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Abstract. In his ninth memoir Clausius summarizes the two principles of
thermodynamics as follows

The whole mechanical theory of heat rests on two funda-
mental theorems, - that of equivalence of heat and work, and
that of equivalence of transformations.

This paper contains an introduction to Clausius’ approach to entropy as
illustrated in his original articles and describes an analogy in the macro-
scopic fluctuation theory of non–equilibrium diffusive systems.
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1 Introduction

Dedicated to Errico Presutti for his 80th birthday.

I often asked myself: “How did Clausius get the idea of entropy in a
pure thermodynamic approach?” . Entropy is a notion which carries some
mystery with it, as was emphasized by a qualified opinion. There is a
quantity called entropy in information theory which measures the content
of information of a message. A story tells that such a terminology was
suggested to Shannon, the inventor of the theory, by the famous mathe-
matician John Von Neumann with the comment

“You should call it entropy, for two reasons. In the first
place your uncertainty function has been used in statistical
mechanics under that name, so it already has a name. In the
second place, and more important, no one really knows what
entropy is, so in a debate you will always have the advantage.”

The fourth, sixth and ninth memoirs of Clausius by the titles “On a
modified form of the second fundamental theorem of the mechanical the-
ory of heat” [4]; “On the application of the theorem of the equivalence
of transformations to interior work” [5]; “On several convenient forms of
the fundamental equations of the mechanical theory of heat” [6] respec-
tively, are very illuminating, however for some reason his arguments did
not attract so much attention and are not reported in the treatises on
thermodynamics I know.

Clausius idea, as developed in his fourth memoir, is that there must
exist a quantity called the the equivalence value of a transformation ex-
pressing the strict connection of a transformation of heat into work with
transfer of heat from a higher temperature to a lower one as in a Carnot
cycle. The equivalence value is what he will call later the entropy. All
the reversible transformations connecting two given states have the same
equivalence value, so that entropy is an invariant under variation of the
protocols connecting those states.

The existence of entropy in classical equilibrium thermodynamics im-
plies that the integral

∫
δQ
T does not depend on the particular reversible

quasi-static transformation joining two fixed initial and final states. For
example in the simple case of an ideal gas we have the exact 1-form

dS = Cp
dT

T
− nR

dp

p
(1.1)

In this note, after illustrating Clausius’ reasoning 1, we wish to show
that a formula obtained in [2, 3] represents a generalization to stationary

1I became aware only recently of the paper [8] where Clausius approach is also
reviewed.
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non-equilibrium states in the context of an important class of irreversible
processes. These are the diffusive processes considered in the macroscopic
fluctuation theory (MFT).

The macroscopic fluctuation theory deals mainly with diffusive systems
boundary driven and in presence of external fields. For these systems a
finite time approach to macroscopic transformations has been developed
[2, 3]. Quasi static transformations are obtained as limits of scaled hydro-
dynamic equations with suitable time dependent boundary conditions.

A quasi-static transformation is a continuous succession of stationary
states modified by 1/τ corrections, where τ is a large time. Then one
takes the limit τ → ∞. Furthermore new exact expressions connecting the
equilibrium free energy or its derivatives to deviations from stationarity
follow from a systematic development in powers of 1/τ .

The fourth memoir of Clausius [4] clarifies how the idea of entropy
emerged thermodynamically. He concentrates on transformations rather
than states and wants to characterize the relationship between transform-
ing heat into work and the transition of heat between two temperatures
in a generalized Carnot’s cycle. The leading idea is that there exists a
quantity called the equivalence value of a transformation, characterising
these different changes of state. He then gives a general argument to show
that such a quantity must have the form

∫
dQ/T .

Let us quote from his fourth memoir

“Carnot’s theorem,....,expresses a relation between two kinds
of transformations, the transformation of heat into work, and
the passage of heat from a warmer to a colder body, which may
be regarded as the transformation of heat at the higher, into
heat at a lower temperature.....

For example, let the quantity of heat Q, produced in any
manner whatever from work, be received by the body K; then
by the foregoing cyclical process [he considers a generalized
Carnot’s cycle] it can be withdrawn from K and transformed
back into work, but at the same time the quantity of heat
Q1 will pass from K1 to K2; or if the quantity of heat Q1

had previously been transferred from K1 to K2, this can be
again restored to K1 by the reversed cyclical process wherby
the transformation of work into the quantity of heat Q of the
temperature of the body K will take place.

We see, therefore, that these two transformations may be
regarded as phenomena of the same nature, and we may call
two transformations which can thus mutually replace one an-
other equivalent. We have now to find the law according to
which the transformations must be expressed as mathematical
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magnitudes, in order that the equivalence of two tranforma-
tions may be evident from the equality of their values. The
mathematical value of a transformation thus determided may
be called its equivalence-value (Aequivalenzwerth).”

Here is Clausius’ argument to determine such equivalence-value

“With respect to the magnitude of the equivalence-value,
it is first of all clear that the value of a transformation from
work into heat must be proportional to the quantity of heat
produced; and besides this it can only depend upon the tem-
perature. Hence the equivalence-value of the transformation of
work into the quantity of heat Q, of the temperature t, may be
represented generally by

Qf(t) (1.2)

wherein f(t) is a function of the temperature which is the same
for all cases....In a similar manner the value of the passage of
the quantity of heat Q, from the temperature t1 to the temper-
ature t2, must be proportional to the quantity Q, and besides
this, can only depend on the two temperatures. In general
therefore, it may be expressed by

QF (t1, t2) (1.3)

wherein F (t1, t2) is a function of both temperatures, which is
the same for all cases, and of which we at present only know
that, without changing its numerical value, it must change its
sign when the two temperatures are interchanged; so that

F (t1, t2) = −F (t2, t1) (1.4)

”

Clausius concludes that the relationship between f(t) and F (t1, t2) is

F (t1, t2) = f(t2)− f(t1) (1.5)

He writes f(t) = 1
T where T is provisionally a function of temperature that

will be identified later with the absolute temperature. In his ninth memoir
[6] he will summarize the two principles of thermodynamics as follows

“The whole mechanical theory of heat rests on two funda-
mental theorems, - that of equivalence of heat and work, and
that of equivalence of transformations.”
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Some comments are here in order. The equivalence of transformations
in the above reasoning is restricted to heat going into work and heat passing
from higher temperature to lower temperature. This is equivalent to the
second principle. However once the existence of entropy is established it
follows that to all reversible transformations between given initial and final
states of a system can be attributed the same equivalence value i.e. the
difference of entropies between initial and final state.

We now show that an analogy exists in the dissipative context of non–
equilibrium diffusive systems. To make the paper selfcontained we collect
here some facts and formalism of the macroscopic fluctuation theory, a
kind of ritual, which can be found in greater detail in [2, 3] and references
therein.

Acknowledgements. I wish to acknowledge my long standing collabo-
ration with L. Bertini, A. De Sole, D. Gabrielli, C. Landim which ispired
this paper.

2 Macroscopic dynamics

We denote by Λ ⊂ Rd the bounded region occupied by the system, by
∂Λ the boundary of Λ, by x the macroscopic space coordinates and by t
the macroscopic time. The system is in contact with boundary reservoirs,
characterized by their chemical potential λ(t, x), x ∈ ∂Λ and under the
action of an external field E(t, x).

At the macroscopic level the assumption is that the system is com-
pletely described by the local density ρ(t, x) and the local density current
j(t, x) and their evolution is given by the continuity equation together with
the constitutive equation which expresses the current as a function of the
density. Namely, {

∂tρ(t) +∇ · j(t) = 0,

j(t) = J(t, ρ(t)),
(2.1)

where we omit the explicit dependence on the space variable x ∈ Λ. For
driven diffusive systems the constitutive equation takes the form

J(t, ρ) = −D(ρ)∇ρ+ χ(ρ)E(t), (2.2)

where the diffusion coefficient D(ρ) and the mobility χ(ρ) are assumed
to be d × d symmetric and positive definite matrices. This holds in the
context of stochastic lattice gases [2]. Equation (2.2) relies on the local
equilibrium hypothesis, small local gradients and linear response to the
external field. The evolution of the density is thus given by the driven
diffusive equation

∂tρ(t) +∇ ·
(
χ(ρ)E(t)

)
= ∇ ·

(
D(ρ)∇ρ

)
. (2.3)
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The transport coefficients D and χ satisfy the local Einstein relation

D(ρ) = χ(ρ) f ′′(ρ), (2.4)

where f is the equilibrium free energy per unit volume which we assume
to depend on the local value ρ(x).

Equations (2.1)–(2.2) have to be supplemented by the appropriate
boundary conditions on ∂Λ due to the interaction with the external reser-
voirs. If λ(t, x), x ∈ ∂Λ, is the chemical potential of the external reservoirs,
the boundary condition reads

f ′(ρ(t, x)) = λ(t, x), x ∈ ∂Λ. (2.5)

If the chemical potential and external field do not depend on time, we
denote by ρ̄ = ρ̄λ,E the stationary solution of (2.3),(2.5),{

∇ · J(ρ̄) = ∇ ·
(
−D(ρ̄)∇ρ̄+ χ(ρ̄)E

)
= 0,

f ′(ρ̄(x)) = λ(x), x ∈ ∂Λ.
(2.6)

We will assume that this stationary solution is unique. The stationary
density profile ρ̄ is characterized by the vanishing of the divergence of the
associated current, ∇ · J(ρ̄) = 0. A special situation is when the current
itself vanishes, J(ρ̄) = 0; if this is the case, which means that the boundary
conditions and the external field balance each other, we say that the system
is in a macroscopic equilibrium state; this can be viewed as a macroscopic
counterpart to detailed balance [1].

Homogeneous equilibrium states correspond to the case in which the
external field vanishes and the chemical potential is constant in space.
Inhomogeneous equilibrium states correspond to the case in which the
external field is gradient, E = −∇U , and it is possible to choose the
arbitrary constant in the definition of U such that U(x) = −λ(x), x ∈ ∂Λ.
The stationary equation ∇·J = 0 with the associated boundary conditions
play a role akin to the equation of state in equilibrium thermodynamics.

3 Transformations and energy balance

Consider a system in a time dependent environment, that is, E and λ
depend on time. The work done by the environment on the system in the
time interval [0, T ] is

W[0,T ] =

∫ T

0

dt
{∫

Λ

dx j(t) · E(t)−
∫
∂Λ

dσ λ(t) j(t) · n̂
}
, (3.1)
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where n̂ is the outer normal to ∂Λ and dσ is the surface measure on ∂Λ.
The first term on the right hand side is the energy provided by the external
field while the second is the energy provided by the reservoirs.

Fix time dependent paths λ(t) of the chemical potential and E(t) of
the field. Given a density profile ρ0, let ρ(t), j(t), t ≥ 0, be the solution
of (2.1)–(2.5) with initial condition ρ0. By using the Einstein relation
(2.4) and the boundary condition f ′(ρ(t)) = λ(t), an application of the
divergence theorem yields

W[0,T ] = F (ρ(T ))− F (ρ(0)) +

∫ T

0

dt

∫
Λ

dx j(t) · χ(ρ(t))−1j(t), (3.2)

where F is the equilibrium free energy functional,

F (ρ) =

∫
Λ

dx f(ρ(x)). (3.3)

The step from (3.1) to (3.2) uses the constitutive equation (2.2) and the
Einstein relationship (2.4). It tells us that for the class of systems con-
sidered the change of the free energy ∆F is, as expected, the difference
between the total work and the total dissipation. Notice that if the system
is out of equilibrium for an infinite time both these quantities are infinite.
The currents j(t) must be evaluated on the solutions of the hydrodynamic
equations.

From (3.2) follows the Clausius inequality

W[0,T ] ≥ F (ρ(T ))− F (ρ(0)). (3.4)

For quasi-static transformations between nonequilibrium stationary states,
the Clausius inequality does not carry any significant information. In fact,
the energy dissipated along such transformations will necessarily include
the contribution needed to maintain the nonequilibrium stationary states,
which is infinite in an unbounded time window. It is however possible to
formulate a meaningful version of the inequality for nonequilibrium states
by introducing a renormalized work W ren that is defined by subtracting
the energy needed to maintain the nonequilibrium state [2]. This energy
interprets in the present context what is called housekeping heat in [7]

To analyze transformations over a long interval [0, τ ] driven by slowly
changing boundary conditions and external fields, it is convenient to rescale
time and introduce the dimensionless variable s = t/τ . The protocol of
a transformation is defined therefore by a choice of the external drivings
E(s, x), x ∈ Λ, and λ(s, x), x ∈ ∂Λ, s ∈ [0, 1].

Introduce the expansion

ρτ (τs) = ρ̄(s) + 1
τ r(s) + o

(
1
τ

)
,

jτ (τs) = J(s, ρ̄(s)) + 1
τ g(s) + o

(
1
τ

)
.

(3.5)
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It is easy to see that r, g obey the following equations ∂sρ̄(s) +∇ · g(s) = 0
g(s) = −∇ ·

(
D(ρ̄(s))r(s)

)
+ r(s)χ′(ρ̄(s))E(s)

r(s, x) = 0, x ∈ ∂Λ,
(3.6)

which implies that r, g depend linearly on ∂sρ̄.
The formula we want to discuss is

F
(
ρ̄(1)

)
− F

(
ρ̄(0)

)
=

∫ 1

0

ds

∫
Λ

dxE(s) · g(s)−
∫ 1

0

ds

∫
∂Λ

dσ λ(s)g(s) · n̂

+

∫ 1

0

ds

∫
Λ

dx r(s)J(s, ρ̄(s)) · (χ−1)′
(
ρ̄(s)

)
J(s, ρ̄(s)) .

(3.7)

For a derivation we refer to [2, 3].
Taking the pair E(x, s), λ(x, s) as our state variables, a transformation

corresponds to a path γ in an infinite dimensional space. Then the right
hand side of (3.7) can be represented as a line integral of an exact 1– form∫

γ

A1 dE +A2 dλ . (3.8)

We now take into account that ρ̄ depends on time only through λ,E

∂sρ̄ =
δρ̄

δλ
∂sλ+

δρ̄

δE
∂sE . (3.9)

Inserting this expression into the formulas for r, g in (3.7), separating ∂sλ
and ∂sE we can obtain explicitly A1, A2.

Equation (3.7) establishes a mathematical equivalence of quasi–static
transformations for a class of dissipative systems. These transformations
can be energetically very different as the energy necessary to keep the
system out of equilibrium per unit of time can differ considerably. Concrete
examples will be discussed elsewhere.

4 Concluding remarks

For diffusive systems different equivalent transformations in the sense of
(3.7) can be very different as far as energy consumption is concerned. To
be concrete let us consider a conductor in a potential difference ∆V that we
want to increase to a value ∆V ′. A quasi–static transformation increasing
slowly ∆V would produce a very large quantity of heat, infinite in the
limit, that we can possibly reduce through the following procedure that
we formulate in a slightly more general form.
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Consider a quasi-static transformation between the stationary states
corresponding to the values Ei, λi and Ef , λf . You may ideally split the
transformation in the following way.

Change abruptly the field from Ei to E
′

i where E
′

i is the value corre-
sponding to equilibrium, i.e. J = 0, with chemical potential λi. The sys-
tem will relax to equilibrium. Then perform a quasi-static transformation
via equilibrium states until you reach the final value λf . No housekeeping
heat. Finally bring abruptly the field to its final value Ef . The system
will relax to its final stationary state.

Of course in every concrete case one must estimate the energy cost of
the splitting and decide whether over a long but finite interval of time of
a real transformation it is convenient. In [3] we discussed a criterion of
optimality based on the minimisation of the renormalized work which led
to some unexpected outcome also for a system of free particles.

In conclusion, it is somewhat surprising that an equivalence class of
transformations could be defined for irreversible dissipative systems like
purely diffusive systems. It is interesting to investigate the possibility of
generalising this analysis to a more general setting like reaction–diffusion
macroscopic dynamics where presumably we can extend the macroscopic
fluctuation theory.
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Università di Roma “La Sapienza”,
and Istituto Nazionale di Fisica Nucleare,
Piazzale A. Moro 2, Roma 00185, Italy
gianni.jona@roma1.infn.it

mailto:gianni.jona@roma1.infn.it

	Introduction
	Macroscopic dynamics
	Transformations and energy balance
	Concluding remarks
	References

