an elliptic surface g : L2 → Smε endowed with a system of complex
conjugate coordinates as in Proposition 8.2 a special elliptic surface if the
Christoffel symbol Γ given by (8.3) satisfies the condition

Γz = Γ̄z̄, (8.12)

that is, if Γz is real-valued.

Proposition 8.4. Let g : L2 → Smε be a simply connected special elliptic
surface and, up to a constant factor, let µ ∈ C∞(L) be the unique real-
valued positive solution of

µz̄ + 2µΓ = 0. (8.13)

Then ϕ ∈ C∞(L) is a solution of

ϕzz̄ − Γϕz − Γ̄ϕz̄ + Fϕ = 0 where F = 〈∂z, ∂z̄〉 = (1/4)(‖∂u‖2 + ‖∂v‖2)
(8.14)

if and only if ψ = √µϕ satisfies

ψzz̄ +Mψ = 0, (8.15)

where
M = F − µzz̄

2µ + µzµz̄
4µ2 · . (8.16)

In particular, the map k = √µh : L2 → Em+1 where h = i ◦ g, satisfies

kzz̄ +Mk = 0.

Conversely, for a system of coordinates (u, v) on an open subset U ⊂ R2

let {k1, . . . , km+1} be a set of solutions of (8.15) where M ∈ C∞(U).
Assume that the map k = (k1, . . . , km+1) : U → Em+1 satisfies that
µ = ‖k‖2 > 0 and that the map h = (1/√µ) k : U → Em+1 is a space-
like immersion if ε = 1. Then g : U → Smε defined by h = i ◦ g is a special
elliptic surface.

Proof. Notice that (8.12) is the integrability condition of (8.13). Since
µ ∈ C∞(L) is a real-valued solution of (8.13) then Γ = −(1/2µ)µz̄. Hence
(8.14) becomes

ϕzz̄ + µz
2µϕz̄ + µz̄

2µϕz + Fϕ = 0

which takes the form (8.15) for k = √µϕ and M given by (8.16).
We prove the converse. It is easily seen that h = (1/√µ) k : L2 → Em+1

satisfies
hzz̄ + µz

2µhz̄ + µz̄
2µhz + Fh = 0, (8.17)
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where F = M+ µzz̄

2µ −
µzµz̄

4µ2 . If h is a space-like immersion and g : L2 → Smε
is the surface defined by h = i◦g, then (8.17) implies that (u, v) are complex
conjugate coordinates for g and that the complex Christoffel symbol of the
metric induced by g is Γ = −(1/2µ)µz̄. The equality (8.12) is satisfied and
µ is a positive solution of (8.13).

Proposition 8.5. For a simply connected surface g : L2 → Smε the
following assertions are equivalent:

(i) The surface g is special hyperbolic (respectively, special elliptic).

(ii) The surface g is hyperbolic (respectively, elliptic) with respect to a
tensor J ∈ Γ(End(TL)) that satisfies J2 = I and J 6= I (respectively,
J2 = −I) and there is a nowhere vanishing function µ ∈ C∞(L) such
that D = µJ is a Codazzi tensor on L2, that is,

(∇XD)Y = (∇YD)X

for any X,Y ∈ X(L).

Proof. Let g be a hyperbolic surface as in part (ii) and let (u, v) be local
real conjugate coordinates on L2 given by Proposition 8.2. Then the
equation

(∇∂u
D) ∂v − (∇∂v

D) ∂u = 0 (8.18)

is easily seen to be equivalent to (8.7).
Conversely, if g is special hyperbolic with real conjugate coordinates

(u, v), J ∈ Γ(End(TL)) is given by J∂u = ∂u and J∂v = −∂v, and
µ ∈ C∞(L) satisfies (8.7), then D = µJ satisfies (8.18) in view of (8.7),
and hence is a Codazzi tensor on L2. The proof for the elliptic case is
similar.

Given a surface g : L2 → Sm+1
1 , fix a pseudo-orthonormal basis

e1, . . . , em+2 of Lm+2, which means that

‖e1‖ = 0 = ‖em+2‖, 〈e1, em+2〉 = −1/2 and 〈ei, ej〉 = δij if i 6= 1,m+ 2,
(8.19)

and set g = (g1, g2, . . . , gm+2) : L2 → Sm+1
1 ⊂ Lm+2 in terms of this

basis. Assume that g1 6= 0 everywhere, and let the map h : L2 → Rm and
r ∈ C∞(L) be given by

h = r(g2, . . . , gm+1) and r = 1/g1. (8.20)

Notice that g can be recovered from the pair (h, r) by taking

g = r−1(1, h, ‖h‖2 − r2). (8.21)
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Proposition 8.6. We have g is a space-like immersion if and only if h
is an immersion and the gradient ∇hr of r in the metric induced by h
satisfies ‖∇hr‖ < 1.

Proof. This is Exercise 8.1.

We call the pair (h, r) formed by a surface h : L2 → Rm and a function
r ∈ C∞(L) a special hyperbolic pair (respectively, special elliptic pair)
if there exists a special hyperbolic surface (respectively, special elliptic
surface) g : L2 → Sm+1

1 such that (h, r) are given by (8.20).

8.2 The classification
The classification of Euclidean hypersurfaces that admit nontrivial
conformal infinitesimal bendings is parametric in nature and given in terms
of the conformal Gauss parametrization. This parametrization is discussed
next limited to the conditions in which it is used here; see [21] for additional
details. Then the classification result is given by means of two statements.

Let f : Mn → Rn+1, n ≥ 4, be a given oriented hypersurface with Gauss
map N : Mn → Sn ⊂ Rn+1. Assume that at each point of Mn there is a
principal curvature λ > 0 of multiplicity n−2. It follows from Proposition
1.5 that the corresponding eigenspaces form an integrable distribution and
that λ is constant along the spherical leaves. Moreover, the so-called focal
map, namely, the map f+rN : Mn → Rn+1, r = 1/λ, induces an isometric
immersion h : L2 → Rn+1, where the surface L2 with the induced metric
is the quotient space of leaves and r ∈ C∞(L2) turns out to satisfy that
‖∇hr‖ < 1.
The conformal Gauss parametrization goes as follows: The hypersurface

f can be locally parametrized along the unit normal bundle N1L of h by
the map

X(ξ) = h− r(h∗∇hr +
√

1− ‖∇hr‖2 ξ).

Conversely, given a surface h : L2 → Rn+1 and a positive function
r ∈ C∞(L2) whose gradient satisfies ‖∇hr‖ < 1, then on the open subset
of regular points the parametrized hypersurface determined as above by
the pair (h, r) has, with respect to the Gauss map

N = h∗∇hr +
√

1− ‖∇hr‖2 ξ,

the principal curvature λ = 1/r of multiplicity n− 2.

A hypersurface f : Mn → Rn+1 is said to be conformally surface-like if
it is conformally congruent to either a cylinder or a rotation hypersurface
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over a surface in R3 or a cylinder over a three-dimensional hypersurface of
R4 that is a cone over a surface in the sphere S3 ⊂ R4. The hypersurface
is called conformally ruled if Mn carries an integrable (n− 1)-dimensional
distribution such that the restriction of f to each leaf is an umbilical
submanifold of Rn+1.
The first classification result given next excludes the case of conformally

ruled hypersurfaces considered in the sequel.

Theorem 8.7. Let f : Mn → Rn+1, n ≥ 5, admit a nontrivial conformal
infinitesimal variation. Assume that f is neither conformally surface-
like nor conformally flat nor conformally ruled on any open subset of
Mn. Then, on each connected component of an open dense subset of
Mn, the hypersurface can be parametrized in terms of the conformal Gauss
parametrization by either a special hyperbolic or a special elliptic pair.
Conversely, any hypersurface f : Mn → Rn+1, n ≥ 5, given in terms

of the conformal Gauss parametrization by either a special hyperbolic or
special elliptic pair admits a nontrivial conformal infinitesimal variation.
Moreover, the conformal infinitesimal bendings associated to any pair
of nontrivial conformal infinitesimal variations of f differ by a trivial
conformal infinitesimal bending.

For the case of conformally ruled hypersurfaces, we have that the
conformal variations being infinitesimal or not does not make a difference.

Theorem 8.8. Let f : Mn → Rn+1, n ≥ 5, be a conformally ruled
hypersurface that is neither conformally surface-like nor conformally flat
on any open subset of Mn. Then f admits on each connected component
of an open dense subset ofMn a family of conformal infinitesimal bendings
that are in one-to-one correspondence with the set of smooth functions on
an interval. Moreover, any such bending is the variational vector field of
a conformal variation.

Let T be a conformal infinitesimal bending of f : Mn → Rn+1 with
conformal factor ρ. At any point of Mn we have from Lemma 7.10 that
the associated bilinear form θ : TM × TM → R4 defined by

θ(X,Y )=(〈(A+ B)X,Y 〉, 〈(I +H)X,Y 〉, 〈(A−B)X,Y 〉, 〈(I −H)X,Y 〉)
(8.22)

is flat with respect to the inner product 〈〈 , 〉〉 of signature (2, 2).

Proposition 8.9. Let f : Mn → Rn+1, n ≥ 3, be an isometric immersion
free of umbilical points. If T is a conformal infinitesimal bending of f such
that the associated flat bilinear form θ given by (8.22) is null at any point
of Mn then T is trivial.
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Proof. That θ is null is equivalent to

〈AX,Y 〉B + 〈BX,Y 〉A+ 〈X,Y 〉H + 〈HX,Y 〉I = 0

for any X,Y ∈ X(M). Fix x ∈ Mn. From our assumptions we have
that A(x) is not a multiple of the identity. It follows from the above that
A(x),B(x) and H(x) commute, that is, there exists an orthonormal basis
{Xi}1≤i≤n of TxM that diagonalizes simultaneously all of them. If λi, bi
and hi are the respective eigenvalues of A(x),B(x) andH(x) corresponding
to Xi, 1 ≤ i ≤ n, then

λiB + biA+H + hiI = 0.

If λi 6= λj , then

(λi − λj)B + (bi − bj)A+ (hi − hj)I = 0.

Hence

(λi−λj)bi + (bi− bj)λi +hi−hj = 0 = (λi−λj)bj + (bi− bj)λj +hi−hj ,

and thus
(λi − λj)(bi − bj) = 0

which gives bi = bj . If λi = λj for i 6= j, then

(bi − bj)A+ (hi − hj)I = 0.

But since f has no umbilical points, we necessarily have bi = bj and hence
B = bI at any x ∈ Mn. We conclude from Proposition 7.6 that T is
trivial.

Lemma 8.10. Let f : Mn → Rn+1, n ≥ 5, be an isometric immersion
free of umbilical points and let T be a nontrivial conformal infinitesimal
bending of f . On the connected components of an open and dense subset
A, B and H share a common eigenbundle ∆ such that dim ∆ ≥ n− 2.

Proof. By Proposition 8.9 the bilinear form θ is not null. Then, by
Theorem 1.11 there is an orthogonal decomposition R4 = R2,2 = R1,1⊕R1,1

such that θ = θ1 + θ2 where θ1 is nonzero but null and θ2 is flat and
dimN(θ2) ≥ n− 2.
We denote ∆ = N(θ2) and restrict ourselves to connected components

of an open and dense subset where dim ∆ ≥ n − 2 is constant. Since we
have that

θ(T,X) = θ1(T,X)

for any T ∈ Γ(∆) and X ∈ X(M), then

〈〈θ(T,X), θ(Y, Z)〉〉 = 0
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for any T ∈ Γ(∆) and X,Y, Z ∈ X(M). Equivalently,

〈AT,X〉B + 〈BT,X〉A+ 〈T,X〉H + 〈HT,X〉I = 0 (8.23)

for any T ∈ Γ(∆) and X ∈ X(M). Taking X orthogonal to T we see that

〈AT,X〉B + 〈BT,X〉A+ 〈HT,X〉I = 0. (8.24)

Fix x ∈ Mn and assume, by contradiction, that there exists T ∈ ∆(x)
and X ∈ TxM such that 〈X,T 〉 = 0 and 〈BT,X〉 6= 0. From (8.24) and
since f is free of umbilic points, we obtain that A commutes with B, and
hence also does H. Let {Xi}1≤i≤n be an orthonormal basis of TxM of
common eigenvectors of A, B and H with corresponding eigenvalues λi, bi
and hi. Since 〈BT,X〉 6= 0 with 〈X,T 〉 = 0, then T is not an eigenvector.
Hence, there are two eigenvalues b1 6= b2 such that 〈T,X1〉 6= 0 6= 〈T,X2〉.
Thus, we have from (8.23) that

λ1B + b1A+H + h1I = 0 and λ2B + b2A+H + h2I = 0.

Hence
(λ1 − λ2)B + (b1 − b2)A+ (h1 − h2)I = 0, (8.25)

from where we obtain that

(λ1 − λ2)bj + (b1 − b2)λj + h1 − h2 = 0, 1 ≤ j ≤ n.

Taking the difference between the cases j = 1 and j = 2 we have

(λ1 − λ2)(b1 − b2) = 0,

and hence λ1 = λ2. It follows from (8.25) that A is a multiple of the
identity which is a contradiction.
Therefore 〈BT,X〉 = 0 for any T ∈ ∆(x) andX ∈ TxM with 〈X,T 〉 = 0.

This implies that ∆ is an eigenspace of B. If 〈AT,X〉 6= 0, for some
T ∈ ∆(x) and X ∈ TxM with 〈T,X〉 = 0, then we obtain from (8.24) that
B is a multiple of the identity and this is contradiction. Hence ∆ is also
an eigenspace of A, and consequently of H.

Let f : Mn → Rn+1 be a hypersurface that carries a principal curvature
of constant multiplicity n− 2 with corresponding eigenbundle ∆. In what
follows, we write ∇hTX = (∇TX)∆⊥ for T ∈ Γ(∆) and X ∈ Γ(∆⊥).
If f is not conformally surface-like on any open subset of Mn, we say
that f is hyperbolic (respectively, parabolic or elliptic) if there exists
J ∈ Γ(End(∆⊥)) satisfying the following conditions:

(i) J2 = I and J 6= I (respectively, J2 = 0 with J 6= 0, or J2 = −I),

(ii) ∇hTJ = 0 for all T ∈ Γ(∆),
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(iii) CT ∈ span{I, J} for all T ∈ Γ(∆).

Let f : Mn → Rn+1, n ≥ 5, be an oriented hypersurface with a
principal curvature λ of constant multiplicity n−2. By composing with an
appropriate inversion, if necessary, and given that f is orientable, we can
always assume that λ > 0 at any point of Mn. Recall that an inversion
ϕ : Rn+1 → Rn+1 with respect to the hypersphere of radius r > 0 centered
at x0 ∈ Rn+1 is the conformal map given by

ϕ(x) = x0 + r2 x− x0

‖x− x0‖2
·

Let A be the second fundamental form associated to the Gauss map
N of f and let ∆(x) ⊂ TxM be the eigenspace corresponding to λ(x) at
x ∈Mn. Fix an embedding Ψ as in (7.20) and let S : Mn → Ln+3 be the
map given by

S(x) = λ(x)Ψ(f(x)) + Ψ∗N(x). (8.26)

Then S(x) ∈ Sn+2
1 ⊂ Ln+3 and

S∗X = X(λ)Ψ(f(x))−Ψ∗f∗(A− λI)X (8.27)

for any X ∈ X(M). From (8.27) it follows that S is constant along
the leaves of ∆. Let L2 be the quotient space of leaves of ∆ and let
π : Mn → L2 be the canonical projection. Thus S induces an immersion
s : L2 → Sn+2

1 ⊂ Ln+3 such that S = s ◦ π. Moreover, the metric 〈 , 〉′ on
L2 induced by s satisfies

〈X̄, Ȳ 〉′ = 〈(A− λI)X, (A− λI)Y 〉, (8.28)

where X,Y ∈ X(M) are the horizontal lifts of X̄, Ȳ ∈ X(L).
A tensor D ∈ Γ(End(∆⊥)) is said to be projectable with respect to

π : Mn → L2 if it is the horizontal lift of a tensor D̄ on L2, that is, if

π∗DX = D̄π∗X = D̄X̄ ◦ π if π∗X = X̄ ◦ π.

The following result is Corollary 11.7 of [21].

Lemma 8.11. A tensor D ∈ Γ(End(∆⊥)) is projectable if and only if

∇hTD = [D,CT ]

for all T ∈ Γ(∆).

Proposition 8.12. Let f : Mn → Rn+1, n ≥ 5, be an oriented
hypersurface and let T be a nontrivial conformal infinitesimal bending of f .
Assume that the principal curvature λ > 0 of A determined by ∆ in Lemma
8.10 has constant multiplicity n− 2. Then, on each connected component



130 Marcos Dajczer and Miguel I. Jimenez

of an open dense subset of Mn either f is conformally surface-like or f is
hyperbolic, parabolic or elliptic with respect to J ∈ Γ(End(∆⊥)) and there
exists µ ∈ C∞(M) nowhere vanishing and constant along the leaves of ∆
such that D = µJ ∈ Γ(End(∆⊥)) satisfies:

(i) (A− λI)D is symmetric,

(ii) ∇hTD = 0,

(iii) (∇X(A− λI)D)Y − (∇Y (A− λI)D)X = X ∧ Y (Dt∇λ),

(iv) 〈(∇YD)X − (∇XD)Y,∇λ〉+ Hessλ(DX,Y )−Hessλ(X,DY )
= λ(〈AX, (A− λI)DY 〉 − 〈(A− λI)DX,AY 〉),

(v) (A− λI)DX ∧ (A− λI)Y − (A− λI)DY ∧ (A− λI)X = 0

for any T ∈ Γ(∆) and X,Y ∈ Γ(∆⊥).
Conversely, assume that f as above is either hyperbolic, parabolic or

elliptic with respect to J ∈ Γ(End(∆⊥)) and that there is 0 6= D = µJ ∈
Γ(End(∆⊥)) that satisfies conditions (i) through (v). If Mn is simply
connected there exists a nontrivial conformal infinitesimal bending T of
f determined by D that is unique up to trivial conformal infinitesimal
bendings.

Proof. We have from Lemma 8.10 that ∆ is a common eigenbundle for A,
B and H. Thus B|∆ = bI and H|∆ = hI where b, h ∈ C∞(M). We obtain
from (8.23) that

bA+ λB +H + hI = 0.

In particular λb+ h = 0, and thus locally

bA+ λ(B− bI) +H = 0. (8.29)

From (7.19) we have

T (b− λρ) = T (b)− λT (ρ) = 0 (8.30)

for any T ∈ Γ(∆). Notice that (7.19) is equivalent to

(∇X(B− bI))Y − (∇Y (B− bI))X + (X ∧ Y )(A∇ρ−∇b) = 0. (8.31)

Then it follows from (8.30) and (8.31) that

(∇hT (B− bI))X = (B− bI)CTX (8.32)

for any X ∈ Γ(∆⊥) and T ∈ Γ(∆).
We regard A− λI and B− bI as tensors on ∆⊥. We obtain from (8.32)

and the Codazzi equation ∇hTA = (A− λI)CT that

(B− bI)CT = CtT (B− bI) and (A− λI)CT = CtT (A− λI).
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We have that D ∈ Γ(End(∆⊥)) defined by

D = (A− λI)−1(B− bI)

satisfies D 6= 0 since T is nontrivial. Hence

(A− λI)DCT = (B− bI)CT = CtT (B− bI) = CtT (A− λI)D
= (A− λI)CTD,

and therefore
[D,CT ] = 0. (8.33)

We also have
(A− λI)CTD = (∇hTA)D

and

(A− λI)DCT = (B− bI)CT = ∇hT (B− bI) = ∇hT ((A− λI)D)
= ∇hT (AD)− λ∇hTD.

Thus
(A− λI)∇hTD = (A− λI)[D,CT ],

and hence
∇hTD = 0 (8.34)

for any T ∈ Γ(∆).
It follows from (8.33), (8.34) and Lemma 8.11 that D is projectable with

respect to π : Mn → L2, that is, the horizontal lift of a tensor D̄ on L2.
Since H = λ(bI −B)− bA from (8.29), we have from (7.18) that

(B− bI)X ∧ (A− λI)Y − (B− bI)Y ∧ (A− λI)X = 0 (8.35)

for any X,Y ∈ X(M). From (8.35) and the definition of D we obtain that

〈((A−λI)DX∧(A−λI)Y−(A−λI)DY ∧(A−λI)X)(A−λI)Z, (A−λI)W 〉=0

for any X,Y, Z,W ∈ Γ(∆⊥). This implies that

〈(D̄X̄ ∧ Ȳ − D̄Ȳ ∧ X̄)Z̄, W̄ 〉′ = 0

for any X̄, Ȳ , Z̄, W̄ ∈ X(L). In other words, we have

D̄X̄ ∧ Ȳ − D̄Ȳ ∧ X̄ = 0

with respect to the metric 〈 , 〉′. Thus trD̄ = 0.
We have that D̄ has either two smooth distinct real eigenvalues, a single

real eigenvalue of multiplicity two or a pair of smooth complex conjugate
eigenvalues. Thus there is µ̄ ∈ C∞(L) such that D̄ = µ̄J̄ , J̄ 6= I, where
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the tensor J̄ ∈ Γ(End(TL)) satisfies J̄2 = εI, for ε = 1, 0 or −1. Hence
D = µJ where J is the lifting of J̄ and µ̄ = µ ◦ π. In particular trD = 0.
If span{CT : T ∈ ∆} ⊂ span{I} we have from Corollary 9.33 in [21]

that f is conformally surface-like. Hence, we assume span{CT : T ∈ ∆} 6⊂
span{I} and obtain from (8.33) that CT ∈ span{I, J} for any T ∈ Γ(∆).
Since J is projectable, being the lifting of J̄ , we have from Lemma 8.11

that
∇hTJ = [J,CT ]

for all T ∈ ∆. Then (8.33) gives that ∇hTJ = 0 and hence the hypersurface
f is either hyperbolic, parabolic or elliptic.
We have from (8.29) that

X(b)AY +X(λ)BY −X(λb)Y + b(∇XA)Y + λ(∇XB)Y + (∇XH)Y = 0.
(8.36)

On the other hand, the Gauss equation yields

(∇XH)Y − (∇YH)X = R(X,Y )∇ρ = 〈AY,∇ρ〉AX − 〈AX,∇ρ〉AY.
(8.37)

Then (7.19), (8.36), (8.37) and the Codazzi equation imply that

X(b)AY +X(λ)BY −X(λb)Y − Y (b)AX − Y (λ)BX + Y (λb)X
− λ(X ∧ Y )A∇ρ+ 〈AY,∇ρ〉AX − 〈AX,∇ρ〉AY = 0

for any X,Y ∈ X(M). Then

〈X,∇b−A∇ρ〉(A− λI)Y − 〈Y,∇b−A∇ρ〉(A− λI)X
+ 〈X,∇λ〉(B− bI)Y − 〈Y,∇λ〉(B− bI)X = 0

for any X,Y ∈ X(M). For X,Y ∈ Γ(∆⊥) we have

〈X,∇b−A∇ρ〉Y − 〈Y,∇b−A∇ρ〉X + 〈X,∇λ〉DY − 〈Y,∇λ〉DX = 0.

Taking X and Y orthonormal, we obtain

〈Y,∇b−A∇ρ〉 − 〈X,∇λ〉〈DY,X〉+ 〈Y,∇λ〉〈DX,X〉 = 0

and

〈X,∇b−A∇ρ〉+ 〈X,∇λ〉〈DY, Y 〉 − 〈Y,∇λ〉〈DX,Y 〉 = 0.

Using that trD = 0 this gives

Dt∇λ = ∇b−A∇ρ, (8.38)

where Dt denotes the transpose of D.
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So far we have that (i) holds from the definition of D, (ii) is (8.34),
(iii) follows from (8.31) and (8.38), and (v) is (8.35). Thus, it remains
to prove that (iv) holds. To do this, fix a pseudo-orthonormal basis
e1 . . . , en+3 of Ln+3 as in (8.19), and set v = e1 and w = −2en+3. Let
Ψ: Rn+1 → Vn+2 ⊂ Ln+3 and S : Mn → Ln+3 be given by (7.20) and
(8.26) respectively. We see next that the immersion s : L2 → Sn+2

1 ⊂ Ln+3

induced by S satisfies s = g, where g is given by (8.21), h : L2 → Rn+1 is
induced by f + rN and r = λ−1. In fact, we have that Ψ(y) = (1, y, ‖y‖2).
Then

S(x) = λ(1, f(x), ‖f(x)‖2) + (0, N(x), 2〈f(x), N(x)〉)
= λ(1, f(x) + rN, ‖f(x)‖2 + 2r〈f(x), N(x)〉).

Since h ◦ π = f + rN , it follows that

s = r−1(1, h, ‖h‖2 − r2) = g.

Let X,Y ∈ Γ(∆⊥) be the horizontal lifts of X̄, Ȳ ∈ X(L). We have

∇̃′XS∗DY = ∇̃′π∗Xg∗π∗DY = ∇̃′
X̄
g∗D̄Ȳ

= g∗∇′X̄D̄Ȳ + αg(X̄, D̄Ȳ )− 〈X̄, D̄Ȳ 〉′g ◦ π,

where ∇̃′ and ∇′ are the connections in Ln+3 and L2, respectively. From
(8.27) we obtain that

∇̃′XΨ∗f∗(A− λI)DY = X〈DY,∇λ〉Ψ ◦ f + 〈DY,∇λ〉Ψ∗f∗X
− g∗∇′X̄D̄Ȳ − α

g(X̄, D̄Ȳ ) + 〈(A− λI)X, (A− λI)DY 〉(λΨ ◦ f + Ψ∗N).

On the other hand, using (7.21) and (8.27) it follows that

∇̃′XΨ∗f∗(A− λI)DY
= Ψ∗∇̄Xf∗(A− λI)DY + αΨ(f∗X, f∗(A− λI)DY )
= Ψ∗f∗∇X(A− λI)DY + 〈AX, (A− λI)DY 〉Ψ∗N − 〈X, (A− λI)DY 〉w
= Ψ∗f∗(∇X(A− λI)D)Y + Ψ∗f∗(A− λI)D∇XY

+ 〈AX, (A− λI)DY 〉Ψ∗N − 〈X, (A− λI)DY 〉w
= Ψ∗f∗(∇X(A− λI)D)Y + 〈D∇XY,∇λ〉Ψ ◦ f − g∗D̄π∗∇XY

+ 〈AX, (A− λI)DY 〉Ψ∗N − 〈X, (A− λI)DY 〉w.

We obtain from the last two equations that

〈DY,∇λ〉ψ∗f∗X − g∗(∇′X̄D̄)Ȳ − g∗D̄∇′X̄ Ȳ
− αg(X̄, D̄Ȳ )− λ〈X, (A− λI)DY 〉Ψ∗N
+ (〈(∇XD)Y,∇λ〉+ 〈DY,∇X∇λ〉+ λ〈(A− λI)X, (A− λI)DY 〉)Ψ ◦ f

= Ψ∗f∗(∇X(A− λI)D)Y − g∗D̄π∗∇XY − 〈X, (A− λI)DY 〉w.
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Hence, we have from π∗[X,Y ] = [X̄, Ȳ ] that

g∗((∇′Ȳ D̄)X̄ − (∇′
X̄
D̄)Ȳ ) + αg(Ȳ , D̄X̄)− αg(X̄, D̄Ȳ )

= Ψ∗f∗Ω(X,Y )− λψ(X,Y )Ψ∗N + ϕ(X,Y )Ψ ◦ f + ψ(X,Y )w,

where

Ω(X,Y ) = (∇X(A− λI)D)Y − (∇Y (A− λI)D)X −X ∧ Y (Dt∇λ),
(8.39)

ψ(X,Y ) = 〈Y, (A− λI)DX〉 − 〈X, (A− λI)DY 〉, (8.40)
ϕ(X,Y ) = 〈(∇YD)X − (∇XD)Y,∇λ〉+ Hessλ(DX,Y )−Hessλ(X,DY )

− λ(〈(A− λI)X, (A− λI)DY 〉 − 〈(A− λI)DX, (A− λI)Y 〉).
(8.41)

It follows from (8.31) and (8.38) that Ω vanishes. The symmetry of B
yields ψ = 0. Hence

g∗((∇′Ȳ D̄)X̄ − (∇′
X̄
D̄)Ȳ ) + αg(Ȳ , D̄X̄)− αg(X̄, D̄Ȳ ) = ϕ(X,Y )Ψ ◦ f.

Since the term on the left-hand side is constant along the leaves of ∆ then
ϕ has to vanish, and this proves (iv).

We prove the converse. Let D = µJ ∈ Γ(End(∆⊥)) verify the conditions
(i) through (v). In the sequel, we extend D to an element of End(TM)
defining DT = 0 for any T ∈ Γ(∆). Then (v) holds for any X,Y ∈ X(M).
Set F = Ψ ◦ f : Mn → Vn+2 ⊂ Ln+3. Let β : TM × TM → NFM be

the symmetric tensor defined by

β(X,Y ) = 〈(A− λI)DX,Y 〉(Ψ∗N + λF ), (8.42)

where N is a Gauss map of f . Then let Bη ∈ Γ(End(TM)) be given by

〈BηX,Y 〉 = 〈β(X,Y ), η〉

for any η ∈ Γ(NFM). For simplicity, we write N = Ψ∗N . We have
BN = (A− λI)D and Bw = λBN . Since

αF (X,Y ) = 〈AX,Y 〉N − 〈X,Y 〉w, (8.43)

we obtain from (v) and A|∆ = λI that

AFβ(Y,Z)X +BαF (Y,Z)X −AFβ(X,Z)Y −BαF (X,Z)Y = 0 (8.44)

for any X,Y, Z ∈ X(M), where AFη is the shape operator with respect to
η ∈ Γ(NFM).
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We define E : TM ×NFM → NFM by

E(X,N) = 〈DX,∇λ〉F, E(X,w) = −〈DX,∇λ〉N and E(X,F ) = 0
(8.45)

for any X ∈ X(M). Observe that E satisfies the condition

〈E(X, η), ξ〉 = −〈E(X, ξ), η〉 (8.46)

for any X ∈ X(M) and η, ξ ∈ Γ(NFM).
It follows from (iii) that

(∇XBN )Y − (∇YBN )X = 〈DY,∇λ〉X − 〈DX,∇λ〉Y (8.47)

for any X,Y ∈ Γ(∆⊥). Using (ii) and that [D,CT ] = 0, we obtain

(∇XBN )T − (∇TBN )X = BNCTX−(∇T (A− λI))DX − (A− λI)(∇TD)X
= (A− λI)CTDX − (∇T (A− λI))DX

for any T ∈ Γ(∆). Now using the Codazzi equation, we have

(∇XBN )T − (∇TBN )X
= (A− λI)CTDX − (∇DXA)T
= (A− λI)CTDX − 〈DX,∇λ〉T − (A− λI)CTDX
= −〈DX,∇λ〉T. (8.48)

Since ∆ is integrable, we obtain

(∇TBN )S − (∇SBN )T = 0 (8.49)

for any T, S ∈ Γ(∆). It follows from (8.47), (8.48) and (8.49) that

(∇XBN )Y − (∇YBN )X = AFE(X,N)Y −A
F
E(Y,N)X (8.50)

for any X,Y ∈ X(M).
We have from (8.47) that

(∇XBw)Y − (∇YBw)X = 〈X,∇λ〉BNY − 〈Y,∇λ〉BNX
+ λ〈DY,∇λ〉X − λ〈DX,∇λ〉Y

for any X,Y ∈ Γ(∆⊥). Let σ ∈ Γ(∆⊥) be given by ∇λ = (A − λI)σ.
Using (v) we obtain

(∇XBw)Y − (∇YBw)X = 〈BNY, σ〉(A− λI)X − 〈BNX,σ〉(A− λI)Y
+ λ〈DY,∇λ〉X − λ〈DX,∇λ〉Y

= 〈DY,∇λ〉(A− λI)X − 〈DX,∇λ〉Y + λ〈DY,∇λ〉X − λ〈DX,∇λ〉Y
= 〈DY,∇λ〉AX − 〈DX,∇λ〉AY. (8.51)
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Using (8.48) it follows that

(∇XBw)T − (∇TBw)X = λ((∇XBN )T − (∇TBN )X)
= −〈DX,∇λ〉AT

(8.52)

for any T ∈ Γ(∆). As before, we have that

(∇TBw)S − (∇SBw)T = 0 (8.53)

for any S, T ∈ Γ(∆). We conclude from (8.51), (8.52) and (8.53) that

(∇XBw)Y − (∇YBw)X = AFE(X,w)Y −A
F
E(Y,w)X (8.54)

for any X,Y ∈ X(M).
We have that BF = 0 = E(X,F ), and hence it holds trivially that

(∇XBF )Y − (∇YBF )X = AFE(X,F )Y −A
F
E(Y,F )X (8.55)

for any X,Y ∈ X(M).
Next we focus on the covariant derivative of E. Let ∇′⊥ denote the

normal connection on NFM . We have

(∇′⊥X E)(Y,N) = ∇′⊥X E(Y,N)− E(∇XY,N)
= X〈DY,∇λ〉F − 〈D∇XY,∇λ〉F
= (〈(∇XD)Y,∇λ〉+ Hessλ(DY,X))F

for any X,Y ∈ X(M). Then

(∇′⊥X E)(Y,N)− (∇′⊥Y E)(X,N) = (〈(∇XD)Y − (∇YD)X,∇λ〉
+ Hessλ(DY,X)−Hessλ(DX,Y ))F

for all X,Y ∈ X(M). From (iv) we have

(∇′⊥X E)(Y,N)− (∇′⊥Y E)(X,N) = λ(〈BNX,AY 〉 − 〈AX,BNY 〉)F (8.56)

for all X,Y ∈ Γ(∆⊥). Using (ii) and that [D,CT ] = 0, we obtain

(∇′⊥X E)(T ,N)− (∇′⊥T E)(X,N)
= E([T,X], N)−∇′⊥T E(X,N)
= (〈DCTX − (∇TD)X,∇λ〉 −Hessλ(DX,T ))F
= (〈CTDX,∇λ〉 −Hessλ(DX,T ))F
= (〈T,∇DX∇λ〉 −Hessλ(DX,T ))F
= 0 (8.57)

for any X ∈ Γ(∆⊥) and T ∈ Γ(∆). We also have

(∇′⊥T E)(S,N)− (∇′⊥S E)(T,N) = 0 (8.58)
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for any S, T ∈ Γ(∆). On the other hand, from (8.42) and (8.43) we obtain

β(X,AY )− β(AX,Y ) + αF (X,BNY )− αF (BNX,Y )
= λ(〈BNX,AY 〉 − 〈AX,BNY 〉)F

(8.59)

for all X,Y ∈ X(M). From (8.56) through (8.59) we conclude that

(∇′⊥X E)(Y,N)− (∇′⊥Y E)(X,N)
= β(X,AY )− β(AX,Y ) + αF (X,BNY )− αF (BNX,Y )

(8.60)

for any X,Y ∈ X(M). Similarly as above, we obtain

(∇′⊥X E)(Y,w)−(∇′⊥Y E)(X,w) = 〈(∇YD)X − (∇XD)Y,∇λ〉N
+ (Hessλ(DX,Y )−Hessλ(DY,X))N

for all X,Y ∈ X(M). From (iv) it follows that

(∇′⊥X E)(Y,w)−(∇′⊥Y E)(X,w) = λ(〈AX, (A−λI)DY 〉−〈(A−λI)DX,AY 〉)N

for X,Y ∈ Γ(∆⊥). As before, we have from (ii) and [D,CT ] = 0 that

(∇′⊥X E)(T,w)− (∇′⊥T E)(X,w) = (−〈CTDX,∇λ〉+ Hessλ(DX,T ))N
= (−〈T,∇DXλ〉+ Hessλ(DX,T ))N
= 0

and
(∇′⊥T E)(S,w)− (∇′⊥S E)(T,w) = 0

for any T, S ∈ Γ(∆). In addition, we have

β(X,AFwY )− β(AFwX,Y ) + αF (X,BwY )− αF (BwX,Y )
= λ(〈AX,BNY 〉 − 〈BNX,AY 〉)N

for all X,Y ∈ X(M). Thus

(∇′⊥X E)(Y,w)− (∇′⊥Y E)(X,w)
= β(X,AFwY )− β(AFwX,Y ) + αF (X,BwY )− αF (BwX,Y )

(8.61)

for all X,Y ∈ X(M). Finally, we have

β(X,AFFY )− β(AFFX,Y ) + αF (X,BFY )− αF (BFX,Y ) = 0

for all X,Y ∈ X(M). Since E(X,F ) = 0, then

(∇′⊥X E)(Y, F )− (∇′⊥Y E)(X,F )
= β(X,AFFY )− β(AFFX,Y ) + αF (X,BFY )− αF (BFX,Y )

(8.62)
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for all X,Y ∈ X(M) holds trivially.
We have that β is symmetric and that the tensor E satisfies condition

(8.46). Moreover, the pair (E, β) also satisfies (8.44), (8.50), (8.54), (8.55),
(8.60), (8.61) and (8.62). In this situation Theorem (2.8) applies. We
conclude that there is an infinitesimal bending T̃ ∈ Γ(F ∗(TLn+3)) of F
whose associated pair (β̃, Ẽ) satisfies

β̃ = β + CαF and Ẽ = E−∇⊥C, (8.63)

where C ∈ Γ(End(NFM)) is skew-symmetric. Moreover, we have that T̃

is unique up to trivial isometric infinitesimal bendings.
Write T̃ as

T̃ = Ψ∗T + 〈T̃, w〉F + 〈T̃, F 〉w.

Being T̃ an isometric infinitesimal bending of F , we have

〈∇̃′X T̃, F∗Y 〉+ 〈∇̃′Y T̃, F∗X〉 = 0

for all X,Y ∈ X(M). Then

〈∇̃XT, f∗Y 〉+ 〈∇̃Y T, f∗X〉+ 2〈T̃, w〉〈X,Y 〉 = 0

for all X,Y ∈ X(M). Hence, setting ρ = −〈T̃, w〉 we have that T is a
conformal infinitesimal bending of f with conformal factor ρ. Notice that

(∇̃′X T̃)Ψ∗TRn+1 = Ψ∗∇̃XT − ρF∗X

for any X ∈ X(M). It follows from (8.63) that the symmetric tensor
B ∈ Γ(End(TM)) associated to T has the form B = BN + cI, where
c = −〈Cw,N〉. Since BN |∆⊥ 6= 0 we conclude that T is not trivial.
Any other conformal infinitesimal bending T′ arising in this manner has

the associated tensor B′ = BN + c′I. Then Corollary 7.6 gives that T−T′

is trivial, and this concludes the proof.

Proposition 8.13. Any parabolic hypersurface f : Mn → Rn+1, n ≥ 5,
that admits a nontrivial conformal infinitesimal variation is conformally
ruled.
Conversely, let f : Mn → Rn+1, n ≥ 5, be a simply connected

conformally ruled hypersurface free of points with a principal curvature of
multiplicity at least n− 1 and that is not conformally surface-like on any
open subset of Mn. Then f is parabolic and admits a family of conformal
infinitesimal bendings that are in one-to-one correspondence with the set
of smooth functions on an interval.

Proof. From the proof of Proposition 8.12, we have in this case that
D = µJ where J2 = 0. Let Y ∈ Γ(∆⊥) be of unit-length such that
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JY = 0 and let X ∈ Γ(∆⊥) be orthogonal to Y satisfying JX = Y . Note
that ∇hTJ = 0 for any T ∈ Γ(∆) is equivalent to

∇hTY = 0 = ∇hTX (8.64)

for all T ∈ Γ(∆). Hence, replacing J by ‖X‖J , one can assume that X is
of unit-length.
For the sequel, we extend J to TM as being zero on ∆. Recall that

B− bI = (A− λI)D = µ(A− λI)J

is symmetric. Then

〈(A− λI)Y, Y 〉 = 〈(A− λI)JX, Y 〉 = 0. (8.65)

Hence (A− λI)Y = νX where ν = 〈AX,Y 〉 6= 0 by assumption. Then

(∇Xµ(A−λI)J)Y −(∇Y µ(A−λI)J)X = −µ(A−λI)J∇XY −∇Y (µνX).

On the other hand, we obtain from (iii) that

(∇Xµ(A− λI)J)Y − (∇Y µ(A− λI)J)X = −µY (λ)Y. (8.66)

Hence
µ(A− λI)J∇XY +∇Y (µνX) = µY (λ)Y.

Taking the inner product with X and Y , respectively, gives

Y (µν) = µν〈∇XX,Y 〉 (8.67)

and
Y (λ) = −ν〈∇Y Y,X〉. (8.68)

Since CT ∈ span{I, J}, we obtain

〈∇Y T,X〉 = −〈CTY,X〉 = 0 (8.69)

for any T ∈ Γ(∆). Let T ∈ Γ(∆) have unit length. The inner product of
the Codazzi equation

(∇TA)Y − (∇YA)T = 0

with T easily gives
Y (λ) = −ν〈∇TT,X〉. (8.70)

It follows from (8.64), (8.68), (8.69) and (8.70) that the subspaces
∆ ⊕ span{Y } form an umbilical distribution. Moreover, we have from
(8.65) that f restricted to any leaf of ∆ ⊕ span{Y } is umbilical in Rn+1.
Thus f is conformally ruled.
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We now prove the converse. Let L be an (n− 1)-dimensional umbilical
distribution of Mn such that the restriction of f to any leaf is also
umbilical. Therefore, there is λ ∈ C∞(M) such that L ⊂ ker((A− λI)L),
that is, (A−λI)(L) ⊂ L⊥. By assumption, we have that ∆ = ker(A−λI)
satisfies dim ∆ = n− 2.
LetX,Y be an orthonormal frame of ∆⊥ withX orthogonal to L. Hence

〈(A− λI)Y, Y 〉 = 0. (8.71)

We have that J ∈ Γ(End(∆⊥)) defined by JX = Y and JY = 0 verifies
J2 = 0. It follows from (8.71) that (A− λI)J is symmetric. Now, since L
is umbilical, we have

∇hTY = 0, (8.72)

and this is equivalent to ∇hTJ = 0 for any T ∈ Γ(∆). To see that
C(Γ(∆)) ⊂ span{I, J} it suffices to prove that CT ◦ J = J ◦ CT for any
T ∈ Γ(∆). This is equivalent to

〈∇Y T,X〉 = 0 and 〈∇XX,T 〉 = 〈∇Y Y, T 〉 (8.73)

for all T ∈ Γ(∆). The first equation holds since L is umbilical. From
(8.71) we have

(A− λI)Y = νX, (8.74)

where ν = 〈AX,Y 〉 6= 0. From the Codazzi equation we obtain

∇hTA = (A− λI)CT ,

and hence the right-hand side is symmetric. We have

〈(A− λI)CTX,Y 〉 = ν〈∇XX,T 〉 and 〈(A− λI)CTY,X〉 = ν〈∇Y Y, T 〉.

This implies
〈∇XX,T 〉 = 〈∇Y Y, T 〉

for any T ∈ Γ(∆). Thus f is parabolic with respect to J .
To show that f admits a nontrivial conformal infinitesimal bending it

suffices to prove the existence of a smooth function µ such that the tensor
D = µJ ∈ Γ(End(∆⊥)) satisfies all conditions in Proposition 8.12. We
already know that (A− λI)J is symmetric, hence condition (i) is satisfied
for any function µ. We assume that µ is constant along the leaves of ∆,
and now condition (ii) follows from (8.72). From the definition of D it is
easy to see that also (v) holds.
Condition (iii) is just (8.66). Since ∆ = ker(A − λI) and (8.74) holds,

then the inner product of the Codazzi equation

(∇TA)Y − (∇YA)T = 0
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with T ∈ Γ(∆) of unit-length gives that (8.70) holds for any such T . Since
L = ∆⊕ span{Y } is an umbilical distribution we obtain that (8.68) holds.
But (8.68) is just the Y -component of (8.66). The X-component of (8.66)
is (8.67), which can be stated as

Y (logµν) = 〈∇XX,Y 〉.

After choosing an arbitrary function as initial condition along one maximal
integral curve of X, there exists a unique function µ such that T (µ) = 0 for
all T ∈ Γ(∆) and µν is a solution of the preceding equation. Therefore,
there are as many tensors D satisfying (iii) as smooth functions on an
open interval.
We have that

〈(∇Y µJ)X−(∇XµJ)Y,∇λ〉 = (Y (µ)−µ〈∇XX,Y 〉)Y (λ)+µ〈∇Y Y,X〉X(λ).

Choose any D satisfying condition (iii). Then (8.67) and (8.68) yield

〈(∇Y µJ)X − (∇XµJ)Y,∇λ〉 = −µ
ν
Y (λ)(Y (ν) +X(λ)).

We have using (8.68) that

Hessλ(µJX, Y )−Hessλ(X,µJY ) = µ(Y Y (λ)− 〈∇Y Y,X〉X(λ))

= µ(Y Y (λ) + 1
ν
Y (λ)X(λ))

and using (8.74) that

λ(〈(A− λI)µJX,AY 〉 − 〈AX, (A− λI)µJY 〉) = λµν2.

The last three equations give that condition (iv) is equivalent to

Y Y (Y )− 1
ν
Y (λ)Y (ν) = −λν2,

that can also be written as

Y ((1/ν)Y (λ)) = −λν. (8.75)

To conclude, we show that (8.75) is just the Gauss equation

〈R(Y, T )T,X〉 = 〈AT, T 〉〈AY,X〉 − 〈AY, T 〉〈AT,X〉
= λν.

In fact, using (8.70) and (8.73) we have

〈∇Y∇TT,X〉 = Y 〈∇TT,X〉+ 〈∇TT, Y 〉〈∇Y Y,X〉
= −Y ((1/ν)Y (λ)) + 〈∇TT, Y 〉〈∇Y Y,X〉.
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Also, since L is an umbilical distribution, we have

〈∇T∇Y T,X〉 = −〈∇Y T,∇TX〉 = 0.

Using (8.72) we obtain

〈∇[Y,T ]T,X〉 = −〈∇∇TY T,X〉
= 〈∇TT, Y 〉〈∇TT,X〉.

The last three equations yield

〈R(Y, T )T,X〉 = −Y ((1/ν)Y (λ)).

Now the proof follows from Proposition 8.12.

Proof of Theorem 8.7: If f admits a nontrivial conformal infinitesimal
bending and is not conformally surface-like nor conformally flat nor
conformally ruled, we obtain from Proposition 8.12 and Proposition 8.13
that f is either hyperbolic or elliptic. From the proof of Proposition 8.12
we have that D = µJ is the lifting of a tensor D̄ = µ̄J̄ on L2. Also from
that proof, we that

g∗((∇′Ȳ D̄)X̄ − (∇′
X̄
D̄)Ȳ ) + αg(Ȳ , D̄X̄)− αg(X̄, D̄Ȳ )

= Ψ∗f∗Ω(X,Y )− λψ(X,Y )Ψ∗N + ϕ(X,Y )Ψ ◦ f + ψ(X,Y )w,
(8.76)

where X,Y ∈ Γ(∆⊥) are the liftings of X̄, Ȳ ∈ X(L) and Ω, ψ and ϕ are
given by (8.39), (8.40) and (8.41) respectively. Recall that D satisfies the
conditions (i) through (v). Therefore, we have

(∇′
X̄
D̄)Ȳ = (∇′

Ȳ
D̄)X̄ (8.77)

and, since D̄ = µ̄J̄ , that

αg(X̄, J̄ Ȳ ) = αg(J̄X̄, Ȳ ).

Finally, that g is a special hyperbolic or elliptic surface follows from
Proposition 8.5 and the integrability condition of µ̄ in (8.77).

Conversely, take f : Mn → Rn+1 to be parametrized by the conformal
Gauss parametrization in terms of a special hyperbolic or a special elliptic
pair. Then f has a nowhere vanishing principal curvature λ(x) at x ∈Mn

of constant multiplicity n − 2 and corresponding eigenspace ∆(x). Take
v = e1, w = −2en+3 and let Ψ: Rn+1 → Vn+2 ⊂ Ln+3 be the embedding
given by (7.20). Then S : Mn → Sn+2

1 given by (8.26) induces a map
s : L2 → Sn+2

1 on the (local) space of leaves L2 of ∆. Moreover, by the
choice of v and w we have that s = g.
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We obtain from Proposition 8.5 that, at least locally, there is a nowhere
vanishing function µ̄ ∈ C∞(L2) such that D̄ = µ̄J̄ is a Codazzi tensor. Let
X,Y ∈ Γ(∆⊥) be the liftings of X̄, Ȳ ∈ X(L). If D = µJ is the lifting of D̄
we have as before that (8.76) holds. Given that g is special hyperbolic or
special elliptic, it follows that Ω = ψ = ϕ = 0. In other words, we obtain
that conditions (i), (iii) and (iv) are satisfied.
We recall that

〈(D̄X̄ ∧ Ȳ − D̄X̄ ∧ Ȳ )Z̄, W̄ 〉′ = 0

for any X̄, Ȳ , Z̄, W̄ ∈ X(L). It follows from (8.28) that

〈((A−λI)DX∧(A−λI)Y−(A−λI)DY ∧(A−λI)X)(A−λI)Z, (A−λI)W 〉=0,

where X,Y, Z,W ∈ Γ(∆⊥) are the liftings of X̄, Ȳ , Z̄ and W̄ . Then

(A− λI)DX ∧ (A− λI)Y − (A− λI)DY ∧ (A− λI)X = 0

for any X,Y ∈ Γ(∆⊥), and hence (v) holds. Given that D is projectable
we have from Lemma 8.11 that ∇hTD = [D,CT ] = 0 for all T ∈ Γ(∆).
Hence (ii) also holds. Now the proof follows from Proposition 8.12.

Proposition 8.14. Let f : Mn → Rn+1, n ≥ 5, be a simply connected
conformally ruled hypersurface free of points with a principal curvature of
multiplicity at least n− 1 and that is not conformally surface-like on any
open subset of Mn. Then any conformal infinitesimal bending of f is the
variational vector field of a conformal variation.

Proof. We have seen that the conformal infinitesimal bendings of f are
in one-to-one correspondence with the tensors D given in the proof of
Proposition 8.13. Take such a D and let F : Mn → Vn+2 ⊂ Ln+3

be the immersion F = Ψ ◦ f , where Ψ was given in (7.20). Let
β : TM × TM → NFM and E : TM ×NFM → NFM be given by (8.42)
and (8.45), respectively. The pair (β,E) is associated to an infinitesimal
bending of F , say T̃, which determines a conformal infinitesimal bending
T of f . Let αt : TM × TM → NFM , t ∈ (−ε, ε), be the symmetric tensor
defined by

αt(X,Y ) = αF (X,Y ) + tβ(X,Y )

for any X,Y ∈ X(M). Since E satisfies (8.46) then

∇̄tXη = ∇′⊥X η + tE(X, η)

is a connection on NFM that is compatible with the induced metric, where
X ∈ X(M), η ∈ Γ(NFM) and ∇′⊥ denotes the normal connection of F .
It follows from (8.44), (8.50), (8.54), (8.55), (8.60), (8.61) and (8.62)

together with the Gauss, Codazzi and Ricci equations for F that αt and
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∇̄t verify the Gauss, Codazzi and Ricci equations (see Exercise 8.6). Hence,
there is a family of isometric immersions Ft : Mn → Ln+3 with F0 = F
together with vector bundle isometries Φt : NFM → NFtM satisfying

αFt = Φtαt and ∇t⊥Φt = Φt(∇̄t),

where αFt and ∇t⊥ are the second fundamental form and normal
connection of Ft. Hence, we have

AtΦtFX = −X and ∇t⊥X ΦtF = Φt(∇̄tXF ) = 0,

where Atη denotes the shape operator of Ft in the direction of η ∈
Γ(NFt

M). Then Ft − ΦtF = vt is a constant vector field along Ft for
any t. Since

〈Ft − vt, Ft − vt〉 = 0,

we obtain that Ft − vt determines an isometric variation of F0 = F in
Vn+2 ⊂ Ln+3. Hence, we assume that Ft(x) ∈ Vn+2 for all x ∈ Mn. The
variational vector field T̃′ = ∂/∂t|t=0Ft is clearly an infinitesimal bending
of F and the tensor β′ associated to T̃′ satisfies

β′ = (∂/∂t|t=0α
Ft)NFM

(see Exercise 2.1).
Next we define Φ′ ∈ Γ(End(NFM)) as follows. Given η ∈ Γ(NFM) we

set ηt = Φtη ∈ Γ(NFt
M). Then, regarding ηt as an element of Ln+3, we

define
Φ′η = (∂/∂t|t=0ηt)NFM .

Given that Φt is an isometry for any t, it follows that Φ′ is skew symmetric.
Since αFt = Φt(αF + tβ) we have from the above that

β′ = β + Φ′αF .

Let Π: Vn+2 \Rw → Em+1 = Ψ(Rn+1) be the map Π(u) = (1/〈u,w〉)u.
Then each Ft induces an immersion ft : Mn → Rn+1 such that Ψ ◦ ft =
Π ◦ Ft for any t. Observe that the metric induced by ft satisfies

〈ft∗X, f t∗Y 〉(x) = 〈(Π ◦ Ft)∗X, (Π ◦ Ft)∗Y 〉(x) = 〈Ft(x), w〉−2〈X,Y 〉(x)

at any x ∈ Mn. Hence, the variation ft determines a conformal variation
of f in Rn+1. The variational vector field T′ is a conformal infinitesimal
bending of f with associated tensor B′ = BN − 〈Φ′w,N〉I, where BN =
(A− λI)D. Hence T − T′ is trivial, and this concludes the proof.

Proof of Theorem 8.8: The proof follows from Propositions 8.13 and
8.14.
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Remark 8.15. To obtain in terms of the conformal Gauss parametrization
that a nontrivial conformal infinitesimal bending is, in fact, the variational
vector field of a conformal variation one has to require the special
hyperbolic or special elliptic surface to satisfy a strong additional
condition, namely, that Γ1

u = Γ2
v = 2Γ1Γ2 in the former case and that

Γz = 2ΓΓ̄ in the latter case, see [20] or [21] for details.

8.3 From conformal to isometric
In this section, it is shown how the classification of the Euclidean
hypersurfaces that admit nontrivial infinitesimal variations can be
obtained from the classification result given in the preceding section.

Let f : Mn → Rn+1 be a hypersurface of constant rank two, this
is, a hypersurface with constant index of relative nullity ν = n − 2.
Then let π : Mn → L2 denote the projection onto the quotient space of
relative nullity leaves of f . The Gauss map N of f induces an immersion
g : L2 → Sn and the support function γ ∈ C∞(M) of f , defined as
γ(x) = 〈f(x), N(x)〉, induces a function γ̄ ∈ C∞(L) such that N = g ◦ π
and γ = γ̄ ◦ π. Set h = i ◦ g. Then, at least locally, we can recover f from
the pair {g, γ} by means of the Gauss parametrization described next.
Let g : L2 → Sn be an isometric immersion and let γ ∈ C∞(L). Set

h = i ◦ g and let Λ = NgL denote the normal bundle of g. On the open
subset of regular points the map ψ : Λ→ Rn+1 given by

ψ(y, w) = γ(y)h(y) + h∗∇γ(y) + i∗w,

parametrizes a hypersurface of constant rank two, where∇γ is the gradient
of γ on L2. Conversely, any hypersurface with constant rank two can be
locally parametrized in this way by means of the pair (g, γ̄) determined by
the Gauss map and the support function. We refer to Section 7.3 in [21]
for details.
We say that a pair (g, γ) formed by a surface g : L2 → Sn and γ ∈ C∞(L)

is an special hyperbolic pair (respectively, special elliptic pair), if g is
an special hyperbolic surface (respectively, special elliptic surface) and
γ satisfies

(Hess (γ) + γI) ◦ J = J t ◦ (Hess (γ) + γI),

where Hess (γ) also denotes the endomorphism of TL determined by the
Hessian of γ.
A hypersurface f : Mn → Rn+1 is said to be surface-like if it is a cylinder

over either a surface in R3 or over a cone of a surface in S3(r) ⊂ R4.
The following result holds for dimensions n = 3, 4 as shown in [23]. The
limitation to n ≥ 5 is due to the use of Theorem 8.7.
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Theorem 8.16. Let f : Mn → Rn+1, n ≥ 5, be a hypersurface of constant
rank 2 that admits a nontrivial infinitesimal variation. Assume that f is
neither surface-like nor ruled on any open subset of Mn. Then, on each
connected component of an open dense subset of Mn, the hypersurface can
be given in terms of the Gauss parametrization by a special hyperbolic or
a special elliptic pair.
Conversely, any hypersurface f : Mn → Rn+1, n ≥ 3, given in terms

of the Gauss parametrization by a special hyperbolic or special elliptic pair
admits a nontrivial infinitesimal variation. Moreover, the infinitesimal
bendings associated to any pair of nontrivial infinitesimal variations of f
differ by a trivial infinitesimal bending.

Proof. Let f : Mn → Rn+1 be a hypersurface of constant rank 2 that
admits a nontrivial infinitesimal variation, and let T be the corresponding
nontrivial infinitesimal bending. We may assume that f(M) does not
contain the origin 0 ∈ Rn+1. Let ϕ : Rn+1 \ {0} → Rn+1 be the inversion
with respect to the unit sphere Sn. Recall that N is constant along the
leaves of ∆, and let η : L2 → Sn be the map induced on the space of leaves
of ∆. We can assume that the support function satisfies γ > 0, at least
locally. Consider the 2-parameter family of tangent affine hyperplanes
given by P (x) = f∗TxM at x ∈ Mn. Notice that γ(x) coincides with the
distance from the origin 0 to P (x). Applying the inversion ϕ we obtain a
2-parameter family of spheres, all of which have the origin as a common
point.
Let h : L2 → Rn+1 denote the map describing the centers and r ∈ C∞(L)

the radius of the 2-parameter family of hyperspheres ϕ(P (x)). Since all the
spheres contain the origin we have that r−1h has unit length and satisfies
η = r−1h. In addition, we have that

2rγ̄ = 1, (8.78)

where γ̄ ∈ C∞(L) is induced by the support function γ. The map f̃ = ϕ◦f
is an immersion with a principal curvature λ of multiplicity n− 2 having
∆ as its corresponding eigenspace. Then r and h coincide with the maps
induced on L2 by λ−1 and the focal map of f̃ , respectively. The vector
field T̃ = ϕ∗T is a nontrivial conformal infinitesimal bending of f̃ . From
now on, we assume that f is neither surface-like nor ruled. Since f is not
surface-like, by Propositions 7.4 and 7.6 of [21] the splitting tensor of ∆
with respect to the metric induced by f satisfies span{CT : T ∈ ∆} 6⊂
span{I}. The metrics induced by f and f̃ are conformal, then we have
from the relation between their Levi-Civita connections that the splitting
tensor of ∆ with respect to the metric induced by f̃ also satisfies that
span{CT : T ∈ ∆} 6⊂ span{I}, and hence f̃ is not conformally surface-like.
If f̃ is conformally ruled, then f is also conformally ruled, that is, there is
an (n− 1)-dimensional integrable distribution R whose leaves are mapped
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by f into umbilical submanifolds of Rn+1. Since f has rank 2 we have that
∆∩R is not trivial. Therefore f is ruled and that is a contradiction. Thus
f̃ is neither conformally surface-like nor conformally ruled.
On connected components of an open dense subset of Mn, in terms of

the conformal Gauss parametrization we have from Theorem 8.7 that f̃ is
parametrized by the special hyperbolic or special elliptic pair determined
by h and r.
Fix a pseudo-orthonormal basis e1 . . . , en+3 of Ln+3 as in (8.19) with

v = e1 and w = −2en+3. Let Ψ: Rn+1 → Vn+2 ⊂ Ln+3 and S : Mn →
Ln+3 be given by (7.20) and (8.26) respectively. Then, as in the proof
of Proposition 8.12, the immersion s : L2 → Sn+2

1 ⊂ Ln+3 induced by S
satisfies s = g, where g is given by (8.21), that is, g = λ(1, h, 0) where
ρ = 1/r. Notice that both g and η = ρh induce the same metric on L2.
Since g is a special hyperbolic (respectively, special elliptic) surface, the
corresponding position vector in Ln+3 satisfies (8.4) (respectively, (8.5))
with respect to a system of coordinates (u, v). In particular, the position
vector of η ∈ Sn ⊂ Rn+1 also satisfies (8.4) (respectively, (8.5)) with
respect to the same coordinate system. Hence (u, v) is a system of real
(respectively, complex) conjugate coordinates for η, and thus we have
a hyperbolic (resp. elliptic) surface. Moreover, from Proposition 8.5 it
follows that η determines a special hyperbolic (resp. elliptic) surface.
Since g(L2) ⊂ Sn+2

1 and 〈g, w〉 = ρ, then

Hess (ρ)(X,Y ) = 〈αg(X,Y ), w〉 − ρ〈X,Y 〉

for any X,Y ∈ X(L). Since g is hyperbolic (elliptic) with respect to
J ∈ Γ(End(TL)) satisfying J 6= I and J2 = I (J2 = −I), we have that

(Hess (ρ) + ρI) ◦ J = J t ◦ (Hess (ρ) + ρI),

where Hess (ρ) also denotes the endomorphism of TL determined by the
Hessian of ρ. Then, we obtain from (8.78) that γ̄ satisfies

(Hess (γ̄) + γ̄I) ◦ J = J t ◦ (Hess (γ̄) + γ̄I).

Thus f is parametrized in terms of the Gauss parametrization by a especial
hyperbolic or special elliptic pair (η, γ̄).
We outline the proof of the converse. Let f : Mn → Rn+1 be

parametrized by means of the Gauss parametrization in terms of a special
hyperbolic or special elliptic pair (g, γ). Then f has constant index of
relative nullity ν = n− 2. As in the proof of Theorem 8.7, we obtain from
Proposition 8.5 that, at least locally, there is a nowhere vanishing function
µ̄ ∈ C∞(L2) such that D̄ = µ̄J̄ is a Codazzi tensor. Let D = µJ be the
lifting of D̄ and define the tensor B ∈ Γ(End(TM)) by

B|∆⊥ = AD and B|∆ = 0.
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Then B 6= 0 is a symmetric Codazzi tensor that satisfies (2.21). Hence
it follows from Theorem 2.11 that B determines a unique infinitesimal
bending of f .
In the case of ruled hypersurfaces, in analogy with Propositions 8.13

and 8.14, we have the following. A simply connected ruled hypersurface
f : Mn → Rn+1, n ≥ 3, free of flat points and that is not surface-like on any
open subset, admits a family of nontrivial conformal infinitesimal bendings
that is in one-to-one correspondence with the set of smooth functions on
an interval. Moreover, any of its infinitesimal bendings is the variational
vector field of an isometric variation. Again, the proofs of these facts can
be seen in [21].

8.4 Exercises
Exercise 8.1. Prove the statement given by Proposition 8.6.

Exercise 8.2. Let V and W be vector spaces of dimensions 2 and p ≥ 2,
respectively, and let α : V ×V →W be a symmetric bilinear form. Assume
that there exist a basis X,Y of V and a, b, c ∈ R such that a2 + b2 + c2 6= 0
and

aα(X,X) + 2cα(X,Y ) + bα(Y, Y ) = 0.
Show that ab − c2 being positive (respectively, negative) is independent
of the basis X,Y , and that it is equivalent to the existence of an
endomorphism J 6= I of V such that J2 = εI with ε = −1 (respectively,
ε = 1) and

α(JX, Y ) = α(X, JY )
for all X,Y ∈ V .
Hint: See hint of Exercise 11.2 in [21].

Exercise 8.3. Let f : Mn → Nm be an isometric immersion and let
g ∈ C∞(N). Show that the gradient and Hessian of g and h = g ◦ f
are related by

f∗gradh = (grad g)T

and
Hessh(X,Y ) = Hess g(f∗X, f∗Y ) + 〈grad g, α(X,Y )〉

for all x ∈ Mn and X,Y ∈ TxM . Let f : Mn → Rm be an isometric
immersion and let hv ∈ C∞(M) be the height function

hv(x) = 〈f(x), v〉

with respect to the hyperplane normal to v ∈ Rm. Show that

Hesshv(x)(X,Y ) = 〈αf (X,Y ), v〉
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for all x ∈Mn and X,Y ∈ TxM .
Hint: See Proposition 1.2 and Corollary 1.3 in [21].

Exercise 8.4. Given a surface g : L2 → Snε set h = i ◦ g : L2 → En+1.
Show that the condition (8.1) holds if and only for any v ∈ En+1 the height
function hv = 〈h, v〉 satisfies

(Hesshv + hvI) ◦ J = J t ◦ (Hesshv + hvI),

where Hesshv denotes the endomorphism of TL associated with the
Hessian of hv with respect to the induced metric.

Exercise 8.5. Give proofs of Propositions 8.2 and 8.5 in the elliptic case.

Exercise 8.6. Verify that the symmetric tensor αt and the connection
∇̄t defined in the proof of Proposition 8.14 satisfy the Gauss, Codazzi and
Ricci equations.
Hint: Use the Gauss, Codazzi and Ricci equations together with the fact
that β and E satisfy (2.12), (2.13) and (2.14). Also use that in this case
D has kernel in ∆⊥.

Exercise 8.7. Let L2 be a Riemannian surface carrying a tensor J ∈
Γ(End(TL)) satisfying J 6= I and J2 = I. Decompose TL = T ′L ⊕ T ′′L
where T ′L and T ′′L are the eigenbundles corresponding to the eigenvalues
1 and −1 of J , respectively. For X ∈ X(L) write X = X ′ +X ′′ according
to that decomposition. Let g : L2 → Smε , m ≥ 4, be an isometric
immersion with second fundamental form αg : TL × TL → NgL. The
(p, q)-components of αg for p+ q = 2 are given by

α(2,0)(X,Y ) = αg(X ′, Y ′), α(0,2)(X,Y ) = αg(X ′′, Y ′′)

and
α(1,1)(X,Y ) = αg(X ′, Y ′′) + αg(X ′′, Y ′),

for any X,Y ∈ X(L).

(i) Show that 2X ′ = X + JX and 2X ′′ = X − JX.

(ii) Prove that g is hyperbolic if and only if α(1,1) = 0.

Exercise 8.8. Let L2 be a Riemannian surface carrying a tensor J ∈
Γ(End(TL)) satisfying J2 = −I (almost complex structure). Let TM ⊗C
be the complexified tangent bundle of L and decompose TL ⊗ C =
T ′L ⊕ T ′′L where T ′L and T ′′L are the eigenbundles corresponding to
the eigenvalues i and −i of J , respectively. For X ∈ Γ(TM ⊗ C) write
X = X ′ +X ′′ according to that decomposition. Let g : L2 → Smε , m ≥ 4,
be an isometric immersion with second fundamental form αg : TL×TL→
NgL and let the (p, q)-components of α for p+ q = 2 given in Exercise 8.7.
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(i) Show that 2X ′ = X − iJX and 2X ′′ = X + iJX.

(ii) Prove that g is elliptic if and only if α(1,1) = 0.
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