

Navier-Stokes equation and Equivalence conjectures

Giovanni Gallavotti

Abstract. General considerations on the Equivalence conjectures and a review of few mathematical results. The conjectures deal with properties of the NS equations regularized at ultraviolet (UV) cut off $|\mathbf{k}| < N$ in the limit $N \to \infty$. (1) The UV-regularized NS equations with periodic b.c. are compared with similar reversible equations designed to obey, by modifying the usual friction term $\nu \Delta \mathbf{u}$ into $\alpha(\mathbf{u}) \Delta \mathbf{u}$, an extra conservation law (here the enstrophy, $\mathcal{D}(\mathbf{u})$, conservation). (2) The two equations are conjectured to assign, in the limit $N \to \infty$ equal average expectation values to the class of observables $O(\mathbf{u})$ which are local in the sense that they depend on finitely many (UV-cut-off N-independent) Fourier components of the velocity field **u**. (3) A relevant non local observable is $\alpha(\mathbf{u})$ and whether in its evolution $\alpha(\mathbf{u}(t))$ becomes eventually > 0 has been shown to imply uniform UV-independent bounds on all derivatives of u, leading to think that positivity of α only allows for large-N deviations to negative values as $N \to \infty$. (4) For the non-local observables, defined by the spectrum of the Jacobian of the evolutions, approximate equivalence has been reported in a sense discussed here as well as a surprising, approximate, "pairing rule" for the Lyapunov exponents.

Keywords. Navier-Stokes equations, turbulence, Kolmogorov's scaling, Ensembles equivalence, SRB distributions, reversibility.