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Chapter 1

Introduction

These notes have been written to complete the mini-course “Introduction
to (generalized) Gibbs measures” given at the universities UFMG (Uni-
versidade Federal de Minas Gerais, Belo Horizonte) and UFRGS (Uni-
versidade Federal do Rio Grande do Sul, Porto Alegre) during the first
semester 2007. The main goal of the lectures was to describe Gibbs and
generalized Gibbs measures on lattices at a rigorous mathematical level,
as equilibrium states of systems of a huge number of particles in inter-
action. In particular, our main message is that although the historical
approach based on potentials has been rather successful from a physical
point of view, one has to insist on (almost sure) continuity properties of
conditional probabilities to get a proper mathematical framework.

Gibbs measures are “probably” the central object of Equilibrium sta-
tistical mechanics, a branch of probability theory that takes its origin
from Boltzmann ([10], 1876) and Gibbs ([51], 1902), who introduced a
statistical approach to thermodynamics to deduce collective macroscopic
behaviors from individual microscopic information. Starting from the ob-
servation that true physical systems with a very disordered microscopic
structure, like gases, ferromagnets like irons etc., could present a more
ordered, non-fluctuating, macroscopic behavior, they started considering
the microscopic components as random variables and macroscopic equilib-
rium states as probability measures concentrating on the “most probable”
states among the possible “configurations” of the microscopic system, in
a sense consistent with the laws of thermodynamics. Of course, they did
not use these modern probabilistic terms at that time, and it is one of the
tasks of mathematical statistical mechanics to translate their intuitions in
a more modern and rigorous formalism.

These ideas have been first introduced and justified by Boltzmann in its
introduction of statistical entropy [11] and have been thereafter used by
Gibbs as a postulate to introduce his microcanonical, canonical and grand
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6 Chapter 1. Introduction

canonical ensembles [51]. These Gibbs ensembles provide three different
ways of describing equilibrium states, which would nowadays be called
“probability measures”, at the macroscopic level. The main goal of mod-
ern mathematical statistical mechanics is thus to describe rigorously these
concepts in the standard framework of probability and measure theory
that has been developed during the century following Boltzmann’s ideas,
pursuing two main goals: To describe these ensembles as proper probabil-
ity measures allowing the modelization of phase transitions phenomena,
and to interpret them as equilibrium states in a probabilistic sense that
would incorporate ideas taken from the second law of thermodynamics.

For this purpose of describing phase transitions phenomena, roughly
seen as the possibility to get different macroscopic structures for the same
microscopic interaction (e.g. gas versus liquid, positive or negative magne-
tization of iron, etc.), we shall see that an infinite-volume formalism, which
can be loosely justified by the large number of microscopic components in
any macroscopic part of interacting systems, is required. For the sake of
simplicity, and because it already incorporates many of the most inter-
esting features of the theory, we shall focus on systems where the whole
space is modelled by a discrete infinite lattice (mainly Zd), with, attached
at each site, a microscopic element modelled by a finite1 value (e.g. +1 for
a positive “microscopic magnetization” in iron).

To describe equilibrium states and to model phase transitions phenom-
ena in such a framework, we are led to construct probability measures on
an infinite product probability space in an alternative way to the standard
Kolmogorov’s construction. This alternative “DLR” construction, rigor-
ously introduced in the late sixties by Dobrushin [27] and Lanford/Ruelle
[81], makes use of systems of compatible conditional probabilities with
respect to the outside of finite subsets, when the outside is fixed in a
boundary condition, to reach thereafter infinite-volume quantities. This
DLR approach can also be seen as an extension of the Markov chains for-
malism and to describe Gibbs measures we shall focus on quasilocality, a
topological property of conditional probability measures which extends the
Markov property.

As we shall see, this approach allows to model phase transitions and the
related critical phenomena. In that case, a qualitative change of the macro-
scopic system at a “critical point” is physically observed, together with a
very chaotic critical behavior. This criticality is physically interpreted as a
highly correlated system without any “proper scale”, namely where a phys-
ical quantity called the correlation length should diverge, and such a system
should be thus reasonably scaling-invariant. These considerations have led
to the use of the so-called Renormalization Group (RG) transformations,

1The state-space will be finite except in a very few explicitly emphasized occasions,
where it would be compact or unbounded.
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which appeared to be a very powerful tool in the theoretical physics of
critical phenomena [17, 50]. It also gave rise to ill-understood phenomena,
the RG pathologies, detected in the early seventies by Griffiths/Pearce [56]
and Israel [63], and interpreted a few decades later by van Enter et al. [36]
as the manifestation of the occurrence of non-Gibbsianness. This last ob-
servation was the starting point of the Dobrushin program of restoration of
Gibbsianness, launched by Dobrushin in 1995 in a talk in Renkum [30] and
consisting in two main goals: Firstly, to provide alternative (weaker) defi-
nitions of Gibbs measures that would be stable under the natural scaling
transformations of the RG, and secondly to restore the thermodynamics
properties for these new notions in order to still be able to interpret them
as equilibrium states. This gave rise to generalized Gibbs measures.

These notes are organized as follows: We introduce in Chapter 2 the nec-
essary mathematical background, focusing on topological and measurable
properties of functions and measures on an infinite product probability
space; we also recall there important properties of conditional expecta-
tions and introduce regular versions of conditional probabilities to describe
the DLR construction of measures on infinite probability product spaces,
mainly following [43, 52]. We describe then the general structure of the
set of DLR measures in the realm of convexity theory and mention a few
general consequences and examples at the end of the same chapter. We
introduce Gibbs measures in the context of quasilocality and describe the
main features of the set of Gibbs measures for a given interacting system in
Chapter 3. The interpretation of Gibbs and quasilocal measures as equilib-
rium states is rigorously established in a general set-up in Chapter 4, and
we describe RG pathologies and generalized Gibbs measures in Chapter 5.





Chapter 2

Topology and measures
on product spaces

2.1 Configuration space: set-up and nota-
tions

2.1.1 Lattices

For the sake of simplicity, also loosely justified by the very discrete nature
of physics, the physical space will be modelled by a lattice S, which in our
examples will mostly be the d-dimensional regular lattice Zd. It is endowed
with a canonical distance d and its elements, called sites, will be denoted
by Latin letters i, j, x, y, etc. A pair of sites {i, j} such that d(i, j) = 1
will be called nearest neighbor (n.n.) and denoted by 〈ij〉. Finite subsets
of the lattice S will play an important role for us and will be generically
denoted by capital Greek letters Λ,Λ′,∆, etc. We denote the set of these
finite subsets of S by

S =
{
Λ ∈ S, |Λ| < ∞

}
=

{
Λ ⊂⊂ S

}

where |Λ| denotes the cardinality of Λ and ⊂⊂ means inclusion of a finite
set in a bigger set. This notation | · | will be used for many different
purposes without giving its exact meaning when it is obvious. It will be
moreover mostly sufficient to work with increasing sequences (Λn)n∈N of
cubes, defined e.g. when the lattice is Zd by Λn = [−n, n]d ∩ S, for all
n ∈ N.

9



10 Chapter 2. Topology and measures on product spaces

2.1.2 Single-spin state-space

To each (microscopic) site i of the lattice we attach the same finite1 mea-
surable space (E, E , ρ0), of cardinality e := |E|, sometimes called single-
spin state-space or more briefly state-space. The a priori measure ρ0 will
then be chosen to be the normalized uniform counting measure on the
σ-algebra E = P(E), formally defined in terms of Dirac measures by
ρ0 = 1

e

∑
q∈E δq. In our guiding example, the Ising model of ferro-

magnetism [71, 103], this set is E = {−1,+1}, but other models might be
considered.

At each site i of the lattice will be thus attached a random variable
σi ∈ E, called spin to keep in mind this seminal Ising model. This finite
measurable space E is called the single-spin state space and endowed with
the discrete topology, for which the singleton sets are open, so that all the
subsets of E are open.

2.1.3 Configuration space

The microscopic states are then represented by the collections of random
variables σ = (σi)i∈S , living in the infinite product space (Ω,F , ρ) :=
(ES , E⊗S , ρ⊗S

0 ) called the configuration space. (Infinite-volume) configura-
tions will be denoted by Greek letters σ, ω, etc.

For any Λ ∈ S, the finite product space ΩΛ = EΛ comes with a finite
collection of the random variables σi for the sites i ∈ Λ and for any σ ∈ Ω,
one denotes by σΛ = (σi)i∈Λ this configuration at finite volume Λ. We also
define concatenated configurations at infinite-volume by prescribing values
on partitions of S, writing e.g. σΛωΛc for the configuration which agrees
with a configuration σ in Λ and with another configuration ω outside Λ.

2.2 Measurable properties of the configura-
tion space

The product σ-algebra F = E⊗S is the smallest σ-algebra generated by
the set of cylinders Cσ∆

=
{
ω ∈ Ω : ω∆ = σ∆

}
, when σ∆ runs over Ω∆

and ∆ runs over S. We also write C =
{
(Cσ∆

), σ∆ ∈ Ω∆,∆ ∈ S
}

and

CΛ =
{
(Cσ∆

), σ∆ ∈ Ω∆,∆ ⊂⊂ Λ
}

for the family of cylinders restricted
to any sub-lattice Λ ⊂ S, not necessarily finite. Alternatively, one defines
for all sites i of the lattice, the canonical projection Πi : Ω −→ E defined
for all ω ∈ Ω by πi(ω) = ωi, and denotes by ΠΛ the canonical projection

1This theory also holds, modulo a few adaptations, for more general measurable
spaces, compact [52] or even non-compact [26, 86], but the simpler finite case already
gets the main features of the theory. It will be our framework throughout the lectures,
except in a few occasions where it will be explicitly precised.
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from Ω to ΩΛ for all Λ ∈ S, defined for ω ∈ Ω by ΠΛ(ω) = ωΛ := (ωi)i∈Λ.
Then, using the following rewriting of the cylinders,

CσΛ
= Π−1

Λ ({σΛ}), ∀σ ∈ Ω

one gets that F is also the smallest σ-algebra that makes the projections
measurable.

The macroscopic states will be represented by random fields, i.e. prob-
ability measures on (Ω,F), whose set will be denoted by M+

1 (Ω,F), or
more briefly M+

1 (Ω). The simplest one is the a priori product measure
ρ = ρ⊗S

0 defined as the product of ρ0 on the cylinders and extended to
the whole lattice by virtue of the Kolmogorov’s extension theorem [7, 42],
recalled later in this chapter. This particular random field models the
equilibrium state of a non-interacting particle system, for which the spins
are independent random variables.

In order to mathematically describe microscopic and macroscopic be-
haviors, one would like to distinguish local and non-local events. The local
ones are the elements of a sub-σ-algebra FΛ for a finite Λ ∈ S, where
FΛ is the σ-algebra generated by the finite cylinders CΛ defined above. A
function f : ω −→ R is said to be FΛ-measurable if and only if (iff) “it
depends only on the spins in Λ”:

f ∈ FΛ ⇐⇒
(
ωΛ = σΛ =⇒ f(ω) = f(σ)

)
.

Definition 2.1 (Local functions). A function f : Ω −→ R is said to be
local if it is FΛ-measurable for some Λ ∈ S. The set of local functions will
be denoted by Floc.

We shall use the same notation f ∈ F for the measurability w.r.t a
σ-algebra or f ∈ H for the membership in a space H of functions.

Another important sub-σ-algebra concerns macroscopic non-local events.
It is the so-called σ-algebra at infinity, of tail or asymptotic events, formally
defined by

F∞ =
⋂

Λ∈S
FΛc .

Equivalently, it is the σ-algebra (countably) generated by the tail cylin-
ders C∞ := ∩Λ∈S CΛc . It consists of events that do not depend on what
happens in microscopic subsets of the systems; they are typically defined
by some limiting procedure. In our description of the Ising model, we shall
encounter for example the tail events Bm, defined, for m ∈ [−1,+1], by

Bm =
{
ω : lim

n→∞
1

|Λn|
∑

i∈Λn

ωi = m
}

(2.2)
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that will help to distinguish the physical phases of the system. Similarly,
a function g is F∞-measurable (g ∈ F∞) if it does not depend on the spins
in any finite region, i.e. iff

∃Λ ∈ S s.t. σΛc = ωΛc =⇒ g(ω) = g(σ).

These functions will be important later on to characterize macroscopic
quantities and to detect non-Gibbsianness. They are also generally de-
fined by some limiting procedure, the following function being e.g. tail-
measurable:

∀ω ∈ Ω, g(ω) =





limn→∞ 1
|Λn|

∑
i∈Λn

ωi if the limit exists.

anything otherwise.

Similar tail σ-algebras are also used in ergodic theory or in classical proba-
bility theory, in some 0-1-laws for example [3, 118]. To connect with these
fields, we introduce here the basic notion of translation-invariance, which
will also be important for physical interpretations later on. For simplic-
ity, we introduce this notion on the lattice S = Zd but it could be easily
extended to other lattices. First, one defines translations on the lattice as
a family of invertible transformations (τx)x∈Zd indexed by the sites of the
lattice and defined for all x ∈ Zd by

τx : y 7−→ τxy = y + x ∈ Zd

where additions and subtractions on the lattice are standard. They induce
translations on Ω: The translate by x of ω ∈ Ω is the configuration τxω
defined for all i ∈ S by

(τxω)i = ωτ−xi = ωi−x.

It also extends naturally to measurable sets (our “events”), measurable
functions and measures. In particular, the set of translation-invariant
probability measures on (Ω,F) is denoted by M+

1, inv(Ω) and the σ-algebra
generated by the translation-invariant functions is the translation-invariant
σ-algebra denoted by Finv.

Let us briefly leave the field of lattices to consider another framework
that links our approach to exchangeability in the context of the so-called
mean-field models. When S = N, one can define first a group In of per-
mutations at finite volume n, that are bijections leaving invariant the sites
i > n, and define its union I = ∪n∈N In to be the group of all permuta-
tions of finitely many coordinates. The I-invariant probability measures on
(Ω,F) form the set MI of exchangeable probability measures. For n ∈ N,
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the σ-algebra of the events invariant under permutations of order n is
defined to be

In =
{
A ∈ In : π−1A = A, ∀π ∈ In

}

and its intersection is the σ-algebra of symmetric or permutation-invariant
events

I =
⋂

n∈N
In. (2.3)

2.3 Topological properties of the configura-
tion space

2.3.1 Product topology

As we shall see, the notion of Gibbs measures is based on the interplay
between topology and measure theory, and to relate these notions we need
to introduce a topology T whose Borel σ-algebra coincides with F . The
latter and T are then said to be compatible in the sense that both open
sets and continuous functions are then measurable. Thus, the topology T
is endowed with the same generators as those of F and T is the smallest
topology on Ω containing the cylinders or making the projections contin-
uous. To do so, we consider, on the whole configuration space (Ω,F) the
product topology, T = T ⊗S

0 of the discrete topology T0 on E. Endowed
with these topological and measurable structures, our configuration space
has the following nice properties:

Theorem 2.4. [43, 52] The topological space (Ω, T ) is compact, its Borel
σ-algebra coincides with the product σ-algebra F , and the measurable space
(Ω,F) is a Polish space, i.e. metrizable, separable and complete.

Compactness follows from Tychonov’s theorem and will be helpful in
proving existence results and to simplify the topological characterizations
of Gibbs measures. To get a metric on this compact space, one can choose
δ : Ω× Ω −→ R+, defined for all ω, σ ∈ Ω by

δ(ω, σ) =
∑

i∈S

2−n(i)1{ωi 6=σi}

where n : S −→ N is any bijection assumed to be fixed and known. With
this topology, open sets are finite unions of cylinders and in particular, a
typical neighborhood of ω ∈ Ω is given by a cylinder for Λ ∈ S denoted in
this context by

NΛ(ω) =
{
σ ∈ Ω : σΛ = ωΛ, σΛc arbitrary

}
.

Similarly, when S = Zd, a basis of neighborhoods of a configuration ω ∈ Ω
is given by the family of cylinders (NΛn

(ω))n∈N, for a sequence of cubes



14 Chapter 2. Topology and measures on product spaces

(Λn)n∈N. Thus, two configurations are closed in this topology if they
coincide over large finite regions, and the larger the region is, the closer
they are2. Moreover, the set of asymptotic events is dense for this topology,
because they are insensitive to changes in finite regions. In particular,
the set of configurations that are asymptotically constant is a countable
and dense subset, leading thus to separability of the product topology by
compatibility of the latter with the measurable structure.

2.3.2 Quasilocality for functions

This nice topological setting allows us to provide different equivalent char-
acterizations of microscopic quantities. Firstly, we find it natural to say
that a microscopic function f on Ω is arbitrarily “close” to functions which
depend on finitely many coordinates, i.e. local functions. This leads to
the important concept of a quasilocal function:

Definition 2.5. A function f : Ω −→ R is said to be quasilocal if it can
be uniformly approximated by local functions, i.e. if for each ε > 0, there
exists fε ∈ Floc s.t.

sup
ω∈Ω

∣∣∣f(ω)− fε(ω)
∣∣∣ < ε.

We denote by Fqloc the set of quasilocal functions. It is the uniform
closure of Floc in the sup-norm, and by compactness is automatically
bounded. Moreover, due to the Polish and compact structure of Ω, one can
use sequences and continuity coincides with uniform continuity. Quasilocal
functions are continuous while (non-constant) asymptotic tail-measurable
functions are discontinuous. Then, using the metric δ or the basis of neigh-
borhoods described above, it is a simple exercise to prove that quasilocal
functions are in fact the (uniformly) continuous functions on Ω, and we use
it in the next lemma to give alternative definitions of quasilocality. When
we do not use sequences, we shall deal with the following convergence:

Definition 2.6 (Convergence along a net directed by inclusion).

lim
Λ↑S

F (Λ) = a

means convergence of a set-function F : S −→ R along a set S directed by
inclusion:

∀ε > 0,∃ Kε ∈ S s.t. S 3 Λ ⊃ Kε =⇒
∣∣∣F (Λ)− a

∣∣∣ ≤ ε.

Thus, in our settings when the single-spin space is finite, one has the
following

2This topological framework is standard also when one consider Cantor sets and
dyadic expansions of reals.
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Lemma 2.7. [43, 52] A function f : Ω −→ R is quasilocal iff one of the
following holds:

• Continuity: It is continuous at every ω ∈ Ω, i.e. ∀ω ∈ Ω,∀ε > 0,
∃n ∈ N s.t.

sup
σ∈Ω

∣∣∣f(ωΛn
σΛc

n
)− f(ω)

∣∣∣ < ε.

• Uniform limit of local functions: There exists (fn)n∈N s.t. for
all n ∈ N, fn ∈ FΛn

and

lim
n→∞

sup
ω∈Ω

∣∣∣fn(ω)− f(ω)
∣∣∣ = 0.

• Sequential uniform continuity: ∀ε > 0, there exists n ∈ N s.t.

sup
σ,ω∈Ω

∣∣∣f(ωΛn
σΛc

n
)− f(ω)

∣∣∣ < ε.

• Uniform continuity:

lim
Λ↑S

sup
ω,σ∈Ω,ωΛ=σΛ

∣∣∣f(ω)− f(σ)
∣∣∣ = 0.

An important consequence of this lemma is that a non-constant tail-
measurable function can never be quasilocal. For example, let us consider
the event

B0 =
{
ω : lim

n→∞
1

| Λn |
∑

i∈Λn

ωi = 0
}
.

The indicator function f of this event is tail-measurable, non-constant and
non-quasilocal. Take for example Ω = {0, 1}Z. The configuration ω = 0,
null everywhere, belongs to B0 and f(0) = 1. Let N be a neighborhood
of this null configuration, and choose it to be NΛn

(0) for some n > 0.
There exists then σ ∈ NΛn

(0) such that σΛc
n

= 1Λc
n
, where 1 ∈ Ω is

the configuration which value is 1 everywhere. For this configuration,
limn→∞ 1

|Λn|
∑

i∈Λn
σi = 1 and thus f(σ) = 0: This proves that f is

discontinuous and thus non-quasilocal. Non-quasilocal functions will be
important to detect non-Gibbsian measures in Chapter 5.

2.3.3 Weak convergence of probability measures

We have already introduced the space M+
1 (Ω,F) of probability measures

on (Ω,F) that represents the macroscopic possible states of our systems.
Before introducing different ways of constructing such measures on our
infinite product spaces, we need a proper notion for the convergence of
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probability measures, i.e. to introduce a topology on M+
1 (Ω). A strong

way to do so is to consider the topology inherited from the so-called total-
variation norm but this is indeed too strong a notion of convergence for the
sake of describing “non-chaotic” equilibrium states: Physically, this con-
vergence means that expected values converges, uniformly for all bounded
or continuous observables, i.e. microscopic in our point of view, and this
occurs rarely in physical situations. We shall thus require a topology whose
convergence mainly concerns non-uniform expectations of microscopic vari-
ables. This is the famous weak convergence of probability measures, which
is indeed weaker than most ways of convergence, see [7, 42, 118]. It fo-
cus on convergences of expectations of continuous functions and for any
µ ∈ M+

1 (Ω) we write µ[f ] =
∫
fdµ for the expectation under µ of any

bounded function f .

Definition 2.8 (Weak convergence). A sequence (µn)n∈N in M+
1 (Ω,F)

is said to converge weakly to µ ∈ M+
1 (Ω,F) if expectations of continuous

functions converge:

µn
W−→ µ ⇐⇒ lim

n→∞
µn[f ] = µ[f ], ∀f ∈ Fqloc.

This convergence gives no information on the convergence of the expec-
tations of discontinuous (macroscopic, asymptotic) quantities. This will be
important for our purpose of modelling phase transitions phenomena by
working at finite but larger and larger sets through some infinite-volume
limit. By definition, the set of local functions is dense in Fqloc, so it is
enough to test this convergence on Floc or on cylinders.

To describe, at the end of the chapter, the general convex structure of
the set of Gibbs measures in case of phase transitions, we shall also need
to deal with probability measures on spaces of probability measures, and
we first endow such spaces with a canonical measurable structure. For
any subset of probability measures M ⊂ M+

1 (Ω,F), the natural way to
do so is to evaluate any µ ∈ M via the numbers

{
µ(A), A ∈ F

}
. One

introduces then the evaluation maps on M defined for all A ∈ F by

eA : M −→ [0, 1];µ 7−→ eA(µ) = µ(A). (2.9)

The evaluation σ-algebra e(M) is then the smallest σ-algebra on M that
makes measurable these evaluation maps, or equivalently the σ-algebra
generated by the sets {eA ≤ c} for all A ∈ F , 0 ≤ c ≤ 1. For any bounded
measurable function f ∈ F , the map

ef : M −→ R;µ 7−→ ef (µ) := µ[f ]

is then e(M)-measurable.
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2.4 Probability theory on infinite product
spaces

2.4.1 Kolmogorov’s consistency

The standard way to construct probability measures on an infinite product
measurable space is to start from a consistent system of finite dimensional
marginals, following a terminology of Kolmogorov [7]:

Definition 2.10. A family (µΛ)Λ∈S of probability measures on (ΩΛ,FΛ)
is said to be consistent in the sense of Kolmogorov iff for all Λ ⊂ Λ′ ∈
S, ∀A ∈ FΛ,

µΛ(A) = µΛ′

((
ΠΛ′

Λ

)−1
(A)

)
,

where ΠΛ′
Λ is the natural projection from ΩΛ′ to ΩΛ. Equivalently, this is

equivalent to require for all Λ ⊂ Λ′ ∈ S and B ∈ F that

µΛ

(
ΠΛ(B)

)
= µΛ′

(
ΠΛ′(B)

)

We have seen that when the single-spin state-space is finite, it is also
a Polish space, and given a consistent family of conditional probabilities,
it is possible to extend it to the whole configuration space, thanks to the
following

Theorem 2.11 (Kolmogorov’s extension theorem). Let (µΛ)Λ∈S be
a consistent family of marginal distributions on a Polish infinite- product
probability space (Ω,F). Then there exists a unique probability measure
µ ∈ M+

1 (Ω) s.t. for all Λ ∈ S, ∀A ∈ FΛ,

µ
(
Π−1

Λ (A)
)
= µ(A)

where Π−1
Λ (A) is the pre-image of A by the projection from Ω to ΩΛ, defined

by

Π−1
Λ (A) =

{
σ ∈ Ω : ΠΛ(σ) = σΛ ∈ A

}
.

Equivalently, this is also the unique probability measure on (Ω,F) such
that

∀B ∈ F , µ(B) = µΛ

(
ΠΛ(B)

)
.

The main example of application of this theorem is the construction of
the a priori product measure ρ on (E, E). Consider the counting measure
ρ0 ∈ M+

1 (Ω) on the single-site state space and the finite product measure
ρΛ = ρ⊗Λ

0 on any of the finite product probability spaces (ΩΛ,FΛ), defined
for all Λ ∈ S on the cylinders by

ρΛ(σΛ) =
∏

i∈Λ

ρ0(i), ∀σΛ ∈ ΩΛ
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and extended on FΛ by requiring, for all A ∈ FΛ,

ρΛ(A) =
∑

σΛ∈A

ρΛ(σΛ).

The system (ρΛ)Λ∈S is trivially a consistent family of marginals which can
thus be extended into a unique probability measure ρ := ρ⊗S

0 .

Hence, we know how to build elements µ of the (convex) set M+
1 (Ω,F),

that are thus interpreted as macroscopical descriptions of the physical
phases of the systems in our settings. The problem now is that we also
want to model phase transitions, i.e. to get different infinite-volume mea-
sures corresponding to the same finite-volume description, and to do so
we have to proceed differently and work with systems of conditional prob-
abilities consistent in a different sense than that of Kolmogorov. Before
describing this so-called DLR approach, based on successive conditionings
w.r.t. decreasing sub-σ-algebras, we first recall a few important properties
of conditional probabilities on infinite product probability Polish spaces.

2.4.2 Regular versions of conditional probabilities

Definition 2.12. [Conditional expectation] Let (Ω,F) be a measurable
space, µ ∈ M+

1 (Ω,F), G a sub-σ-algebra of F and f ∈ F , µ-integrable.
A conditional expectation of f given G, w.r.t. µ, is a measurable function
Eµ[f | G] : Ω −→ R;ω 7−→ Eµ[f | G](ω) such that

1. Eµ[f | G] is G-measurable.

2. For any g ∈ G bounded,
∫
g · Eµ[f | G] dµ =

∫
g · fdµ.

In particular
∫
Eµ[f | G] dµ =

∫
fdµ.

The existence of such functions is ensured by the Radon-Nikodým the-
orem [101, 118]; because a µ-integral being involved in point 2. of the
definition above, such a conditional expectation is not unique, but two
different versions of it can only differ at most on a set of µ-measure zero.
So, Definition 2.12 does not define a unique function, but measure-zero
modifications are however the only ones possible: The conditional expec-
tation Eµ[f | G] is thus defined “µ-a.s.” and, as a major consequence, its
extension to define conditional probabilities that would be effectively prob-
ability measures cannot be straightforward. Indeed, the good candidate
for such an almost-surely defined conditional probability µG(· | ω) would
be, for all A ∈ F ,

µG(A | ω) := Eµ[1A | G](ω), µ−a.s.(ω).
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but one has to be careful because the following characterizing properties
of a probability measure are true almost-surely only:

• µG(Ω | ·) = 1, µ-a.s. and µG(∅ | ·) = 0, µ-a.s.

• For all A ∈ F , 0 ≤ µG(A | ·) ≤ 1, µ-a.s.

• For any countable collection (Ai)i∈I of pairwise disjoints F-measurable
sets,

µG(∪iAi | ·) =
∑

i

µG(Ai | ·), µ−a.s.

and one also has that for all B ∈ G, µG(B | ·) = 1B(·), µ-a.s.

The problem in this definition comes from the fact that the sets of
measure zero that appear in the former characterizing properties depend
on the sets A and (Ai)i∈I ∈ F considered; the later being uncountably
many, we cannot say that we have defined these conditional probabilities
µ-almost everywhere3. What is needed to say so is to get a unique set
of µ-measure zero, independent of the sets A and (Ai)i∈I , outside which
the above properties are true. In such a case, one says that there exists a
regular version of the conditional probabilities of µ w.r.t. sub-σ-algebras of
F . More precisely, this occurs when there exists a probability kernel (see
next subsection) µG from (Ω,F) to itself such that

µ−a.s., µG [f | ·] = Eµ[f | G](·),∀f ∈ F bounded

where the “µ-a.s.” means that there exists a (mostly abstract) measurable
set of full µ-measure Ωµ where the above characterizing properties of a
probability measure hold for all ω ∈ Ωµ, independently of the measurable
set A ∈ F . In our framework, this is fortunately granted:

Theorem 2.13. [101] Any probability measure on a Polish probability
space (Ω,F) admits a regular conditional probability w.r.t. any sub-σ-
algebra of F .

We also mention here two direct consequences of Definition 2.12 which
will be useful to characterize measures in terms of systems of regular con-
ditional probabilities. Keeping the same settings, one has, µ-almost surely,
for any bounded G-measurable function g, any bounded measurable func-
tion f and any sub-σ-algebra G ′ ⊂ G,

µG [g · f | ·] = Eµ[g · f | G](·) = g · Eµ[f | G] = g · µG [f | ·]

and

µG′
[
µG [f | ·] ·

]
= Eµ

[
Eµ[f | G] | G′](·) = Eµ[f | G′](·) = µG′ [f | ·]. (2.14)

3To see how to construct counter-examples, consult e.g. [115].
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We recall now the useful concept of probability kernel to describe the
alternative way of defining probability measures on infinite product prob-
ability spaces introduced in the late sixties by Dobrushin, Lanford and
Ruelle to model phase transitions.

Definition 2.15. A probability kernel from a probability space (Ω,F) to
a probability space (Ω′,F ′) is a map γ(· | ·) : F ′ × Ω → [0, 1] such that

• For all ω ∈ Ω, γ(· | ω) is a probability measure on (Ω′,F ′).

• For all A′ ∈ F ′, γ(A′ | ·) is F-measurable.

The simplest example is the map γ(A | ω) = 1A(ω) defined for any
probability space (Ω,F), any A ∈ F , any ω ∈ Ω. It is a probability kernel
from (Ω,F) into itself. More interesting examples concern regular versions
of conditional probabilities, Markov transition kernels etc. We extend this
notion in order to introduce the concept of specification and to prescribe
conditional probabilities of a measure to try to define it. To do so, we
state a few definitions.

Definition 2.16. Let γ be a probability kernel from (Ω,F) to (Ω′,F ′).
For any function f ∈ F ′, we define γf ∈ F to be the function defined for
all ω ∈ Ω by

γf(ω) =

∫

Ω′
f(σ) γ(dσ | ω).

We also define for any µ ∈ M+
1 (Ω,F) the measure µγ ∈ M+

1 (Ω
′,F ′) by

∀A′ ∈ F ′, µγ(A′) =
∫

Ω

γ(A′ | ω) µ(dω).

A little bit more has to be required for a kernel to represent a regular
version of a conditional probability. In order to illustrate the “double-
conditioning” stability (2.14) of conditional probabilities we also introduce
the notion of product (or composition) of kernels.

Definition 2.17. Let γ be a kernel from (Ω,F) to (Ω′,F ′) and γ′ a kernel
from (Ω′,F ′) to (Ω′′,F ′′). Then the product γγ′ is the kernel from (Ω,F)
to (Ω′′,F ′′) s.t.

∀A′′ ∈ F ′′,∀ω ∈ Ω, γγ′(A′′ | ω) =
∫

Ω′
γ′(A′′ | σ)γ(dσ | ω).

We are now ready to give the more formal

Definition 2.18 (Regular version of conditional probability). Let
(Ω,F , µ) be a probability space and G a sub-σ-algebra of F . A regular
(version of) conditional probability of µ given G is a probability kernel
µG(· | ·) from (Ω,G) to (Ω,F) s.t.

µ−a.s., µG [f | ·] = Eµ[f | G](·), ∀f ∈ F and µ− integrable
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Using the action of a kernel to a measure and the definition of the
conditional expectation, it is also possible to characterize it in a more
closed form, which will lead soon to a consistency condition different from
the one of Kolmogorov.

Proposition 2.19 (Regular conditional probability II). In the same
settings as above, a regular conditional probability of µ given G is a prob-
ability kernel µG(· | ·) from (Ω,F) to itself s.t. for all f F-measurable and
µ-integrable,

1. µG [f | ·] is G-measurable.

2. µ-a.s., µG [g · f | ·] = g · µG [f | ·], for each bounded g ∈ G

3. The kernel leaves invariant the probability measure µ: µµG = µ.

Coupled to the fact that every probability measure on a Polish space has
regular conditional probabilities, Proposition 2.19 enables also to describe
the double conditioning property in terms of kernels and will give rise to
the concept of specification.

Definition 2.20 (System of regular conditional probabilities). Let
(Ω,F , µ) be a probability space and (Fi)i∈I a family of sub-σ-algebras of
F . A system of regular conditional probabilities of µ given (Fi)i∈I is a
family of probability kernels

(
µFi

)
i∈I

on (Ω,F) s.t.

1. For each i ∈ I, µFi
is a regular conditional probability of µ given Fi.

2. If i, j ∈ I are such that Fi ⊂ Fj, then µFi
µFj

= µFi
, µ−a.s.

In statistical mechanics we go in the opposite direction: Starting from
a regular system of conditional probabilities, one wants to reconstruct
probability measures, and so one aims at removing the “µ−a.s.” of the
last definition, as one wants to obtain the same conditional probabilities
for different measures.

2.4.3 DLR-consistency and specifications

Around 1970, Dobrushin [27], Lanford/Ruelle [81] have introduced a new
way to construct probability measures on infinite product probability spaces
that does not immediately yield uniqueness in the case of a Polish space,
leaving the door open to the modelling of phase transitions in mathemat-
ical statistical mechanics. The key-point of their approach is to replace a
system of marginals consistent in the sense of Kolmogorov by a system of
regular conditional probabilities with respect to the outside of any finite
set, giving rise to finite-volume versions of conditional probabilities with
prescribed boundary condition(s).
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Let us consider now Λ′ ⊂ Λ ∈ S and the family of sub-σ-algebras
(FΛc)Λ∈S , directed by inclusion in the sense that if Λ′ ⊂ Λ ∈ S, one
has

FΛc ⊂ FΛ′c and
⋂

Λ∈S
FΛc = F∞.

A system of regular conditional probabilities of µ ∈ M+
1 (Ω) w.r.t. the

mentioned filtration exists, according to preceding section. To remove the
“µ-a.s” dependency and describe candidates to represent this system in
the case of an equilibrium state, Preston [107] has introduced the concept
of specification.

Definition 2.21 (Specification). A specification is a family γ = (γΛ)Λ∈S
of probability kernels from (Ω,F) into itself such that

1. For all A ∈ F , γΛ(A|·) is FΛc-measurable.

2. (Properness) For all ω ∈ Ω, B ∈ FΛc , γΛ(B|ω) = 1B(ω)

3. (Consistency)
Λ′ ⊂ Λ ∈ S =⇒ γΛγΛ′ = γΛ. (2.22)

We recall that γΛγΛ′ is the map on Ω×F defined by

γΛγΛ′(A|ω) =
∫

Ω

γΛ′(A|ω′) γΛ(dω
′|ω).

Specifications are thus the appropriate objects to describe conditional
probabilities; an important point is that they are defined everywhere on
Ω, for the convenient reason that we want to deal with objects defined
everywhere (not µ-a.s.), and characterize µ afterwards. This will allow the
description of different measures for a single specification, that is to model
phase transitions in our settings. We also emphasize that for all σ, ω ∈ Ω,
for all Λ ∈ S, γΛ(σ|ω) depends only on σΛ and ωΛc . For this reason,
because only the components of ω outside Λ (beyond the boundary) are
involved, ω is often called boundary condition in statistical mechanics, and
we shall use this term frequently in next sections. Moreover, conditions 1.
and 2. of the definition of a specification can be removed by requiring γΛ
to be kernels from (ΩΛc ,FΛc) to (ΩΛ,FΛ).

In fact, our main goal in this course is precisely to describe the set the
measures satisfying the consistency relation when Λ becomes the whole
lattice.

Definition 2.23 (DLR measures). Let γ be a specification on (Ω,F).
The set of DLR measures for γ is the set

G(γ) =
{
µ ∈ M+

1 (Ω) : ∀Λ ∈ S, µ[A | FΛc ](·) = γΛ(A | ·), µ-a.s., ∀A ∈ F
}

(2.24)
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of the probability measures consistent with γ. Equivalently,

µ ∈ G(γ) ⇐⇒ µγΛ = µ, ∀Λ ∈ S. (2.25)

A DLR measure is thus a measure specified by some specification γ.

This definition contrasts with that of Kolmogorov’s consistency: Instead
of dealing with the family of marginals of the measure, we deal with its
system of conditional probabilities. Such a DLR measure is then seen as an
equilibrium state because the consistency relation implies that integrating
out with respect to boundary conditions typical for the “equilibrium” DLR
state outside a finite volume does not change the state in the finite volume.
We shall be more precise about equilibrium properties in Chapter 4. On
a Polish space, the Kolmogorov compatibility yields existence and unique-
ness of the consistent measure, whereas the set G(γ) could have a very
different structure, the latter being a very important fact for our purpose
of modelling the phenomenon of phase transitions. Indeed, in contrast to
what occurs in Kolmogorov’s consistency theorem, here neither existence,
nor uniqueness needs to occur. Before describing more precisely various
sets of DLR-measures, we provide a few examples describing these different
possible structures.

2.4.4 Examples

We begin by two examples that illustrate the negative side of this descrip-
tion, the possibility of non-existence of measures specified by a specifica-
tion. Although the first one does not lie in our settings because the single-
spin state-space is not finite, the second does and helps us to extract the
topological properties required to build a satisfactory framework describ-
ing Gibbs measures as equilibrium states of interacting particle systems.
Thereafter, we provide an example of uniqueness (reversible Markov chain)
followed by an example of non-uniqueness interpreted as the occurrence of
a phase transition, the standard Ising model.

1. One-dimensional random walk

This analysis goes back to Spitzer but our presentation is inspired by
[109]. The single-spin state-space E = Z is not finite nor compact so it
is a bit out of our field, but we introduce it to illustrate the possibility of
non-existence of any DLR measure. The lattice is the time, modelled by
S = Z. The symmetric n.n. random walk on Z, Y = (Yn)n∈Z, is then a
random element of the configuration space Ω = ZZ and we denote by P its
law on (Ω,F), canonically built using Kolmogorov’s extension theorem.

Let us try to define a specification γ with which P would be consistent.
Using the Markov property for random walks, the candidate is given by
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the kernel γΛn
, defined for all cube Λn = [−n, n] ∩ Z and for all σ, ω ∈ Ω

by
γΛn

(σ | ω) = P
[
YΛn

= σΛn
|Y−n−1 = ω−n−1, Yn+1 = ωn+1

]

where the event in the conditioning is the cylinder Cω{n−1,n+1} , of positive
P-measure. It is straightforward to extend it to any finite Λ ∈ S to get a
family of proper kernels γ = (γΛ)Λ∈S that is indeed a specification. Let
us assume that there exists µ ∈ G(γ). Then we claim that µ cannot be a
probability measure because for all k ∈ Z, and for all ε > 0, µ[Y0 = k] < ε.
The reason for this is that for all n ∈ N, Sn = Yn − Y0 follows a binomial
law. It is unbounded and thus for all ε > 0 and k ∈ Z and n big enough,
P[Sn = k] < ε. Using then the consistency relation µγΛn

= µ to evaluate
µ[Y0 = k] in terms of conditional probabilities of P, one gets this result
of “escape of mass to infinity”: If µ ∈ G(γ), then for all k ∈ Z, and for
all ε > 0, µ[Y0 = k] ≤ ε, and thus µ cannot be a probability measure:
G(γ) = ∅.
2. Totally random single-particle

This example has been provided by Georgii [52]. Consider the case of
a lattice gas, i.e. E = {0, 1}, S = Zd, denote by 0 the configuration null
everywhere and for any a ∈ S consider the configuration σadefined for all
i ∈ S by (σa)i = 1 iff i = a (and zero otherwise), modelling the evolution of
a single particle localized at the site a. To model a single particle evolving
totally at random in a lattice gas in this DLR framework, introduce the
following kernel, proper by construction:

∀Λ ∈ S, ∀ω ∈ Ω,∀A ∈ F , γΛ(A | ω) =





1
|Λ|

∑
a∈Λ 1A(σ

a) if ωΛc = 0Λc

1A(0ΛωΛc) otherwise.

Firstly, one can check that the corresponding γ is a specification and
that for any sequence (µn)n of probability measures on (ΩΛn

,FΛn
), the

sequence of probability measures (µnγΛn
)n converges weakly towards the

Dirac measure δ0 on the null configuration, and thus that the latter is
a good candidate to be in G(γ). Nevertheless this is not the case and
assuming that a measure µ belongs to G(γ), one proves [52] that

µ
[ ∑

i∈Zd

ωi > 1
]
= µ

[ ∑

i∈Zd

ωi = 1
]
= µ

[ ∑

i∈Zd

ωi = 0
]
= 0

using different techniques and expressions of the kernel in the three cases.
Thus µ(Ω) = 0, µ cannot be a probability measure and G(γ) is empty.

In this case, which fits in our main framework on the contrary to the
first example, the non-existence comes from the dependence of the kernel
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on what happens at infinity and this cannot be controlled by the topol-
ogy of weak convergence4. A good framework to ensure existence would
be specifications where this influence is shielded out, and the main one
corresponds to specifications that transform local functions into quasilocal
ones, giving rise to the concept of quasilocal specification, central in this
theory of infinite-volume Gibbs measures as we shall see next chapter.

3. Existence and uniqueness: Reversible Markov chain

Let us describe reversible Markov chains by means of specifications,
following again a presentation of [109]. Consider Ω = {−1,+1}Z and a
stochastic matrix

M =

(
p 1− p

1− q q

)

with p > 0, q > 0 such that M is irreducible and aperiodic. Thus5

∃ unique ν ∈ M+
1 (E, E) such that νM = ν.

This defines an ergodic Markov chain X = (Xn)n∈N whose conditional
probabilities are given by M , and by Kolmogorov’s existence theorem, a
unique Pν ∈ M+

1 (Ω) s.t. for all ω ∈ Ω, k, i1, · · · , ik ∈ N,

Pν

[
Cω{i1,··· ,ik}

]
= ν(ωi1).M

i2−i1(ωi1 , ωi2). · · · .M ik−ik−1(ωik−1
, ωik).

(2.26)
The ergodicity of the chain is crucial to get uniqueness, and we shall in
particular use that

∀j, k ∈ E, lim
n→∞

Mn(j, k) = ν(k) > 0.

The considered Markov chain X = (Xn)n∈N is then the sequence of
random variables on

(
{−1,+1}N, E⊗N) of law Pν , defined on cylinders

by (2.26). Writing its elementary cylinders {Xk(ω) = i} in the form
Cωk

= {ωk = i}, one gets the Markov property: For all ω ∈ Ω, for all
k, i1, · · · , ik ∈ N, ∀i, j, εk−1, · · · , ε0 ∈ E

Pν

[
ωik+1

= i|ωik = j, ωik−1
= εk−1, · · · , ω0 = ε0

]
= M(j, i).

4We shall see later that under extra topological properties, one can construct mea-
sures in G(γ) by considering weak limits of sequences of finite-volume probability mea-
sures, with random boundary conditions.

5Our standard reference for Markov Chains is [21].
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This Markov chain is also reversible: ∀k, l ∈ N, ∀i, j, εk+1, · · · , εk+l ∈ E

Pν [ωik = i|ωik+1
= j, · · · , ωk+l = εk+l]

=
Pν [ωik = i, ωik+1

= j, · · · , ωk+l = εk+l]

Pν [ωik+1
= j, · · · , ωk+l = εk+l]

=
ν(i)M(i, j) · · ·M(εk+l−1, εk+l)

ν(j)M(j, εk+2) · · ·M(εk+l−1, εk+l)

=
ν(i)M(i, j)

ν(j)
:= N(j, i)

where N is then the stochastic matrix associated to the reverse chain.
Hence, we can extend this chain on Ω = {−1,+1}Z, and in particular it
is still ergodic. Introduce now a specification γ such that Pν ∈ G(γ), and
compute

Pν

[
σΛn

|σΛc
n
= ωΛc

n

]
=

Pν [ω]−∞,−n−1]σΛn
ω[n+1,+∞[]

Pν [ω]−∞,−n−1]ω[n+1,+∞[]

=
Pν [ω−n−1σΛn

ωn+1]

Pν [ω−n−1ωn+1]

=
ν(ω−n−1)M(ω−n−1, σ−n) · · ·M(σn, ωn+1)

ν(ω−n−1)M2n+2(ω−n−1, ωn+1)

=
M(ω−n−1, σ−n) · · ·M(σn, ωn+1)

M2n+2(ω−n−1, ωn+1)
.

Denote then the (finite) normalization by ZΛn
(ω) = M2n+2(ω−n−1, ωn+1)

and define a proper kernel γΛn
on (Ω,F), for all σ ∈ Ω, by

γΛn
(σ|ω) = 1

ZΛn
(ω)

·M(ω−n−1, σ−n) · · ·M(σn, ωn+1).

One can check that we define thus a specification γ such that Pν ∈ G(γ): In
contrast to the modelization of the simple random walk described above,
the existence of a DLR measure is then insured. Let us consider now any
µ ∈ G(γ) and prove that µ = Pν . To do so, it is enough to prove for all
ω ∈ Ω, for all k, i1, · · · , ik ∈ N,

Pν

[
Cω{i1,··· ,ik}

]
= µ

[
(ωi1 , · · · , ωik)

]
.

Let us prove it for the one-dimensional cylinder using Markov property
and consistency: We have for all x ∈ E and n ∈ N

µ[σ0 = x] =
∑

i,j∈E

µ[σ0 = x|σ−n−1 = i, σn+1 = j]µ[σ−n−1 = i, σn+1 = j]

=
∑

i,j∈E

Mn+1(i, x) ·Mn+1(x, j)

M2n+2(i, j)
· µ[σ−n−1 = i, σn+1 = j].
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Taking now the limit when n goes to infinity, one gets

µ[σ0 = x] =
∑

i,j∈E

ν(x) · ν(j)
ν(j)

· µ[σ−n−1 = i, σn+1 = j]

= ν(x)
∑

i,j∈E

µ[σ−n−1 = i, σn+1 = j]

= ν(x) = Pν [σ0 = x].

We obtain the equality of these measures on the other cylinders in the
same way. Thus G(γ) is the singleton6 {Pν}.

4. Example of phase transition: Ferromagnetic 2d-Ising model

The Ising model is the original archetype Gibbs specification and we
present it briefly at dimension d = 2, temperature T = 1

β > 0 and no

external field, as originally introduced by Lenz to model ferromagnetism7.
To do so, one considers microscopic magnets σi ∈ E = {−1,+1} at each
site i ∈ Z2, and to express the fact that neighbors have a tendency to
align, the following nearest neighbor potential. It is a family Φ = (ΦA)A∈S
of FA-measurable functions defined for all ω ∈ Ω by

ΦA(ω) =





−Jωiωj if A = 〈ij〉

0 otherwise.

The corresponding Hamiltonian at finite volume Λ ∈ S, temperature
β−1 > 0, coupling J > 0 and boundary condition ω ∈ Ω is the well-
defined8 function on Ω× Ω defined by

HβΦ
Λ (σ | ω) =

∑

A∈S,A∩Λ6=∅
ΦA(σΛωΛc).

The Gibbs specification at inverse temperature β > 0 is the family of
probability kernels γβΦ = (γβΦ

Λ )Λ∈S given for all Λ ∈ S, σ, ω ∈ Ω by

γβΦ
Λ (σ | ω) = 1

ZβΦ
Λ (ω)

e−βHΛ(σ|ω),

6Remark that the terms involving the measure ν cancel out in the specification.
Nevertheless, its invariant character is encoded in the conditioning, yielding a DLR
measure that depends on ν.

7Ising analyzed this model in one dimension in its thesis supervised by Lenz in
1922 [71]. The only contribution of that work to higher dimensions was the wrong
interpretation that just as in d = 1, in higher dimension there is no phase transition.

8It is a finite sum here but this is not the case in general. One has usually to check
summability conditions on the potential to define Gibbs measures, as we shall see in
the next section.
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where the partition function ZβΦ
Λ (ω) is a standard normalization depend-

ing on the boundary condition ω. It is indeed a specification due to the
expression of the Hamiltonian in terms of a sum over local potential terms
(see [52] or in next section). Intensive studies have established the follow-
ing:

Theorem 2.27 (Phase transition at low T). There exists βc > 0 s.t.

• There exists a unique measure consistent with γβΦ at high tempera-
tures β < βc.

• At low temperatures β > βc, the set G(γβΦ) is the Choquet simplex
[µ−

β , µ
+
β ] whose extremal elements are mutually singular and can be

selected by the weak limits

µ±
β (·) = lim

Λ↑S
γΛ(· | ±),

with the magnetizations satisfying

µ+
β [σ0] = −µ−

β [σ0] = M0 > 0.

The existence of the weak limits is usually proved here using correla-
tion or related (GKS, FKG, etc.) inequalities valid for some ferromagnetic
systems. The existence of a critical temperature has been qualitatively
established by Peierls in 1936 [103, 55], using a geometrical computation
based on the energy of contours, that are circuits in the dual of the lattice
associated to a configuration, whose lengths are related to its energy. His
analysis gave rise to the powerful Pirogov-Sinai theory of phase transitions
for more general models [106, 36]. The exact value of βc is due to Kramers
and Wannier in 1941 [70], while Yang obtained the magnetization in 1951
[121], both using algebraic tools9. The full convex picture, restricted to
translation-invariant measures, has been independently proved by Aizen-
mann [1] and Higuchi [58], both inspired by considerations on percolation
raised by Russo [111], described in [53]. This picture has been recently ex-
tended to higher dimension by Bodineau [9]. The fact that G(γβΦ) is the
Choquet simplex [µ−

β , µ
+
β ] means that any measure µ ∈ G(γβΦ) is uniquely

determined by a convex combination of the extreme phases µ±
β , i.e. that

there exists a unique α ∈ [0, 1] s.t. µ = αµ−
β + (1−α)µ+

β . The situation is
more complex in higher dimension or on other lattices, as we shall see.

2.5 Convexity theory of DLR-measures

In this subsection, before introducing Gibbs measures properly speaking
within the nice topological framework of quasilocality, we enlarge our finite

9The magnetization has been conjectured in an unpublished manuscript by Onsager
in 1949, who also rigorously derived the free energy in 1944 [102].
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single-spin state-space settings and first study the general structure of the
set G(γ) of probability measures consistent with a specification γ on a
general Polish probability space (Ω,F), product of 10 a finite single-spin
state-space (E, E). In this case, the family C of cylinders has the nice
following property of being a countable core, following a terminology of
[52]:

Definition 2.28 (Countable core). A countable family C ⊂ F is said
to be a countable core if it has the following properties:

1. C generates F and is stable under finite intersections11.

2. If (µn)n∈N is a sequence of M+
1 (Ω) such that limn→∞ µn(C) exists

for any cylinder C ∈ C, then there exists a unique µ ∈ M+
1 (Ω) that

coincides with this limit on C:

∀C ∈ C, µ(C) = lim
n→∞

µn(C). (2.29)

The proof that the family of cylinders C is indeed a core relies on
Carathéodory‘s extension theorem [52, 118]. We exploit this property to
define some weights αµ(M) associated with any measurable subset of mea-
sures M ∈ e(exG(γ)) by

αµ(M) = µ
[{

ω ∈ Ω : ∃ν ∈ M, lim
n

γΛn
(C|ω) = ν(C) ,∀C ∈ C

}]
. (2.30)

The main purpose of this section is to use this property to provide
a general description of G(γ) when it is not an empty set. Conditions
ensuring existence are described in Chapter 3.

2.5.1 Choquet simplex of DLR-measures

Theorem 2.31. Assume that G(γ) 6= ∅. Then G(γ) is a convex subset
of M+

1 (Ω,F) whose extreme boundary is denoted exG(γ), and satisfies the
following properties:

1. The extreme elements of G(γ) are the probability measures µ ∈ G(γ)
that are trivial on the tail σ-field F∞:

exG(γ) =
{
µ ∈ G(γ) : µ(B) = 0 or 1, ∀B ∈ F∞

}
. (2.32)

Moreover, distinct extreme elements µ, ν ∈ exG(γ) are mutually sin-
gular: ∃B ∈ F∞, µ(B) = 1 and ν(B) = 0, and more generally, each
µ ∈ G(γ) is uniquely determined within G(γ) by its restriction to F∞.

10In a more general set-up, (E,F) has to be a standard Borel space, see [52].
11This property corresponds to what is called a π-system, see in the next section.
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2. G(γ) is a Choquet simplex: Any µ ∈ G(γ) can be written in a unique
way as

µ =

∫

exG(γ)
ν · αµ(dν), (2.33)

where αµ ∈ M+
1

(
exG(γ), e(exG(γ))

)
is defined by (2.30) for all M ∈

e(exG(γ)) .
In particular, when M is a singleton {ν} ∈ e(exG(γ)), (2.30) reads

αµ({ν}) = µ
[{

ω ∈ Ω : lim
n

γΛn
(·|ω) = ν(·)

}]
. (2.34)

The convexity of G(γ) is trivial and 1. will be a direct consequence of the
following lemma, also crucial to prove 2. To state this lemma, we recall
the absolute continuity of measures: We say ν ∈ M+

1 (Ω) is absolutely
continuous with respect to µ, and we write it ν << µ, if and only if

∀A ∈ F , µ(A) = 0 =⇒ ν(A) = 0.

We also recall that µ ∈ G(γ) is extreme iff

µ = αν + (1− α)ν̄ with α ∈]0, 1[ and ν, ν̄ ∈ G(γ) =⇒ ν = ν̄ = µ.

Lemma 2.35. Assume that µ ∈ G(γ) is such that

µ = αν + (1− α)ν̄, with α ∈]0, 1[, ν, ν̄ ∈ M+
1 (Ω).

Then ν << µ, ν̄ << µ and

ν ∈ G(γ) ⇐⇒ f :=
dν

dµ
∈ F∞. (2.36)

Proof: Let µ, ν, ν̄ and α as above. The absolute continuity of ν w.r.t. µ
comes trivially from the positiveness of probability measures: Take A ∈ F
with µ(A) = 0, then αν(A) + (1 − α)ν̄(A) = 0 implies ν(A) = ν̄(A) = 0
because 0 < α < 1, and thus ν << µ and ν̄ << µ. Now let us prove (2.36).
We follow12 mostly the proof of [52] and introduce first two σ-algebras
related to the specification γ: The σ-algebra of γ-invariant measurable
sets

Fγ =
{
A ∈ F : γΛ(A|·) = 1A(·),∀Λ ∈ S

}

and13 the σ-algebra of µ-almost surely γ-invariant measurable sets

Fγ(µ) =
{
A ∈ F : γΛ(A|·) = 1A(·) µ−a.s.,∀Λ ∈ S

}
.

12More generally, the proof comes from [31], but we have rewritten it to avoid the
introduction of too many concepts. These ideas are also related to the so-called disin-
tegration of measures, see [3, 4, 101].

13They are indeed σ-algebras [52].
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We first prove that for a given µ ∈ G(γ),

ν ∈ G(γ) ⇐⇒ f :=
dν

dµ
∈ Fγ(µ). (2.37)

To prove the implication ⇒, it is enough to prove that for all c ∈ [0, 1]
the event {f ≥ c} ∈ Fγ(µ). For Λ ∈ S, we want to prove that, whenever
µ, ν ∈ G(γ) and f = dν

dµ ,

γΛ(f ≥ c|·) = 1f≥c(·), µ− a.s.

or equivalently that when g = 1f≥c, one has

γΛg = g, µ− a.s. (2.38)

Now, µ ∈ G(γ) implies µ
[
γΛg − g

]
= 0, so to prove (2.38) it is enough to

prove
γΛg ≤ g, µ− a.s. (2.39)

Writing γΛg = (γΛg) · 1f≥c + (γΛg) · 1f<c = g · γΛg + 1f<c · γΛg, one gets
that proving

(γΛg) · 1f<c = 0, µ− a.s. (2.40)

will be enough to get (2.39) and thus (2.38). To do so, let us prove that

∫

{f<c}
(f − c) · γΛg dµ ≥ 0 (2.41)

i.e. that ∫

{f<c}
f · γΛg dµ ≥ c ·

∫

{f<c}
γΛg dµ. (2.42)

Using ν = fµ, νγΛ = ν, µ = µγΛ and the expression for g, one writes

∫

f<c

f · γΛg dµ =

∫

Ω

f · γΛg dµ−
∫

f≥c

f · γΛg dµ

=

∫

Ω

f · γΛg dµ−
∫

Ω

f · g · γΛg dµ

=

∫

Ω

γΛg dν −
∫

Ω

f · g · γΛg dµ

=

∫

Ω

g dν −
∫

Ω

f · g · γΛg dµ

=

∫

Ω

f · g dµ−
∫

Ω

f · g γΛg dµ

=

∫

Ω

f · g · (1− γΛg) dµ.



32 Chapter 2. Topology and measures on product spaces

But f · g = f · 1f≥c ≥ c · 1f≥c = c · g, and because 0 ≤ γΛg ≤ 1, one gets

∫

f<c

f ·γΛg dµ ≥ c·
∫

Ω

g ·(1−γΛg) dµ = c·µ[g]−c·µ[gγΛg] = c·
∫

f<c

γΛg dµ

where the last equality has been obtained using the consistency relation
µ[g] = µ[γΛg]. So (2.42) holds, which in turns implies (2.41) and then
(2.40) because trivially (f − c) is strictly negative on the event {f < c},
implying thus γΛg = 0 on the same event, that is exactly (2.39). Thus one
has γΛg = g µ-a.s., and eventually that the density f ∈ Fγ(µ).

Let us now prove that for µ ∈ G(γ) and f = dν
dµ ,

f ∈ Fγ(µ) =⇒ ν = f · µ ∈ G(γ).

It is enough to prove it for a step function f = 1A, with A ∈ Fγ(µ), so let
us prove that for all Λ ∈ S and A ∈ Fγ(µ), the measure

ν(·) := 1A(·)µ(·) = µ(· ∩A)

satisfies νγΛ = ν. By the defining properties of a specification, one can
write, for all B ∈ F and Λ ∈ S,

νγΛ(B) =

∫

Ω

γΛ(B|·) dν = ν
[
γΛ(A ∩B|·)

]
+ ν

[
γΛ(B \A|·)

]

≤ µ
[
γΛ(A ∩B|·)

]
+ µ

[
1A(·)γΛ(Ω \A|·)

]

= µ(A ∩B) + µ
[
1A(·)1Ω\A(·)

]
= ν(B).

Working similarly on Bc one also gets the domination of νγΛ(B
c) by ν(Bc),

and together with

νγΛ(B) + νγΛ(B
c) = 1 = ν(B) + ν(Bc)

this implies νγΛ(B) = ν(B), ∀B ∈ F and Λ ∈ S, so ν ∈ G(γ).

To conclude, realize first that F∞ is exactly the γ-invariant σ-algebra
Fγ : Any A ∈ F∞ is γ-invariant by properness, and reciprocally, any γ-
invariant set A ∈ F∞, because it can be written A =

{
γΛ(A|·) = 1

}
for

any Λ ∈ S. Eventually, tail-triviality is obtained because µ is trivial on
Fγ(µ) if and only if it is trivial on Fγ = F∞, the µ-completion of the latter
being exactly14 Fγ(µ), see [52].

14It is not the case for general kernels, properness of the specification is crucial [52].
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Proof of Theorem 2.31:

1. It is straightforward to check that G(γ) is a convex subset of M+
1 (Ω).

Then exG(γ) is non-empty15 and suppose µ is one of its extreme elements,
and that there exists B ∈ F∞ with 0 < µ(B) < 1. Then the conditional
probabilities w.r.t. B and its complement Bc are well-defined as probabil-
ity measures on (Ω,F) in such a way that

µ(·) = µ(·|B)µ(B) + µ(·|Bc)µ(Bc)

or equivalently
µ(·) = α µ(·|B) + (1− α) µ(·|Bc) (2.43)

with α = µ(B) ∈ ]0, 1[. Denote ν(·) = µ(·|B) and rewrite

ν(·) = µ(· ∩B)

µ(B)
=

1B(·)
µ(B)

· µ(·)

in such a way that ν << µ, with a density dν
dµ = 1B(·)

µ(B) that belongs to F∞
because B is a tail event. Lemma 2.35 implies thus that ν(·) = µ(·|B) and
ν̄(·) = µ(·|Bc) are distinct elements of G(γ), and together with (2.43) and
0 < α < 1, this contradicts the extremality of µ. Thus, such a tail event
B ∈ F∞ cannot exist and one gets the first part of item 1. of this theorem:

µ ∈ exG(γ) =⇒ µ(B) = 0 or 1, ∀B ∈ F∞.

To prove the converse statement, consider µ ∈ G(γ), trivial on F∞ and
such that there exists α ∈]0, 1[ and ν, ν̄ ∈ exG(γ) with µ = αν + (1− α)ν̄.
Then by Lemma 2.35, ν << µ with a density f := dν

dµ ∈ F∞. The latter

is a density thus µ[f ] = 1 and by tail-triviality of µ one also has µ[f ] = f
(µ-a.s.). Hence f = 1 (µ-a.s.) and ν = ν̄ = µ, which is thus an extreme
element of G(γ):

µ(B) = 0 or 1, ∀B ∈ F∞ =⇒ µ ∈ exG(γ).

Let us prove now that any µ ∈ G(γ) is uniquely determined within G(γ)
by its restriction to F∞. Consider µ, ν ∈ G(γ) such that µ(B) = ν(B) for
all B ∈ F∞ and the combination µ̄ = 1

2µ + 1
2ν, which is also in G(γ) by

convexity . By Lemma 2.35 one can write µ = f · µ̄ and ν = g · µ̄ with
f, g ∈ F∞. If ν = µ on F∞, then one also has µ̄ = ν = µ on F∞, thus
f = g = 1 and ν = µ. In particular, distinct extreme elements are mu-
tually singular because they are trivial on the tail-σ-algebra: There exists
then B ∈ F∞ such that µ(B) = 1 and ν(B) = 0.

15Consider for example a regular version of µ[·|F∞] for µ ∈ G(γ).
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Hence, we have now a characterization of extremality in terms of tail-
triviality. To see how this leads to a unique simplicial decomposition, we
shall also use the following characterization of extremal DLR measures,
which can be derived from (2.32) using standard arguments:

exG(γ) =
{
µ ∈ G(γ) : µ[A|F∞] = µ(A), µ−a.s.,∀A ∈ F

}
. (2.44)

2. To get the unique extreme decomposition of µ ∈ G(γ), we follow the
spirit of the proof of Dynkin [31] as worked out in detail by Georgii [52]
in our particular DLR case. We shall mention at the end of this chapter
other frameworks where such a decomposition holds.
We start thus from a specification γ for which there exists µ ∈ G(γ). By

consistency, for any n ∈ N, the kernel γΛn
is a regular version of conditional

probability of µ given FΛc
n
:

γΛn
(A|·) = µ[A|FΛc

n
](·), µ− a.s., ∀A ∈ F . (2.45)

The existence of such a regular version of conditional probabilities is en-
sured by Theorem 2.13, and we shall sometimes denote formally by Ωµ

the set of full µ-measure set on which (2.45) holds for all A and for all n.
Remark that the uniformity in n implies that Ωµ is a tail-event.

The backward martingale theorem [118] ensures then that the following
almost-sure limit

lim
n→∞

µ[C|FΛc
n
](·) = µ[C|F∞](·), ∀C ∈ C (2.46)

exists also on a full measure set (that can be assumed to be the same Ωµ),
defining a regular version of the conditional probability w.r.t. the tail σ-
algebra F∞. The regularity of such versions of conditional probabilities is
encoded in the order of the locutions “µ-a.-s.” and “∀A ∈ F”.

Our strategy is now to combine (2.45) and (2.46) with the core property
(Definition 2.28) to introduce appropriate objects for a decomposition of
DLR measures when applied on the countable family of cylinders first, to
derive some (tail-) measurability properties using countability, and there-
after to extend in a standard way the latter objects onto probability ker-
nels that are in some sense extreme “µ-almost surely”. In fact, the starting
point of the decomposition is one of the defining properties of versions of
conditional probability with respect to the tail σ-algebra:

∀µ ∈ M+
1 (Ω), µ(·) =

∫

Ω

µ[·|F∞](ω) dµ(ω). (2.47)

In some informal sense, the regular versions of µ[·|F∞] are the proto-
types of extremal measures entering in the decomposition of any µ ∈ G(γ).
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To formalize this using consistency and the backward martingale theorem,
we need to carefully define appropriate asymptotics of the specification
γ, that will be probability kernels with an asymptotic properness leading
to tail triviality, that eventually leads to a concentration on the extreme
elements of G(γ).

Step 1: µ-asymptotics of the specification

We use first the core property (2.29) to “µ-almost-surely” extend our
asymptotic kernels from a definition on the cylinders. Indeed, combining
(2.45) and (2.46), one gets that

∀ω ∈ Ωµ, lim
n→∞

γΛn
(C|ω) = µ[C|F∞](ω), ∀C ∈ C.

By the core property, there exists then, for each ω ∈ Ωµ, a measure πω ∈
M+

1 (Ω) s.t.

∀C ∈ C, πω(C) = lim
n→∞

γΛn
(C|ω) = µ[C|F∞](ω). (2.48)

Extending this construction to any ω ∈ Ωc
µ by requiring πω to be any ar-

bitrary elements of M+
1 (Ω), one gets a probability kernel with nice specific

properties:

Lemma 2.49. Let µ0 ∈ M+
1 (Ω), µ ∈ G(γ), Ωµ ∈ F∞ as above for which

(2.45) and (2.46) hold, and define π· : F×Ω −→ [0, 1]; (A,ω) 7−→ πω(A)
as follows:

• ∀ω ∈ Ωµ, π
ω is the unique element of M+

1 (Ω) such that

∀C ∈ C, πω(C) = lim
n

γΛn
(C|ω) = µ[C|F∞](ω).

• ∀ω ∈ Ωc
µ, π

ω is chosen to be the arbitrary probability measure µ0.

Then π· is a probability kernel from (Ω,F∞) to (Ω,F) such that

1. µ−a.s., µ[A|F∞] = π·(A), ∀A ∈ F .

2. {
π· ∈ G(γ)

}
:=

{
ω ∈ Ω : πω ∈ G(γ)

}
∈ F∞. (2.50)

and π· is µ-a.s. consistent with γ in the sense that:

µ
[
π· ∈ G(γ)

]
= 1. (2.51)
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Proof: To prove that π· is a probability kernel from (Ω,F∞) to (Ω,F),
we need to prove (see Definition 2.15) that for all ω ∈ Ω, πω(·) is a proba-
bility measure on (Ω,F), and that for all A ∈ F , π·(A) is F∞-measurable.
The first item is true by construction, thanks to the core property. To
prove the second one, denote D =

{
A ∈ F : π·(A) ∈ F∞

}
. By construc-

tion, D contains the set C of cylinders. The latter is a π-system (i.e. a
family of sets stable by finite intersections, that generates the σ-algebra F)
whereas D is a Dynkin system (i.e. a family of subsets of Ω that contains
Ω and is stable for subtractions of subsets and under monotone limits of
sets) contained in F . Then we use

Lemma 2.52 (Dynkin lemma [118]). Any Dynkin system which con-
tains a π-system contains the σ-algebra generated by this π-system.

Thus the property characterizing D extends to the whole σ-algebra F ,
because the former is generated by the π-system of the cylinder, and thus:
∀A ∈ F , π·(A) ∈ F∞. By construction, the equality πω(C) = µ[C|F∞]
is true for all cylinders C for µ-almost every ω by (2.48). For these ω‘s,
µ[·|F∞](ω) and πω are two probability measures that coincide on a π-
system, which coincide then on the σ-algebra generated by this π-system,
which is F itself here. This proves item 1. of the lemma.

Fix now a cylinder C ∈ C and focus first on the (random) measures
π·(C). By construction, they inherit the properness property and in par-
ticular for µ-almost every ω ∈ Ω,

∀C ∈ C∞, πω(C) = 1C(ω).

Also inherited from consistency: For µ-almost every ω,

∀C ∈ C, πωγΛ(C) = µ
[
µ[C|FΛc ]|F∞

]
= µ[C|F∞] = πω(C).

Using Dynkin’s lemma and standard extension techniques, this implies
that

µ−a.s.,





πωγΛ(A) = πω(A), ∀Λ ∈ S, ∀A ∈ F .

πω(B) = 1B(ω), ∀B ∈ F∞.

In particular, one gets (2.50) and (2.51) and Lemma 2.49 is proved.

Step 2: Concentration on the extremal measures

Consider now, for µ ∈ G(γ), π· as a random measure on the probability
space (Ω,F , µ), taking values in the set M+

1 (Ω). By the former lemma,
it µ-concentrates on G(γ) and has some specific tail-measurable properties
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that are useful to relate it to extremal measures. One gets then the starting
point of the decomposition by rewriting (2.47) for µ ∈ G(γ):

∀A ∈ F , µ(A) =

∫

Ω

πω(A) dµ(ω) = µ
[
π·(A)

]
. (2.53)

Denote formally αµ the law of π· as a random variable on the probability
space (Ω,F , µ). WritingM0 = π·(Ω), one can rewrite formally (2.53) under
the form

µ(·) =
∫

Ω

π·dµ =

∫

M0

ν µ[π· ∈ dν] =

∫

M0

ν αµ[dν]. (2.54)

Before focusing more properly on a rigorous definition of the weights αµ

that leads to the correct decomposition, we first establish an extra impor-
tant consequence of the previous lemma: The limiting procedure used to
define π· on the space Ωµ of full µ-measure allows interesting probabilis-
tic properties of the measure πω for such a typical ω: The measure πω

is an extreme element of G(γ) and the above integral reduces to the set
M0 = exG(γ).
Lemma 2.55.

{
π· ∈ exG(γ)

}
∈ F∞ and, ∀µ ∈ G(γ), µ

[
π· ∈ exG(γ)

]
= 1.

Proof: Firstly, recall that the consistency has a consequence on the
expected value of π·(A) as a random variable (with values in [0, 1]) on
(Ω,F , µ), as seen in (2.53): ∀A ∈ F ,

µ
[
π·(A)

]
=

∫

Ω

πω(A) dµ(ω)

=

∫

Ω

µ[A|F∞](ω) dµ(ω) = µ
[
µ[A|F∞]

]
= µ(A)

so the expected value of π·(A) is µ(A), while its variance under µ ∈ G(γ)
is:

Eµ

[(
π·(A)− µ(A)

)2]
= µ

[(
π·(A)

)2 − 2µ(A)π·(A) +
(
µ(A)

)2]
(2.56)

= µ
[(
π·(A)

)2]− 2µ(A)µ
[
π·(A)

]
+

(
µ(A)

)2

in such a way that, when µ ∈ G(γ), we can define this variance to be

σ2
A(µ) := µ

[(
π·(A)

)2]−
[
µ
(
π·(A)

)]2
= µ

[(
π·(A)

)2]−
(
µ(A)2

)
(2.57)

or
σ2
A(µ) = e(

π·(A)
)2(µ)−

(
eπ·(A)(µ)

)2
(2.58)
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that could in particular be used to get (tail) measurability. For technical
reasons, we extend the definition of this map σ2

A on the whole spaceM+
1 (Ω)

using16 the same expression (2.58).
By its definition via (2.46), π·(A) is a version of µ[A | F∞] for all A ∈ F

and by (2.44) µ is extreme if and only if µ[A | F∞] = µ(A), µ-a.s., ∀A ∈ F .
This implies that the starting DLR measure µ ∈ G(γ) will be extreme if
and only if

∀A ∈ F , π·(A) = µ(A), µ−a.s.

in such a way that

exG(γ) =
{
µ ∈ G(γ) : π·(A) = µ(A) µ−a.s., ∀A ∈ F

}
. (2.59)

Using Dynkin‘s lemma for the D-system
{
A ∈ F : π·(A) = µ(A) µ−a.s.

}

that contains C, one gets

{
π· ∈ exG(γ)

}
=

{
π· ∈ G(γ)

}
∩

⋂

C∈C

{
π· : π·(C) = µ(C)

}
(2.60)

which in particular insures the F∞-measurability of
{
π· ∈ exG(γ)

}
from

(2.50) and from this of π·(C) for any C ∈ C. Hence, the extremal measures
are µ ∈ exG(γ) satisfy

∀C ∈ C, π·(C) = µ(C), µ− a.s.

i.e. that for all C ∈ C, π·(C) would be, as a random variable, almost surely
equal to its µ-expectation. As in many cases in such situations, it implies
that its variance (2.57) should be µ-a.s. zero:

µ ∈ exG(γ) ⇐⇒ µ ∈ G(γ) and ∀C ∈ C, µ
[
σ2
C

(
π·(C)

)
= 0

]
= 1.

This proves that π· is itself extreme µ-almost surely, as a consequence
of the tail measurability of the random variable π· : A 7−→ π·(A). Indeed,
one then has µ[(π·(A))2|F∞] = (π·(A))2 µ-a.s., for all A ∈ F , and in
particular, for all C ∈ C,

µ
[
µ
[
(π·(C))2|F∞

]
(ω)−

(
πω(C)

)2]
= 0 (2.61)

which implies

µ
[
σ2
π·(π·(C)

)2]
= µ

[
πω[(π·(C))2]− (πω(C))2

]
= 0.

This proves µ
[
π· ∈ exG(γ)

]
= 1 and the lemma using (2.60).

16Instead of the more usual variance (2.56). The two expressions coincide on G(γ).
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Step 3: Extreme decomposition and its uniqueness

To properly get the decomposition using the concentration of the asymp-
totic kernels on the extreme DLR measures, we use the tail-measurability
of π· got in the previous lemma together with the very definition of the
conditional expectation in an extended version of (2.47):

∀A ∈ F , ∀B ∈ F∞,

∫

B

µ[A | F∞](·) dµ(·) =
∫

B

1A(·) dµ(·). (2.62)

By Lemma 2.55, B =
{
π· ∈ exG(γ)

}
∈ F∞ so in particular, one has for

all A ∈ F ,

∫

{π·∈exG(γ)}
µ[A | F∞](·) dµ(·) =

∫

{π·∈exG(γ)}
1A(·) dµ(·)

= µ
(
A ∩ {π· ∈ exG(γ)}

)

and the latter is exactly µ(A) by concentration of π· on exG(γ) for µ ∈
G(γ). Thus one can rewrite (2.53) as

µ(·) = µ
(
· ∩{π· ∈ exG(γ)}

)
=

∫

{π·∈exG(γ)}
µ[· | F∞](ω) dµ(ω)

=

∫

{π·∈exG(γ)}
πω(·) dµ(ω). (2.63)

Consider αµ as defined by (2.30) and extend it into a probability measure
αµ ∈ M+

1

(
exG(γ), e(exG(γ)

)
, defined to be the law of π· as a random

extremal DLR measure, i.e. by

αµ(M) := µ(π· ∈ M), ∀M ∈ e
(
exG(γ)

)
.

It is indeed a probability measure because for all M ∈ e
(
exG(γ)

)
one has

{π· ∈ M} ∈ F∞ ⊂ F , and because αµ(exG(γ)
)
= 1 by step 2. above17.

Thus we identify M0 by exG(γ) in (2.54) and rewrite (2.63) under the form

µ =

∫

exG(γ)
ν αµ(dν). (2.64)

Uniqueness of the representation follows by the uniqueness of the extension
in the core property and from the uniqueness of the representation of a
probability measure via its action on measurable functions. Theorem 2.31
is thus proved.

17Rigorously speaking, one should use the expression (2.58) in terms of the evaluation
maps to prove the measurability on

(

exG(γ), e
(

exG(γ)
))

, see e.g. [52].
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2.5.2 Selections by boundary conditions

In statistical physics, Gibbs measures are often considered by taking the
infinite-volume limit of finite-volume specifications with prescribed bound-
ary conditions. This is not rigorously true for general DLR measures, but a
corollary of the simplicial decomposition indeed indicates that it is true for
extremal measures18. The direct description of non-extremal ones is more
peculiar, but of course can be done using this decomposition, see [52, 36]
for more details. Stronger results are also true in the quasilocal context,
but the latter is not necessary for what follows; it is important for us while
we shall consider non-quasilocal measures within the still active Dobrushin
program of restoration of Gibbsianness. Extreme points have thus the nice
general extra property to get identified with some particular sequence of
measures with boundary conditions: An infinite-volume extremal measure
specified by γ can be selected by a sequences of finite-volume measures
with boundary conditions that are typical for it:

Theorem 2.65. [52] Let γ be a specification s.t. there exists µ ∈ exG(γ).
Then, for any sequence of cubes (Λn) ∈ S, for any f ∈ F bounded, the
following convergence holds:

γΛn
f(·) −→

n→∞
µ[f ], µ−a.s. (2.66)

γΛn
(·|ω) W−→

n→∞
µ(·), for µ−a.e.(ω). (2.67)

In case of phase transitions, it provides a more explicit description of
extremal measures:

Theorem 2.68. [52] Let γ be a specification s.t. there exists µ 6= ν ∈
exG(γ). Consider f ∈ F bounded such that µ[f ] 6= ν[f ]. Then the tail-
measurable sets

Bf
µ =

{
ω : γΛn

f(ω) −→
n→∞

µ[f ]
}

Bf
ν =

{
ω : γΛn

f(ω) −→
n→∞

ν[f ]
}

are such that µ
(
Bf

µ

)
= ν

(
Bf

ν

)
= 1 and ν

(
Bf

µ

)
= µ

(
Bf

ν

)
= 0.

Basic example: 2d Ising model at low temperature:

Although the simplicial representation is a very satisfactory result from
a theoretical point of view, it is far from being an easy task to characterize
and describe the extreme DLR measures for a given specification. We shall

18The converse statement is not true. There exists non extremal measures that are
such weak limits, see e.g. the 3-states Potts models with well-chosen external field.
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mention a few known examples later on in this course, but we also stress
here that the description is still mostly incomplete from the mathematical
point of view. The most complete results concern the standard Ising model
on Z2. For this model, we have seen in Theorem 2.27 that the set of
DLR measures is the convex set

[
µ−
β , µ

+
β

]
where the extremal measures

are characterized by an opposite magnetization ±mβ ∈ [0, 1], defined to
be mβ = Eµ+

β
[σ0] = −Eµ−

β
[σ0], with mβ 6= 0 at low enough temperature.

In such a case, one can write for any µ ∈ G(γ), using (2.64) and the
definition (2.34) of the weights,

µ = αµ({µ+
β }) · µ+

β + αµ({µ−
β }) · µ−

β

where the weights can be shown to satisfy

αµ(µ
±
β ) = µ

[{
ω ∈ Ω : lim

n
γΛn

(C|±) = µ±
β (C) for any C ∈ C

}]
= µ(Bm±

β
)

with the sets Bm defined in (2.2) for m ∈ [0, 1]. For the Gibbs measure
with free boundary conditions19, one e.g. recovers

µf =
1

2
· µ+

β +
1

2
· µ−

β .

2.5.3 Ergodic vs. extremal DLR measures

Thus, Theorem 2.31 tells us that for a given specification, any DLR mea-
sure is uniquely determined in terms of the extremal ones, those that are
trivial on the tail σ-algebra F∞, i.e. for which global macroscopic observ-
ables do not fluctuate. This is the reason why they are related to macro-
scopic states of our system, as we shall discuss soon. This description is
reminiscent to the standard ergodic decomposition of translation-invariant
probability measures. Let us describe briefly the proof of [52] that gets this
decomposition as a corollary of the previous theorem, using a particular
specification related to a spatial average operator.

Hence, as usual in ergodic theory, we focus now on the set M+
1,inv(Ω)

of translation-invariant probability measures and on the σ-algebra Finv

of translation-invariant events. Introducing a particular specification γ̃
defined for all A ∈ F , ω ∈ Ω and Λ ∈ S by

γ̃Λ(A|ω) =
1

|Λ|
∑

i∈Λ

1A(τiω)

one easily gets that the γ̃-invariant sets are exactly the translation-invariant
ones, i.e.

Fγ̃ = Finv.

19I.e. without any boundary condition, see in next section.
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By an adaptation of the proof of the extreme decomposition (2.63), in the
more general framework of [31], one gets the following theorem, proved in
Chapter 14 of [52]:

Theorem 2.69. [52, 36] The set M+
1,inv(Ω) is a convex subset of M+

1 (Ω)
such that:

1. its extreme elements are the probability measures that are trivial on
the translation-invariant σ-algebra Finv, i.e. the ergodic probability
measures on (Ω,F):

erg(Ω) =
{
µ ∈ M+

1,inv(Ω) : µ(A) = 0 or 1, ∀A ∈ Finv

}
. (2.70)

Distinct ergodic measures µ, ν are mutually singular: ∃A ∈ Finv,
µ(A) = 1 and ν(A) = 0, and more generally, each µ ∈ erg(Ω) is
uniquely determined within the ergodic measures by its restriction on
Finv.

2. M+
1,inv(Ω) is a Choquet simplex: Any µ ∈ M+

1,inv(Ω) can be written
in a unique way as

µ =

∫

erg(Ω)

ν · αµ(dν)

with αµ ∈ M+
1

(
erg(Ω), e(erg(Ω))

)
defined for all M ∈ e(ergM) by

αµ(M) = µ
[{

ω ∈ Ω : ∃ν ∈ M, lim
n

γ̃Λn
(C|ω) = ν(C) for any C ∈ C

}]
.

In this theorem, translation-invariance and the ergodic theorem play the
roles respectively devoted to tail-triviality and the backward martingale
limit theorem in Theorem 2.31. Many other similarities exist, described
e.g. in Chapter 14 of [52] or in [36].

Remark 2.71 (Physical Phases). Once we agree to describe the true
physical phases of the system by some random field of M+

1,inv(Ω), we have
now three different mathematical manners to characterize the macroscopic
“states” of the systems we want to model. Starting from a specification
describing an equilibrium at finite volume20, one can consider first the set
of DLR measures G(γ) as good candidates to play the same role at infi-
nite volume, leaving moreover the door open to the modelization of phase
transitions. Requiring furthermore that macroscopic, i.e. tail-measurable,
observables should not fluctuate, one can then restrict the macroscopic
description to the DLR measures that are trivial on the tail σ-algebra,

20It corresponds to the finite-volume Boltzmann-Gibbs weights, see next chapter.
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i.e. to exG(γ), and use thereafter the extreme decomposition to get a
more general description that incorporates uncertainty of the experiment.
For other purposes, one can also be interested in translation-invariant ob-
jects, in particular when the underlying system is translation-invariant,
and chose then to focus either on the set Ginv(γ) = M+

1,inv(Ω) ∩ G(γ) and
on its extreme elements exGinv(γ), or either on the translation-invariant ex-
tremal measures, i.e. the translation-invariant elements of exG(γ). These
approaches are far from being equivalent: The latter form a rather small
and sometimes empty set, whereas the former consists of ergodic measures,
that are in particular extreme because Finv ⊂ F∞ in the following almost
sure sense: For each µ ∈ M+

1 (Ω) and each A ∈ Finv, there exists B ∈ F∞
with µ(A∆B) = 0, where ∆ is the standard symmetric difference of sets.
These ergodic measures are thus often chosen to be the physical phases
that represent macroscopically the equilibrium state of the underlying in-
teracting particle system. If one does not focus on translation-invariance,
the structure of extremal states could be very rich and far from being
equivalent to ergodicity, see various examples of Ising models at higher
dimensions [26], or antiferromagnetic [36], or on trees [8, 57, 62, 107].

Remark 2.72 (de Finetti‘s theorem and exchangeability). Let us
also mention now that within a slightly different framework, a theorem
similar to Theorem 2.31 is equivalent to the de Finetti‘s theorem for ex-
changeable measures21. Instead of working on a lattice, consider S to
be the set of non-negative integers N, and focus on permutations and its
associate σ-algebra of symmetric events I = ∩n∈N already introduced in
Section 2.2. This symmetric σ-algebra plays the role devoted to F∞ in the
extreme decomposition, and defining a family of proper probability kernels
γ = (γn)n∈N from (Ω, I) to (Ω,F) by,

∀n ∈ N,∀A ∈ F ,∀ω ∈ Ω, γn(A|ω) =
1

n!

∑

τ∈In

1A(τω)

one first gets that the set G(γ) of γ-invariant probability measures is ex-
actly the set of exchangeable measures. Using a corollary of Theorem
2.31, its extreme points have then to be trivial on the symmetric events
I, corresponding thus to the product measures of the form λ⊗N with
λ ∈ M+

1 (E, E). Proceeding in a similar way as in the extreme decom-
position of Theorem 2.31, one gets that all permutation-invariant (or ex-
changeable) measures are uniquely determined as convex combinations of
product measures: This is exactly de Finetti‘s theorem [25]. A more re-
fined analysis of this analogy and of the σ-algebras I, Finv and F∞ also
leads to related 0-1 laws, see [3, 4, 31, 52].

21See e.g. [25]. It can also be used to complete the description of mean-field models,
see e.g. the discussion in [83].



Chapter 3

Quasilocal and Gibbs
measures

We recall that in general in this volume, we restrict our studies to the case
of finite single-spin state-space and we moreover emphasize that, in this
chapter in particular, some of the results or equivalences are not true if
this hypothesis is not fulfilled, see e.g. Proposition 3.5.

3.1 Quasilocality for measures and specifica-
tions

3.1.1 Essential continuity of conditional probabilities

The link between continuity and quasilocality described through the prod-
uct topology enables to generalize the Markov property to probability mea-
sures whose conditional expectations of local functions depend only weakly
of spins arbitrarily far away from their support. This leads to the concept
of quasilocal measures, which, in addition to provide a good framework to
get the existence of specified measures, is also closely related to the notion
of Gibbs measures. In our settings, it corresponds to the concept of Feller
kernels in the standard theory of stochastic processes.

Definition 3.1. A specification γ is said to be quasilocal when

∀Λ ∈ S, f ∈ Floc =⇒ γΛf ∈ Fqloc.

A measure is said to be quasilocal if there exists a quasilocal specification
γ such that µ ∈ G(γ).

44
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Recall that for any Λ ∈ S, γΛf is defined by:

∀ω ∈ Ω, γΛf(ω) =

∫

Ω

f(σ)γΛ(dσ | ω).

Thus, γΛ being properly speaking a kernel from (ΩΛc ,FΛc) to (ΩΛ,FΛ),
the function γΛf is FΛc -measurable and continuity is to be understood
here as continuity w.r.t. the boundary condition ω (depending only on
ωΛc): If γ is a quasilocal, then for any f ∈ Floc, for any Λ ∈ S,

lim
Λ′↑S

sup
σΛ′c=ωΛ′c

∣∣∣γΛf(ω)− γΛf(σ)
∣∣∣ = 0.

An important consequence is that the conditional probabilities of local or
quasilocal functions w.r.t. a quasilocal measure are essentially continuous
in the sense that for µ ∈ G(γ) with γ quasilocal, for all f ∈ Fqloc, for
all Λ ∈ S and ω ∈ Ω, there always exists a version of the conditional
probability µ[f | FΛc ](·) that is continuous at ω. In particular, for a given
quasilocal measure µ, it is not possible to change a version of conditional
probabilities to make it discontinuous: Take e.g. f(σ) = σ0, one should
have for all Λ ∈ S and for all ω ∈ Ω,

lim
Λ′↑S

sup
ω1,ω2∈Ω

∣∣∣µ[σ0 | ωΛ′\Λω
1
Λ′c ]− µ[σ0 | ωΛ′\Λω

2
Λ′c ]

∣∣∣ = 0 (3.2)

because the former conditionings are in open neighborhoods of ω, and open
neighborhoods are automatically of positive µ-measures here [43]. This
also express an almost sure asymptotic weak dependence in the condition-
ing that can be seen as an asymptotic extension of Markov properties, as
suggested by the denomination almost Markovian chosen by Sullivan [117].

The failure of this essential continuity (3.2) will be very important in
the last chapter when dealing with transformations of Gibbs or quasilocal
measures and to detect non-quasilocality via essential discontinuity, char-
acterized in the following proposition, although its formulation is a bit
stronger than the usual general meaning (see [43]).

Proposition 3.3 (Essential discontinuity). A conditional probability
of a measure µ ∈ M+

1 (Ω,F) is essentially discontinuous at ω if there exist
Λ ∈ S, f ∈ Floc, δ > 0 and N 1

Λ(ω),N 2
Λ(ω) neighborhoods of ω such that

∀ω1 ∈ N 1
Λ(ω), ω

2 ∈ N 2
Λ(ω),

∣∣∣µ[f | FΛc ](ω1)− µ[f | FΛc ](ω2)
∣∣∣ > δ

or equivalently

lim
Λ′↑∞

sup
ω1,ω2∈Ω

∣∣∣µ[f | FΛc ](ωΛ′ω1
Λ′c)− µ[f | FΛc ](ωΛ′ω2

Λ′c)
∣∣∣ > δ. (3.4)
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3.1.2 Existence results in the quasilocal framework

In our finite single-spin state-space settings, where compactness holds,
quasilocality ensures thus the existence of a measure in G(γ). The follow-
ing proposition additionally indicates how one can naturally construct such
objects as the limit of large but finite systems with some specified bound-
ary conditions, that have then to be typical for the measure constructed.
The set of DLR measures is then a closed convex subset, and this explains
the usual introduction of Gibbs measures as weak limits of finite-volume
probability measures with boundary conditions. For any specification γ
and sequence

(
νn

)
n∈N ∈ M+

1 (Ω), we recall that νnγn denotes the proba-
bility measure acting on a bounded function f ∈ F via:

νnγΛn
[f ] =

∫

Ω

γΛn
f(ω)νn(dω), ∀n ∈ N.

Proposition 3.5. [52] Let γ = (γΛ)Λ∈S be a quasilocal specification on
it. Then, for any sequences of cubes (Λn)n∈N and any arbitrary sequence
(νn)n∈N on M+

1 (Ω), the weak limit

µ := lim
n→∞

νnγn

exists in M+
1 (Ω) and µ ∈ G(γ). In particular, G(γ) is a non empty convex

subset of M+
1 (Ω).

We introduce now the main example of quasilocal measures, that are
nothing but (infinite-volume) Gibbs measures, and explain why a converse
statement telling that most quasilocal measures are Gibbs is also true.

3.2 Infinite-volume Gibbs measures

3.2.1 Equilibrium states at finite volume

We recall here briefly some elementary physical concepts that led Boltz-
mann and Gibbs to settle down their prescription for equilibrium states.
This is very simplified, and probably too simple from a physical point of
view (the notion of entropy being for example far from being so simple, see
e.g. [88, 80, 54]) but we state it in order to formally justify the notion of
equilibrium states developed in Chapter 4 within the so-called variational
principle. Hence, our aim is to provide a probabilistic translation of the
second law of thermodynamics that claims:

Equilibrium at a fixed value of energy maximizes entropy

or, in an equivalent statement, Equilibrium minimizes free energy.
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For a modelization at finite volume Λ, the microscopic states are the col-
lections σΛ ∈ ΩΛ of random variables (σi)i∈Λ and the macroscopic states
are their possible distributions µΛ ∈ M+

1 (ΩΛ,FΛ). The energy of a con-
figuration is represented by an Hamiltonian at finite volume HΛ(σΛ) and
thus the energy of a macroscopic “state” µΛ is represented by the average
of the Hamiltonian, i.e.

Eµ[HΛ] :=
∑

σΛ∈ΩΛ

HΛ(σΛ)µΛ(dσΛ). (3.6)

In one of its original interpretations, the entropy of a system is supposed
to evaluate its degree of disorder. Translated into a probabilistic frame-
work and quoting Khinchin in [69], “it seems highly desirable to intro-
duce a quantity which in a reasonable way measures the amount of uncer-
tainty associated with a given probability measure, that would be minimal
for complete certainty, positive in other cases, maximal for the one with
equally likely outcomes (uniform distribution), and that would have some
nice monotone properties when the knowledge of the system increases”.
Following these ideas, one could show that such a function of a measure
should involve the function f(x) = x ln(x) and the standard definition of
the entropy of a (finite-volume) probability measure µΛ is indeed given by:

HΛ(µ) = −
∑

σΛ∈ΩΛ

µ(σΛ) lnµΛ(σΛ). (3.7)

In classical thermodynamics, the free energy “F” of a system is usually
defined through the second law in the form “F = U −TS” where U is the
(internal) energy, T = 1

β the temperature and S the entropy. To pursue
the analogy, let us define the free energy at inverse temperature β > 0 of
a (finite-volume) probability measure µΛ to be

F β
Λ (µ) = Eµ[HΛ]−

1

β
HΛ(µ). (3.8)

There exist two simple ways to see which probability measures could rea-
sonably be considered as equilibrium states, following the two different
statements of the second law of thermodynamics. In the first formulation
in terms of maximization of entropy, it is an elementary exercise using La-
grange‘s multipliers [66] to show that a probability measure µΛ having the
given energy (3.6) and maximizing its entropy (3.7) should give weights
of the form given by the famous Boltzmann-Gibbs weights [10, 51] to each
configuration:

νβΛ[σΛ] =
1

Zβ
Λ

· e−βHΛ(σΛ) (3.9)

where the normalization is the partition function Zβ
Λ =

∑
σΛ∈ΩΛ

e−βHΛ(σΛ),
which will be related soon to our free energy.
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To establish (3.9) and illustrate the second law of thermodynamics in its
second formulation, we introduce another important concept, the relative
entropy of two probability measures. For simplicity, we consider the case of
probability measures µΛ and νΛ on the finite-volume configuration space
(ΩΛ,FΛ), assumed to be non-null in the sense that any configuration has
a positive probability; the relative entropy of µΛ with respect to νΛ is then
defined to be

HΛ(µ | ν) =
∑

σΛ∈ΩΛ

µΛ(σΛ) · ln
µΛ(σΛ)

νΛ(σΛ)
.

This function has among others the nice property to be non-negative
for any probability measures on ΩΛ and to be zero if and only the two
measures coincide:

HΛ(µ | ν) ≥ 0.

HΛ(µ | ν) = 0 iff µΛ = νΛ.

Observing that HΛ(µ | νβ) = F β
Λ (µ) +

1
β lnZβ

Λ, one concludes that free

energy is indeed minimal when µΛ = νβΛ is given by the Boltzmann-Gibbs
weights (3.9). This minimal value of the free energy is then

F β
Λ (ν

β) = − 1

β
lnZβ

Λ

recovering thus the other form of the second law of thermodynamics. This
justifies the following introduction of Gibbs specifications.

3.2.2 Gibbs specifications and infinite-volume Gibbs
measures

Definition 3.10 (Potential). A potential is a family Φ = (ΦA)A∈S of
functions

ΦA : Ω −→ R

indexed by the set S of finite subsets of S, such that ∀A ∈ S, ΦA is FA-
measurable.

Our infinite-volume formalism incorporates the finite-volume one by con-
sidering free (or empty) boundary conditions, to extend Hamiltonians from
ΩΛ to Ω in a well defined way by considering finite sums in the following1

1This is true only when ΦA is bounded for all A ∈ S. In a more general framework
involving “hard-core exclusion”, Φ is allowed to be ∞ and the formalism has been
adapted, see e.g. [29, 86].
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Definition 3.11 (Hamiltonian with free boundary condition). Con-
sider a potential Φ. For all Λ ∈ S, the Hamiltonian at finite volume Λ
with free boundary condition associated with Φ is the well defined and
FΛ-measurable map

HΦ,f
Λ : Ω −→ R

ω 7−→ HΦ,f
Λ (ω) :=

∑

A∈S,A⊂Λ

ΦA(ω).

Nevertheless, the sums involved in the Hamiltonians are not finite in
general and one should focus first on convergence properties of potentials
before introducing infinite-volume Hamiltonians with prescribed boundary
conditions. In the following definition, convergence of series will be con-
sidered in the sense of the convergence along nets already defined: A series∑

Λ∈S FΛ converges iff the net
(∑

Λ∈∆ FΛ

)
∆∈S

converges to a finite limit

as ∆ ↑ S in the sense of Definition 2.6. We shall illustrate this convergence
in some examples soon.

Definition 3.12 (Convergence of potentials). A potential Φ is said
to be

1. Nearest-neighbor iff for all ω ∈ Ω, ΦA(ω) = 0 unless A = {i} or A
is a pair 〈ij〉 of nearest neighbors.

2. Finite-range iff there exists a range R ∈ N∗ such that, for all ω,
ΦA(ω) = 0 for all A such that |A| > R, where |A| = sup

i,j∈A
d(i, j) is

the diameter of A.

3. (Point-wise) convergent at ω ∈ Ω if, for all Λ ∈ S, the Hamiltonian

HΦ
Λ(ω) :=

∑

A∈S,A∩Λ6=∅
ΦA(ω) (3.13)

exists, convergent when the convergence holds for all ω ∈ Ω and
almost-surely convergent when there exists µ ∈ M+

1 (Ω) such that Φ
is convergent at µ-a.e. ω ∈ Ω.

4. Uniformly convergent when the series defining (3.13) are uniformly
convergent in ω ∈ Ω, or equivalently when

lim
∆↑S

sup
ω∈Ω

∣∣∣
∑

A∈S,A∩Λ6=∅,A∩∆c 6=∅
ΦA(ω)

∣∣∣ = 0. (3.14)

5. Uniformly absolutely convergent (UAC) when

∀i ∈ S,
∑

A∈S,A3i

sup
ω∈Ω

|ΦA(ω)| < +∞. (3.15)
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Nearest-neighbor and finite-range potentials are UAC and obviously

Lemma 3.16. Φ UAC =⇒ Φ uniformly convergent =⇒ Φ convergent.

A potential that is UAC satisfies also, for any Λ ∈ S,
∑

A∈S,A∩Λ6=∅
sup
ω∈Ω

|ΦA(ω)| < +∞

which in particular implies uniform convergence (it corresponds to normal
convergence of series).

Remark 3.17. If we do not make precise the way these infinite sums are
done, the sum HΦ

Λ in (3.13) could be ill-defined. Consider the pair (but
not n.n.) potential Φ defined for all ω ∈ {−1,+1}Z by ΦA(ω) =

1
|i−j| ωiωj

if A = {i, j} and ΦA = 0 when A is not a pair2. Let Λ ∈ S, ω ∈ Ω, write
S = B+ ∪B−, with B± = B±(ω) = {i ∈ Z, ωi = ±1} to get for A ∈ S

∑

A∩Λ6=∅
ΦA(ω) =

∑

A∩Λ6=∅,A⊂B+(ω)

ΦA(ω) +
∑

A∩Λ6=∅,A⊂B−(ω)

ΦA(ω)

+
∑

A∩Λ6=∅,A∩B+(ω)6=∅,A∩B−(ω)6=∅
ΦA(ω).

But

∑

A∩Λ6=∅,A⊂B+(ω)

ΦA(ω) =
∑

A∩Λ6=∅,A⊂B−(ω)

ΦA(ω) =
∑

i∈Λ,j∈Z

1

| i− j |

are non-convergent series3 whereas the series
∑

A∩Λ6=∅A∩B+(ω)6=∅,A∩B−(ω)6=∅
ΦA(ω)

can be convergent for some ω’s. Thus, the series could be non-convergent
whereas HΦ

Λ is well-defined if we use nets as above.

Examples of potentials

1. Ising potentials: The single-spin state-space is E = {−1,+1} with
a priori measure ρ0 = 1

2δ−1 + 1
2δ+1. The (n.n.) Ising potential is

Φ = (ΦA)A∈S defined by

ΦA(ω) =





−J(i, j) · ωi · ωj if A = {i, j}
−h(i) · ωi if A = {i}
0 otherwise

2This potential corresponds to the so-called Coulomb interactions, see e.g. [113].
3Although the general term depends on ω, the l.h.s is independent of it, because of

the particular way the sum has been split.
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where J : S×S −→ R is called the coupling function and h : S −→ R
the external magnetic field. In the standard Ising model, J(i, j) = 0
unless i, j are n.n. and when both J and h are constant, we call it
homogeneous Ising model, inhomogeneous otherwise. It is said to be
ferromagnetic when J ≥ 0 and anti-ferromagnetic when J < 0. Less
standard non-n.n. Ising models are also sometimes considered. One
studies e.g. long-range Ising models where J(i, j) = 1

|i−j|r for any

pair {i, j}, well defined for r > d when S = Zd, which exhibits a
phase transition in one dimension for r ∈ ]1, 2] (see in next sections
for a few results), or so-called Kac-Ising potentials which have a long
but finite range. Their origin comes from a description of the van
der Waals theory of liquid-vapor transitions initiated by [67] and we
follow here the terminology of [22]. The starting point is a smooth
non-negative function supported by the unit ball J(·) and normalized
as a probability kernel (i.e. ||J ||1 = 1). The Kac interaction allows
ranges from 1 to +∞ via a parameter γ > 0 and coupling constants

Jγ(i, j) = γd · J(γ|i− j|), ∀i, j ∈ S.

In the original van der Waals theory, one is particularly interested
in small γ for which the model presents a long but finite range in-
teraction (of order γ−1), small coupling constants (of order γd) and
a total strength at each site of constant order 1, and in perform-
ing thereafter the limit γ goes to 0 to approach mean-field models.
It corresponds to the n.n. Ising model when γ = 1, and thus Kac
models allow an interplay between n.n. and mean-field models.

2. A (uniformly) convergent potential that is not UAC:

This example is due to Sullivan [117]. Consider Ω = {−1,+1}Z
and define a potential Φ that is non-null only for the finite sets
of adjacent sequences in Z on which the spins are all +1. More
precisely, it is defined for all A ∈ S and for all ω ∈ Ω by ΦA(ω) =
(−1)n

n2 iff ωi = +1, ∀i ∈ A = {k, · · · , k + n − 1}, k ∈ Z, n ∈
N∗, and by ΦA = 0 otherwise. To prove that Φ is a convergent
potential, we prove that the series HΦ

Λ(ω) =
∑

A∩Λ6=∅,A∈S ΦA(ω) are
convergent for Λ = {0}, the extension to all finite subsets Λ being
then straightforward. This amounts to prove that, for all ω ∈ Ω, the
sequence of general term Un(ω) =

∑
A30,A∩Λc

n 6=∅ ΦA(ω) converges to
zero when n goes to infinity. Here it becomes

∑

A30,A∩Λc
n 6=∅

ΦA(ω) =
∑

k>n

∑

A30,|A|=k

(−1)k

k2
·
∏

i∈A

1{ωi=+1}(ω).



52 Chapter 3. Quasilocal and Gibbs measures

and one has for n large enough, uniformly in ω,

0 ≤
∣∣Un(ω)

∣∣ =
∣∣∣

∑

A30,A∩∆c
n 6=∅

ΦA(ω)
∣∣∣ ≤

∣∣∣Un(+)
∣∣∣ =

∣∣∣
∑

k>n

(k+1)
(−1)k

k2

∣∣∣

where the term on the right is the tail of a convergent alternating
series, which is convergent. This potential is thus uniformly conver-
gent, but it is not uniformly absolutely convergent (UAC):

∑

A30,A⊂Λn

sup
ω∈Ω

|ΦA(ω)| =
2k∑

n=0

(k + 1)
∣∣∣ (−1)k

k2

∣∣∣ =
2n∑

k=0

k + 1

k2

and the latter is a non-convergent series.

3. Almost surely convergent potential: Potentials associated to renor-
malized measures when defined as weakly Gibbsian measures, see
Chapter 5 or [97].

4. (Relatively) uniformly convergent potential: Sullivan [117] has in-
troduced this notion of convergence slightly weaker than uniform
convergence, which can be associated to any quasilocal specification
and which is translation-invariant when the specification is. See in
next section and Remark 3.58.

5. UAC: We describe in next section how to define a UAC potential
from a quasilocal specification, following a general construction of
Kozlov [72].

Before introducing Gibbs measures properly speaking, we give a general
definition of particular potentials that will be used to build a convergent
potential associated to a quasilocal specification in the forthcoming Theo-
rem 3.39, and later on in Chapter 5 to establish thermodynamic properties
in the generalized Gibbsian framework.

Definition 3.18 (Vacuum potential). Let Φ be a potential and denote
by + = (+i)i∈S a particular4 configuration of Ω. We say that Φ is a
vacuum potential with vacuum state + ∈ Ω iff ΦA(ω) = 0 whenever ωi =
+i for some i ∈ A ∈ S.

For such a potential, also called lattice gas potential, the Hamiltonian
with free boundary conditions can be seen as an Hamiltonian with the
vacuum state as boundary condition, when Hamiltonians with boundary
condition are defined by the following

4This could be any configuration, we denote it by “+” only by analogy with the
Ising model. In particular, it is not necessarily translation-invariant.
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Definition 3.19 (Hamiltonian at volume Λ with boundary condi-
tion ω). When Φ is a convergent potential, the Hamiltonian at volume
Λ ∈ S with boundary condition ω ∈ Ω is defined for all σ ∈ Ω by

HΦ,ω
Λ (σ) = HΦ

Λ(σ | ω) := HΦ
Λ(σΛωΛc) =

∑

A∈S,A∩Λ6=∅
ΦA(σΛωΛc). (3.20)

A convergent potential is regular enough to define this Hamiltonian with
boundary conditions, but it will not be enough to define Gibbs measures
with the right expected properties, for which UAC is usually required.
At finite volume Λ, the Hamiltonian with free boundary conditions of a
configuration σ is seen as the energy of the system contained in Λ when
it is in the configuration σ, and a UAC convergence means that a change
of a configuration in a finite part of the infinite system produces always a
finite change of the total energy. Requiring for a potential to be UAC will
be enough to define a Gibbsian specification associated with this potential,
and then to provide a “reasonable” modelling of the physical properties
of the system5. This requirement actually seems to be too strong, and
this possibly too strong requirement causes troubles in the analysis of
some renormalization group transformations, leading to generalized Gibbs
measures described in Chapter 5.
We are now ready to introduce Gibbs specifications and Gibbs measures,

defined from a UAC potential. First we introduce the following normal-
ization, central in statistical physics and related to the free energy of the
system as we shall see in Chapter 4.

Definition 3.21 (Partition function). Let Φ be a convergent potential,
ω ∈ Ω, β > 0 and Λ ∈ S. We call partition function at temperature β−1, at
volume Λ, with potential Φ and boundary condition ω, the FΛc-measurable
function

ZβΦ
Λ (ω) =

∫

Ω

e−βHΦ
Λ(σ)κΛ(dσ) =

∫

ΩΛ

e−βHΦ
Λ(σ|ω)ρΛ(dσΛ)

where κΛ = ρΛ⊗ δ⊗Λc

ωΛc ∈ M+
1 (Ω), and δx is the Dirac measure on x ∈ EΛ.

When free boundary conditions are considered, the partition function is
denoted ZβΦ,f

Λ .

Definition 3.22 (Gibbs distribution at finite volume Λ). Let Φ be a
UAC potential. For Λ ∈ S, we call Gibbs distribution at finite volume Λ,
with potential Φ, at temperature β−1 and with boundary condition ω ∈ Ω,
the probability measure γβΦ

Λ (·|ω) on (Ω,F) defined by:

∀A ∈ F , γβΦ
Λ (A|ω) = 1

ZβΦ
Λ (ω)

∫

ΩΛ

1A(σΛωΛc)e−βHΦ
Λ(σ|ω) ρΛ(dσΛ).

5See also a general discussion about Banach spaces of interactions in [36].
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Theorem 3.23 (Gibbs specification). Let Φ be a UAC potential and

β > 0. The family of kernels γβΦ = (γβΦ
Λ )Λ∈S is a specification, called

Gibbs specification with (UAC) potential Φ, at inverse temperature β > 0.

Proof: It is straightforward to prove that for a UAC potential, the
Hamiltonian with boundary condition is bounded, and thus the partition
function exists as a function of the boundary condition. Define now for all
A ∈ F , Λ ∈ S and σ ∈ Ω, the density-type function

fΛ(σ) =
1

ZβΦ
Λ (σ)

· e−βHΦ
Λ(σ). (3.24)

There is no boundary condition ω involved in this function, although it
incorporates the partition function. This being FΛc-measurable, one nev-
ertheless recovers

∀σ, ω ∈ Ω, fΛ(σΛωΛc) =
1

ZβΦ
Λ (ω)

· e−βHΦ
Λ(σ|ω).

We have also 0 < |fΛ| ≤ 1 and for all A ∈ F and ω ∈ Ω,

γβΦ
Λ (A|ω) =

∫

A

fΛ(σ) κ
ω
Λ(dσ) =

∫

ΩΛ

1A(σΛωΛc) · fΛ(σΛωΛc) ρΛ(dσΛ).

(3.25)

and it is straightforward to check that γβΦ
Λ is a probability kernel satisfy-

ing properties 1. in Definition 2.21 of a specification. Properness is also
directly verified: Let B ∈ FΛc . ∀σ, ω ∈ Ω, 1B(σΛωΛc) is independent of
σ and 1B(σΛωΛc) = 1B(ωΛωΛc) = 1B(ω). Therefore, for all ω ∈ Ω and
B ∈ FΛc ,

γβΦ
Λ (B|ω) = 1

ZβΦ
Λ (ω)

∫

ΩΛ

1B(σΛωΛc)e−βHΦ
Λ(σ|ω)ρΛ(dσΛ)

=
1

ZβΦ
Λ (ω)

∫

ΩΛ

1B(ωΛωΛc)e−βHΦ
Λ(σ|ω)ρΛ(dσΛ)

=
1B(ω)

ZβΦ
Λ (ω)

∫

ΩΛ

e−βHΦ
Λ(σ|ω)ρΛ(dσΛ) = 1B(ω).

To prove consistency (2.22), we assume without any loss of generality
that β = 1 and consider Λ ⊂ Λ′ ∈ S, A ∈ F and ω ∈ Ω. To prove that
γΛ′(A|ω) = γΛ′γΛ(A|ω), we write

γΛ′(A|ω) =
∫

ΩΛ′
1A(τΛ′ωΛ′c)fΛ′(τΛ′ωΛ′c)ρΛ′(dτΛ′)

and γΛ′γΛ(A|ω) =
∫
Ω
γΛ(A|τ) γΛ′(dτ |ω)

=

∫

ΩΛ′

(∫

ΩΛ

1A(σΛτΛ′\ΛωΛ′c)fΛ(σΛτΛ′\ΛωΛ′c)dσΛ

)
· fΛ′(τΛ′ωΛ′c) dτΛ′
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where we have written dσΛ instead of ρΛ(dσΛ). To prove that the family
is invariant under expectations w.r.t. the conditioning in intermediate
regions, we modify the latter expression in order to extract what is really
needed in terms of the functions fΛ. Write

γΛ′γΛ(A|ω) =
∫

ΩΛ′\Λ

gΛ,Λ′(τΛ′\Λ)dτΛ′\Λ (3.26)

where, using Fubini‘s theorem and trivial changes of variables, one can
rewrite gΛ,Λ′(τΛ′\Λ) as
∫

ΩΛ

fΛ′(τΛτΛ′\ΛωΛ′c) ·
(∫

ΩΛ

1A(σΛτΛ′\ΛωΛ′c)fΛ(σΛτΛ′\ΛωΛ′c)dσΛ

)
dτΛ

=

∫

ΩΛ

1A(τΛτΛ′\ΛωΛ′c) · fΛ(τΛ′ωΛ′c) ·
(∫

ΩΛ

fΛ′(σΛτΛ′\ΛωΛ′c)dσΛ

)
dτΛ

To get consistency at the level of the density functions (fΛ)Λ∈S , one would
like to get rid of the last integral in this expression. This is provided by
the following lemma, which indicates under which conditions on the family(
fΛ

)
Λ∈S of densities one recovers consistency at the level of specifications.

This lemma is in fact crucial to get consistency for the Gibbs kernels6.

Lemma 3.27 (Consistency for densities). Let (fΛ)Λ∈S be a family
of (strictly) positive measurable functions fΛ such that ∀Λ ∈ S, ∀ω ∈ Ω,∫
ΩΛ

fΛ(σΛωΛc)ρΛ(dσΛ) = 1. The following statements are equivalent:

1. ∀Λ ⊂ Λ′ ∈ S, ∀ω, ω′ ∈ Ω s.t. ωΛc = ω′
Λc ,

fΛ′(ω′)
fΛ′(ω)

=
fΛ(ω

′)
fΛ(ω)

. (3.28)

2. ∀Λ ⊂ Λ′ ∈ S, ∀ω ∈ Ω,

fΛ′(ω) = fΛ(ω) ·
∫

ΩΛ

fΛ′(σΛωΛc)ρΛ(dσΛ). (3.29)

Proof: Let us prove that 1. =⇒ 2., writing dσΛ instead of ρΛ(dσΛ).
Assume (3.28) holds for Λ ⊂ Λ′ ∈ S and let ω ∈ Ω. Then

fΛ(ω) ·
∫

ΩΛ

fΛ′(σΛωΛc)dσΛ =

∫

ΩΛ

fΛ(ω)fΛ′(σΛωΛc)dσΛ

=

∫

ΩΛ

fΛ′(ω)fΛ(σΛωΛc)dσΛ

= fΛ′(ω) ·
∫

ΩΛ

fΛ(σΛωΛc)dσΛ = fΛ′(ω)

6This property of specifications will be very useful to play on the conditioning for
boundary conditions that coincide outside some finite sets, in particular to get the
Kozlov’s potential in next section. It corresponds to the key bar-displacement property
of [43], where densities of specifications are explicitly introduced.
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because
∫
ΩΛ

fΛ(σΛξΛc)dσΛ = 1. Thus 1. =⇒ 2.

Consider now ω, ω′,Λ,Λ′ as above, with ωΛc = ω′
Λc . Using

fΛ′(ω) = fΛ(ω)·
∫

ΩΛ

fΛ′(σΛωΛc) dσΛ, fΛ′(ω′) = fΛ(ω
′)·
∫

ΩΛ

fΛ′(σΛω
′
Λc) dσΛ

with ωΛc = ω′
Λc , we get
∫

ΩΛ

fΛ′(σΛωΛc) dσΛ =

∫

ΩΛ

fΛ′(σΛω
′
Λc) dσΛ

and then

fΛ′(ω′)·fΛ(ω)·
∫

ΩΛ

fΛ′(σΛωΛc) dσΛ = fΛ(ω
′)·
(∫

ΩΛ

fΛ′(σΛωΛc) dσΛ

)
·fΛ′(ω)

and we conclude the proof of the lemma by non-nullness of our Gibbs
weights.

To prove Theorem 3.23, we check now that item 1. is true when fΛ is
given by (3.24). Consider Λ ⊂ Λ′ ∈ S, ω and ω′ s.t. ωΛc = ω′

Λc . By
definition

fΛ′(ω′)
fΛ′(ω)

=
(ZΛ′(ω′)
ZΛ′(ω)

)−1

·
exp(−∑

A∩Λ′ 6=∅ ΦA(ω
′))

exp(−∑
A∩Λ′ 6=∅ ΦA(ω))

.

But, by FA-measurability of ΦA, for A ⊂ Λ, ω′
Λc = ωΛc implies ΦA(ω) =

ΦA(ω
′), and thus

exp(−∑
A∩Λ′ 6=∅ ΦA(ω

′))

exp(−∑
A∩Λ′ 6=∅ ΦA(ω))

= e−
∑

A∩Λ′ 6=∅(ΦA(ω′)−ΦA(ω))

= e−
∑

A∩Λ6=∅(ΦA(ω′)−ΦA(ω)).

The ratio of the partition functions is also the same for such ω’s and ω′’s
and eventually (3.28) holds. This implies Item 2. of the lemma: For all
Λ ⊂ Λ′ ∈ S, for all τ, ω ∈ Ω,

fΛ(τΛ′ωΛ′c) ·
(∫

ΩΛ

fΛ′(σΛτΛ′\ΛωΛ′c)dσΛ

)
= fΛ′(τΛ′ωΛ′c)

and thus (3.26) holds with

gΛ,Λ′(τΛ′\Λ) =
∫

ΩΛ

1A(τΛ′ωΛ′c) · fΛ′(τΛ′ωΛ′c)dτΛ

yielding consistency

γΛ′γΛ(A|ω) =

∫

ΩΛ′\Λ

(∫

ΩΛ

1A(τΛ′ωΛ′c

)
· fΛ′(τΛ′ωΛ′c)dτΛ)dτΛ′\Λ

=

∫

ΩΛ′
1A(τΛ′ωΛ′c)fΛ′(τΛ′ωΛ′c)dτΛ′ = γΛ′(A|ω).
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Thus γβΦ is indeed a specification.

The relationships between potentials and Gibbs specifications is not one-
to-one: local changes in the potentials can be made without affecting the
kernels γβΦ, yielding equivalent descriptions of measures. This leads to
the concept of physical equivalence7.

Definition 3.30 (Physical equivalence). Two potentials Φ and Φ′ are

physically equivalent if the Gibbs kernels γβΦ
Λ and γβΦ′

Λ are the same for
all Λ ∈ S.

In particular, physically equivalent potentials define the same Gibbs
measure(s), introduced now.

Definition 3.31 (Gibbs measures). A probability measure µ ∈ M+
1 (Ω)

is said to be a Gibbs measure if there exists a UAC potential Φ and β > 0
such that µ ∈ G(γβΦ). We often say that µ is a Gibbs measure for the
UAC potential Φ.

Examples of Gibbs measures and phase transitions:

1. One-dimensional homogeneous Ising models

(a) Ferromagnetic n.n.: We have already told in the previous chap-
ter how ergodic Markov chains could be described as Gibbs
measures for the homogeneous Ising model. The converse is
also possible, and is indeed achieved in a general framework
via the introduction of stochastic matrices defined in terms of
the n.n. potential. The one-dimensional n.n. Ising model with
coupling J > 0 and external magnetic field h is described and
analyzed in this way in [52] using a matricial formalism that
leads in particular to the well known absence of phase transi-
tions in one dimension. When h > 0, uniqueness is proved with
a Gibbs measures µh

β of positive magnetization, that converges
weakly when the temperature goes to zero, to the Dirac mea-
sure at the all + configuration (δ+), while opposite measures
µ−
β and δ− are reached when h < 0. In absence of magnetic

field h = 0, there is also, in one dimension, a unique (neutral)
Gibbs measure µβ but it weakly converges to the convex com-
bination 1

2δ+ + 1
2δ−, exhibiting then a so called asymptotic loss

of tail-triviality responsible of the phase transition observed at
low temperature in dimension 2.

(b) Anti-ferromagnetic n.n.: The same matricial formalism is also
used to deal with the anti-ferromagnetic case J < 0. At high

7Other equivalence classes and spaces of potentials exist, see [36, 64]. In particular,
to get the following equivalence it is crucial to focus on UAC potentials.
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magnetic field |h| > 2, the +-phase is the unique one and
weakly converges, when the temperature goes to zero, to δ+.
The boundary case |h| = 2 also leads to uniqueness, leading to
a unique phase µF described in terms of Fibonacci’s numbers
reflecting a highly non-trivial phenomenon: As claimed in [52],
in spite of the existence of infinitely many ground states8 there
is no asymptotic loss of tail triviality. This loss occurs when
the magnetic field is lower, |h| < 2, where one gets as a unique
Gibbs measure a convex combination µ = 1

2µ
±
β + 1

2µ
∓ of two

symmetric measures whose typical configurations have either
mostly pluses on a the (say) odd sublattice and mostly minuses
on the even one. When the temperature goes to zero, µ weakly
converges to a similar convex combination of Dirac measures
1
2δ± + 1

2δ∓, see again a detailed analysis in [52].

(c) Long-range one dimensional Ising models: The potential has
already been introduced in the beginning of this section. When
the polynomial decay r = 1, it is not UAC, but a formalism that
corresponds to so-called Coulomb interactions can be developed
within the weaker notion of uniform convergence, see [113] and
also the previous chapter. For r > 1, this has been studied by
e.g. [32, 114] and it leads in particular to phase transitions in
one dimension when 1 < r < 2. Phase transition also occurs
in the case r = 2, yielding a particular decay of correlations
known as a Thouless effect, see [49].

2. 3d Ising models: We shall be laconic to describe this very impor-
tant example of mathematical statistical mechanics: Theorem 2.27
is not valid in dimension d ≥ 3 and they do exist non-translation-
invariant extreme Gibbs measures. This has been achieved by Do-
brushin in [28], with a shorter proof in [2], and these non-translation-
invariant so-called Dobrushin states are related to the stability of an
interface between a +-like phase and a −-like one, and to each in-
terface corresponds an extremal Gibbs measure, in addition to the
usual +- and −-phases. This example is very relevant for comparing
the notions of ergodic and extremal Gibbs measures discussed at the
end of the previous chapter.

3. Ising models on Cayley trees: This example is also very inter-
esting from the ergodic vs. extreme point of view and there exists as
well an (uncountable) infinite number of extremal Gibbs measures
at low temperature, and depending on the temperature there could

8Ground states are the minimizers of the Hamiltonian used to describe the phases at
zero temperature and by extension to low temperatures within the Pirogov-Sinai theory
[106].
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exist two or three translation-invariant ones, see all the work done
in [8, 57, 62, 107] and a whole chapter in [52].

4. Kac-models: A careful adaptation of the Peierls argument allows
to establish the occurrence of a phase transition for this model at
low temperature and long enough range, see [12, 18] in dimension
d ≥ 2.

Theorem 3.32. For d ≥ 2, for any β > 1, there exists γ = γ(β)
such that for all γ < γ(β), there exists at least two distinct DLR
measures µ−

γ 6= µ+
γ .

Now that our central objects are properly defined, we can prove a pre-
vious claim providing Gibbs measures as the main example of quasilocal
measures. It is the easiest part of the link between these two notions, a
partial converse statement will be established in next section.

Theorem 3.33. Let β > 0 and Φ be a UAC potential. Then the Gibbs
specification γβΦ is quasilocal. Thus, any Gibbs measure is also quasilocal.

Proof: If Φ be UAC potential, it implies in particular that:

∑

A∈S,A∩Λ6=∅
sup
ω∈Ω

|ΦA(ω)| < +∞ (3.34)

which in turns implies that for all Λ ∈ S, HΦ
Λ is a quasilocal function.

Indeed, if S 3 Λ′ ⊃ Λ and consider two configurations σ and ω such that
σΛ′ = ωΛ′ , we have

∣∣HΦ
Λ(ω)−HΦ

Λ(σ)
∣∣ ≤ 2

∑

A∈S,A∩Λ6=∅,A∩Λ′c 6=∅
sup
ω∈Ω

|ΦA(ω)|

and the latter converges to zero as a consequence of (3.34). Thus, one gets
the quasilocality of the Hamiltonians:

lim
Λ′↑S

sup
σ,ω∈Ω,σΛ′=ωΛ′

| HΦ
Λ(ω)−HΦ

Λ(σ) | = 0.

Quasilocality of Gibbs specifications follows.

Remark 3.35 (Uniform convergence and quasilocality). Requiring
for a potential to be uniformly absolutely convergent is actually too strong
a requirement for merely proving the quasilocality of the Gibbs specifica-
tion. Uniform convergence is actually enough to prove the quasilocality of
the Hamiltonian. In such a case, one has

sup
σ,ω∈Ω,σΛ′=ωΛ′

∣∣HΦ
Λ(ω)−HΦ

Λ(σ)
∣∣ ≤ 2 sup

ω∈Ω

∣∣∣
∑

A∈S,A∩Λ6=∅,A∩Λ′c 6=∅
ΦA(ω)

∣∣∣
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and

lim
Λ′↑S

sup
σ,ω∈Ω

∣∣∣
∑

A∈S,A∩Λ6=∅,A∩Λ′c 6=∅
ΦA(ω)

∣∣∣ = 0

means the uniform convergence of this potential. Thus, when the poten-
tial is uniformly convergent, the Hamiltonian is a well-defined quasilocal
function and so is the specification.

Remark 3.36 (Non-Gibbsianness and essential discontinuity). Let
µ be a Gibbs measure: By Theorem 3.33, there exists a quasilocal specifi-
cation γ s.t. µ ∈ G(γ) and

∀A ∈ F , µ[A | FΛc ](·) = Eµ[1A | FΛc ](·) = γΛ(A | ·) µ-a.s.

so that there exists always one continuous version, as a function of the
boundary condition ω, of the conditional probabilities of µ with respect to
the σ-algebra generated by the outside of finite sets. This will be used in
Chapter 5 to detect non-Gibbsianness by proving the existence of special
configurations that are point of essential discontinuities, for which there
exists conditional expectations of local functions that have no continuous
version.

A Gibbs specification is quasilocal but the converse is not true in general.
However, most of the quasilocal specifications are Gibbsian, as we prove
in the sequel.

3.2.3 Gibbs representation theorem

In this section, we want to characterize a Gibbs measure at the level of
specifications: Let µ be a DLR measure, i.e. such that there is a specifi-
cation γ with µ ∈ G(γ). To characterize µ as a Gibbs measure, one should
manage to express the weights of configurations in an exponential form
and in some sense every configuration should receive a non-zero weight.
One says that the specification has to be non-null in the following sense:

Definition 3.37 (Uniform non-nullness). A specification γ is said to
be uniformly non-null iff ∀Λ ∈ S, ∃ αΛ, βΛ with 0 < αΛ ≤ βΛ < ∞ s.t.

0 < αΛ ρ(A) ≤ γΛ(A | ω) ≤ βΛ ρ(A), ∀ω ∈ Ω,∀A ∈ F . (3.38)

Simple non-nullness, in the sense that ρ(A) > 0 =⇒ γΛ(A | ω) > 0,
for all ω ∈ Ω, is equivalent to uniform non-nullness when γ is quasilocal,
[52]. It is also-called the finite-energy condition in percolation circles. A
measure µ is then said to be (uniformly) non-null if there exists a (uni-
formly) non-null specification γ such that µ ∈ G(γ).
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We are now ready to give a partial converse statement of Theorem 3.33.
For the purpose of this theorem, the inverse temperature β has been in-
corporated in the potential.

Theorem 3.39 (Gibbs representation theorem [72, 43]). Let µ be a
quasilocal and uniformly non-null probability measure on (Ω,F). Then µ is
a Gibbs measure, i.e. there exists a UAC potential Ψ such that µ ∈ G(γΨ).

Proof : Let µ non-null and quasilocal: There exists a quasilocal specifi-
cation γ such that µ ∈ G(γ) and (3.38) holds, and let us try to guess which
necessary property a potential should have to get γ = γβΦ, by considering
such a Gibbs specification γ first. Among all the physically equivalent
potentials that define this specification, let us also assume for the moment
that a vacuum potential Φ+ exists, with a vacuum state denoted by +.
The vacuum property and its link with free boundary conditions will be
very useful to relate the specification and the potential. Indeed, consider-
ing Λ ∈ S, then one obviously has HΦ+

Λ (+|+) = 0 by the vacuum property
and thus

γΛ(+|+) =
1

ZΛ(+)

so for any other configuration σ ∈ Ω

γΛ(σ|+) = γΛ(+|+) e−HΦ+

Λ (σ|+).

To exploit consistency via Lemma (3.27), we introduce the density fΛ(σ) :=
γΛ(σ|σ). Consistency implies that it satisfies the conditions of Lemma 3.27,
and we shall use indifferently both expressions, in terms of f or in terms9

of γ. Then, by non-nullness and the defining equation (3.24),

HΦ+

Λ (σ|+) = − ln
γΛ(σ|+)

γΛ(+|+)
= ln

fΛ(+)

fΛ(σΛ+Λc)
.

It then possible to derive a vacuum potential from this Hamiltonian, be-
cause prescribing a vacuum state as boundary condition is equivalent to
consider the Hamiltonian with free boundary condition, for which the use
of an inversion formula from Moebius is direct. Indeed, the vacuum con-
dition yields

HΦ+

Λ (σ|+) =
∑

A∩Λ6=∅
Φ+

A(σΛ+Λc) =
∑

A⊂Λ

Φ+
A(σ)+

∑

A∩Λ6=∅,A∩Λc 6=∅
Φ+

A(+Λ+Λc)

(3.40)

9The formulation in terms of the density fΛ is handy to use consistency via Lemma
3.27, while the expression in terms of γ is more familiar. Fernández [43] has introduced
densities for specifications and has expressed Lemma 3.27 in terms of γ directly.
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where the last sum is null by the vacuum property. Thus

∀Λ ∈ S, ∀σ ∈ Ω, HΦ+

Λ (σ | +) = HΦ+,f
Λ (σ) :=

∑

A⊂Λ

Φ+
A(σ)).

In particular one gets directly the single-site potentials:

∀i ∈ S,∀σ ∈ Ω, Φ+
{i}(σ) = HΦ+,f

{i} (σ) = − ln
γ{i}(σ|+)

γ{i}(+|+)
. (3.41)

To get an insight of the mechanism of the Moebius inversion formula,
which will enables us to rewrite Φ+ from γ, let us use (3.40) to derive the
potential for finite regions consisting of two and three sites, for a fixed σ
that we forget in the notation. For Λ = {i, j}, write

HΦ+,f
{i,j} = Φ+

{i} +Φ+
{j} +Φ+

{i,j}

so, using the single-site expression (3.41), one gets for all σ ∈ Ω

Φ+
{i,j} = HΦ+,f

{i,j} −HΦ+,f
{i} −HΦ+,f

{j}

= − ln
γ{i,j}(σ|+)

γ{i,j}(+|+)
+ ln

γ{i}(σ|+)

γ{i}(+|+)
+ ln

γ{j}(σ|+)

γ{j}(+|+)
.

For Λ = {i, j, k}, write similarly, thanks to the vacuum condition,

HΦ+,f
{i,j,k} = Φ+

{i} +Φ+
{j} +Φ+

{k} +Φ+
{i,j} +Φ+

{i,k} +Φ+
{j,k} +Φ+

{i,j,k}

= Φ+
{i} +Φ+

{j} +Φ+
{k} +HΦ+,f

{i,j} −HΦ+,f
{i} −HΦ+,f

{j} +HΦ+,f
{i,k}

− HΦ+,f
{i} −HΦ+,f

{k} +HΦ+,f
{j,k} −HΦ+,f

{j} −HΦ+,f
{k} +Φ+

{i,j,k}.

So,

HΦ+,f
{i,j,k} = −HΦ+,f

{i} −HΦ+,f
{j} −HΦ+,f

{k} +HΦ+,f
{i,j} +HΦ+,f

{i,k} +HΦ+,f
{j,k} +Φ+

{i,j,k}

and thus

Φ+
{i,j,k} = HΦ+,f

{i,j,k} −HΦ+,f
{i,j} −HΦ+,f

{i,k} −HΦ+,f
{j,k} +HΦ+,f

{i} +HΦ+,f
{j} +HΦ+,f

{k} .

Proceeding by induction, one could reconstruct the potential in this way.
It is actually formally proved using the following formula, proved in this
way e.g. in [43].

Proposition 3.42 (Moebius “inclusion-exclusion” inversion for-
mula). Let S be a countable set of finite sets and H = (HΛ)Λ∈S and
Φ = (ΦA)A∈S be set functions from S to R. Then

∀Λ ∈ S, HΛ =
∑

A⊂Λ

ΦA ⇐⇒ ∀A ∈ S, ΦA =
∑

B⊂A

(−1)|A\B|HB . (3.43)
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We use it and propose then the

Definition 3.44. A vacuum potential for a given specification γ is the
potential defined for all σ ∈ Ω by Φ+

∅ = 0 and for all A ∈ S,

Φ+
A(σ) = −

∑

B⊂A

(−1)|A\B| ln
γB(σ|+)

γB(+|+)
=

∑

B⊂A

(−1)|A\B| ln
fB(+)

fB(σB+Bc)
.

(3.45)

Lemma 3.46 (Convergence and consistency of the vacuum po-
tential). Let γ be any quasilocal and non-null specification. Then Φ+ =
(Φ+

A)A∈S defined by (3.45) is a vacuum potential with vacuum state + ∈ Ω,
for any reference configuration + ∈ Ω. It is moreover convergent and its
corresponding Gibbs specification γΦ coincides with γ.

Proof: Φ+ is obviously a potential. Consider any reference configura-
tion + ∈ Ω and prove first that Φ+ satisfies the vacuum condition. It will
be crucial to get consistency. Consider A ∈ F and σ ∈ Ω such that there
exists i ∈ A where σi = +i and write

Φ+
A(σ) = −

∑

B⊂A

(−1)|A\B| ln
γB(σ|+)

γB(+|+)
=

∑

B⊂A

(−1)|A\B|HΦ+,f
B (σ) (3.47)

where by the Moebius formula, one has for all B ∈ S,

HΦ+,f
B (σ) =

∑

A⊂B

Φ+
A(σ) = − ln

γB(σ|+)

γB(+|+)
= ln

fB(+)

fΛ(BΛ+Λc)
. (3.48)

Using Equation (3.28), one first gets

∀i ∈ B ⊂ A, HΦ+,f
B (σ) = HΦ+,f

B\i (σ). (3.49)

Indeed, by consistency property of the specification, one can rewrites

fB(+)

fB(σB+Bc)
=

fB(+B\i+i)

fB(σB\i+i)
=

fB\i(+)

fB\i(σB\i+i))

to eventually get (3.49). Now define for any site i ∈ S a partition of S by
S = SA,i ∪ Sc

A,i with SA,i = {V ∈ S, V ⊂ A, V 3 i}. An obvious bijection
from SA,i to Sc

A,i links B ∈ SA,i to B\i ∈ Sc
A,i, so one gets

Φ+
A(ω) =

∑

B∈SA,i

(−1)|A\B|HΦ+

B (ω) +
∑

B∈Sc
A,i

(−1)|A\B|HΦ+

B (ω)

=
∑

B∈SA,i

[
(−1)|A\B|HΦ+

B (ω) + (−1)|A\{B\i}|HΦ+

B\i(ω)
]

=
∑

B∈SA,i

(−1)|A\B|
[
HΦ+

B (ω)−HΦ+

B\i(ω)
]

= 0
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and Φ+ is indeed a vacuum potential associated to the specification γ. Let
us check that in the non-null quasilocal case it is consistent with γ and
has the required asymptotic properties. We first need to prove that we
can always define

∀σ, ω ∈ Ω, HΦ+

Λ (σ|ω) =
∑

A∩Λ6=∅,A∈S
Φ+

A(σΛωΛc)

in order to extend the definition of the Hamiltonian with free b.c. (3.48)
to an Hamiltonian with any ω ∈ Ω as a boundary condition. It amounts
to proving the convergence of the potential, i.e. that for all σ ∈ Ω,

HΦ+

Λ (σ) :=
∑

A∩Λ6=∅,A∈S
Φ+

A(σ) < +∞

in the sense that the limit as ∆ ↑ S of the net
(∑

A∩Λ6=∅,A⊂∆ Φ+
A(σ)

)
∆∈S

is finite. Recall that we have already been able to define the Hamiltonian
with free b.c. as

HΦ+,f
Λ (σ) =

∑

A⊂Λ

Φ+
A(σ) = ln

fΛ(+)

f(σΛ+Λc)
.

To prove now that it is a convergent potential using the quasilocality of
the function ω 7−→ fΛ(σΛωΛc), we re-write

∑

A∩Λ6=∅,A⊂∆

Φ+
A(σ) =

∑

A⊂∆

Φ+
A(σ)−

∑

A⊂∆∩Λc

Φ+
A(σ).

Using twice Moebius inversion formula (3.43), one obtains

∑

A⊂∆

Φ+
A(σ) = ln

f∆(+)

f∆(σ∆+∆c)

and ∑

A⊂∆∩Λc

Φ+
A(σ) = ln

f∆∩Λc(+)

f∆∩Λc(σ∆∩Λc+∆c∪Λ)
.

By consistency (Lemma 3.27), we get ln f∆(+)
f∆(σ∆∩Λc+∆c∪Λ) for the second

term, because, on ∆ ∩ Λc, the two involved configurations coincide and
eventually ∑

A∩Λ6=∅,A⊂∆

Φ+
A(σ) = ln

f∆(σ∆∩Λc+∆c∪Λ)

f∆(σ∆+∆c)

and using again Lemma (3.27) with the configurations σ∆∩Λc+∆c∪Λ and
σ∆+∆c) which agree outside ∆ ∩ Λ, we get

∑

A∩Λ6=∅,A⊂∆

Φ+
A(σ) = ln

fΛ∩∆(σ∆∩Λc+∆c∪Λ)

fΛ∩∆(σ∆+∆c)
.
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Let ∆ ↑ S in the sense defined. For ∆ ⊃ Λ, one gets

∑

A∩Λ6=∅,A⊂∆

Φ+
A(σ) = ln

fΛ(+Λσ∆\Λ+∆c)

fΛ(σ∆+∆c)
.

Thus quasilocality implies that the potential Φ is convergent and that for
all σ ∈ Ω,

HΦ+

Λ (σ) =
∑

A∩Λ6=∅,A∈S
Φ+

A(σ) = − ln
γΛ(σ|σ)
γΛ(+|σ) = ln

fΛ(+ΛσΛc)

fΛ(σ)
< +∞.

Hence, every quasilocal and non-null specification γ is consistent with the
convergent vacuum potential Φ+ whose the Hamiltonian with boundary
condition ω ∈ Ω is defined for all σ ∈ Ω

∀ω ∈ Ω, HΦ+

Λ (σ|ω) = − ln
γΛ(σ|ω)
γΛ(+|ω) = ln

fΛ(+ΛωΛc)

fΛ(σΛωΛc)
< +∞. (3.50)

This proves Lemma 3.46: Any quasilocal and non-null specification is con-
sistent with a convergent potential.

Unfortunately, this vacuum potential is not UAC in the sense of (3.15).
To gain summability and absoluteness, Kozlov [72] introduced a particular
re-summation procedure by telescoping the terms of the Hamiltonian with
free boundary conditions in large enough annuli to recover absoluteness,
but carefully keeping consistency, to eventually get a potential Ψ such that,
for all σ ∈ Ω

∑

A⊂Λ

ΨA(σ) = HΦ+,f
Λ (σ) =

∑

A⊂Λ

Φ+
A(σ) = ln

fΛ(+)

f(σΛ+Λc)
(3.51)

holds together with the extra summability property

∀i ∈ S,
∑

A∈S,A3i

sup
ω

∣∣∣ΨA(ω)
∣∣∣ < +∞. (3.52)

We shall describe it formally following the pedagogical exposition of Fern-
ández [43], and describe a bit more explicitly the telescoping at the end of
this proof.

In our settings with a finite single-spin state space, non-nullness and
quasilocality can be reduced to site-characterizations that are very useful
to get the stronger summability around sites (3.52). Introduce, for any
site i ∈ S and any cube Λn, the quantities

mi := inf
ω

f{i}(ω) = inf
ω∈Ω

γ{i}(ω|ω)
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and

gi(n) = sup
ω

∣∣f{i}(ωΛn
+Λc

n
)− f{i}(ω)

∣∣

By non-nullness, one has mi > 0 for all i ∈ S and quasilocality reads

∀i ∈ S, gi(n) −→
n→∞

0.

Starting from the expression of the Hamiltonians (3.47) in terms of the
vacuum potential, which itself is expressed as the logarithm of ratios of
densities, Kozlov used the inequality

∣∣∣ ln a

b

∣∣∣ ≤ |a− b|
min(a,b)

, ∀a, b > 0

to get that for all i ∈ S

sup
ω

∣∣∣
∑

A⊂Λn,A3i

Φ+(σ)
∣∣∣ ≤ gi(n)

mi
(3.53)

and in particular that

sup
ω

∣∣∣
∑

A⊂Λn,A3i

Φ+(σ)−
∑

A⊂Λn−1,A3i

Φ+(σ)
∣∣∣ ≤ gi(n) + gi(n− 1)

mi
. (3.54)

Kozlov used then these bounds to reduce the lack of absolute convergence
by grouping terms of the vacuum potential within intermediate annuli
chosen large enough to exploit quasilocality. To do so, the telescoping has
thus to integrate larger boxes, i.e. has to be performed along subsequences
of cubes Λni

k
, k ≥ 1 in (3.54) chosen such that for any i ∈ S,

∑

k≥1

gi(n
i
k) < ∞

which is always possible because for any i ∈ S, the sequence
(
gi(n)

)
n∈N

converges to zero.
For any i ∈ S, we consider then the subsequence of cubes Λni

k
, centered

in i, of radius ni
k such that the annuli Λni

k
\ Λni

k−1
is large enough, as we

shall see. This size will allow the use of the bounds (3.53) for any i ∈ S
and to get the right summability properties, the telescoping is done by
following the bonds along these cubes, adding at each steps the terms of
the vacuum potential that correspond to bonds of the annulus, and that
were not in the previous cubes. Define then, for any i ∈ S, any k ≥ 1

Si
k =

{
B ⊂ Λi

nk
: B 3 i

}
\ Si

k−1
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with Si
0 = {i}, and introduce the potential10 Ψ̃ defined by

Ψ̃A(σ) =





∑
B∈Sk

Φ+
B(σ) if A = Λi

nk
for some k ≥ 1, some i ∈ S.

0 otherwise.

By (3.53), one has

sup
ω

∣∣Ψ̃A(σ)
∣∣ = sup

ω

∣∣∣
∑

B3i,B⊂Λ
ni
k

Φ̃+
B(σ)−

∑

B3i,B⊂Λ
ni
k−1

Φ̃+
B(σ)

∣∣∣

≤ gi(n
i
k) + gi(n

i
k−1)

mi
.

in such a way that one has the right summability property at the site i:

∑

A3i

sup
ω

|Ψ̃i
A(σ)| ≤

2

mi
·
∑

k≥1

gi(n
i
k) < +∞.

Nevertheless, we need to do the telescoping more carefully to keep the
consistency, in general lost in the procedure above: For a given B ∈ S,
the same vacuum interaction ΦB could have been used more than once.
To avoid it, one has to find a way of grouping terms of the vacuum in-
teraction without using the terms already used, i.e. one has to run the
sequence of cubes by using any finite set B of bonds only once. To do
so, Fernández [43] proposed the following presentation of Kozlov‘s poten-
tial, now denoted by Ψ. The sites of the lattice are now lexicographically
ordered and still generically denoted by i. For any site, one replaces the
previous subsequence of cubes Λni

k
by rectangles around it that do not

incorporate B’s (or i’s) already considered. Hence, one defines for each
i = 1, 2, . . . , a sequence (Li

k)k≥1 defined for all i, k ≥ 1 by

Li
k =

{
j ∈ S : i ≤ j ≤ rik

}

where the diameters rik are chosen such that ni
k = diam(Li

k) = rik − i in
order to keep the same large enough sequence of annuli. These groups of
bonds will be the only ones involved in the potential and to perform a
correct re-summation procedure, one defines for any site i ∈ S, a family of
disjoints subsets of S containing i by Si

0 = {i} and

Si
k =

{
B ⊂ Li

k : B 3 i
}
\ Si

k−1

10This potential is not yet the Kozlov potential, so we write it Ψ̃, because the resum-
mation uses several times terms involving sites i.
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in such a way that B ∈ ∪i
j=1 ∪k≥1 S

i
j and any B containing i is uniquely

contained in one of them. By this procedure, any set of bonds B is con-
sidered only once and we get the Kozlov potential Ψ defined by

ΨA(σ) =





∑
B∈Si

k
Φ+

B(σ) if A = Li
k for some (i, k), i ∈ S, k ≥ 1

0 otherwise.
(3.55)

yielding the following

Lemma 3.56. The Kozlov‘s potential Ψ defined by (3.55) is a UAC po-
tential consistent with the non-null and quasilocal specification γ, and thus
any quasilocal measure µ ∈ G(γ) is a Gibbs measure.

Consistency holds because the careful procedure yields the same Hamil-
tonian with free boundary conditions for the vacuum and Kozlov poten-
tials, and the required convergence, valid for all i ∈ S, is due to the choice
of the subsequences ni

k:

∑

A∈S,A3i

sup
ω

∣∣∣ΨA(ω)
∣∣∣ ≤

i∑

j=1

∑

k≥1

sup
ω

∣∣ΨLi
k
(ω)

∣∣ ≤
i∑

j=1

2

mi

∑

k≥1

gi(n
i
k) < ∞.

This proves the lemma and the Gibbs representation theorem 3.39.

Remark 3.57 (Telescoping procedure). To get an idea of the type
of telescoping that has to be done, we informally detail it starting from
the expression (3.48) of the Hamiltonian with free boundary condition, in
order to see how consistency is important to get it. It is also the way
the procedure is done in an adaptation to generalized Gibbs measures
in Chapter 5 to get weakly Gibbsian measures, see [99, 97, 98, 23], and
we also use a similar procedure in [78] to get a variational principle for
translation-invariant quasilocal measures.

Let us start from the Hamiltonian with free boundary condition for some
Λ containing the origin and assume Λ to be a cube Λnl

of the subsequence
already taken, and write Lnl

for the annulus Λnl
\ Λnl−1

. One has by
consistency and (3.48)

HΦ+,f
Λnl

(σ) = ln
fΛnl

(+)

f(σΛnl
+Λc

nl
)
.

The idea now is to telescope this term by incorporating terms correspond-
ing to so-called relative-energies by flipping the spin in the annulus only

HΦ+,f
Λnl

(σ) = ln
fΛnl

(+)

fΛnl
(+Λnl−1

σLnl−1
+Λc

nl
)
·

fΛnl
(+Λnl−1

σLnl−1
+Λc

nl
)

fΛnl
(+Λnl−2

σLnl−2
+Λc

nl−1
)
.
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Doing it for any k = 1 . . . l, one gets

HΦ+,f
Λnl

(σ) =

l∑

k=1

ln
fΛnl

(+Λnk
σLnk+1

+Λc
nk+1

)

fΛnl
(+Λnk−1

σLnk
+Λc

nk
)
·

fΛnl
(+Λnk−1

σLnk
+Λc

nk
)

fΛnl
(+Λnk−2

σLnk−1
+Λc

nk−1
)
.

Now using consistency via our key lemma 3.27, one can replace the den-
sities fΛ by densities corresponding to the proper annulus in order to get
the measurability conditions for the potential; To see this, one rewrites
thus

HΦ+,f
Λnl

(σ) =

l∑

k=1

ln
fΛnk

(+Λnk
σLnk+1

+Λc
nk+1

)fΛnk−1
(+Λnk−1

σLnk
+Λc

nk
)

fΛnk
(+Λnk−1

σLnk
+Λc

nk
)fΛnk−1

(+Λnk−2
σLnk−1

+Λc
nk−1

)

to eventually get a potential of the form ΨLnk
= ΦΛnk

−ΦΛnk−1
for which

consistency holds together with the required convergence property. We
shall use such a procedure, using the expression of (3.28) in terms of γ
instead of f in Chapter 4.

Remark 3.58 (Translation-invariance and Kozlov vs. Sullivan’s
results). The procedure due to Kozlov to introduce its UAC potential
does not yield a translation-invariant one, as explicitly seen in the site-
dependent way of re-ordering terms of the Hamiltonian with free boundary
condition. It is nevertheless possible to consider larger rectangles parti-
tioning Λ similarly for all site considered, but they have to be larger and
require a condition a bit stronger than quasilocality. It is an open question
whether this condition is technical or not, but Sullivan [117] has observed
that the vacuum potential, in addition to be convergent and translation-
invariant, is relatively uniformly convergent in the sense that the series

∑

A∩Λ6=∅,A∈S

∣∣Φ+
A(ω)− Φ+

A(ω
′
ΛωΛc)

∣∣ < +∞ (3.59)

are uniformly convergent in (ω, ω′), and also that this was enough to get
quasilocality of the Gibbs specification. For the vacuum potential itself
and ω′ = +, this implies the usual uniform convergence of the vacuum
potential. Reciprocally, any quasilocal specification has a relatively uni-
formly convergent potential and, although this convergence is too weak to
get all the flavor of the Gibbsian theory (see again the discussion in [36]),
we shall use it to derive thermodynamical properties for these measures.



Chapter 4

Equilibrium approach

We present now an alternative, more physical, approach to describe equi-
librium states at infinite volume which will eventually appear to be par-
tially equivalent to the DLR construction presented above. Inspired by the
second law of thermodynamics, described at finite volume in the introduc-
tion of Chapter 3, this so-called equilibrium approach to Gibbs measures
provides thermodynamic functions at infinite volume and yields afterwards
infinite-volume counterparts of the second law of thermodynamics in terms
of zero relative entropy or in terms of minimization of free energy. This ap-
proach is restricted to a translation-invariant framework, mostly because it
is mainly untractable otherwise1, and we shall characterize the translation-
invariant equilibrium states of a given system in terms of variational prin-
ciples, either specification-dependent or specification-independent depend-
ing on the choice made to characterize of the second law, as we shall see.
We thus describe, in a rather general framework that will be useful for gen-
eralized Gibbs measures in the next chapter, how this approach is in some
sense equivalent to the DLR approach restricted to translation-invariant
measures, and describe the general proof given in [78] of the recent result
that a (specification-dependent) variational principle holds for translation-
invariant quasilocal specifications in general.

In all this chapter, we also restrict the infinite-volume limit procedure
by mostly considering the limit Λ ↑ S along sequences of cubes (Λn)n∈N,

or at least sequences s.t. the ratio (surface boundary)/(volume) |∂Λ|
|Λ| goes

to 0, within the so-called thermodynamic limit2. For this reason, we focus
on the d-dimensional regular lattice S = Zd, because this thermodynamic
limit does not hold for cubes on trees3, the other lattices sometimes consid-

1Except in a few situations, with e.g. periodic boundary conditions [93, 110].
2Although this thermodynamic is a bit more general [36, 64].
3The ratio (surface boundary)/(volume) do not vanish in the limit, see also [15].
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ered in these notes. We also incorporate the temperature in the potential
when dealing with Gibbs specifications and measures, or equivalently here
we assume β = 1. At the end of the chapter, we briefly mention related
large deviation properties for the considered measures and introduce an-
other way to consider Gibbs measures as equilibrium states of the system.
This dynamical construction defines them as invariant measures of Markov
processes on the configuration space, and we illustrate this notion by the
so-called stochastic Ising models, that will also be discussed in the gener-
alized Gibbs framework in Chapter 5.

4.1 Thermodynamic properties

4.1.1 Thermodynamic functions

We have already introduced in Chapter 3 the relative entropy at finite
volume Λ ∈ S of µ relative to ν for two translation-invariant measures
µ, ν ∈ M+

1,inv(Ω), defined to be

HΛ(µ|ν) =
∫

Ω

(dµΛ

dνΛ

)
· log

(dµΛ

dνΛ

)
dν (4.1)

when the projection µΛ of µ on (ΩΛ,FΛ) is absolutely continuous w.r.t.
the projection νΛ of ν, and to be HΛ(µ|ν) = +∞ otherwise. To avoid
trivial divergences at infinite volume, one considers quantities per unit of
volume, writes for any n ∈ N

hn(µ|ν) :=
1

|Λn|
∑

σΛn∈ΩΛn

µ(σΛn
) · log µ(σΛn

)

ν(σΛn
)
. (4.2)

and introduces the relative entropy density of µ relative to ν to be the
limit

h(µ|ν) = lim
n→∞

hn(µ|ν) (4.3)

provided it exists. The limit is known to exist for any arbitrary µ ∈
M+

1,inv(Ω) when ν ∈ M+
1,inv(Ω) is a Gibbs measure (for a UAC potential)

and, more generally, if ν is asymptotically decoupled4. We extend this
result in next section for general translation-invariant quasilocal measures
in Theorem 4.32, whose proof follows [78]. We also recall (see e.g. [6])
that for µ ∈ M+

1,inv(Ω), the entropy per unit of volume

hn(µ) = − 1

|Λn|
∑

σΛn

µ(σΛn
) log µ(σΛn

) (4.4)

4These are measures introduced by Pfister [104] to state general large deviation
principles, see next chapter.
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has a well-defined limit

h(µ) := − lim
n→∞

1

|Λn|
∑

σΛn

µ(σΛn
) log µ(σΛn

) (4.5)

called the Kolmogorov-Sinai entropy5 of µ. For ν ∈ M+
1,inv(Ω) and f ∈ F

bounded, the pressure for f relative to ν is defined as

p(f |ν) = lim
n→∞

1

|Λn|d
log

∫
exp

( ∑

x∈Λn

τxf
)
dν (4.6)

whenever this limit exists. This limit exists, for every quasilocal function
f , if ν is Gibbsian [36, 52] or asymptotically decoupled [104].

When dealing with a translation-invariant potential Φ, the particular
choice of

f = fΦ :=
∑

A30

1

|A| · ΦA

and with the a priori product measure ρ as reference measure connects
with the usual pressure in the case of a lattice gas and is more generally
related with the free energy of a system obtained from a partition function
with boundary condition ω or with free boundary condition. At finite
volume Λn they are respectively defined to be

P f
Λn

(Φ) =
1

|Λn|
lnZΦ,f

Λn
and Pω

Λn
(Φ) =

1

|Λn|
lnZΦ

Λn
(ω).

When the limit exists, it captures many information of the particle system6

and for UAC potentials it turns out to be independent of the boundary
condition:

Theorem 4.7 (Pressure of a UAC potential [64]). Let Φ be a
translation-invariant UAC potential. Then, the limits

lim
n→∞

1

|Λn|
lnZΦ,f

Λn
and lim

n→∞
1

|Λn|
lnZΦ

Λn
(ω) (4.8)

exist, coincide for all ω ∈ Ω and define the pressure of the potential Φ:

P (Φ) := lim
n→∞

P f
Λn

(Φ) = lim
n→∞

Pω
Λn

(Φ) (4.9)

exists and is thus independent of the boundary condition ω ∈ Ω.

5This entropy also coincides, up to the constant log |E|, to the relative entropy w.r.t.
the a priori counting measure.

6This is probably the most important part of mathematical statistical mechanics
that we do not develop in this course, see again [36, 64, 52].
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We recall briefly the philosophy of the proof of Israel [64], because we
extend it in this chapter to deal with the vacuum potential of a translation-
invariant quasilocal measure. This potential is translation-invariant but
not UAC and we shall use its relative uniform convergence, introduced in
Remark 3.58, following Sullivan [117]. The proof focuses first on finite-
range potentials and using the finiteness of the range, and thus the inde-
pendence of spins from sites far enough, one introduces a partition of the
volume Λ into cubes and corridors, the width of the latter being at least
the range of the potential, to eventually get a factorization of the partition
function up to some boundary terms that are negligible in the thermody-
namic limit7. This factorization leads to sub-additivity of the logarithm of
the partition function, which in turns implies the existence of the pressure.
This result is then extended to general UAC potentials using the density
of the finite-range potential in the Banach space of translation-invariant
UAC potentials [64], and thereafter the strong UAC convergence to get
the independence with the boundary condition.

We also introduce the ν-specific energy of a configuration + ∈ Ω:

e+ν := − lim
Λ↑Zd

1

|Λ| log ν(+Λ) (4.10)

whenever it exists. We prove its existence for translation-invariant quasilo-
cal measures in this chapter in order to get a general variational principle
for translation-invariant quasilocal measures. We emphasize the fact that
it is not properly speaking8 the infinite-volume counterpart of the energies
of Chapter 3.

4.1.2 Variational principles

To translate into a proper mathematical framework the second law of ther-
modynamics in the vein of the finite-volume description given in Chapter 3,
we distinguish between thermodynamical (specification-independent) and
statistical mechanical (specification-dependent) variational principles.

Definition 4.11 (Thermodynamic variational principle). ν ∈
M+

1,inv(Ω) is said to satisfy a (thermodynamical) variational principle if
the relative entropy h(µ|ν) and the pressure p(f |ν) exist for all µ ∈
M+

1,inv(Ω) and all f ∈ Fqloc, and are conjugate convex functions in the
sense that

∀f ∈ Fqloc, p(f |ν) = sup
µ∈M+

1,inv(Ω)

[
µ(f)− h(µ|ν)

]
. (4.12)

7This is the reason why this restriction on the ratio (surface boundary)/(volume) is
made in this approach.

8For a vacuum potential with vacuum state +, and a quasilocal specification, it even
coincides with the pressure, see the proof of Lemma 4.33.
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∀µ ∈ M+
1,inv(Ω), h(µ|ν) = sup

f∈Fqloc

[
µ(f)− p(f |ν)

]
. (4.13)

This is the infinite-volume counterpart of the formulation of the second
law of thermodynamics in terms of the minimization of free energy, which
coincides with the pressure here. Gibbs measures satisfy this specification-
independent principle and Pfister [104] has extended its validity to the
larger class of asymptotically decoupled measures, described in the next
chapter within the generalized Gibbsian framework. These conjugate con-
vex functions are also very important to study large deviation properties
of DLR measures. We do not focus much on this type of variational prin-
ciple in these lectures, and prefer focusing on the other formulation of the
second law of thermodynamics, in terms of zero relative entropy.

Definition 4.14 (Variational principle relative to a specification).
Consider a specification γ and ν ∈ Ginv(γ). A variational principle occurs
for (ν, γ) iff

∀µ ∈ M+
1,inv(Ω), h(µ|ν) = 0 ⇐⇒ µ ∈ Ginv(γ) . (4.15)

Hence, this property has to be related to the formulation of the sec-
ond law of thermodynamics in terms of zero relative entropy, which at
finite volume implies equality of measures, as explained in the beginning
of Chapter 3. At infinite volume nevertheless, two different measures could
have zero relative entropy, but when the reference measure has some nice
locality properties9, the other measure, although possibly different, should
share the same system of conditional probabilities, identifying the corre-
sponding measures as equilibrium states of the system. This result is well
known for Gibbs measures consistent with a translation-invariant UAC
potential [52] and has thus been extended recently to translation-invariant
quasilocal DLR measures [78]. We describe now this result under a more
general form, useful for its extension to non-Gibbsian and non-quasilocal
measures in Chapter 5.

4.2 Topological criterion for variational prin-
ciples

In this section, we consider specifications in the general framework of Chap-
ter 2, non necessarily Gibbsian or quasilocal, and use some specific con-
centration properties on some points of (sometimes partial) continuity of

9Like e.g. being Gibbs. To get a counterexample, i.e. to get two measures having
zero relative entropy without having much in common, consider the voter model in
dimension d = 3, with its Dirac invariant measure as a reference measure.
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the specification. First, we introduce the set Ωγ of good configurations of
γ is the set of points of continuity, i.e.

Ωγ =
{
ω ∈ Ω : ∀Λ ∈ S, ∀f ∈ Floc,

lim
n→∞

sup
σ∈Ω

∣∣γΛf(ωΛn
σΛc

n
)− γΛf(ω)

∣∣ = 0
}
.

(4.16)

We also consider points of continuity in some specific direction, say + ∈ Ω.
Introduce, for all n ∈ N, the truncated kernels γn,+

Λ defined for all f ∈ Floc

and all Λ ∈ F by

∀ω ∈ Ω, γn,+
Λ f(ω) = γΛf(ωΛn

+Λc
n
). (4.17)

The set of points10 of continuity in the +-direction is then defined to be

Ω+
γ =

{
ω ∈ Ω : ∀Λ ∈ S, ∀f ∈ Floc, lim

n→∞
γn,+
Λ f(ω) = γΛf(ω)

}
. (4.18)

For presumably11 technical reasons due to some telescoping procedure, we
introduce also the set of configurations σ for which there is continuity at
some particular concatenated configuration σ+ ∈ Ω defined for all σ ∈ Ω
by

σ+
i = σi if i ≥ 0, and σi = +i otherwise. (4.19)

We denote this set by

Ω<0
γ =

{
σ ∈ Ω : σ+ ∈ Ωγ

}
. (4.20)

Due to the definition of these sets by a limiting procedure, involved in any
continuity-type property, one can prove that these sets are tail-measurable
and such that

Ωγ ⊂ Ω+
γ ⊂ Ω<0

γ ∈ F∞.

4.2.1 Second part of the variational principle: General
criterion

Getting consistency from zero relative entropy is seen as the “easiest part”,
usually called the second part. The result and its proof are standard, but
we give a slightly more general version of both, that will be useful also for
non-quasilocal measures in Chapter 5. What is actually really needed is
some weaker continuity in the +-direction for some reference configuration
+ ∈ Ω, as we see now.

10Remark that a function can be continuous in any direction + without being con-
tinuous, see [46].

11See the telescoping procedure in next section and a discussion in Chapter 5.
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Theorem 4.21. [45, 46] Let γ be a specification that is quasilocal in the
direction + ∈ Ω, and ν ∈ Ginv(γ). If µ ∈ M+

1 (Ω) is such that h(µ|ν) = 0,
then

µ ∈ G(γ) ⇐⇒ ν
[
gΛn\Λ ·

(
γn,+
Λ f − γΛf

)]
−→
n→∞

0 (4.22)

for all Λ ∈ S and f ∈ Floc, where gΛn\Λ :=
dµΛn\Λ
dνΛn\Λ

provided it exists.

Thus, to get information about consistency from zero relative entropy
requires that the concentration properties of the density of µΛn\Λ w.r.t
νΛn\Λ to beat asymptotic divergence due to the lack of continuity of γ.
When γ is quasilocal, this lack of continuity never exists (Ωγ = Ω) and is
thus always beaten, yielding the standard proof of the second part of the
variational principle for translation-invariant quasilocal specifications.

Proof of Theorem 4.21: It comes from [45, 46] and is an adaptation
of the standard proof [52, 104] in the quasilocal case, where the criterion
(4.22) is trivially valid. When h(µ|ν) = 0 holds, the latter relative entropy
is in particular well-defined and as a consequence, for n sufficiently large,
the FΛn

-measurable density gΛn
:= dµΛn

/dνΛn
exists. Fix f ∈ Floc, Λ ∈ S

and pick n big enough to get both Λn ⊃ Λ and the existence of gΛn
. To

prove that µ ∈ G(γ), we prove that µγΛ[f ] = µ[f ], and approximate first
γ by the truncated kernel (4.17), writing

µγΛ[f ] = µγn,+
Λ [f ] +An

where An = µ
[
γΛf − γn,+

Λ f
]
goes to zero when n goes to infinity by

continuity in the +-direction. Now we can use consistency, the FΛn\Λ-

measurability of the truncated kernel γn,+
Λ [f ] and the F∆-measurability of

any density g∆ to rewrite

µγn,+
Λ [f ] = µ

[
γn,+
Λ f

]
= ν

[
gΛn\Λ · γn,+

Λ f
]
= ν

[
gΛn\Λ · γΛf

]
+Bn,

where
Bn = ν

[
gΛn\Λ · (γn,+

Λ f − γΛf)
]

is controlled by the criterion (4.22). Now, by FΛc-measurability of gΛn\Λ
and consistency of ν, one rewrites

ν
[
gΛn\Λ · γΛf

]
= ν

[
γΛ(gΛn\Λ · f)

]
= ν

[
gΛn\Λ · f

]
,

which has to be compared with

µ[f ] = ν
[
gΛn

· f
]
= ν

[
gΛn\Λ · f

]
+ Cn

with
Cn = ν

[
(gΛn\Λ − gΛn

) · f
]
.
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We can evaluate Cn using the following inequality due to Csiszár [20]

|Cn| =
∣∣∣ν
[
(gΛn

− gΛn\Λ) f
]∣∣∣ ≤

(
2 sup
ω∈Ω

|f(ω)|
(
HΛn

(µ|ν)−HΛn\Λ(µ|ν)
))1/2

.

From the hypothesis of zero relative entropy, which implies that the finite-
volume relative entropy cannot grow faster than the volume, one also has
a subvolumic rate of deacreasing for the difference of densities of the r.h.s.
above, and eventually gets that µγΛ[f ] = µ[f ] if and only if Bn −→

n→∞
0,

which proves the lemma.
This criterion is a way to express that getting zero relative entropy is

meaningful only when the measures share some locality properties. With-
out properties of that type, things could be different, as illustrated by an
example of [120]. This criterion has been upgraded in [41] via the following
theorem, also useful for the generalized Gibbs measures.

Theorem 4.23. [41] Let µ ∈ G(γ) and ν ∈ M+
1 (Ω) such that h(µ|ν) = 0.

If, for all σ ∈ Ω, for ν-a.e. ω,

µ(σΛ|ωΛn\Λ) −→
n→∞

γΛ(σ|ω)

then ν ∈ G(γ).

4.2.2 First part of the variational principle: General
criterion

In the usual theory of Gibbs measures, this part of the variational prin-
ciple, i.e getting zero relative entropy from consistency, is known when
the latter holds with a translation-invariant specification defined via a
translation-invariant UAC potential, and goes via existence and bound-
ary condition independence of pressure (see [52]). Since for a general
translation-invariant quasilocal specification γ we cannot rely on the ex-
istence of such a translation-invariant potential, we shall use the weaker
property of relative uniform convergence of the (translation-invariant) vac-
uum potential which can be associated to the quasilocal, see Remark 3.58,
is enough to obtain zero relative entropy. We get this result as a conse-
quence of more general results on generalized Gibbs measures developed
in [78] that will be useful in the next chapter.

We consider a translation-invariant specification γ and a probability
measure ν ∈ Ginv(γ).

Theorem 4.24. [78] If µ ∈ M+
1,inv(Ω) is such that µ(Ω<0

γ ) = 1 and e+ν
exists, then
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1. h(µ|ν) exists and is given by

h(µ|ν) = −h(µ) + e+ν −
∫

Ω

log
γ0(σ

+|σ+)

γ0(+|σ+)
µ(dσ). (4.25)

2. If moreover µ ∈ Ginv(γ) exists, then

h(µ|ν) = lim
Λ↑Zd

1

|Λ| log
µ(+Λ)

ν(+Λ)
. (4.26)

To prove this theorem, we establish a more general lemma that will help
to restore the thermodynamic properties of generalized Gibbs in Chapter
5. It topologically captures what is needed for a specification to get zero
relative entropy of its DLR measures. The full proof is given in [78].

Lemma 4.27. [78] If µ(Ω<0
γ ) = 1, then

1. Uniformly in ω ∈ Ω,

lim
n→∞

1

|Λn|

∫

Ω

log
γΛn

(σ|ω)
γΛn

(+|ω)µ(dσ) =
∫

Ω

log
γ0(σ

+|σ+)

γ0(+|σ+)
µ(dσ).

2. For ν ∈ G(γ),

lim
n→∞

1

|Λn|

∫

Ω

log
ν(σΛn

)

ν(+Λn
)
µ(dσ) =

∫

Ω

log
γ0(σ

+|σ+)

γ0(+|σ+)
µ(dσ).

In particular, the limit depends only on the pair (γ, µ).

Proof :

1. The proof relies on the uniform convergence of the translation-
invariant vacuum potential with vacuum state + established by Sullivan
using a particular telescoping procedure. This procedure is described in
Remark 3.57 under the assumption of quasilocality but it is not difficult
to extend its validity when only almost-sure continuity in the + direction
holds, which is in particular implied by the condition µ(Ω<0

γ ) = 1. This
(not optimal12) latter condition comes from the telescoping procedure used
here, and we do not know whether it is technical or not. In particular,
we do not know if it can be relaxed to a general almost-sure quasilocality
property, a very important property in the context of generalized Gibbs
measures. Following Sullivan [116], we define, for all σ ∈ Ω

D(σ) = E+
{0}(σ|σ) = log

γ0(σ|σ)
γ0(+|σ) . (4.28)

12It is indeed extended in [78].
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and consider an approximation of σ+ at finite volume Λ ∈ S with boundary
condition ω by defining the telescoping configuration at site i ∈ S to be
Tω
Λ [i, σ,+], defined for all j ∈ S by:

(
Tω
Λ [x, σ,+]

)
j
=





ωj if j ∈ Λc

σj if j ≤ i, j ∈ Λ
+1 if j > i, j ∈ Λ.

To perform the telescoping, denote Λ≤i = {j ∈ Λ : j ≤ i}, Λ<i = Λ≤i\{i},
Λ>i = Λ \ Λ≤i and let Λ = {i1, . . . iN} denote an enumeration in the
lexicographic order. By consistency and Lemma 3.27:

γΛ(σ|ω)
γΛ(+|ω) =

N∏

k=1

γΛ(σΛ≤ik
+Λ>ik

|ω)
γΛ(σΛ≤ik−1

+Λ>ik−1
|ω) =

N∏

k=1

γik(σik |σΛ<ik
+Λ>ik

ωΛc)

γik(+ik |σΛ<ik
+Λ>ik

ωΛc)
.

(4.29)
Taking the logarithm yields for Λ = Λn

∫

Ω

log
γΛn

(σ|ω)
γΛn

(+|ω) µ(dσ) =
∑

i∈Λn

∫

Ω

D(τ−iT
ω
Λn

[i, τiσ,+]) µ(dσ)

in such a way that proving Item 1. amounts to prove that, uniformly in
ω, the r.h.s divided by the volume converges to

∫
Ω
D(σ+) µ(dσ). To do so

in [78], we carefully count the points of the set An where this telescoping
configuration Tω

Λ [i, σ,+] and σ+ differ, to establish that |An| = ◦(|Λn|)
and to eventually get, due to the continuity of D at the configuration σ+,
that for all ε > 0

1

|Λn|
∣∣∣
∑

i∈Λn

[
D(τ−iT

ω
Λn

[i, τxσ,+])−D(σ+)
] ∣∣∣ ≤ ε+ 2 sup

ω
|D(ω)| · |An|

|Λn|

which is less than 2ε for n big enough. So we obtain that

1

|Λn|
∣∣∣
∑

i∈Λn

[
D(τ−iT

ω
Λn

[i, τxσ,+])−D(σ+)
] ∣∣∣

converges to zero on the set of Ω<0
γ of full µ-measure, uniformly in ω, which

implies statement 1 of the lemma by dominated convergence.

2. Since ν ∈ G(γ), by consistency one rewrites for all σ ∈ Ω

ν(σΛn
) =

∫

Ω

γΛn
(σ|ω)ν(dω)

so that if one denotes FΛn
(µ, ν) := 1

|Λn|
∫
Ω
log

ν(σΛn )
ν(+Λn )µ(dσ), one can rewrite

FΛn
(µ, ν) =

1

|Λn|

∫

Ω

log

∫
Ω
γΛn

(σ|ω)ν(dω)∫
Ω
γΛn

(+|ω)ν(dω)µ(dσ).
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We use now the obvious bound

inf
ω∈Ω

γΛn
(σ|ω)

γΛn
(+|ω) ≤

∫
Ω
γΛn

(σ|ω)ν(dω)∫
Ω
γΛn

(+|ω)ν(dω) ≤ sup
ω∈Ω

γΛn
(σ|ω)

γΛn
(+|ω)

to get that for any ε > 0 there exists ω = ω(n, σ, ε), ω′ = ω′(n, σ, ε) such
that

∫

Ω

inf
ω∈Ω

log
γΛn

(σ|ω)
γΛn

(+|ω)µ(dσ) ≥
∫

Ω

log
γΛn

(σ|ω(n, σ, ε))
γΛn

(+|ω(n, σ, ε)) − ε

and
∫

Ω

sup
ω∈Ω

log
γΛn

(σ|ω)
γΛn

(+|ω)µ(dσ) ≤
∫

Ω

log
γΛn

(σ|ω′(n, σ, ε))
γΛn

(+|ω′(n, σ, ε))
+ ε.

Now use the first item of the lemma and choose N such that for all n ≥ N ,

sup
ω

∣∣∣ 1

|Λn|

∫

Ω

log
γΛn

(σ|ω)
γΛn

(+|ω)µ(dσ)−
∫

Ω

D(σ+)µ(dσ)
∣∣∣ ≤ ε

to get, for n ≥ N ,
∫

Ω

D(σ+)µ(dσ)− 2ε ≤ FΛn
(µ|ν) ≤

∫

Ω

D(σ+)µ(dσ) + 2ε

and eventually prove the lemma.

Proof of Theorem 4.24:

1. By a short computation at finite volume, rewrite

hn(µ|ν) = −hn(µ) − 1

|Λn|
∑

σΛn∈ΩΛn

µ(σΛn
) log

ν(σΛn
)

ν(+Λn
)

− 1

|Λn|
log ν(+Λn

).

When µ(Ω<0
γ ) = 1 holds, the asymptotic behavior of the second term

of the r.h.s. is given by Lemma 4.27 and under the existence of e+ν
one gets (4.25).

2. For µ ∈ Ginv(γ) such that µ(Ω<0
γ ) = 1, rewrite now :

hn(µ|ν) =
1

|Λn|
∑

σΛn∈ΩΛn

µ(σΛn
) log

µ(σΛn
)

µ(+Λn
)

− 1

|Λn|
∑

σΛn∈ΩΛn

µ(σΛn
) log

ν(σΛn
)

ν(+Λn
)
+

1

|Λn|
log

µ(+Λn
)

ν(+Λn
)
.
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By Lemma 4.27, in the limit n → ∞, the first two terms of the
r.h.s. are functions of (γ, µ) rather than functions of ν, µ ∈ Ginv(γ)
and cancel out. Hence, the relative entropy exists if and only if the
last term converges. Using Item 1 (existence of relative entropy), we
obtain the existence of the limit in (4.26) and the equality

h(µ|ν) = lim
n→∞

1

|Λn |
log

µ(+Λn
)

ν(+Λn
)

and in particular the r.h.s is a well-defined limit.

4.2.3 Application: Variational principle for translation-
invariant quasilocal measures

Theorem 4.30. [78] Any µ ∈ M+
1,inv(Ω) quasilocal satisfies the varia-

tional principle.

Proof: When γ is quasilocal, one has Ωγ = Ω and the second part is
a direct consequence of Theorem 4.1, because the convergence required
is true by any convergence theorem (uniform or dominated). We recover
thus the usual standard proof of

Theorem 4.31 (2nd part of the VP for quasilocal measures). Let
γ be a quasilocal and translation-invariant specification and ν ∈ Ginv(γ).
Then for any µ ∈ M+

1,inv(Ω),

h(µ|ν) = 0 =⇒ µ ∈ Ginv(γ).

Thus, the result of [78], that extends the variational principle from
translation-invariant Gibbs measures with a translation-invariant UAC po-
tential to translation-invariant quasilocal measures, for which the potential
derived from Kozlov (and described in the previous chapter) is not neces-
sarily UAC, relies on the following

Theorem 4.32 (1st part of the VP for quasilocal measures). Let
γ be a quasilocal and translation-invariant specification, ν ∈ Ginv(γ) and
µ ∈ M+

1,inv(Ω). Then h(µ|ν) exists for all µ ∈ M+
1,inv(Ω) and

µ ∈ Ginv(γ) =⇒ h(µ|ν) = 0.

Proof: We need the following lemma to use Theorem 4.24:

Lemma 4.33. For µ, ν ∈ Ginv(γ) with γ t.i. and quasilocal, e+ν , e
+
µ exist

and

lim
n→∞

1

|Λn|
log

µ(+Λn
)

ν(+Λn
)
= 0. (4.34)
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Proof: For any µ ∈ G(γ), one writes, using the vacuum property

1

|Λn|
log µ(+Λn

) =
1

|Λn|
log

∫

Ω

e−HΦ+

Λn
(+|η)

ZΦ+

Λn
(η)

µ(dη)

=
1

|Λn|
log

∫

Ω

1

ZΦ+

Λn
(η)

µ(dη)

≤ 1

|Λn|
log sup

η

1

ZΦ+

Λn
(η)

and similarly

1

|Λn|
log µ(+Λn

) ≥ 1

|Λn|
log inf

η

1

ZΦ+

Λn
(η)

.

Equation (4.34) of the previous lemma is then a direct consequence of the
following lemma, that relies on specific properties of the vacuum potential.

Lemma 4.35. The vacuum potential Φ+ with vacuum state + associated
with the quasilocal specification γ is such that:

1.

lim
n→∞

sup
ω,η,σ

1

|Λn|
∣∣∣HΦ+

Λn
(σ|η)−HΦ+

Λn
(σ|ω)

∣∣∣ = 0. (4.36)

2.

lim
n→∞

sup
ω,η

1

|Λn|
log

ZΦ+

Λn
(ω)

ZΦ+

Λn
(η)

= 0. (4.37)

Proof: Clearly, (4.36) implies (4.37): For all n ∈ N,

exp
{
− sup

ω,η,σ

∣∣∣HΦ+

Λn
(σ|η)−HΦ+

Λn
(σ|ω)

∣∣∣
}
≤ sup

ω,η

ZΦ+

Λn
(ω)

ZΦ+

Λn
(η)

≤ exp
{

sup
ω,η,σ

∣∣∣HΦ+

Λn
(σ|η)−HΦ+

Λn
(σ|ω)

∣∣∣
}
.

Now one proves (4.36) by rewriting first

HΦ+

Λn
(σ|η)−HΦ+

Λn
(σ|ω) =

∑

A∩Λn 6=∅,A∩Λc
n 6=∅

[
Φ+

A(σΛn
ηΛc

n
)− Φ+

A(σΛn
ωΛc

n
)
]
.

(4.38)
Unfortunately, the third inequality on page 1707 in [78] and likewise the
second inequality of page 1709 are wrong in general, due to the possible
non-absolute summability of the potential. Instead of them, we introduce
at any volume Λn an order ≥ that enumerates all sites in Λn and then
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exhausts the rest of the lattice, and use the following formal identity, valid
for any site x, any n ∈ N, any potential Φ:

∑

A∩Λn 6=∅,A∩Λc
n 6=∅

ΦA =
∑

x∈Λn

∑

A≥x,A∩Λc
n 6=∅

ΦA.

where the notation “A ≥ x” denotes the sets A whose first site in this
order is x. This condition contains the former requirement A ∩ Λn 6= ∅
and we use it to rewrite (4.38) as

HΦ+

Λn
(σ|η)−HΦ+

Λn
(σ|ω) =

∑

x∈Λn

∑

A≥x,A∩Λc
n 6=∅

[
Φ+

A(σΛn
ηΛc

n
)− Φ+

A(σΛn
ωΛc

n
)
]
.

Using specific properties of the vacuum potential, namely that the config-
uration “+” is a vacuum state for which Φ+

A(ω) = 0 whenever ωi = +i for
some i ∈ A, one can interpret the last sum as the difference between two
vacuum Hamiltonians at two (x-dependent) particular configurations, i.e.
one manages to remove the condition “A ≥ x” in the label of the sum and
recover a more standard label A 3 x, to eventually get

HΦ+

Λn
(σ|η)−HΦ+

Λn
(σ|ω) = (4.39)

∑

x∈Λn

∑

A3x,A∩Λc
n 6=∅

[
Φ+

A(+<xσΛn,≥xηΛc
n,≥x)− Φ+

A(+<xσΛn,≥xωΛc
n,≥x)

]
,

where, with obvious notations, the configuration +<x σΛn,≥x ηΛc
n,≥x is the

configuration that coincides with the vacuum state +1 at any site strictly
lower than x in the chosen order and with the concatenated configuration
σΛn

ηΛc
n
otherwise. Now, to prove (4.36) using the translation-invariance

and the uniform convergence of the vacuum potential, we rewrite (4.39) as

HΦ+

Λn
(σ|η)−HΦ+

Λn
(σ|ω) =

∑

x∈Λn

ψη,ω
n (σ, 0) +

∑

x∈Λn

(
ψη,ω
n (σ, x)− ψη,ω

n (σ, 0)
)
,

(4.40)
where for all n ∈ N, for all x ∈ Λn and ω, η ∈ Ω

ψη,ω
n (σ, x) =

∑

A3x,A∩Λc
n 6=∅

[
Φ+

A(+<xσΛn,≥xηΛc
n,≥x)

− Φ+
A(+<xσΛn,≥xωΛc

n,≥x)
]
.

(4.41)

If we focus on the case x = 0 first, we recognize a difference of “outer”
Hamiltonians, which goes uniformly to 0 by uniform convergence of the
vacuum potential [117] (and the Cauchy property of this convergence), to
eventually get uniformly in σ
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lim
n→∞

sup
η,ω

∣∣ψη,ω
n (σ, 0)

∣∣ = 0. (4.42)

It remains thus to use translation-invariance to estimate the difference
between ψη,ω

n (σ, 0) and ψη,ω
n (σ, x), to establish that

lim
n→∞

1

|Λn|
sup
σ,η,ω

∣∣∣
∑

x∈Λn

(
ψη,ω
n (σ, x)− ψη,ω

n (σ, 0)
)∣∣∣ = 0. (4.43)

Indeed, by translation-invariance one rewrites

ψη,ω
n (σ, x)

=
∑

A3x,A∩Λc
n 6=∅

[
Φ+

τ−xA
(+<0σΛn,≥0ηΛc

n,≥0)− Φ+
τ−xA

(+<0σΛn,≥0ωΛc
n,≥0)

]

=
∑

A30,A+x ∩Λc
n 6=∅

[
Φ+

A(+<0σΛn,≥0ηΛc
n,≥0)− Φ+

A(+<0σΛn,≥0ωΛc
n,≥0)

]

and we are reduced to control the asymptotic behavior of

1

|Λn|
∑

x∈Λn

ψ̃η,ω
n (σ, x) (4.44)

where ψ̃η,ω
n (σ, x) =

∑

A30,A⊂Λn,A+x ∩Λc
n 6=∅

[
Φ+

A(+<0σΛn,≥0ηΛc
n,≥0)− Φ+

A(+<0σΛn,≥0ωΛc
n,≥0)

]
.

We identify it as a Cesáro mean of a sequence that is uniformly bounded
and goes to zero in the infinite-volume limit:

∣∣∣ψ̃η,ω
n (σ, x)

∣∣∣ ≤ sup
η

∣∣Φ+
A(+<0σΛn,≥0ηΛc

n,≥0)
∣∣

≤ φ(d(x,Λc
n)),

where φ is a function of the distance of x and Λc
n only, that goes to zero uni-

formly in the configurations when n goes to infinity. Thus, using Cesáro’s
theorem, (4.44) goes to zero uniformly in the infinite-volume limit, yielding
(4.43) that proves the lemma combined with (4.42).
To derive now Lemma 4.33 from Lemma 4.35, we only have to prove

that for all ν ∈ Ginv(γ), e
+
ν exists and is independent of γ. For such a

measure ν, write, using Lemma 4.35

ν(+Λ) =

∫

Ω

e−Hη
Λ(+)

ZΦ+

Λ (η)
ν(dη) ∼=

∫

Ω

e−H+
Λ (+)

ZΦ+

Λ (+)
ν(dη),



Arnaud Le Ny 85

where aΛ ∼= bΛ means limΛ
1
|Λ| | log aΛ

bΛ
| = 0. Since Φ+ is the vacuum

potential with vacuum state +, H+
Λ (+Λ) = 0, so that the partition function

with vacuum boundary condition coincides with that with free boundary
condition, yielding:

ν(+Λ) =
1

ZΦ+

Λ (+)
=

1

ZΦ+,f
Λ

=
[ ∑

σ∈ΩΛ

exp(−
∑

A⊂Λ

Φ+
A(σ))

]−1

and

e+ν = − lim
Λ↑Zd

1

|Λ| logZ
Φ+

Λ (+) = − lim
Λ↑Zd

1

|Λ| logZ
Φ+,f
Λ (4.45)

whenever the limit on the r.h.s. exists. To prove this existence, we adapt
the standard proof of the existence of the pressure for UAC potentials
based on corridors (see e.g. [64]) to our weaker framework, and base our
analysis on the following

Lemma 4.46. The differences of vacuum Hamiltonians taken in nested
volumes Λ′ ⊂ Λ with free boundary conditions is at most of the order of
the volume annulus between them.

∣∣HΦ+,f
Λ (σ)−HΦ+,f

Λ′ (σ)
∣∣ ≤ C · |Λ\Λ′| (4.47)

Proof: This estimate follows as above by choosing an ordering of sites
x such that the sites in Λ\Λ′ come first. Then we write

∣∣HΦ+,f
Λ (σ)−HΦ+,f

Λ′ (σ)
∣∣ =

∣∣∣
∑

A⊂Λ
A∩(Λ\Λ′)6=∅

Φ+
A(σ)

∣∣∣

=
∣∣∣
∑

x∈Λ\Λ′

∑

A⊂Λ:A≥x

Φ+
A(σ)

∣∣∣

=
∣∣∣
∑

x∈Λ\Λ′

∑

A⊂Λ:A≥x

Φ+
A(+<xσΛ≥x)

∣∣∣

≤ C · |Λ\Λ′|

(4.48)

uniformly in σ ∈ Ω, with C = supΛ,Λ′,x,σ ·
∣∣HΦ+,f

Λ (+<xσΛ≥x)
∣∣ < ∞.

We use this lemma to neglect the contributions of corridors in the parti-
tion function and consider volumes C1, . . . , Cn, that are lattice translates
of each other, whose union is some bigger volume C =

⋃
i Ci, nested as

soon as we assume that d(Ci, Cj) ≥ r > 0 for all i 6= j. If one considers
again an ordering such that the sites in C1 come first, one has
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∣∣HΦ+,f
C (σ) − HΦ+,f

C1
(σ)−HΦ+,f

∪i≥2Ci

∣∣

=
∣∣∣
∑

x∈C1

∑

A≥x,A∩∪i≥2Ci 6=∅
Φ+

A(+<xσC≥x+Cc)
∣∣∣

=
∣∣∣
∑

x∈C1

∑

A3x,A∩Bc
r(C1)6=∅

HΦ+,f
x (+<xσC≥x+Cc)

∣∣∣

≤ |C1| · φ(r) (4.49)

where Br(C1) is the set of points with distance less or equal to r to C1

and φ(r) goes to zero as r goes to infinity. By induction, one gets

∣∣HΦ+,f
C (σ)−

∑

i

HΦ+,f
Ci

(σ)
∣∣ ≤ n · |C1| · φ(r). (4.50)

Finally to prove the existence of the limit (4.45) along a sequence of cubes
we can now follow the lines of the standard proof [64] which subdivides a
large cube of size n into sub-cubes of fixed size b, separated by corridors of
width r > 0. We then invoke (4.47) to estimate the contributions of cor-
ridors, and (4.50) to estimate the contribution from interactions between
different cubes.

Remark 4.51.

Recently, while these notes were on the point of being achieved, Eti-
enne Mahé has introduced a class of random fields strictly larger than the
quasilocal ones, the Asymptotically Sub-Volumic (ASV) measures, whose
defining property is the specification counter part of condition C2, and de-
veloped a wide thermodynamical formalism for them [100]. In particular,
he proves there that quasilocal measures have this ASV property and com-
bined with our general Theorem 4.24, this provides an alternative proof of
4.32 that relies on specific properties of specifications.

4.3 More on equilibrium: LDP and Stochas-
tic Ising models

4.3.1 Large deviation properties

The thermodynamical variational principle (4.11), valid for translation-
invariant Gibbs measures consistent with a translation-invariant potential
[52] or for the more general class of asymptotic decoupled measures [104],
is a first step toward the statement of a large deviation principle for such
measures. Indeed, when relative entropy is defined and can be expressed as
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the convex transform of the pressure, it is often the so-called rate function
for such an LDP at the level of measures. We do not enter into the general
details of this important subject of probability theory in these lectures, see
e.g. [19, 92, 93, 36] for a precise formulation of large deviation principles
and their relationships with the notion of entropy in thermodynamics.

Roughly speaking, large deviations consist in a study the probability
of rare events by estimating the usually very small probabilities of large
simultaneous fluctuations in a system consisting of a large number of ran-
dom variables. At the level of measures, claiming that such a principle
holds is a way of expressing that the probability of a typical configuration
from a measure µ ∈ M+

1,inv to look typical in Λ for the measure ν ∈ M+
1,inv

decays exponentially fast with the volume with a rate equals to the relative
entropy h(µ|ν), that is

Probν
[
ωΛ typical for µΛ

]
≈ e−|Λ| h(µ|ν).

Thus, when such a principle holds for our Gibbs measures, the rate
function gets its minimum at zero when µ and ν are Gibbs for the same
specification, and the probability of getting from µ a typical configuration
for ν decays exponentially with the order of the surface only, or at least at
a sub-volumic rate. If it does not hold, it implies then that the involved
measures cannot be Gibbs for the same potential.13

4.3.2 Stochastic Ising models

Stochastic Ising models are particular types of Markov Processes on the
configuration space (Ω,F) when the single-site state space is an Ising one
(E = {−1,+1}). They are thoroughly described in [94] and allow, under
mild conditions, to get Gibbs measures as invariant reversible measures
for these stochastic processes. Let us focus on the most standard local
stochastic dynamics, the so-called Glauber or spin-flip dynamics, which
corresponds to usual birth and death processes in standard probability
theory. Starting from an a priori configuration, one would like to change
(or “flip”) the configuration at a given site in a random way that favours
alignment between neighbors such that the configuration evolves towards
a typical configuration of a given Gibbs measure.

To formalize this a bit, one denotes for any i ∈ S and σ ∈ Ω the flipped
configuration σi, defined by σi

i = −σi and σi
j = σj for all i 6= j, and

consider a collection of spin-flip rates
{
ci(σ), i ∈ S, σ ∈ Ω}, assumed to be

of finite-range, strictly positive and translation-invariant. They uniquely
define a Feller process (ηt)t≥0 on (Ω,F) with generator14 L defined on

13This is used to detect non-Gibbsianness in the projection of the Ising model [112].
14For a rigorous description, consult [94, 35].
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local functions f ∈ Floc by

Lf(σ) =
∑

i∈S

ci(σ)
[
f(σi)− f(σ)

]
.

Denoting by S(t) the corresponding semi-group (see [94]) and by Eσ the
expectation under the corresponding path-space measure Pσ given the ini-
tial configuration η0 = σ, one gets an action on functions f ∈ Floc with
for all t > 0, (

S(t)f
)
(σ) = Eσ[f(ηt)]

and on measures ν to get a time-evolved measure νS(t) defined by its
expectations on local functions

∫
fd(νS(t)) =

∫
S(t)fdν.

This measure νS(t) corresponds to the distribution of the configuration
at time t when the initial distribution at time zero is ν. A probability
measure µ ∈ M1,inv(Ω) is then called invariant for the process (or for the
dynamics) with generator L iff

∫
Lfdµ = 0, ∀f ∈ Floc

or equivalently iff µS(t) = µ for all time t; an invariant measure µ is
moreover reversible when

∫
(Lf)gdµ = 0, ∀f, g ∈ Floc.

In words, a probability measure is invariant when the process (ηt)t ob-
tained by using µ as initial distribution is stationary in time, so that its
definition can be extended to negative times, and is thereafter reversible
when the process (ηt)t and (η−t)t have the same distribution. In our case,
reversibility is equivalent to a standard detailed balance condition on the
rates

dµi

dµ
=

ci(σ
i)

ci(σ)
(4.52)

where µi is the image law of µ by the spin-flip at site i, σ 7−→ σi. Thus,
to get a dynamics evolving towards a given measure µ, it is enough to
choose the rates according to (4.52). This is the way Gibbs measures are
obtained as reversible invariant measures in the so-called Glauber dynamics
at inverse temperature β: Given a UAC potential Φ, one introduces the
rates

ci(σ) = exp
{β

2

∑

A3i

[
ΦA(σ)− ΦA(σ

i)
]}
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in order that (4.52) holds for the Gibbs measures corresponding to the
potential Φ. In such a case, the rates generates jump-processes on the
configuration space with independent Poisson clocks attached at each site
that randomly produce spin-flips according to the considered Gibbs mea-
sures, which are eventually the invariant reversible measures reached at
equilibrium.

Similar stochastic Ising models can be introduced by changing the spin-
flip rules (in the so-called Metropolis-Hastings dynamics) or by exchang-
ing the spins between two sites (Kawasaki dynamics, equivalent to an
exclusion-process in the lattice gas settings with single site state-space
E = {0, 1}), leading at equilibrium to the same reversible Gibbs measures
[94].



Chapter 5

Generalized Gibbs
measures

5.1 Heuristics

Let us consider physical systems with a large number of particles in ther-
mal equilibrium modelled by the Gibbsian formalism described in Chapter
3 and consider more precisely the example of particles of water. Although
water is too complicated a system to be described precisely by the Gibbsian
formalism1, it allows to give a qualitative picture of the phase transition
phenomenon, in accordance with the precise description of the phase dia-
gram that can be achieved within the Gibbsian formalism by the Pirogov-
Sinai theory [106]. The system could be in different states depending on
the temperature, and assume that these states are described by extremal
Gibbs measures µS , µL, µV at low temperature or µ at high temperature.
One observes the existence of a critical temperature Tc that distinguishes
a region of temperature where the physical system can only be in a unique
phase and a lower dimensional manifold2 of non-uniqueness. The latter
corresponds to the region in the (P, T )-plane where the system can coex-
ist in two or three different states, depending on the pressure for a given
temperature, yielding the following (qualitative) phase diagram.

T > Tc: Uniqueness regime: G(γ) = {µ}.
1The solid phase has to be more carefully described than here, due to the na-

ture of crystals. One expects that a crystal breaks the translation symmetry, so that
translation-invariant Gibbs measures can be ergodic but not extremal in the set of Gibbs
measures. Moreover, although there is a gas-liquid point, there is not a second-order
transition from solid to liquid or gas in great generality. Our present heuristics has thus
to be taken very carefully while dealing with this solid phase.

2To get details about these manifolds and the Gibbs phase rule, see Wightman [64].
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T < Tc: There exist 2d-manifolds where the system is in a unique phase,
solid, liquid or gaseous, depending on the pressure P . These unique-
ness manifolds have as boundaries 1d-manifolds where two different
phases coexists. These so-called coexistence lines have as boundary
a 0d-manifold where all three phases coexist, the tricritical point.

From a naive3physical point of view, a phase transition is induced by
a transformation of (P, T )-variables that allows to go from a region of
uniqueness to a region of non-uniqueness. Two kinds of phase transitions
are often distinguished: When this (P, T )-transformation crosses a coex-
istence line, one says that a first order phase transition occurs, whereas
when one crosses the tricritical point C from T > Tc, one often4 says that
it is second order. Let us focus on the latter, for which a quantity called
correlation length is introduced. Consider as usual a Gibbs measure µ and
a configuration σ ∈ Ω. For T 6= Tc, and i 6= j ∈ S, the covariance between
the random variables σi and σj is expected

5 to decay exponentially in such
a way that one introduces a quantity ξ(T ) such that:

µ(σiσj)− µ(σi)µ(σj) ∼= e−
|i−j|
ξ(T )

where ∼= means logarithmic equivalence for large |i − j|. The quantity
ξ(T ) has the dimension of a distance and is interpreted as the correlation
length of the system, beyond which two spins are physically considered to
be independent. This cannot be done at the critical temperature because
the decay of correlation is not expected to be exponential and in some
sense one has presumably

lim
T→Tc

ξ(T ) = +∞.

This is interpreted as the absence of proper scale for the system at the
critical temperature. Physically, for the system of water, we observe a
“milky” water or critical opalescence, due to the appearance of fluctua-
tions of all orders, including in particular very large ones6 that creates a

3There actually exists too main complementary notions of phase transition: A ther-
modynamic notion corresponding to the lack of analyticity of a thermodynamical func-
tion (free energy, pressure, etc.) and a statistical mechanical one corresponding to a
change in the number of extremal states.

4Crossing a critical point does not automatically imply a second order phase tran-
sition. For instance, its crossing in the 1/r2-Ising model in one dimension is of first
order with a jump in the magnetization. The order is more precisely related to the
presence of various critical phenomena (divergence of the correlation length, fluctua-
tions at all scales, etc.) or to the order of the diverging derivative of the free energy, see
[24, 36, 54, 66, 113]. This distinction between first or second order phase transitions is
also mathematically characterized in terms of differentiable properties of the pressure
introduced in Chapter 4, see [64, 113, 36].

5It is sometimes proved for standard models, see e.g. [87].
6As these fluctuations occur also in a scale of the order of visible light, a scattering

phenomenon occurs that yields the whitish color.
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highly chaotic behavior. As a consequence of this absence of proper scale,
the behavior of the system at the critical point should be the same at any
scale, providing a tool to study these ill-known critical behaviors: Natural
transformations of the observation scale seem to be an appropriate tool
to understand it better, the critical point being considered in some sense
as a fixed point of these transformations. This has motivated the intro-
duction, as a tool in theoretical physics to study critical phenomena, of a
semi-group of transformations directly related to a change of scale of the
system, the Renormalization Group, that appeared to be rather powerful
in these fields, see e.g. [17, 24, 48, 50, 56, 119].

We shall describe it more precisely in the next section, but let us first
consider a scaling transformation T : Ω −→ Ω′, where Ω and Ω′ are the
configuration spaces at two different scales. Let µ be a measure describing
an equilibrium state of the system at the first scale, i.e. a Gibbs measure
on Ω, and denote formally H its Hamiltonian. The transformation T acts
naturally on measures and we denote µ′ = Tµ ∈ M+

1 (Ω
′,F ′). The nat-

ural aim in our theory would be to obtain µ′ as a Gibbs measure and to
define an Hamiltonian H ′, image of the Hamiltonian H by a renormaliza-
tion transformation on spaces of Hamiltonians for it, in order to get the
following diagram well defined and commutative.

H

µ
T

R

?

T H’

µ’

?

Figure 1: A renormalization group transformation acting on measures.

In the late seventies and early eighties, Griffiths and Pearce/Israel [56, 63]
discovered some pathologies of the behavior of these image measures: It
turned out that they often are not Gibbsian. It came out as a surprise that
one could break the equilibrium properties of a state by only looking at it
at a different scale, and according to the ideology of the RG theory, this
should not be so. These pathologies have been rigorously proven to exist
and mostly identified as the manifestation of non-Gibbsianness due to a
failure of the quasilocality property in 1993 by van Enter, Fernández and
Sokal [36] in a rather general and rigorous mathematical framework. Let
us recall that the Hamiltonian can be recovered from the Gibbs measure µ
with the help of the Moebius inversion formula. When the correlations do
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not decrease sufficiently fast, and in particular at the critical point or in
some phase transitions region, a divergence might appear in this inversion,
preventing a definition of H ′ from µ′, and leading to non-Gibbsianness of
the image-measure. Nevertheless, we shall see that this phenomenon also
holds in other parts of the phase diagram, sometimes far from the critical
point, and that it is already present after one single change of scale for
very simple scaling transformations.

5.2 RG pathologies and non-Gibbsianness

In this section, we formally introduce the renormalization group trans-
formations and describe how these transformations could lead to non-
Gibbsianness. As we shall see, this phenomenon is often related to the
occurrence of phase transitions in some hidden or constrained system, and
to get the main features of the phenomenon we describe precisely how this
happens for the simplest RG transformation, the so-called decimation of
the 2d Ising model at low temperature, the latter being low enough to get
a phase transition that creates long-range dependencies leading to non-
quasilocality in the mentioned hidden system. Thereafter, we shall give
a (non-exhaustive) catalogue of other RG transformations of Gibbs mea-
sures that also lead to non-Gibsianness for similar reasons, but for which
the proof is much more complicated, when it exists.

5.2.1 Decimation of the 2d ferromagnetic Ising model

The basic example we describe here, which already captures the main non-
trivial features of the pathologies, concerns the decimation of the standard
2d-Ising model, or more precisely the projection of the 2d-Ising model on
the sublattice of even sites [36]. We shall give similar results for decima-
tions at other dimensions and for other spacings later on. At a general
level, the decimation transformation on Z2 with spacing b is defined to be
the transformation

Tb : (Ω,F) −→ (Ω′,F ′) = (Ω,F)

ω 7−→ ω′ = (ω′
i)i∈Z2

defined by ∀i ∈ Z2 by ω′
i = ωbi. We denote simply T = T2 the case of

a spacing b = 2 described here. The following result is crucial to under-
stand RG pathologies and the arising of non-Gibbsianness in equilibrium
mathematical statistical mechanics. This example, already introduced by
Israel in [63] to detect RG pathologies, has been fully analyzed in [36],
which constitutes the seminal description of RG pathologies in the realm
of Gibbsianness vs. non-Gibbsianness framework.
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Theorem 5.1. [36] Let β > β̃c =
1
2 cosh

−1
(
e2βc

)
and denote by νβ = Tµβ

the decimation of any Gibbs measure µ for the homogeneous ferromagnetic
n.n Ising model on Z2 with zero magnetic field. Then νβ is not quasilocal,
hence non-Gibbs.

To prove non-quasilocality of the renormalized measure, one exhibits
a so-called bad configuration where the conditional expectation of a local
function (w.r.t. the outside of a finite set) is essentially discontinuous,
or equivalently is discontinuous on a (non-negligible) neighborhood, as
described in Chapter 3. The role of a bad configuration is played by
the alternating configuration ω′alt defined for all i = (i1, i2) ∈ Z2 by
ω′alt
i = (−1)i1+i2 . Computing the magnetization under the image mea-

sure νβ , conditioned on the boundary condition ω′alt outside the origin,
will yield different limits when one approaches this configuration with all
+ (resp. all −) arbitrarily far away, as soon as phase transition is possible
for the Ising model on the so-called decorated lattice, a version of Z2 where
even sites have been removed. The latter phase transition is shown to be
possible as soon as the inverse temperature is larger than the above value
β̃c. The global neutrality of this bad configuration leaves the door open to
such a phase transition to occur at low enough temperature, and is crucial
in its badness. Let us formalize this a bit more, following the full proof
given in [36].

Proof of theorem 5.1: Denote by ν = Tµ this decimated measure:

∀A′ ∈ F ′, ν(A′) = µ(T−1(A′)) = µ(A)

with the notation A = T−1(A′) ∈ F . In order to describe how a phase
transition in some hidden system gives rise to non-Gibbsianness, we also
extend this decimation on the “even” sites of Z2, i.e. 2Z2, by:

T : i = 2i′ 7−→ i′

and on subsets: ∀Λ ⊂ 2Z2, T (Λ) := Λ′ = {i ∈ Z2, 2i ∈ Λ} ⊂ Z2. We
underline that T maps the finite subsets of 2Z2 on the finite subsets of
Z2, but the converse is not true: If one defines a cofinite subset of S to
be the complement of any finite set, then the inverse transformation T−1

does not map the cofinite subsets of Z2 on the cofinite subsets of 2Z2. For
example, when Λ′ = {0} consists of the origin 0 of Z2. Then Λ′c = Z2\{0}
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and T−1(Λ′c) = {i = 2i′ s.t. i′ ∈ Λ′c} = {x = 2x′, x′ ∈ Z2, x′ 6= 0}
= 2Z2\{0} =

[
(Z2\2Z2) ∪ {0}

]c
=: λc

where λ = (Z2\2Z2) ∪ {0} is not a finite subset of Z2.

This is actually the reason why non-Gibbsianness could occur: Getting
still an infinite-volume framework after this conditioning, this leaves the
possibility of phase transitions for the measure conditioned on λ, which in
turn would give rise to the essential discontinuity. In order to prove that ν
is not Gibbsian, we prove that there exists Λ′ ∈ S ′ and a function f local
on Ω′ such that no version of ν[f |FΛ′c ](·) is quasilocal, or equivalently we
want to find ω′ in Ω′ for which there exists f local on Ω′ with ν[f |FΛ′c ](ω′)
essentially discontinuous. Now, using the action of the measurable map T
on subsets and configurations, one easily gets, for any Λ′ ∈ S ′

ν[A′|F ′
Λ′c ](ω′) = µ[A|Fλc ](T−1ω′), ν-a.e.(ω′), ∀A′ ∈ F ′.

So we have to compute the conditional probabilities µ[A|Fλc ] for λ non-
finite, and this is not given by the specification γ, which only provides
versions of conditional probabilities for the outside of finite sets only7.
Thus λ = T−1(Λ′c) is not a cofinite set, as we show for Λ′ = {0} and
illustrated on the figures 2 and 2b below:

-1

-1

O
?

a b
c

d
e

f g h

Figure 2: The configuration space after decimation, Ω′.

7To describe such conditional probabilities, on should use global specifications devel-
oped in [44].
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A short computation leads indeed to

λc = Z2\(2Λ′) = T−1(Λ′) ∪ (Z2\2Z2)

and thus λc consists of all the spins of 2Z2 except the origin: If we “knew”
everything except the origin on the decimated system Ω, we should “know”
the spins on 2Z2 except at the origin. Then λ is the origin plus the sites
which are not in 2Z2, as shown below8

-2

-2

O
?

f g h

? ? ?

d ? ? e

? ? ?

a

?

? b c

Figure 2b : The configuration space before decimation, Ω.

To prove the failure of quasilocality, we thus have to compute µ[·|Fλc ](ω)
when ω ∈ T−1(ω′), with ω′ in the neighborhood of a particular configura-
tion in Ω′. Of course, we know that µ is a Gibbs measure for the 2d-Ising
model, so there exists Ωµ with µ(Ωµ) = 1 s.t. for all ω ∈ Ωµ, for all σ ∈ Ω
and Λ ∈ S,

µ
[
σ|FΛc

]
(ω) =

1

ZΛ(ω)
exp

( ∑

〈ij〉⊂Λ

βσiσj +
∑

〈ij〉,i∈Λ,j∈Λc

βσiωj

)
(5.2)

but we want to study µ[·|Fλc ] with λ non-finite, which is not a finite-
volume probability, but on the contrary appears to be an infinite-volume
Gibbs measure, as generally proved in [36]:

Lemma 5.3. [36] Let ω′ ∈ Ω′ and let λ a infinite subset of Z2. Then
the restriction of µ[ · |Fλc ](ω′) to (Ωλ,Fλ) is a Gibbs measure for a UAC
potential Φ = Φ(λ, ω′).

8The letters denote the value of spins on the underlying sites, when fixed, and the ?
indicate that the spin over the underlying site is unknown.
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We shall not prove this lemma in the general case, but rather directly
establish the result for a particularly well-chosen configuration, for which a
phase transition is possible for the resulting Gibbs measure on the smaller
infinite-volume configuration space (Ωλ,Fλ). This particular configura-
tion will now be in some neighborhood NΛ of the (neutral) alternating
configuration ω′alt defined by

∀i = (i1, i2) ∈ Z2, ω′alt
i = (−1)i1+i2 .

Denote µω′,λ the restriction of µ[·|Fλc ](ω′) to (Ωλ,Fλ), well-defined as
a probability measure by the existence of regular versions of conditional
probabilities as described in Chapter 3. As λ is fixed (we always take now
Λ′ = {0}), we forget it and write µω′,λ = µω′

. To prove that it is a Gibbs
measure on (Ωλ,Fλ), we consider ∆ ⊂ λ finite and a boundary condition
τ ∈ Ωλ, which yields the following picture:

τ

∆

O+ − σ−1,0 σ1,0 − +

. . σ−1,1 σ0,1 σ1,1 . .

. . . σ0,−1 . . .

− + . − . + −

− . + . − . + . −

. .

. . . . . . . . .

+ . − . + . − . +

+ . − . + . − . +

. . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

β¾ -

β
?
6

Figure 3: Configuration space Ωλ with ω′alt in λc.

To check the D.L.R. equations for a suitable interaction, we have to com-
pute, for ω′ in the neighborhood NΛ of ω′alt, for µω′

-a.e. τ and for all
σλ ∈ Ωλ,

µω′
[σ|Fλ\∆](τ) = τλ\∆] =

∑

σλc∈Ωλc

µ[σ|σλ\∆ = τλ\∆, σλc = ωλc ]
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with ω ∈ T−1(ω′). We first assume that Λ is big enough to contain the
∆ considered, in order to describe the resulting interaction. Later on, we
shall take the infinite volume for ∆ and eventually encounter a volume
where ω′ is different to the alternating configuration, to eventually select
different phases when possible. For the moment the large Λ allows us to
work with the single ω′alt only but also to prevent possible conditioning
with sets of measure zero. In the previous sum, only one term is not zero,
when σλc = ωλc , which is the alternating configuration on λc. Hence,
using the definition of conditional probability as a probability kernel,

µω′
[σλ|σλ\∆ = τλ\∆] = µ[ σ |F∆c∪λc ](τλωλc).

But ∆c ∪λc = (∆∩λ)c, and ∆∩λ = ∆ is a finite subset of Z2, so we now
use the D.L.R. equations for µ to get, for µ -a.e. τλωλc ∈ Ω:

µ[σλ|σ∆c = τ∆c ] =

1

Zω′
∆ (τ)

exp
(
β(

∑

〈ij〉⊂∆

σiσj +
∑

〈ij〉,i∈∆,j∈λc

σiωj +
∑

〈ij〉,i∈∆,j∈λ∩∆c

σiτj)
)

where the normalization is the standard partition function. A remark-
able fact now, that will eventually lead us to consider the Ising model on
the decorated lattice, is that in the sum

∑
〈ij〉,i∈∆,j∈λc Jσiωj , the j’s are

“even”, i.e. j = 2k with k ∈ Z2 such that ωj = ω′
k is fixed in the alternat-

ing configuration. Then, we obtain the validity of the DLR equation for
µω′

-almost τ ∈ Ωλ, i.e we have proved the :

Lemma 5.4. Let ω′ be the alternating configuration and assume that there
exists ω ∈ T−1(ω′) for which the D.L.R. equations for µ are valid. Then
µω′

, the restriction of µ[ · |Fλc ](ω) on (Ωλ,Fλ) is a Gibbs measure for
some UAC potential.

We do not need to give explicitly the potential in general, but it appears
to be equivalent to an Ising potential on the decorated lattice in the the
computation of the magnetization that we perform now. We shall then
observe (Figure 4) that the coupling due to “even” sites cancels and we
obtain a Gibbs measure for an Ising model on (Ωλ,Fλ), with the same def-
inition of the nearest-neighbors as in Z2. To achieve this, we just need to
know that there is some Gibbs measure for the interaction of the previous
equation. In case of phase transition, we do not know which phase it could
be, and we shall prove that local variations in ω′ could change drastically
the selected one. This will yield the non-Gibbsianness of the decimated
measure.
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Computation of the magnetization

To prove a non quasilocality of ν at sufficiently low temperature, consider
then the action of the conditional probabilities on a local function chosen
to be characteristic of the phase transition mentioned above. Namely,
it should be an order parameter of the phase transition9 and consider
here the so-called magnetization, which reduces to the expectation at the
origin for this translation-invariant model. To do so, we denote again its
origin by 0 or (0, 0) and consider the local function f : Ω′ −→ R;σ′ 7−→
f(σ′) = σ′

0. We study ν[σ′
0|FΛ′c ](ω′) for ω′ in the neighborhood of the

alternating configuration, considering first that Λ is big enough to feel ω′

as the alternating configuration itself. Then, ν-a.s.

ν[σ′
0|FΛ′c ](ω′) = µω′

[σ0]

as described in the previous section. We know that it is a Gibbs measure for
some interaction, then by Lemma 2.65 there exists a sequence (νRγΛR

)R∈N
whose weak limit is µω′

. For R ∈ N, write, by a slight abuse of notation,
ΛR for the intersection between λ and the usual cube of length 2R s.t.
there exists a sequence νR with

〈σ0〉ω
′
:= µω′

[σ0] = lim
R→∞

〈σ0〉ω
′,νR ,

where

〈σ0〉ω
′,νR :=

∫

Ω

µω′
[σ0|FΛc

R
](τR)dνR[τR]

is the expectation of the spin at the origin when the boundary condition
which selects µω′

has the law νR. Let us first fix one boundary condition
τR and note 〈·〉ω′,τR the expectation under the measure µω′

[·|FΛc
R
](τR).

We know that µω′
is a Gibbs measure on (Ωλ,Fλ), whose lattice consists

of all the non-even spins plus the origin.

In order to study this measure on a more conventional lattice, let us try
to fix the spin at the origin. Define LR = {i ∈ ΛR s.t. i1 and i2 are both
odd } and HR = ΛR\LR. We have, using the notation κλ

R(dσλ) to denote

the product measure ρΛR
⊗ δ

⊗λ\ΛR
τλ\ΛR

(dσλ),

〈σ0〉ω
′,τR =

1

Zω′,τR

∫

Ωλ

σ0e
β(σ0−1)(

∑

〈i0〉 σi)e
∑

〈ij〉,i∈ΛR,j∈λ\ΛR
βσiτj

×
∏

a∈LR

(e
∑

〈ia〉⊂ΛR
βσaσi)κλ

R(dσλ),

9In statistical mechanics, an order parameter of a UAC potential which admit a
family {µj , j ∈ J} of distinct Gibbs measures is a finite system {f1, . . . , fn} of local
functions which discriminate these Gibbs measures by means of the associated expec-
tations {µj [f1], . . . , µj [fn]} [52].
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where
∑

〈i0〉 means that the sum is taken over all the spins attached to

the origin and Zω′,τR is a standard normalization. Using Fubini’s theorem
for positive functions, we first integrate out w.r.t. the origin to get (with
λ? = λ and Λ?

R = ΛR\{0})

〈σ0〉ω
′,τR =

1

Zω′,τR

(
1−

∫

Ωλ?

e−2β(
∑

〈i0〉 σi)e
∑

〈ij〉,i∈ΛR,j∈λ?\ΛR
βσiτj

×
∏

a∈LR

(e
∑

〈ia〉⊂ΛR
βσaσi)κλ?

R (dσλ?)
)

with the partition function

Zω′,τR = 1 +

∫

Ωλ?

e−2β(
∑

〈i0〉 σi)e
∑

〈ij〉,i∈ΛR,j∈λ\ΛR
βσiτj

×
∏

a∈LR

(
e
∑

〈ia〉⊂ΛR
βσaσi

)
κλ?

R (dσλ?).

Hence, we only have to compute the expectation of e−2β(
∑

〈i0〉 σi) w.r.t.
the Gibbs distribution with boundary condition τR for an Ising model on
(Ωλ? ,Fλ?) when the spin is fixed to be “+” at the origin. We obtain this
model because of the very particular interaction we get with the alternating
configuration: The contributions of the “even sites”, which are fixed in the
alternating configuration, cancel each other. We have then the alternating
configuration everywhere on 2Z2 and an Ising distribution on the so-called
decorated lattice λ?, without external magnetic field as soon as ∆ ⊂ Λ.
Denote µ+,ω′,τR this measure and 〈·〉+,ω′,τR the expectation with respect
to it, to get

〈σ0〉ω
′,τR =

1− 〈e−2β(σ0,1+σ1,0+σ−1,0+σ0,−1)〉+,ω′,τR

1 + 〈e−2β(σ0,1+σ1,0+σ−1,0+σ0,−1)〉+,ω′,τR
.

To get an expression in terms of standard Ising models, we now use the
following trick, standard in statistical mechanics with ±1 Ising spins, to
reduce 〈σ0,1〉+,ω′,τR , the expectation of one spin attached to the origin:

〈σ0,1〉+,ω′,τR =
〈
tanh(J(σ1,1 + σ−1,1))

〉+,ω′,τR

=
〈
(
1

2
tanh(2J))(σ1,1 + σ−1,1)

〉+,ω′,τR

where σ1,1 and σ−1,1 are the spins attached to σ0,1. This reduces our study
to the distribution of the spins in LR, that is in fact the decorated lattice,
the lattice of spins whose coordinates are both odd.
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ΛR

++ − . . − +

. . σ0,1 σ1,1 . .

. . . . . . .

− + . − . + −

− . + . − . + . −
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. . . . . . . . .

+ . − . + . − . +

+ . − . + . − . +
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.

.

.

.

.

.

.

.

.
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.

b
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b′′

τ

a a′ b′ b b′′

Figure 4 : Ising model on the decorated lattice λ∗

We then have to compute 〈σ1,1〉+,ω′τR . As claimed before, we can start
by integrating first with respect to the spins in HR, the sites of the dec-
orated lattice which have exactly two neighbors. We call H0

R = HR\ΓR

where ΓR = ΛR\ΛR−1 is the boundary of ΛR. The sites in H0
R are those

which have two neighbors in ΛR. We also call H1
R = HR ∩ ΓR the set of

the sites which have two neighbors in the lattice λ?, one in ΛR and the
other, fixed by the boundary condition τ , outside ΛR. Compute:

〈σ1,1〉+,ω′τR =
1

Z+,ω′,τR

∫

Ωλ?

σ1,1 ·A0
R(σ, dσH0

R
)·A1

R(σ, dσH1
R
)·AR(σ, dσLR

),

(5.5)
with

A0
R(σ, dσH0

R
) =

∏

b∈Ho
R

eβσb(σb′+σb′′ ) ρ0(dσb)

A1
R(σ, dσH1

R
) =

∏

b∈H1
R

eβσb(σb′+τb′′ ) ρ0(dσb)

AR(σ, dσLR
) =

∏

a∈LR

ρ0[dσa]⊗ δλ\ΛR
τλ\ΛR

(dσλ\ΛR
)

where for each b ∈ HR, we have called b′ and b′′ its neighbors in LR or



102 Chapter 5. Generalized Gibbs measures

filled by the boundary condition τ in ΛR+1, to get for the integral (5.5)

∫

ΩLR

σ1,1

( ∏

b∈HR

∫

E

eβσb(σb′+σb′′ )ρ0[dσb]
) ∏

a∈LR

ρ0[dσa]⊗ δ⊗λ\ΛR
τλ\ΛR

[dτλ\ΛR
].

Now, using another standard trick on Ising spins, we compute

∫

E

eβσb(σb′+σb′′ )ρ0(dσb) =
eβ(σb′+σb′′ ) + e−β(σb′+σb′′ )

2

in such a way that the contribution of the spins in HR does not appear in
the integral anymore, because the set {(b′, b′′), b ∈ HR} is LR. To get a
more standard Ising representation, we would like to obtain now a coupling
interaction between the spins in LR. To do so, write

eβ(σb′+σb′′ ) + e−β(σb′+σb′′ )

2
= Keβ

′σb′σb′′ (5.6)

where K cancels by normalization. On the event {σb′ = +1, σb′′ = +1},
we should have

cosh[2β] = Keβ
′

and on the events {σb′ = −1, σb′′ = +1} and {σb′ = +1, σb′′ = −1},

1 = Ke−β′
.

Hence, one could takeK = eβ
′
and e2β

′
= cosh[2β] i.e. β′ = 1

2 cosh
−1

(
e2β

)

in (5.6), so that

〈σ1,1〉+,ω′τR =

1

Z+,ω′,τR

∫

ΩLR

σ1,1e
β′ ∑

〈aa′〉⊂LR
σaσa′+β′ ∑

〈aa′〉,a∈LR,a′∈λ\ΛR
σaτa′ρLR

[(dσLR
).
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Figure 5 : Ising model on 2Z2 with coupling β′.

This is exactly the magnetization of a ferromagnetic Ising model at in-
verse temperature β′ on 2Z2, with the boundary condition τ on (λ\ΛR)∩
2Z2 and without external field. When the temperature is low enough, we
know by Theorem 2.27 that a phase transition holds and that the above
magnetization is an order parameter. This will eventually lead to essential
discontinuity as soon as β′ > βc, or equivalently β > β̃c =

1
2 cosh

−1
(
e2β

)
.

To rigorously get the essential discontinuity, one should now do the same
computation when Λn is bigger than Λ, i.e for distinct neighborhoods of
the alternating configuration, where all pluses or all minuses far away will
create a external field that eventually selects the different phases. The
procedure is the same but one has to be careful in some computations,
to eventually give rise to the essential discontinuity we seek for. Thus,
this failure of quasilocality comes directly from the presence of a phase
transition in some “hidden system”, that of the internal spins. This is
carefully proved in detail in [36], through the following lemma

Lemma 5.7 (essential discontinuity). Let β > 1
2 cosh

−1
(
e2βc

)
and

let ω′alt be the alternating configuration. ∀ε > 0, ∀N neighborhood of
ω′alt, ∃Ro > 0 such that ∀R > Ro, we can find NR,+, NR,− ⊂ N with
ν[AR,+] = ν[AR,−] > 0 and for ν-a.e. ω′

1 ∈ NR,+, for ν-a.e. ω′
2 ∈ NR,−,

ν[σ′
0|F ′

{0}c ](ω′
1) − ν[σ′

0|F ′
{0}c ](ω′

2) > ε.
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Thus, no version of the conditional probabilities of ν given F ′
{0}c can be

continuous.

This proves Theorem 5.1. This basic example expresses the link be-
tween the pathology and the existence of a phase transition in some “hid-
den” system. The same procedure has to be used for more general RG
transformations, but it is sometimes difficult or even unknown to detect a
bad configuration: Indeed, getting a bad configuration amounts to prove
phase transitions, and this is sometimes, not to say often, difficult or un-
known, involving e.g. sophisticated versions of the theory of Pirogov-Sinai.
We give now a non-exhaustive catalogue of results that have been proved
during the last decades, many other examples are rigorously described in
[36, 33].

5.2.2 General RG transformations, examples and re-
sults

In the general framework, we deal with two configuration spaces, the so-
called original space (Ω,F , ρ) and a so-called image space (Ω′,F ′, ρ′). Most
of the time, the lattice S′ of the image system is smaller, and of the same
kind (e.g. S = Zd, S′ = Zd′

, d ≥ d′); the above decimation transformation
is e.g. sometimes described with 2Zd as image lattice, and the projection
on an hyperplane or “restriction to a layer” is studied in this context of
the renormalization group whereas it does not satisfy all the properties of
our following formal definition10, whose extension to spaces of measures is
standard.

Definition 5.8 (R.G. kernels). A renormalization group transformation
(RGT) is a probability kernel T from (Ω,F) to (Ω′,F ′) such that

1. T carries M+
1,inv(Ω) onto M+

1,inv(Ω).

2. There exist sequences of cubes (Λn)n∈N and (Λ′
n)n∈N, respectively

finite subsets of S and S′, such that:

(a) ∀A′ ∈ F ′
Λ′

n
, the function T (·, A′) is FΛn

-measurable: The be-

havior of the image spins in Λ′
n depends only on the original

spins in Λn.

(b) lim supn→∞
|Λn|
|Λ′

n| ≤ K < ∞.

We give now a few examples where non-Gibbsianness has been proved to
arise. As already claimed, it is more illustrative than exhaustive, a general
method applying to many examples is available in [36] and in related papers

10More precisely, our definition refers to block renormalization transformations and
exclude momentum transformations, which do not satisfy the second requirement.
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from our bibliography. We distinguish two types of examples, those where
the transformation is deterministic, like the above decimation, and the
more general stochastic ones. We first extend the previous results to more
general decimations.

Deterministic transformations

A RGT is said to be deterministic when the probability kernel induced by
T is deterministic in the sense that

∀A′ ∈ F ′,∀ω ∈ Ω, T (ω,A′) = δω′(A′)

where the image ω′ = t(ω) is a function of the original configuration ω.

1. Decimation transformations in higher dimensions:

It is thus a deterministic probability kernel from Ω = EZd

onto itself,
with t(ω) = ω′ and ω′

i = ωbi. In the same spirit of the phenomenon
observed for the 2d Ising model with the alternating configuration,
but with much more difficult proofs in general, usually involving
heavy machinery and tricks to find a special configuration and to
prove it is a point of essential discontinuity. Among other results,
one gets

Theorem 5.9. [36] Let d ≥ 2 and b ≥ 2. Then for all β > β(d, b)
sufficiently large, for any Gibbs measure µ for the standard n.n. ho-
mogeneous Ising model on Zd with coupling J > 0 and magnetic field
h = 0, the decimated measure ν = Tbµ is not quasilocal.

This result is also extended in some open region (β, h) of the phase
diagram, e.g. to small magnetic field at dimension d ≥ 3, for an
adapted special configuration, see Section 4.3.6. in [36]. In view
of the historical aim of renormalization group, which iterates the
transformations to reach the presumably fixed critical point, it is
interesting to mention that the quasilocality property could be re-
covered after iterating this decimation transformation [39], and that
other positive results on conservation on Gibbisanness in other parts
of the phase diagram exist [60].

2. Deterministic majority-rule transformation:

The configuration spaces are still identical and are those of the d-

dimensional Ising model Ω′ = Ω = {−1,+1}Zd

, d ≥ 1. Let b ≥ 1
be an integer and let B0 ∈ S with |B0| odd. Define, ∀i ∈ Zd, Bi to
be B0 translated by b · i: Bi = B0 + b · i. We call this subsets of
Zd blocks. The deterministic kernel is the transformation t(ω) = ω′
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defined by

∀i ∈ Zd, ω′
i =

∑
j∈Bi

ωj

| ∑j∈Bi
ωj |

.

For these transformations, it is sometimes difficult, due to constraints
on the blocks, to find bad configurations leading to non-quasilocality,
see [36]. Nevertheless, one has the

Theorem 5.10. [36] Let J large enough, µ any Gibbs measure for
the 2d Ising model with n.n. coupling J and zero magnetic field. Let
T be the majority-rule with blocks of size |B0| = 7. Then ν = µT is
not quasilocal.

The result has been extended for smaller blocks using a computer-
assisted proof in [68]. Such transformations belong to a more general
family of block-spins transformations, very useful in renormalization
procedures or multi-scale analysis, see e.g [5, 16].

3. Majority-rule on a Cayley tree with overlapping blocks:

The Ising model on a Cayley tree has been introduced in the previous
chapter. We shall restrict ourselves to the simplest rooted-Cayley
tree T 2

0 [8] and let µ be any Gibbs measure for this model (we have
seen in the previous chapter that there always exists at least one
Gibbs measure for this model). We choose the root as the origin and

we denote it r. Define Ω = {−1,+1}T 2
0 and Ω′ = {−1, 0,+1}T 2

0 ,
and let R be any non negative integer to define the closed ball of
S of radius R to be VR = {i ∈ T 2

0 | d(r, i) ≤ R}. Denote also its
boundary by WR = {i ∈ T 2

0 | d(r, i) = R} where d is the canonical
metric on T 2

0 . We shall represent the vertices of T 2
0 by sequences

of bits, defined by recurrence: The representation of the origin r is
the void binary sequence, and that of its neighbors are chosen to
be 0 and 1. Now let R > 0 and let i ∈ WR with representation
i∗. There are only two sites k and l in WR+1 at distance 1 from i.
We define then their representations to be k∗ = i∗0 and l∗ = i∗1,
obtaining a representation of each vertex of T 2

0 . We shall now write
the same symbol i for the vertex or its binary representation i∗.
Define Cr = {r, 0, 1}and ∀j ∈ T 2

0 , j 6= r, the cell

Cj = {j, j0, j1}

where j0 and j1 are the two neighbors of j from the “following” level.
For example, C0 = {0, 00, 01}. Define as well cj = Card(Cj), with
here cj = c = 3, and consider now the deterministic transformation



Arnaud Le Ny 107

t : ω 7−→ t(ω) = ω′ where ω′ is defined by

ω′
j =





+1 iff 1
c

∑
i∈Cj

ωi = +1

0 iff 1
c | ∑i∈Cj

ωi |< 1

−1 iff 1
c

∑
i∈Cj

ωi = −1.

This could be seen as a static version of the voter model, where
a child votes like its parents only when they agree and does not
formulate an opinion otherwise. In this case, due to the overlapping
of the blocks, the failure of quasilocality occurs at all temperatures,
for the very particular null everywhere configuration. An interesting
fact is that the set of bad configurations is topologically rather big
but suspected to be of zero DLR-measure [82].

Theorem 5.11. [82] Let µ be any Gibbs measure for the Ising model
on T 2

0 and let ν be the image of µ by T . Then ν is non quasilocal at
any temperature and cannot be a Gibbs measure.

The previous result could be generalized to non-rooted Cayley trees,
and with other sizes of blocks, also as a stochastic transformation,
modelling the fact that a child does not always vote like its parents,
as follows: Let ξ be a Bernoulli random variable with parameter
ε ∈ [0, 1]. Define the deterministic map tε : ω 7−→ t(ω) = ω′ where
ω′ is defined for all j ∈ T 2

0 by

ω′
j =





+1 iff 1
c

∑
i∈Cj

ωi = +1 and ξ = 1

−1 iff 1
c

∑
i∈Cj

ωi = −1 and ξ = 1

0 if ξ = 0.

Its action is described by a probabilistic kernel Tε defined by:

∀A′ ∈ F ′,∀ω ∈ Ω, Tε(ω,A
′) = (1− ξ)δtε(ω)(A

′) + ξδ0(A
′).

An interesting study would be to analyze the effect of this extra
randomness to the degree of non-Gibbsianness of the image measure.

4. Restriction of Ising model to a layer [98, 112]:

This transformation is not properly speaking a RGT in the sense of
our definition, because of the lack of strict locality. Nevertheless, it
is known to lead to non-Gibbsianness and is a good example of a new
kind of random fields, the weakly Gibbsian measures, which will be
introduced soon [98]. The configuration spaces are Ω = {−1,+1}Z2

and Ω′ = {−1,+1}Z. The transformation is deterministic and de-
fined by t(ω) = ω′ where ω′ is defined by ∀i ∈ Z, ω′

i = ω(i,0) where 0
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denotes here the origin in Z. The interesting fact in this example, to-
gether with the fact that it could seem very natural at a first sight to
consider the projected measure to be Gibbs, is that the original proof
relies on wrong large deviation properties of the projected measure
[112].

Stochastic transformations

In contrast to the deterministic case, a stochastic transformation could
lead to different image configurations, with a certain probability for each.
We have already seen above an example of stochastic RGT on the tree.

1. Stochastic majority-rule for Ising model:

The definition is very similar to the deterministic one, except that
we deal with blocks B0 with |B0| even. The configuration spaces are

still Ω′ = Ω = {−1,+1}Zd

, d ≥ 1. Let b ≥ 1 be an integer and let
B0 ∈ S with |B0| even. Define, ∀i ∈ Zd, Bi to be translate of B0 by
b · i: Bi = B0 + b · i. Let ξ be a Bernoulli random variable on (Ω,F)
with parameter p, most of the time considered to be p = 1

2 . The
stochastic majority-rule is the transformation T which transforms ω
in t(ω) = ω′ with

ω′
i =





+1 if
∑

j∈Bi
ωj > 0

−1 if
∑

j∈Bi
ωj < 0

+1 if
∑

j∈Bi
ωj = 0 and ξ = +1

−1 if
∑

j∈Bi
ωj = 0 and ξ = 0.

2. Kadanoff transformations for the Ising model:

These transformations model a lot of interesting and historical RGT.
We shall not deal with them, but some are widely studied in [56, 63,
36]. Here again the blocks Bi are defined in the same way for i ∈ Zd,

the configuration spaces are Ω = Ω′ = {−1,+1}Zd

and p is a strictly
positive real. The RGT map is defined atom per atom by

T (ω, ω′) =
∏

i∈Zd

exp(pω′
i

∑
j∈Bi

ωj)

2 cosh(p
∑

j∈Bi
σj)

This transformation is also associated with stochastic evolutions of
Gibbs measures, as we shall see. They have been proved to lead
to non-Gibbsianness for d ≥ 2, b ≥ 1 and p finite. It also includes
majority rules or decimations in the limit p → ∞ for suitable blocks.

Many other examples are available in the literature, and as claimed in
[33], the surprise is eventually not that they are non-Gibbsian, but that
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it took so long to realize it, the set of Gibbs measures being topologically
very small [65]. In the same seminal paper [36], positive general results
are given about the action of these transformations on Hamiltonians and
potentials, excluding various scenarii related to figure 1. Here we only
quote them. See the discussions in [43] and [36].

Renormalization transformation on potentials

As explained in the beginning of this chapter, the extension of the renor-
malization transformations to potentials is not always well-defined, whereas
the extension of the RGT to an action on measures is standard and always
possible. Nevertheless, two positive results have been proved by van En-
ter et al., and we introduce them before describing the pathologies of the
renormalization group. We restrict ourselves to a space B1 consisting of
the translation-invariant, continuous and uniformly absolutely convergent
potentials. We introduce first a relation instead of a function:

Definition 5.12 (RGT on interactions). Let T be an RGT. We define
a RG-relation R = RT on interactions by the relation

R = {(Φ,Φ′) ∈ B1 × B1 : ∃µ ∈ Ginv(γ
Φ) s.t. µT ∈ G(γΦ′

)}

where µT is the image measure of µ by T .

The next theorem tells us that R is single-valued and is proved in [36].

Theorem 5.13 (first fundamental theorem of the renormalization
group). Let µ and ν be translation-invariant Gibbs measures with respect
to the same interaction Φ ∈ B1 and let T be a RGT. The following results
are true:

1. Either µT and νT are both non-quasilocal, or else there exists a
quasilocal specification γ′ with which both µT and νT are consistent.

2. Either µT and νT are both non-Gibbsian, or else there exists a uni-
formly absolutely convergent potential Φ′ for which both µT and νT
are Gibbs measures.

5.2.3 Stochastic evolutions of Gibbs measures

Once these RG pathologies have been identified as the manifestation of
non-Gibbsianness, it seemed natural to investigate this question for stochas-
tic Ising models, introduced in the previous chapter. For example, due to
the equilibrium considerations that led to the introduction of the Gibbs
property, it should be plausible to encounter a failure of Gibbsianness in
the course of stochastic evolutions of Gibbs measures, in particular when
the process is out of equilibrium. It is indeed the case during the heating
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of a low temperature Ising model, i.e. the stochastic evolution of a low
temperature Gibbs measure for the ferromagnetic n.n. Ising model during
a high temperature Glauber dynamics. It is not so simple to establish, and
not always true; physical interpretations can be found in [105]. Neverthe-
less, not much is known in non-equilibrium statistical mechanics, so any
information about Gibbsianness in transient regimes is welcome. The first
systematical study of such phenomena has been made in [35], although
similar investigations had been made earlier in [99, 89]. Before describing
a bit more the relationships with (stochastic) RG-transformations through
the description of an infinite-temperature Glauber dynamics, let us quote
their general result.

Theorem 5.14. [35] Let Φ be a translation-invariant potential, µ a cor-
responding translation-invariant Gibbs measure at inverse temperature β
and

(
S(t)

)
t≥0

the semi-group corresponding to a dynamics having µ as

reversible measure. Denote by ν an initial translation-invariant Gibbs dis-
tribution of the a priori configuration. Then

1. For all ν, µ, the time-evolved measure νS(t) is Gibbs for small times
t ≤ t0(β).

2. If µ, ν corresponds to high or infinite temperature Gibbs measures,
then the time evolved measure is Gibbs for all times t.

3. If ν is a low temperature Gibbs measure for some t.i. potential
whereas µ is a high temperature Gibbs measure, then the time evolved
measure is Gibbs for large t. When ν is not a zero temperature Gibbs
measure and µ corresponds to a high temperature with a small mag-
netic filed, Gibbsianness is recovered for larger times.

For the sake of simplicity, we describe the results for infinite tempera-
ture Glauber dynamics of low temperature phases of the Ising model at
dimension d ≥ 2. Starting from the +-phase µ+

β of the Ising model at low

enough temperature β−1 > 0, we apply a stochastic spin-flip dynamics at
rate 1, independently over the sites. The time evolved measure is then
formally11

µβ,t(η) :=
∑

σ∈Ω

µ+
β (σ)

∏

i∈Zd

eηiσiht

2 coshht
, with ht =

1

2
log

1 + e−2t

1− e−2t
. (5.15)

The product kernel in (5.15) is a special case of a Glauber dynamics for
infinite temperature [35, 84], its particular form in terms of a dynami-
cal magnetic field ht being obtained by a tricky use of the small size of

11The summation does not make sense like it is here, because it is perfomed over the
uncountable configuration space Ω. To rigorously define it, one can e.g. work at finite
volume first and consider the thermodynamic limit.
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E = {−1,+1}. This last particular form allows to interpret these dynam-
ics as a Kadanoff-like transformation. It is known that the time-evolved
measure µβ,t tends to a spin-flip invariant product measure on {−1,+1}Zd

,
with t ↑ ∞, which is trivially non-null and quasilocal, and thus Gibbs. Nev-
ertheless, the Gibbs property is lost during this evolution and recovered
only at equilibrium:

Theorem 5.16. [35] Assume that the initial temperature β−1 is smaller
than the critical temperature of the n.n. Ising model for d ≥ 2. Then there
exists t0(β) ≤ t1(β) such that:

1. µβ,t is a Gibbs measure for all 0 ≤ t < t0(β).

2. µβ,t is not a Gibbs measure for all 0 < t1(β) ≤ t < +∞.

Non-Gibbsianness is here related to the possibility of a phase transition
in some constrained model12. There remains a large interval of time where
the validity of the Gibbs property of the time-evolved measure remains
unknown for this lattice model [61]. This has motivated the study of sim-
ilar phenomena for mean-field models in [77], where the sharpness of the
Gibbs/non-Gibbs transition has been proved. This study has required the
introduction of the new notion of Gibbsianness for mean-field models, see
e.g. [59, 75], and the relationships between lattice and mean-field results
encourages us to investigate it further on. Moreover, Gibbianness for short
times has been established for more general local stochastic evolutions in
[84] and the large deviation properties have even been proved to be con-
served during the evolution for the special case of the Glauber dynamics
in [85]. Other sources of non-Gibbsianness during stochastic evolutions,
but concerning the stationary and not the transient regime, have been in-
vestigated in [89, 23, 47] for e.g. discrete dynamics or probabilistic cellular
automata. Similar considerations have led to a short review about the
relationships between non-Gibbsianness and disordered systems in [37].

5.2.4 Joint measure of short range disordered systems

This example has allowed substantial progress in the Dobrushin program
of restoration of Gibbsianness, and reinforces our philosophy of focusing
on continuity properties of conditional probabilities rather than on con-
vergence properties of a potential, as we shall see in next Section. Non-
Gibbsianness has here also been very useful to explain pathologies in the
so-calledMorita approach to disordered systems, see [79, 76] in the proceed-
ings volume [38]. The Random Field Ising Model (RFIM) is an Ising model

12The constrained model is a three dimensional Random Field Ising Model, due to
the randomness of the dynamical field. The possible occurrence of phase transitions for
this model has been proved in [13].
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where the magnetic field h is replaced by (say i.i.d. ±1) random variable ηi
of common law P at each site of the lattice. For a given η = (ηi)i∈S , whose
law is also denoted by P, the corresponding (“quenched”) Gibbs measures
depend on this disorder and are denoted by µ[η]. The Morita approach
[79] considers the joint measure “configuration-disorder”, formally defined
by K(dη, dσ) = µ[η](dσ)P(dη), to be a Gibbs measure for a potential of
the joint variables, but it has been proved in [73] that this measure can be
non-Gibbs for d ≥ 2 and for a small disorder. The mechanism, although
more complicated, is similar to the previous examples, and the arising of
non-quasilocality is made possible when a ferromagnetic ordering is itself
possible in the quenched system, and thus the conditions on d and on the
disorder are those required for such a phase transition to hold in [13]. A
diluted and simpler version of this phenomenon concerns the GriSing ran-
dom field, whose link with Griffiths’s singularities is also very relevant for
its similarities with RG pathologies [40].

5.2.5 Other sources of non-Gibbsianness

Soon after the detection of the renormalization group pathologies as the
manifestation of the occurrence of non-Gibbsianness, the latter phenome-
non has been detected in many other areas of probability theory and sta-
tistical mechanics, like Hidden Markov models, Random-cluster model,
convex combinations of product measures, etc. see [36] or references in
[38].

Before using these examples to emphasize how important are the con-
tinuity properties of conditional probabilities in the Gibbs formalism, we
describe some recent extensions of the Gibbs property within the so-called
Dobrushin program of restoration of Gibbsianness.

5.3 Generalized Gibbs measures

In 1995, in view of the RG pathologies described in [36] and in the physics
literature, Dobrushin launched a program of restoration of Gibbsianness
consisting in two parts [30]:

1. To give an alternative (weaker) definition of Gibbsianness that would
be stable under scaling transformations.

2. To restore the thermodynamic properties of these measures in order
to get a proper definition of equilibrium states.
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5.3.1 Dobrushin program of restoration, Part I

The first part of this program mainly yields two different restoration no-
tions, depending if one focus on a relaxation of the convergence properties
of the potential, that leads to weak Gibbsianness, or on a relaxation on the
topological properties of conditional probabilities, leading then to almost
Gibbsianness or almost quasilocality. The first, reminiscent to the notion
chosen to describe systems with hard-core exclusions or with unbounded
spins [86], appeared to be indeed weaker than the latter. It express con-
sistency w.r.t. an almost surely convergent potential:

Definition 5.17 (Weakly Gibbs). A probability measure µ ∈ M1(Ω) is
said to be weakly Gibbs if there exists a potential Φ and a tail-measurable
set ΩΦ on which Φ is convergent, of full measure µ(ΩΦ) = 1, and such that
µ ∈ G(γΦ).

Tail-measurability is required to ensure that the partition function is
well-defined. Weak Gibbsianness has been proved for most of the renor-
malized measures of the previous section [14, 95, 97, 98] and relies on the
existence of the already mentioned relative energies [99], that usually en-
ables to prove the almost sure convergence of a telescoping potential of
Kozlov type. A non-Gibbsian measure arising in stochastic evolutions has
also been proved to be weakly Gibbsian [23] and joint measures of disor-
dered systems too [74]. It actually seems to be not common in our context
to find a transformation of a Gibbs measure that is not weakly Gibbs,
although examples such as convex combinations of product measures ex-
ist [97, 96]. Moreover, in such a case, the almost sure convergence of the
potential does not tell much about the crucial continuity properties of
conditional probabilities. This has motivated the second main restoration
notion:

Definition 5.18 (Almost Gibbs). A probability measures µ is almost
Gibbs if its finite-volume conditional probabilities are continuous functions
of the boundary conditions, except on a set of µ-measure zero, i.e. if there
exists a specification γ such that µ ∈ G(γ) and µ(Ωγ) = 1.

An almost-sure version of Kozlov-Sullivan’s use of the inclusion-exclusion
principle in the Gibbs representation theorem proves that almost Gibbs

implies weak Gibbs [72, 117, 97], but the converse is not true (see e.g.
[91]). The decimated measure has been proved to be almost Gibbsian in
[45], and the method applies to other renormalized measures [46], but not
for the projection to a layer for which the problem is open. More interest-
ingly, the contrary (almost-sure non-quasilocality) has been proved [74] for
the joint measure of the RFIM, which even has a set of bad configurations
with full measure. The peculiarity of this example appeared to be a good
warning for the importance of quasilocality in the characterization of equi-
librium states for lattice spin systems. In particular, it discriminates the
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weak Gibbs restoration from an almost Gibbs one, due to the consequences
it has on the thermodynamic properties of the corresponding measures, in
the second part of the Dobrushin program.

Other restoration notions (robust Gibbsianness [39], fractal quasilocality
[82], Asymptotically sub-volumic measures [100]) were introduced in the
course of the preceding studies. More recently, an intermediate between
the almost Gibbs and weak Gibbs has been introduced, and seems to be
a very relevant starting definition of generalized Gibbs measure, called
Intuitively weak Gibbsianness in [41]:

Definition 5.19 (Intuitively weak Gibbs). A weakly Gibbsian measure
µ ∈ M+

1 (Ω) is said to be intuitively weak Gibbs if there exists a set Ω1 ⊂
ΩΦ with µ(Ω1) = 1 and s.t. for all σ ∈ Ω,

γΦ
Λ (σΛ|ωΛn\ΛηΛc) −→

Λ↑S
γΦ
Λ (σ|ω) (5.20)

for all ω, η ∈ Ω1.

The notion is intermediate between weak and almost Gibbsianness, the
difference between all these notions being that the convergence (5.20)
holds:

• For all ω and all η when µ is Gibbs (quasilocal).

• For µ-a.e ω and all η when µ is almost Gibbs.

• For µ-a.e ω and µ-a.e η when µ is intuitively weak Gibbs.

The thermodynamic properties of Gibbs measures have been partially
restored for almost Gibbsian measures, whereas weak Gibbsianness seems
to be indeed too weak to be a satisfactory notion from this point of view.

5.3.2 Dobrushin program of restoration, part II

This second part aims thus at the restoration of the thermodynamic prop-
erties of Gibbs measures, mostly in terms of a variational principle involv-
ing thermodynamic functions like entropy, pressure,etc. In our framework
in particular, one would like to identify the equilibrium states as mini-
mizers of the free energy of the system, in virtue of the second law of
thermodynamics. To do so, one should first recover well-defined ther-
modynamic functions at infinite volume for the new families of random
fields introduced above. In the weakly Gibbsian context, this can be done
directly but their existence has to be restricted to typical boundary con-
ditions, see [90, 98, 99], whereas in the case of renormalized measures, the
useful notion of asymptotically decoupled measures introduced by Pfister
[104] ensures their existence and the validity of a large deviation principle:
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Definition 5.21. A measure µ ∈ M+
1,inv(Ω) is asymptotically decoupled

if there exists functions g : N −→ N and c : N −→ [0,∞) s.t.

lim
n→∞

g(n)

n
= 0 and lim

n→∞
c(n)

|Λn|
= 0

and for all n ∈ N, A ∈ FΛn
, B ∈ FΛc

n+g(n)

e−c(n) µ(A)µ(B) ≤ µ(A ∩B) ≤ ec(n) µ(A)µ(B).

This class strictly contains the set of all Gibbs measures and this prop-
erty is conserved under the local RGT considered in these lectures, ensuring
then the existence of the thermodynamic functions considered by Pfister
([104]) for the renormalized measures. Nevertheless, we emphasize that
the existence of relative entropy is still an open problem for the projection
of the Ising model to a layer [45, 46, 98].

Thus, our renormalized measures satisfy the thermodynamical varia-
tional principle whereas the specification independent one has been fully
restored for the decimated measure in [45], using ideas taken from the
concept of global specification [44]. As a corollary this has established the
almost Gibbsianness of this measure, as we see now. Keeping the same
notation and writing ν+ and ν− the decimation of the + and − phases of
the 2d Ising model, one has:

Theorem 5.22. [45] Consider the decimation of the Ising model at β >
βc. Then

1. For every µ ∈ M+
1,inv(Ω), h(µ|ν+) exists and h(ν−|ν+) = 0.

2. ν− ∈ Ginv(γ
+), where γ+ specifies ν+, and they are almost Gibbs.

3. If h(µ|ν+) = 0 and µ(Ωγ+) = 1 then µ ∈ M+
1,inv(Ω).

The proof relies on the general criterion given in Chapter 4, also used
to partially restore the second part of the variational principle in [78].

Another relevant feature described in [78] is the important role played
by the joint measure of the RFIM to discriminate the restoration notion
expressed in terms of potentials (weak Gibbsianness) from topological ones
(e.g. almost quasilocality). Indeed, this joint measure, already identified
to be one of the physically relevant known examples of weakly Gibbsian
measure that is not almost quasilocal, also provides an example where the
(specification-dependent) variational principle fails13. In this situation,

13Depending on the boundary condition used to perform the thermodynamic limit,
one gets two measures described by a different system of conditional probabilities but
with zero relative entropy.
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we have two candidates to represent equilibrium states, corresponding to
different interactions each one saturating the variational principle of the
other, which can be easily seen to be physically meaningless. The fact
that this happens for a weakly and non almost Gibbsian measure clearly
indicates that one has to insist on continuity properties of the conditional
probabilities in order to restore the Gibbs property in the framework of
the Dobrushin program. Together with the Gibbs representation theorem,
this also emphasizes the relevance of the description of Gibbs measures in
the quasilocal framework, i.e. in terms of topological properties of condi-
tional probabilities rather than in terms of potentials. These observations
have motivated a new “DLR-like” approach to mean-field models, initiated
recently in [59, 75, 77, 83].
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[77] C. Külske, A. Le Ny. Spin-flip dynamics of the Curie-Weiss
model: Loss of Gibbsianness with possibly broken symmetry.
Comm. Math. Phys. 271, vol 2:431–454, 2007.
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Bâtiment 425
91405 Orsay Cedex, France
arnaud.leny@math.u-psud.fr
http://www.math.u-psud.fr/˜leny


