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1 Introduction

Many processes in material sciences such as phase transformation, crystal
growth, domain growth, grain growth, ion beam and chemical etching,
etc. can be modelled as a geometric interface motion in which surface
tension acts as a principal driving force (see e.g. [8, 16, 18, 20, 19, 27, 32,
34, 42, 45, 49] and references therein). An interface (or surface boundary)
in the plane is a curve bounding different regions (phases) and moving in
a nonequilibrium state [23, 24, 31, 43].

In some simplified cases the motion of this curve does not depend on
the physical situation in the various phases1, and is described by geometric
equations relating, for instance, the normal velocity of the interface to its
curvature. The anisotropic curvature flow in two dimensions of a network
Σ is the formal gradient flow of the energy functional

ℓϕ(Σ) :=

∫
Σ

ϕo(νΣ)dH1,

where Σ is a set of curves delimitating the various phases, and typically
having triple junctions, νΣ is a unit normal vector field to Σ and the energy
density ϕo : R2 → [0,+∞), sometimes called surface tension (or, generally,
anisotropy), is defined on S1 and its one-homogeneous extension on R2 is
a norm. An interesting case is when ϕo is crystalline, i.e., its unit ball Bϕo

is a (centrally symmetric) polygon. In such a case, one expects the phases
to be mostly polygonal regions, which evolve under a sort of nonlocal
curvature flow2. More realistic is the case in which various anisotropies
are involved in the energy, i.e., ϕoij is an anisotropy weighting the part of
the network Σ dividing phase i from phase j. When all ϕoij are crystalline,
this is a model for polycrystalline materials [25, 26].

The aim of this paper is to discuss some aspects of the evolution of
the network Σ under anisotropic curvature flow; for simplicity we do not
include mobilities. We quickly review some known results when ϕo is
Euclidean, and discuss some aspects of the flow in the anisotropic and
polycrystalline cases, starting from the definition of what we mean by
normal velocity. We will give some detail on the short time existence of a
strong solution when ϕoij are smooth and uniformly convex. The variational
nature of the flow will be emphasized.

Nothing will be specified in this paper for weak solutions to the flow:
for this argument we refer the reader to [12, 10, 36, 50].

1The case of two phases is usually called anisotropic curve shortening flow, and will
not be addressed here; we refer the reader to [1, 3] and to [2, 30] in the crystalline case.

2The interest is due mainly to the presence of facets and corners in ∂Bϕo . However,
a mathematical obstruction is represented by the possible appearence of nonpolygonal
curves during the crystalline flow of a network, arising from triple junctions.
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2 Notation
We denote by · the Euclidean scalar product and by | · | the Euclidean
norm in R2. Given a, b ∈ R2, a⊗ b stands for the 2× 2-matrix with entries
(a ⊗ b)ij = aibj . The symbol H1 stands for the 1-dimensional Hausdorff
measure in R2. We denote by a⊥ the counterclockwise 90o-rotation of a
nonzero vector a ∈ R2, i.e.,

a = (a1, a2) =⇒ a⊥ = (−a2, a1).
The (topological) boundary of a set E ⊂ R2 is denoted by ∂E.

We identify both tangent and cotangent spaces at a point of R2 with
(a copy of) R2.

2.1 Anisotropies
We denote by ϕ : R2 → [0,+∞) an anisotropy, i.e., a convex function such
that

ϕ(λξ) = |λ|ϕ(ξ), ϕ(ξ) ≥ c|ξ|, λ ∈ R, ξ ∈ R2,

for some c > 0. We let

Bϕ := {ξ ∈ R2 : ϕ(ξ) ≤ 1}.
The dual of ϕ is defined as

ϕo(ξ) = max
η∈R2, ϕ(η)=1

ξ · η, ξ ∈ R2,

which turns out to be an anisotropy. Our convention is that ϕ measures 1-
vector fields and ϕo measures 1-covectors fields (one-forms); so the domain
of ϕ (resp. ϕo) is the tangent (resp. cotangent) space at a point of R2.
We do not use different symbols for the domain of ϕ and ϕo. Notice that
ϕoo = ϕ. Bϕ is sometimes called Wulff shape, and Bϕo Frank diagram.

We say that ϕ is elliptic if ϕ ∈ C2(R2 \ {0}) and

∇2ϕ(ν)τ · τ ≥ c̄ > 0

for all τ, ν ∈ S1 with τ · ν = 03. One checks that if ϕ is elliptic then ϕo

is also elliptic. It is well-known [22, Chapter 1] that ϕ ∈ C1(R2 \ {0}) if
3If ψ(θ) := ϕ(cos θ, sin θ), this inequality becomes ψ + ψ′′ ≥ c̄.
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and only if ϕo is strictly convex4. We say ϕ is crystalline if Bϕ is a convex
polygon. It can be readily checked that ϕ is crystalline if and only if so is
ϕo.

In this paper we assume that an anisotropy and its dual are either both
elliptic or both crystalline. Even though some notions that we are going
to introduce hold also in other cases (for instance when ϕ is smooth but
not strictly convex5), and despite of their interest, we shall not consider
them here.

2.2 Curves
A curve in R2 is the image of a continuous function σ ∈ C0([0, 1];R2). In
this survey we consider only embedded curves, i.e., with no self-intersections
except the endpoints. If σ(0) = σ(1), the curve is called closed. When σ is
C1 (resp. Lipschitz) and |σ′| > 0 in [0, 1] (resp. a.e. in [0, 1]), the map σ is
called a regular parametrization of Σ := σ([0, 1]). A curve is called Ck+α

for some k ≥ 0 and α ∈ [0, 1], if it admits a regular Ck+α-parametrization.
The tangent line to Σ at its point q is denoted by TqΣ. The (Euclidean)
unit tangent vector to Σ at q is denoted by τΣ(q) and the unit normal
vector is νΣ(q) = τΣ(q)

⊥. Namely, if q = σ(x), then

τΣ(q) =
σ′(x)

|σ′(x)| and νΣ(q) =
σ′(x)⊥

|σ′(x)| .

Definition 2.1. Given q ∈ ∂Σ and a nonzero vector z ∈ R2 \TqΣ (in case
TqΣ exists) we write

z∂Σ(q) (2.1)

to denote the 90◦-rotation of z pointing out of the curve.

Sometimes we consider sets Σ for which there exists R0 > 0 such that
Σ ∩ DR is a Lipschitz (resp. Ck+α) curve with boundary and Σ \ DR is
a straight half-line for any disc DR with R > R0. With a slight abuse of
notation, such sets Σ will be still called a Lipschitz (resp. Ck+α) curve
with boundary. In this case Σ has only one boundary point.

2.3 Tangential divergence of a vector field
The tangential divergence of a vector field g ∈ C1(R2;R2) over an embed-
ded Lipschitz curve Σ is defined as

divΣg(q) = ∇g(q)τΣ(q) · τΣ(q) for H1-a.e. q ∈ Σ.

4A function f : Rn → R is strictly convex if for any x, y ∈ Rn and α ∈ (0, 1) one has
f(αx+ (1− α)y) < αf(x) + (1− α)f(y).

5We are not aware of any local existence result of network evolutions in these cases.
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When the curve is C1, this equality holds at every point of Σ.

Remark 2.2. When we will define Cahn-Hoffman vector fields, we con-
sider the tangential divergence of a Lipschitz vector field Nϕ defined only
along a Lipschitz curve Σ. In this case, we extend Nϕ to a tubular neigh-
borhood of Σ constant along the vector Nϕ(q) for q ∈ Σ, i.e., if z ∈ R2 and
z = q + λNϕ(q) for a unique q ∈ Σ and sufficiently small |λ|, then we set
Nϕ(z) := Nϕ(q).

The tangential divergence can also be introduced using parametriza-
tions. More precisely, if σ ∈ Lip([0, 1];R2) is a regular parametrization of Σ
and g : Σ → R2 is a Lipschitz vector field along Σ, i.e., g◦σ ∈ Lip([0, 1];R2),
then

divΣ g(q) =
[g ◦ σ]′(x) · σ′(x)

|σ′(x)|2 , q = σ(x) (2.2)

at points of differentiability. One can readily check that the tangential
divergence is independent of the parametrization.

2.4 Lipschitz/smooth partitions and associated net-
works

Given a finite family {Ei} of open subsets (the phases) of R2 with Lipschitz
boundary such that

⋃
iEi = R2 and Ei ∩ Ej = ∅ for i ̸= j, we say {Ei}

is a (finite) Lipschitz (resp. Ck+α) partition of R2 if Σij := ∂Ei ∩ ∂Ej (if
not empty or discrete, see Figure 1(a)) is a finite union of Lipschitz (resp.
Ck+α) curves with boundary. Each Ei is called a phase and each Σij (if
not discrete) is called an interface. Given a natural number m ≥ 3, we
call a point q an m-tuple junction of {Ei} is there exist (exactly) m-phases
containing q in their boundary.

In what follows we consider only Lipschitz partitions of R2 for which:

• Σ :=
⋃

i,j Σij (which we call a network) is connected,

• either only one phase is unbounded or Σ consists of finitely many
half-lines out of some discs (this case will be considered only in the
crystalline case).

In particular, we do not prescribe Dirichlet boundary conditions for net-
works; moreover, in the evolutions we will admit only triple junctions. For
notational simplicity, the curves of ∂Ei ∩ ∂Ej in the network Σ will be
often denoted by Σk, using one index only.

Note that the Lipschitzianity of Ei imply that our Lipschitz partitions
do not include Brakke’s spoon6 type networks (in this case the unbounded
phase is not a Lipschitz set, see Figure 1 (c)).

6A union of an embedded closed curve and a half-line starting from a point of the
curve.
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Figure 1: Lipschitz (Figures (a) and (b)) and non Lipschitz (Figure (c))
partitions. Note that in (a) Σ15 = ∂E1 ∩ ∂E5 consists of four points and
Σ36 = ∂E3 ∩ ∂E6 is empty. In (b) Σ15 is a disjoint union of two Lipschitz
curves and two points and in (c) the unbounded phase E1 cannot be written
(locally) as a subgraph of a Lipschitz function.

2.5 Anisotropic energy of a network

Let {Ei}ni=1 be a Lipschitz partition of R2. Let Φ := {ϕij} be a collection
of anisotropies in R2 such that each ϕij is associated to Σij . Notice that
ϕij = ϕji and Σij = Σji. The Φ-length of Σ :=

⋃
ij Σij in an open set

U ⊆ R2 is defined as

ℓΦ(Σ;U) :=
∑

1≤i<j≤n

∫
U∩Σij

ϕoij(νΣij
)dH1. (2.3)

By assumption, each Σij is either empty, or a finite set of points or a Lip-
schitz curve with boundary and therefore, ℓ(Σ;U) < +∞ for any bounded
open set U. We also set

ℓΦ(Σ) := ℓΦ(Σ;R2)

provided that Σ is bounded.

Remark 2.3. We assume

ϕoij + ϕojk ≥ ϕoik, (2.4)

which is important since the invalidity of (2.4) yields local instabilities.
Indeed, in this situation, a creation of a very thin new phase along the
interfaces with large surface tensions would decrease the length. In the
proof of Theorem 3.9 we do not use (2.4) because of our assumptions on
the shape of admissible networks (we do not allow creation of new phases).
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3 Evolution of networks with elliptic
anisotropies

In this section we assume that all anisotropies are elliptic.

3.1 First variation of length
The following result was established in [15, Theorem 3.4].

Proposition 3.1. Let Σ ⊂ R2 be an embedded C2 curve with boundary
∂Σ = {p0, q0} and let σ : [0, 1] → R2 be a regular parametrization of Σ
with σ(0) = p0 and σ(1) = p1. Let β ∈ C2([0, 1];R2) and for sufficiently
small |s| with s ∈ R, let σ + sβ parametrize the curve Σs. Then

dℓϕ(Σs)

ds

∣∣∣
s=0

=

∫
Σ

β ·νΣ divΣNϕ dH1+β(1)·[Nϕ(p1)]
∂Σ+β(0)·[Nϕ(p0)]

∂Σ,

where
Nϕ(q) := ∇ϕo(νΣ(q)), q ∈ Σ,

and N∂Σ
ϕ is defined in (2.1).

The number
κϕΣ(q) := divΣNϕ(q), q ∈ Σ,

in the integral is called the ϕ-curvature7 of the curve Σ at q and the
vector field Nϕ is sometimes called the Cahn-Hoffman vector field on Σ.
Moreover, the vector κϕΣNϕ is called the ϕ-curvature vector. When no
confusion arises, we write κϕ in place of κϕΣ.

From Proposition 3.1 we get

Corollary 3.2. Let Σ := {Σi}ni=1 be a network consisting of embedded C2-
curves with boundary and Φ = {ϕi}ni=1 be elliptic anisotropies such that ϕi
is associated to Σi. Let Q be a m-tuple junction, say the intersection point
of curves Σ1, . . . ,Σm. Let σi : [0, 1] → R2 be a regular C2-parametrization
of Σi such that σi(1) = Q and let β1, . . . , βm ∈ C2([0, 1];R2) be such that
βi(0) = 0 and βi(1) = βj(1) = Q and for s ∈ R with sufficiently small |s|
let Σs

i be the curve parametrized by σi + sβi and set Σs :=
⋃

i≥1 Σ
s
i . Then

dℓΦ(Σs)

ds

∣∣∣
s=0

=

m∑
i=1

∫
Σi

βi · νΣi κ
ϕi dH1 +Q ·

m∑
i=1

[Nϕi(Q)]∂Σi . (3.1)

7In higher dimensions the anisotropic tangential divergence of a vector field N : Σ →
Rn over a Lipschitz manifold Σ is defined as

divΣ,ϕ g = Tr
(
(Id− nϕ ⊗ νϕ)∇ĝ

)
,

where νϕ = νΣ/ϕ
o(νΣ) and nϕ = ∇ϕo(νϕ), and ĝ is the constant extension of g along

nϕ [14, Definition 4.1]. By [14, Lemma 4.4] divΣ,ϕNϕ coincides with divΣNϕ.
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The balance condition
m∑
i=1

[Nϕi
(Q)]∂Σi = 0 (3.2)

is sometimes called Herring condition [11, 26, 32, 49]. By the definition
(2.1) of z∂Σ this equality is rewritten also as

m∑
i=1

Nϕi
(Q) = 0. (3.3)

Condition (3.2) requires some compatibility between anisotropies ϕi :

Example 3.3. Let n = 3, ϕ1 = ϕ2 = | · | and ϕ3 = 1/3| · |, and let Q be a
triple junction of C2-curves Σ1, Σ2 and Σ3. Then

N1(Q) = νΣ1
(Q), N2(Q) = νΣ2

(Q) and N3(Q) = 3νΣ3
(Q).

Thus, |N1| = |N2| = 1 and |N3| = 3, which implies the sum N1(Q) +
N2(Q) + N3(Q) can not be zero. In particular, condition (3.3) is not
related to the triangle inequality (2.4).

3.2 Anisotropic curvature of a curve
Let Σ be an embedded C2-curve regularly parametrized by σ ∈ C2([0, 1];R2).
Let us express κϕ by means of σ. Note that

Nϕ(q) = ∇ϕo
(

σ′(x)⊥

|σ′(x)|

)
, q = σ(x) ∈ Σ,

and hence, by (2.2) at q = σ(x) we have

κϕ(q) =
([

∇2ϕo
(

σ′(q)⊥

|σ′(q)|

)
σ′(q)
|σ′(q)|

]
· σ′(q)
|σ′(q)|

)
σ′′(q)·σ′(q)⊥

|σ′(q)|3 . (3.4)

Now recalling the definition of τΣ and νΣ as well as the definition of the
Euclidean curvature κ of a curve, the last equality is rewritten on Σ as

κϕ =
(
∇2ϕo(νΣ)τΣ · τΣ

)
κ.

This observation will be used frequently.

3.3 Existence of a smooth flow
In this section we only consider bounded networks associated to an at least
C2-partition of R2 and all anisotropies are at least C3.
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Definition 3.4. Given a network Σ0 := {Σ0
j}nj=1 and associated elliptic

anisotropies8 Φ := {ϕj}nj=1, we say that a family Σ(t) := {Σj(t)}, t ∈ [0, T )

of networks is a Φ-curvature flow starting from Σ0 if Σ(0) = Σ0 and there
exists an n-tuple u := {uj}nj=1 ∈ [C1,2((0, T ) × [0, 1];R2)]n ∩ [C([0, T ) ×
[0, 1];R2)]n such that

(a) each uj(t), t ≥ 0, is a regular parametrization of Σj(t);

(b)

ujt · νj = ϕoj(ν
j)
(
∇2ϕoj(ν

j)τ j · τ j
)
κ on (0, T )× (0, 1), (3.5)

where νj = νΣj and τ j = τΣj ;

(c) each Σ(t) contains only triple junctions and if the curves Σj1(t),
Σj2(t) and Σj3(t) intersect at a triple junction q(t), then

3∑
i=1

∇ϕoji(νji(q(t))) = 0 for all t ∈ (0, T ).

Any such flow Σ(·) is called a smooth geometric anisotropic curvature flow
of the network Σ0.

Condition (b) says that each curve in the network moves with normal
velocity equal to its anisotropic curvature, whereas condition (c) expresses
the Herring condition at triple junctions. Note that we are not assuming
a priori that Σ0 satisfies Herring condition (3.3). Even though in what
follows we consider only initial networks satisfying (3.3), we would like to
mention that there are results in the Euclidean case (see e.g. [37]) that
prove short time existence from an initial network not satisfying (3.3); this
instantaneous regularization is an interesting result.

Equation (3.5) expresses only the normal component of the velocity of
Σ(t); the presence of triple junctions forces (see e.g. [35, 40, 41]) Σ(t) to
have also a tangential velocity. Following [35, Definition 2.4] and choosing
the tangential component of the velocity as

λ := ujt · τ j = ϕoj(ν
j)(∇2ϕoj(ν)τ

j · τ j) uj
xx

|uj
x|2

· τ j

in (3.5), we can introduce:

Definition 3.5 (Special geometric flow). A special geometric aniso-
tropic curvature flow is defined by the equation

ujt = ϕoj(ν
j)(∇2ϕoj(ν)τ

j · τ j) u
j
xx

|ujx|2
. (3.6)

8For simplicity, we write ϕk and Σk in places of ϕij and Σij .
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Remark 3.6 (Reduction to a special flow). Repeating the arguments
of [35, Lemma 4.1] (see also [40]) we can prove that using (orientation pre-
serving) diffeomorphisms/reparametrizations every smooth geometric flow
can be reduced to a special geometric flow. This observation implies that
given Σ0 (satisfying condition (3.3)), to prove the short-time existence of
a smooth geometric flow we only need to establish short-time existence of
a special geometric flow starting from Σ0.

Let us consider a special geometric flow u(t) and the evolution of some
triple junction

q(t) := uj1(t, y1) = uj2(t, y2) = uj3(t, y3)

for some (y1, y2, y3) ∈ {0, 1}3 and for all t ∈ (0, 1). Since all uj ∈
C1,2((0, T )× [0, 1];R2), we have

qt(t) = uj1t (t, y1) = uj2t (t, y2) = uj3t (t, y3). (3.7)

Thus, inserting (3.4) in (3.6) at q(t) we get

ϕoi (ν
i)
(
∇2ϕoi (ν

i)τ i · τ i
) uixx(t, y)

|uix(t, y)|3
= ϕoj(ν

j)
(
∇2ϕoj(ν

j)τ j · τ j
) ujxx(t, y)

|ujx(t, y)|3
(3.8)

for all i, j ∈ {j1, j2, j3}. If Σ(·) is smooth up to t = 0, the second order
compatibility condition (3.8) should be satisfied by the initial network Σ0.
Later in this section we show that if Σ0 satisfies conditions (3.3) and (3.8),
then there exist T > 0 and a special geometric anisotropic curvature flow
{Σ(t)}t∈[0,T ] starting from Σ0.

3.4 Role of the Herring condition

Let Σ(t) be a smooth geometric flow starting from a bounded network Σ0.
We claim that condition (3.3) implies that the anisotropic length ℓΦ(Σ(t))
is non-increasing in t > 0. Indeed, without loss of generality, we may
assume that Σ(t) is special (see Remark 3.6). Hence, using the definition
of ℓΦ, integration by parts, (3.7) and (3.5) we get

d

dt
ℓΦ(Σ(t)) = −

n∑
j=1

∫ 1

0

ϕoj(u
⊥
x )

|ujx|3
∣∣∣∇2ϕoj(u

⊥
x )u

j
xx

∣∣∣2 dx
+

∑
q(t)∈J(t)

qt(t) ·
3∑

i=1

∇ϕoji(νji(q(t))),
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where J(t) is the set of all triple junctions,

q(t) := uj1(t, y1) = uj2(t, y2) = uj3(t, y3)

(ji and yi are different for different q). Hence, condition (3.3) implies that

d

dt
ℓΦ(Σ(t)) ≤ 0,

i.e. the map t 7→ ℓΦ(Σ(t)) is non-increasing.

3.5 Existence and uniqueness of special flows
In this section we prove the short-time existence and uniqueness of a
smooth anisotropic curvature flow starting from a given network Σ0 sat-
isfying conditions (3.3) and (3.8) at triple junctions. For simplicity, we
consider only theta-shaped networks, i.e. bounded C2-networks consisting
of only three embedded curves meeting at two triple junctions.

The main result of the section reads as follows.

Theorem 3.7 (Local existence and uniqueness). Let Σ0 be a C2+α

theta-shaped network satisfying at both triple junctions

3∑
i=1

∇ϕoi (νiΣ0) = 0

and admitting a parametrization satisfying the second order compatibility
condition (3.8). Then there exists a unique smooth geometric flow starting
from Σ0.

As observed in Remark 3.6, concerning existence we just need to prove
the existence of a special flow. Then uniqueness follows from uniqueness
of the special flow.

We postpone the proof after several auxiliary results. Before going
further, we recall some notions related to parabolic Hölder spaces. For a
function v : [0, T ]× [0, 1] → R and α ∈ (0, 1] we let

[v]α,x := sup
t∈[0,T ], x,y∈[0,1], x ̸=y

|v(t, x)− v(t, y)|
|x− y|α ,

[v]α,t := sup
s,t∈[0,T ], s ̸=t, x∈[0,1]

|v(s, x)− v(t, x)|
|s− t|α .

For α ∈ (0, 1] and k ∈ N0 := N∪{0} we denote by C
k+α

2 ,k+α([0, T ]× [0, 1])
the space of all functions v : [0, T ]×[0, 1] → R whose continuous derivatives
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∂it∂
j
xv exist for all i, j ∈ N0 with 2i+ j ≤ k and satisfy

∥v∥
C

k+α
2

,k+α([0,T ]×[0,1])
:=

k∑
2i+j=0

sup
t∈[0,T ], x∈[0,1]

|∂it∂jxv(t, x)|

+
∑

2i+j=k

[∂it∂
j
xv]α,x +

∑
k+α−2i−j<2

[∂it∂
j
xv] k+α−2i−j

2 ,t < +∞.

The C
k+α

2 ,k+α-norm of a vector valued map is the sum of the norms of its
components. We also adopt the following conventions:

• whenever it is clear from the context, we set

C
k+α

2 ,k+α

T := C
k+α

2 ,k+α([0, T ]× [0, 1];R2)

and
∥v∥

C
k+α

2
,k+α

T

:= ∥v∥
C

k+α
2

,k+α([0,T ]×[0,1];R2)
;

• for functions v depending only on one variable (space or time), we
set

Ck+α := Ck+α([0, 1];R2) and C
k+α

2

T := C
k+α

2 ([0, T ];R2)

and

∥v∥k+α := ∥v∥Ck+α([0,1];R2) and ∥v∥ k+α
2 ,T := ∥v∥

C
k+α

2 ([0,T ];R2)
.

By
X k,α

n

we denote the set of n-tuples σ := (σ1, . . . , σn) ∈ [Ck+α]n such that⋃n
i=1 σ

i([0, 1]) is a network with only triple junctions. Similarly, we denote
by

X k,α,T
n

the set of all n-tuples σ := (σ1, . . . , σn) ∈
[
C

k+α
2 ,k+α

T

]n such that σ(t) =
(σ1(t, ·), . . . , σn(t, ·)) ∈ X k,α

n for any t ∈ [0, T ].
We start with a general result related to the existence of special smooth

geometric flows.

Assumption 3.8.

(A) Θ := (θi, θ2, θ3) are positively one-homogeneous C3+α-functions in
R2 \ {0} for some α ∈ (0, 1],
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(B) B := (β1, β2, β3) are even C2+α-functions defined in a tubular neigh-
borhood of the unit circle S1 such that

0 < m ≤ min
ν∈S1

βi(ν) ≤ max
ν∈S1

βi(ν) ≤
1

m
, i = 1, 2, 3,

for some m ∈ (0, 1],

(C) F := (f1, f2, f3) ∈ (Cα
T )

3.

The first variation formula (3.1) for length shows that for the anisotropic
curvature flow we need to choose

θi(τ) = ϕoi (τ
⊥), βi(τ) = ϕoi (τ

⊥)∇2ϕoi (τ
⊥)τ · τ and fi = 0.

Notice that in Assumption 3.8 (A) we are not assuming θi to be even.

Theorem 3.9. Let k ≥ 2, α ∈ (0, 1] and let σ ∈ X k,α
3 satisfy the compat-

ibility conditions
σ1(y) = σ2(y) = σ3(y),
3∑

i=1

∇θi
(

σi
x(y)

|σi
x(y)|

)
= 0,

βi

(
σi
x(y)

|σi
x(y)|

)
σi
xx(y)

|σi
x(y)|2

= βj

(
σj
x(y)

|σj
x(y)|

)
σj
xx(y)

|σj
x(y)|2

, i, j = 1, 2, 3,

(3.9)

whenever y = 0 or y = 1. Let F be such that

f i(t, y) = f j(t, y) whenever (t, y) ∈ [0, T ]× {0, 1}.

Then there exist T > 0 and a unique flow u(t) = (u1(t, ·), u2(t, ·), u3(t, ·)) ∈
X k+2,α,T

3 of networks such that

u(0, x) = σ(x) for x ∈ [0, 1],

u1(t, y) = u2(t, y) = u3(t, y) for t ∈ [0, T ] and y ∈ {0, 1},
3∑

i=1

∇θi
(

ui
x(t,y)

|ui
x(t,y)|

)
= 0, for t ∈ [0, T ] and y ∈ {0, 1},

uit = βi

(
ui
x

|ui
x|

)
ui
xx

|ui
x|2

+ f i in [0, T ]× [0, 1] and i = 1, 2, 3.

(3.10)

To prove the theorem we follow the arguments of [35, Section 3].
Namely, we linearize the problem near the initial and boundary data, then
using the results of Solonnikov [44] we solve the linear problem, and fi-
nally, using careful Hölder estimates we reduce the problem to a Banach
fixed point argument. Note that in [35] the authors consider just one
anisotropy and networks having a single triple junction together with a
Dirichlet boundary condition.

We divide the proof into several steps.
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3.5.1 Main functional spaces

For T > 0, k ≥ 2, α ∈ (0, 1] and M > 0 let

Xj
M,T :=

{
v ∈ C

k+α
2 ,k+α

T : ∥v∥
C

k+α
2

,k+α

T

≤M, v(0, ·) = σj(·)
}

for j = 1, 2, 3. Note that if M is large, then Xj
M,T is non-empty.

Lemma 3.10. For σ ∈ X k,α
3 assume that

min
z∈[0,1]

|σj
x(z)| = δ > 0, j = 1, 2, 3.

Then for any v ∈ Xj
M,T one has

min
t∈[0,T ], z∈[0,1]

|vx(t, z)| ≥ δ/2

provided that

T ≤ δ

2M
. (3.11)

Proof. Since

vx(t, z) = vx(0, z) +

∫ t

0

vtx(s, z)ds,

by the Hölder estimate of v ∈ Xj
M,T we have

|vx(t, z)| ≥ |vx(0, z)| −
∫ t

0

|vtx(s, z)|ds ≥ δ −Mt ≥ δ

2
,

whenever t ≤ T ≤ δ
2M .

From now on we assume (3.11) and we set

RM,T :=

3∏
j=1

Xj
M,T . (3.12)

This will be our main functional space.

3.5.2 Linearized problem

Given ū = (ū1, ū2, ū3) ∈ RM,T , we look for u = (u1, u2, u3) ∈
[
C

k+α
2 ,k+α

T

]3
solving the linear system of PDE’s{

ujt − αju
j
xx = F j

ū ,

uj(0, x) = σj(x),
(3.13)
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where j = 1, 2, 3,

αj :=
βj(

σj
x

|σj
x|
)

|σj
x|2

, F j
ū := f j +

(
βj(

ūj
x

|ūj
x|
)

|ūjx|2
− αj

)
ūjxx,

with the linearized boundary conditions

u1(t, y) = u2(t, y) = u3(t, y), (3.14)
3∑

j=1

(
θj

(
σj
x(y)

|σj
x(y)|

)
uj
x(t,y)

|σj
x(y)|

+

[
∇θj

(
σj
x(y)

|σj
x(y)|

)
· [σj

x(y)]
⊥

|σj
x(y)|

]
[uj

x(t,y)]
⊥

|σj
x(y)|

)
= Bū(t, y)

(3.15)

for (t, y) ∈ [0, T ]× {0, 1}, where

Bū(t, y) :=
3∑

j=1

{[
θj

(
σj
x(y)

|σj
x(y)|

)
1

|σj
x(y)|

− θj

(
ūj
x(t,y)

|ūj
x(t,y)|

)
1

|ūj
x(t,y)|

]
ūjx(t, y)

+

([
∇θj

(
σj
x(y)

|σj
x(y)|

)
· [σ

j
x(y)]⊥

|σj
x(y)|

]
1

|σj
x(y)|

−
[
∇θj

(
ūj
x(t,y)

|ūj
x(t,y)|

)
· [ū

j
x(t,y)]⊥

|ūj
x(t,y)|

]
1

|ūj
x(t,y)|

)
[ūjx(t, y)]

⊥
}
.

In the linearization (3.15) of condition (3.3) we used the positive one-
homogeneity and continuous differentiability of θj , hence,

θj(a) = ∇θj(a) · a, a ∈ R2 \ {0},

which implies

∇θj(a) = (∇θj(a)·a) a+(∇θj(a)·a⊥) a⊥ = θj(a) a+(∇θj(a)·a⊥) a⊥, a ∈ S1.

3.5.3 Solvability of the linear problem

To check solvability we need to check that the linear system is compatible
with boundary and initial data [44].

We use the Fourier symbols p = ∂t and ξ = ∂x. The linear operator
corresponding to the linear system (3.13) has the 6× 6-matrix

L(x, p, ξ) =

(p− α1ξ
2) I O O

O (p− α2ξ
2) I O

O O (p− α3ξ
2) I

 ,

where αi := αi(x), ξ, p ∈ C and

I =

(
1 0
0 1

)
, O =

(
0 0
0 0

)
.
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In particular, for i =
√
−1 and ξ, p ∈ C

L(x, p, iξ) := detL(x, p, iξ) =
3∏

j=1

(p+ αjξ
2)2,

and the matrix

L̂(x, p, iξ) := L(x, p, iξ)L(x, p, iξ)−1

reads as

L̂(x, p, iξ) =(p+ α2ξ
2)(p+ α3ξ

2) I O O

O (p+ α1ξ
2)(p+ α3ξ

2) I O

O O (p+ α1ξ
2)(p+ α2ξ

2) I

 .

Since

αj =
βj(σ

j
x/|σj

x|)
|σj

x|2
≥ m min

{
1

|σj
x(x)|

: j = 1, 2, 3, x ∈ [0, 1]
}
> 0,

the system (3.13) is parabolic, here m is given by Assumption 3.8 (B).
Following [35], fix p ∈ C \ {0} with ℜ(p) ≥ 0. Then the polynomial

L(x, p, iτ), τ ∈ C, has six roots with positive imaginary part and six roots
with negative imaginary part. More precisely, setting p = |p|eiζp with
|ζp| ≤ π/2 and

τ+j := τ+j (x, p) =

√
|p|
αj

ei
(
π
2 +

ζp
2

)
, (3.16)

τ−j := τ−j (x, p) =

√
|p|
αj

ei
(
3π
2 +

ζp
2

)
,

we may write

L(x, p, iτ) =

3∏
j=1

α2
j (τ − τ+j )2(τ − τ−j )2.

Let

P+ := P+(x, p, τ) =

3∏
j=1

(τ − τ+j )2.
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Now we turn to define the matrix associated to the boundary conditions
(3.14)-(3.15). It is given as

B(y, ξ) =

 I −I O
O I −I
Q1 Q2 Q3

 , y = 0, 1, ξ ∈ C,

where
Qj := bj1

(
ξ 0
0 ξ

)
+ bj2

(
0 −ξ
ξ 0

)
, j = 1, 2, 3,

with all the coefficients evaluated at y = 0 and y = 1, and

bj1 := 1

|σj
x(y)|

θj

(
σj
x(y)

|σj
x(y)|

)
, bj2 := ∇θj

(
σj
x(y)

|σj
x(y)|

)
· [σj

x(y)]
⊥

|σj
x(y)|2

. (3.17)

Consider the matrix

A(y, p, iτ) := B(y, iτ)L̂(y, p, iτ) = (p+ α2τ
2)(p+ α3τ

2) I −(p+ α1τ
2)(p+ α3τ

2) I O

O (p+ α1τ
2)(p+ α3τ

2) I −(p+ α1τ
2)(p+ α2τ

2) I

(p+ α2τ
2)(p+ α3τ

2)Q1 (p+ α1τ
2)(p+ α3τ

2)Q2 (p+ α1τ
2)(p+ α2τ

2)Q3

 .

By definition, the complementary condition holds [44] if the rows of this
matrix are linearly independent modulo P+ whenever p ̸= 0 with ℜ(p) ≥ 0.
Thus, we need to check if w ∈ R6 (considered as a 1 × 6-matrix) is such
that

w · A(y, p, iτ) = (0, 0, 0, 0, 0, 0) mod P+,

then w = 0. This equation yields six linear equations. For instance, for
the first column of A we have

(p+ α2τ
2)(p+ α3τ

2) (w1 + ib11w5τ + ib12w6τ) = 0 mod P+.

Then by the definition of P+ we have

w1 + ib11w5τ + ib12w6τ = 0 mod (τ − τ+1 ),

or equivalently,
w1 + ib11w5τ

+
1 + ib12w6τ

+
1 = 0.

Treating similarly the remaining columns we get

w1 + ib11τ
+
1 w5 + ib12τ

+
1 w6 = 0,

w2 − ib12τ
+
1 w5 + ib11τ

+
1 w6 = 0,

−w1 + w3 + ib21τ
+
2 w5 + ib22τ

+
2 w6 = 0,

−w2 + w4 − ib22τ
+
2 w5 + ib21τ

+
2 w6 = 0,

−w3 + ib31τ
+
3 w5 + ib32τ

+
3 w6 = 0,

−w4 − ib32τ
+
3 w5 + ib31τ

+
3 w6 = 0.
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The determinant of this system is computed as

∆ :=det


1 0 0 0 ib11τ

+
1 ib12τ

+
1

0 1 0 0 −ib12τ
+
1 ib11τ

+
1

−1 0 1 0 ib21τ
+
2 ib22τ

+
2

0 −1 0 1 −ib22τ
+
2 ib21τ

+
2

0 0 −1 0 ib31τ
+
3 ib32τ

+
3

0 0 0 −1 −ib32τ
+
3 ib31τ

+
3


=− (b11τ

+
1 + b21τ

+
2 + b31τ

+
3 )2 − (b12τ

+
1 + b22τ

+
2 + b32τ

+
3 )2.

Now recalling the definitions of bij in (3.17) and of τ+j in (3.16) we get

∆ = p

[ 3∑
j=1

θj

(
σj
x

|σj
x|2αj

)]2
+ p

[ 3∑
j=1

∇θj
(

σj
x

|σj
x|

)
· [σj

x]
⊥

|σj
x|2αj

]2
̸= 0.

Thus, w = 0.
Now we check the complementary conditions for the initial datum. Let

C be the 6 × 6-identity matrix. Note that at t = 0 we have Cu = σ. We
need to check that the rows of the matrix

D(x, p) = C · L̂(x, p, 0) =

p2I O O
O p2I O
O O p2I


are linearly independent modulo L(x, p, 0) = p6, which is obvious.

In view of (3.9) the linear problem satisfies the compatibility condition
of order 0, and therefore, by the theory of linear parabolic systems [44],

there exists a unique solution u ∈
[
C

2+α
2 ,2+α

T

]3 of (3.13)-(3.15) satisfying

3∑
j=1

∥uj∥
C

2+α
2

,2+α

T

≤ C0

[ 3∑
j=1

(
∥F j

ū∥
C

α
2

,α

T

+ ∥σj∥C2+α

)
+ ∥Bū∥

C
1+α
2

T

]
,

(3.18)
where C0 > 0 does not depend on T.

3.5.4 Self-map property

Now taking a larger M > 1 and a smaller T if necessary, we show that for
any ū ∈ RM,T the unique solution u of (3.13)-(3.15) also belongs to RM,T .

To this aim we estimate ∥F j
ū∥

C
α
2

,α

T

and ∥Bū∥
C

1+α
2

T

in (3.18). By the

definition of F j
ū we have

∥F j
ū∥

C
α
2

,α

T

≤ ∥f j∥
C

α
2

,α

T

+ C1

∥∥∥∥∥
(
βj(

ūj
x

|ūj
x|
)

|ūjx|2
−
βj(

σj
x

|σj
x|
)

|σj
x|2

)∥∥∥∥∥
C

α
2

,α

T

∥ūjxx∥C α
2

,α

T

.
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Since βj ∈ C2+α out of the origin and |u| ≥ δ/2 for all u ∈ RM,T (Lemma
3.10), by Lemma A.2∥∥∥∥∥

(
βj(

ūj
x

|ūj
x|
)

|ūjx|2
−
βj(

σj
x

|σj
x|
)

|σj
x|2

)∥∥∥∥∥
C

α
2

,α

T

≤ 3C2M
2∥ūjx − σj

x∥C α
2

,α

T

for some C2 > 0 depending only on δ, ∥βj∥∞, ∥∇βj∥∞ and ∥∇2βj∥∞.
Since ūj(0, ·) = σj , by the fundamental theorem of calculus and the choice
of RM,T we have

∥ūjx − σj
x∥C α

2
,α

T

≤MT

and therefore, taking into account also ∥ūjxx∥C α
2

,α

T

≤M we get

∥F j
ū∥

C
α
2

,α

T

≤ ∥f j∥
C

α
2

,α

T

+ 3C1C2M
4T.

Similarly,
∥Bū∥

C
1+α
2

T

≤ C3M
4T

for some constant C3 depending only on ∥θj∥∞, ∥∇θj∥∞, ∥∇2θj∥∞,
∥∇3θj∥∞ and δ.

Inserting these estimates in (3.18) we get

∥u∥
C

2+α
2

,2+α

T

≤ C0

3∑
i=1

[
∥f j∥

C
α
2

,α

T

+ ∥σj∥C2+α

]
+ C0(3C1C2 + C3)M

4T.

Hence, if we choose

M := 1 + 2C0

3∑
i=1

[
∥f j∥

C
α
2

,α

T

+ ∥σj∥C2+α

]
,

then
∥u∥

C
2+α
2

,2+α

T

≤M

provided

T ≤ M + 1

2C0(3C1C2 + C3)M4
.

3.5.5 Contraction property

Given ū, v̄ ∈ RM,T , let u = Sū and v = Sv̄ ∈ RM,T be the corresponding
solutions to (3.13)-(3.15). Choosing T smaller if necessary let us show that

∥Sū − Sv̄∥
C

2+α
2

,2+α

T

≤ 1

2
∥ū− v̄∥

C
2+α
2

,2+α

T

.
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Let w = u− v. Then w solves the linear system{
wj

t − αjw
j
xx = F j

ū − F j
v̄ ,

wj(0, ·) = 0,

coupled with the boundary conditions

w1(t, 0) = w2(t, 0) = w3(t, 0),

3∑
j=1

(
θj

(
σj
x(y)

|σj
x(y)|

)
wj

x(t,y)

|σj
x(y)|

+

[
∇θj

(
σj
x(y)

|σj
x(y)|

)
· [σj

x(y)]
⊥

|σj
x(y)|

]
[wj

x(t,y)]
⊥

|σj
x(y)|

)
= Bū(t, y)−Bv̄(t, y),

for y = 0, 1. As we checked above, this linear system satisfies the compati-
bility and complementary conditions, and thus it admits a unique solution,
satisfying

∥w∥
C

2+α
2

,2+α

T

≤ C0

[(
∥Fū − Fv̄∥

C
α
2

,α

T

+ ∥Bū −Bv̄∥
C

1+α
2

T

]
.

Therefore, repeating the same arguments above we find

∥w∥
C

2+α
2

,2+α

T

≤ C4T∥ū− v̄∥
C

2+α
2

,2+α

T

,

where C4 depends only on δ, M, βj and θj . Now possibly reducing T > 0
if necessary we deduce the required contraction property.

3.5.6 Proof of Theorem 3.9

Finally, using the Banach fixed point theorem we conclude that there exists
a unique u ∈ RM,T solving system (3.10).

3.6 Evolution of networks in the Euclidean setting
Starting from the work [17], a vast literature is dedicated to the curvature-
driven flow of networks (see e.g. [33, 38, 39, 40, 41] and references therein).
In this section we shortly describe known results related to evolution of
networks in the Euclidean setting; we refer to the recent survey [40] for
more details.

In the Euclidean setting, the condition (3.3) at the triple junctions
reduces to a 120◦-condition between normals. The existence and regularity
of a flow with Dirichlet boundary conditions has been established, for
instance, in [17, 41]. Here one needs to assume the 120◦-condition at all
triple junctions of the initial network.
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The behaviour of such a smooth flow near the maximal time, as in the
curvature evolution of closed curves, is obtained using integral estimates
for the curvature. Namely,

Theorem 3.11. Let {Σt}t∈[0,T ) be the smooth geometric flow in the max-
imal time interval [0, T ), starting from an (admissible) network Σ0 in a
bounded convex open set Ω with Dirichlet boundary conditions on ∂Ω.
Then:

• either the lower limit of the length of at least one curve in Σt con-
verges to 0 as t↗ T,

• or

lim sup
t↗T

∫
Σt

κ2 dx = +∞.

Moreover, if the lengths of all curves in Σt are uniformly bounded away
from zero as t↗ T, then there exists C > 0 such that∫

Σt

κ2 dx ≥ C√
T − t

for all t < T. (3.19)

Note that under the uniform lower bound on the length, (3.19) implies

max
Σt

κ2 ≥ C ′
√
T − t

for all t < T, (3.20)

where C ′ depends also on the lengths of the curves, which is slightly weaker
than in the blow up case of closed curves {γt}t∈[0,T ), which reads as

max
γt

κ2 ≥ C

T − t
for all t < T.

However, the latter estimate for networks is not known even for simple
triods (three smooth curves with a single triple junction).

The next question is the blow-up behaviour of the rescaled networks
near the maximal time. As in the closed curves setting, one can estab-
lish Huisken’s monotonicity formula for networks [33, 40] and then, using
parabolic rescaling, one approaches some limiting network as t ↗ T . A
complete classification of these limiting networks is a hard problem, be-
cause they could be not regular; for example, we may loose the 120◦ con-
dition (collapse of two triple junctions), two curves of the network may
collapse (higher-multiplicity), or even some phase may collapse to a point
or segment. Of course, one of the possibilities are self-shrinking networks;
for their classification we refer to [4, 5, 21, 40].
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3.7 Long time behaviour of the anisotropic flow

We recall from [35] that, as in the Euclidean curvature flow of networks,
at the maximal time in a triod with Dirichlet boundary conditions either
some of the curves disappear or the curvature of some curve blows up and
also near the maximal time the L2-norm of the curvature satisfies (3.20)
provided that the length of the curves is uniformly bounded away from
zero.

However, to our knowledge, not much is known on theta-shaped net-
works near the maximal existence time even in the case of a single noneu-
clidean anisotropy: in this case we cannot straightforwardly repeat/adapt
the arguments of [35] because (as in the isotropic case) we could have not
only singularities related to the blow-up of the curvature or disappearance
of a curve, but also collapse of triple points or region disappearance. More-
over, the problem of existence of homothetically shrinking theta-shaped
networks seems open in the anisotropic case. Recall that in the isotropic
case such a homothetic network does not exist [6].

4 Crystalline curvature flow of networks

The classical definition of curvature in the smooth case breaks down if we
lack the smoothness of the anisotropy, for instance in the crystalline case.
As in the two-phase case [7, 9, 13, 28, 29, 30, 45, 46, 47, 48], the crystalline
curvature becomes nonlocal and its definition requires a special class of
networks, admitting a Cahn-Hoffman vector field.

In this section we extend the definition of smooth anisotropic curvature
flow to the polycrystalline case, generalizing [11].

For simplicity, we assume that any curve we consider is polygonal,
consisting of finitely many (at least one) segments and at most one half-
line, having fixed its unit normal (via parametrization).

Definition 4.1.

(a) Distance vector between two parallel lines and segments/
half-lines. Let L1 and L2 be two parallel lines. A vector H is called
a distance vector of L2 from L1 if |H| = dist(L1, L2) and x0+H ∈ L2

for any x0 ∈ L1. In other words, L2 = L1 +H. Similarly, given two
parallel segments/half-lines S and T a vector H is a distance vector
of S from T if H is the distance vector of the line containing T from
that of S. We write

H(S, T )

to denote the distance vector of a segment/half-line S from a seg-
ment/half-line T.
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(b) Parallel networks. Let Σ =
⋃n

i=1 Σi be a polygonal network such
that each curve Σi consists of mi ≥ 0 segments Si

1, . . . , S
i
mi

(in the
increasing order of parametrization9 of Σi) and li ∈ {0, 1} half-lines
Li, mi + li ≥ 1. We say that a network Σ̄ is a parallel to Σ provided
that:

– it consists of n embedded curves Σ̄1, . . . , Σ̄n;

– for each i the curve Σ̄i consists of mi segments S̄i
1, . . . , S̄

i
mi

(in
the same order as in Σ̄i) and li half-lines L̄i;

– for each i ∈ {1, . . . , n} the segments Si
j and S̄i

j are parallel for
all j and L̄i and Li lie on the same line;

– if q is a junction of Σi1 , . . . ,Σik for some k ≥ 3, then Σ̄i1 , . . . , Σ̄ik

form a junction in the same order as {Σij}.

(c) Distance between parallel networks. Let Σ and Σ̄ be parallel
networks. We set

d(Σ, Σ̄) := max
i,j

|H(Si
j , S̄

i
j)|.

Σ1 = L1

Σ2 = L2

Σ3 = S3
1 ∪ L3

Σ1 = L1

Σ3 = S3
1 ∪ L3

Σ2 = L2

Figure 2: Non-parallel networks satisfying the first three assumptions of Defi-
nition 4.1(b).

Remark 4.2.

(a) If νS = νT , then H(S, T ) = −H(T, S).

(b) Two parallel networks have the same structure and only the length of
segments and/or endpoints of half-lines may differ. The condition on
junctions in Definition 4.1 prevents the situations drawn in Figure
2.

(c) Given a network Σ and a sequence {Σ(k)} of networks parallel to Σ
the following assertions are equivalent:

9i.e. each Si
j starts from the point where Si

j−1 ends.
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(1) d(Σ,Σ(k)) → 0;

(2) each segment Si
j(k) of Σ(k) converges to the corresponding seg-

ment Si
j of Σ in the Kuratowski sense;

(3) H1(Si
j(k)) → H1(Si

j) for all i and j.

Given parallel networks Σ and Σ̄, the distance vectors of the segments
of Σ̄ from those of Σ are uniquely defined.

Proposition 4.3. Let Φ = {ϕi}ni=1 be crystalline anisotropies, Σ and Σ̄
be two parallel polygonal networks and let J and J̄ be two corresponding
segments of Σ and Σ̄. Let us write

hT := H(T̄ , T ) · νT ,

where T (resp. T̄ ) is a segment/half-line in Σ (resp. Σ̄).

(a) Let J do not end at a triple junction and let S′, S′′ be segments/half-
lines of Σ which end at the endpoints of J. Then

H1(J̄) = H1(J) + a|hJ |+ b|hS′ |+ c|hS′′ |,

where a, b, c are real numbers depending only on the angles between
S′, S and S, S′′.

(b) Let J = [AB] and B be a triple junction of J and two other segments/
half-lines S′ and S′′.

(b1) Let a segment/half-line T of Σ end at A. Then

H1(J̄) = H1(J) + ahT + bhJ + chS′ + dhS′′ , (4.1)

where a, b, c, d are real numbers, a depends only on the angle
between νT and νS , and b, c, d depend only on the angles between
J, S′, S′′.

(b2) Let A be another triple junction of J and segments/half-lines
T ′ and T ′′. Then

H1(J̄) = H1(J) + ahT ′ + bhT ′′ + chJ + dhS′ + ehS′′ , (4.2)

where a, b, c, d, e are constants depending only on the angles between
T ′, T ′′, J, and J, S′, S′′.

Proof. (a) In view of the signs of hS′ , hJ and hS′′ we have eight possible
configurations for the relative location of J̄ and J (Figure 3).
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J

J

S′
S′′

(a) hS′ , hJ , hS′′ ≥ 0 (b) hJ , hS′′ ≥ 0 ≥ hS′ (c) hJ , hS′ ≥ 0 ≥ hS′′ (d) hS′ , hS′′ ≥ 0 ≥ hJ

(e) hS′′ ≥ 0 ≥ hJ , hS′ (f) hJ ≥ 0 ≥ hS′ , hS′′ (g) hS′ ≥ 0 ≥ hJ , hS′′ (h) 0 ≥ hJ , hS′ , hS′′

Figure 3: Eight possible (schematic) configurations of J̄ and J.

A B

A B

C

D

E
F

G

hS′

hJ

hS′′

θ1 θ2
S′

S′′

J

J

α

β

S′
S′′

Figure 4: Computing the length of segment J̄ not ending at a triple junction.

For simplicity, let us compute the length of J̄ in case (g) of Figure 3,
i.e., hS′ ≥ 0 ≥ hJ , hS′′ see Figure 4. Clearly,

H1(J̄) = H1(J)−H1([AE])|+H1([GB̄]).

Let us denote the angles of Σ at A and B by θ1 and θ2; obviously, these
two angles are uniquely determined by νS′ , νJ and νJ , νS′′ , respectively.
As both the angles ∠CAD and ∠DĀE are equal to θ1 − π/2,

H1([AE]) = H1([AD]) +H1([DE])

=
hS′

cos(θ1 − π/2)
− hJ tan(θ1 − π/2) =

hS′

sin θ1
+ hJ cot θ1.

Since

H1([BB̄]) =
H1([FB̄])

cos∠FB̄B
=

H1([GB])

sin∠GBB̄
and ∠GB̄F = θ2−π/2 = α+β,

we find
− hJ
sinα

= − hS′′

cos(θ2 − π/2− α)

or equivalently,
hJ(sin θ2 cotα− cos θ2) = hS′′ .

This implies

H1([GB̄]) = −hJ cotα = − hS′′

sin θ2
− hJ cot θ2.
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Thus,

H1(J̄) = H1(J)− hS′

sin θ1
+ hJ(cot θ1 − cot θ2)−

hS′′

sin θ2
.

(b1) As in case (a) we can consider all possible relative configurations
of (S′, J, S′′) and (S̄′, J̄ , S̄′′) (more than 27 cases). For simplicity, let us
assume that we are as in Figure 5 and let

x1 := |hJ | = H1([BD]), x2 := |hS′ | = H1([B̄F ]), x3 := |hS′′ | = H1([B̄E]).

J J

A

B B

ED

G

B

F

θ1

θ2

α

β

γ
hJ

hS′′

hS′

S
′

T

S
′′

S′

S′′
B

T

Figure 5: Computing the length of the segment ending at a triple junction B
(case (b1) of Proposition 4.3).

We just need to compute H1([B̄D]). Since γ = θ1 − π/2, we have

H1([B̄D]) = H1([DG])+H1([GB̄]) = x1 tan γ+
x3

cos γ
=

x3
sin θ1

−x1 cot θ1.

Analogous computations can be done near A and Ā. Now observing that
x1 = hJ , x2 = −hS′ and x3 = −hS′′ , we deduce (4.1). Applying (b1) at
each triple point we conclude (4.2).

4.1 Cahn-Hoffman vector fields associated to a Lips-
chitz curve

Let Σ be an embedded Lipschitz curve and let ϕ be an anisotropy. We
denote by Lipϕ(Σ;R2) the set of all vector fields N ∈ Lip(Σ;R2) such that

ϕ(N) = 1 and N · νΣ = ϕo(νΣ) H1-a.e. on Σ. (4.3)

Any such vector N is called a Cahn-Hoffman vector field. Note that (4.3)
is equivalent to saying N ∈ ∂ϕo(νΣ) H1-a.e. on Σ, where ∂ϕo is the
subdifferential of ϕo. We recall that not every Lipschitz curve admits a
Cahn-Hoffman vector field. However, when it exists, we call the curve
ϕ-regular.
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4.2 Φ-regular networks
Let Σ ⊂ R2 be a network consisting of polygonal Lipschitz curves10 {Σi}ni=1

and let Φ = {ϕi}ni=1 be a set of anisotropies with ϕi associated to Σi. We
denote by LipΦ(Σ;R2) the space of all vector fields N : Σ → R2 such that
N|Σi

∈ Lipϕi
(Σi;R2). We set

NΣ :=
{
N ∈ LipΦ(Σ;R2) :

∑m
j=1(N|Σij

(q))∂Σij = 0 at the m-tuple point q
}
,

(4.4)
where N∂Σi

|Σi
is defined in (2.1) and q is endpoint of (exactly) m curves

Σij . Any element of NΣ is called a Cahn-Hoffman vector field associated
to Σ and any network admitting at least one Cahn-Hoffman vector field is
called a Φ-regular network.

The condition on junctions in (4.4) is called balance condition11.
In what follows we are mainly concerned with networks with triple

junctions, and hence, in the balance condition only three vectors appear.
Given three anisotropies ϕ1, ϕ2, ϕ3, let us call any triplet (X1, X2, X3) such
that Xi ∈ ∂Bϕi and

X1 +X2 +X3 = 0

admissible. We anticipate here that, unlike the elliptic case, the admissible
triplets at a triple junction coud be even uncountably many (see Lemma
4.13 below).

Bφ1

Bφ2

Bφ3

X

Y Z

S

Figure 6: An admissible triplet for three hexagonal anisotropies ϕ1, ϕ2, ϕ3. The
boundaries of hexagons Bϕ2 and Bϕ3 cross the boundary segments of Bϕ1 at
their midpoints. Therefore, if X ∈ S is not the midpoint, then there are no
Y ∈ ∂Bϕ2 and Z ∈ ∂Bϕ3 such that X + Y + Z = 0.

In the case of different anisotropies, showing NΣ ̸= ∅ is not trivial (see
Figure 6).

10As in the smooth case, we write Σk and ϕk in places of Σij and ϕij .
11Which is a version of Herring condition.
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Bφ

Σ = Σ1 ∪ Σ2 ∪ Σ3 ∪ Σ4

ν

τ

X1
Y1

Z1

X1
Y1

Z1

X2

Y2

Z2

Σ1

Σ2

Σ3

Σ4

Σ5

X2

Y2

Z2

Figure 7: A possible definition of Cahn-Hoffman vector field using only its values
at the vertices and at triple junctions in the case of a single anisotropy. Note
that the Cahn-Hoffman vector is uniquely defined at the vertices of Σi.

Remark 4.4. Let Φ = (ϕ1, . . . , ϕn) be crystalline anisotropies and let
Σ =

⋃n
i=1 Σi be a Φ-regular polygonal network.

• If S = [AB] is a segment of Σi and N ∈ NΣ, then N(A) − N(B)
is parallel to the tangent vector τS to S. Moreover, N(A) and N(B)
belong to the same edge of the Wulff shape Bϕi

, whose tangent is
parallel to τS . In particular, if S does not end at an m ≥ 3-tuple
junction, then any Cahn-Hoffman vector field N is uniquely defined
at the endpoints A and B of S and hence, it can be extended along
S in a Lipschitz way keeping (4.3) valid.

• If Σ contains a half-line L with endpoint at A, then N can be defined
along L constantly equal to N(A). Similarly, if Σ contains a “curved”
part12 C [11], then N can be taken constant along C.

4.3 Crystalline curvature of a Φ-regular network
The following result is an improvement of [15, Theorem 4.8] and can be
shown along the same lines.

Theorem 4.5. Let Φ = (ϕ1, . . . , ϕn) be crystalline anisotropies associ-
ated to a network Σ = (Σ1, . . . ,Σn). If Σ is Φ-regular, then the minimum
problem

min

{
n∑

i=1

∫
Σi

[
divΣN

]2
ϕoi (ν) dH1 : N ∈ NΣ

}
(4.5)

admits a unique solution13 Nmin.
12A part which is not parallel to some of the sides of the corresponding Wulff shape.
13which identifies the direction along which the length functional (2.3) decreases “most

quickly”.
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Recall that in [15, Theorem 4.8] the authors assume that all ϕi are
equal.

Definition 4.6. Let Σ be a Φ-regular network. We define the Φ-curvature
κΦ of Σ as

κΦ := divΣNmin a.e. on Σ.

Sometimes we denote the Φ-curvature by κΦΣ if we want to emphasize its
dependence on Σ.

We recall that in the two-phase case the structure of Nmin over a planar
Lipschitz ϕ-regular curve Σ giving the curvature is known. Namely, if the
curve is polygonal, then the values of Nmin are uniquely defined as the
linear interpolation of its values at the vertices. Moreover, if Σ is not
polygonal, then Nmin is constant on curved parts.

Remark 4.7. Unlike the smooth case, the crystalline curvature of a net-
work is nonlocal. Still:

(a) If a network Σ contains a segment S = [AB] not ending at an m ≥ 3-
tuple junction, then Nmin is uniquely defined at A and B and linear
along S, and hence

κΦ =
Nmin(B)−Nmin(A)

H1(S)
· τS on S, (4.6)

where τS is the tangent to the segment S.

(b) If Σ contains a half-line L, then κΦ = 0 on L. Similarly, if Σ contains
a “curved” part C, then Nmin must be constant along C and hence,
κΦ = 0 on C.

(c) As we mentioned in Remark 4.4, a Cahn-Hoffman vector field N can
be defined only by its values at the triple junctions and at the vertices
of segments of Σ (see Figure 7). Then the minimizer of (4.5) can be
searched only among all possible values of N at the triple junctions.

(d) κΦ is constant on each segment S and half-line L of Σ, and we denote
their curvatures by κΦ(S) and κΦ(L) = 0, respectively.

These observations imply the following properties of a Φ-regular net-
work.

Lemma 4.8. Let Φ = (ϕ1, . . . , ϕn) be crystalline anisotropies and let Σ :=⋃n
i=1 Σi be a Φ-regular polygonal network. Then:

(a) any network Σ′ parallel to Σ is Φ-regular;
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(b) let q1, . . . , qm be the multiple junctions of Σ, i.e., for each ql there
exist nl ≥ 3 polygonal curves containing ql at their boundaries. Let

Si1
l , . . . , S

in′
l

l with n′l ≤ nl be all segments ending at ql (hence ql
belongs to nl − n′l half-lines of Σ), where Si

l ⊂ Σi. Then (4.5) is
equivalent to the minimum problem

min
N∈NΣ

m∑
l=1

n′
l∑

j=1

ϕoij (νSij
l

)
[(N(B

ij
l )−N(A

ij
l )) · τSij

l

]2

H1(S
ij
l )

, (4.7)

where Sij
l = [A

ij
l B

ij
l ];

(c) let {Σ(k)} be a sequence of networks parallel to Σ (so that by (a) each
Σ(k) is Φ-regular) such that d(Σ(k),Σ) → 0. Let Nmin and Nmin(k)
be the solutions of (4.5) applied with Σ and Σ(k). Then

Nmin(k)|Sj
i (k)

[ζ(Sj
i (k), S

j
i , x)] → Nmin|Sj

i

[x] (4.8)

uniformly in x ∈ Sj
i , and

κΦΣ(k)(S
j
i (k)) → κΦΣ(S

j
i ) as k → +∞, (4.9)

where Si
j(k) and Si

j are corresponding parallel segments of Σ(k) and
Σ, and ζ(S, T, ·) : T → S is the linear bijection of T onto S, preserv-
ing the orientation.

Proof. (a) Let NΣ
min ∈ NΣ be the solution of (4.5) and let us define

N Σ̄ as follows: at vertices of Σ̄ and also at multiple junctions we define
N Σ̄ = NΣ

min and then we linearly interpolate them along segments/half-
lines. Then such vector field belongs to N Σ̄.

(b) Since all segments not ending at multiple junctions admit a unique
minimizing Cahn-Hoffman field, the minimum problem is reduced to only
segments ending at multiple junctions. Since κΦ is constant along all seg-
ments and κΦ = 0 on half-lines, the minimum problem (4.5) is equivalent
to (4.7).

(c) Assertion (4.8) follows from the definition of Cahn-Hoffman at the
vertices of a network, the definition of parallel networks and assertion (3)
in Remark 4.2(c). Similarly, 4.9 follows from (4.8), (4.7) and assertion (3)
in Remark 4.2(c).

Remark 4.9.

(a) The sum in (4.7) is a function of N(X) ·τS , where X is the endpoint
of the segment S at the junction. Since N(X) varies in a compact
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subset of ∂Bϕ, the problem (4.5) is the minimization of a quadratic
function of finitely many variables x := N(X) · τS (depending on
the number of junctions and their multiplicity) and subject to the
balance condition in (4.4). In particular, the unique minimizing field
can be found depending only on anisotropies, the location and length
of segments ending at the junctions.

(b) If Σ and Σ̄ are parallel Φ-regular networks having only triple junc-
tions, then Proposition 4.3 and Lemma 4.8 allow to rewrite the min-
imum problem (4.7) depending only on the distance vectors from the
segments/half-lines of Σ.

(c) Recall that by our convention, no half-line of Σ ends at a multiple
junction.

4.4 Polycrystalline curvature flow

In this section we define polycrystalline curvature flow of networks, gen-
eralizing [11]. For simplicity, we only consider networks without “curved”
parts and with only triple junctions.

Definition 4.10 (Admissible network). Given crystalline anisotropies
Φ := (ϕ1, . . . , ϕn), let us call a network Σ :=

⋃n
i=1 Σi admissible if

• Σ is Φ-regular;

• any multiple junction of Σ is a triple junction;

• each Σi consists of mi ≥ 1 segments Si
1, . . . , S

i
mi

(counted in the
increasing order of parametrization of Σi) and at most one half-line
Li; let li ∈ {0, 1} be the number of half-lines.

Bφ

Figure 8: Evolution of a network with a single anisotropy.
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Definition 4.11 (Polycrystalline curvature flow of networks). Let
Φ := (ϕ1, . . . , ϕn) be crystalline anisotropies and let Σ0 :=

⋃n
i=1 Σ

0
i be

an admissible network such that each Σ0
i consists of mi ≥ 1 segments

S0,i
1 , . . . , S0,i

mi
and li ∈ {0, 1} half-lines L0

i . Let T > 0. We call a family
Σ(t) :=

⋃n
i=1 Σi(t), t ∈ [0, T ), of admissible networks a polycrystalline

curvature flow starting from Σ0 in [0, T ) provided Σ(0) = Σ0 and:

(a) Σ(t) is parallel to Σ0, i.e.,

– each Σi(t) consists of mi segments Si
1(t), . . . , S

i
mi

(t) and li half-
lines Li(t);

– each Si
j(t) is parallel to S0,i

j and Li(t) and L0
i lie on the same

line;

(b) if
Hi

j(t) := H(Si
j(t), S

0,i
j )

is the distance vector of the segment Si
j(t) from S0,i

j , then Hi
j ∈

C1((0, T );Rνij) ∩ C0([0, T );Rνij) and
d

dt
Hi

j(t) = −ϕoi (νij)κΦ(Si
j(t))ν

i
j on (0, T ),

Hi
j(0) = 0,

where νij is the normal to S0,i
j .

(see Figure 8).

Parallelness of the flow Σ(t) to Σ0 is an important feature of the model:
later this will be used in the proof the short-time existence of polycrys-
talline curvature flow of networks (see Theorem 4.18).

Remark 4.12. The segment Si
j(t) moves in the direction of νij if and only

if κΦ(Si
j(t)) < 0.

4.5 Computation of crystalline curvature

In this section we compute the curvature of some networks in the case of
a single crystalline anisotropy, see also [11].

Recall that a triplet of vectors X,Y, Z ∈ ∂Bϕ satisfying

X + Y + Z = 0

is called admissible (see Section 4.2).
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X
S

Bφ = P4

S

X

Bφ = P6

Figure 9: Admissible triplets for square and hexagonal Wulff-shapes. Note that
P4 admits infinitely many pairs (Y,Z) with X +Y +Z = 0. However, P6 admits
a unique pair for all X.

Lemma 4.13 ([11, Lemma 2.16]). Let ϕ be any even (not necessarily
crystalline) anisotropy in R2 and let X ∈ ∂Bϕ. Then there exist two dis-
tinct vectors Y,Z ∈ ∂Bϕ such that (X,Y, Z) is admissible. Moreover, if
either Bϕ is strictly convex or any segment S ⊂ ∂Bϕ parallel to X satisfies
|S| ≤ |X|, then the pair Y,Z is unique (up to a permutation). Finally, if
∂Bϕ contains a segment S satisfying |S| > |X|, then there exist infinitely
many unordered pairs Y, Z ∈ ∂Bϕ of disctinct vectors such that (X,Y, Z)
is admissible (see Figure 9).

V1 W1

V2

W2V3

W3

V1 W1

V2

W2

W3

V3

X(V2) X(W3)

Y (W3)Z(V1)

X

YZ

X

YZ

P12 P14

W1V1

X(V3) X(W2)

X

Y V2

W2

Y (V3)

V3

W3

Z(W2)

Z

P16

Figure 10: Wulff shapes Bϕ = P12 (n = 6m), Bϕ = P14 (n = 6m − 4) and
Bϕ = P16 (n = 6m − 2) and relative regions of ranging for admissible triplets
(filled regions). We observe that the sum of the lengths of three admissible
segments in P14 and P16 is the sidelength of the polygon. Moreover, if any of
X,Y, Z belongs to the boundary of its admissible region, then at least one of
them falls on a vertex of Bϕ.

Let ϕ be a crystalline anisotropy such that Bϕ is a regular polygon with
n ≥ 6-vertices (note that n is even) and assume ϕi = ϕ for all i = 1, . . . , n.
Let us study how admissible triplets look like when one of the vectors
X,Y, Z is fixed. By Lemma 4.13 for any X (resp. Y or Z) there exists
(up to a permutation) a unique Y = Y (X) and Z = Z(X) (resp. X(Y )
and Z(Y ), X(Z) and Y (Z)) such that (X,Y, Z) is admissible. In view of
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the symmetry of Bϕ, we can explicitly compute the ranging regions for all
admissible triplets (see Figure 10).

To this aim, let us introduce the following numbers:

θn :=


2π
3 n = 6m,
2π
3 (1 + 1

n ) n = 6m− 4,
2π
3 (1− 1

n ) n = 6m− 2,

δ :=
l

2(1− cos θn)
, c̄ = − 1

2 cos θn
,

(4.10)

qy :=


0 n = 6m,

−c̄δ n = 6m− 4,

l − c̄(l − δ) n = 6m− 2,

and qz :=


l n = 6m,

c̄(l − δ) n = 6m− 4,

l + c̄δ n = 6m− 2,

(4.11)
and the segments

[a, b] :=

{
[0, l] n = 6m,

[δ, l − δ] n = 6m− 4, 6m− 2,
(4.12)

where l is the sidelength of Bϕ. Then letting

x = |V1 −X|, y = |V2 − Y |, z = |W3 − Z| (4.13)

(see Figure 10), we have

y = c̄x+ qy and z = −c̄x+ qz (4.14)

and in particular, knowing just one among x, y and z we can find the
remaining two.

4.5.1 Crystalline curvature of triods

Let Σ1,Σ2,Σ3 be three polygonal curves each consisting of one segment
Si and one half-line Li, with a single common vertex, and let Σ be the
corresponding network.

We want to compute its crystalline curvature in case Bϕ is a regular
octagon (n = 8) of sidelength l = 1. We parametrize it in such a way that
the 90◦-clockwise rotation of its external unit normal coincide with the
tangent to the boundary of Bϕ. Then the quantities above are computed
as

θ8 =
3π

4
, δ = 1− 1√

2
, c̄ =

1√
2
, qy = −

√
2− 1

2
, qz =

1

2
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and
[a, b] =

[
1− 1√

2
,
1√
2

]
.

Note that if x, y, z are as in (4.13), then by (4.14)

y =
x√
2
−

√
2− 1

2
, z = − x√

2
+

1

2
(4.15)

so that

x ∈
[
1− 1√

2
, 1√

2

]
=⇒ y ∈

[
0, 1− 1√

2

]
and z ∈

[
0, 1− 1√

2

]
.

These three segments divide each side of Bϕ into three segments and using
Figure 10 the values of admissible triplets (X,Y, Z) are (up to a rotation
of 22.5◦) as follows: For simplicity, assume that our triod is as in Figure

L1

L3

L2

S2
S1

S3

Σ = Σ1 ∪ Σ2 ∪ Σ3

ν

τ
Bφ W2

V3

V1

V1

W2V3

X

X

YZ

YZ

ν

τ

Figure 11: A triod and regions for admissible triplets.

11. In this case any Cahn-Hoffman field N is identically equal to V1 on L1,
W2 on L2 and V3 on L3. According to the figure, in the admissible triplets
(X,Y, Z), X must be taken from the “middle” region, or equivalently, x ∈
[1− 1√

2
, 1√

2
]. Let us write a ⇈ b to denote parallel vectors a and b with the

same direction. Observing (V1 −X) ⇈ τS1 ⇈ (−τBϕ
(X)) and (W2 − Y ) ⇈

τS2 ⇈ τBϕ
(Y ) and (V3−Z) ⇈ τS3 ⇈ (−τBϕ

(Z)), from the definition (4.13)
of x, y, z we get

κΦ(S1) =
V1 −X

H1(S1)
· τS1

= − x

H1(S1)
,

κΦ(S2) =
W2 − Y

H1(S2)
· τS2

=
1− y

H1(S2)
,

κΦ(S3) =
W3 − Z

H1(S3)
· τS3 = − 1− z

H1(S3)
,

where in the last two equalities 1 represents the sidelength of Bϕ, and

κΦ(Li) = 0, i = 1, 2, 3.
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Since ϕo(νS1
) = ϕo(νS3

) = ϕo(νS3
) := ϕo, the functional in (4.5) is rewrit-

ten as ∫
Σ

[divΣN ]2ϕo(νΣ) dH1 =

3∑
i=1

∫
Si

ϕo(νSi
)[κΦ(Si)]

2 dH1

=ϕo

[ x2

H1(S1)
+

(1− y)2

H1(S2)
+

(1− z)2

H1(S3)

]
.

Inserting the representations (4.15) of y and z we get

1

ϕo

∫
Σ

[divΣN ]2ϕo(νΣ) dH1 = αx2 + βx+ γ, (4.16)

where

α :=
1

H1(S1)
+

1

2H1(S2)
+

1

2H1(S3)
,

β :=
1√

2H1(S3)
−

√
2 + 1√

2H1(S2)
,

γ :=
3 + 2

√
2

4H1(S2)
+

1

4H1(S3)
.

Then the minimum problem (4.5) reduces to finding

min
x∈[1− 1√

2
, 1√

2
]
[αx2 + βx+ γ]

and the minimizer xmin satisfies

1− 1√
2
< xmin <

1√
2

(4.17)

if and only if
√
2− 1

H1(S1)
+

1√
2H1(S3)

<
1

H1(S2)
<

√
2

H1(S1)
+

√
2

H1(S3)
. (4.18)

Remark 4.14. Condition (4.17) implies that the vector field Nmin asso-
ciated to the network Σ given in Figure 11 at the triple junction belongs to
the interior of the admissible region for triplets (X,Y, Z). Thus, any slight
modification of Σ, keeping it Φ-admissible, preserves this “interiorness”
condition. We anticipate here that this condition will be used later in the
proof of short-times existence of the flow.
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Σ = Σ1 ∪ Σ2 ∪ Σ3

τ
τ

ν ν

S11

S12

S13

S14

S15

S21

S31

S32

S33

S34

S35

P Q

V1 W1

V2

W2V3

W3

X1

Y1

Z1

X1

Y1
Z1

Figure 12: Admissible regions for triplets in the hexagon and an admissible
Θ-shaped network. Curves Σj are parametrized from P to Q and ∂Bϕ is also
parametrized clockwise.

4.5.2 Crystalline curvature of theta-shaped networks

In this subsection we assume that Bϕ is a regular hexagon (n = 6) of
sidelength l = 1; let Σ be a union of two convex hexagons with sides
parallel to those of Bϕ and sharing a common side as in Figure 12. In this
case the quantities in (4.10), (4.11) and (4.12) become: [a, b] = [0, 1],

θ6 =
2π

3
, δ =

1

3
, c̄ = 1, qy = 0, qz = 1

and

y = x, z = 1− x. (4.19)

Let Σ1 and Σ3 be the broken lines consisting of five segments Sij and Σ2 :=
S21 be a segment (see Figure 12). Note that at both triple junctions we
have the 120◦-equal angles condition. As we observed above, the crystalline
curvatures of S12, S13, S14 and S32, S33, S34 are uniquely defined and equal
to

κΦ(Sij) =
1

H1(Sij)
, i = 1, 3, j = 2, 3, 4.

Let (x1, y1, z1) and (x2, y2, z2) be defined as in (4.13) at P and Q, i.e.,

xi = |V1 −Xi|, yi = xi, zi = 1− xi, i = 1, 2,
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where we used (4.19) in the definitions of yi and zi. Then

κΦ(S11) =
W3 − Z1

H1(S11)
· τS11

=
z1

H1(S11)
,

κΦ(S15) =
Y2 − V2
H1(S15)

· τS15
=

y2
H1(S15)

,

κΦ(S31) =
V2 − Y1
H1(S31)

· τS31
= − y1

H1(S31)
,

κΦ(S35) =
Z2 −W3

H1(S35)
· τS35

= − z2
H1(S35)

,

κϕ(S21) =
X2 −X1

H1(S21)
· τS21 =

X2 − V1
H1(S21)

· τS21 −
X1 − V1
H1(S21)

· τS21 =
x2 − x1
H1(S21)

.

Since all ϕo(νSij
) are equal, denoting their common value by ϕo we get

1

ϕo

∫
Σ

[divΣN ]2ϕo(νΣ) dH1 =
∑

i∈{1,3}, j∈{2,3,4}

1

H1(Sij)

+
z21

H1(S11)
+

y22
H1(S15)

+
y21

H1(S31)
+

z22
H1(S35)

+
(x1 − x2)

2

H1(S21)
.

Recalling that yi = xi and zi = 1− xi, we rewrite the last equality as

1

ϕo

∫
Σ

[divΣN ]2ϕo(νΣ) dH1 = α11x
2
1+2α12x1x2+α22x

2
2+2α1x1+2α2x2+α0,

where

α11 =
1

H1(S11)
+

1

H1(S21)
+

1

H1(S31)
,

α22 =
1

H1(S15)
+

1

H1(S21)
+

1

H1(S35)
,

α12 = − 1

H1(S21)
, α1 = − 1

H1(S11)
, α2 = − 1

H1(S35)
,

α0 =
∑

i∈{1,3}, j∈{1,2,3,4,5}

1

H1(Sij)
.

Thus the minimum problem (4.5) reduces to find

min
(x1,x2)∈[0,1]2

[
α11x

2
1 + 2α12x1x2 + α22x

2
2 + 2α1x1 + 2α2x2 + α0

]
, (4.20)

whose unique solution is

xmin
1 :=

α12α2 − α22α1

α11α22 − α2
12

, xmin
2 :=

α12α1 − α11α2

α11α22 − α2
12

,
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which satisfies (xmin
1 , xmin

2 ) ∈ (0, 1)2, i.e., the values of Nmin at both triple
junctions belong to the interior of the admissible regions for triplets (dark
regions in Figure 12).

Remark 4.15. The minimum problems (4.16) and (4.20) show that, in the
case of a single even crystalline anisotropy, if Σ is an admissible network
with n-triple junctions, then the minimum problem (4.5) is reduced to the
minimum problem

min
x1,...,xn∈[a,b]

P (x1, . . . , xn),

where
P (x1, . . . , xn) =

∑
1≤i≤j≤n

αijxixj +
∑

1≤i≤n

αixi + α0

is a quadratic polynomial of n-variables and coefficients {αij , αi} depend-
ing only on 1/H1(Sk), where Sk are segments of Σ which end at a triple
junction and αii > 0. In other words, the crystalline curvature of a network
must “see” all triple junctions. This non-locality of crystalline curvature
flow makes the problem hard, but at the same time remarkable. Note that
if the minimum (x1, . . . , xn) of P belongs to (a, b)n, then the same holds
for all sufficiently small admissible perturbations of Σ. Moreover, the min-
imum is uniquely determined only by the numbers 1/H1(Sk).

4.6 Stable admissible networks
Figure 10 and [11, Definition 2.10] encourage the following definition.

Definition 4.16. Given crystalline anisotropies Φ := (ϕ1, . . . , ϕn), a polyg-
onal admissible network Σ =

⋃n
i=1 Σi is called stable provided:

• if Q is a triple junction of curves Σi1 , Σi2 and Σi3 , then there exists
ϵ > 0 for which for any X ∈ ∂Bϕi1

with |X −Nmin|Σi1
(Q)| < ϵ there

exist Y ∈ ∂Bϕi2
and Z ∈ ∂Bϕi3

such that

|Y −Nmin|Σi2
(Q)|+ |Z −Nmin|Σi3

(Q)| < ϵ and X + Y + Z = 0;

• Nmin|Σij
(Q) is not a vertex of Bϕij

.

In other words, a network is stable if and only if the minimal Cahn-
Hoffman vector field at every triple junction lies in the interior of the
corresponding admissible regions of triplets. For instance, for the Wulff
shapes depicted in Figure 6 any network satisfying Nmin = X at a triple
junction is not stable. As we have seen in the case of a single anisotropy
ϕ, whose Wulff shape is a regular polygon, any admissible Σ is stable if
and only if at each triple junction Nmin is not a vertex of Bϕ (see Figure
10). In particular, the theta-shaped network in Figure 12 and the triod in
Figure 11 (provided (4.18) holds) are stable.
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Σ1

Σ2

Σ3

S1

S2

S3 Σ1(t)

Σ2(t)

Σ3(t)

S1(t)

S2(t)

S3(t)

Γ

X

Y

Z

X

Y

Z

Figure 13: Appearance of a Φ-zero curvature curve in an unstable network. No-
tice that in this situation S2 has zero crystalline curvature, but S1 and S3 have
non-zero crystalline curvature, therefore, in the evolution they move, whereas S2

does not move. Thus, to continue the motion, the network creates a “curved”
part, which does not fall within our simplified definition of polycrystalline cur-
vature flow.

Remark 4.17. For any admissible Σ :=
⋃n

i=1 Σi let

δΣ := min |NΣ
min|Σi

(Q)−N|Σi
(Q)|, (4.21)

where the minimum is taken over all triple junctions Q and all Cahn-
Hoffman vector fields N ∈ NΣ such that at least one N|Σi

(Q) belongs
to the boundary of the admissible region or to a vertex of Bϕi . Then Σ
is stable if and only if δΣ > 0. Therefore, in view of Lemma 4.8, as we
have observed above in the octagon and hexagon examples, a slight (still
admissible) perturbation of a stable network is again stable. An interesting
phenomena may occur in the unstable (i.e. in the not stable) case: in this
case a slight perturbation of the network either becomes stable or a new zero
Φ-curvature curve/segment may start to grow from the triple junction. A
discussion on such phenomena can be found in [11] for a single anisotropy.

Theorem 4.18 (Local existence and uniqueness). Let Φ := {ϕi}3i=1

be crystalline anisotropies and Σ0 := ∪3
i=1Σ

0
i be a stable polygonal network

having a single triple junction, where each Σ0
i consists of a single segment

Si and a half-line Li, oriented starting from the triple junction. Then
there exist T > 0 and a unique polycrystalline curvature flow {Σ(t)}t∈[0,T ]

of admissible stable networks starting from Σ0.

Proof. Let Si (resp. Li), i = 1, 2, 3, be the segments (resp. half-lines)
forming a triple junction, oriented from the triple junction, and let θi be
the angle between Sj and Sk, i ̸= j ̸= k ̸= i, so that

cos θi = τSj
· τSk

, θ1 + θ2 + θ3 = 2π. (4.22)

Let us denote by γi ∈ (0, π) the angle between Si and Li at their junction.
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Step 1. Given ρ > 0, let Gρ be the collection of all admissible networks
Σ parallel to Σ0 such that d(Σ,Σ0) ≤ ρ. Let us show that there exists
ρ0 > 0 depending only on Σ0 such that any network Σ ∈ Gρ0

is stable.
For ρ > 0 and Σ ∈ Gρ, let δΣ ≥ 0 be given by (4.21). Since Σ0 is stable,

we have δΣ0 > 0. Assume that there exists a sequence {Σ(k)} of unstable
networks parallel to Σ0 such that d(Σ(k),Σ0) < 1/k for any k ≥ 1. Then
for i = 1, 2, 3, by (4.8)

N
Σ(k)
min |Si(k)

(
ζ(Si(k), Si, x)

)
→ NΣ0

min|Si
(x)

uniformly in x ∈ Si, where ζ(Si(k), Si, ·) : Si → Si(k) is a linear bijection of
Si to the corresponding parallel segment Si(k) ⊂ Σ(k). Thus, 0 = δΣ(k) ≥
δΣ0/2 > 0 for all large k, a contradiction.

Step 2. Let T1, T2, T3 (resp. T̄1, T̄2, T̄3) be segments, forming a triple
junction and oriented from the triple junction, such that Ti||T̄i for i =
1, 2, 3. If

hi := H(T̄i, Ti) · νTi , i = 1, 2, 3,

then
h1 sinω1 + h2 sinω2 + h3 sinω3 = 0, (4.23)

where ωi is the angle between Tj and Tk, i ̸= j ̸= k ̸= i.
Assume that we are as in the situation of Figure 14, i.e., h3 ≥ 0 ≥ h1, h2

and let xi = |hi| for i = 1, 2, 3.

T1

T2

T3

x1 x2

x3

ω1

ω3

ω2

A

B

CD
E

F

π − ω1
π − ω1

π − ω3

Figure 14: Expressing x3 with x1 and x2.

Then
H1([AC]) =

x3
sin(π − ω1)

=
x3

sinω1
.

On the other hand, since

H1([AC]) =H1([AB]) +H1([DE]) +H1([EF ])

=− x2
tanω1

+
x1

sinω3
− x2

tanω3
=

x1
sinω3

− x2 sin(ω1 + ω3)

sinω1 sinω3
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and ω1 + ω2 + ω3 = 2π, we have

x3
sinω1

=
x1

sinω3
+

x2 sinω2

sinω1 sinω3

and (4.23) follows. The proof in the other cases is similar.
Step 3. Let h1, h2, h3 be real numbers such that |hi| ≤ ρ0 and

3∑
i=1

hi sin θi = 0. (4.24)

Then there exists a unique Σ ∈ Gρ0
such that

hi = Hi(Si, S
0
i ) · νS0

i
, i = 1, 2, 3.

Indeed, using h1 and h2 we can construct a unique network Σ parallel to
Σ0 and hi = Hi(Si, S

0
i ) · νS0

i
for i = 1, 2. Let h′3 := H(S3, S

0
3) · νS0

3
. By

Step 2 we know

h1 sin θ1 + h2 sin θ2 + h′3 sin θ3 = 0.

Then (4.24) implies h3 = h′3 and hence, Σ ∈ Gρ0 .
Step 4. Let us study some properties of the minimizing Cahn-Hoffman

vector field N⋆ := NΣ
min of Σ ∈ Gρ0

.
By Remark 4.7 N⋆ is uniquely defined at the endpoints of each Li,

and coincides with N0
⋆ := NΣ0

min. Thus, we only need to care at the triple
junction of S1, S2, S3. Writing Si := [A0Ai] and using Lemma 4.8 (b) we
find that N⋆ minimizes the functional

FΣ(N) :=

3∑
i=1

ϕoi (νSi
)

H1(Si)

∣∣∣[N|Si
(Ai)−N|Si

(A0)] · τSi

∣∣∣2, N ∈ NΣ,

where ϕi is the anisotropy corresponding to Σi. Since Ai is the endpoint of
the half-line Li, as we observed above N(Ai) = N⋆(Ai) = N0

⋆ (A
0
i ), where

we set S0
i := [A0

0A
0
i ]. Thus, recalling νSi

= νS0
i

and τSi
= τS0

i
, we get

FΣ(N) :=

3∑
i=1

ϕoi (νS0
i
)

H1(Si)

∣∣∣ai − xi

∣∣∣2, (4.25)

where

ai := [N0
⋆ |S0

i

(A0
i )−N0

⋆ |S0
i

(A0)] · τS0
i
= κΦ(S0

i )H1(S0
i )

and
xi := [N|Si

(A0)−N0
⋆ |S0

i

(A0
0)] · τS0

i
.
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By the choice of ρ0 and the stability of Σ, we may consider only those
N ∈ NΣ such that N|Si

(A0) and N0
⋆ |S0

i

(A0
0) lie in the same side of the

Wulff shape Bϕki
, parallel to τS0

i
, and therefore

N|Si
(A0) = N0

⋆ |S0
i

(A0
0) + xiτS0

i
.

Now by the balance condition at A0 we get

3∑
i=1

xiτS0
i
= 0,

or equivalently, by (4.22)

xi = −xj cos θk − xk cos θj , i ̸= j ̸= k ̸= i.

These equalities immediately imply
x1

sin θ1
=

x2
sin θ2

=
x3

sin θ3
.

Therefore, we have only one independent variable, i.e., as in the case of a
single crystalline anisotropy, knowing only one value of N|Si

we uniquely
determine the admissible triplet. Letting

x2 = x1
sin θ2
sin θ1

and x3 = x1
sin θ3
sin θ1

, (4.26)

we can rewrite FΣ(N) in (4.25) as a quadratic function of x1 :

FΣ(N) = α2x
2
1 + α1x1 + α0 := f(x1),

where

α2 =
1

sin2 θ1

3∑
i=1

ϕoi (νS0
i
) sin2 θi

H1(Si)
,

α1 =− 2

sin θ1

3∑
i=1

ϕoi (νS0
i
)κΦ(S0

i )
H1(S0

i ) sin θi
H1(Si)

,

α0 =

3∑
i=1

ϕoi (νS0
i
)

H1(Si)
[κΦ(S0

i )H1(S0
i )]

2.

Since FΣ has a unique minimizer N = N⋆ and Σ is stable, f has a
unique minimizer x⋆1 := − α1

2α0
. Thus, uniquely defining x⋆2 and x⋆3 using

the relations (4.26), we get

N⋆|Si
(A0) = N0

⋆ |S0
i

(A0
0) + x⋆i τS0

i
.
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Therefore, by the definition of the crystalline curvature,

κΦ(Si) =
[N⋆|Si

(Ai)−N⋆|Si
(A0)] · τS0

i

H1(Si)
=

H1(S0
i )κ

Φ(S0
i )− x⋆i

H1(Si)
. (4.27)

By uniqueness, N⋆ = N0
⋆ if Σ = Σ0, and thus, in this case we should have

x⋆i = 0. Then by the explicit expression of x⋆1 we get

3∑
i=1

ϕoi (νS0
i
)κΦ(S0

i ) sin θi = 0. (4.28)

Note that this condition on curvatures is analogous to the smooth case
(3.8).

Similarly, slightly perturbing Σ and repeating the same arguments
above we find that (4.28) holds also with Σ in place of Σ0, i.e., any ad-
missible stable network Σ, parallel to Σ0, satisfies this curvature-balance
condition. This condition will be important in the sequel.

Step 5. By Proposition 4.3 we can compute

H1(Si) = H1(S0
i ) + gi(h1, h2, h3)

for some positively one-homogeneous Lipschitz function gi. Inserting this
in (4.27) we get

κΦ(Si) = κΦ(S0
i ) +Gi(h1, h2, h3),

where Gi is a Lipschitz function, satisfying Gi(0, 0, 0) = 0.
Step 6. Given T > 0, let ST be the space of all triplets h := (h1, h2, h3)

of functions hi ∈ C([0, T ]) satisfying

h1(t) sin θ1 + h2(t) sin θ2 + h3(t) sin θ3 = 0, i ∈ [0, T ], (4.29)

and
hi(0) = 0, max

i
∥hi∥∞ ≤ ρ0. (4.30)

Consider the map Fh = (F 1
h , F

2
h , F

3
h ), where

F i
h(t) := ϕoi (νS0

i
)

∫ t

0

(
κΦ(S0

i ) +Gi(h1(s), h2(s), h3(s))
)
ds, t ∈ [0, T ].

We claim that Fh has a fixed point in ST provided that

T ≤ ρ0

1 + maxi

(
∥ϕoi ∥∞[|κΦ(Si)|+ 3ℓiρ0]

) ,
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where ℓi > 0 is the Lipschitz constant of Gi. Indeed, note that ST is convex
and closed. Let us show that Fh ∈ ST for any h ∈ ST . Clearly, Fh(0) = 0.
By the definition of Gi,

|Gi(h1, h2, h3)| ≤ ℓi(|h1|+ |h2|+ |h3|) ≤ 3ℓiρ0.

Therefore, by the choice of T,

∥F i
h∥∞ ≤ ∥ϕoi ∥∞(|κΦ(Si)|+ 3ℓiρ0)T < ρ0.

Next we show

3∑
i=1

F i
h(t) sin θi = 0 for any t ∈ [0, T ]. (4.31)

By assumptions (4.29)-(4.30) and Step 3, for each s ∈ [0, T ] there exists a
unique network Σ(s) ∈ Gρ0 satisfying hi(s) = Hi(Si(s), S

0
i ) · νS0

i
. Then by

Step 5 its curvature is given by

κΦ(Si(s)) = κΦ(S0
i ) +Gi(h1(s), h2(s), h3(s)) (4.32)

and by Step 4, it satisfies the curvature-balance condition

3∑
i=1

ϕoi (νS0
i
)κΦ(Si(s)) sin θi = 0.

From this and (4.32) we deduce

3∑
i=1

ϕoi (S
0
i )[κ

Φ(S0
i ) +Gi(h1(s), h2(s), h3(s))] sin θi = 0, s ∈ [0, T ],

and hence integrating this equality we obtain (4.31).
Next let us prove that the set {Fh}h∈ST

is compact in (C([0, T ]))3.
Indeed, by the choice of T, this set is bounded in (C([0, T ]))3. Moreover,
as we have seen above

∥[F i
h]

′∥∞ ≤ |κΦ(S0
i )|+ 3ℓiρ0.

Thus, {Fh}h∈ST
is also equicontinuous in (C[0, T ])3. Therefore, by the

Arzela-Ascoli theorem, it is compact. Now the Schauder fixed point the-
orem implies the existence of h̄ ∈ ST such that Fh̄ = h̄. A bootstrap
argument shows that h̄ ∈ C1([0, T ]) and hence, h̄′ = F ′

h̄
, i.e.,

h̄′i(t) = ϕoi (S
0
i )
(
κΦ(S0

i ) +Gi(h̄1(t), h̄2(t), h̄3(t)
)
, i = 1, 2, 3.
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As we observed earlier, the right-hand side of this equality is the (multiple
of the) crystalline curvature of the unique network Σ̄(t) ∈ Gρ0

such that

h̄i(t) = Hi(S̄i(t), S
0
i ) · νS0

i
, t ∈ [0, T ].

In particular, by Step 1 each Σ̄(t) is stable. Since hi(0) = 0, we have
Σ̄(0) = Σ0, and therefore {Σ̄(·)} is the crystalline curvature flow of stable
networks starting from Σ0 (in the sense of Definition 4.11).

Finally, let us show the uniqueness of the flow. Let {Σ̄(·)} and {Σ̂(·)}
be two different flows in [0, T ] starting from Σ0, and let h̄ := (h̄1, h̄2, h̄3)

and ĥ := (ĥ1, ĥ2, ĥ3) be the corresponding signed distances. Since both
solve the same ODE of Definition 4.11, we have

h̄ = Fh̄ and ĥ = Fĥ.

Thus, by the Lipschitzianity of Gi we get

|h̄(t)− ĥ(t)| ≤ max
i
ℓi∥ϕoi ∥∞∥h̄− ĥ∥∞T for any t ∈ [0, T ].

Thus, by the choice of T, we get

∥h̄− ĥ∥∞ ≤ max
i
ℓi∥ϕoi ∥∞∥h̄− ĥ∥∞T < ∥h̄− ĥ∥∞,

a contradiction.

A Appendix
In this appendix we prove two lemmas used in the proof of Theorem 3.9.

Lemma A.1 (Hölder continuity of the composition). Let Ω ⊂ Rn

be a bounded open set, ρ ∈ (0, 1] and let G ∈ C1+ρ(Ω). Then

[G(b1)−G(b2)]ρ′ ≤ ∥∇G∥∞[b1 − b2]ρ′

+ [∇G]ρ max{[b1]ρ, [b2]ρ′}∥b1 − b2∥ρ∞ (A.1)

for any b1, b2 ∈ Cρ′
([0, 1]; Ω) with ρ′ ∈ (0, ρ], where [·]ρ is the Hölder

seminorm.

Proof. First we assume that n = 1 and Ω is a bounded interval of R. Then
for any b1, b2 ∈ Cρ′

([0, 1]; Ω) and x, y ∈ [0, 1], x ̸= y, we have

G(b1(x))−G(b2(x))−G(b1(y)) +G(b2(y))

=

∫ b1(x)

b1(y)

G′(t)dt−
∫ b2(x)

b2(y)

G′(t)dt. (A.2)
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Since ∫ b

a

G′(t)dt = (b− a)

∫ 1

0

G′(a+ t(b− a))dt,

we can rewrite (A.2) as

G(b1(x))−G(b2(x))−G(b1(y)) +G(b2(y)) =

(b1(x)− b1(y))
∫ 1

0

[
G′(b1(y) + t[b1(x)− b1(y)])−G′(b2(y) + t[b2(x)− b2(y)])

]
dt

+(b1(x)− b1(y)− b2(x) + b2(y))
∫ 1

0
G′(b1(y) + t[b1(x)− b1(y)])dt.

Hence, using G′ ∈ Cρ(Ω) we get

|G(b1(x))−G(b2(x))−G(b1(y)) +G(b2(y))|
|x− y|ρ′ ≤

[b1]ρ′ [G′]ρ
∫ 1

0

∣∣∣(1− t)|b1(y)− b2(y)|+ t|b1(x)− b1(y)|
∣∣∣ρdt+ [b1 − b2]ρ′∥G′∥∞.

Therefore,

[G(b1)−G(b2)]ρ′ ≤ ∥G′∥∞[b1 − b2]ρ′ + [G′]ρ max{[b1]ρ′ , [b2]ρ′} ∥b1 − b2∥ρ∞.
(A.3)

Now consider the case n > 1 and let bi = (b1i , . . . , b
n
i ). Then by the

triangle inequality we have

[G(b1)−G(b2)]ρ′ ≤[G(b11, b
1
2 . . . , b

n
1 )−G(b12, b

1
1 . . . , b

n
1 )]ρ′ + . . .

+ [G(b12, . . . , b
n−1
2 , bn1 )−G(b12, . . . , b

n−1
2 , bn2 )]ρ′ .

By (A.3)

[G(· · · , bi1, · · · )−G(· · · , bi2, · · · )]ρ′

≤
n∑

i=1

∥∇iG∥∞[bi1 − bi2]ρ′ + [∇iG]ρ max{[bi1]ρ′ , [bi2]ρ′}∥bi1 − bi2∥ρ∞,

where the corresponding variables in place of · · · in G(· · · , bi1, · · · ) and
G(· · · , bi2, · · · ) are the same and ∇if := ∂f

∂xi
. Therefore,

[G(b1)−G(b2)]ρ′

≤ ∥∇G∥∞
n∑

i=1

[bi1 − bi2]ρ′ + [∇G]ρ
n∑

i=1

max{[bi1]ρ′ , [bi2]ρ′}∥bi1 − bi2∥ρ∞

and (A.1) follows.
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Lemma A.2. Let ψ be a C2+α-function defined in a tubular neighborhood
of the unit circle S1 ⊂ R2 such that

0 < m ≤ min
ν∈S1

ψ(ν) ≤ max
ν∈S1

ψ(ν) ≤ 1

m

for some m ∈ (0, 1]. For T > 0 and m1,m2 > 0, let XT,m1,m2
be the subset

of all v ∈ C
α
2 ,α

T such that

min
t∈[0,T ],x∈[0,1]

|v(t, x)| ≥ m1 and ∥v∥
C

α
2

,α

T

≤ m2.

For v ∈ XT,m1,m2 define

a(v) := |v|−2ψ
( v
|v|
)
.

Then for any v′, v′′ ∈ XT,m1,m2

∥a(v′)− a(v′′)∥∞ ≤ L ∥v′ − v′′∥∞,
[a(v′)− a(v′′)]α,x ≤ L

[
∥v′ − v′′∥∞ + [v′ − v′′]α,x

]
, (A.4)

[a(v′)− a1(v
′′)]α/2,t ≤ L

[
∥v′ − v′′∥∞ + [v′ − v′′]α/2,t

]
, (A.5)

and

∥a(v′)∥
C

α, α
2

T

≤ L, (A.6)

where L depends (continuously) only on m1, m2, ∥ψ∥∞, ∥∇ψ∥∞ and
∥∇2ψ∥∞.

In the proof of Theorem 3.9 we apply this lemma with functions whose
space-derivative vx belongs to XT,δ/2,M and ψ = βj .

Proof. Note that ξ ∈ R2 7→ |ξ|−n, n ∈ N, is Lipschitz continuous in {|ξ| ≥
m1}. Indeed,

∣∣|ξ1|−n − |ξ2|−n
∣∣ ≤ |ξ1 − ξ2|

|ξ1|n|ξ2|n
n−1∑
i=0

|ξ1|i|ξ2|n−1−i

≤n|ξ1 − ξ2|
|ξ1|n|ξ2|n

max{|ξ1|n−1, |ξ2|n−1}

≤ n|ξ1 − ξ2|
min{|ξ1|n, |ξ2|n}max{|ξ1|, |ξ2|}

so that ∣∣|ξ1|−n − |ξ2|−n
∣∣ ≤ n

mn+1
1

|ξ1 − ξ2|.
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Similarly, the map ξ 7→ ξ
|ξ| is Lipschitz in {|ξ| ≥ m1} :

∣∣∣ ξ1|ξ1|
− ξ2

|ξ2|
∣∣∣ ≤|ξ1 − ξ2|

|ξ1|
+

∣∣|ξ1| − |ξ2|
∣∣

|ξ1|
≤ 2|ξ1 − ξ2|

|ξ1|

so that ∣∣∣ ξ1|ξ1|
− ξ2

|ξ2|
∣∣∣ ≤ 2

m1
|ξ1 − ξ2|.

Let
E := {m1 ≤ |ξ| ≤ m2}

and let us estimate ∥a∥∞ and [a]α in E. Obviously,

∥a∥∞ ≤ ∥ψ∥∞
m1

and

|a(ξ′)− a(ξ′′)| ≤
∣∣|ξ′|−2 − |ξ′′|−2

∣∣ψ( ξ′

|ξ′|
)
+ |ξ′′|−2

[
ψ
(

ξ′

|ξ′|
)
− ψ

(
ξ′′

|ξ′′|
)]

≤2∥ψ∥∞
m3

1

|ξ′ − ξ′′|+ 2∥∇ψ∥∞
m3

1

|ξ′ − ξ′′|

=
2∥ψ∥∞ + 2∥∇ψ∥∞

m3
1

|ξ′ − ξ′′|

so that

∥a(v′)− a(v′′)∥∞ ≤ 2∥ψ∥∞ + 2∥∇ψ∥∞
m1

∥v′ − v′′∥∞.

Moreover, since ψ is C2+α in a tubular neighborhood of S1, the function

∇a(ξ) = |ξ|−5
[
∇ψ(ξ/|ξ|) · ξc

]
ξc − 4|ξ|−4ψ(ξ/|ξ|)ξ

is Lipschitz, where ξc = (ξ2, ξ1) ∈ R2. Its Lipschitz constant does not
exceed

L1 :=
5∥∇ψ∥∞ + 2∥∇2ψ∥∞

m6
1

m2
2 +

16∥ψ∥∞ + 10∥∇ψ∥∞
m5

1

m2 +
4∥ψ∥∞
m4

1

.

Now by Lemma A.1 applied with a, ρ = 1 and ρ′ = α and ρ′ = α/2 we get

[a(v′)− a(v′′)]α,x ≤ ∥a∥∞[v′ − v′′]α,x

+ ∥∇a∥∞ max{[v′]α,x, [v′′]α,x}∥v′ − v′′∥∞
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and

[a(v′)− a(v′′)]α/2,t ≤ ∥a∥∞[v′ − v′′]α/2,t

+ ∥∇a∥∞ max{[v′]α/2,t, [v′′]α/2,t}∥v′ − v′′∥∞,

and hence, estimates (A.4)-(A.5) follow with

L := max
{
∥ψ∥∞/m1, L1

}
.

The proof of (A.6) is similar.
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