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Abstract. Attractiveness is a fundamental tool to study interacting par-
ticle systems and the basic coupling construction is a usual route to prove
this property, as for instance in the simple exclusion process. We consider
here general exclusion processes where jump rates from an occupied site
to an empty one depend not only on the location of the jump but also
possibly on the whole configuration. These processes include in particular
exclusion processes with speed change introduced by F. Spitzer in [18].
For such processes we derive necessary and sufficient conditions for attrac-
tiveness, through the construction of a coupled process under which, in
any coupled transition, discrepancies on the involved sites do not increase,
or even decrease. We emphasize the fact that basic coupling is never at-
tractive for this class of processes, except in the case of simple exclusion,
and that the coupled processes presented here necessarily differ from it.
We study various examples, for which we determine the set of extremal
translation invariant and invariant probability measures.
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1 Introduction

Dedicated to Errico Presutti.

Exclusion processes are among the most studied interacting particle
systems: despite their very simple form, these Markov processes exhibit
characteristic features that make them ideal toy models for many physical
or biological phenomena.

In an exclusion process, particles evolve on a countable set of sites
S, e.g. Z%, on which multiple occupancy is forbidden. This exclusion
rule is encoded in the structure of the state space which is thus defined
as Q = {0,1}°. For a configuration € Q and for x € S, n(x) is the
occupation number at site z, that is n(z) = 1 whenever a particle is present
on site x, while n(z) = 0 when site = is empty. Particles jump from one
site to another, empty, site according to a probability transition p(.,.) on
S (for S = Z4, we consider only translation invariant cases).

The most widely studied exclusion model is the simple exclusion process
(SEP), in which particles have all the same speed one, that is the transition
rate for a particle in a configuration 7 to jump from its position at site x to
an empty site y does not depend on the location of other particles and thus
simply reads n(z)(1 — n(y))p(z,y). Endowing 2 with the coordinatewise
(partial) order, that is, for 7, € Q,

n<EeVees, nr) < (), (1.1)

we can define the monotonicity property as follows. There exists a coupling
such that this partial order is maintained through the (coupled) evolution
whenever it holds at initial time; as mentioned in [15, Chapter II, Definition
2.3] this property is called attractiveness for particle systems, so that we
will generally say attractive rather than monotone.

Attractiveness is a fundamental property of SEP and a key tool to
determine the set (Z N S). of extremal translation invariant and invari-
ant probability measures for the dynamics (see e.g. Chapter VIII of [15]).
This set consists in a one parameter family {v,,p € [0,1]} of Bernoulli
product measures, where p represents the average particle density per site.
It is also crucial in establishing hydrodynamics for asymmetric transition
probability p(.,.), see e.g. [17, 12]). In such a problem, attractiveness is
embodied through the “basic coupling” construction of two copies (1:):>0
and (&;):>0 of simple exclusion processes, under which particles move to-
gether as much as possible. In other words, if at some time s particles
of both copies attempt to jump, they will try to go from the same depar-
ture site  to the same arrival site y according to p(z,y), as long as those
jumps are permitted (that is if ns(z) = &s(x) = 1 and n,s(y) = &s(y) = 0),
otherwise only the possible jump will take place. Thanks to basic cou-
pling, when the initial distribution is translation invariant, it is possible to
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control the evolution of the density of discrepancies between (1;);>0 and
(&)¢>0, that is, the sites on which the configurations differ. Therefore,
for SEP, the basic coupling is a coupling whose marginals will eventually
become ordered with probability 1, even if it was not the case initially.
Combined with some irreducibility property for the probability transition
p(.,.), the control of discrepancies is the essential step to derive (Z N S),
(see [13, 15)).

However, ever since the seminal paper [18] by Frank Spitzer in which
simple exclusion process was first defined, other exclusion processes have
been considered, named exclusion processes with speed change, in which
jump rates may depend on the configuration around the particle departure
site. Though such a dependence can be treated within a basic coupling
construction for (non conservative) spin flip models, it appeared to be not
so simple for conservative ones. In order to determine the set (ZNS). for
such models, more involved attractiveness conditions and related coupling
constructions were to be found. Sufficient conditions for attractiveness
have been obtained by Tom Liggett in his Saint-Flour lecture notes [14]
for the models introduced in [18], as well as a related coupling leading to
(ZNS). whenever these conditions are fulfilled.

Totally asymmetric versions of exclusion processes with speed change
are also natural models of traffic (see e.g. [9]). Recently, there has been
a renewed interest in exclusion processes, in particular those related to
integrable models, such as the facilitated exclusion processes (see e.g. [4,
6, 2]), or the g-Hahn exclusion process (see [5]). These models have been
analyzed through other existing techniques such as duality, or through
an ad-hoc correspondence with attractive dynamics, such as (generalized)
zero-range processes. In the present paper we give various examples of
exclusion processes with speed change, and among them traffic models for
which the constructed coupling that yields attractiveness has very different
features than basic coupling: for instance it requires jumps between the two
coupled processes with either different departure sites or different arrival
sites.

In this work, we consider a general exclusion process on Z¢ and state
necessary and sufficient conditions under which attractiveness holds. Here
jump rates depend not only on the position and occupation numbers of
the sites at which a jump occurs, but also possibly on the whole configu-
ration, so that the basic coupling construction does not hold beyond SEP
(see our examples in Section 4). We proceed in the spirit of our previous
papers on particle systems of misanthrope type [8, 7], in which the richer
structure of the local state space already imposes non trivial monotonicity
conditions even when rates depend on the configuration only through the
sites at which a jump occurs. Our monotonicity conditions are inspired by
the work of William Massey ([16]). In the present paper, we first give nec-
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essary and sufficient conditions for monotonicity of our dynamics, through
the construction of a coupling that we call increasing. We then refine this
coupling construction to derive what we call a quasi attractive coupling,
under which the discrepancies involved in a coupled transition do not in-
crease. Finally, assuming some irreducibility and an additional assumption
on the dynamics, thanks to another coupling that we call attractive, we de-
scribe, as in Chapter VIII of [15], the set of extremal translation invariant
and invariant probability measures of generalized exclusion processes.

The paper is organized as follows. In Section 2 we define the general-
ized exclusion model, and state our main results: necessary and sufficient
conditions for monotonicity (Theorem 2.4), the existence, for a monotone
process, of an increasing coupling that is quasi attractive (Theorem 2.7),
and the determination of the set (ZNS), (Theorem 2.9). In Section 3, we
prove Theorem 2.4 and give in a series of propositions the construction of
the successive generators leading to the proofs of Theorems 2.7 and 2.9.
These propositions are proved in Section 5. In Section 4, we illustrate our
results with examples, showing first that our construction reduces to basic
coupling in the case of simple exclusion and only there. We then consider
exclusion processes with speed change, extending the results of [18, 14].
Finally, we turn to traffic models, considering first a generalization of the
totally asymmetric 2-step exclusion process studied in [10], and a sym-
metrized version of the totally asymmetric traffic model from [9]. In all
cases, we compute explicitly the attractive coupling rates and give the set
of invariant measures (Z N S)..

Acknowledgments. We are grateful to the referees for their careful read-
ing of our manuscript, and for their comments and suggestions that helped
us to improve our paper. We thank Lorenzo Bertini for useful discussions
in the first stages of this work. T. Gobron acknowledges support from
the Labex CEMPI (ANR-11-LABX-0007-01). Part of this work has been
conducted within the FP2M federation (CNRS FR 2036).

2 Model and main results

In this section, we define the class of exclusion models we consider and state
our two main results: Theorem 2.4 gives necessary and sufficient conditions
for monotonicity, and Theorem 2.7 links monotonicity and attractiveness
for this model, through a coupling construction.

We first introduce a general exclusion process (7;)¢>0 on S = 7%, to-
gether with some notation and general properties. Let Q = {0,1}° be its
state space and L its formal generator, acting on any cylinder function f
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and for any configuration n € €,

Lfm) = > n@)@ =)y v)[f0™) = f()],  (2.1)

z,yeS

where Iy (z, y) is independent of () and 7(y), and where for any (z,y) €
52, n™ Y is the configuration obtained from 7 by exchanging the occupation
numbers in configuration 7 at sites x and y

nly) ifz=uz,
n7¥(z) = (@) ifz=y, (2.2)
n(z) otherwise.

The process is thus conservative, and the quantity n(x)+7(y) is conserved
in a jump from site x to site y. We denote by (T'(¢),t > 0) the semi-group
of this process.

Remark 2.1. When the jump rates I'y(x,y) are independent of the con-
figuration n, and reduce to a probability transition (p(x,y),z,y € S) on S,

Ly (z,y) = plz,y), (2.3)

one recovers the simple exclusion process.

We assume the following conditions on the jump rates, so that (2.1)
is the infinitesimal generator of a well defined Markov process (see [15,
Chapter 1)):

sup Z supI',(u,v) < 400 and sup Z sup 'y (u,v) < +o0. (2.4)
vGSuesneQ uesvesnGQ

Of course, these generic conditions can be alleviated, depending on the
example at hand.

Let us recall the monotonicity property for particle systems, quoting
[15, Chapter II]. We denote by M the set of all bounded, non-decreasing,
continuous functions f on 2. The partial order (1.1) induces a stochastic
order on the set P of probability measures on (2 endowed with the weak
topology:

Vv, € P,v <V & (Vfe Mu(f) <V(f)). (2.5)

Theorem 2.2 ([15, Chapter II, Theorem 2.2]). For the particle sys-
tem (n;)i>0 the following two statements are equivalent.

(a) f € M implies T(t)f € M for allt > 0.

(b) Forv,v' € P, v <V implies vI'(t) < V'T(t) for all t > 0.
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Definition 2.3 ([15, Chapter II, Definition 2.3]). The particle sys-
tem (1m)¢>0 is monotone if the equivalent statements of Theorem 2.2 are
satisfied.

Our first main result is the following set of necessary and sufficient
conditions for monotonicity.

Theorem 2.4. The exclusion process defined by (2.1) is monotone if and
only if for any couple of configurations (£,¢) € Q2 such that & < (, the
following hold:

1) For ally € S such that ((y) =

S e@) Ne(wy) = Telz,p)] " < ¢la) 2))le(,y),  (2.6)

zeS zeS

2) for all x € S such that &(z) =

ST =) [Pela,y) = Te(z,m)] " < D)1 — &) Te(x,y). (2.7)

yeSs yes

Remark 2.5. Equations (2.6)—(2.7) can be interpreted in the following
way. First, by conditions (2.4), the sums appearing in (2.6)—(2.7) are
always finite. The left hand side of (2.6) measures the excess rate at which
an empty site y is filled in the smaller configuration &, so that coupling
jJumps in both configurations from the same initial sites x to y will be clearly
not sufficient to preserve partial order if this sum is different from zero.
Equation (2.6) suggests that partial order could be preserved by coupling
such “excess rate” jumps with jumps involved in the right hand side, that is
jumps to y from sites occupied in configuration (, but empty in . Equation
(2.6) just states that such rates are sufficient to do so.

Equation (2.7) can be interpreted in a similar way: Now the left hand
side measures the excess rate at which a filled site x is depleted in the
larger configuration (, so that again partial order could not be preserved
by coupling jumps in both configurations from site x to the same site y
whenever this sum differs from zero. Again equation (2.7) suggests that
partial order could be preserved by coupling this second set of “excess rate
Jumps” with jumps in the smaller configuration £ from the same site x to
any site y, empty in configuration & but already filled in (. Again equation
(2.7) states that the jump rates are just sufficient to do so.

In Section 3, we prove that these conditions (2.6)—(2.7) are necessary
and rely on them to build in Propositions 3.2 and 3.3 a coupling between
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two copies of the process. A coupling is called increasing if it preserves
the stochastic order between marginal configurations. In Section 5, we
achieve the proof of Proposition 3.3, that is, this coupling is proven to be
increasing under the hypothesis that inequalities (2.6)—(2.7) hold, showing
in turn that these conditions are also sufficient.

Beyond monotonicity, a coupling construction turns out to be essen-
tial to characterize the set (ZNS), of extremal invariant and translation
invariant probability measures of (1;)¢>0. In our setting, the marginals of
the coupled process built in Propositions 3.2 and 3.3 are not necessarily
ordered, and the evolution of the discrepancies between them is the main
object to control:

Definition 2.6. In a coupled process (&;,(;)i>0, there is a discrepancy at
site z € S at time ¢ if &(z) # ((2).

As recalled in the introduction, for the simple exclusion process (SEP)
endowed with basic coupling, in any coupled transition the number of
discrepancies on the involved sites remains constant whenever the values
of the two marginal configurations are ordered, but decreases otherwise.
Beyond this case, an increasing coupling does not necessarily impose con-
straints on the coupled evolution of unordered pairs of configurations, so
that the number of involved discrepancies in a transition is not necessarily
non-increasing. However here we have the following;:

Theorem 2.7. Suppose that the process defined by (2.1) is monotone on
Q = {0,1}°. Then there erists an increasing coupled process on € x Q
such that in any coupled transition, the number of discrepancies does not
increase. Such a coupling is called a quasi attractive coupling.

The proof of Theorem 2.7 relies on the explicit construction of such a
quasi attractive coupling, which refines the previous increasing one. It is
described in Proposition 3.9, while proofs of existence and attractiveness
are postponed to Section 5.

To conclude with the characterization of the set (Z NS),, we need not
only that in the coupling process the number of discrepancies involved in a
coupled transition does not increase with time, but also that this number
decreases. For this, we need to construct again another coupling process,
But it requires an additional assumption of the dynamics.

Definition 2.8. For an exclusion process with generator (2.1), an open
edge (z,y) (for z,y € S) is an edge such that I'¢(z,y) > 0 for any configu-
ration £ € Q. The set S is then fully connected if for all (x,y) € S?, x # v,
there exists a finite open path in S between x and y, that is a sequence
{zo,- -+ ,zn} for some n > 0 such that (z;_1,z;) is open for i € {1,--- ,n}
with either xy =« and z,, =y, or xg =y and x,, = x.
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In Subsection 3.3, we will explain how, whenever for the dynamics S
is fully connected, it is possible to construct a coupling such that any pair
of discrepancies of opposite sign have a positive probability to disappear
in finite time. We call this coupling an attractive coupling. When the
jump rates are translation invariant, this reduces the derivation of the set
(ZNS), essentially to the classical proof, originally applied to the simple
exclusion process (going back to [13]), which leads to the following theorem.

Theorem 2.9. Let (1n;)¢>0 be an exclusion process with generator (2.1)
and translation invariant jump rates, such that S is fully connected in the
sense of Definition 2.8. If (n:)i>0 is attractive then

1) The set of translation invariant, extremal invariant measures (Z N S),
is a one parameter family {p,, p € R}, where R is a closed subset of
[0,1] containing {0,1}, and for every p € R, p, is a translation invariant
probability measure on Q with p,[n(0)] = p; furthermore, the measures p,
are stochastically ordered, that is, p, < py if p < p';

2) if (m)¢>0 possesses a one parameter family {u,}, of product invariant
and translation invariant probability measures, we have (ZNS)e = {fp},-

Our results can be extended in various ways, to more general conserva-
tive models, as well as to some mixed non conservative models with both
exchanges and configuration independent birth-death events, but this is
beyond the scope of the present paper.

3 Proofs of main theorems and coupling con-
structions

This section is devoted to the construction of the coupling necessary to the
proof of Theorem 2.4 (in Subsection 3.1), in three steps. We first prove
that inequalities (2.6)—(2.7) are necessary conditions. In order to prove
that these conditions are also sufficient, we introduce in Proposition 3.2
the general form £ of a Markovian coupling generator associated to L,
depending on a set of coupled transition rates Gg(.). Those rates are
defined in Proposition 3.3 and we prove in turn that with such a choice,
and whenever inequalities (2.6)—(2.7) are fulfilled, the generator £ defines
an increasing coupling. We continue this section (in Subsection 3.2) with

the proof of Theorem 2.7, introducing in Proposition 3.9 the generator £
of a quasi attractive coupling. Finally we explain in Subsection 3.3 how to
prove Theorem 2.9 by refining the construction of an attractive coupling
(in Propositions 3.11 and 3.12). Proofs of the above Propositions are given
in Section 5.
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3.1 Proof of Theorem 2.4

Inequalities (2.6)—(2.7) are particular instances (and in turn the worst
cases) of a larger set of inequalities (first derived by A.W. Massey [16])
that the coefficients of the infinitesimal generator of a monotone Markov
process need to fulfill. We sketch their derivation hereafter and we refer to
[16] for a thorough derivation (see also [8] for details). The idea is to derive
sensible necessary conditions on the jump rates for a Markov process to be
monotone, using the fact that the characteristic function of any increasing
(or decreasing) cylinder set V' C €, is a monotone cylinder function on €.
Let (&)1>0 and ((t)i>0 two instances of a monotone process with initial
conditions & and (o such that & < (o, then 1y (&) < 1y(¢:) (and reverse
inequality for a decreasing set). In addition if initial conditions are chosen
so that & € V and (o ¢ V, the same inequality holds for the ratios

Ly (&) = 1v (&) < 7 (1v(G) — 1v(Co))

S
| =

for all ¢ > 0. Taking properly the limit ¢ — 0 gives then inequalities
involving the rates of the Markov generator, hereafter named “Massey
conditions” and stated below in our case:

Proposition 3.1 (Massey conditions). If the particle system defined
n (2.1) is monotone, then for all configurations (§,¢) € Q x Q such that
£<¢

1) For all increasing cylinder sets V- C Q such that { ¢ V,

Z& Y)Te(@, y) v (€7Y) <Y ()1 = C(y)Te(x, y)1v (™). (3.1)

z,y

2) For all decreasing cylinder sets V' C Q such that £ ¢V,

ZC y)T¢(@,y)1v (¢7Y) < Zﬁ y))le(@,y)1v (€7Y). (3.2)

3.1.1 Proof of necessary conditions

Equations (2.6) follow from (3.1) by taking a particular sequence of cylin-
der increasing sets and passing to the limit. Equations (2.7) follow in the
same way from (3.2). Let &, ¢ be two configurations such that £ < ¢ and
take y such that ((y) = 0. For n > 0, we construct a configuration 7, as



272 T. Gobron and E. Saada

follows
1 ifx=y,
m(z) =<1 if|lz—yl| <n,&x)=1and I¢(z,y) < Te(z,y), (3.3)
0 otherwise.
We define the increasing cylinder set V,, = {p € Q,p > n,}. Since
¢(y) = 0, configuration ¢ (and hence &) does not belong to V,,. Equation

(3.1) applied to V,, now selects single jumps which allow to enter V,,, hence
moving a particle from any site  with n,(z) = 0 to site y. We thus get:

> @) = (@) Tela,y) < Y C@) (1 —na(@)Tela,y).  (34)
zeS zeS

Note that by conditions (2.4), both sums are finite. For all 2 # y, we have

@)X =m(z)) = (@)1 =nu(2))(1 = &) + (@) (1 —mn(2))E(2)
= (@)1 = &) +&(@) (1 = nal2),

where the second line comes from the fact that n,(x) < &(x) < ((z).
Inserting this expression in the right hand side of (3.4), we get

> @)1 = (@) (Te(z,y) — Te(z,y) <> () 2))T¢(2,y),

€S €S

which gives, using definition (3.3) of n,

S @) el y) —Te(zp)] " + Y @) (Telay) —Te(x,y))

z€S:||lz—y||<n z€S:||lz—y||>n

<Y (@) ) le(z,y) (3.5

zeS

Conditions (2.4) now imply that the second term in the left hand side of
(3.5) goes to zero as n — co. Taking the limit n — oo in (3.5) thus gives

Z& ngy ngy <ZC x))le(z,y)
€S €S
which is Equation (2.6).
Equation (2.7) can be derived in a similar way from (3.2). Let again
&, ¢ be two configurations such that £ < ¢ and take now x € S such that
&(z) = 1. Let n > 0 and consider the configuration 7,, such that:

0 ify=u=x,
m(z) =<0 ifflz—yl| <n,{(y) =0and Ie(z,y) > Te(z,y), (3.6)
1 otherwise.
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We construct the decreasing cylinder set V;,, = {p € Q,p < n,}. Since
&(x) = 1, the configuration £ (and thus ¢) does not belong to V,,. Equation
(3.2) now selects single jumps which allow to enter the decreasing set,
thus removing a particle at x and moving it to any possible site y where
7n(y) = 1. We thus get

) YITe(,y) <Y m(w)(1 —E@)Te(z,y).  (3.7)

yeS yeS

For all y # x, we now have

(@)1 —EW) = na(y)(1—EY)A—C(y) +na(y) (1 —E(y))C(Y)
= (¥ =) + )1 —EW)),

where we have used that n,(y) > ((y) > &(y). Inserting this expression in
the right hand side of (3.7) gives

> )1 = CW)(Tel@,y) —Te(z,y) <> CY) y)Te(z,y).

yeS yeSs

Using the definition (3.6) of 1, we get

S (- W) [Telz,y) —Telw,y)] " + Z (1~ ¢®)(Te(,y) — Telz.y))
Iy al<n Iy %] >n
<> () y))Le(x,y). (3.8)
yeS

In the limit n — oo, the second term in the left hand side of (3.8) goes to
zero and one gets

ST =) [Pela,y) = Te(z,m)] " <> ¢y) )Te(,y),

yeS y€S

which is Equation (2.7).

3.1.2 Coupling construction

We now use these ideas to construct a coupling process then prove that it
is increasing, that is, we proceed with the second and third steps of the
proof of Theorem 2.4.

We first define the general form an increasing coupling process should
take.
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Proposition 3.2. The operator L defined, for any cylinder function f on
Q x Q and any pair of configurations (£,() € Q x Q, by

Lf(& Q)

=Y &)1 —Em) <F§(m1,y1) =D Claa)(1 - C(y2))G§,¢($hy1;Ji2,y2))

z1,y1€S z2,Yy2€S

X (f(£x17y17<) - f(€7 C))

+ D (a1 =) <Fc(fc2’yz) - &) —5(3/1))Gs,<(x1,y1;xz,yz)>

z2,y2€5 z1,y1 €S

x (f(€:C7"2) = f(£,0)

+ Y > @)= E))C(2) (1 = C(2)) Gee (w1, Y15 2, y2)

z1,Yy1 €S ®2,y2E€S

X (FE,¢™) — f(€,0)) (3.9)

is the generator of a Markovian coupling between two copies of the Markov
process defined by (2.1), provided that for all pairs of configurations (€,() €
Q02 the coupling rates G¢ ¢ are non-negative and the following hold.

1) For all (z1,y1) € S?,

D w21 = () Gec(w1,y1322,y2) < Telar,y), (3.10)

T2,Y2€8

2) for all (z2,y2) € S?,

D &)1 =€) Geglor,yi;w2,y2) < Telwa, o). (3.11)

Z1,Y1€S

Proof of Proposition 3.2 is postponed to Section 5. As a shorthand
notations for the sums appearing in the left hand side of equations (3.10)—
(3.11), we define for all couples of configurations (£,{) € 2 x Q and all
(x,y) € S?, the quantities

peclry) = Y C@)A-CW)Geclw,ya,y),  (3.12)
z'y' €S
Beclmy) = > &@NA-EW)Gecl@ Y say).  (3.13)

z',y'es
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3.1.3 Definition of coupling rates and proof of increasingness

We now give the set of coupling rates Ge¢¢(z,y;2’,y') which defines an
increasing coupling.

We first introduce some notations. Let & and ¢ be two configurations
in . For all z € S such that {(z) = {(z) = 1, we define the two sets

Y = {yeS:&y)=0,((y) =1,T¢(x,y) >0}, (3.14)
Ve {ye5:&(y) =Cy) =0, T'¢(z,y) > Te(z,y)}.  (3.15)

Whenever they are non empty, we define an arbitrary order on these two

sets, possibly depending on £, ¢ and x, and denote by yg? (respectively

e, ?) the k™ element in Y. (respectively Y§ ¢)-

Similarly, for all y € S such that &(y) = ((y) = 0, we define

X! = {zeS: &) =()=1Te(x,y) > Te(z,y)},  (3.16)
Xie = {ze€S:¢a)=0/(z)=1T¢(z,y) > 0} (3.17)

We define an arbitrary order on these two sets as well, possibly depending
on &, ¢ and y, and denote by a:g]g (respectively Té’?) the k' element in
X{ . (respectively Yg}c).

For definiteness, when one of the above sets is finite or empty, say
| | Cy < 0o, we may extend the ordered sequence of its elements to
an mﬁnlte one, (yg"C )n>0, by setting arbitrarily y C =0 for all n > Cy.

For all x € S such that {(x) = ((x) = 1, We define the two series

x,n z,0 _ —
(S&< )nZO and (TE’C)nzo such that S&C =0, T&C =0, and

n/\\ \

Ser = Z Te(x,yif)  Yn>0, (3.18)
k=1
n/\\??c\ N

Tee = ) [Fc(l’,?z,’g) Le(z, ?ff)] ¥n > 0. (3.19)
k=1

Similarly, for all y € S such that £(y) = ((y) = 0, we define the two series
n oy 0 gyl
(12 )nzo and (SM)HZ such that T = 52 = 0 and

&c =
n/\|X£<| N
n K &
TR =) [Ff(xg@y)—rg(xg,c,y) vn >0, (3.20)
k=1
n/\|fgv<.|
S¢l o= Y L@y >0 (3.21)

k=1



276 T. Gobron and E. Saada

Note that by definition, the four series have nonnegative terms and are
nondecreasing, and by (2.4), they are also convergent.

Finally, for any two convergent series (Sy,),>0 and (T,)n>0, we define
the quantity Hy, ., (S,T) for all n > 0 and all m > 0 as

Hmm(S,T) = Sm /\Tn - Smfl /\Tn - Sm /\Tn,1 + Sm,1 /\Tnfl. (322)

Note that H,, ,,(S.,T) > 0 whenever S. and T  are nondecreasing series.
Moreover we have

Hpn(S,T)=(Sm ATy — Sp-1VTh_1)". (3.23)

Indeed to check that the right-hand sides of (3.22) and (3.23) are equal,
we consider all the possible cases, that is S, < Th_1, Smo1 < Tho1 <
Sm < Tna Smfl < Tnfl < Tn < Sm7 Tn < Smfly Sm < Tn and S’mfl <
T, < Spn.

We can now state Proposition 3.3, which ends the proof of Theorem
2.4.

Proposition 3.3. Under conditions (2.6)—(2.7), the generator given by
(3.9) with coupling rates Ge¢ ¢ below, defines an increasing Markovian cou-
pling.

Geclz,y;2',y)

6(x,2") d(y, y’)Fs(:C Y) AFc(w Y)
+6(x, 2’ Z 3y, ygg iy 7?2&) (Sg’C’TE,Z)
m,n>0
8y D 8w, a )0 TEL) Hn(TE Sec)
m,n>0
if £ < ¢,
= (x,2") 0y, ¥ ) Te(x,y) AT¢(x,y) (3.24)
+8(z, ) Z 5(y, ?fé" (39 ) Hmn (T les Sc )
m,n>0
1 <Y ”
m,n>0
if £ > ¢,
0 otherwise.

Remark 3.4. With the above choice, jumps are uncoupled unless & and ¢
are ordered. In such a case, the coupling rate Ge ¢ (x,y;x',y’) is possibly
non zero only if the two coupled jumps have either the same initial point,
the same final point, or both.
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Remark 3.5. When the two configurations are equal, { = &, both 725 =0
forallx € S and ng =0 for ally € S. The only nonzero coupling rates
are thus the diagonal terms Ge¢(z,y;x,y) = T'e(z,y) so that marginals
remain equal.

Remark 3.6. In definition (3.24), the first (resp. second) sum appear-
ing in the right hand side in the case & < ( is zero except possibly when
there is a jump in the first marginal £ from a site x to a site y € Y,
coupled with a jump in the second marginal ¢ from the same site x to a
sitey’ € YgC (respectively a jump in the first marginal from a site in ng<
coupled to a jump in the second marginal from a site in Y?,C to the same
site y). Moreover, by the definitions (3.14)~(3.15) of Y, and ?zc (resp.
definitions (3.16)—(3.17) of ngg and Tgc) y # 1y in the first sum while
x # a' in the second sum (in both cases £ < ¢ and & > ().

Remark 3.7. The ordering in the four ensembles defined in (3.14)—(3.17)
can be chosen arbitrarily, possibly as a function of the configurations &
and ¢ and on the (initial or final) common jump site. The best choice (in
view of the desired goal) may depend on the particular system at hand,
and different choices lead to different increasing couplings. Furthermore,
one can prove that all these couplings are extremal in the sense that they
cannot be written as a convexr combination of other increasing couplings,
while any convex combination of these is again an increasing coupling.

Corollary 3.8. In the particular case S = Z endowed with the usual order,
the coupling rates in Proposition 3.3 have a simpler form: Let £, € € be
two configurations. For all (x1,y1) € S?,

Ge (@, y1371,91) = Te(zr,y1) ATe(21,91)- (3.25)

For all (x1,y1,72,y2) € S* such that (z1,y1) # (22,v2),

Gec(@1,y1;02,y2) =

5m1,a:2 [Hég(xl; ylayZ)]+ + 5y1,y2 [Héc(xlva;yl)]Jr ng < C»
5r1,zz [Hé,g(xl’ yQayl)]+ + 5y1,yz [Hg@(manl;yl)]Jr ng > C7 (326)

0 otherwise.

with, for all (z,y,z) € S3,
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H (w9, 2) =

(3" —eWNCE)Pelz, ) A (D (1= () [Te(a,2) = Te(a, 2)] )

("=l ) v (3 (=) [De(x, ) = Tel, 2)] ),
(3.27)

s N
Hg’g(x’yaz) -
(Z (a)[Te(', 2) = D¢l 2)] Z C(y Ny, 2))
Zf )[Te(a’,z) = Te(a, 2)] Z (ly W)Ly, 2))-

(3.28)

3.2 Proof of Theorem 2.7

The above increasing Markovian coupling preserves the ordering between
marginals when they are ordered but leaves them otherwise uncoupled. In
order to deal with unordered configurations and control their discrepancies,
we show in the next proposition how to build an attractive Markov process
out of an increasing one.

Proposition 3.9. Suppose that the process defined by (2.1) is monotone
on Q ={0,1}5. Let L be an associated increasing process defined on Q x
as in Proposition 3.2, with the coupling rates defined in Proposition 3.3.

The operator ZD defined on all cylinder functions on 2 x Q as

L7 fe.0) =
Z g(xl)(]' - g(yl))rﬁ(xlvyl)(f(fxl’ylvC) - f(gv C))
x1,y1ES
+ > Cla2)( = C(y2))Te (w2, y2) (F(£,¢™¥2) = f(£,€))
To,y2ES

+ Y o) - Em))a) (1 — () GPe w1 yrs w2, p2)

z1,y1E€S T2,Yy2€S

) (€7, ¢m¥2) — f(€7%, Q) = f(6,6™%) + f(£,C)), (3.29)

where for all (€,¢) € Q x Q, all (x1,y1) € S? and all (x2,ys) € S?,
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ch(xla Y1; 332»y2)

= > (EVOEI-(EVOW)

z,yeS
X ————Geeve(®1,y1;2,9) Geve o (2, y;22,42),  (3.30)
Nec(z,y) V¢ svee
T , if T ,y) >0,
Neley) = {Levelow) Ulecty) (3.31)
1 otherwise.

is a quasi attractive coupling under which, in any coupled transition, the
discrepancies in the involved sites do not increase.

Remark 3.10. When the configurations &,( are ordered, £ < (, for all
(1,91, %2, y2) € S* such that (z1)(1—E&(y1))¢(22)(1-((y2)) # 0, we have

Gfg(m,yl;xz?yﬂ = Ge (21, Y1522, Y2), (3.32)

so that ZDf(g, ¢) in (3.29) reduces to Lf(&,¢) in (3.9) when marginals are

ordered.

3.3 Invariant measures

In Proposition 3.9 above, in any coupled transition, the discrepancies in
the involved sites are proven to be non increasing, but the characterization
of the set of invariant measures, Theorem 2.9, requires a bit more, namely
the proof that there is a positive probability that any pair of discrepancies
of opposite sign (that is, the marginals have opposite occupation numbers,
&(x) > ((x), £&(y) < ((y) for some z, y in S) disappears in finite time
under the coupled process. As for the case of simple exclusion process,
this requires additional hypotheses on the process. One may consider
processes for which S is fully connected in the sense of Definition 2.8. We
then have the following:

Proposition 3.11. Consider an exclusion process with generator (2.1)
such that S is fully connected in the sense of Definition 2.8. Whenever
the jump rates are such that all inequalities in (2.6) and (2.7) are strict,
there exists an increasing coupling that is attractive, so that for the coupled
process extremal, translation tnvariant, invariant probability measures are
supported on the set of coupled configurations {(£,¢) : € < ¢} U{(&, () :

§>(}
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Next proposition gives an example of such an attractive coupling.

Proposition 3.12. Consider an exclusion process with generator (2.1)
such that S is fully connected in the sense of Definition 2.8, and such that
for the jump rates, all inequalities in (2.6) and (2.7) are strict. Then the
following set of coupling rates defines a new increasing coupling.

Gec(z,y;a’,y) =
§(z,2") 0(y,y') e(z,y) AT¢(z, yl)
+o(z, 2 ) yeve 1, cye NeT Te(z,y) [Te(z,y) — Tele,y)]"

+0(y, 9 N oexy, 1o LT Pe(z,y) = Te(a, )] Te(a',y)
| FE<C,
o(z,2") 6(y,y') Le(w,y) AT¢(,y)

02 ez Lyeve, Ni* Pe(.) — Te(a.y)]* Te(ary))

0y ) Ly, Loex?, N; Pe(ay) [0e(@.y) — Tl )]

| ife>¢,
0 otherwise,
(3.33)

where

R

and similar deﬁm’tions for the other normalization factors, where Sg’c*,

Sg’C, Sgg and S 5 are the limits of the series (3.18)—(3.21), and are prop-
erly defined in Equations (5.2)—(5.5).
Using a similar construction as in Proposition 3.9, a new quast attrac-

) . =D ) . .
tive coupling L~ can be constructed on top of the above increasing coupling
(3.33). Whenever the conditions of Proposition 3.11 hold, this new cou-
pling is attractive.

Proposition 3.11 is the crucial step in the determination of the set
(ZNS)e, and in proving Theorem 2.9. This theorem is analogous to [3,
Proposition 3.1] and to [8, Theorem 5.13], to which we refer for a full
description of this approach. It has the same (classical skeleton of) proof,
although the transition rates in our case depend on more sites than the
departure and arrival sites of a jump. The key point of the proof is to
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establish that for the coupled process, all extremal, translation invariant
and invariant probability measures are supported on the set of coupled
configurations {(£,{) : £ < ¢} U{(,,¢) : & > (}, and this is given by
Proposition 3.11.

In the next Section, we apply our results to various simple but non
trivial examples.

4 Applications

In this section we illustrate our results through various examples, and
check for them monotonicity conditions of Theorem 2.4. Whenever these

conditions are fulfilled, we construct the coupled generators £ and ZD by
applying Propositions 3.2 and 3.9. In one example we also determine the
coupling rates for an attractive coupling given in Proposition 3.12.

In Subsection 4.1, we show that in the case of simple exclusion, our
construction reduces to basic coupling. In Subsection 4.2 we consider
the exclusion process with speed change introduced by F. Spitzer in [18]
and studied by T.M. Liggett in [14]. In this case, we extend the range
of previously known attractiveness conditions to necessary and sufficient
ones. Finally, in Subsections 4.3 and 4.4 we introduce and study models
inspired by traffic flows.

4.1 Simple exclusion

For the simple exclusion process (see Remark 2.1), jump rates are inde-
pendent on the configuration,

forall ¢, ( in 2 and all z, y in S.

Monotonicity conditions (2.6)—(2.7) reduce to non negativity of jump
rates and are thus always satisfied. We show below that the coupling
defined in Proposition 3.9 reduces to basic coupling in this case. In fact,
using simple exclusion rates (2.3), the jump rates defined through Formula
(3.24) become, for all (z1,y1,22,y2) € S* :

55171,362 5?/1,@/2 p(xlvyl) if £ <¢oré >,

) (4.2)
0 otherwise.

G&C(Ilayl;fmal@) = {

Therefore, the increasing Markovian coupling £ defined through Propo-
sition 3.3 coincides with basic coupling on configurations with ordered
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marginals. Hence we have

Peeve(@y) = @)1 —E(y)p(,y), (4.3)

vevec(zy) = C(@)(1 = C()p(x,y), (4.4)
and

RS e &

and using (4.2),

Gg<($1,y1;$2,y2)
S EVO@ - €V Om)

1
X Geeve(®1,9157,Y)Geve o (7, Y3 T2, Y2)
NE’C (‘T7 y)

= 01,25 Oyr,y, (EV O(21) (1 = (EV ) (y1)) p(21, 11)- (4.6)

Finally, the generator of the coupling process defined in Proposition 3.9
reads

271, 0) =
D p(r &) (1 — €))L = Cw) (FE™Y,¢™Y) = f(£,0))

z,yeS

+ > pla,y)é@) (1 =) (1 - @)1= CW) (FE™.Q) = F(€,0)

+ Y p,y)C(a) (1= C) (1 —&@) (1= EW))) (F(5,¢7Y) = f(£,0))-
(4.7)

Hence ZD identifies to the basic coupling generator for SEP. This comes
from the fact that non zero coupling rates in (4.2) are diagonal, so that
the summation in formula (3.30) reduces here to a single, diagonal, term.

We need to emphasize here that SEP is the only exclusion process for
which the basic coupling is monotone. Let us consider some exclusion
process with rates I'y(x,y), possibly dependent on the configuration 7.
We now prove that monotonicity of the associated basic coupling implies
that the exclusion process is the simple exclusion, that is the rates are
independent on the configurations. The generator of the basic coupling
reads
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LIEC) =
> @)1= €EWC) (1 = CW))Te(w,y) AT¢(,)

z,yeS

X (f(gm,y, Cmy) - f(§7 C))
+ ) @)1= &) (Te(a,y) — ((@)(1 = (()Te(@,y) ATc(w,y))

z,yeS

X (f(€7Y,¢) = f(£0))
+ ) @)1= W) (Te(z,y) — E@)(1 = £))Te(@,y) AT (2, y))

z,yeS
X (f(£,¢™Y) = f(£0)).
(4.8)

Now take two configurations &, ¢ such that ¢ < ¢ and (z,y) € S? such
that £(z) = 1 and ((y) = 0. Monotonicity implies then that the rates
of uncoupled jumps from x to y are identically zero since otherwise or-
der would be broken either in x (in case of an uncoupled jump of the (-
particle) or in y ( in case of an uncoupled jump of the &-particle). Therefore
monotonicity of the basic coupling implies that the jump rates are equal,
Te(x,y) = Te(x,y). This can be extended to any pair of configurations
(&,¢) whenever £(z) = ((z) = 1 and £(y) = ((y) = 0, as follows. Let
o =¢&N(; clearly o(z) = 1, o(y) = 0 and both 0 < ¢ and 0 < . Thus
from the above result, I'y(z,y) = T'e(2,y), T'o(z,y) = I¢(z,y) and thus
I'¢(z,y) = T¢(x,y). Jump rates are thus independent on the configuration,
I';)(z,y) = p(x,y) and the only exclusion process for which basic coupling
is monotone is the simple exclusion process.

4.2 Exclusion processes with speed change

We consider here a family of models, introduced by F. Spitzer in his seminal
paper [18], and later studied by T.M. Liggett in [14, Part II, Sections 1.1,
4.1]. The jump rates from a site x to a site y are defined as the product
of a configuration dependent velocity c¢(z) for the particle at site « and
a configuration independent jump intensity between sites x and y. This
form is particularly interesting in the original context of a lattice gas. The
jump rates thus read

Fn (17, y) = Q(za y)cn (I)v (49)

where ¢ : S x S — [0, 400) satisfies for all z € S, g(z,2) = 0 and

sup Z[q(x, y) +q(y,x)] < 400 (4.10)
xrec yeS
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and c satisfies

sup  ¢p(z) < 4005 supz sup |cpu (@) — cp(2)] < 00,  (4.11)

zeSneX zGSyeSneX
where
1- if z =
IS S (112)
n(z) otherwise.

In this context, the monotonicity conditions (2.6)—(2.7) of Theorem 2.4
read: For all pair of configurations (€,¢) € Q2 such that € <, one has

1) for all y € S such that ((y) =0,

S e@)glz,y) fee(@) — cc(@)] T <3 @)1 — &) al@,y) e (x), (4.13)

zeSs zeS

2) and for all x € S such that £(x) =1,

Q- —cw)a,y) [ec(@) —ce@)] " < (O )1 —EW)) alw, y) )ee(=).

yeS yeSs
(4.14)

Note that due to the special form of the jump rates (4.9), jump veloc-
ities factorize on both sides of the equations in (4.14), while there is no
similar simplification in (4.13).

Within this class of models, T.M. Liggett [14] introduced another set
of sufficient conditions for monotonicity, which read in our notations as
conditions (4.15)—(4.16) below: For all pair of configurations (&,() € Q2
such that £ < (, one has

1) forallz € S,
ce(x) < cc(), (4.15)

2) for all x € S such that {(x) =1,

O - =<cw)a,y)ec(z) < O A —&) alz,y) )ee(z).  (4.16)

yeSs yeS

The purpose of this subsection is to compare both results and show
that (4.15)—(4.16) are sufficient, but not necessary, conditions.
First, we have the following
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Proposition 4.1. For exclusion process with speed change and rates de-

fined as in (4.9), conditions (4.15)—(4.16) are sufficient conditions for
monotonicity.

Proof. we verify that conditions (4.15)—(4.16) imply necessary and suffi-
cient conditions (4.13)—(4.14).

Suppose that conditions (4.15)—(4.16) hold. On one hand, under the
non-decreasing conditions (4.15), the left hand side of inequation (4.13)
is identically zero; inequations (4.13) are therefore trivially verified since
their right hand side is always non negative. On the other hand, for any
two configurations such that £ < ¢ and for all x € S such that {(z) = 1,
using conditions (4.15)—(4.16), the left hand side of condition (4.14) can
be bounded as:

ST - ¢) alx,y) [ec(@) — ce(x)]

yeS

=> "1 = <) alz.y) (cc(x) — ce())

yes
= ;(1 —C¢) a(z,y) ce(x) — ;S(l —C() a(z,y) ce(x)

< y%;(l — &) a(z,y) ce(x) — y;s(l —C) a(w, y) ce(x)

= y;(((y) — &) alz,y) %(x)y

= é((y)(l —&(y)) a(x,y) ce(z). (4.17)

In the above calculation, first line follows from conditions (4.15), third
line from conditions (4.16) applied to the first sum, and last line from
the identity £(y) = ((y)&(y), which holds whenever £ < (. Last line is
the right hand side of (4.14).Therefore inequalities (4.14) are also verified
under conditions (4.15)—(4.16). O

Now, within conditions (4.15)—(4.16), one can define a class of attrac-
tive exclusion processes with speed change, as follows:

Proposition 4.2. Consider jump intensities q(-,-) as in (4.10) and veloc-
ities ¢, defined as

o) = <p(Z(1 —n(y)q(z,y)) forallz € S and alln € Q,  (4.18)

yeSs

where ¢ : RT +— R is a decreasing function, differentiable with bounded
derivative, such that u v up(u) is increasing. Then the exclusion process
with jump rates T'y(x,y) = q(z, y)cy(x) is well defined and attractive.
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Proof. We first prove that the velocities ¢, verify conditions (4.11).
Since ¢ is a decreasing function on R*, we have first

sup () < ¢(0) < +oo;
zeSneX

On the other hand, since ¢ is differentiable on R* with bounded deriva-
tive, we get, using definition (4.12):

igg%sg{ ey (z) — ¢y ()]

= sup Z sup’gp(Z(l —nY(2)) q(z,2)) — @(Z(l —n(2)) q(, 2))|

w€S cgn€X I cg zes
<sup Y sup{[|¢ oo O (1= 7%(2) (=, 2)) = (O_(1 = n(2)) a(x, 2))|}
z€S  egneX z€S z€S

= ¢ lloo sup Y _ gz, y)
IESyES

< 400,

where the last inequality follows from equation (4.10) and [|¢'[|c < 0.
The exclusion process of Proposition 4.1 is thus well defined. We now
prove that it fulfills conditions (4.15)—(4.16).

First, for all n € Q and all z € S, we define u,(x) as the quantity

up(x) =Y (1= &(2))g(,y). (4.19)

yeSs

Thus we have
() = o (un(2)). (4.20)

We note that for any pair of configurations (&, ¢) such that £ < ¢ and for
any x € S, one has

ue(@) > uc(a).
Since ¢ is a decreasing function on R*, we thus get for all x € S and all
£<¢,
ce(z) = p(ue(2)) < pluc(e)) = e¢().
Conditions (4.15) are verified.
Now, for any pair of configurations (&, () such that £ < ¢ and for any

x € S, one has ug(z) > uc(z), and since u — up(u) is an increasing
function, we get

ug (z) ¢ (ue(x)) > uc(x) p(uc(x)).
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Inserting (4.20) and (4.19) in the above equation, we get

O =<w)al@y) eclx) < (D_(1—EW) alz,y) Jee(w),  (4.21)

yeS yeSs
which is (4.16). O

Though conditions of increasing speeds (4.15) appear to be an addi-
tional requirement beyond conditions (4.13)—(4.14), it was nevertheless
unclear whether monotone exclusion processes with non increasing speed
could exist. In what follows, we answer positively to this question giving
an explicit example of a monotone process with decreasing speeds.

In the case of decreasing speeds, the role of equations (4.13) and (4.14)
are exchanged with respect to the previous case and equations (4.14) are
trivially fulfilled. However, with the rates (4.9), equations (4.13) do not
factorize as before but become in this case:

For all y € S such that {(y) =

> t@)g(z,y) celx) <Y 4(@) gl y) ec(x), (4.22)

zeS zeS

so that speed functions have to fulfil a set of coupled inequalities indexed
by all possible values of y, which are difficult to solve on a general ground.
Nevertheless, we have the following

Proposition 4.3. Let S =Z. For L € N\ {0} fized, define

V(m,y) S S27Q(‘ray) = 1{1<y7:v§L}7 (423)

Vn e Q,Vz € S, ¢,(x) = 2L — n(x)n(z + 1). (4.24)

Then the exclusion process on {0, 1} with jump rates T, (x,y) = q(z,y)c, ()
is well defined and attractive.

Proof. Clearly, from definition (4.23), ¢(z,z) = 0 and

sup Y _[g(w,y) + q(y, )] < 2L < +oo,
zeSyeS

so that conditions (4.10) hold. On the other hand ¢,(x) is a bounded
cylindrical function, so

sup  ¢,(z) <2L < 400
zeS,neX
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and
sup M sup |ey (x) — ¢y(x)| = sup sup (@) +n(x + 1) < 2 < +oo.
xGSyeSnEX zeSneX

Conditions (4.11) hold and the exclusion process in Proposition 4.3 is well
defined.

Furthermore, for all pairs of configurations (&, ¢) such that £ < ¢ and
for all x € S,

ce(r) = 2L —&{(z)¢(z + 1) 2 2L — ((2)¢(z + 1) = c¢(). (4.25)

and the jump speeds are decreasing. Thus the left hand side of equa-
tions (4.14) is identically zero while the right hand side is non negative.
Equations (4.14) are thus trivially fulfilled.

Now for any configuration 7 € w and any y € S, we have the bound

y—1 y—1

(2L —1) Z Z n(x) q(z,y) cc(z) < (2L +1) Z_: n(z

r=y—L r=y—L r=y—L
(4.26)
Now for & < ¢, either for all z € [y — L,y — 1], c¢(x) = c¢(x) and equation
(4.22) is fulfilled since £ < ¢, or there is « € [y— L, y—1] such that &(x) =
and ((x) = 1. In that case, using the bounds (4.26), we get

y—1 y—1

Z n(z) q(z,y) cp(z)— Z n(x) q(z,y) ce(x) > —2(L-1)+2L > 2 > 0,
r=y—L rz=y—L

(4.27)

and equations (4.22) are verified. Thus, since the speeds are decreasing,

equations (4.13) also hold. The exclusion process with decreasing speeds

defined in proposition 4.3 is monotone. O

4.3 k-step exclusion process and related models

The k-step exclusion process was introduced in [10] as an auxiliary model to
study the long range exclusion process (see also [1, 11]). It generalizes the
simple exclusion process, we study this model in dimension 1, when k = 2,
in Subsection 4.3.1. We then introduce in Subsection 4.3.2 a first variation
of the latter model, that we call 2*-step exclusion process. Finally, in
Subsection 4.3.3, we combine both models to build and analyse a traffic
model that we call a range 2 traffic model.

4.3.1 The one-dimensional k-step exclusion process

The state space of the k-step exclusion process is {0, I}Zd. Its jumps follow
a translation invariant probability transition on Z¢. In words, if a particle
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on site z tries to jump, it follows for at most k£ steps a random walk
(XZ) >0 with X§ = = until it finds an empty site y before returning to
x; if all the sites encountered during the k steps are occupied, the particle
stays on x. The generator of the one-dimensional k-step exclusion process
is given by

k
Lef(n) = Z n(x) (1 —ny))ej(x,y,n) [f(n™Y) — f(n)],  (4.28)

j_ll n(X;), 0y =7 < JQ,} with o, the first (non

where ¢;(z,y,n) = E” [ i
zero) arrival time at site y, o, =inf{n >1: X7 = y}.

For the sake of simplicity, we restrict ourselves to the particular case of the
totally asymmetric nearest-neighbor 2-step exclusion on S = Z, for which

we have
2
Z Cj (3:7 Y, 77) = ]-{y:a;-‘rl} + 1{y=w+2}n(x + 1) = rﬂ(xa y) (429)
j=1

The totally asymmetric nearest-neighbor 2-step exclusion is attractive,
and, as for the simple exclusion process, the set (Z N S). of extremal
translation invariant and invariant probability measures for the dynamics
consists of a one parameter family {v,,p € [0,1]} of Bernoulli product
measures, where p represents the average density per site, see [10]. This
process is a particular case of the range 2 traffic model studied in sub-
section 4.3.3, hence its coupling rates are derived as a particular case of
Proposition 4.6 below.

4.3.2 The one-dimensional totally asymmetric 2*-step exclusion
process

On S = Z, we define

Fn(x,y) = l{y:ac-l-l} + 1{y:m+2}(1 - 77($ + 1)) (430)

We call totally asymmetric 2*-step exclusion process the exclusion process
with generator (2.1) for the rate I'; (2, y) given in (4.30). The totally asym-
metric nearest-neighbor 2*-step exclusion is a particular case of the range
2 traffic model studied in Subsection 4.3.3 below, hence its attractiveness
follows from Proposition 4.5, and its coupling rates are derived as a par-
ticular case of Proposition 4.6.

This model is also a particular case of a more general 2*-step exclusion
process of transition rate given by
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Uy(z,y) = plz,y) + Y p(x, 2)p(z,9)(1 = n(2)) (4.31)
z€EZ

for a translation invariant transition probability p(.,.).

Proposition 4.4. The Bernoulli product measures {v,,p € [0,1]} are
invariant for the 2*-step exclusion process of transition rate I'y(x,y) given
in (4.31).
Proof. We proceed as in the proof of [15, Theorem VIIL.2.1], by checking
that foAdl/p = 0, where A is a finite set of sites and f4 is the cylinder
function defined by

fatn) =] n(@). (4.32)

z€A

We have, denoting by Lsgp the generator of the simple exclusion process
and by L. the second part of the generator of the 2*-step exclusion
process,

ﬁfA(U) = LSEPfA(T,) + LZ*sz(n)
Lowfam) =D > pla2)p(zy)n) 1 -ny)d—nz)

z,y€S,x#y z€S,z#x,Yy

X[fa(™Y) = fa(n)].

Since
[ fatmnt@)a = )1 = 1),

_ )0, ifyeAorze A,

= {(1 _ p)gp\Au{x}L ifydAzdA, (4.33)
and
[ 4@ @ =) )y o)

0, ifreAorzeA,
- {(1 —p)2plAVE W if e A 2 ¢ A, (4.34)
we have
[ £avstatmv, o

= 2 > pla2)plz,y) (1 — p)?pl AN

oyoty, g A zizte,y, ¢ A

- > Y (@ 2)p(z,y)(1 = p)*pl At (4.35)

T,y Ay, Y¢EA ziz#T,y,2¢ A
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Taking © ¢ A,y ¢ A in the first sums of the two terms on the right hand
side gives 0, hence we are left with y € A for the first term, and x € A for
the second term. Exchanging the indexes x and y in the second term gives

/ Lowefa(n)dv,(n)
— (1 p)2pH4l 3 > [p(z 2)p(z,y) — ply, 2)p(z, 2)]

z,y: 0y, eEAYEA zizFn,y, 2 A
=0

because A is finite and p(.,.) is bi-stochastic. O

4.3.3 A range 2 traffic model
On S =7Z, for o, 8 € [0, 1], we define

Ly(2,9) = Lyy=at1} + Ly=otylan(e + 1) + 51 —n(z +1))].  (4.36)

We call range 2 traffic model the exclusion process with generator (2.1) for
the rate I';) (z, y) given in (4.36). This rate is a convex combination of the
respective rates for one-dimensional totally asymmetric simple exclusion,
2-step exclusion and 2*-step exclusion. The traffic interpretation is that a
car can either go one step ahead, or 2 steps ahead by overtaking another
car or by accelerating.

Proposition 4.5. The range 2 traffic model is attractive if and only if
|8 —a| < 1. The case 8 = a =0 corresponds to simple exclusion, the case
B8 =0,a # 0 to 2-step exclusion, and the case a« = 0,8 # 0 to 2*-step
exclusion.

Proof. We have to check inequalities (2.6)—(2.7). Let (£,¢) € Q2 be such
that € < ¢.

We begin with (2.6). Let y € Z be such that {(y) = 0, hence £(y) =
Then we write

> (=) z))l¢(z,y)

x€EZL
=@z -1)QA=¢&@ 1))+ ¢z =2)(1 =&z = 2)(f(z - 1)
+B(1—¢(z—1))) (4.37)
Y (@) [Pe(w,y) — Te(w,y)] "
x€EZL

= &(@ - 2)[(aé(z — 1) + B(1 - &(x — 1)) — (al(x — 1)
+801 - (- 1)) " (4.38)
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First, if £&(x — 1) = 1 then {(x — 1) = 1, hence (4.38) is null; secondly, if
¢(x — 1) = 0 then &(x — 1) = 0, hence (4.38) is null; in both cases, (2.6)
is satisfied. Finally, if {(z — 1) = 0 and ((z — 1) = 1, then (4.37) is equal
to 1+ al(z — 2)(1 — &(z — 2)) while (4.38) is equal to £(x — 2)(8 — a)™:
either £(x —2) = 0 and (2.6) is satisfied, or £(x —2) =1 and (3 — )T <1
is required for (2.6) to be satisfied.

We now check (2.7). Let z € Z be such that £(z) = 1, hence ((x) = 1.
Then we write

D Cw)(1—E)Tel,y)

YyEL
=+ 1A =&z +1)) +((z+2)(1 - &z +2))(af(x + 1)
+B8(1=¢&(x+ 1)), (4.39)

(- Cw) [Pelwy) — Te(a,y)]

YEL

u<u+mﬁm«x+n+ﬂu«x+n»
+
—(a€(x+ 1)+ (1 =E(x+1))| - (4.40)

First, if £&(z + 1) = 1 then {(x 4+ 1) = 1, hence (4.40) is null; secondly, if
¢(x +1) =0 then &(x + 1) = 0, hence (4.40) is null; in both cases, (2.7) is
satisfied. Finally, if £(z + 1) =0 and ((z + 1) = 1, then (4.39) is equal to
14 6¢(z+2)(1 —&(x+2)) while (4.40) is equal to (1 —((z+2))(a— )T
either (z+2) =1 and (2.7) is satisfied, or ((z+2) =0 and (a«— )" <1
is required for (2.7) to be satisfied. O

Invariant measures. Since it is the case for simple exclusion, 2-step ex-
clusion and 2*-step exclusion processes (see Proposition 4.4) the Bernoulli
product measures {v,, p € [0,1]} are invariant for the range 2 traffic model.
In this model S is fully connected if «, 8 are positive, in which case the
Bernoulli product measures are the extremal translation invariant and in-
variant probability measures for the dynamics, by Theorem 2.9.
Therefore, for the range 2 traffic model, applying Propositions 3.2,
3.3, and formulas (3.25)—(3.28) from Corollary 3.8, we obtain first the
following formulas for the coupling rates Ge ¢(x1,y1;2,y2), taking into
account that in formula (3.9), they are multiplied by the prefactor &(z1)(1—

€(y1))C(w2)(1 = C(y2)), so that §(z1) =1 = &(y1) = ((22) = 1= ((y2) = 1:
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Geclr,z+ Liz,x+1) =
Gecl o+ 2,2 +2) =laé(e+ 1) + (1 — £z + 1))
Az +1) + B(1 = ((x + 1)),

(xr4+1) when ¢ <,

Geclz, o+ Lo +2) = 0 when ¢ > (,

Geclzz+2;0+ 1,2+ 2 0 when &> (.

0 when & <,

T1-{¢(x+1)) when¢>(,

) { la = B]*¢
){ [B—al*(1-¢(x+1)) when ¢ <,
G57C(x—|—1,x+2;x,x+2):{ (8= a)*H(

0  when &€ < (,

Gg,g(x,x+2;x,x+1):{ [a—ﬁ]+§(x+1) when ¢ > (.

Some more computations to get the formulas in Proposition 3.9 yield:

Proposition 4.6. The coupled generator of the range 2 traffic model writes

L7 (&0 =LY F(6,0) + L3 F(6,0) + Lar f(6,0) + Lo f(6,0)  (4.41)

where Zf deals with coupled jumps with the same departure and arrival
—D
sites, L, with coupled jumps with o different site either for departure or

for arrival, and Zgl, 252 deal with uncoupled jumps. They are given by

) =D &@) (1 =&z + 1))¢()(1 - ((z+ 1)

z€eS

X (F(EP"T ¢ = f(€,0))
+) E@)(@) (1= (€ V) (z+2)

xeS
x [ag(x+1)¢(x+1) + B(1 = (V) (z+1))
+ @A+ 1A —Clz+ 1) + ¢+ 1)1 — &z +1))}]
X (f(ED"F2, (P72 — f(£.0)), (4.42)
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) =>_&@)(1 =&+ 1))@+ 1)1 = (€ V) (x+2)

zeS

X (B — )T (fETTF2, ¢ — f(€,0))
+ ) e+ D) =+ D))~ (€ V(@ +2)

zeS

x (8- a) (Fle=Thor2, ™) — £(¢.Q))
+) E@)@é@+ 1)1 = e+ 1)1 = (EV)(z+2)

z€eS

x (a— 6) (FE5F2,¢7" ) = f(£,0))
+ Y @)@ —E@+1)¢(x +1)(1 = (E V) (z+2)

zeS
X (o= BYF(F(E"F, P72 — £(£,0)), (4.43)
Lor (6,0 =Y @)1 €z +1))
€S

x [1= (@)1= C@+1) = (1= C(@)¢(z— 1)1 = C(z+1)(B—a)T
—¢(z)¢(x +1)(1 = (EV(z+2)(a—p)*]
X (f(gm’erla C) - f(§7<.))

+ 3 €)1 - E(x +2))

TES
x [af(z+ 1)+ B(1 =&z + 1)) = ¢()(1 = ((z +2))
x {af(z+1)¢(z+ 1)+ (1 - (EV ) (z+1))
+ (@A B{E@+ 1)1 =@+ 1) +{(z+1)(1 =&z +1))}}
—((@)é(z +1)(1 = ¢(z +1))(1 = ¢(z + 2)) (e = B) ]
x (f(E9"F2,0) = f(£.0), (4.44)

Lyaf(6.0) = ¢(a) +1))

€S

x [1=¢€(@)(1 - &z +1))
— )€z +1)(1 = (EV(z+2)(a—p)"
—(1—&@)E(x - 1)1 —E@+1)(B— )]

x (F(&,¢™" ) = f(£,0))
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+) (@)1= ((x+2)

zeS
x [a¢(z +1) + B(1 = ((z + 1)) = &(2) (1 = &(x + 2))
x {ag(z +1)¢(z +1) + (1 = (£ V )(z + 1))
+ (aAB{C(z+ 1)1 €&z +1))
+&(z+ 11— ¢(z+ 1)} }
—&(@) 1 =&z + 1))z + 1)1 —E&(z +2))(a — B)T]
X (F(&,¢57F2) = f(£,0)). (4.45)

Remark 4.7. Taking o = 8 = 0 gives the basic coupling generator for
TASEP, while taking « = 0,8 = 1 gives a coupled generator for 2*-step
exclusion, and taking o = 1,8 = 0 gives a coupled generator for 2-step
exclusion. The latter is different from the one used in [10].

Alternative coupling rates. We now compute the rates given in Pro-
position 3.11. We obtain the following formulas for the coupling rates
Ge c(x1,y1;22,y2), taking into account that they are multiplied by the
prefactor §(21)(1 — £(y1))¢(x2)(1 — ((y2)), so that {(z1) = 1 —&(y) =
((z2) =1—=((y2) = 1

Geclz,z+ Lz, z+1) =1,
Geclz, o+ 2m,0+2) = [af(z+ 1) + B(1 - §(z +1))]
Ala¢(z +1) + B(1 = ((z + 1))],

G . _ _ [O‘_B]—i_ :
colrat Lot =)0 -ge+2) S resc
G . _ _ [5_a]+ :
eclr, e +22+ 1,24 2) =((z)(1 g(x+1))71+a if £ <,
G : _ _ B-o* .
ecle+ Lz +2iz,0+2)=6(x)(1 —((xz+1)) T if € > ¢,
G . _ _ [Q_B]+ .
ec(r, o+ 22,204 1) =&+ 1)(1 C($+2))71+5 if§>¢.

4.4 From a non-attractive traffic model to an attrac-
tive dynamics

We begin with an exclusion process with the transition rates introduced
in [9] in the context of a cellular automaton dynamics. There, S = Z, and
the transitions are nearest neighbor and totally asymmetric. For allxz € S,
n € X such that n(z) =1 and n(z+1) =0
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a ifnlx—1)=1,n(x+2) =0, [accelerating],
if 2)=1 —-1) = ki
Do+t =40 | n(z+2)=1,n(—1) =0, [brakingl, ¢,
v ifplx —1) =n(z+2) =1, [congested],
60 ifn(x—1)=n(x+2) =0, [driving].

where the parameters «, 3,7, are positive. This model is not attractive,
unless it reduces to simple exclusion, that is a = § = v = §. Indeed, for
any other choice, conditions (2.6)—(2.7) from Theorem 2.4 are not satisfied.
Here, it is possible to turn the dynamics into an attractive one, just by
considering a symmetrized version, in which the non zero rates are the
previous, rightwards, ones, (4.46), together with the following symmetric,
leftwards rates:

a ifnz+2)=1,nx-1)=0,
_ B ifnlz—1)=1,n(z+2)=0,
Fy(@+1,2) = v o ifnz+2)=n-1)=1, (447)
0 ifnlx+2)=nlx—-1)=0.

Then applying conditions in Theorem 2.4 leads to the following result.

Proposition 4.8. The symmetrized dynamics with rates (4.46)—(4.47) is
attractive if and only if o, 8,7, satisfy the following conditions

B<YANI<yVi<a, a< B+vAG6, 0 < 2p5. (4.48)

Note that the facilitated exclusion process (]2, 4, 6]) has rates (4.46) with
a=~v=1,0=46=0. Hence it is not attractive, and its symmetrized
version (with the corresponding rates in (4.47)) is not attractive either.
Indeed the study of this model required other tools.

Invariant measures. For the symmetrized dynamics, S is fully con-
nected, since the parameters «, 3,7, are positive. We can thus apply
Theorem 2.9.

Coupling rates. Applying Propositions 3.2, 3.3, with formulas (3.25)—
(3.28), we obtain first the following formulas for the coupling rates

Ge c(x1,y1; T2, y2), taking into account that they are multiplied by the
prefactor §(x1)(1 — &(y1))C(22)(1 — ((y2)), so that {(z1) =1 —&(y1) =
C(xz2) = 1 —((y2) = 1. Note that since the rates (4.46) and (4.47) are
symmetric, it is enough to compute the coupling rates in the positive
direction to get the ones in the negative direction by symmetry. To simplify
the computations, we assume that v < 4.

Geclz,x+Liz,o+1) =Te(x, 2+ 1) Al¢(z, 2 + 1),
Geclzx—Liz,o—1) =T¢(z,2 — 1) AT¢(z,2 — 1).
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When £ < ¢, we have

Gecle o+ Lo, —1) = ((z+1)[(1-((z = 2))(a = 8) + &z — 2)(y = H)],
Geclw o —La,x+1) = ((z— 1) [(1-C(z +2))(a = 8) + &z +2)(y = B)],
Geclzz+Liz4+2,2+1)=(1 f(w—l—Z))[(l—Q(m—l))((S—ﬂ)

+(1 = &(x = 1)¢(z = 1)(6 =) + &z = (e =),
Geelo,o =Lz =20 —-1)=(1—-&(x-2)[1-¢(=z+1))(0-5)

H(1 =&z + D)z +1)(8 =) + €&z + 1)(a = )]

When & > ¢, we have

Geclw o+ La,x—1) =&z — 1) [(1-€(z + 2))(a = 0) + ¢(z + 2)(y = )],
Geclr,z — Lz, +1) =¢(z+ )[(1 £z —2))(a—6)+((z—2)(y - B)],
Geclzoz+ Lz +2,24+1) = (1 -((x) [(1 E(xz+3)(6-08)

)
C(l”+3)( =) +&(@+3)(1 = ((z+3)) (0 —7)],
Geelr,x — Lz —2,2—1)=(1— )[1— (x—3)(6—-P)

+((z — )(04*7)+€($* 3)(1—¢(z = 3))(6 — )]

Finally, applying Proposition 3.9 with formulas (3.30)—(3.31), we obtain
the following formulas for the coupling rates ch(xl, Y1; X2, Y2), taking into
account that they are multiplied by the prefactor &(z1)(1—&(y1))¢(z2)(1—

C(y2)), so that £(x1) =1 —&(y1) = C(z2) =1 — ((y2) = 1. Again, since
the rates (4.46) and (4.47) are symmetric, it is enough to compute the
coupling rates in the positive direction.

Ggg(a:,x—kl;a:,x—l—l):Fg(x,x—kl)/\l“c(x,x—&—l),
ch(x,x—l;x,x—l)—I‘g(x,x—l)/\I‘g(ac,x—l),
G?,C(a:,x—i—l;x,x—l) —C((x+1)E(x—1)
<[ = (V) (z+2)(a—0d)+((z+2)(y-B)
A =&z =1))¢(z+1)
<[(1=(€V(z—1)(a—8)+&x—2)(y - B)],
ch(x,x—l;x,x—i—l) (1-C¢(xz-1)&x+1)
<[(1=(€VQ(z—2)(a—0)+¢(x—2)(y - B)]
+(A =&z +1))¢(z—1)
x[(1= (€ V(@ +2)(a—0)+ (EV(z+2)(y—B)].

—~
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Goewz+liz+2,20+1)=1-C@)[1-EVO+3)©6—8)
+C(x +3)(a =) + (1= C(z +3))&(z + 3)(5 — )]

x[6@ +2)¢(x — 1)(1— &(z — 1)) (5_1>+1]

)
+1—&=+2)[A - (V@ —1)(0 - B)
+é(z—1D)(a—7)+ 1 =&z —1)¢(z—1)(6 —7)]
)

< ez + 3)¢(2)(1 <<+3»(§—1)+u.

GPe(myx—Liz—2,2—1)=(1—-((@)[1—-(EVx—3)0E—p)
+(L = ¢z = 3))&(x = 3)(6 —7) + ¢(z — 3)(a — )]
x[E(z = 2)¢(z+1)(1 - (x—l—l))(f—l)—i—l]
+(1—&@—-2)[A - €V +1)(6—B)
e+ (-7 + 1 =&+ 1)C(x+1)([0 —7)]

et - 31— oo 3) (2= 1) 1)

)
2))
(
)
GEc(m,x+ ;2 +2,243)

= (1 =z +1))(1 =& +2))€(x + 3)¢(2)

x[(1=(EV(z—1)©6-p)
(1= & — )¢ — 16— ) + & — Do —)].

ch(:c,:c — 1Lz —2,2—3)
— (1— C(r— 1)1 — £z — D)z — 3)() ”;

)
X[(T=(EVO@E+1)(6—p5)
H(1 =&z +1)C(x+ 1) —7) + &+ 1) (a—7)].

(v —5)
¥

p)
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5 Technical proofs

Proof of Proposition 3.2. Taking into account notations (3.13)-(3.12), we
rewrite the generator £ (Equation (3.9)) as

LAO = > &) —£&w)(Te(ar,m) — e cl@r,m))

z1,Y1€S

X (f(§m17y17<-) - f(ga C))
+ Y Cra)(1 = Cy2) (Te(2, y2) — Pe ¢ (w2, 12))

T2,Y2€S8

x (f(€,¢%%2) = f(£,0))
+0> Y @) - €)1 - ()

1,1 €S T2,y2€S

X Ge ¢ (1, y1; 2, y2) (f (70, ¢P2V2) — f(€,¢)) (5.1)

In the above expression, the first two terms on the r.h.s. refer to uncoupled
transitions, respectively (£,¢) — (£*+¥1,() and (£, ¢) — (&, (*2¥2), while
the third line refers to coupled transitions (§, () — (%Y1, (*2¥2),
Inequalities (3.11)—(3.10) and non-negativity of G insure that the
rates of all uncoupled and coupled transitions above are non-negative.
Moreover, if f(£,¢) = ¢g(§) depends only on £ (resp. f(£,¢) = h({)
depends only on (), we have Lg(&) = Lg(€) (vesp. Lh(¢) = Lh(¢)). There-
fore £ defines indeed a coupling of two copies of a generalized exclusion
process. O

Proof of Proposition 3.3. e We first consider the limits of the series de-
fined in (3.18)—(3.21). By construction, these series are nonnegative, non-
decresing and by (2.4) they are also bounded from above. They are thus
(absolutely) convergent and we denote their limits as

Sg; = nh_}rrgo Sg’g, (5.2)
T2 = i TS 53)
Tgyc* = nh_)n;() T‘fy”cn, (5.4)
SLC— tim S 53)
In these notations, equations (2.7) and (2.6) read respectively:
For any configurations £,¢ in Q2 such that & < (,
For all € S such that {(z) =1, ng <S¢, (5.6)

For all y € S such that {(y) =0, TYE < ggz (5.7)
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e We now prove that for any two nondecreasing, convergent series (Sy, )n>0
and (T},)n>0, the quantity defined in (3.22) H,, ,,(S.,T ) is nonnegative for
all m,n > 0. We have

Hpn(S,T) = SpuATp—Sm—1 AT, — S ANTp—1+ Sm—1 A1
(S ATy = Sp—1 A (S AT}))
— (S ATt = Sm-1 A (S AT,_1))
= [Sm ATp =S|t =[S ATt — Spna]™
> 0. (5.8)

In the equations above, we used S,, > S,,—1 to get the second line, the
third line is an identity and, finally, positivity comes from the fact that
T, > Tyn—1 and the function t — [S;, At — Sm,lrr is not decreasing.

In addition, we get that the sums Z Hp,n(S,T) and Z Hpm(S,T)

m>0 m>0
are absolutely convergent for all n > 0 whenever the two series converge.

In particular, setting S, = lim S, and T, = lim T,, one gets
m— o0 o0

n—r

Z Hpn(S,T)=8.ANT — S NTy1 for all n > 0, (5.9)
m>0

> Hpn(S,T) = Sm AT = Sy AT for all m > 0.  (5.10)
n>0

We are now ready to turn to the proof of Proposition 3.3.

e We first prove that the coupling rates (3.24) satisfy conditions (3.10)—
(3.11) of Proposition 3.2.

First, for all non ordered pairs of configurations (£,¢) € Q x Q, all
coupling rates G¢ ¢ defined by (3.24) are zero, so that the left hand sides
of equations (3.10)—(3.11) are identically zero and both equations (3.10)-
(3.11) trivially hold.

We now consider the case (£,¢) € 2xQ with & < (. For all (z,y) € S2,
the left hand side of equation (3.10) reads:

vec(z,y)
= > @) (1=¢W) Gecla,ys 2 y)
z’'y' €S
C( ) (1 =C(y) Te(w,y) AD¢(z,y)
) D 0w vel) D0 0 T Hinn (SE 5 Tel)
mn>0 y'es

) D 0wl Y 0 TEL) Honn (T, Se)

m,n>0 z' €S
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ZC( )(1—C( NTe(@,y) ANTe(a,y)
mz>05 YY) ( ec /\TZZ_Sz’?_l/\TZZ)

+<<x><1—<<y>>26<waw§,’?>( L ASEL - T ASE)

m>0

ZC( )(1—C( ) Te(z,y) ANTe(z,y)
W) Y0 el ( el ATee = Se™ /\TZZ)
m>0

+C(x) (1= C() > o, 287 [Le(a,y) — Te(a,y)]

m>0
= C( )(1 —CW) Te(z,y)
x,m L * r,m—1 , FAL:*
() >0y ve" (5 NTee =S¢ /\T&C) - (5.11)
m>0
In the second expression, the summation over ' in the second term and the
summation over 2’ in the third term just give 1 and we use the expression

(5.10) to compute the summation over n > 0. The fourth equality is a
consequence of relation (5.7), which gives

Ty,m gy,* Ty,m—l ?yv* jvy7 Tym 1 T y,m T y,m +
gc Mecdee Mg =de - elwgcy) —Telzg s y)

(5.12)
Now using the estimate

T,m , l* xm—1 , a%* x,m z,m—1
Sed" ATl = Seic NTee <S¢ = Sec = Telw,ye")

we get the inequality

pec(r,y) < (@) (1= () Te(, y) + ()¢ (y)Te(2,y) < Te(z,y). (5.13)

Thus inequality (3.10) holds for £ < (.
We prove (3.11) for £ < ¢ in a similar way, as follows. For all (z,y) €
S?2, the left hand side of equation (3.11) reads:

Pe.c(w,y)
= > @)1 -£W) Geel@' vz, )
z',y' €S
5( ) (1= €&(y) Le(z,y) AT¢(2,y)
) Do D0 yEl) 0 T Hmn (S8 Telo)
m,n>0y’€sS

) 2. D 8 w0 ) Hn (T Se )

m,n>0z'€S
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=&z )(1—5( ) Le(@,y) AT¢(x,y)

—I.n x, —x,n—1
+E(x v) Y 0.7 ( ec NTee = Sec NTe )
n>0
+(1 - &(z) v) Do 7Ly) (TL ASEE — L ASEET)
n>0
=¢(z )( —5( ) Te(@,y) AT¢(z,y)
+e(x ) D 0T [Te(w,y) ATe(w, )]
n>0
+(1 - &) v) Y07y (1L ASEE — L ASEET)
n>0
=¢(2) (1—6( ))Fg(x Y)
+(1—€(2) ) S 5z, 7T (ngmg;g—Tgv NSUET 1).
n>0
(5.14)

In the second expression, the summation over y’ in the second term
and the summation over z’ in the third term just give 1 and we use the
expression (5.9) to compute the summation over n > 0. To get the fourth
expression, we used the relation (5.7) to obtain

—x,n—1 —x,n—1

+
SeinTer —SeinTee  =Ter—Tee [FC(z,ysfc)_Fé(%ydc)

Now we have the estimate

—y,n—1

yox A GYN Yo gyn—l1
Tee NSee =T NSey

<Qyn —Y,n
<Sec =S =Te@{ ),

which gives

§(@) (1 - ) Teley) + (1 - £(@)) (1 £(1) Tela, y)
Ie(,y). (5.15)

aﬁ,C(xvy)

VANVAN

Equation (3.11) is proven for £ < (.

A similar derivation holds in the case { < . Thus the coupling rates
defined in Proposition 3.3 satisfy the conditions (3.10)—(3.11) of Proposi-
tion 3.2.

e We now prove that this coupling is increasing.

We suppose that & < . We first consider coupled transitions. From
equation (3.24), we find that a coupled transition (&,¢) — (€%¥,¢* ') has
possibly a non zero coupling rate G ¢(z,y;2’,y’) in three possible cases:
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e x=z"and y=1y":

thus
&(z) = ¢V (2) =0,
£ (y) ¢V (y) =1
E(z) = €(2) C(2) ="V (2) for all z # x,y,

)

ex=0a,yevy, Camdy GY€<
thus y # v/, ((y) =1 and

V() = " (x) =0,

€9(y) < 1=((y) ="V (y),

9y < 1=¢"Y(Y),

€Y(2) = €(2)<C)=C¢"Y(2) forallz#£x,y,y,

e y=1y e X/ Cand$ EXéC
thus z # 2/, £(2') = 0 and

V(@) = 0< (T (a),

E@) = E@)=0< (),

§4(y) ¢y =1,

E9Y(2) £(2) < C(z) = ¢V (2) for all z # z,2’,y.

In all three cases, we find that %Y < Cxlvyl. Hence partial order is pre-
served in coupled transitions for all £ < (.

We now turn to uncoupled transitions, (§,{) — (£*¥,¢) and (§,¢) —
(&, Cl-’y)’ with rates (F§ (!L‘7 y) P (z, y)) and (FC (:17, y) - ¢£7§(w7 y)) re-
spectively. In both cases, partial order could be broken if and only if
E(y) =C(y) =1, £&(z) = {(z) = 0 respectively and the associated transi-
tion rate is nonzero. In the first case, ((y) = 1 implies that y & Y, which
allows us to precise the estimate (5.13) and get the value of ¢ ((x,y), as
follows. Note that in the expression (3. 24) for Ge ¢(z,y; 2,y ) when £ < (,
since y ¢ Y., we are in the case y = y' so that G¢ ¢(x,y;2',y') is given
by the thlrd hne in (3.24) (recall (5.12)):

@f,((x;y) = Fg(l’,y) /\FC(x,y)
+ D 8t D 8 T Hin(TE5 Sec)
m,n>0 z'eS

Le(z,y) AT¢(,y)



304 T. Gobron and E. Saada

aY-* ym—1 , G¥*
SDIUICR ( ec NS = TeL ASs,c)

m>0

= Te(z,y) ATc(,y) + Y o(x,2l") Te(x,y) — Telw, )]

m>0
= Te(r,y) ATe(w,y) + Loexy [Le(w,y) — Telz,y)] "
T,y T

= Fg( , )/\ (( ,y)+[rg(z7y)_FC(z7y)]+
= Te(x,y). (5.16)

r
r

Thus uncoupled transitions in the first marginal that do not preserve par-
tial order in the case £ < ( have zero transition rates.

In uncoupled transitions for the second marginal, (¢,{) — (f ¢mY)
in which partial order could be broken, &(z) = 1 implies 2 & X, ¢c and,
following the same line as in (5.15), one gets now the value of @, (7, y).
Again, in the expression (3.24) for Ge¢ ¢(x,y;2’,y’) when £ < (, since
T ¢ X , we are in the case z = 2’ so that G¢ ¢(z,y; 2, y') is given by the
second hne in (3.24) (cf. (5.6) and the reasoning above to go from (5.7) to
(5.12)):

Pecley) = Y &) (1—EW)) Ceela' yay)

m’,y’ES’
= Te(z,y) ANT¢(z,y)
+ D0 D0y 6w TEE) Honn (SE 6 Te o)
m,n>0y’esS
= Te(w,y) AT¢(2,y)
7z,n T, % AL, T,% —xr,n—1
+D 0.7l (Ss,c AT = Sec N )
n>0
= Te(z,y) ATc(z,y) + ) 0. 768) [Le(,y) — Te(a,y)]

n>0
= Te(e,y) ATe(w,y) +1,epr [Pela,y) = Telz,y)]"

Te(z,y) AT¢(z,y) + [Dela,y) — Tez, )]
Ty, (517)

Uncoupled transitions in the second marginal that do not preserve partial
order in the case £ < { have thus also zero transition rates.

In conclusion, in the generator of the coupling process (3.9) with rates
(3.24), for all pairs of configurations (£,{) € Q x Q such that £ < ¢, all
possible transitions, coupled or uncoupled which have a non zero transition
rate do preserve the partial order. In the case £ > (, the same result can
be obtained along similar lines, and we thus omit its proof. The coupling
defined in Proposition 3.3 is thus increasing. O
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Proof of Corollary 3.8. Let &, € Q) be two configurations. and let

(x1,y1,T2,y2) € S% If (x1,y1) = (72, y2), the rate (3.25) is identical to the
one given in the first line in (3.24). We now assume that (z1,y1) # (22, y2),
and we want to recover the formulas in (3.24) from the ones in (3.26). For
¢ < ¢ and 21 = xq, we first compute using (3.27), (3.14)—(3.21) and (3.23)

[HE ((21591,92)]

= [( Z Fg(xl,y'))/\( Z [FC($17Z/)—F§($1,Z/)]+>

v/ <vy 2/ <ys
vevet Z eVl
it
—( Z Te(z1,9)) V ( Z [T¢(w1,2") = Te(z,2)] )}
vy <yj 2/ <yg
y eyglg z e?Zlc
= Z é( yhyzzm) 5(y27y§’<’ )Hm,n(sglg’ 7T$1’ ). (5.18)
m,n>0

Then, for £ < ¢ and y; = y2, we now compute using (3.28), (3.14)—(3.21)
and (3.23)

[H£C($1,302;y1)]+

=[( 3 el ~Tel@ ] ) A (X Tel'sm))

m’ﬁ@yl y’éﬂz{z
Ilexg,lg y/EXEIC
—( Y [Pe@,m) = Te(@ )] Z Ce(y',91) ]
x/ <zq y! izz
x’exglg y’exg}g
—y1, . QYL
= > 0w, al™) 6(we, BL") Hyn o (TEL 5. (5.19)
m,n>0
We proceed similarly for the other terms. O

Proof of Proposition 3.9. ¢ We first prove that the operator defined by
(3.29) is a valid coupling, that is the coefficient associated to each transition

. . . —D
is nonnegative. We rewrite the generator £ as,

LUfE0 = Y € &)

z1,y1E€S

(Ff(xhyl Z C T2 (1 - C(yQ))Gf C(xlﬂ y1»$2,y2))

z2,Y2€S8

< (F(€7,¢) = f(£,0))
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+ Y @) (1= ()

Z2,y2€S5

x(Pe(we,y2) — Y @)1 — &) GE (1,515 02, 52))

z1,Y1€S

X (f(§7 Cr27y2) - f(ga C))
) D @)= E)(w) (1 = C(y2)) G (w1, y15 w2, y2)

z1,y1ES T2,y2€S
X (f(Emvr, ¢T2¥2) — f(€,0)).

In the above expression, the first (respectively second) line refers to un-

coupled transitions (£,¢) — (£*+¥% () (respectively (&,() — (&,(%2¥2)),
while the third line refers to coupled transitions (£, () — (£¥1:¥, (¥2:¥2),

We first prove that the coefficient associated to an uncoupled transition
(£,¢) — (€791 () is non-negative. It reads

§(x1)(1 = &(y1)) (Te (1, 1)
D> Cl@) (1= ()G (w1, y15 2, 42))

Ta,Yy2E€S
=&(x1)(1 = &w1)) (Te(z, 1) Z C(w2)(1 —C(y2))
T2,y2E€S
X > (EVOE)(1 = (VW)
z,yeS
XmGs,ﬁvc(l‘layl;x,y)vac,c(ﬂ%y;l‘z,yz))
= (1)1 = &) (Te(wr, 1) — D (EVO@)(1 =€V ()
z,yeS
XW%V@,((%Z/) Geevel(a, y1;$7y))

> E(a1)(1— &) (Te (1, y1)
= ) €V O@)(1—(€VOW)Geeve (1,15 2,1))

z,yeSsS
> 0.

In this derivation, we used (3.30) to get the first equality, then exchanged
the summations and used (3.12) to get the second one; first inequality

comes from ———— pevec(2,y) < 1 and nonnegativity of the coupling
Ne ¢ (x,y)
rates Ge¢ eve; the last one follows from inequality (3.10). Non negativity

of the coefficients associated to uncoupled transitions (£,¢{) — (&, (*2¥2)
follows along similar lines and inequality (3.11). Non-negativity of Ge¢
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insures that the rates Ggg of coupled transitions (§,{) — (%Y1, (P2:¥2)
are also non negative.
e We now prove that the new coupling is increasing.

Suppose that £ < ¢. We have £ V ( = (; equations (3.13)—(3.12) and
Remark 3.5 give

Peeve(@y) = Peclay) = Zf ¥)Ge (@, s 2, y),

Pevec(@y) = wec(,y) ZC (W)Gec(z,y;2',y)

= (@)1 -Cly ))Fc(%y)
Inequality (3.11) implies here that B¢ (z,y) < I'¢(z,y), and we get from
equation (3.31)

1 if C(z)(1 = C(y)le(z,y) # 0,
0 otherwise.

C(@)(1 - () W Te(z,y) = {

(5.20)
This enables us to prove Remark 3.10. For all (z1, y1, Z2, y2) € S* such that

(1) (1 —€(y1))¢(22) (1 = ((y2)) # 0, the coupling rates G (w1, Y15 22, 2)
thus read

GE (w1, y1322,2)

1
= > C(l’)(l*C(y))mGf,c(l'lyyl;x,y)Gc,c(Iay;l’z,yz)

T, yeS
1
= C($2)(1 - C(m))Wdezay2)G£,<(fE1,y17$27y2)
= Ge (@1, 91322, 92)- (5.21)

First equality is Equation (3.30) in the present case; second equality follows
from Remark 3.5; the last one follows from (5.20), Ge ¢(z1,y1;22,y2) >0
and Gec¢(z1,y1522,92) < Te(z2,y2) (this last inequality comes from the
fact that in £, the increasing coupling generator defined in Proposition
3.3, the rates of uncoupled transitions are non-negative, cf. (5.15) and the

fact that &(x1)(1 — &(y1)) # 0).
Inserting Equation (5.21) in (3.29), we get
£7f(¢.¢)
D &) = &) Te(ar, y1) (F(E7,0) = £(£,0))

1,y1E€S

+ Y @)1 = Cy2))Telma, ) (6, ¢72%2) = £(5,0))

T2,Y2€S
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+ Z Z E(@1)(1 = &(y1))C(@2) (1 — C(y2))Ge e (21, Y15 22, y2)

r1,Yy1 €S x2,y2€S

X (femmvm, ¢rav2) — (€709, C) = f(E,C™%2) + f(£,0))
= Lf(&,0).
A similar identity holds for £ > (. Since both generators identify on

£ < YU {€ > (}, the coupling with generator Z” is also increasing.
g g g

. . . —D
e We now prove that discrepancies cannot increase under £ .
For any finite domain D C S, the number of discrepancies in D between
two configurations &, ¢ in €2 is defined as

> 1€(z) = (()]

zeD

Each transition in (3.29) with positive transition rate involves a change on
a finite number of sites. For any such transition, say (£,¢) — (¢, ('), and
for any finite domain D which contains all sites involved in the transition

D> {w€8.¢() + ) or ¢'(a) # ()} (5.22)

the variation of discrepancies is

Ap(§,¢E,¢) = Y 1€ =@ =D €)= ()]

z€D z€D
= > 2@ V@ -¢@) - @)
xeD

= > (26(x) V() — &(x) — (())

xzeD

2) (€(2) v (@) — &) v(()). (5.23)

zeD

The last equality holds since the process is conservative.
e We consider first a coupled transition (&,() — (£¥1:¥1, (¥2-¥2) for some

(z1,y1), (T2,y2) in S? with positive transition rate in £,

(1) (1= E(y1)C (@) (1 = C(12))GEe (1, y1: 2, y2) > 0. (5.24)

Turning to the definition (3.30), Ggg(xl, Y1; T2, y2) > 0 implies that there
exists (z9,y0) € S? such that both G¢ ¢ve (21, y1; %0, yo) > 0 and

Gevec(xo,Yo; x2,y2) > 0. Thus the transitions (£, V () — (%291, (EV
¢)*o¥o) and (£V (,¢) — ((£V ¢)™0¥o, (P2:¥2) have positive transition rate
in £. Since it is the generator of an increasing coupling, £ < (¢ V ¢) and
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¢ < (€ V) implies that £70¥1 < (£ V ¢)*o¥0 and (*2¥2 < (£ V ()" ¥ and
thus
€$17y1 \Vi C$2,y2 < (5 \Vi C)xo,yo.

Now, for any domain D as in (5.22),

Ap(&, ¢ Em, ¢v»h2)
- ADU{Imyo}(& ¢; le’y17<$27y2)
—2 Y (@) VR () - () V()

z€DU{x0,y0}

<2 Y ((EvOT(e) - (€ V()
z€DU{z0,y0}

=0,

where the last equality follows from particle conservation. Thus the num-
. . . . .- . =D
ber of discrepancies does not increase in any coupled transition in £ .

e We now turn to uncoupled transitions in ZD. Let us consider a transition
in the first marginal, say (£,¢) — (£%+%1 () for some (x1,y;) in S2. For
any finite domain D such that {x1,y1} C D, the variation in the number
of discrepancies reads

Ap(&¢E™,Q)

2(&"0Y (1) V (1) — E(x1) V C(21))
+2(£7Y (y1) V ¢(y1) — E(y1) V (1))
= 2(¢(z1) = C(y1))- (5.25)
Thus the variation of discrepancies is non positive except in the case where
both ((z1) = 1 and {(y1) = 0. We now prove that such a transition has
rate 0 in ZD:
First, since (§V()(y1) = 0, y1 ¢ Y}, - and by (3.24), for any (z,y) € S?

such that y # y1, Geeve(z1,y152,y) = 0. Furthermore, geve c(x,y1) =
Peeve,(,y1) and since ((y1) = 0, equation (5.17) holds and one has

Pevec(y1) = Teve(@, y1). (5.26)
Now the rate for the transition (£,{) — (£72¥1,() in L7 reads

E(x1)(1 = &(y1)) (Te (21, 1)
Z C(w2)(1 = C(y2))GEc (w1, Y15 w2, 92))

T2,Y2€S

= &(@)(1 = E)) ez, ) — Y C2)(1—((y2)

T2,Y2€S
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X > (EV )= (V)

z,y€S
XW Geeve(wryi; 2,y)Geve o (@, 45 w2, y2))
= &(x1)(1 — &(y)) (Tel@r,m1) — Z EVO (@)1 — (V)
z,y€Ss
XW pevec(,y) Geeve(@1,9137,y))
= &(z1)(1 = () (Ne(w1, 1)

= > €V (€VOW)Geeve(@1,y152,7))

1
The third equality comes from the fact that ———— pevec(z,y) =1
Nf ¢ (Iv y)

if y = y1 and Teye(z, 1) > 0, and Gg,gv(($1,y1;£,y) = 0 otherwise; the
last equality comes from (£ V {)(z1) =1, £ < £V ( and equation (5.16).
Thus the number of discrepancies does not increase in any uncoupled,
first marginal transition in ZD.
e Finally, we consider an uncoupled, second marginal transition (¢,{) —
(&,¢®292) for some (wq,y2) in S2. Again, one proves that either the num-
ber of discrepancies does not increase, or has zero transition rate. The
derivation is essentially identical to the previous one so we skip it.

. . .- . =D .
Collecting all cases, we have shown that in any transition in £~ with
nonzero transition rate, the number of discrepancies does not increase.
The result is proven. O

Proof of Proposition 8.11 and Proposition 3.12. We consider the coupling
with rates given in Proposition 3.12, and we show that it satisfies the
requirements for Proposition 3.11. For two configurations £ and ¢ such
that ¢ < (, one can compute easily the sum of correlated jump rates
associated to a jump in a given marginal. One finds, respectively

pecley) = > @)1= L) Gecl,y;2'sy)
z’',y'es

=T, *

T
(@) (1= L Te(w9) + @) (W) gz Te(wy) (5:27)
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and

Peclzy) = D @) (1-EW) Gecld,ysa)

z'y' €S

= &) (1 -¢&W) ez, y)

B B T
+(1=¢&(x) (1-¢&()) i Ce(w,y). (5.28)
€c

Clearly coupled jump rates Ge¢c(x,y;2’,y’) and uncoupled jump rates
Le(z,y) — wec(,y), Te(z,y) — B¢ c(z,y) are all nonnegative for § < ¢,
and similarly for £ > (. Following the same lines as in the proof of Propo-
sition 3.3, one finds that the above rates define an increasing Markovian
coupling. Using these new rates, one can define as in Proposition 3.9 a

new coupling ZD such that the discrepancies on the involved sites do not
increase. Now suppose that for a given pair of non ordered configurations
¢ and (, there is a discrepancy at site x, say £(z) = 1 and {(x) = 0. Now
the discrepancy can move alongside with the particle in the first marginal
to any empty site y such that the edge (z,y) is open at rate I'¢(z,y) > 0,
or to any fully occupied site y such that the edge (y,x) is open, alongside
with a particle from the second marginal in the opposite direction with

—T %
rate (1 it 119 T¢(y,z) > 0. In this case, pairs of discrepancies of op-

Sr,*
§,¢
posite sign connected through an open path have positive probability to
disappear. O
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