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Abstract. Inspired by the recent work of Bertini and Posta [5], who
introduced the boundary driven Brownian gas on [0, 1], we study bound-
ary driven systems of independent particles in a general setting, including
particles jumping on finite graphs and diffusion processes on bounded do-
mains in RY. We prove duality with a dual process that is absorbed at
the boundaries, thereby creating a general framework that unifies duali-
ties for boundary driven systems in the discrete and continuum setting.
We use duality first to show that from any initial condition the systems
evolve to the unique invariant measure, which is a Poisson point process
with intensity the solution of a Dirichlet problem. Second, we show how
the boundary driven Brownian gas arises as the diffusive scaling limit of a
system of independent random walks coupled to reservoirs with properly
rescaled intensity.
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1 Introduction

With great admiration, we dedicate this article to
Errico Presutti on the occasion of his 80th birthday.

1.1 Background and motivation

Boundary driven systems are important in the study of non-equilibrium
steady states [4, 12, 24]. In the context of interacting particle systems on
finite graphs, boundary driving means that one adds “external reservoirs”
from which particles can enter and leave the system. Only some vertices
of the graph are in contact with the external reservoirs. We call these
“boundary sites” and all the remaining vertices “bulk sites”. Particles can
then enter and leave the system only through the boundary sites. This
mechanism is usually modeled via birth and death processes. Birth and
death rates are chosen in a manner adapted to the system, i.e. in such a
way to mimic the jump rates in the bulk. This implies that the stationary
measure of each reservoir is a marginal of the stationary measure of the
entire system. The simplest setting is a one-dimensional finite chain, with
two reservoirs, one at the left end and the other at the right end of the
chain. The usual objects of study in this context are the stationary dis-
tribution of such non-equilibrium systems and its macroscopic properties
(e.g. the density profile, the current and their large deviations).

In the discrete setting of finite graphs, boundary driven systems of
independent particles (and more generally zero-range processes) have a
special status, because the non-equilibrium steady states are inhomoge-
neous product measures, in the case of independent particles product of
Poisson distributions. For one dimensional systems, the parameters of
these product measures then interpolate linearly between the densities Aj,
and Ar of the left reservoir and right reservoir (see e.g. Section 4.2.3
of [7]). For a class of particle systems (including independent particles),
one has the property of duality [11], which allows to express the n-point
time-dependent correlation functions in terms of the evolution of n (dual)
particles. In the discrete setting, these dual particles evolve on a larger sys-
tem, where absorbing extra sites have been added, representing the action
of reservoirs of the original system. Duality has been an essential tool to
study detailed properties of different boundary driven systems such as the
so-called KMP model (see [21]) and the Exclusion process (see e.g. [13],
[15], [17], [18]). See [7] for an account of dualities in the discrete boundary
driven setting. Given the broad applicability of duality there is the need
to extend it to continuum systems.

In [14] the authors started the study of self-duality beyond the discrete
setting, i.e., self-duality of general independent Markov processes evolving
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as point configurations, which is the analogue of particle configurations
in the discrete setting. There, self-duality turned out to be a general
property of the evolution of the n-th factorial moment measure, which
can be expressed via the evolution of n (dual) particles. The authors of
[14] considered the setting of closed systems with a conserved number of
particles. The goal of our paper will be to initiate the analysis of duality
for boundary-driven systems in the continuum, starting from the case of
independent particles. We believe that the framework we build here can
be used as well for boundary driven interacting particle systems in the
continuum, but we leave this for future research.

To achieve our goal, a proper definition of the action of reservoirs in the
continuum has to be considered. In the interval [0, 1], the naive idea would
be to study a system of independent Brownian motions that are absorbed
at the boundaries 0 and 1, with additional creation of particles at 0 and
1. However, as was noticed in [5], this approach does not work, because
in the continuum particles put at the boundary would immediately leave
via that same boundary. Therefore, the problem of modeling reservoirs
in the continuum is more involved than in the discrete setting. In [5] the
boundary-driven Brownian gas on [0, 1] has been defined as the sum of two
independent processes: one process modeling the evolution of the parti-
cles initially present in the system and moving as independent Brownian
motions absorbed at 0 and at 1; and another Poisson point process adding
particles on (0,1) with well-chosen intensity. The creation of particles
no longer takes place at the boundaries only, rather particles are created
everywhere in (0, 1) with an intensity that guarantees the prescribed den-
sities of the reservoirs. The authors in [5] then proceed by proving that
this process is Markov.

One of the main aims in this paper is to establish in the setting of
the boundary driven Brownian gas, the kind of duality results proved in
[7, 15] for discrete boundary driven systems. To do this, we use the set-
up introduced in [14] for closed systems in the continuum and extend it
to the boundary driven Brownian gas. In particular we show that the
time-dependent n-th factorial moment measures of this system can be
written in terms of n dual Brownians, absorbed at the boundaries. Next,
a second aim is to generalize this duality to the abstract setting of general
boundary driven systems of independent particles in the continuum. For
this we will need to generalize the construction of Bertini and Posta [5] first
to systems of independent diffusion processes evolving on regular domain
D C R? and second to systems of general independent Markov processes
which are allowed to jump and which thus can leave © without hitting its
boundary. As a by-product of such general construction and our duality
relations two results will follow. We shall prove that in the discrete setting
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of a one-dimensional chain, modelling the reservoirs as: i) birth and death
processes at the boundaries or ii) by a Poissonian addition of particles
everywhere, are indeed equivalent processes. Furthermore the boundary
driven Brownian gas (in the continuum) arises as the diffusive scaling limit
of the model with birth and death processes (in the discrete) when the
intensities are also scaled with the system size.

1.2 Duality results for independent random walks

For the reader’s convenience we recall the standard dualities of indepen-
dent particles in the discrete setting, both in the case of closed and open
systems.

1.2.1 Closed systems

Let us consider a system of simple independent random walks, namely the
Markov process {n:, t > 0} with n = {n:(2)} ez € NZ* where

n¢(x) == number of particles at  at time ¢t >0

whose generator acts on bounded and local functions f : NZ* 5 R as

LA = 3 @)+ 5.—5,)~ 7)) -
lz—yll=1 :

+n(y)(f(n+0y = dz) = f()]-
Here the sum is restricted to nearest neighbour sites and n+6, —J, denotes
the configuration where a particle has been moved from x to y in the

configuration . We then have that {n;, ¢ > 0} is self-dual with self-duality
function given by

D) = [ dé@), n(x)) (1.2)

zEZ

for &, n e NZ* with single-site self-duality function given by

If we denote by E%RW the expectation w.r.t. the law of the process evolving

according to the generator given in (1.1) and starting from 7 € NZd, the
self-duality relation is then expressed in the following way: for any 7, £ €
NZ* and for any t > 0,

E¢Y [D (& m)] = By (D E m)]. (1.4)
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The self-duality functions given in (1.2), that we refer to as classical self-
dualities are products of falling factorial polynomials and they have been
used to prove the hydrodynamic limit (see [11]). More recently they have
been generalized to the context of systems of independent particles evolv-
ing in the continuum (e.g., R%, and more generally in Borel spaces) in
[14].

1.2.2 Open systems

Let us further consider a system of simple independent random walks on a
finite chain Viy := {1,..., N} where the boundary points {1, N} are in con-
tact with reservoirs with intensity parameters Ap, Ag € (0,00). Namely,
we consider the Markov process {(;, ¢ > 0} with state space N~ and
whose generator acts on functions f : NY¥ — R as

Lresf(C) = Lbulkf(C) + Lleftf(C) + Lrightf(<)7 (15)

where Ly denotes the generator of continuous-time symmetric inde-

pendent random walkers jumping with rate % over the edges (4,7 + 1),
i€ {l,...,N—1} and where Lief, Lyight denote the boundary generators,

modelling the contact with the reservoirs, which are given by

Liegs f(€) = C(L)[f(C = 01) = f(O] + AL[f(C+61) — f(Q)]

and

Lyignt f(¢) = C(N)[f(C — n) — (O] + Ar[f(C+0n) — f(Q)]-

These generators describe the exit and entrance of particles via the reser-
voirs at left and right boundaries of the chain. Each particle can leave the
system through the right or left end at rate 1, and at rate A\j, (resp. Ag)
particles enter the system at the left (resp. right) end. In the following we
shall call the process (; the “reservoir process with parameters A, Ar”.

In [7] the authors proved that the reservoir process with parameters
AL, AR is dual to a system of independent random walkers on the lattice
{0,..., N+ 1} with absorbing boundaries. In the dual process the absorb-
ing sites 0 and N + 1 replace the reservoirs of the original process. With
abuse of notation we shall use, for the dual process, the name {&;, t > 0}
as in the previous paragraph, although now, in the boundary-driven con-
text, the dual has absorbing boundary sites. The duality function DA:*=
can be written as

DA (e, ) = OV pele,¢), (1.6)
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where ¢ € N{O-N+1} ¢ e N{1-»N} and De(., ) is given in (1.2) but now
the product is over Vi and not over Z¢, namely

N

D& ¢) = [ [ d(&(i), (@)

i=1

n!

with d(k,n) = Tt Le<n- Let us denote by E* the expectation in

the reservoir process with parameters Ay, Ap starting from ¢ € Nil-N},

Moreover we denote by Egbs the expectation in the dual process starting

from an initial configuration & € N{%-N+1} Then we have the following
duality result: for any ¢ € NV, £ € N{O--N+1} and ¢ >0

]Ezes [D)\L’/\R(&Ct)} _ E?bs [D/\L’AR(EmC)] (17)

or equivalently
]Ezes |:/\i(0)/\%N+1)DC1(§, Ct):| — Egbs [)\%(0)/\%t(N-‘rl)l)cl(gt7 <)1| ) (18)

The main aim of this paper is to extend the above duality result to general
systems of boundary-driven independent particles. The random walk dy-
namics of each particle will be replaced by a generic Markov process. As
a consequence we shall consider boundary driven systems of independent
particles evolving not necessarily on the lattice, rather on generic regular
domains ® C R%, d > 1.

1.3 Outline

The rest of our paper is organized as follows. In Section 2 we introduce
basic notations. As a preliminary step, in Section 3 we present duality
results for closed systems of independent particles in the continuum. First
we recall a self-duality result from [14]. Second, we prove a duality result,
where the dual system is deterministic and follows the backward Kolmoro-
gov equation associated to the single particle; we then use this duality
result to provide a simple proof of Doob’s theorem. Section 4 contains
the main result of this paper regarding boundary driven systems. We start
by recalling the definition of the boundary driven Brownian gas on [0, 1],
introduced in [5]. We then generalize this construction to general indepen-
dent diffusion processes moving on regular domains ® C R and finally
to general independent Markov processes which can make jumps and thus
can exit ® without hitting its boundary. For those systems we formulate,
with increasing generality, the duality results in Theorems 4.1, 4.2 and 4.6,
and in particular we use Theorem 4.2 to characterize the unique invariant
measure of the systems. In Section 5, we use the duality result to show
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that the boundary-driven Brownian gas introduced in [5] is the scaling
limit of the reservoir process of independent random walks with generator
(1.5). Namely, we prove that the latter equals in distribution the ‘bound-
ary driven random walk gas’ and that, when the parameters are scaled as
AL/N, Ar/N, it converges on the diffusive scale to the boundary driven
Brownian gas with parameters A, Ag. Finally, in Section 6, orthogonal
dualities are treated, extending to the continuum results from [15].

Acknowledgements. S. Floreani acknowledges financial support from
Netherlands Organisation for Scientific Research (NWO) through grant
TOP1.17.019.

2 Setting and notations

We will work in the context of independent particles moving in a state
space F, which is assumed to be a Polish space, equipped with its Borel
o-algebra &. In the relevant examples, £ = R¢, or E is a closed subset
of R® with regular boundary, or in the discrete setting E = Z% or a finite
graph. However, for the general duality results which we state here, there
is no need to restrict to the finite dimensional setting.

2.1 Labeled independent particles

A single particle is moving as a Markov process {X; : ¢ > 0} on E.
A finite number of (labeled) independent particles is the process Z; =
(X:(1),...,X¢(N)) arising from joining N € N independent copies of
{X:¢ : t > 0}, possibly starting from different initial locations Xy(i) =
x; € E. We denote by E,, . ;. the expectation of {Z3,¢ > 0} starting
from (z1,...,2N), by St the semigroup of the Markov process { X; : ¢ > 0},
defined via S, f(z) = E,f(X,), and by SEN the associated semigroup of
N independent copies of {X; : ¢ > 0}. By independence we have

N

N
S?NHfl(‘rl) = H T; fz Xt HStfz xz

i=1 i=1

We denote by S; the dual semigroup working on measures u (on (E, &),
defined via

/def,u:/Stfdu. (2.1)

We remind the reader that we call a o-finite measure m on E reversible if

/stfgdm:/fstgdm
E E
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for any f,g € L?>(E,m) and t > 0. Moreover, we say that the Markov
process {X;, t > 0} is strongly reversible if there exists a reversible o-
finite measure m such that the transition probability measure is absolutely
continuous w.r.t. m, i.e., there exists a transition density

pe: E X E — [0,00)

such that, for all £ > 0,

Suf(z) = / £ (9o, y)m(dy) = / F@py oym(dy),  (22)

where the symmetry p;(x,y) = p:(y, z) follows from the assumed reversibil-
ity of m. Relevant examples to keep in mind are i) Brownian motion, where
m is the Lebesgue measure; ii) symmetric random walk, where m is the
counting measure; iii) the Ornstein Uhlenbeck process, where m is the
Gaussian measure.

2.2 Point configurations

It is convenient for our purposes to describe the motion of independent par-
ticles modulo permutation, i.e. via configurations. More precisely, the ini-
tial configuration associated to N labeled particle positions (x1,...,2N) €
EN is defined as

n= Zéa:w (23)

which is viewed as a point configuration on E. The configuration at time
t is then defined as

N
ne = Z X, (i) (2.4)
i=1

where X(i) = z;. Notice that by the fact that the independent particles
are indistinguishable, {n;,t > 0} is a Markov process on the space of point
configurations with total mass N. More generally, if we have a point config-
uration on F, with potentially infinitely many particles, i.e., n = > .7, 4.,
where we now also allow N = oo, then we define the configuration at time
t > 0asin (2.4). In case we work with infinitely many particles, we have to
assume that the initial configuration is such that no explosions take place,
i.e., such that at any time ¢ > 0, the configuration n; = Zil Ox,(i) is a
well-defined point configuration. In this paper, however, in order to avoid
technicalities, we will restrict to systems with finitely many particles. We
denote by E, the expectation in the configuration process {n;,t > 0}.
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For a configuration 7 we define its associated n-th factorial measure by

n 7
B = S b e, (2.5)
1<i1,...,in <N

where the superscript # means that the summation is over n mutually dis-
tinct indexes i1, ..., 1, taken from {1,...,N}, with N = n(E). The mea-
sure ("™ is a point-measure on E™. Intuitively speaking, n(™) corresponds
to un-normalized sampling of n different particles out of the configuration
7 and takes the name factorial from the following identity: for any B € &

™ (B") = (1(B))n

with (m), :=m(m —1)---(m —n+ 1) denoting the n-th falling factorial.

An important object of study is the expectation E[r(™)] that is called
the n-th factorial moment measure. Here E refers to the average w.r.t. the
randomness of the distribution of points in 1. We have that E[n(™)] is a
measure on K", and, in particular,

E[n™(B")] = E[(n(B))x]

provides the n-th factorial moment of the number of points of B € &. An
important special case is when the points in 1 are distributed according
to a Poisson point process with intensity measure A: it is well know (see,
e.g., [23, (4.11)] ) that in this case one has

E[p™] = A®" (2.6)

which is a particular instance of the Mecke’s equation.

In the next sections we will study, by duality, the expectation of the
n-th factorial measure of the configuration at time ¢, i.e. E, [77,5”)], which
will be called the n-th factorial moment measure at time t.

3 General duality results for independent par-
ticles

In this section we review some known duality results for closed (i.e., with-
out reservoirs) systems of independent particles: namely self-duality and
duality w.r.t. deterministic systems.

3.1 Intertwining and self-duality

We now recall an intertwining and a self-duality result for independent
particles taken from [14]. As already mentioned, in order to avoid techni-
calities, the results below are stated for finitely many particles. However,
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whenever the infinitely many particle limit is well-defined, by passing to
this limit, the result extends immediately to the infinite case.

The following result (originally stated in [14, Theorem 3.1 and 3.2])
states that the expectation of the n-th factorial moment measure at time
t can be expressed in terms of n independent evolutions.

Theorem 3.1. Let n be a finite point configuration as defined in (2.3).
Assume that the particles evolve independently according to the Markov
process {X; : t > 0}.

a) (Intertwining) The following identity holds
Byl = (S7") 0™ (3.1)
where Sy is the dual semigroup defined in (2.1).

b) (Self-duality) If {X: : t > 0} is strongly reversible with reversible
measure m then one can express the density of n-th factorial moment
measure E, [nﬁ”)] w.r.t. m®" via

dE, [r;"]
dm®n

Grvevmn) = [ TIpeei ™ @), (32)
i=1

where py(-,-) is the transition density defined in (2.2).

We provide here a proof of the above result, which relies on generat-
ing functions. This generating function approach is well suited to study
boundary driven systems in Section 4 below.

Proof. We start from the following identity from [23, Lemma 4.11], for a
general finite random point configuration. Let uw: E — (0,1) then

exp (1081~ un(a) ) =

1+ Zl il R CTR )™ (A2, 2m)). (3.3)
We can now use this identity to prove (3.1). Let us adopt the abbreviation
ut(z) = Siu(z) = E.[u(X:)]. Using the independence of the processes
X:(@), 1 € {1,..., N}, we compute

E, [exp </ log(1 — u(z))nt(dz))]
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—Eouy,..on [H(l - u(Xm')))]

i

= HEI [1—u(X,()] = H(l —ug(x;)) = exp (/ log(1 — ut(z))n(dz)>

i

n/ (21, z)n ™M (d(21, - 20))

SN
Z / u®™ (21, .. 20) (SEY M (A(21, .. 20)), (3.4)

where we used (3.3) in the fourth identity. On the other hand, using (3.3)
once more, we have

E, {exp ( / log(1 — u(z))nt(dz)ﬂ

= 1+§:(_

nll) : / w21,y z)Eg (21, 20)) (35)

and therefore, from (3.5) and (3.4) we conclude
oo
(=1
1+
n=1
o~ (1)
=1
D

n=1

. /u®”(z1,...,zn)En[n,S”)](d(zl,...,zn))

! /u®"(zl,...,zn)(Sg@")*n(")(d(zl,...,zn)).(3.6)

Because this holds for all u, identifying term by term in the above series
and using a standard density argument for symmetric functions (linear
combinations of functions of the form w(z1)u(z2)...u(z,) are dense in the
set of symmetric functions), we obtain (3.1).

If in addition we assume strong reversibility, we then have, for any
f: E™ — R bounded,

—/( ®”f)(z1,...,zn)n(")(d(zl,...,zn))
/(/f Yis- o Un Hpt Zis yi)m (y1,~-~7yn))> " (d(z1,- 5 20))
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=f/</f@hnwzHIIm@anmwﬂ%w-w%D>mw%ﬂﬁwnwwh

from which (3.2) follows. O

Remark 3.2. As noticed in [14, Remark 2.3(iii)|, for the system of in-
dependent random walks on Z? with generator given in (1.1), (3.2) is
equivalent to the classic self-duality relation (1.4). Indeed for a singleton
(21, -++,2n), zi € Z%, we have the relation (see [14, Lemma 2.1])

n(n)({(zh A ,Zn)}) = DCI((SZl +...+ 527;3 77) (37)
with D¢ defined in (1.2) and thus

E, ") ({ (21, - 20)}) = EFV[DS,, +...+ 6., m0))

and

/Hpt(zi,yi) n(") (d(y1,.-,9n)) = Egﬁmwﬁ [DCI(&,H)L
=1

where & denotes the configuration of independent random walks at time
t starting from §p =9, +... + 62,

3.2 Duality w.r.t. the associated deterministic system

The so-called “associated deterministic system” is a dynamical system on
functions f : E — R which follows the flow of the Kolmogorov backwards
equation of the Markov process {X;, t > 0}. More precisely for f: E — R
we define fi(z) = Sif(x) = Ex[f(X}:)]. This flow f; is the solution of the
system of ODE given by

df(x

PD _ 4 pw) (3.5
with .Z being the Markov generator associated to {S¢,t > 0}. Notice that,
by the Markov semigroup property, f; > 0 when f > 0. For f : E — (0, 00)

and 2" = (z1,...,2N), we define the function
N
72(H2) =1 ) (3:9)
i=1

or, alternatively, in terms point configurations we set
D(f,n) = el o8I,

Duality between the configuration process and the deterministic system is
then formulated as follows.
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Theorem 3.3. The process {Z: : t > 0} = {(X:(1),..., X:(N)), t > 0}
is dual to the deterministic evolution on functions f : E — (0,00) defined
via fe(x) = Sef(x) = Eu[f(X¢)], with duality function (3.9), i.e.,

Eg [D(f, 21) = D(fi, ), (3.10)

or, equivalently, in terms of the point configuration process

Ey [D(f,m)] = D(fi,m)- (3.11)

Proof. The proof is straightforward, indeed by the independence of the
particles and by the definition of f;, we have

E o

Hf(Xt(z'))] = HEgg [f(X4(i))] = H fe()).

3.2.1 Doob’s theorem

Let us now consider the connection between the duality result of Section
3.2 with the time evolution of Poisson point processes. It is well-known
that independent Markovian particle evolutions preserve Poisson processes:
we refer to this result as Doob’s theorem but it can also be viewed as a
consequence of the random displacement theorem (see, e.g., [23]).

We briefly recall the definition of a Poisson point process. For a o-finite
measure 4 on (E, &) the Poisson point process with intensity measure p
is defined as the random point configuration n = Zil 0z, , defined on a
probability space (€, <7, P) such that

1. For every w € §, the map & 3 A — n(w, A) is a N-valued measure
on the o-algebra &.

2. For Ay,... A, € &, n disjoint measurable subsets of E, {n(4;),i =
1,...,n} are independent Poisson random variables with parameter

mi = fAt p(dz).

See [23] for background on Poisson point processes. We denote by &,
the law of the Poisson point process with intensity measure p. We recall
the reader that a Poisson point process is uniquely characterized by its
Laplace functional, i.e., by

/ (ef 12140} 2, () = e (/=) (3.12)

for all f for which the integral [(ef(*) — 1)u(dz) is finite.
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Often we will consider the setting in which the measure p is absolutely
continuous with respect to a o-finite reference measure m on (E, &), with
density p : E — [0,400), i.e. u(dz) = p(z)m(dz). In such a setting, with
a small abuse of notation, we will denote by &, the law of the Poisson
point processes with intensity measure p(z)m(dz). We denote by Eg, the
expectation of the process of independent particles moving according to the
Markovian dynamics corresponding to the semigroup .S; whose associated
point configuration is initially distributed as &Z,,.

The following result then proves Doob’s theorem via the duality (3.10).

Theorem 3.4. Let N be a random variable on N and let {23t > 0} =
{(X(1),..., Xt(N)),t > 0} be a system of independent particles initialized
at time zero from a Poisson point process with intensity measure p. Then
the distribution of the N particles at time t > 0, namely the random point
configuration ), dx,(i), 18 a Poisson point process with intensity measure
e = S;u, where Sy denotes the dual semigroup introduced in (2.1).

In particular, if u(dz) = p(z)m(dz), where m is a reversible measure
of the Markov process {X; : t > 0}, then p(dz) = pi(2)m(dz) with

pe(2) = E:[p(X¢)] = Sip(2).
If m is a stationary measure of {X; : t > 0}, p € L*(m) and p(dz) =
p(z)m(dz) then py(dz) = pi(2)m(dz) with
pe=S{p,
and SI denotes the adjoint semigroup of Sy in L*(m) .
Proof. Using (3.11) and (3.12), we obtain

/E”] (eflogf(z)ﬁt(dz)) ﬁu(dn) = /E(D(f, nt)) ‘@M(dn)(Blg)
= / Jlog fe(2)n(d2) gp P, (dn) = oJ (Sef—1)dp
— S (Se(f=1)dpn _ J(f-1)dS{n

From this we infer that 7; is again a Poisson point process with intensity
e = Sfp. In particular, if p(dz) = p(z)m(dz) and m is reversible then
Sfu(dz) = (Sip)(z)m(dz). More generally, if p(dz) = p(z)m(dz) and m is
stationary then S7u(dz) = (S p)(z)m(dz). O

Corollary 3.5. In the setting of Theorem 3.4, the Poisson point processes
with intensity measure ¢ - m(dz) parametrized by a constant ¢ > 0 are
reversible for {2t > 0}. More generally, if m is a stationary measure
of {X: : t > 0}, the Poisson point process with intensity p(z)m(dz) is
stationary if and only if

Stp=0p.
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Proof. When c is positive constant and x = em we have, using (3.11) and
(3.12),

Es (En [ef log fdm} e 10ggdn> =Eu (eflog Sefdnef loggdn)
7 w

=E» (ef IOg((Stf)g)dn) = ecf((stf)g—l)dm

and using the self-adjointness of S; we obtain

eoJ(Sehg=1)dm _ ce[(Seo)f-V)dm _ |, (]En [eflog gdm} of Tog fdn)

which implies reversibility of &7,,.
The second statement follows immediately via Theorem 3.4. O

4 Duality for boundary driven systems of in-
dependent particles

In this section we will present a duality result for boundary driven systems
of independent particles which generalizes the duality relation (1.7), valid
only in the discrete setting, that has been previously obtained in [7], [15].
In Section 4.1, we recall the definition of the boundary driven Brownian
gas recently introduced in [5] and we state a duality result in this context
(see Theorem 4.1 below). In Section 4.2 we consider more general systems
of independent diffusion processes on regular domains ® C R%. We prove
first an intertwining result and secondly a duality result under an extra
assumption on the transition probabilities of a single particle. In Section
4.3 we introduce a further generalization of the construction of Bertini and
Posta in [5], namely boundary driven Markov processes with jumps, which
can exit the domain without hitting its boundary.

4.1 The boundary driven Brownian gas on [0, 1]: defi-
nition and duality

Let E = [0,1] and denote by {W;,t > 0} a standard Brownian motion
absorbed upon hitting 0 or 1. Let us denote by 79,7 the hitting times
of 0, resp. 1, of {W;,t > 0}. We denote by P2b5 and by S; respectively
the distribution of the trajectories of {Wy,t > 0} starting from z € [0, 1]
and the semigroup of the process. It is well known that the transition
probability p:(-,-) : [0,1] x £([0,1]) — [0,1] of the absorbed Brownian
motion satisfies

pi(z, dy) = pe(x,y) dy Va,y € (0,1) (4.1)
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with pi(z,y) = pi(y, ) a symmetric function referred as transition density
(see, e.g., [6, p. 122] for an explicit formula of p;(z,y)). With a slight abuse
of notation we denote by p;(x,0) (respectively p;(x,1)) the probability,
starting from x € [0, 1], of being absorbed at 0 (resp. at 1) by the time
t > 0. We then have, for any = € (0,1),

1
/O pe(x,y) dy + pi(2,0) + pe(z, 1) = 1 (4.2)

and for any f : [0,1] — R bounded

Suf(x) = / pe(a.9) £ (0) dy + FO)pe(z,0) + F(L)pe(z, 1).

For ¢ := Zil 0z;, ; € (0,1) and N € N, we then consider the point
configuration (on [0, 1]) valued Markov process given by

&t = 221 5Wt(i) s
§o=¢

where {W;(7) }+>0 are independent copies of {W; }>o such that Wy (i) = z;
for any ¢ € [N]. The transition function P;(&,-) of the process {&,t > 0}
is then given by the image of ®X p;(x;, ) under the mapping (z;)N, —
21‘11 8z, For & = (z1,...,2n) € (0,1)N, we denote by E2P* the expecta-
tion in the process {&;,t > 0} starting from &, = Zﬁio 0z,. Finally, let ©;
be a Poisson point configuration on (0,1) with time dependent intensity
A¢(dx) given by

A(dx) = A(t, z) do (4.3)

and

At z) = A\pPPS (1 < t) + AgP2PS (1 < t)
= Azpe(z,0) + Agpy (2, 1) (4.4)

for some A\ = (Ar,Ag) € RZ. Moreover {&,t > 0} and {Oy, t > 0} are
independent. The process {©;, ¢ > 0}, by adding particles in the bulk
(0,1), models in turn the effect of the reservoirs at 0 and 1 (cf. [5, (2.1),
(2.2)]). The boundary driven Brownian gas is then defined, for any ¢t > 0,
by

n = ft|(0’1) + @t (45)

viewed as a point configuration on (0,1) and such that 1y = 50’(0 " Here

§t|(0 1 denotes the restriction of the point configuration & to (0, 1).
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The motivation for this definition can be found in [5]. In Section 5.2
below we will show how the boundary driven Brownian gas arises as a
scaling limit of the reservoir process on a chain {1,..., N} defined in (1.5).

Let us recall that n(™) denotes the n-th factorial measure corresponding to
the initial configuration ny = n made of N particles, and 77,5") denotes the
n-th factorial measure corresponding to 7y, i.e. the configuration at time ¢
with IN; particles. We denote by JE;\7 the expectation in the process defined
via (4.5) initialized from 7. We will use the following abbbreviations: =
(X1, .yap), for T = {iy,...,ix} C{1,...,n} we put &y = (x4,,...,%4,)
and we write [k] for {1,...,k}. We shall also use the following shorthand
for the transition density in the rest of the paper

Pgn)(way) = Hpt(wivyi)- (4.6)

For the boundary driven Brownian gas the following duality result
holds, where the dual process is a system of independent absorbed Brow-
nian motions.

Theorem 4.1. For the boundary driven Brownian gas {n:,t > 0}, the n-
th factorial moment measure at time t > 0 is absolutely continuous w.r.t.
m®", with m denoting the Lebesque measure on (0,1) with the following
density:

dE [n™] be [ & ({0}) \ &0 ((1])
T () = > EY {AL AR 1{@({0,1»:\1\}]'
IC[n]

/ pi(tnim)(z[n]\lay)n(n_m)(dy)'(él'?)
(0,1)n— I

This result can be read as a duality relation in the spirit of (3.2): in
order to know the n-th order factorial moment measure at time ¢ > 0,
one has to follow (not more than) n dual particles. However, due to the
presence of reservoirs, we have factors

bs {y&:({0}) y & ({1})
E25 AL R L qoan=in
which can be considered as corresponding to || “absorbed” dual parti-
cles. This result has to be compared with the discrete setting, namely
(1.8), where an analogous term multiplying the product of falling factorial
polynomials appears in the duality function and the process with reser-

voirs is dual to an absorbing process with two extra sites associated to the
reservoirs (see [7], [15] and [13]).
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In the next subsection we state and prove a more general version of
Theorem 4.1, which applies to independent diffusions on regular domains
D C R? and includes also an intertwining result. (4.7) for the bound-
ary driven Brownian gas on (0,1) will then follow as a particular case of
Theorem 4.2.

4.2 Boundary driven diffusion processes: definition
and duality

Let ® be a regular domain of RY, where by regular domain we mean
an open, simply connected and bounded subset ® C R¢ such that its
boundary 99 is Lipschitz. Let {Y;,# > 0} be the diffusion process on R?
with generator

d d
7= 3 g (a0 )+ L bty (4.8)

i,j=1

with regular coefficient functions a; ;, b; and with ¢ = (a; ;) symmetric,
non-degenerate and positive definite. We then denote by {X;,¢ > 0} the
Markov process on ® = ® U 9D with semigroup {S;,t > 0}, evolving
as {Y;,t > 0} on ® and absorbed upon hitting 99. More specifically

2, . .
the regularity assumptions on the coefficients are that 73 aam and gbl are
x; Yz,  ;

J
locally uniformly Hoélder continuous on ® U9JD (see, e.g., [20]). Denote by
P2abs (resp. E2P%) the distribution (resp. the expectation) of the trajectories
of {X},t > 0} starting from = € ©. We then assume that

P8 (199 < 00) =1, Vo €D, (4.9)

where Tpp denotes the hitting time of 09.
For ¢ := Zil 0,5 ; €D, we consider the point configuration (on D)
valued Markov process given by

&=, dx, (i) >
§O = g )

where {X, (i) };>0 are independent copies of {X;};>¢ such that Xy(i) = x;
for any i € [N]. For & = (z1,...,2n) € DN, we denote by E2" the
expectation in the process {&,t > 0} starting from &, = 27],'\;0 O, -

Let i be a finite measure on ® and let A : 3® — R, be a bounded
measurable function modelling the reservoir intensity at any = € 09. If A
satisfies the just mentioned assumptions it is said to be regular. Finally we

define ©, the Poisson point process on ® with time dependent intensity
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At(dz) given by

Ai(dz) = (/(%3 AY) Py(ro0 <t,Xrpp € dy)> p(dx). (4.10)

Notice that the above definition of reservoir density is a generalization of
(4.4). The boundary driven diffusion gas in the domain © with reservoir
intensity A\ and a priori measure p, denoted by {n:,t > 0}, is then given,
for any t > 0, by

= S}
Nt ft’©+ %t (4.11)
o = §o = Zizl 5901'7 r; €D
viewed as a point configuration on ©, where & |, is the restriction of & to

D.

We denote by IE% the expectation in the process defined via (4.11)
initialized from 7. Following the strategy of [5], it can be shown that
{n¢, t > 0} is a Markov process when the transition probability p;(x, dy)
of the process {X;,t > 0} satisfies

o

pi(x, dy)m(dx) = pe(y, dz)m(dy) on DxD (4.12)

for a finite measure m and for the reservoir intensity in (4.10) we choose
1 =m. We refer to Theorem A in the Appendix for further details.

We are now ready to state the main results of this section, namely
a general intertwining relation for the factorial moment measure at time
t > 0 of the boundary driven diffusion processes on a d-dimensional regular
domain ® and a duality result, under an extra symmetry assumption on
the transition probability of {X;,t > 0} (see (4.14) below), generalizing
Theorem 4.1.

Theorem 4.2. Let {n;,t > 0} be the boundary driven diffusion gas defined
n (4.11). Then for alln € N and t > 0, it holds:

a) for all bounded, measurable and permutation invariant f : D™ — R

s, o]

Z( )/ f )\®k dZ )® (S?nik)*n(n_k)(dZ[n]\[k]); (4.13)

b) assume further that the transition probability of {X¢,t > 0} satisfies
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for a symmetric function pi(z,y) and a finite measure m on D.
Then, choosing . = m, the following holds

dEA[n™)]

b log(A)dé&,
L (2) = > B [elon N o)y |

IC[n]

-/@_mPﬁ"fm)(zm\hy)n("“”)(dy) (4.15)

Remarks 4.3.

i) Notice that, if A(z) € {A\r, Ag} for any x € 9D and it is regular (as
defined above), setting 09, = {x € 9D : A(z) = AL}, we then have

dE)[n™)]

abs £ (0D £ (0D\0D
Do (2) =) EI [/\L NGOV o=

IC[n]

n—|I n—
<[ ). (416)
which is the multidimensional analogue of (4.7) when there are two
possible values for the reservoir intensity.

ii) The multidimensional Brownian motion satisfies (4.14) with m given
by the Lebesgue measure (see, e.g. [3, Theorem 4.4]): thus the
multidimensional boundary driven Brownian gas satisfies (4.15).

iii) In one dimension, all diffusion processes satisfy (4.14) (see, e.g. [6,
pag.13]). In particular, consider the diffusion process on R with
generator

210 =570 T ) T, @)

where the drift b and the diffusivity o are continuous functions and
with o2(z) > § > 0 for each € (0,1). Then (4.14) holds with m

given by
021(95) exp (2 /x x :2(?@/)) dy) dz, (4.18)

for an arbitrary xo € (0,1) (see, e.g. [6, pag.17]).

m(dx) =

iv) We refer to [20] for conditions on the coefficients a; ; and b; in (4.8)
ensuring that (4.14) holds.



Boundary driven Markov gas: duality and scaling limits 161

Proof. Coherently with what we have done in Section 3.1, we provide a
proof relying on generating functions which uses the identity (3.3). Let
u : ® — R bounded and measurable. By the independence of ©, and &,
we have

£ [oxp ([ 1oat1 - utehmtas) )
= [oxp ([ 1os(1 - u(erta=) )| 2 oxp ([ tout1 - utehigl(as) )]

where E denotes the expectation in the Poisson point process ©;. Notice
in particular that

E, [exp ([ loa(1 — u(2))&] 5 (42))] = E, [exp ([ log(1 — u(2))&(d2)]

and that for {&,¢ > 0} Theorem 3.1 applies.
Using (3.3) combined with (2.6) and (3.1), we obtain

E) [exp </ log(1 — u(z))nt(dz)>]
_ (1 n g %/u@@n(m, e Z) A (2 ..zn))>

Y <1 > ER u®"<zl,...,zn><s;®">*n<"><d<z1,-.-,zn>>>

n!

(G YRR ok
=1+ N /u (21, 2k ) AR (A (21, .. 21))
L

® (SPY D (A(zkr1s - - 20t1)) - (4.19)

On the other hand we have

Then, via identification of the terms with n-fold tensor product of « in the
last expression in (4.19) and the right hand side of the above identity, we
obtain the following equality for all n € N:
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WS (21, 2 BN (A2 - 20))

- (Z)/ By 2 APR (A (21, - )

k=0
—k)\x_(n—
@ (SEU Y T Az, 20) -
Via the above mentioned density argument of linear combinations of u®"

this implies (4.13).
Recalling the definition of A\;(dz) we have that

A?k(d(zl, cey 2E))

k
= (H/ Aw)P2 S (199 <t, X0 € du)) p®*(d(z1, .. 28))
i1Joo
B2 [elon 81 o) ] 1 (A2, 2),

If now we assume that (4.14) holds and choosing p = m, we obtain,
integrating a bounded and permutation invariant function f, : ®" — R

E) [ i fn(zl,...,zn)nt(")(d(zl,...,zn))}
n
abs log(A)dé&;
— (k)Ez[k [ fag g( ) 3 1{&(8@):16}}
k=0
n—=k)\x —
<) Fal2)m®* (dzp) @ (57" 5P (dz )

b log(A)dé&,
= (k>]Ei[: [ Jon logde 1{&(8@)%}}
0

X / ) </© k fn(zl, sy ks YLy e 7yn—k:) Pgnik) (Z[n]\[k],y)m®"_k(dy)>
R (dzpy) @ 7P (A2 )

where we recall that p(r)((vl, v )y (Ut eur)) =TT pe(viswg). Ex-

changing the integrals and using the the symmetry of the functions ps(-, -)
leads to

E% [ @nfn(zl,..., )ngn)(d(zl,-..,zn))

n n , -
:Z(k) m®k(dZ[k])®m®" k(dy) fn(zl,_,_,zk,yl,...,yn_k)
@n

k=0
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x (B2t [efon 198961 ¢ 90y |

n—k n—

which, upon renaming the variables, can be rewritten as

n n n .
E% [/@n fndm( )} :/@n fn(2) (Z (k>]Eil[a; [efag 1og(x)d5t1{&(8©):k}]
k=0
g /g A CBINTRY n("‘“(dw) m®"(dz).

By taking the symmetrization of the above expression in brackets in the
right hand side we obtain (4.15) and the proof is concluded . O

We conclude this section by looking at the evolution of a Poisson dis-
tributed particle cloud and by using duality to show the existence and
the uniqueness of the stationary distribution for the system of boundary
driven independent particles. Let v be a finite measure on ® and denote
by &, the Poisson point process with intensity v.

Theorem 4.4. Let {n;, t > 0} be the boundary driven diffusion gas in
the domain © defined in (4.11) and let p(dz) be the finite measure on ©
appearing in (4.10).

i) If no is distributed according to P, then n; is the restriction to D
of the Poisson process on ® with intensity

Siv+ A, (4.20)
with Ay defined in (4.10).

it) Assume further (4.12) and take p = m. Then, the unique stationary
measure for the boundary driven diffusion process is given by the
distribution of a Poisson point process with intensity

Aoo(dx) = h(z)m(d),

where
h(z) = Mu)Pas(X,, o € du).
0D
Moreover, for any initial configuration n, the distribution of n; con-
verges weakly as t — oo to the distribution of the Poisson point
process with intensity Ao (dz) = h(x)m(dx).
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Remark 4.5. Notice that, when A is a continuous function, A : ® — R
given in Theorem 4.4(ii) is the solution of the following Dirichlet problem

{fh:() in® (4.21)

h=2M\ on 09

where .Z is the generator given in (4.17). In particular, for the one-dimen-
1.d?

sional boundary driven Brownian gas, . = 5~ and

h(z) = Ap(1 — ) + Agz.

Proof. By Doob’s theorem (Theorem 3.4), we know that the evolution of
&, under independent copies of absorbed particles {X;,¢t > 0} is equal
to a Poisson point process with intensity S;v. Therefore (4.20) follows
from the fact that the independent sum of two Poisson point processes is
a Poisson point process with intensity measure the sum of the intensity
measures. Further, notice that for every finite measure p on ®, we have

(S Ho" — 0

as t — oo because eventually all the mass from p will be absorbed at
the boundary 9. Therefore, by taking the limit ¢ — oo in (4.13), only
the term k = n survives and thus, the n-th factorial moment measures
converge to A" (dz) = ([T, h(x;)) p®"(dx) with

h(z) = /(9 . Mu)P2Ps (X, . € du).

This shows that the limiting distribution of 7, is indeed Poisson with in-
tensity measure Aoo. Since (4.12) implies that {n;,t > 0} is Markov, we
conclude that the distribution of the Poisson point process with intensity
Aoo 18 the unique stationary measure. O

4.3 Boundary driven Markov gas

In this section we provide another extension of the construction of Bertini
and Posta [5] for systems of particles that can make jumps and thus,
they do not necessarily hit the boundary when exiting a regular domain.
Therefore, instead of associating a reservoir parameter function \ to the
boundary of the domain only, we need to associate it rather to the com-
plement of the domain. We therefore consider particles that evolve on a
regular domain and are absorbed upon hitting a point in the complement
of this domain. The examples that we have in mind are jump Markov
processes (see, e.g., 22, Eq. 4]) with generator given by
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21w = [ ata=)[) - )] dy. (1.22)

with a(—2z) = a(z) and f : R? — R a Borel measurable function with
compact support (a system of particles evolving accordingly to (4.22) is
then called free Kawasaki dynamics) and standard rotationally symmetric
« stable processes (see, e.g., [10]) with generator given by

L = AY/? (4.23)

for o € (0, 2).

Let {Y;,t > 0} be a strong Markov process on R?%. Let ® be a regular
domain of R? (see Section 4.2 ) and define D°** := R?\ D.

Let {X;,t > 0} be the Markov process on R? with semigroup {S;,¢ > 0}
which evolves as {Y;,t > 0} on D and is absorbed upon hitting D°**. We
denote by P2Ps the distribution of the trajectories of {X;,t > 0} start-
ing from x € ©, by Tpext the hitting time of the set D°*. We assume
Pabs (1gext < 00) = 1.

Let now A : D¢ — R, be a bounded measurable function giving
the reservoir intensity at any x € ©°** and let u(dz) be a finite measure
on ®. We then define the point configuration (on R?) valued process
{&:,t > 0} arising from independent copies of the absorbed Markov process
{X;,t > 0} starting from & = >, s, ©; € ©. Le., for £ := Zil O, s
x; €D, we define

§t = 211 6Xt(i) )
§o=¢

where {X;(7) }+>0 are independent copies of {X;};>¢ such that X(i) = x;
for any i € [N]. For & = (z1,...,zn) € DN, we denote by E2> the
expectation in the process {&;,t > 0} starting from &, = Ziil 0z,. Finally
we define {©;, t > 0}, a Poisson point process on D independent of {&, t >

0} and with time dependent intensity A:(dz) given by

%@@—(AthWWWm<tmeG®OMM% (4.24)

which is supposed to be finite. The boundary driven Markov gas in the
domain © with reservoir intensity A, denoted by {n;,t > 0}, is then given,
for any t > 0, by

n =&y + O, (4.25)

viewed as a point configuration on ©. We denote by Ef‘] the expectation
in the process defined via (4.25) initialized from 7.
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Also in this context, {n:, t > 0} is a Markov process when the transition
probability p:(z, dy) of the process {X;,t > 0} satisfies

pe(x, dy)m(dx) = pi(y, dz)m(dy) on D XD (4.26)

for a finite measure m and for the reservoir intensity in (4.10) we choose
1 =m (see Theorem A in the appendix).

We then have the following result generalizing Theorem 4.2. We omit
the proof being a straightforward adaptation of the proof of Theorem 4.2.

Theorem 4.6. Let {n;,t > 0} be boundary driven Markov gas defined in
(4.25). Then for alln € N and t > 0, it holds:

a) for all bounded, measurable and permutation invariant f : ™ — R

n

B)| [ seman] = (1) [ roitan a2

k=0
- @ (SEF) 0 (dz )

b) assume further that
pe(x, dy) = pe(z, y)m(dy) (4.28)

for a symmetric function pi(x,y) and a finite measure m on D.
Then, choosing pn = m, the following holds

dEX[n{™]

abs ext log(N)d&,
qmen(2) = > ED [efi’ s 1{5t<©ext>:|1|}}

IC[n]

/ » Pinilll)(z[n]\z,y)ﬂ("_”')(dy)

Remarks 4.7 (Examples).

i) The process {Y:,t > 0} with generator given in (4.22) is reversible
with respect to the Lebesgue measure (see, e.g., [22, Remark 2.7]) but
(4.28) is not satisfied since each particle has a positive probability to
stay in the initial position during any time interval [0, ¢].

ii) A spherically symmetric a-stable processes on R? with generator
given in (4.23) is strongly reversible w.r. to the Lebesgue measure
(see, e.g. [10, Eq. 4.4]) and (4.28) is fulfilled.
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5 From the discrete to the continuum

In this section we consider the discrete analogue of the boundary driven
Brownian gas. Here by “discrete” we mean that the space on which the
particles evolve is a lattice and the independent Brownians are replaced
by independent random walks. Our first aim will be to show that such
a process is equal (in distribution) to the reservoirs process {(, t > 0}
defined via the generator in (1.5). We will then show how the boundary
driven Brownian gas arises as a scaling limit of {¢;, t > 0}.

5.1 On the equivalence of two definitions of boundary
driven independent random walks

We consider the boundary driven Markov gas as explained in Section
1

4.3, where the process {Y;,t > 0} is chosen to be the rate 5 symmet-
ric nearest neighbor random walk jumping on the integers and domain
® =Vyx ={1,...,N} with boundary {0, N + 1}. The restriction to the
nearest neighbor case is for simplicity only. The generalization to indepen-
dent walkers with generic jump rates c(z,y), x,y € Z, absorbed upon leav-
ing Vi is straightforward and so is the extension to more general graphs.
Let Viy :={0,...,N+1} = VxyU{0, N+ 1} and {X¢,¢ > 0} be the process
evolving as {Y;,t > 0} on Vy and absorbed when hitting 0 or N + 1. No-
tice that in this context of nearest neighbor random walks, D' reduces
to {0, N + 1}. We start the process from an initial configuration n € NV~
viewed as a point configuration on Vy, i.e. n = ZZ 0z;, where z; € Vi
are the initial positions of the particles. We define its time evolution as

follows:
UG :§t|VN + O4. (5.1)

Here &; is the point configuration on Vy at time ¢ arising from &£y = n when
all the particles in 77 evolve as independent copies of the process X; defined
above. For z = (z1,...,2,) € V{, we denote by E2Ps the expectation in the
process {&,t > 0} started from Y. | d,. Further, for A = (A\r,Ag) € R%,
O, is a Poisson point process on Vy with intensity defined by

Ae(dz) = (ALPEV (X, = 0) + AgPYY (Xy = N + 1)) m(dz) (5.2)

with m(dz) denoting the counting measure and PRV the path-space mea-
sure of the absorbed random walk {X;,¢ > 0}. Thus, {6:({z}),2 € Vy}
are independent random variables which are Poisson distributed with pa-
rameter A¢(x). The process defined in (5.1) is the discrete analogue of the
process defined in (4.5) and from Theorem (4.6) applied to this context we
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have that

dlE*[m(")] abs [&({0}) 1 & ({1})
—qan (?) > E3 S{A AR 1{et<{o,N+1}>:m}}
IC[n]

n—|I _
./V"—m p" 1 )™ 1D (dy), (5.3)

N

where pgn)(z, y) = [1;—; PV (X; = y) and E; denotes the expectation in
the process {n;,t > 0} startmg from 7.

Let us now compare the process 7; with the process (i, the reservoir
process with parameters Ay, Ag introduced in Section 1.2.

Theorem 5.1. Let n € NYN. Then {(;,t > 0}, denoting the reservoir
process with parameters A\, Ar and generator given in (1.5) started from
n, and {n;,t > 0}, denoting the boundary driven Markov gas defined in
(5.1) started from n, are equal in distribution.

Notice that in the statement of the Theorem we are implicitly identify-
ing the point configuration 7, with the vector (n:({z}))zev, of occupation
variables.

Proof. In order to prove the result we will make use of the duality relations
(1.7) and (5.3).

Indeed, it suffices to show that for all £ = Y"1 | 8., z; € NYV one has
for allpand ¢ >0

N

[T aedah) mah))] . (5.4)

r=1

res
Ey

N
[T dedad), Gl

By (1.6) and (1.7) we have
By [T d(e({a)), G@))| =B X OGN de{ad), c@))] -

where we remind that &; is the point configuration on Vy at time ¢ arising
from §o = 7 when all the particles in 7 evolve as independent random
walkers on Vi absorbed at {0, N + 1}. On the other hand, by (3.7), we
have

N
EM T de=d). m({a}) | = Edin™ {(z1, - z0) D]

z=1

and by (5.3)
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n abs t 0 t 1
E) [m( )({zh---,zn})} = ) E [Ai({ Dag })1{st<{o7zv+1}>:m}}
IC[n]

B i ). (655)

It thus remains to show that

abs | & ({0 &({1
> E [/\L'({ Dag! })1{st<{o,N+1}):u|}}
IC[n]

n—|I n—
'/anmpg " (1 )10 (dy)

__ mprabs
= E£

AN \& (D TT d(gt({x}),n({w}))l-

zeVN

Notice that, for any I C [n], by (3.7), we have

N
/V;;'” P g, )10 (dy) = E3 [H d(ft({l’})yﬁ({x}))] :

z=1

(5.6)
We thus have,
E;; [ngn)({zlv (RS Zﬂ}):|

abs Et 0 £t 1
= > E® [/\L({ Dz Dl{st({owﬂ}):m}}
IC[n]

N
ER [H d(&({e}). n({w}))]

__mabs
_Ez

N
A5 O &N+ TT d(gt({x}),n({w}))l ;

x=1

where we used (5.5) and (5.6) in the first equality and the independence
of particles in the second equality. O

5.2 Scaling limit

In this section we show how the process of independent random walkers
with reservoirs \;, and Ar, when appropriately rescaled in space and time,
and with rescaling of the reservoirs intensities, converges to the boundary
driven Brownian gas. We start with the following lemma.
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Lemma 5.2. Consider {@(N)}Nzl a sequence of Poisson point processes
on (0,1) with the intensity measures

AM (dz) < ZaN (&) W) (dz) (5.7)

%, cee %, 1} — Ry. Assume furthermore that whenever
0

with ay : {
[0,1] then also

i/N =z €
an (%) = a(z), (5.8)

where o : [0,1] — R is a smooth function. Then as N — oo, ©W)
converges to the Poisson point process © with intensity o(z)dz.

Proof. Because sequences of Poisson point processes converge when the
sequences of their intensity measures converge, it suffices to prove that
(5.7) converges weakly to a(x)dx as N — oo. Let f : [0,1] — R be
continuous, then

N
/f(x)/\ N (dx) Z (L)an(F).

By the Condition on aN(ﬁ) this sum converges to the Riemann integral
fo x)dz. O

We then have the following result.

Theorem 5.3. Consider the reservoir process {(n+,t > 0} on the chain

{1,..., N}, with reservoirs parameters /\WL, /\WR and generator given in (1.5).

Define ny (dzx) the point configuration on [0,1] via

2 (da) (Z Cv,eva ( z/N> (dz). (5.9)

Assume that at time t =0,

N
D@pN,O = Z(;QCEN)/J\” (510)

i=1

wherea: /N—>;UZ (0,1) foralli=1,...,N.

Then as N — oo the process {Zn(dz),t > 0} converges (in the
sense of convergence of finite dimensional distributions) to the boundary
driven Brownian gas with parameters Ap, Ar, started at the configuration

SN O,
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Proof. As a consequence of Theorem 5.1, the reservoir process (x,;: equals
(in distribution) the boundary driven Markov gas ny; obtained as a sum
of the configuration arising from letting the particles initially in the system
evolve according to independent random walkers absorbed at 0 and N 41,
and adding an independent Poisson point process on Vy with intensity

(i) = 3 PIV(X, = 0) + 38 PPV(X, = N + 1), (5.11)

where {X;,t > 0} denotes the random walk on V absorbed at the bound-
ary {0, N + 1}. Therefore after diffusive rescaling of space and time, the
intensity of the Poisson point process on (0,1) modelling the reservoirs
effect becomes

N
AN (dz) =37 (3 PPV (Xone = 0) + 58 PRV Xy = N +1)) 6 (da).
=1

(5.12)
Because the absorbed random walk X, 2 /N converges weakly, as N — oo,
to the Brownian motion on [0, 1] absorbed at the boundaries, we can apply
Lemma 5.2 with

an (%) = A PRV (Xyn2 = 0) + Ag PRV (Xyn2 = N + 1)
which converges, in the sense given by (5.8), to
Oé(.]?) =L P;bS(TL < t) + AR P;bS(TR < t) (513)

where 77, 7g are the hitting times of 0, resp. 1, and P2b* the path space
measure of Brownian motion started from x and absorbed whenever hitting
0, 1. Therefore, the Poisson point processes (5.12) converge to the Poisson
point processes with intensity (5.13).

We know now that the absorbed random walk X;y2/N weakly con-
verges to the absorbed Brownian motion. In the same way, a system of
independent absorbed random walkers, weakly converge to a system of in-
dependent absorbed Brownian motions. As a consequence, the point con-
figuration corresponding to the time evolution of the independent walkers
initially in the system converge to the point configuration corresponding
to the evolution of independent absorbed Brownian motions.

Since the evolution of the particles initially in the system and the added
Poisson process are independent, in the scaling limit, we obtain the sum
of the evolution of the particles initially in the system and an independent
Poisson point process with intensity (5.13), which is the boundary driven
Brownian gas with reservoir parameters Ay, Ag. O
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6 Orthogonal dualities

Duality results with orthogonal polynomials duality functions are well
known in the discrete context for independent random walkers, both for
systems without reservoirs (closed systems) [16] and for systems with reser-
voirs (open systems) [15]. In this context the orthogonality property of the
duality function has proven to be crucial in several applications involving,
in particular, the study of the fluctuation fields [1, 2, 9], and the study of
the speed of relaxation to equilibrium [8]. A generalisation of these duality
results to the continuum case has been obtained in [15] only for the closed
system case. In order to have a complete analogy with the duality theory
for independent random walks on a finite chain with reservoirs, we now
investigate orthogonal dualities for the boundary driven Brownian gas.

6.1 Known orthogonal dualities
6.1.1 Closed discrete systems

Orthogonal self-duality functions are well known for the system of simple
symmetric independent random walkers on Z? described in Section 1.2 (see
[16], [25]). More precisely, for any 6 > 0, the factorized functions given by

Dy (&) = [ Cew(n(x),0), (6.1)

YA

where C(n,0) are the Charlier polynomials defined as

k
cxtn0) = (§) -0t (62)

£=0

((n)¢ denotes the ¢-th falling factorial) are self-duality functions for the
Markov process {n;, t > 0} with generator given in (1.1). The dualities in
(6.1) satisfy the following orthogonality relation w.r.t. the measure pj*" =

®pezaPoisson(#) which is reversible for {n;, t > 0}: for any &, &' € NZ*
or or rev f'
/D9 (San)DO (flﬁl)dﬂa (77) = 1{525/}w7

where £! := erzd &(x)! and |€] = erzd &(x).
Notice that the relation between orthogonal and classical dualities is
given by (see [15, Remark 4.2])

Dy (&m) = Y (=)l (f) DN ) =Y (—0)" D (Z 6yi,n> ;
&< I1C[n] i€l
(6.3)
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where & = Y | y; and where ¢ < ¢ means that &'(z) < £(z) for any
x € 2% and (gg/) = [l,eza (55/((?))'

6.1.2 Open discrete systems

Let us now reconsider the reservoir process with parameters Ay, Ar defined
in Section 1.2. In [15] the authors proved that the following functions, for
0 >0,

Pae0(€,0) = (AL = 0)* VDG (€, ) (Ar — B)FY (6.4)

with
Dgr(EaC) = H CE(m)(C(x)ae)
w€‘~/N

are duality functions between {(;,¢ > 0} the Markov process on Vy =
{1,..., N} with generator given in (1.5) and {&, ¢ > 0} the system of
random walkers on Viy = {0,..., N + 1} absorbed at {0, N + 1}. Notice
that the orthogonality relation is w.r.t. py = Qg cv, Poisson(d) which is
not stationary for the reservoir process with general parameters Ap, Ag,
but it is reversible for the reservoir process with parameters A\;, = A\g =0,
the last case referred as the reservoir process in equilibrium.

6.1.3 Closed systems in the continuum

Generalizations of orthogonal self-dualities for systems considered in Sec-
tion 3.1, namely closed systems of independent Markov processes on gen-
eral Polish spaces F, has been recently studied in [14]. More precisely,
let n, = Zil dx,(s) with {X¢(i), t > 0} independent copies of a Markov
process on E started from x;, strongly reversible w.r.t. to a measure m.
Then, the measure defined for any ¢ > 0, n € N and § > 0 as

n), n— n—|I|
o (dz) = S (=) Mg @z mE" T (dz o) (6.5)
IC[n]

satisfies the following duality relation (see [14, Corollary 4.2])

n),0
dE (™)
dm®n

<%mwm=/ﬂmmﬁmwwmhw%»

and generalizes the orthogonal self-dualities given in (6.1) in the following
sense:
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i) let
15(z1,. .. 2n) = (1%?1 ®--'®1%iK> (21, 2n)

for B = {Bjy,..., Bk} a family of mutually disjoint sets in E and
{di,...,dk} such that Zfil d; = n, then

/ 15(z1,- s 2) 00 (dz1 - 20)

K
= [[(=0m(Bo)* Ca,(n(Be); 0m(By)) (6.6)
=1

with Ci(n,x) being the Charlier polynomials defined above.

ii) If we denote by Py, the distribution of a Poisson point process with
intensity measure 0m, then, the following orthogonal relation holds

o [(f ) )

=L{n=n’} '”!/fn gn d(0m)*" (6.7)

for ¢ ~ Py, and f, : E" — R, gp : E" — R bounded and
permutation invariant functions.

We refer to [23] for a proof of the two above facts.

The aim of the next section is to generalize the orthogonal dualities for
the reservoir system given in (6.4) in the context of the boundary driven
Brownian gas on (0, 1).

6.2 Orthogonal dualities for the boundary driven Brow-
nian gas

Let us now consider the boundary driven Brownian gas on (0,1) with
parameters Ay, and A

Ny =& + Oy

defined in Section 4.1. We have previously proved that the factorial mea-
sure n§”) is the right object to study in order to have a duality result for
boundary driven system. Inspired by the relation highlighted in the pre-
vious subsection between classical and orthogonal dualities we now study

for any n € N and 6 > 0



Boundary driven Markov gas: duality and scaling limits 175

n), — n—|I|
00 (dz) == 3 (=) (dzg) mE T (e ), (6.8)
IC[n]

viewed as a measure on (0,1)". Here m(dz) is the Lebesgue measure
on (0,1) and the orthogonality properties (6.6) and (6.7) hold for (6.8)
for, respectively, B = {Bj,..., Bk} a family of mutually disjoint sets in
(0,1) with {dy,...,dx} such Zszl d; = n, and bounded and permutation
invariant functions f, : (0,1)" = R, gn : (0,1)" — R.

Notice that the orthogonality relations holds true w.r.t. the intensity
measure of the Poisson point process whose distribution is reversible for the
boundary driven Brownian gas in equilibrium, namely with A\, = A = 0.

Moreover, since we will integrate the above defined measure n(™-¢
against pﬁ”)(-, ) [0,1]™ x [0,1] — R, i.e. a function defined on {0,1}
as well, we extend 1(™)-? in the following way: we define m(dz) = m(dz) +
do(dz) + 01(dz) and we denote

nl, ne _ -l
n0(dz) = Y (=) MgV dzy) m®" T (dzppg) (6.9)
IC[n]

whenever integrated against functions being non zero also at the boundary
[0,1]. Notice that f[o y Pe(z,y)m(dy) = 1 for any = € [0,1] and that we
used the brackets [-] in the upper index of 171[/"]’9 to emphasize the difference

with (™7

We then have the following theorem, providing orthogonal dualities
between the boundary driven Brownian gas and the system of independent
Brownian motions on [0, 1] absorbed at the boundaries.

Theorem 6.1. For the boundary driven Brownian gas, the expectation of
the measure given in (6.8) at time t > 0 is absolutely continuous w.r.t.
m®™ with the following density:

dEA[nt(n)’e} abs | y&:({0 ({1
— e (?) = ) E SN 1 oy
JCn]

n—|J n—
~ / oD (g, ) 1709 (dy).
En—IJ|

Proof. Using (6.8) and (4.7) we have

n—|I|

By )dz) = By | 3 (—0)" D az) m®
IC[n]

(dzpmp 1)
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n— n=11]
= Z (—9) IIIE;; {nt(m)(dzl)} m® (dz[n]\I)

IC[n]
n— aps Et 0 5 1
= (o <Z B2 AL 1 om)=i
ICln] Jcl

— _ n—|J|
G ) ) )

and by exchanging the order of the summation in the last expression above
we obtain

EXn™)(dz)

abs | y&:({0 &({1
=S B NSO oy
JC[n]

eI n—1J|
< [ 30 (o[ ol g gy D (dy) | m® () -
IC[n\J B

We conclude by noticing that

> (o pi ) (zr ) 5010 (dy)

1C\J Bl
= [ B ) i ),
which can be proved using (6.9). O

Notice that the same result holds for any boundary driven system of
strongly reversible Markov processes as the ones treated in Section 4.2
and for the discrete system defined in (5.1).

We thus conclude the section by showing that indeed Theorem 6.1 gen-
eralizes the duality relation for the discrete system w.r.t. the orthogonal
dualities given in (6.4). Notice, indeed, that we have, from (6.8) and (6.4),

E) [0z, 2| = B D5 (€m0
It thus remains to prove the following.

Proposition 6.2. Let n; denote the process defined in (5.1). Then for all
neNand z,...,2, € Vy, denoting Y, 6., = £, we have
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abs +({0 +t({N+1 n—|J n—
S e B2 OGN o ] 0T g w) 00 (dy)
= B3> [ D (6m)]

Proof. By the definition of n("~1/D-¢ we obtain

abs [1£:({0}) & ({N+1})
> ES AN Lic,05)=11

JC[n]
'/Pﬁnfl‘]')(z[n}\wy) 1700 (dy) (6.10)
§:({0}) & ({N+1
=3 Ea [)\L({ D& })1{&(%):'”}}
JC[n]

> oy gl () 11D (dy)

ICn]\J e
_ Z ]Eabs P‘& {0}))\§t({N+1})1{&(8E)=|J|}:|

Z (_9)n—\J\—|I| Ezl;s

IC[n\J
n— s | € ({0}) & ({N+1})
Z Z i gt g0 Lie,om=171) |
T ICEN

II d(ft({x}),n({x}))l

x=1

=2

abs
. Ez;

[T d&{=}), n({x}))]

N
= 3 (oI E [A%“””A%‘{N“” I1 d(@({x}m({x}))} ,

UcC[n] =1
(6.11)

where in the last line we used the independence of the particles. Combining
(6.10), (3.7) and (1.6) we get

abs [ §:({0 & ({N+1
> ES DS ONG 1 omyiy ]
JC[n]

'/Pﬁnil]l)(z[n]\‘ny) =100 (dy)

_ Z (_0>7L—|U\ EZ];S {)\%({O}))\%({NJA})DCI(&,7])}
UcC[n]
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= > (=0 UIEL [D AR (g, )] .

UcC|n]

We then have, using again the independence of particles,

Z (_9>n—|U\ Ezlzs {A%({O}))\%({NJA})DCI(&,n)}

UcC|n]
abs ft n—&' (V ¢ ({o E{N+1 c
—E | (é’ ()= E0) KD XS pet (] )
§'<&:
& ({0])

:Ezbs Z < ({0})>( )§t({0}) 2)\[

¢ o
t|VN> (_a)gt(VN) &' (Vn) D 1(51’77)

€’<€t|v
f,({N+1})
& AN H1IDY _pyecin+1p-
+ TAT
. (—0) R
:Egbs &({0}) (Ar — 9)§t({N+1})D3r (ft’VNﬂ?)]

where the third identity follows from (6.3). The proof is concluded by
noticing that

(A — )5 1OV (A — g)&(IN+1D) por (5t|va77) — DY g (€1,m) -

O

A Markov property of the boundary driven
independent particles

In this appendix we prove the Markovianity, under the reversibility condi-
tion (A.1), of the boundary driven Markov gas defined in Section 4.3. We
remind that the boundary driven Markov gas in a regular domain ® of R?
with reservoir intensity A is the process defined in (4.25) and denoted by
{nt,t > 0}. We remind moreover that the reservoir intensity is a function
A D 5 RT where Dt := R?\ D. See Section 4.3 for further details.

Theorem A.l. Assume that

pe(z,dy)m(dz) = pi(y, dz)m(dy)  on D xD (A.1)
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for some finite measure m(dx) on ©. Denote by Py, the law of a Poisson
point process with intensity measure given in (4.24) with the measure m
in place of p and let PFes : Q x Z(Q) — [0,1], t > 0 defined by

Prs(n, B) = / P2, (AO) Py (1, ), (A.2)
O+¢eB

where Py denotes the semigroup of the process {&;, t > 0}. Then, the family
P, t > 0 is a time homogeneous transition function on (2, 2(Y)) and
there exists a Markov family with transition function Pf.

Proof. We need to show that P;°° satisfies the Chapman-Kolmogorv equa-
tion, which, due to [5, Lemma A.3], boils down to check that for any
continuous function ¥ with compact support strictly contained in ® and
for any s,t > 0

/P§ist(n7dv)eifwd“ =//Psres(??,dC)P{eS(c,dv)eifwdv.

By the definition of P/{%, and using (3.12), we have that the left hand side
is equal to

exp {/(eiw — 1)d)\t+s} /PSH(TL d¢)e’ Jwdg
On the other hand, for the right hand side we have,
[ [ Pemaorecane e
= / P, (d91)/PS(n,d£1) / P, (01(92)/13t((91 4 &1, dey)et [ vi(@tes)

= exp {/(ew — 1)d>\t}

x /n@As(d@)/Ps(n,d&)/Pt(@l 1 £y, dey)et /e

—=exp {/(ew’ — 1)d>\t}

X /c@As(dGO/Ps(n,dél)/Pt(ghdg?’l)eifwd&z.l
X /Pt(fl,d§2)2)eif¢d52,2

= exp {/(eiw — 1)d>\t}
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. /‘@As(d@l)/Pt(@ladle)@ifwd&'l/Pt+s(n,d€)€”wd5

where we used the definition of P} first, the independence of the parti-
cles after and finally the Champan-Kolmogorov equation for P;. Thus, it
remains to show that

/%S(d(al)/Pt(el,d@,l)eimdgz‘l

By the independence of the particles and (3.12) follows that

/ P, (d61) / Pi(O1, dégy)ei ¥ — exp { / Syt — 1)(33)A5(dx)},

where S; denotes the semigroup of the absorbed Markov process upon
hitting D** and which is given by

5:7(0) = [ mle.df)+ [ FOPurans <4 Xpp € )

for any f : RY — R bounded function. Since 1 is equal to zero at D, we
have that

[ s = v - [ ( [ miwaienn - 1>) Ao(da)

and thus, (A.3) is given if one proves that

/ pe(, dy)As(dz) = Arpa(dy) — Ae(dy). (A4)

Using the definition of A, given in (4.24), we have that the left hand side
of (A.4) is equal to

[ / pe(, dy) ( /@ AR Pa(rpm < 5, Xrg, € dz)) m(dx)} .

Using the strong Markov property of the absorbed Markov process, we
have

)\t-‘rs (dy)

= (/ A2)Py(Toexe <t 48, X, € dz)) m(dy)
Dext
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- (/@t A@2)Py(rpexe <t, X, € dz)> m(dy)
+ { / pi(y, dz) ( /33 AP (oo <8 Xop i € dz)) m(dy)}
=\ (dy) + |:/pt($,dy) (/@m A2)Py(Tpexe < 8, X7, € dz)) m(di’?)} ;

where in the last identity we used the condition (A.1). Thus (A.4) follows,
concluding the proof. O
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