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Navier-Stokes equation and
Equivalence conjectures

Giovanni Gallavotti

Abstract. General considerations on the Equivalence conjectures and a
review of few mathematical results. The conjectures deal with properties
of the NS equations regularized at ultraviolet (UV) cut off |k| < N in the
limit N → ∞. (1) The UV-regularized NS equations with periodic b.c. are
compared with similar reversible equations designed to obey, by modifying
the usual friction term ν∆u into α(u)∆u, an extra conservation law (here
the enstrophy, D(u), conservation). (2) The two equations are conjectured
to assign, in the limit N → ∞ equal average expectation values to the
class of observables O(u) which are local in the sense that they depend
on finitely many (UV-cut-off N -independent) Fourier components of the
velocity field u. (3) A relevant non local observable is α(u) and whether
in its evolution α(u(t)) becomes eventually > 0 has been shown to imply
uniform UV-independent bounds on all derivatives of u, leading to think
that positivity of α only allows for large-N deviations to negative values as
N → ∞. (4) For the non-local observables, defined by the spectrum of the
Jacobian of the evolutions, approximate equivalence has been reported in
a sense discussed here as well as a surprising, approximate, “pairing rule”
for the Lyapunov exponents.
Keywords. Navier-Stokes equations, turbulence, Kolmogorov’s scaling,
Ensembles equivalence, SRB distributions, reversibility.
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1 Introduction
This work is dedicated to celebrate the 80-th birthday of Errico Presutti.

Reversible equations conjectured to be equivalent for the purpose of
modeling stationary states, under large scale forcing, of incompressible
Navier-Stokes evolutions have been introduced since the 90’s, [26, 6]. Equiv-
alence has been first conjectured to be asymptotic at vanishing viscosity,
then at all viscosities for observables of large scale, [11], or just for observ-
ables of scale up to ∼Kolmogorov’s scale, [19].

There are very few rigorous results, stressed in [11, 19], supporting the
conjectures. And some breakthrough results, [21, 18], on the classical NS
equation can be directly applied to the reversible equations.

The NS equations, incompressible and in a periodic container Ω =
[−π, π]d, d = 2, 3, deal with a velocity field which can be expressed in
terms of its Fourier’s coefficients as

u(x) =
∑

0̸=k∈Zd,
c=1,...,d−1

uc
ke

c
ke

−ik·x, (1.1)

where eck, c = 1, . . . , d− 1, are d− 1 unit ’elicity’ vectors, orthogonal to k
and with ec−k = −eck, and uc

−k = uc
k are the complex harmonics of u, with

|uc
0| ≡ 0 (fixing the baricenter).
With u so represented the well known NS equations are ∂x · u(x) = 0

(incompressibility) and:

u̇(x) = −(u˜(x) · ∂˜x)u(x) + ν∆u(x)− ∂xp(x) + f(x) (1.2)

with ν= kinematic viscosity. Or, in terms of the uc
k:

u̇c
k =

∑
k1+k2=k

a,b

T a,b,c
k1,k2,k

ua
k1
ub
k2

− νk2uc
k + f c

k,

T a,b,c
k1,k2,k

= −(eak1
· k2) (e

b
k2

· eck), k = k1 + k2,

(1.3)

with k2def=
∑

i=1,...,d k
2
i and the forcing f ̸= 0 is supposed fixed once

and for all and to act only on ’large scale’: f c
k = 0 unless 0 < |k| =

maxi=1,...,d |ki| ≤ kf < ∞.
Without restriction, suppose ||f ||2 =

∑
k,c |f c

k|2 = 1: so the equation
has viscosity as the only free parameter, whose inverse will also be called
Reynolds number R = ν−1. The equation will be called “INS”, or irre-
versible NS.
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2 Equivalent equation
Equivalent equations can be obtained by replacing the viscous force −νk2uc

k

by −α(u)k2uc
k determining α so that the equation:

u̇c
k =

∑
k1+k2=k

a,b

T a,b,c
k1,k2,k

ua
k1
ub
k2

− α(u)k2uc
k + f c

k (2.1)

will admit a selected observable as an exact constant of motion.
In [6, 11] the selected observable is the “Enstrophy”:

D(u) =
∑
c,k

k2|uc
k|2 =

∫
D(u, x)

dx

(2π)d
,

D(u, x) =
1

2

∑
i,j

(∂iu(x)j + ∂ju(x)i)
2.

(2.2)

Other observables have been considered (e.g. in [27] the selected observable
is E =

∑
c,k |uc

k|2). Selecting D leads, if d ≥ 3, to:

α(u) =

∗∑
k1,k2k3

∑
a,b,c

k2
3u

a
k1
ub
k2
uc
k3
T a,b,c
k1,k2k3∑

c,k

k4|uc
k|2

+

∑
c,k

f c
k k

2 uc
k∑

c,k

k4|uc
k|2

, (2.3)

where the ∗ reminds k1 + k2 + k3 = 0. See Eq. (4.2) for a possibly more
natural expression of α(u).

If d = 2 the multiplier α would simply be the second term in Eq. (2.3):
because the first term would cancel.1 Furthermore selecting the energy E,
instead of the enstrophy D, yields α =

∑
c,k fc

k uc
k∑

c,k k2|uc
k|2

in any dimension2.
The Eq. (2.1) will be called RNS, reversible NS: because if t → u(t) is

a solution for Eq. (2.1) also −u(−t) is a solution. Correspondingly α(u)
will also be named “reversible viscosity”.

Here only properties of the RNS equation with α such that the enstro-
phy is constant will be considered.

The equivalence conjectures concern the stationary distributions of INS
and of RNS and the averages that they assign to the “ local observables”
O(u), which are functions O(u) of the velocity fields which depend on
finitely many harmonics uc

k, possibly subject to the further condition that
the waves k are |k| ≪ Kν where Kν is Kolmogorov’s inverse length scale
Kν = ( D

ν2 )
1
4 .

1By the well known identity which implies the Enstrophy conservation (only)
in the 2-dimensional Euler-equation.

2By the identity which implies the energy conservation in the Euler equation.
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To formulate mathematically precise conjectures introduce the regular-
ized equations INSN and RNSN with ultraviolet cut-off N :

Definition. The equations INSN and RNSN are the Eq. (1.3), (2.1)
with ν and α(u) respectively as above with the further restriction on the
uc
k that |uc

k| = 0, |k| > N .

Therefore both regularized equations are ODE’s on a phase space of
(real) dimension M = (d − 1)((2N + 1)d − 1) as each component has
0 < |k| = maxi |ki| ≤ N .

Hence it makes sense to consider initial data in RM randomly selected
with an arbitrary “volume continuous” distribution: intending that it has
a density ρ(u) in the INSN case, while it has density of the form δ(D(u)−
D)ρ(u) in the RNSN , with ρ(u) a smooth function on RM . In both cases
the stationary distribution is expected to be concentated on a a set with
zero probability with respect to the chosen initial distribution. Starting
evolution t → St(u) with an initial datum u so chosen, it is assumed:

Hypothesis. Given ν or D there are, for the INSN or RNSN evo-
lutions, finitely many stationary ergodic probability distributions denoted,
for i = 1, . . . ,N , µN

ν,i or, respectively, γN
D,i which control the statistics of

the local observables O. This means that, on motions starting with initial
data chosen with a volume-continuous distribution, the average of such ob-
servables is given, with probability 1, by µN

ν,i(O) or, respectively, γN
D,i(O)

for some i.

When the motion is “chaotic”, [23, 20, 22], (or, a particular case, satifies
the “Chaotic Hypothesis”, [9, 13, 14],) and has N attractors then each µi

or γi is called a “SRB-measure”, [22].
It is expected that in most cases N = 1, greatly simplifying the hy-

pothesis: which embodies the classical ergodic hypothesis if applied to the
chaotic microscopic motions of Hamiltonian systems of many particles.

Remark. The above hypothesis is intended to apply also to cases in which
the attractors are periodic orbits (typically if viscosity is large). In [11] it
is suggested that the reason for its validity at fixed ν and large enough N
could be looked in the microscopic motions, from which the NS evolution
is derived as a scaling limit without modifications to the microscopic equa-
tions. But at fixed cut-off N the hypothesis can be related, and possibly
hold, to the chaoticity of the motions only at small enough ν: manifestly
a less interesting case.

However the latter key point will not be further discussed here, as at-
tention is devoted to mathematical properties of the regularized equations
in the light of the following conjectures and the regularization removal, i.e.
N → ∞.
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3 Equivalence conjectures
Given the UV cut-off N the stationary SRB distributions (think, at first,
that there is only one such) form a collection EN of probability ditributions
on M , the (d− 1)((2N +1)d − 1)-dimensional phase space, parameterized
by ν in the INSN case or by D in the RNSN case and possibly other N
labels distinguishing the SRB distributions on the N attractors (there is
no relation between the cut-offf N and the number of attractors N ).

Denote EN and GN the collection of the SRB distributions µN
ν , ν > 0

for INSN , or respectively, γN
D , D > 0 for RNSN : such collections will be

called viscosity ensemble or enstrophy ensemble.

Conjecture 3.1. (1) if ν is small enough the number N of attractors for
INSN with viscosity ν and average enstrophy µN

ν (D) = D is eventually (as
N → ∞) the same as the number of attractors for RNSN with enstrophy
D.3
(2) If O is an observable and µN

ν (D) = D it is

lim
ν→0

µN
ν (O) = lim

D→∞
γN
D (O). (3.1)

Conjecture 3.1, [6, 8, 10], can be regarded as a “homogeneization” prop-
erty: at large D the RNSN equation generates chaotic motion (a fea-
ture shared quite generally by strongly forced ODE’s) and α(u) fluctuates
around a constant value and induces averages of observables equal to those
of INSN with constant viscosity, as in [15]. A second conjecture is:

Conjecture 3.2. (1) if N is large enough the number N of attractors for
INSN with viscosity ν and average enstrophy µN

ν (D) = D is the same as
the number of attractors for RNSN with enstrophy D.
(2) If O is a local observable and µN

ν (D) = D it is

lim
N→∞

µN
ν (O) = lim

N→∞
γN
D (O). (3.2)

Therefore conjecture 3.1 deals with the limit ν → 0 at fixed UV-cut-
off N and holds for any observable, while conjecture 3.2 deals with the
physically relevant limit N → ∞ at fixed ν and holds for local (i.e. large
scale) observables. A much weaker conjecture:

Conjecture 3.3. (1) same as in conjecture 3.2.
(2) If O is an observable localized on scale sufficiently small compared to
Kolmogorov’s scale Kν = (νDν3 )

1
4 and µN

ν (D) = D it is

lim
N→∞

µN
ν (O) = lim

N→∞
γN
D (O). (3.3)

3In the relation µN
ν (D) = D given ν the average D depends also on N :

the extra label N on D will be always omitted in the following to simplify the
notation if clear from the context.
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This restricts the observables O to depend on the Fourier’s components
uc
k of the velocity with |k| < Kν , provided µN

ν (D) = D as in the previous
conjectures. Hence an observable O depending on just one k will be a local
observable relevant for conjecture 3.2 but not for conjecture 3.3 unless |k|
is “sufficiently smaller” than Kν .

Conjecture 3.3 is introduced in [19] to cover at least the results of the
corresponding simulations: the simulations were not developed enough to
allow stating that the failure of conjecture 3.2 on observables of scales
over ≃ 1

8Kν , as apparently shewed by the simulations, could be firmly
confirmed; the point was left for consideration in future work.

Remark. Introducing the “viscosity” and “enstrophy” ensembles leads to a
strong analogy between equilibrium statistical mechanics (where the finite
volume regularizes the dynamics) and stationary properties of NS evolution
(where the UV-cut-off regularizes the dynamics): aspects of the analogy
have been pointed out, for instance, in [24, 25, 11]. The conjectures (in
particular conjecture 3.2) make the thermodynamic limit (infinite volume)
analogous to the N → ∞ limit.

4 RNSN -uniform regularity

It is well known that in dimension 3 an algorithm for the construction of a
smooth solution for INS with C∞-smooth initial data and smooth force is
an open problem, [3, 1]: the difficulty being to establish an a priori bound
on the enstrophy, [2].

In the RNSN case the enstrophy of a smooth datum u is finite and
evolves at time t into u(t) = SN

t u with the same enstrophy. To investigate
the regularity it is natural to study first the size of α(u) in a velocity field
of given enstrophy D. Recalling that Ω = (−π, π)3 and ||f || = 1:

Theorem 4.1 [19]. If u ∈ C∞ has enstrophy D(u) = D then the multi-
plier α(u) in RNSN , Eq. (2.3) is bounded by

|α(u)| ≤ C1(D
1
2 +D− 1

2 ) (4.1)

with C1 a universal constant, independent of the UV-cut-off N .

This kinematic inequality (i.e. depending on u ∈ C∞ and unrelated to
the RNSN ) is obtained by combining the Hölder and Sobolev’s inequali-
ties, see for instance [19, Appendix A], applied to

Λ(u) = −
∫
[(u˜ · ∂˜)u] ·∆u dx
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which appears in the expression of the first addend in Eq. (2.3) rewritten
in the form:

α(u) =
Λ(u) +

∫
f ·∆u dx∫

(∆u)2 dx
. (4.2)

A remarkable regularity, uniform in time and in the UV-cut-off, holds
for solutions of the RNSN .

Suppose 0 < ε < α(u(t)) ≤ κ, for some ε, κ > 0, and that the initial
data u(0) and the forcing f satisfy |uk|, |fk| < cp|k|−p for all p > 0 (recall
that we consider only initial data and force with a finite number of modes,
≤ N , for simplicity). Let a(t, τ) =

∫ t

τ
α(u(t′)dt′; then ε(t− τ) < a(t, τ) <

κ(t− τ).

Theorem 4.2 [19]. If u(t) is a solution of RNSN with enstrophy D
and α(u(t)) > ε > 0 then u(t) is C∞-regular with Ck norm ||u(t)||Ck <
ck(ε, ||u(0)||C∞) where ck is independent of t and of the UV-cut-off N .

Proof. Following, for instance, [7] and clarifying the notation, write uk(t) =

e−a(t,0)k2

uk(0)+
∫ t

0
e−a(t,τ)k2

(nk(u(τ))+fk)dτ , where nk(u(τ)) is the non-
linear term of the NSE. Therefore, the sum of the first and last term can be
bounded by cp

|k|p , cp = ||∆pu(0)||2+||∆pf ||2), while the integral is bounded
by

∫ t

0

e−εk2(t−τ)||∂u˜(τ)||2||u(τ)||2 dτ ≤
√
DE
εk2

, (4.3)

where E is an a priori bound on
∑

k |uk|2 (e.g. D itself as |k| ≥ 1) so
that adding the two bounds: |uk(t)|2 < C2

k2 for a suitable C2 (e.g. C2 =
√
DE
ε + c2). Therefore, again, |uk(t)| can be bounded by adding cp

|k|p ,
contributed from the initial datum, and a bound on

∫ t

0

e−εk2(t−τ)
∑

k1+k2=k

|k1||uk1
| |k2|2|uk2

|
|k1| |k2|

dτ. (4.4)

A bound on the latter integral is obtained via the Schwartz inequality
and the remark that k1 + k2 = k implies |k1| |k2| ≥ k0

2 |k|, k0 = 1, and
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∑
k1+k2=k

|k1||uk1
||k2|2|uk2

|
|k1||k2|

≤ 2C2

∑
k1+k2=k

|k1| |uk1
|

|k1||k2|

≤ 2C2

√
D

( ∑
k1+k2=k

1

(|k1||k2|)2

) 1
2

≤ 21+
1
8C2|k|−

1
8

√
D

( ∑
k1+k2=k

1

(|k1||k2|)2−
1
4

) 1
2

≤ 21+
1
8C2

√
D|k|− 1

8

(∑
n

1

|n|4− 1
2

) 1
2

,

(4.5)

where k1 has been changed to n just to make clear that summing over
k1 + k2 = k allows using the Schwartz inequality. Hence integration over
t, as in Eq. (4.3), yields for suitable C3, proportional to

√
D:

|uk(t)| ≤
C3

k2+
1
8

(4.6)

Thus if D is finite the bound |uk| < γk−2, Eq. (4.3), can be improved
into |uk| < γ1|k|−2− 1

8 .
Iterating an autoregularization phenomenon sets in and

||uk(t)||2 ≤ γp

k2+
1
4p

for all p ≥ 1, (4.7)

so that u(t) is a C∞-functions and all its derivatives can be bounded in
terms of the enstrophy D, uniformly in N . See Sec. 3.3 in [7] for related
results on the classic autoregularization.

Remarks. (1) The theorem shows that the condition α(u(t)) > ε for
some ε > 0 has an extremely unlikely possibility. Besides providing a well
defined prescription to construct uniformly smooth approximations of the
RNS equations as sequences of solutions to RNSN , it would imply that the
RNSN attractors consist of uniformly C∞ velocities (i.e. with Ck norms
uniformly bounded for each k and independently of N).
(2) The simulations with large N show that α(u(t)) is observed, after a
transient, not only > 0 but also quite close to ν: in [19] evidence is pro-
vided that this might be an illusion: following the evolution of α(t) on
typical RNSN solutions it is found that as N increases the negative val-
ues of α have a rapidly decreasing probability. So the negative values of
α might be not observable within the precision of the simulation and the
time available to it.
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(3) Of course the latter comment also indicates that, if the above conjec-
tures are confirmed, there could be an alternative way of studying the INS
equation regularity: rather than looking for solutions in suitable function
spaces it would be particularly relevant to study solutions of the RNS
equations trading the search of singularities with the search of extremely
unlikely events wit α < 0.
(4) The closeness to 1 of α(u(t) in the simulations mentioned in (2) above,
raises questions on whether the restriction on the notion of locality in con-
jecture 3.3 can be considered as really needed: it arises from simulations
in which not only α(u(t)) stays > 0 but also fluctuates close to 1. If this
is not due to the precision of the simulation and the time available to it, it
is difficult to believe that the difficulties (which seem unsurmountable at
constant viscosity) disappear if viscosity only slightly fluctuates, leaving
valid the key a priori bounds based on the positivity of the viscosity in,
for instance, [2].

5 INS Lyapunov spectrum

The linearization of the INSN or RNSN flows is the M × M matrix,
M = (d − 1)((2N + 1)3 − 1), formally defined as Jc,k;b,h =

∂u̇c
k

∂ub
h

. To re-
ally define it the uc

k can be represented as real M components vectors
{Us}s=0,...,M holding the uc

k, if d = 3, as
(a) for c = 0: U2i are real parts of u0

k after labeling half of the k arbi-
trarily with i ∈ [0,M/4); and U2i+1 are the corresponding imaginary parts
of u0

k

(b) for c = 1: U2i+M/2 and U2i+1+M/2 are labeled, from the u1
k, likewise

as i ∈ [0,M/4).
Consider first the INSN equations.
Then the equation can be written U̇s = Ns(U,U) and its Jacobian as

Js;r(u) =
∂U̇s

∂Ur
.4

The matrix J can also be represented as an operator on the velocity
fields acting by multiplication by Tc;d(x) = −∂du̇c(x), i.e. (Tv)(x)c =∑

d Tc;d(x)vd(x), to which the viscosity contribution has to be added.
The symmetrized J(u), if Wc,d(x) = − 1

2 (∂duc(x) + ∂cud(x)) is, there-

4A (arbitrary) way to define, in d = 3, the labels i is to consider first the k =
(k0, k1, k2) with k0 > 0, k1 = 0, k2 = 0 assigning them the labels i = k0−1 ∈ [0, N −1],
then consider the k = (k0, k1 > 0, k2 = 0) assigning them i = N + (k1 − 1)(2N +
1) + k0 + N (hence 0 ≤ i < 2N(N + 1) = ((2N + 1)2 − 1)/2), and finally assign to
k = (k0, k1, k2 > 0) the label i = 2N(N+1)+(k2−1)(2N+1)2+(k1+N)(2N+1)+k0+N
and 0 ≤ i < ((2N +1)3 − 1)/2). The total number of labels i is n = ((2N +1)3 − 1)/2).
For each k there are two complex components uc

k, c = 0, 1: then given k, c assign
U2i+n c = Re(uc

k), U2i+1+n c = Im(uc
k).
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fore:
Js
c,d(u) = νδcd∆+Wc,d(x). (5.1)

Following [21] introduce w(x) as the largest eigenvalue of the matrix Js(x).
The (negative of the) Schrödinger operator H = ν∆+w will be considered
as an operator on LN

2 (Ω) of divergenceless velocity fields. The w(x) could
be bounded by (TrW 2)

1
2 which is bounded above by the enstrophy density

1
2

∑
a,b(∂aub(x))

2 = ε(x); the bound, [21], can be improved into:

w(x) ≤ (d− 1)

d
ε(x) (5.2)

as shown in [18] taking advantage that the trace of W (x) is zero.
Denoting µ0,N (u(0)) ≥ . . . ≥ µM,N (u(0)) the Lyapunov exponents for

an ergodic stationary distribution ρ for the IRSN or RNSN , the sum of
the n largest exponents, defined for ρ-almost all initial u(0), is

n−1∑
i=0

µi,N (u(0)) = lim
t→∞

1

2t
log ||ϕ0(t) ∧ ϕ1(t) ∧ . . . ∧ ϕn−1(t)||2 (5.3)

with ϕj(t) = SN
t (ϕ(0)) for almost all choices of the n fields ϕj(0)’s in the

M -dimensional phase space.
The time derivative of the log in Eq. (5.3) yields the expectation value

of J(u(t)) in the state
ϕ0(t)∧...∧ϕn−1(t)

||ϕ0(t)∧...∧ϕn−1(t)||
and, via the max-min principle,

leads to an estimate about the Lyapunov exponents in terms of the the
eigenvalues ak,N (u(t)), in decreasing order, of the operator ν∆ + w on
L2(Ω), [21, p.291]:

Theorem 5.1. For all n:
n−1∑
k=0

µ(k) ≤
n−1∑
k=0

⟨ak,N ⟩ ≤
n−1∑
k=0

⟨ak,∞⟩, (5.4)

where the ⟨·⟩ denote time average or, equivalently, average with respect to
the invariant ρ.

This is obtained in [21, Eq. (1.7)] for the INS evolution, and as a
consequence of the variational principle the argument applies as well to
INSN (and to RNSN if α(u(t)) is eventually > ε > 0 for some ε).

A particularly remarkable estimate is derived, [21, 18], as

Theorem 5.2. For d = 2, 3 and γ ≥ 0∑
ak,N≥0

(ak,N )γ ≤ Lγ,dν
− d

2

∫
Ω

D(u, x)
γ
2 +

d
4 dx (5.5)
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with Lγ,d < ∞ for γ > 0 if d = 2, 3 and L0,3 < ∞. Furthermore the best
constant Lγ,d is Ω–independent.

(a) Whether L0,2 < ∞ is an open problem. The restriction γ ≥ 1 in [21]
is improved to γ ≥ 0 in [18] if d = 3 and γ > 0 if d = 2.
(b) The interest of the case γ = 0 is that it estimates the number N of
positive Lyapunov exponents as bounded in terms of the viscosity and of
η=average energy dissipation per unit time (finite for all N in INSN , RNSN ,
and for INS (i.e. N = ∞) conjectured to be finite and to have a positive
finite limit even as ν → 0, [28, 17]).
(c) Hence for γ = 0, d = 3 the bound on N , implied by Hölder’s inequality
with p = 4

3 , q = 4 applied to Eq. (5.5), is (using also convexity of x → x
3
4 ):

N ≤ L0,3
|Ω|
3

1
4

(ν⟨D(·)⟩
ν3

) 3
4

=
L0,3|Ω|
3

1
4

( η

ν3

) 3
4

(5.6)

and the constant L0,3 can be taken 4

π23
3
2

as in [18, p.475], and |Ω| = L3 if
L is the container side.

Since the Kolmogorov momentum scale Kν is proportional to Kν =

1
L

(
η
ν3

) 1
4

, [4], this can be interpreted as saying that the number of degrees

of freedom resposible for the chaotic evolution N is of the order of the
number of harmonics with momemtum below Kolmogorov’s momentum
scale (i.e. with wave length above Kolmogorov’s length scale).

The above statements hold for INSN independently of N ; they would
also apply, with minor variations, to RNSN equations in the (very unlikey)
case that α(ut) is eventually ≥ ε for some ε > 0.

6 RNS Lyapunov spectrum
The Lyapunov exponents (LE) and the average spectrums (AS) of the
symmetrized linearization matrix are not averages of local observables, so
that the conjectures do not imply a relation between such quantities under
the equivalence condition.

Nevertheless asymptotic, as N → ∞, equality to ν of the averages of
α(u), Eq. (4.2), in corresponding INSN and RNSN , appears to hold in
2D simulations (at large N): since α(u) is non local, if regarded as an
observable, this in RNSN can be shown to be a simple consequence of the
conjecture, [11, 12], but not in INSN .

Therefore it is natural to look if there are other non local observables to
which the equivalence can be extended: and results in Statistical Mechan-
ics (SM) provide important examples of non local observables which have
equal average values in corresponding distributions of different ensembles.
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A few simulations have been performed on the NS problem in the above
context. The results confirm the equality of the averaged Lyapunov spec-
tra, [11, Sec.18], [12], [16].

In 2D a further property emerges from the simulations: if the M aver-
age local LE’s (defined inthe previous section) for RNSN are labeled λk

with k ∈ [0,M), ordered by decreasing size, and if div is the average phase
space contraction rate5 an appoximate “pairing rule” appears [11, 12, 16]:

1

2
(λk + λM−k) =

1

M
div, k = 0, . . . ,

M

2
− 1. (6.1)

The latter relation is well verified in the simulations with small regular-
ization N , so far performed, for all but a few small k’s: and a question is
whether the discrepancies remain as N → ∞. However (as hinted in [5])
it is expected that (λk + λM−k) for large k (hence large N) is a concave
curve.

A pairing rule, rigorously holds in systems governed by a Hamiltonian
of the form H = 1

2p ·p and subject to a force f(q) only locally conservative
and to the constraint of maintaining constant kinetic energy 1

2p
2 via a force

−α(p,q)p (hence α = p·f(q)
p·p ). Hence it is expected to hold for the fluids

decribed by adding a linear friction (“Ekmann friction”, −νu) to the Euler
equations in Lagrangian form (i.e. with a second equation describing the
individual fluid elements trajectories, thus doubling the number of degrees
of freedom and of exponents): in [5, 11] the question is contemplated about
a possible connection between the above pairings.
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