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1 Introduction
Dedicated to Errico Presutti for his 80th birthday, with deep gratitude.

Deriving thermodynamic quantities from microscopic models based on
physical principles is one of the main challenges of both theoretical and
computational methods in statistical mechanics. The inverse question is
equally intriguing: based on experimental or computational data is it possi-
ble to design the atomistic parameters of the system such as the interaction
potential?

In the late 30’s J. E. Mayer and collaborators [41, 43, 44, 20, 42, 45] sug-
gested a theory for expressing thermodynamic quantities in terms of power
series of their parameters (activity or density) for non-ideal gases. More
results on correlation functions appeared immediately after, [31, 46, 6, 32].
Their range of validity was initially debated [5, 73, 70], until the first rigor-
ous results appeared in the high-temperature and low-density regime: first
in [4] based on a fixed-point argument for the Kirkwood-Salsburg equa-
tions and later with the proof of the convergence of the virial expansion by
Groeneveld in 1963 [18] and Lebowitz and Penrose in 1964 [38], building
on the previously established convergence of the activity expansion of the
pressure by using again the Kirkwood-Salsburg integral equation [55, 63]
or by establishing the tree-graph inequality [56]. Since then, many power
series expansions between different thermodynamic quantities have been
established [50, 51, 10, 68], usually without checking their radius of con-
vergence. Since their complexity increases dramatically to higher orders,
several empirical closures have been suggested and tested with experimen-
tal and computational data, even in denser regimes such as the liquid
state. As a result, by today this research has been registered as a the-
ory for the liquid state [19], [65] which works well in some cases but with
still much to discover. Furthermore, new techniques have been developed
mainly exploiting the dramatic increase of computational power. However,
for more complex systems these computational methods still require very
long running times, so maybe it would be fruitful to re-investigate the an-
alytic methods and based on new intuition from analysis, probability and
combinatorics eventually suggest new computational methods.

Back to the rigorous results, the main steps of these expansions are the
following: we first obtain an expansion of the pressure with respect to the
activity (“Mayer’s first theorem”, [72]) exploiting the representation of the
grand canonical ensemble as a generating function of some combinatorial
species (simple graphs), see Section 3. A similar expansion holds for the
density as well. The convergence of these power series is possible thanks
to the tree-graph inequality given in Section 4 where we also comment
on some recent progress. The next step is to invert the density-activity
expansion by using tree structures and this is presented in Section 5 where
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a more general framework to study inhomogeneous systems as well as
correlation functions is given. In order to obtain the equation of state
one needs to plug the resulting expansion of the activity as a function
of the density into the pressure-activity expansion and re-sum obtaining
also a bound for the radius of convergence of the composed power series
combining the convergence results for the inversion and for the activity
expansion. This is the context of “Mayer’s second theorem” which we
present in Section 6. Alternatively, in order to derive the equation of
state, being a density expansion, one could work directly in the canonical
ensemble. This is presented in Section 7 where we also comment on the
comparison with the inversion. Last but not least, in Section 8 we repeat
the above procedure for various correlation functions in both the canonical
and the grand-canonical ensemble. We conclude with a brief comment on
more involved inversions of the second correlation function with respect to
the pair inter-particle potential as well as with a short discussion about
closures.

This is a review article and we skip the detailed proofs. Whenever
relevant we hint on the main ideas and guide the reader to the corre-
sponding literature for the full proofs. Summarizing, the main points of
this contribution are the following:

1. Present various expansions of thermodynamic quantities and connect
them to the underlying combinatorial structures.

2. Provide inversion theorems for the rigorous justification of the den-
sity expansions in the gas regime.

3. Show that the various density expansions can be established not
only in the grand-canonical ensemble using inversions, but also in
the canonical ensemble in a direct way.

4. Investigate how one could turn a graphical demonstration of an ex-
pansion or of an inversion into a rigorous proof about its radius of
convergence.

Acknowledgments. This is a review article to celebrate Errico Presutti’s
80th birthday. It contains research results over the last ten years starting
with [61] during my post-doc with him at Tor Vergata. As evident from the
references, it is based on joint work and discussions with many colleagues
and this research has strongly benefited from the fertile ground in the
statistical mechanics group in Rome and Errico’s guidance. I would also
like to acknowledge many inspiring discussions with David Brydges, Marzio
Cassandro, Roman Kotecký and Joel Lebowitz over all these years.
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2 The model

Let X be a measurable space and V : X × X → R ∪ {∞} a measurable
pair potential which we choose to be symmetric: V (x, y) = V (y, x). We
assume that for some measurable function B : X → [0,∞), we have the
stability condition

∑
1≤i<j≤n

V (xi, xj) ≥ −
n∑

i=1

B(xi), (2.1)

for all n ≥ 2 and x1, . . . , xn ∈ X. Define the Hamiltonian:

Hn(x1, . . . , xn) :=
∑

1≤i<j≤n

V (xi, xj),

for n ≥ 2 and H0 = 0, H1 = 0. For simplicity of the presentation we
consider the case X = Λ ⊂ Rd and later (after equation (7.5)) we will
return to the more general set-up. The canonical ensemble consists of a
probability measure on the configuration space ΛN of N indistinguishable
particles. It is given by the (canonical) Gibbs measure

µΛ,N,β(dx) :=
1

ZΛ,N,β
e−βHN (x) dx

N !
. (2.2)

The normalization ZΛ,N,β is called canonical partition function and it is
given by

ZΛ,N,β :=
1

N !

∫
ΛN

e−βHN (x)dx. (2.3)

Alternatively, one can also consider the grand canonical ensemble on the
space ⊕∞

N=0Λ
N with the grand canonical measure µg.c.

Λ,β(z) being described

by its marginals when N particles are fixed, given by zN

ΞΛ,β(z)
e−βHN (x) dx

N ! ,
for some control parameter z ∈ R called activity. The corresponding nor-
malization, the grand-canonical partition function, is given by:

ΞΛ,β(z) :=

∞∑
N=0

zNZΛ,N,β . (2.4)

Note that all relevant properties of the corresponding macroscopic system
are registered in the partition function. For example, the Helmholtz free
energy at finite volume is given by

Fβ,Λ(N) := − 1

β|Λ|
lnZΛ,N,β (2.5)
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and the pressure at finite volume, by:

Pβ,Λ(z) :=
1

β|Λ|
ln ΞΛ,β(z). (2.6)

The goal of statistical mechanics is to compute the above quantities (among
others) and study their dependence as we vary the parameters. Of par-
ticular interest is to understand if they exhibit singularities as we pass to
the thermodynamic limit which consists of sending Λ ↑ Rd (for the grand
canonical ensemble) and also N → ∞ such that N

|Λ| → ρ, for some ρ > 0

(for the canonical). This is a hard question and in this note we will content
ourselves by understanding when this does not happen, i.e., when it can
be proved that they are analytic functions with respect to the parameters.

3 Combinatorial species and graph generat-
ing functions

The goal is to write (2.5) and (2.6) as absolutely convergent power series
with respect to the relevant parameters. As mentioned in the introduc-
tion, this idea originates in the works of J. E. Mayer and collaborators
(also inspired by some previous works such as [74, 75]) and it is easier to
demonstrate it working with the grand-canonical partition function as it is
explained below. In fact, letting G be the combinatorial species of labelled
simple graphs, we write G(z) for the corresponding generating function of
labelled structures and GV for the collection of all simple graphs on the
set V ⊂ [N ] := {1, . . . , N}. With a slight abuse of notation we will also
denote by GN the set of G structures on N vertices, whenever there is
no risk of confusion. We can also consider that each graph comes with a
weight w : G → R. Then (2.4) can be written as

ΞΛ(z) = G(z) :=
∞∑

N=0

zN

N !
GN , GN :=

∑
g∈G[N]

wΛ(g), (3.1)

where we have removed from the notation the dependence on the inverse
temperature β as it will not be studied here and where GN is the (weighted)
number of graphs of cardinality N with weight:

wΛ(g) :=

∫
Λ|g|

∏
{i,j}∈E(g)

f(xi, xj) dx, where f(xi, xj) := e−βV (xi,xj)−1.

(3.2)
Note also that we neglected from the notation the dependence of G and
GN on the volume Λ which is now “hidden” in the weight function wΛ.
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We denote by |g| the cardinality of the vertices of the graph g and by
E(g) the set of edges of the graph g. Similarly, we will later denote by
Cn the set of all connected graphs on n vertices and by C(z) the weighted
generating function of the combinatorial species of connected graphs, i.e.,
C(z) :=

∑
n≥1

zn

n!Cn with Cn :=
∑

g∈CN
wΛ(g). At this point, we give a

couple more definitions:

• a cutpoint (or articulation point) of a connected graph g is a vertex
of g whose removal yields a disconnected graph.

• A connected graph is called 2-connected if it has no cutpoint.

• A block in a simple graph is a maximal 2-connected subgraph.

Hence, a connected graph can be viewed as a graph whose blocks are 2-
connected. We denote by Bn the set of 2-connected graphs on n vertices.
For a more systematic presentation of the combinatorial structures we refer
to [2, 39] (see also [69]). In particular, it is easy to see that a simple graph
is the disjoint union of connected graphs which in terms of generating
functions it gives:

PΛ(z) =
1

|Λ|
lnG(z) = 1

|Λ|
C(z). (3.3)

Note that (3.3) can be re-written in the more familiar form as in [58]:

PΛ(z) =
1

|Λ|
ln

(
1 +

∞∑
N=1

zN

N !

∫
ΛN

ϕ(x1, . . . , xN )dx

)

=
1

|Λ|

∞∑
n=1

zn

n!

∫
Λn

ϕT(x1, . . . , xn)dx

=

∞∑
n=1

zn

n!

1

|Λ|
∑
g∈Cn

wΛ(g) =:

∞∑
n=1

bnz
n, (3.4)

where for a generic binary map h : X × X → R we have introduced the
coefficients:

ϕ(x1, . . . , xn) :=
∏

1≤i<j≤n

(1 + h(xi, xj)) =
∑
g∈Gn

∏
{i,j}∈E(g)

h(xi, xj) (3.5)

and
ϕT(x1, . . . , xn) :=

∑
g∈Cn

∏
{i,j}∈E(g)

h(xi, xj). (3.6)
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Here we have chosen h = f as in (3.2), but we gave the definitions of ϕ and
ϕT for a generic h as other choices will be relevant later (see Section 7).
Furthermore, as mentioned before (3.3), we note that

ϕ(x1, . . . , xn) =

n∑
k=1

∑
{P1,...,Pk}
∈Πk(1,...,n)

k∏
i=1

ϕT(xPi
), (3.7)

where Πk(1, . . . , n) is the set of partitions of {1, . . . , n} into k blocks. Then
for a given partition {P1, . . . , Pk} ∈ Πk(1, . . . , n) and a given block Pi =
{j1, . . . , j|Pi|} ⊂ {1, . . . , n} we set xPi

:= (xj1 , . . . , xj|Pi|
)

The next important issue is to investigate for which values of z the
above series is absolutely convergent.

4 Convergence
The main idea is to estimate the sum over connected graphs in (3.4) by a
sum over trees. This is the context of the following tree-graph inequality:

Lemma 4.1. If (2.1) holds, then∣∣∣∣∣∣
∑
g∈Cn

∏
{i,j}∈E(g)

f(xi, xj)

∣∣∣∣∣∣ ≤ e
∑n

i=1 B(xi)
∑
τ∈Tn

∏
{i,j}∈E(g)

f̄(xi, xj), (4.1)

where
f̄(xi, xj) := 1− e−β|V (xi,xj)| (4.2)

and Tn is the set of trees on n vertices.

For the proof of the recent version with f̄ as in (4.2) we refer to Procacci
and Yuhjtman [60], see also [71, 59]. For earlier versions we refer to [56,
1, 7, 40]. In fact, there is an interesting connection between Banach fixed
point argument for correlation functions and tree identities [4, 56, 64, 8,
40, 48, 34, 35, 58]. With this lemma we have the following consequence
for (3.4):

∑
n≥1

zn
1

n!

1

|Λ|

∣∣∣∣∣∣
∑
g∈Cn

wΛ(g)

∣∣∣∣∣∣
≤ 1

|Λ|
∑
n≥1

zn

n!

∫
Λn

e
∑n

i=1 B(xi)
∑
τ∈Tn

∏
{i,j}∈E(g)

f̄(xi, xj) dx

=:
1

|Λ|

∫
Λ

T ◦
x0
(z)zeB(x0) dx0. (4.3)
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Notice that the quantity T ◦
x0
(z) - the weighted generating function of the

combinatorial species of simple trees rooted at x0 - satisfies the equation:

T ◦
x0
(z) = exp

{∫
Λ

f̄(x0, x)T
◦
x (z) ze

B(x)dx

}
, (4.4)

see Faris [12], Section 3.1.
With the above, “Mayer’s first theorem” of absolute convergence of the

power series expression of the pressure with respect to the activity follows
from the following proposition:

Proposition 4.2. For every x0 ∈ Λ, T ◦
x0
(z) < ∞ if and only if for some

positive function a : Λ ⊂ Rd → R+ and all x0:∫
Λ

f̄(x0, x)e
a(x)zeB(x) dx ≤ a(x0). (4.5)

The proof is given by induction and for the details we refer to [58],
Theorem 2.1 and [24], Proposition 2.1.

5 Inversion
Another thermodynamic quantity of interest is the density which can be
defined as the expected value of observing a given fraction of particles
within a box Λ ⊂ Rd at a given activity z. Let us consider the sample
space ΩΛ := ⊕∞

N=0Λ
N (with the proper σ-algebra) and the random variable

NΛ := |x∩Λ|. By computing the first moment with respect to the grand-
canonical measure µg.c.

Λ (z) we define:

ρΛ(z) := Eµg.c.
Λ (z)

[
NΛ

|Λ|

]
= z

d

dz
PΛ(z). (5.1)

Referring again to [39] this can be viewed as the generating function of
“rooted” connected graphs, denoted by ρΛ(z) = C•(z). Given a species,
e.g. the connected graphs C (similarly for the other species B, T ), the
operation of rooting (or pointing) C 7→ C• at an element of the underlying
set can be defined by

C•(z) := zC′(z), (5.2)

where the derivative C′(z) is defined as adding to the structure an external
(unlabelled) element ∗; hence, if we choose the underlying set to be [n],
we have: C′

[n] = C[n]∪{∗}. Comparing (5.2) to the definition (4.3) we note
that we can define various types of generating functions of rooted species
by specifying or not the label of the root and by multiplying or not with
z (C• vs C◦). The goal of this section is to invert the above formula
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and plug it into the pressure in order to obtain an equation between the
pressure and the density, known as equation of state. Apart of its relevance
in applications there is an interesting mathematical question about the
convergence of these series which we describe with an example:

5.1 A simple example
Example 5.1. Let P (z) be the generating function of “cyclic permutations”,
i.e.,

P (z) =
∑
n≥0

zn

n!
n! =

1

1− z
, |z| < 1. (5.3)

It is easy to see that it is the exponential (generating function of the
combinatorial species “sets”) of the generating function of “cycles”, given
below:

C(z) =
∑
n≥1

zn

n!
(n− 1)! = − ln(1− z), 0 < z < 1. (5.4)

Suppose that we consider a particular gas whose pressure is given by C(z)
as in (5.4), valid for 0 < z < 1, i.e., there is a singularity at z = 1. The
corresponding density from (5.1) is given by:

ρ(z) = zC ′(z) =
z

1− z
⇔ z =

ρ

1 + ρ
. (5.5)

Note that due to the explicit formula the inversion is easy. Then, substi-
tuting back to (5.4) we obtain the following equation of state:

C̄(ρ) := C(z(ρ)) = − ln(1− ρ

1 + ρ
) = ln(1 + ρ). (5.6)

Observe that the latter is valid for all values of ρ > 0, i.e., the singularity
at z = 1 for the pressure is not present anymore when the pressure is
expressed in terms of the density. This might indicate that probably it
is more useful to view the “pressure” C as a function of ρ rather than a
function of z. Is this true for the general model? That is, does a similar
“direct” expansion with respect to the density for the general model enjoy
of a similar property?

5.2 Inversion with trees
Before investigating the convergence of the inverse series, we give a strategy
on how to perform the inversion. From (5.1) we have:

ρΛ(z) = zP ′
Λ(z) = z

(
1 +

∞∑
n=1

zn

n!

∫
Λn

ϕT(0, x1, . . . , xn)dx

)
= ze−A(0;z),

(5.7)



368 D. Tsagkarogiannis

where A(0; z) is given by the following formula by considering q ≡ 0 ∈ Λ:

A(q; z) :=
∑
n≥1

zn

n!

∫
Λn

An(q;x1 . . . xn) dx1 . . . dxn (5.8)

and (in our case)

An(q;x1, . . . , xn) := −

 n∏
j=1

(1 + f(q, xj))− 1

 ∑
g∈Cn

∏
{i,j}∈E(g)

f(xi, xj).

(5.9)
Note that similarly to (3.3), in (5.7) we viewed C• as the following oper-
ations: first take the combinatorial species of sets over all vertices except
the root 0 (giving the exponential), then sum over all connected graphs
within each member of the sets (the second factor of An in (5.9)) together
with all possible links to the root 0 (first factor of An). The goal is to
find a solution z(ρΛ) = ρΛT̄

◦
0 (ρΛ) of (5.7) expressed in terms of a power

series T̄ ◦
0 to be found. Hence, we rewrite (5.7) as the following fixed point

problem:
T̄ ◦
0 (ρΛ) = eA(0;ρΛT̄◦

0 (ρΛ)), (5.10)

or, more explicitly, as:

T̄ ◦
0 (ρ) = exp

( ∞∑
n=1

1

n!

∫
Xn

An(0;x1, . . . , xn)T̄
◦
x1
(ρ) · · · T̄ ◦

xn
(ρ)ρndx1 · · · dxn

)
.

(5.11)
Note that equation (5.11) is understood in the sense of formal power series.
Once one can prove absolute convergence in the sense of Proposition 4.2,
then equation (5.11) turns into a relation of analytic functions. Here we
give the main ideas of the inversion and we will present the rigorous state-
ments in Section 8.1.

Comparing (5.11) with (4.4) we observe a similar iterative structure,
hence such a solution might be expressed as a power series of a special class
of trees to be determined. This procedure of inverting using trees is by now
a well-understood strategy which dates back to [17] and it appears in many
contexts. See [27] for a more detailed discussion about the combinatorics
and other possible applications. Indeed, in [28], Proposition 2.6, it is
proved that the unique solution of (5.7) is given by z = ρΛT̄

◦
0 (ρΛ) where

T̄ ◦
0 (the unique solution of (5.11)) is a generating function of some special

type of trees given below. Consider a genealogical tree that keeps track
not only of mother-child relations, but also of groups of siblings born at
the same time. This results in a tree for which children of a vertex are
partitioned into cliques (singletons, twins, triplets, etc.). Accordingly for
n ∈ N we define T P◦

n as the set of pairs (T, (Pi)0≤i≤n) consisting of:
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• A tree T with vertex set [n] := {0, 1, . . . , n}. The tree is considered
rooted in 0 (the ancestor).

• For each vertex i ∈ {0, 1, . . . , n}, a set partition Pi of the set of
children1 of i. If i is a leaf (has no children), then we set Pi = ∅.

For x0, . . . , xn ∈ Λ, we define the weight of an enriched tree (T, (Pi)0≤i≤n) ∈
T P◦

n as

w
(
T, (Pi)0≤i≤n;x0, x1, . . . , xn

)
:=

n∏
i=0

∏
J∈Pi

A#J+1

(
xi; (xj)j∈J

)
, (5.12)

with
∏

J∈∅ = 1. So the weight of an enriched tree is a product over all
cliques of twins, triplets, etc., contributing each a weight that depends on
the variables xj of the clique members and the variable xi of the parent.
With the above we have that the family of power series (T̄ ◦

q )q∈X which
satisfies (5.11) is given by

T̄ ◦
0 (ρ) = 1 +

∞∑
n=1

1

n!

∫
Xn

∑
(T,(Pi)i=0,...,n)

∈T P◦
n

w
(
T, (Pi)i=0,...,n; 0, x1, . . . , xn

)
ρndx.

(5.13)

Remark 5.2. Comparing to Example 5.1 we have that C ′(z) = eC(z) or
A(0; z) = C(z), that is

T (ρ) =
ρ

1 + ρ
= ρ

∑
n≥0

(−ρ)n, (5.14)

for which we need 0 < ρ < 1. Observe that both (5.14) and (5.6) have
a pole at −1, but no restriction for positive values, which one would like
to exploit while establishing the region of analyticity. Furthermore, when
(5.14) is viewed as a power series expansion (originating from the tree
expansion solution of the inversion formula) its absolute convergence is
valid within the radius of convergence ρ < 1, while the direct calculation
and consequently the final formula (5.6) does not have that constraint.

Remark 5.3. The second observation is that by composing A with T̄ ◦
0 in

(5.10) one obtains some simplifications. From [39], Figure 4, [68], Section
5, relation (5-6) and [51], formula (4.4) we have the following diagram-
matic construction: a connected graph with root 0 can be viewed as a
partition (the exponential) of the following structure: in each element of

1The members of the partition are assumed to be non-empty, except we consider the
partition of the empty set.
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the partition, we start with the root 0 which is part of a block (a rooted
2-connected component). Then, from each vertex of the 2-connected com-
ponent it can start a new connected graph having that vertex as a root.
In formulas:

C•(z) = z · exp{B′(C•(z))}, (5.15)

or equivalently,
ρΛ(z) = zeB

′(ρΛ(z)), (5.16)

where B is the generating function of the 2-connected graphs:

B(ρ) =
∞∑

n=2

Bn
ρn

n!
, Bn :=

∑
g∈Bn

wΛ(g), (5.17)

(where again we do not explicit the dependence on Λ in the notation Bn

and B). Note that in the literature it is usually called the “irreducible”
coefficient

βn :=
1

n!

1

|Λ|
Bn+1. (5.18)

Thus, in view of (5.15) the term A(0; z) in (5.7) can be written as

−A(0; z) =

∞∑
n=1

1

n!

∫
Xn

Dn+1(0, x1, . . . , xn)

n∏
i=1

e−A(xi;z)zn(dx), (5.19)

where
Dn(x1, . . . , xn) :=

∑
g∈Bn

∏
{i,j}∈E(g)

f(xi, xj) (5.20)

and Bn is the set of 2-connected graphs on n vertices. By plugging in
z = ρΛT̄

◦
0 (ρΛ) we obtain:

A(0; ρΛT̄
◦
0 (ρΛ)) = −

∞∑
n=1

1

n!

∫
Λn

Dn+1(0, x1, . . . , xn)ρ
n
Λdx1 . . . dxn. (5.21)

Thus, (5.21) can be viewed as a “constructive” way of obtaining (5.16)
and at the same time proving that the resulting series over 2-connected
graphs is absolutely convergent: one first solves the fixed point problem
(5.10) obtaining T̄ ◦

0 and then composes it with A(0; ·). The convergence
is established as the composition of two absolutely convergent series. For
the detailed proof see Theorem 3.5 in [28] and we will come back to this
observation in Section 8.1. See also [25] for an alternative way of proving
the convergence of (5.21) by revisiting Groeneveld’s proof [18] based on
recurrence relations for graph weights related to the Kirkwood-Salsburg
integral equation for correlation functions.
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6 Mayer’s second theorem
The Helmholtz free energy (2.5) and the pressure (2.6) are related by
a Legendre transform. In fact, at finite volume Λ considering that the
number of particles can not exceed ρmax|Λ| we have:

PΛ(z) =
1

β|Λ|
ln

ρmax|Λ|∑
N=0

zNe−β|Λ|FΛ(N)

≤ sup
N≤ρmax|Λ|

{ N

β|Λ|
ln z − FΛ(N)}+ o|Λ|(1), (6.1)

for large Λ. We obtain a similar lower bound by taking only the term which
is the closest to the supremum. Hence, roughly speaking, for large Λ, the
pressure PΛ is the Legendre transform (FΛ)

∗ of the Helmholtz free en-
ergy, which becomes exact at infinite volume. By taking another Legendre
transform, we define the grand-canonical free energy as follows:

F g.c.
Λ (ρ) := sup

z
{ρ ln z − PΛ(z)}. (6.2)

Note that if the thermodynamic limit of FΛ is convex, then by taking the
Legendre transform twice we obtain: F g.c.

Λ := P ∗
Λ = (FΛ)

∗∗ = FΛ, for large
Λ, i.e., we recover the Helmholtz free energy and this is exact at infinite
volume. The supremum occurs at some z∗ such that ρ = z∗P ′

Λ(z
∗) which

coincides with the definition of the thermodynamic density as in (5.1). In
other words, given some value of the density ρ, there is an activity z∗(ρ)
that can produce it. Using the inversion (5.16), we also have a formula for
it: z∗(ρ) = ρe−B′(ρ). Substituting back to (6.2) we obtain:

F g.c.
Λ (ρ) = ρ ln(ρe−B′(ρ))− PΛ(z

∗)

= ρ ln ρ− ρB′(ρ)− PΛ(z
∗), (6.3)

where z∗ = z∗(ρ). Vice versa, we can also view ρ as being dependent on
the z∗ that produces it and in particular recall the following expressions
in terms of combinatorial species: that is ρ = C•(z∗) and PΛ(z

∗) = C(z∗).
Next we use a formula known as the Dissymmetry Theorem, see [2], Section
4.2, Theorem 3.1:

C•(z) + B(C•(z)) = B•(C•(z)) + C(z), (6.4)

which evaluated at z∗ it gives:

ρ+ B(ρ) = ρB′(ρ) + PΛ(z
∗). (6.5)

The proof is quite simple (see also [29], Theorem 3.3): fixing a connected
graph one counts how many times it occurs in each one of the four above
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combinatorial classes and finds that (6.5) is satisfied. Substituting (6.5)
into (6.3) we obtain:

F g.c.
Λ (ρ) = ρ ln ρ− ρ− B(ρ). (6.6)

Note that this is true even at finite volume. In the infinite volume limit,
since F g.c. = F ∗∗ = F , which is the infinite volume limit of the Helmholtz
free energy, the above formula holds for the latter as well, when it is strictly
convex.

In a similar fashion we obtain the equation of state (pressure vs den-
sity): given the free energy computed above in (6.6) we take again the
Legendre transform:

(F g.c.
Λ )∗(z) = sup

ρ
{ρ ln z − F g.c.

Λ (ρ)}. (6.7)

The supremum occurs at some ρ∗ such that ln z = F ′
Λ(ρ

∗) = ln ρ∗−B′(ρ∗)
(by (6.6)). Notice also that this is (5.16). Substituting back to (6.7) and
using (6.6) computed at ρ∗ we obtain:

F ∗
Λ(z) = ρ∗F ′

Λ(ρ
∗)− FΛ(ρ

∗) (6.8)
= ρ∗ − ρ∗B′(ρ∗) + B(ρ∗)

= ρ∗ −
∑
n≥2

(n− 1)

n!
βn(ρ

∗)n. (6.9)

Now, if we start with PΛ being convex, then (F g.c.
Λ )∗ ≡ PΛ and hence we

obtain the equation of state:

P̄Λ(ρ) := P (z∗) = ρ− ρB′(ρ)− B(ρ), (6.10)

which is true also at finite volume. In both (6.6) and (6.10) the pending
question is about the convergence of the power series with coefficients the
2-connected graphs. A direct proof based on an equivalent “tree-graph”
inequality (4.1) is missing. However, indirect proofs have been established
by using the inversion and then the composition of two power series, hence
inheriting the radius of convergence of the inversion (as in Section 5).
The question is whether we can hope for improvements by a more direct
method.

In Example 5.1 we had a better convergence for P̄Λ(ρ) than for PΛ(z).
Is this the case also here? The answer is negative, since in (5.16) we
assumed the convergence of T (ρ) which brings in a similar constraint as
for P (z). Then the question can be rephrased as whether there is a direct
computation of P (ρ) or FΛ(ρ) avoiding the “problematic” inversion (5.16).
A natural candidate is to work in the canonical ensemble for fixed density
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ρ := N
|Λ| . This is possible and it will be discussed in the next section, but

unfortunately there will still be a similar constraint for the convergence.
The desired improvement seems to be possible so far only in simple cases
which are amenable to explicit calculations without need of expansions.
Nevertheless, it is still worth investigating the canonical ensemble being a
direct method for computing free energies as well as helpful into elucidating
the combinatorial structure of these expansions.

Remark 6.1. It is instructive to investigate the specific form of the Dis-
symmetry Theorem in particular examples. One can consider the Tonks
gas (hard rods in d = 1), the multi-species Tonks gas [23], the infinite
dimensional gas (d → ∞) [16], as well as the two-species hard spheres of
small (microscopic) and big (macroscopic) size. For the latter we refer to
[30] for the expansion in the grand-canonical ensemble and to [53] for the
canonical ensemble.

Remark 6.2. One could use the results of this section in order to repre-
sent the large deviations cost functional as a power series (in the regime
when the latter convergences). We start by computing the log moment
generating function which corresponds to an augmented grand-canonical
partition function. Its logarithm is the excess (due to the extra introduced
activity) pressure of the system. Then the large deviations rate functional
is computed as the Legendre transform and corresponds to the excess free
energy. Cluster expansions would provide a power series expression of the
above quantities, but only in the convergence regime. The same power
series expansions can also be used to compute moderate deviations, see
[66] and [11] for a general treatise.

7 Canonical ensemble
We consider the canonical partition function (2.3). At first glance, the
missing sum over N seems obstructive in order to apply the previous com-
binatorial operations. However, this will be indeed possible but only after
considering new “species”. We introduce the set V := {V : V ⊂ [N ]} and,
recalling the definition of the coefficients (3.5) and (3.6), we choose X = V
and

h(Vi, Vj) := −1Vi∩Vj ̸=∅, (7.1)

which yields:
ϕ(V1, . . . , Vn) :=

∏
1≤i<j≤n

1Vi∩Vj=∅ (7.2)

and
ϕT(V1, . . . , Vn) :=

∑
g∈Cn

∏
{i,j}∈E(g)

(−1Vi∩Vj ̸=∅). (7.3)
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Then we have that

ZΛ,N =
|Λ|N

N !

∫
ΛN

∑
g∈GN

∏
{i,j}∈E(g)

f(xi, xj)

N∏
i=1

dxi

|Λ|

=
|Λ|N

N !

∫
ΛN

∑
{V1,...,Vn}
∈Π(1,...,N)

n∏
i=1

 ∑
g∈CVi

∏
{i,j}∈E(g)

f(xi, xj)

 N∏
i=1

dxi

|Λ|

=
|Λ|N

N !

∑
V1,...,Vn

Vi∩Vj=∅, ∀i̸=j

n∏
i=1

ζΛ(Vi)

=
|Λ|N

N !

∞∑
n=0

1

n!

∑
(V1,...,Vn)

ϕ(V1, . . . , Vn)

n∏
i=1

ζΛ(Vi)

=
|Λ|N

N !
exp


∞∑

n=1

1

n!

∑
(V1,...,Vn)

ϕT(V1, . . . , Vn)

n∏
i=1

ζΛ(Vi)

 , (7.4)

where

ζΛ(V ) :=
∑
g∈CV

w̄Λ(g), w̄Λ(g) :=

∫
Λ|V |

∏
{i,j}∈E(g)

f(xi, xj)
∏
i∈V

dxi

|Λ|
.

(7.5)
Note that we introduced the new notation w̄Λ which compared to (3.2) has
an integration over the normalized measure dx

|Λ| , i.e., w̄Λ(g) =
1

|Λ||g|wΛ(g).
The key step is from line two to line three where we remove the con-
straint that the collection {V1, . . . , Vn} has to be a partition, thanks to
the normalized measure, i.e., ζΛ(V ) = 1, if |V | = 1. In this manner, in
line four, we managed to express the (canonical) partition function as a
“grand-canonical” partition function, but for clusters V ⊂ [N ] with hard-
core interaction and activity ζΛ(V ). Thus, from now on we will use the
following generic formulation of the partition function to which we al-
luded in the beginning of the paper: let (X,X ) be a measurable space and
MC(X,X ) the set of complex linear combinations of σ-finite non-negative
measures on (X,X ). When there is no risk of confusion, we shall write MC
for short. We consider the following generic partition function:

ΞX(z) := 1 +

∞∑
n=1

1

n!

∫
Xn

e−βHn(x)zn(dx)

= 1 +

∞∑
n=1

1

n!

∫
Xn

ϕ(x1, . . . , xn)z
n(dx), (7.6)
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where ϕ is given in (3.5) and the measure z can be thought of as adding
an external potential Vext : X → R, i.e., as z(dx) = e−Vext(x)dx. For the
above to be finite, let us introduce an extra assumption on z ∈ MC(X,X ),
namely ∫

X
eβB(x)|z|(dx) < ∞. (7.7)

This approach is followed in [58]. Note that the grand-canonical partition
function corresponds to the choice X = Λ ⊂ Rd and z(dx) = zdx, while
the canonical to the choice X = V and a discrete measure ζΛ and it can also
be seen as a direct application of the “Abstract Polymer Model”, [33]. This
more general set-up will also be useful for treating correlation functions.

The theorem proved in [61] states that in computing the right hand side
of (7.6) for the above choice of the canonical ensemble, there are several
cancellations that lead us to B(ρ) plus some lower order terms in |Λ| which
vanish in the thermodynamic limit. However, as far as convergence is
concerned, we get again a similar radius of convergence as in the grand-
canonical approach despite the fact that this is a direct method. This is
due to the fact that we have power series with coefficients being expressed
via connected graphs and again we need to use the tree-graph inequality
in order to prove convergence. More precisely, by using (4.1) we have the
following bound on the activity (7.5):

|ζΛ(V )| ≤ enBnn−2 1

|Λ|n−1
Cn−1, C :=

∫
Rd

|f(0, q)|dq, (7.8)

for |V | = n and where for simplicity we considered that B(x) = B in the
stability condition (2.1). Then, the corresponding convergence condition
(4.5) for the general formulation (7.6) in the case of the canonical ensemble
(by choosing a(V ) = c|V |, for some c > 0) reads:

∑
V :V ′∩V ̸=∅

|ζΛ(V ′)|ec|V
′| ≤ |V |

∑
n≥1

enB
(
N − 1

n− 1

)
nn−2 1

|Λ|n−1
Cn−1ecn

≤ |V |ec+B
∑
n≥1

nn−2

(n− 1)!

(
N − 1

|Λ|
ec+BC

)n−1

≤ c|V |, (7.9)

where we have to choose c > 0 accordingly and secure that N−1
|Λ| e

a+BC < 1

so that the sum over n is a convergent geometric series. Hence, the key
idea is that one has to control the increasing (with n) combinatorics by
reconstructing the density N

|Λ| .
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On the other hand, the main idea for the cancellations leading to 2-
connected graphs lies on the following re-writing of (7.4):

1

|Λ|

∞∑
n=1

1

n!

∑
(V1,...,Vn)
Vi⊂[N ]

ϕT(V1, . . . , Vn)

n∏
i=1

ζΛ(Vi)

=
N

|Λ|
∑
k≥1

1

k + 1

(
N − 1

k

) ∞∑
n=1

1

n!

∑
(V1,...,Vn):

∪n
i=1Vi=[k+1]

ϕT(V1, . . . , Vn)

n∏
i=1

ζΛ(Vi),

(7.10)

where we chose k+1 labels among N , called them [k+1] = {1, . . . , k+1}
and summed over all collections of polymers V that span these labels. We
define:

PN,|Λ|(k) :=
(N − 1) . . . (N − k)

|Λ|k
(7.11)

and

Bβ,Λ(k) :=
|Λ|k

k!

∞∑
n=1

1

n!

∑
(V1,...,Vn):

∪n
i=1Vi=[k+1]

ϕT(V1, . . . , Vn)

n∏
i=1

ζΛ(Vi). (7.12)

The key observation is that for all k ≥ 2 we can split Bβ,Λ(k) as follows:

Bβ,Λ(k) = B∗
β,Λ(k) +RΛ(k), (7.13)

where

B∗
β,Λ(k) :=

|Λ|k

k!

∞∑
n=1

1

n!

∗∑
(V1,...,Vn):

∪n
i=1Vi=[k+1]

ϕT(V1, . . . , Vn)

n∏
i=1

ζΛ(Vi). (7.14)

Note that
∑∗ is a finite sum (as it is also the sum over n) that contains

all ordered sequences (V1, . . . , Vn) which satisfy the following properties:

Vi ̸= Vj , ∀i ̸= j and (7.15)

n+ 1 =

n∑
i=1

(|Vi| − 1) + 1. (7.16)

The remainder RΛ(k) vanishes in the thermodynamic limit as when we
have many overlaps of labels we obtain more factors 1

|Λ| from the normal-
ized measure. For B∗

β,Λ the following simplification is possible at finite
volume with periodic boundary conditions: given a graph g ∈ Ck+1 we
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define B(g) := {b1, . . . , br}, where bi, i = 1, . . . , r are the 2-connected com-
ponents (blocks) of g. We denote by F ̸=(g) the collection of all F ⊂ B(g)
such that ∪b∈F b is a connected graph. We also define H(g) to be the
collection of all such graphs

H(g) := {g′ : g′ = ∪b∈F b, F ∈ F̸=(g)} (7.17)

and similarly,
A(g) := {V (g′) : g′ ∈ H(g)}. (7.18)

With this definition we obtain:

B∗
β,Λ(k) =

|Λ|k

k!

∑
g∈Ck+1

w̄Λ(g)

∗∑
(V1,...,Vn):Vi∈A(g)

∪n
i=1Vi=[k+1]

ϕT(V1, . . . , Vn)

=
|Λ|k

k!

∑
g∈Bk+1

w̄Λ(g), (7.19)

under periodic boundary conditions in the integration over Λ in w̄Λ. For
the proof we refer to [61], Section 5. Note that this reduction to more con-
nected structures will be observed also in the case of correlation functions
in the canonical ensemble as in the next section. We summarize these facts
in the following theorem:

Theorem 7.1. There exists a constant c0 ≡ c0(β,B) > 0 independent
of N and Λ (see also Remark 7.2) such that if ρC(β) < c0 then for the
canonical partition function (2.3) with periodic boundary conditions we
have:

1

|Λ|
logZper

β,Λ,N = log
|Λ|N

N !
+

N

|Λ|
∑
k≥1

1

k + 1
PN,|Λ|(k)Bβ,Λ(k), (7.20)

as given in (7.11), (7.12) and with N = ⌊ρ|Λ|⌋. In the thermodynamic
limit we obtain:

lim
N,|Λ|→∞, N=⌊ρ|Λ|⌋

PN,|Λ|(k)Bβ,Λ(k) = ρkβk, (7.21)

for all k ≥ 1 and βk given in (5.18). Furthermore, there exist constants
C, c > 0 such that, for every N and Λ, and k ≥ 1 we have:

1

k + 1
PN,|Λ|(k)|Bβ,Λ(k)| ≤ Ce−ck (7.22)

and we can exchange the limit and the sum in (7.20).



378 D. Tsagkarogiannis

Remark 7.2. Using the more recent tree-graph inequality [60] as well
as other results [52, 14, 15, 49] one can improve the value of c0 obtained
in the original [61] paper, but it will only be a minor improvement and
it will not avoid the singularity present in the expansion of the pressure
with respect to the activity despite the fact that it is a direct method. It
might be worth investigating how one could use the perturbative method
of the cluster expansion around a different point than the ideal gas, as
it was also hinted in [47] where the authors could obtain some significant
improvement for the analyticity of the pressure (but not for the cluster
expansion).

In the rest of the paper, using the generic form (7.6) of the partition
function we will study expansions of the correlation functions as they ap-
pear in the literature of the liquid state theory. We will prove convergence
of the corresponding power series expansions in both the density and the
activity. We stress again that this is valid always in a small region around
the ideal gas, i.e., in the gas phase, even though in practice some of them
are used in denser regimes. We will conclude with a quick discussion on
the rigorous justification of the closures.

8 Correlation functions

As an application of the more general (functional analytic) framework, we
consider expansions of various correlation functions in terms of the activity
as well as the density. Special interest will be given to the case of two-point
correlation function and in particular to the direct correlation function. We
also compare with the expansion in the canonical ensemble which exhibits
a similar structure as for the free energy. We conclude with a discussion
about closures. One of the goals is to provide the mathematical tools that
can turn “graphical descriptions” into rigorous proofs about the converge
of the corresponding series. We start with the one discussed in Section 5.

8.1 One-point correlation in the grand-canonical en-
semble

The one-particle density viewed as a measure is given by:

ρ(dq; z) :=
1

ΞX(β, z)

(
1 +

∞∑
n=1

1

n!

∫
Xn

e−βHn+1(q,x1,...,xn)zn(dx)

)
z(dq).

(8.1)
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Notice that thanks to the more general formulation of the partition func-
tion as in (7.6) it can also be expressed as

ρ(dq; z) =
( δ

δz(q)
log Ξ(β, z)

)
z(dq), (8.2)

in analogy to (5.1). Similarly to (5.7) we also have that

ρ[z](dq) ≡ ρ(dq; z) = e−A(q;z)z(dq), (8.3)

where A is given in (5.8). Note that we use the notation z 7→ ρ[z] when
we want to view it as a map ρ : MC → MC. Note that the convergence of
A is similar to Proposition 4.2 under a bit more restrictive condition (8.4)
that also controls the first factor of (5.9). This is summarized in the next
lemma:

Lemma 8.1. Let An(q;x1, . . . , xn) be as in (5.9) and define A(q; z) as
in (5.8). Let z ∈ MC satisfy only∫

X
f̄(x, y) ea(y)+βB(y)|z|(dy) ≤ a(x), (8.4)

for some weight function a : X → R+ and all x ∈ X. Then z is in the
domain of convergence D(A).

If in addition z satisfies the finite-volume condition (7.7), then the
density ρ(dq; z) defined in (8.1) is equal to exp(−A(q; z))z(dq), moreover

log ΞX(β, z) =

∞∑
n=1

1

n!

∫
Xn

ϕT(x1, . . . , xn)z
n(dx), (8.5)

ρ(dq; z) = z(dq)

(
1 +

∞∑
n=1

1

n!

∫
Xn

ϕT(q, x1, . . . , xn)z
n(dx)

)
, (8.6)

with absolutely convergent integrals and series.

The ingredients of the proof are again the tree-graph inequality due
to [60] and the fact that fixing the origin we partition over the remaining
labels (for a similar implementation see [29, Eq. (4.17)]). See also [26]
for a more general convergence condition for the activity expansion of
correlation functions.

Similarly to Section 5 we can invert the map z 7→ ρ[z] and express
the inverse with 2-connected graphs. Here, in addition to (2.1), we also
assume that for all x ∈ X and some function B∗ : X → R+ we have

inf
y∈X

V (x, y) ≥ −B∗(x). (8.7)
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Then, getting prepared for the rigorous statement of the inversion we first
introduce the following condition on ν ∈ MC:∫

X
f̄(x, y) ea(y)+b(y)+βB(y)+βB∗(y)|ν|(dy) ≤ a(x). (8.8)

Comparing to (8.4) one might question the extra terms in the exponent.
The answer is that convergence condition for the inverted power series
requires not only the validity of the resulting series but also the fact that
taking again its inverse and getting back to the original series the resulting
value is within the radius of convergence of the latter. For completeness
we have decided to present the exact conditions, even though we are aware
that they can be appreciated only when one dives into the proofs, which
can be found in the original reference [28]. Define Vb by

Vb =
{
ν ∈ MC | ∃a : X → R+ : a ≤ b, ν satisfies (8.8)

}
.

The rigorous statement for the inversion discussed in (5.16) is given in the
following theorem:

Theorem 8.2. There is a set Ub ⊂ D(A) ⊂ MC such that z 7→ ρ[z] is a
bijection from Ub onto Vb, and for every z ∈ Ub, ν ∈ Vb, we have ρ[z] = ν
if and only if

z(dq) = ν(dq) exp

(
−

∞∑
n=1

1

n!

∫
Xn

Dn+1(q, x1, . . . , xn)ν(dx1) · · · ν(dxn)

)
,

(8.9)
where the latter converges.

If z ∈ MC fulfills (8.8) for all x ∈ X and for some a ≤ b with ea|z| ∈ Vb

for the same functions a and b, then ρ[z] ∈ Vb and hence z ∈ Ub.
If instead the following conditions including also a “finite volume con-

dition” hold,∫
X
f̄(x, y) ea(y)+βB(y)|z|(dy) ≤ a(x), ea+βB |z| ∈ Vb,∫

X
(1 + b(q))ea(q)+βB(q)|z|(dq) < ∞, (8.10)

then also

log ΞX(β, z) =

∫
X
ρ(dx1; z)−

∞∑
n=2

1

n!

∫
Xn

(n−1)Dn(x1, . . . , xn)

n∏
i=1

ρ(dxi; z).

(8.11)
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This theorem is proved in [28] by using the construction described in Sec-
tion 5. We obtain that (5.11) is the solution of the fixed point equation
(5.10) which proves (8.9). The rest is to verify that computing the density
from the activity and back produces bounded quantities in the relevant
spaces. Last, (8.11) is obtained from the dissymmetry theorem presented
in Section 6 again by assuming some extra conditions (8.10) that guarantee
that all involved quantities are bounded.

Remark 8.3. Formula (8.11) does not make any sense in the “infinite
volume case” even if we consider the translation invariant case as discussed
below (7.7). In this case, though, the right hand side is proportional to
the volume of X, up to boundary errors. Hence, log Ξ(β, z) divided by the
volume has a well defined limit.

Remark 8.4. In the sequel we will use the following terminology: we will
say that the operation δ

δz(xi)
in (8.3) makes the vertex xi “white” and it

corresponds to the vertex with variable q in (8.9).

Furthermore, similarly to Section 6 we can define and compute the
grand-canonical free energy. The proofs follow the same reasoning as in
the scalar case. We fix a reference measure m(dx) on X (for example, the
Lebesgue measure on Rd). The (grand-canonical) free energy FGC[ν] of
a given density profile ν ∈ MC is defined via the Legendre transform of
log Ξ(z) as

βFGC[ν] := sup
z

(∫
X
log

dz

dm
(x)ν(dx)− log Ξ(z)

)
, (8.12)

with dz
dm the Radon-Nikodým derivative of z with respect to the reference

measure m. The supremum in (8.12) is over all non-negative measures
z ∈ MC that are absolutely continuous with respect to m and such that
the integral with the logarithm is absolutely convergent.

Theorem 8.5. Assume that ν ∈ Vb ∩ MC is absolutely continuous with
respect to m and satisfies∫

X
(1+b(q))ν(dq) < ∞,

∫
X

∣∣∣log dν

dm

∣∣∣dν < ∞,

∫
X
eβB+bdν < ∞, (8.13)

then

βFGC[ν] =

∫
X

[
log

dν

dm
(x)− 1

]
ν(dx)−

∞∑
n=2

1

n!

∫
Xn

Dn

(
x1, . . . , xn

)
νn(dx)

(8.14)
with absolutely convergent integrals and sum.
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For the proof, we refer again to [28], Theorem 3.6. Our goal in the
following sections is to use this inversion method in order to rigorously
prove the validity of other commonly used expansions in terms of the
density. Alternatively, one could work directly in the canonical ensemble
as illustrated in Section 7 and we show how this can be adapted to the
correlation functions. We start with the n-point correlation function.

8.2 General n-point correlation function

Similarly to (8.1) we have:

ρ
(n)
X (dx1, . . . ,dxn; z)

:=

∏n
i=1 z(dxi)

ΞX(β, z)

∞∑
N=n

1

(N − n)!

∫
ΛN−n

e−βHN (x)z(dxn+1) . . . z(dxN ).

(8.15)

For simplicity, we can also view it as the absolutely continuous part with
respect to the Lebesgue measure of the previous measure formulation. The
following formula can be verified by functional differentiation:

ρ
(n)
X (x1, . . . , xn; z) =

1

ΞX(β, z)

δnΞX(β, z)

δz(x1) . . . δz(xn)

n∏
i=1

z(xi). (8.16)

Note that this is compatible with (8.2) (considering the absolutely contin-
uous with respect to Lebesgue part of the measures) for n = 1:

ρ
(1)
X (x1; z) =

1

ΞX(β, z)

δΞX(β, z)

δz(x1)
z(x1) =

δ ln ΞX(β, z)

δz(x1)
z(x1). (8.17)

For higher n the structure is different, e.g. for n = 2 we have:

1

ΞX(β, z)

δ2ΞX(β, z)

δz(x1)δz(x2)

=
δ

δz(x1)

δ ln ΞX(β, z)

δz(x2)
+

1

ΞX(β, z)

δΞX(β, z)

δz(x1)

1

ΞX(β, z)

δΞX(β, z)

δz(x2)
. (8.18)

Hence, it is useful to introduce the following quantity:

u
(n)
X (x1, . . . , xn; z) :=

δn ln ΞX(β, z)

δz(x1) . . . δz(xn)

n∏
i=1

z(xi). (8.19)
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In fact, the correlation functions ρ
(n)
X and u

(n)
X can be viewed as the Tay-

lor coefficients for the expansions around 0 of ΞX and ln ΞX, respectively.
Hence they should also be related as follows:

ρ
(n)
X (x1, . . . , xn; z) =

n∑
k=1

∑
{P1,...,Pk}
∈Π(1,...,n)

k∏
i=1

u
(|Pi|)
X (xPi ; z), (8.20)

where we recall that Πk(1, . . . , n) is the set of all partitions of {1, . . . , n}
into k blocks. Indeed, given ρ

(n)
X defined in (8.16), formula (8.20) is equiv-

alent to (8.19) and the functions u(n)
X are called truncated correlation func-

tions (or cluster or Ursell functions). For example, for n = 2 from (8.18)
we have:

u
(2)
X (x1, x2) = ρ

(2)
X (x1, x2)− ρ

(1)
X (x1)ρ

(1)
X (x2).

It will be proved useful to consider the following normalized versions:

g
(n)
X (x1, . . . , xn) :=

ρ
(n)
X (x1, . . . , xn)∏n

i=1 ρ
(1)
X (xi)

, n ≥ 1, (8.21)

h
(n)
X (x1, . . . , xn) :=

u
(n)
X (x1, . . . , xn)∏n

i=1 ρ
(1)
X (xi)

, n ≥ 2 (8.22)

and

h
(1)
X (q) := ln

u
(1)
X (q)

z(q)
. (8.23)

Recall that we represented the operation δ
δz(x1)

by choosing the vertex
x1 and making it “white”. Then from (8.19) the power series expansion in z
is a rather straightforward application of the operations δ

δz(x1)
, . . . , δ

δz(xn)

to ln ΞX (as given in (8.5)) which yields:

u
(n)
X (x1, . . . , xn; z)

=

(
1 +

∞∑
k=1

1

k!

∫
Xk

ϕT(x1, . . . , xn, xn+1, . . . , xn+k)z
k(dx)

)
n∏

i=1

z(xi).

(8.24)

Note that in the particular case X = Λ and z(dx) = zdx we obtain:

u
(n)
Λ (x1, . . . , xn; z) =

zn

n!

∑
k≥0

zk

k!

∑
g∈Cn,n+k

w•
Λ(g;x1, . . . , xn), (8.25)
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where Cn,n+k is the set of connected graphs with n white and k black
vertices and

w•
Λ(g;x1, . . . , xn) :=

∫
Λk

∏
{i,j}∈E(g)

f(xi, xj)

n+k∏
j=n+1

dxj . (8.26)

Note the difference in the notation for wΛ, w̄Λ and w•
Λ: we denote with a

• whenever some particles are fixed: x1, . . . , xn. The convergence can be
proved in a similar way as for the case n = 1 in Lemma 8.1 by operating
on the vertices x1, . . . , xn, one at a time.

On the other hand, for the correlation functions in view of (8.20) we
have:

ρ
(n)
Λ (x1, . . . , xn; z) =

zn

n!

∑
k≥0

zk

k!

∑
g∈Gn,n+k

w•
Λ(g;x1, . . . , xn), (8.27)

where in the set Gn,n+k of simple graphs with n white and k black vertices,
there is a path from each black vertex to a white one.

The next step is by using the theory developed in the previous section
to replace the z vertices by ρ vertices. This can be found in [51, 68] and
here we wish to give a strategy how to prove convergence. As in the case
n = 1 we look for the “reduced” structure which includes the white vertices
and the parts that “fall out” from a given root-vertex which, after removing
the part that falls out, it will become a ρ vertex. The “reduced” structure
is found as follows: given a black vertex we check whether there are two
“independent” paths to two different white vertices. If not, then starting
from the black vertex, there is first a part with some common edges, after
which the second vertex of the last common edge has the above property.
Turning that last vertex into a ρ vertex is equivalent to removing the
hanging part. Repeating this procedure we obtain graphs with the n fixed
white vertices and some black vertices (say k many) that have the previous
property, namely that there are two independent paths to any two different
white vertices: these are called “articulation free” graphs and we denote
them with BAF

n,n+k. We obtain:

h
(n)
Λ (x1, . . . , xn) =

1

n!

∑
k≥0

ρk

k!

∑
g∈BAF

n,n+k

w•
Λ(g;x1, . . . , xn). (8.28)

Note that the factor 1
n! amounts to the fact that in the sum over g we

can permute the indices of the white vertices. We are not aware of any
direct proof of counting the cardinality of the articulation free graphs,
neither of any equivalent tree-graph inequality involving them, so in order
to prove convergence of (8.28) we need to adapt the strategy in Section 5.2
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to the case of n vertices. Taking δ
δz(q2)

in (5.19) (with q1 instead of 0) and
applying it to (8.22) we obtain:

h
(2)
X (q1, q2) =

1

ρ
(1)
X (q1)ρ

(1)
X (q2)

δ2 ln ΞX(β, z)

δz(q1)δz(q2)
z(q1)z(q2)

=
1

ρ
(1)
X (q1)ρ

(1)
X (q2)

δ

δz(q2)
e−A(q1;z)z(q1)z(q2)

= − 1

ρ
(1)
X (q2)

δ

δz(q2)
A(q1; z)z(q2)

=

∞∑
n=0

1

n!

∫
Xn

Dn+2(q1, q2, x1, . . . , xn)

n∏
i=1

e−A(xi;z)zn(dx) +

+

∫
X

{ ∞∑
n=0

1

n!

∫
Xn

Dn+2(q1, q3, x1, . . . , xn)

n∏
i=1

e−A(xi;z)zn(dx)

}
×

1

ρ
(1)
X (q2)

e−A(q3;z)z(q3)z(q2)
δ

δz(q2)
A(q3; z)dq3. (8.29)

Hence, the question is if to each of the xj , j = 1, . . . , n we apply the
power series T̄ ◦

xj
(ρ) whether we obtain (8.28). We have two contributions:

the first term in the last equality of (8.29) which consists of 2-connected
graphs and the second which has an “intermediate” point q3 (which in
Section 8.4 will be called nodal). We called this class “articulation free”.
For n ≥ 3 we take more derivatives, pointing to other labels, and obtain
similar contributions: either an overall 2-connected graph or articulation
free graphs allowing for nodal points between any choice of two fixed labels.
The convergence should be again the result of composition between the
new kernel corresponding to the left hand side of (8.29) and the trees
z = ρΛT̄

◦
0 (ρΛ) as in (5.21). We hope to address all this in detail in a

forthcoming work.

8.3 General n-point correlation function in the canon-
ical ensemble

Whenever we want to obtain an expansion in terms of the density, instead
of entering into a combinatorially involved inversion procedure as in the
previous section, we can investigate the alternative option of working di-
rectly in the canonical ensemble. This was established for the case of the
pressure in Section 7 and we present it here for the case of the various cor-
relation functions. Although some of the details of the proof are different,
the main strategy remains the same. For a complete presentation we refer
to [37] (see also [62] for an earlier attempt).



386 D. Tsagkarogiannis

The n-point canonical correlation function (for a fixed number of N
particles) is given by:

ρ
(n)
Λ,N (x1, . . . , xn) :=

1

(N − n)!

∫
ΛN−n

1

ZΛ,N
e−βHN (x)dxn+1 . . . dxN .

(8.30)
Note that ρ

(0)
Λ,N = 1 and ρ

(1)
Λ,N = N

|Λ| (with periodic boundary conditions).
Thus, in the thermodynamic limit of Λ → Rd, N → ∞ such that N

|Λ| → ρ,
we obtain that ρ(1) = ρ. For comparison purposes, note that the cor-
responding n-point correlation function for the grand-canonical ensemble
originally given in (8.15) in the case X = Λ and z(dx) = zdx it is related
to (8.30) by

ρ
(n)
Λ (x1, . . . , xn; z) :=

∞∑
N=n

zN
ZΛ,N

ΞΛ,β(z)
ρ
(n)
Λ,N (x1, . . . , xn)

n∏
i=1

z(xi). (8.31)

Similarly to (8.21) and (8.22) we will see that in the thermodynamic limit
the leading order of the functions ρ(n) and u(n) (limits of ρ(n)Λ,N and u

(n)
Λ,N )

is ρn. Hence, it is a common practice to introduce the following order one
functions:

g
(n)
Λ,N (x1, . . . , xn) :=

ρ
(n)
Λ,N (x1, . . . , xn)

ρn
, n ≥ 1, (8.32)

and

h
(n)
Λ,N (x1, . . . , xn) :=

u
(n)
Λ,N (x1, . . . , xn)

ρn
, n ≥ 2. (8.33)

Due to the periodic boundary conditions all correlation functions intro-
duced above will be invariant under translation.

We consider the following extension of the canonical partition function,
sometimes called the Bogolyubov functional, see [3], equation (2.11):

LN (ϕ) :=
1

ZΛ,N,β

1

N !

∫
ΛN

N∏
k=1

(1 + ϕ(xk))e
−βHN (x)dx. (8.34)

Note that equivalently to (8.27) and (8.19), where ρ
(n)
Λ (x1, . . . , xn; z) and

u
(n)
Λ (x1, . . . , xn; z) are the Taylor expansion coefficients (in terms of formal

power series and variational derivatives) of ΞΛ,β and ln ΞΛ,β , respectively,
a similar property is also true for their “canonical” version. In the lat-
ter case, the correlations ρ

(n)
Λ,N (x1, . . . , xn) and the truncated correlations
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u
(n)
Λ,N (x1, . . . , xn) are the coefficients of the following power series expres-

sions of LN (ϕ) and lnLN (ϕ):

LN (ϕ) = 1 +

N∑
n=1

1

n!

∫
Λn

ϕ(x1) . . . ϕ(xn)ρ
(n)
Λ,N (x1, . . . , xn)dx (8.35)

and

lnLN (ϕ) =

∞∑
n=1

1

n!

∫
Λn

ϕ(x1) . . . ϕ(xn)u
(n)
Λ,N (x1, . . . , xn)dx. (8.36)

Note that while the first is in agreement with (8.30) and (8.34), the second
can be viewed as the definition of u(n)

Λ,N which is also in agreement with the
corresponding relation (8.20). Having established this connection, we can
compute u(n)

Λ,N and subsequently h
(n)
Λ,N by applying the strategy of Section 7

to the “augmented” partition function (8.34). Then, by comparing with
(8.36) we obtain the following theorem whose proof is given in [37]:

Theorem 8.6. There exists a constant c0 > 0 such that for all ρC(β) < c0
we have:

h(n)(x1, . . . , xn) := lim
Λ↑Rd,N→∞,
N=⌊ρ|Λ|⌋

h
(n)
Λ,N (x1, . . . , xn)

=
∑
k≥0

ρk
1

n!k!

∑
g∈BAF

n,n+k

w•(g; q1, . . . , qn), (8.37)

where
w•(g;x1, . . . , xn) := lim

Λ↑Rd
w•

Λ(g;x1, . . . , xn) (8.38)

and w•
Λ is given in (8.26). Moreover, at infinite volume, we have the

following bound:

sup
x1,...,xn∈Λn

∣∣∣h(n)(x1, . . . , xn)
∣∣∣ ≤ C. (8.39)

8.4 Direct correlation function
Recalling (8.29) and the definition of h

(2)
X we observe that a new quan-

tity (the first term in the right hand side) arises. We will call it direct
correlation function and then we recognize in (8.29) the Ornstein-Zernike
equation [54]:

h
(2)
X (x1, x2) = cX(x1, x2) +

∫
X
cX(x1, x3)h

(2)
X (x3, x2)ρ

(1)
X (x3) dx3. (8.40)
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This is particularly useful thanks to its “renewal” property, namely that
h
(2)
X (x1, x2) is divided into a “direct” part denoted by cX(x1, x3) up to

some particle x3 and an indirect one, in which we get again the “renewed”
h
(2)
X (x3, x2). Equivalently, by functional differentiation it is easy to check

(see [68]) that it can also be written as:

cX(x1, x2) =
δ

δρ(x2)
ln

δ ln ΞX

δz(x1)
. (8.41)

With this form, we can attempt to prove rigorously its power series expan-
sion in terms of the density.

Definition 8.7. We call a vertex nodal if there exists two white vertices
in its connected component, which are different from the first vertex, such
that all the paths between that pair of chosen white vertices passes through
the first vertex.

For example, in the very definition of the Ornstein-Zernike equation, if
all involved quantities are represented by graphs, the vertex x3 will be a
nodal one. We first prove the validity of the expansion of ln δ ln ΞX

δz(x1)
following

the previous results and obtaining A as in (5.8). The next step is to do
the inversion in terms of ρ which, according to Section 5, it can be made
by composing A with z = T (ρ) obtaining the 2-connected graphs as in
(5.21). The last step is to take δ

δρ(x2)
which roots at a second (by now

a “ρ-type” vertex) ρ(q2). The resulting graphs are 2-connected if we do
not distinguish the colour of white/black. It is instructive to compare this
expansion to the procedure of getting u

(2)
Λ in terms of ρ since in the latter

we obtain the slightly different structure of articulation free graphs which
allows for nodal vertices. The difference is that for h(2)(x1, x2) we first
take δ

δz(x2)
and then invert in terms of ρ, hence, by first pointing at z(x2),

the “final” nodal vertex has survived and in the procedure of turning the
z-vertices into ρ-vertices it does not cancel as it does not “hang off” (as
it would have been the case in the first expansion where we switched the
vertices into ρ’s before pointing at x2).

Alternatively, as in the previous subsection, we can avoid these intri-
cate combinatorial issues by working directly in the canonical ensemble.
Recalling the definition of the set B2,n+2 we define the direct correlation
function in the canonical ensemble, i.e., for fixed volume Λ and number of
particles N + 2:

c
(2)
Λ,N+2(x1, x2) :=

N∑
k=0

ρk

k!

∑
g∈B2,2+k

w•
Λ(g;x1, x2). (8.42)

Then we have the following theorem [37]:
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Theorem 8.8. There exists a constant c0 > 0 such that for all ρC(β) <

c0, the direct correlation function c
(2)
Λ,N+2 in (8.42) converges in the ther-

modynamic limit, to

c(2)(x1, x2) :=
∞∑
k=0

ρk

k!

∑
g∈B2,2+k

w•(g;x1, x2), (8.43)

which is an analytic function in ρ, for ρC(β) < c0 and w• is given in
(8.38). The series (8.43) converges in the following sense:

sup
x1∈Λ

∫
Λ

ρk

k!

∣∣∣∣∣∣
∑

g∈B2,2+k

w•
Λ(g;x1, x2)

∣∣∣∣∣∣dx2 ≤ Ce−ck, (8.44)

uniformly in Λ.
Furthermore, the direct correlation function c

(2)
Λ,N+2 in (8.42) fulfils the

Ornstein-Zernike equation (8.40) up to the order O(1/|Λ|) and the limit
function fulfils the Ornstein-Zernike equation exactly.

Remark 8.9. The constant c0 in the above theorem is independent of the
test function ϕ, hence it is different from the constant c0 in Theorem 7.1.
However it is determined in a similar way and can be estimated explicitly.
Moreover, as a direct consequence of (8.44), we have that

sup
x1∈Λ

∫
Λ

|c(2)Λ,N (x1, x2)|dx2 < ∞, (8.45)

which, together with (8.39) (for n = 2), proves that the Ornstein-Zernike
equation (8.40) is well defined. This is a key point in the proof and for the
details we refer to [37].

8.5 Inversion with respect to the interaction potential
In Section 8.1 we developed the mathematical machinery that allows to
prove the convergence of expansions for thermodynamic quantities ex-
pressed via functional differentiation (and not just scalar). Based on that
we would like to investigate its applicability to the next order case: in-
stead of differentiating with respect to a function indexed by one label,
to differentiate with respect to a function indexed by two labels and try
to obtain a proof for the convergence of the inversion. The main example
is the inversion of the two-point truncated correlation h(2)(x1, x2) with
respect to the pair potential V (x1, x2) or a function of it, e.g. f(x1, x2).
Establishing such an expansion would be very helpful in inverse problems,
namely computing the microscopic potential by knowing the correlations



390 D. Tsagkarogiannis

as given either by simulation or even x-ray experiments. This is also re-
lated to the inverse or realizability or moment problem, see [36, 21, 22]
and the references therein. Following [51], Section 4 we have:

ρ
(2)
X (x1, x2; z) =

1

ΞX
z(x1)z(x2)

δ2ΞX

δz(x1)δz(x2)

= − 2

β

δ ln ΞX

δV (x1, x2)

= 2(1 + f(x1, x2))
δ ln ΞX

δf(x1, x2)
. (8.46)

We observe that the above formula has a very similar structure with (8.2).
However, the fact that here instead of pointing at a vertex x, we have
to point at the link f(xi, xj) makes the previous machinery not directly
applicable. Nevertheless, there are some results in this direction following
similar operations. For example, one would need to point at a link and
see what happens when we remove it. We cite [9] for the corresponding
procedure and we hope to address this in a forthcoming work.

8.6 Closures: Percus-Yevick equation
We conclude this presentation by recalling that one of the aims of this
review is to connect to the existing literature and ongoing research in liq-
uid state theory where all these expansions have been extensively used,
even in regimes in which we cannot prove their validity. Being infinite
power series, it is tempting to consider truncations and suggest approxi-
mate numerical or analytical schemes. For this to be successful one should
have an idea of the absolute convergence of the series for distinguishing
the dominant terms. Furthermore, in some cases, these truncations lead
to closed equations amenable to computations. Hence, the goal of this
last section is to place the above results in the context of attempting to
identify, validate and compare different closures. As a general conclusion,
we understand that the tools used to prove convergence are too crude to
be able to distinguish between the various closures which are sometimes
designed on an empirical basis. Despite this fact, it is an open territory for
rigorous research using tools from analysis, probability and combinatorics
for the investigation of denser regimes.

To start, we recall that the Ornstein-Zernike equation (8.40) is not
a closed equation as it involves both correlation functions h

(2)
X (q1, q2) and

cX(q1, q2). One suggestion for a closure is the Percus-Yevick (PY) equation
[57] that we describe below. Starting from the OZ equation for h(2)

X (r) and
cX(r), following [67], one first introduces a new function t as follows:

tX(r) := cX ∗ h(2)
X (r), (8.47)
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where we use the convolution: cX ∗ h(2)
X (r) :=

∫
cX(r

′)h
(2)
X (r − r′)ρ

(1)
X (dr′).

Then the OZ equation takes the form

h
(2)
X (r) = cX(r) + tX(r). (8.48)

Note that all involved functions (h(2)
X , cX and tX) are analytic functions in

ρ. Furthermore, cX(r) can be written as

cX(r) = f(r)(1 + tX(r)) +mX(r), (8.49)

where f(r) := e−βV (r) − 1 is a known function of the potential V (r). The
relation (8.49) is essentially the definition of mX(r) which is an analytic
function of ρ as well. Following [67] the function mX can be expressed
as a sum over two connected graphs which upon removal of the direct
link f connecting the white vertices (if it is present) it is 2-connected (no
articulation and no nodal points). For example, the first term of mX(r) is
the graph 1−3−2−4−1. However, in [67], “the manipulations involved in
obtaining these infinite sums ... have been carried out in a purely formal
way and we have not examined the important but difficult questions of
convergence and the legitimacy of the rearrangement of terms”. In the
present review we showed how to establish this convergence with respect
to f -bonds. The convergence allows to quantify the error after truncating
these terms. For example, m is of the order ρ2. Furthermore, a future plan
is to investigate whether another suggestion could be made, relating some
of the terms in mX(r) with respect to tX(r), or by introducing another
function (instead of t(r)) as a candidate for a good choice for “closing” OZ
equation. Combining (8.47) with (8.48) and (8.49) we obtain:

tX = [f(1 + tX) +mX] ∗ [f(1 + tX) +mX] + [f(1 + tX) +mX] ∗ tX. (8.50)

One version of PY equation is setting m(r) ≡ 0 and obtaining a closed
equation for tX(r).

Alternatively, using (8.48) and (8.49) one can introduce the functions
yX(r) and dX(r) by

g
(2)
X (r) = e−βV (r)(1 + tX(r)) +mX(r) =: e−βV (r)yX(r)

yX(r) =: 1 + tX(r) + dX(r), (8.51)

and hence mX(r) = e−βV dX(r). Thus, we can rewrite (8.50) as

yX = 1 + dX + [f yX + dX] ∗ [e−βV yX − 1]. (8.52)

Again, setting dX(r) ≡ 0 we obtain another version of the PY equation.
All involved functions are analytic in ρ and our results imply that the
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formal order in ρ of dX coincides with the actual order. Now, one can
investigate a method of systematically improving the PY equation, by
adding some terms from dX (or from m for hard-core potentials). For
example, in [67] it was suggested to set dX equal to the first order term
in its expansion, since this gives a “PY approximation that it leads to
an approximate gX that is exact through terms of order ρ2 in its virial
expansion”. A partial goal of the analysis in the present paper is to provide
a framework in which one can further investigate such closure schemes
and estimate the relevant error. Other closures include the Hypernetted
Chain (HNC) equation, the Born-Green-Yvon (BGY) hierarchy and the
Kirkwood superposition among many others. We think that it would be
worthwhile to understand if there is some particular feature in anyone of
these closures that may allow to prove convergence in denser regimes.
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