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Dear Pat,
You came upon me carving some kind of little figure out of wood

and you said: “Why don’t you make something for me ?”
I asked you what you wanted, and you said, “A box.”
“What for ?”
“To put things in.”
“What things ?”
“Whatever you have,” you said.
Well, here’s your box. Nearly everything I have is in it, and it is

not full. Pain and excitement are in it, and feeling good or bad and
evil thoughts and good thoughts – the pleasure of design and some
despair and the indescribable joy of creation.
And on top of these are all the gratitude and love I have for you.
And still the box is not full.

John

J. Steinbeck
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Introduction

The study of the Cremona group Bir(P2), i.e. the group of birational
maps from P2(C) into itself, started in the XIXth century. The subject
has known a lot of developments since the beginning of the XXIth century;
we will deal with these most recent results. Unfortunately we will not be
exhaustive.

We introduce a special subgroup of the Cremona group: the group
Aut(C2) of polynomial automorphisms of the plane. This subgroup has
been the object of many studies along the XXth century. It is more rigid
so is, in some sense, easier to understand. Indeed Aut(C2) has a structure
of amalgamated product so acts non trivially on a tree (Bass-Serre the-
ory); this allows to give properties satisfied by polynomial automorphisms.
There are a lot of different proofs of the structure of amalgamated product.
We present one of them due to Lamy in Chapter 2; this one is particularly
interesting for us because Lamy considers Aut(C2) as a subgroup of the
Cremona group and works in Bir(P2) (see [128]).

A lot of dynamical aspects of a birational map are controlled by its ac-
tion on the cohomology H2(X,R) of a “good” birational modelX of P2(C).
The construction of such a model is not canonical; so Manin has introduced
the space of infinite dimension of all cohomological classes of all birational
models of P2(C). Its completion for the bilinear form induced by the cup
product defines a real Hilbert space Z(P2) endowed with an intersection
form. One of the two sheets of the hyperboloid {[D] ∈ Z(P2) | [D]2 = 1}
owns a metric which yields a hyperbolic space (Gromov sense); let us de-
note it by HZ . We get a faithful representation of Bir(P2) into Isom(HZ).
The classification of isometries into three types has an algrebraic-geometric
meaning and induces a classification of birational maps ([43]); it is strongly
related to the classification of Diller and Favre ([73]) built on the degree
growth of the sequence {deg fn}n∈N. Such a sequence either is bounded
(elliptic maps), or grows linearly (de Jonquières twists), or grows quadrati-
cally (Halphen twists), or grows exponentially (hyperbolic maps). We give
some applications of this construction: Bir(P2) satisfies the Tits alternative
([43]) and is not simple ([46]).

9



10 Julie Déserti

One of the oldest results about the Cremona group is that any bi-
rational map of the complex projective plane is a product of quadratic
birational maps up to an automorphism of the complex projective plane.
It is thus natural to study the quadratic birational maps and also the cubic
ones in order to make in evidence some direct differences ([52]). In Chap-
ter 4 we present a stratification of the set of quadratic birational maps.
We recall that this set is smooth. We also give a geometric description of
the quadratic birational maps and a criterion of birationality for quadratic
rational maps. We then deal with cubic birational maps; the set of such
maps is not smooth anymore.

While Nœther was interested in the decomposition of the birational
maps, some people studied finite subgroups of the Cremona group ([25,
122, 172]). A strongly related problem is the characterization of the bi-
rational maps that preserve curves of positive genus. In Chapter 5 we
give some statements and ideas of proof on this subject; people recently
went back to this domain [12, 15, 16, 29, 61, 79, 33, 150, 74], providing
new results about the number of conjugacy classes in Bir(P2) of birational
maps of order n for example ([61, 27]). We also present another construc-
tion of birational involutions related to holomorphic foliations of degree 2
on P2(C) (see [50]).

A classical question in group theory is the following: let G be a group,
what is the automorphisms group Aut(G) of G ? For example, the auto-
morphisms of PGLn(C) are, for n ≥ 3, obtained from the inner automor-
phisms, the involution u 7→ tu−1 and the automorphisms of the field C. A
similar result holds for the affine group of the complex line C; we give a
proof of it in Chapter 6. We also give an idea of the description of the
automorphisms group of Aut(C2), resp. Bir(P2) (see [66, 67]).

Margulis studies linear representations of the lattices of simple, real Lie
groups of real rank strictly greater than 1; Zimmer suggests to generalize
it to non-linear ones. In that spirit we expose the representations of the
classical lattices SLn(Z) into the Cremona group ([65]). We see, in Chap-
ter 7, that there is a description of embeddings of SL3(Z) into Bir(P2)
(up to conjugation such an embedding is the canonical embedding or the
involution u 7→ tu−1); therefore SLn(Z) cannot be embedded as soon as
n ≥ 4.

The description of the centralizers of discrete dynamical systems is
an important problem in dynamic; it allows to measure algebraically the
chaos of such a system. In Chapter 8 we describe the centralizer of bi-
rational maps. Methods are different for elliptic maps of infinite order,
de Jonquières twists, Halphen twists and hyperbolic maps. In the first
case, we can give explicit formulas ([32]); in particular the centralizer is
uncountable. In the second case, we do not always have explicit formulas
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([51])... When f is an Halphen twist, the situation is different: the cen-
tralizer contains a subgroup of finite index which is abelian, free and of
rank ≤ 8 (see [43, 99]). Finally for a hyperbolic map f the centralizer is
an extension of a cyclic group by a finite group ([43]).

The study of automorphisms of compact complex surfaces with positive
entropy is strongly related with birational maps of the complex projective
plane. Let f be an automorphism of a compact complex surface S with
positive entropy; then either f is birationally conjugate to a birational
map of the complex projective plane, or the Kodaira dimension of S is
zero and then f is conjugate to an automorphism of the unique minimal
model of S which has to be a torus, a K3 surface or an Enriques surface
([40]). The case of K3 surfaces has been studied in [41, 134, 146, 162, 171].
One of the first example given in the context of rational surfaces is due
to Coble ([57]). Let us mention another well-known example: let us con-
sider Λ = Z[i] and E = C/Λ. The group SL2(Λ) acts linearly on C2 and
preserves the lattice Λ×Λ; then any element A of SL2(Λ) induces an auto-
morphism fA on E× E which commutes with ι(x, y) = (ix, iy). The auto-

morphism fA lifts to an automorphism f̃A on the desingularization of the
quotient (E×E)/ι, which is a Kummer surface. This surface is rational and

the entropy of f̃A is positive as soon as one of the eigenvalues of A has
modulus > 1.

We deal with surfaces obtained by blowing up the complex projective
plane in a finite number of points. This is justified by Nagata theorem (see
[138, Theorem 5]): let S be a rational surface and let f be an automorphism
on S such that f∗ is of infinite order; then there exists a sequence of holo-
morphic applications πj+1 : Sj+1 → Sj such that S1 = P2(C), SN+1 = S
and πj+1 is the blow-up of pj ∈ Sj . Such surfaces are called basic surfaces.
Nevertheless a surface obtained from P2(C) by generic blow-ups has no
non trivial automorphism ([114, 123]).

Using Nagata and Harbourne works McMullen gives an analogous re-
sult of Torelli’s Theorem for K3 surfaces ([135]): he constructs automor-
phisms on rational surfaces prescribing the action of the automorphisms
on the cohomological groups of the surface. These surfaces are rational
ones having, up to a multiplicative factor, a unique 2-form Ω such that
Ω is meromorphic and Ω does not vanish. If f is an automorphism on S
obtained via this construction, f∗Ω is proportional to Ω and f preserves
the poles of Ω. We also have the following property: when we project S on
the complex projective plane, f induces a birational map which preserves
a cubic (Chapter 10).

In [19, 20, 21] the authors consider birational maps of P2(C) and adjust
the coefficients in order to find, for any of these maps f , a finite sequence



12 Julie Déserti

of blow-ups π : Z → P2(C) such that the induced map fZ = π−1fπ is
an automorphism of Z. Some of their works are inspired by [113, 112,
165, 166, 167]. More precisely Bedford and Kim produce examples which
preserve no curve and also non trivial continuous families (Chapter 11).
They prove dynamical properties such as coexistence of rotation domains
of rank 1 and 2 (Chapter 11).

In [69] the authors study a family of birational maps (Φn)n≥2; they

construct, for any n, two points infinitely near P̂1 and P̂2 having the
following property: Φn induces an isomorphism between P2(C) blown

up in P̂1 and P2(C) blown up in P̂2. Then they give general conditions
on Φn allowing them to give automorphisms ϕ of P2(C) such that ϕΦn
is an automorphism of P2(C) blown up in P̂1, ϕ(P̂2), (ϕΦn)ϕ(P̂2), . . . ,

(ϕΦn)
k ϕ(P̂2) = P̂1. This construction does not work only for Φn, they

apply it to other maps (Chapter 12). They use the theory of deformations
of complex manifolds to describe explicitely the small deformations of ra-
tional surfaces; this allows them to give a simple criterion to determine the
number of parameters of the deformation of a given basic surface ([69]).
We end by a short scholium about the construction of automorphisms with
positive entropy on rational non-minimal surfaces obtained from birational
maps of the complex projective plane.
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mes problèmes LaTeX.
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Chapter 1

First steps

1.1 Divisors and intersection theory

Let X be an algebraic variety. A prime divisor on X is an irreducible
closed subset of X of codimension 1.

Examples 1.1.1. • If X is a surface, the prime divisors of X are the
irreducible curves that lie on it.

• If X = Pn(C) then prime divisors are given by the zero locus of
irreducible homogeneous polynomials.

A Weil divisor on X is a formal finite sum of prime divisors with
integer coefficients

m∑

i=1

aiDi, m ∈ N, ai ∈ Z, Di prime divisor of X.

Let us denote by Div(X) the set of all Weil divisors on X.
If f ∈ C(X)∗ is a rational function and D a prime divisor we can define

the multiplicity νf (D) of f at D as follows:

• νf (D) = k > 0 if f vanishes on D at the order k;

• νf (D) = −k if f has a pole of order k on D;

• and νf (D) = 0 otherwise.

To any rational function f∈C(X)∗ we associate a divisor div(f)∈Div(X)
defined by

div(f) =
∑

D prime
divisor

νf (D)D.

13



14 Julie Déserti

Note that div(f) ∈ Div(X) since νf (D) is zero for all but finitely
many D. Divisors obtained like that are called principal divisors. As
div(fg) = div(f) + div(g) the set of principal divisors is a subgroup
of Div(X).

Two divisors D, D′ on an algebraic variety are linearly equivalent
if D−D′ is a principal divisor. The set of equivalence classes corresponds
to the quotient of Div(X) by the subgroup of principal divisors; when X
is smooth this quotient is isomorphic to the Picard group Pic(X). 1

Example 1.1.2. Let us see that Pic(Pn) = ZH where H is the divisor of
an hyperplane.

Consider the homorphism of groups given by

Θ: Div(Pn) → Z, D of degree d 7→ d.

Let us first remark that its kernel is the subgroup of principal divisors.
Let D =

∑
aiDi be a divisor in the kernel, where each Di is a prime

divisor given by an homogeneous polynomial fi ∈ C[x0, . . . , xn] of some
degree di. Since

∑
aidi = 0, f =

∏
faii belongs to C(Pn)∗. We have

by construction D = div(f) so D is a principal divisor. Conversely any
principal divisor is equal to div(f) where f = g/h for some homogeneous
polynomials g, h of the same degree. Thus any principal divisor belongs to
the kernel.

Since Pic(Pn) is the quotient of Div(Pn) by the subgroup of princi-
pal divisors, we get, by restricting Θ to the quotient, an isomorphism
Pic(Pn) → Z. We conclude by noting that an hyperplane is sent on 1.

We can define the notion of intersection.

Proposition 1.1.3 ([109]). Let S be a smooth projective surface. There
exists a unique bilinear symmetric form

Div(S)×Div(S) → Z, (C,D) 7→ C ·D

having the following properties:

• if C and D are smooth curves meeting transversally then C · D =
#(C ∩D);

• if C and C ′ are linearly equivalent then C ·D = C ′ ·D.

In particular this yields an intersection form

Pic(S)× Pic(S) → Z, (C,D) 7→ C ·D.
1The Picard group of X is the group of isomorphism classes of line bundles on X.
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Given a point p in a smooth algebraic variety X of dimension n we say
that π : Y → X is a blow-up of p ∈ X if Y is a smooth variety, if

π|Y \{π−1(p)} : Y \ {π−1(p)} → X \ {p}

is an isomorphism and if π−1(p) ≃ Pn−1(C). Set E = π−1(p); E is called
the exceptional divisor .

If π : Y → X and π′ : Y ′ → X are two blow-ups of the same point p
then there exists an isomorphism ϕ : Y → Y ′ such that π = π′ϕ. So we
can speak about the blow-up of p ∈ X.

Remark 1.1.4. When n = 1, π is an isomorphism but when n ≥ 2 it is
not: it contracts E = π−1(p) ≃ Pn−1(C) onto the point p.

Example 1.1.5. We now describe the blow-up of (0 : 0 : 1) in P2(C). Let
us work in the affine chart z = 1, i.e. in C2 with coordinates (x, y). Set

Bl(0,0)P2 =
{(

(x, y), (u : v)
)
∈ C2 × P1

∣∣xv = yu
}
.

The morphism π : Bl(0,0)P2 → C2 given by the first projection is the blow-
up of (0, 0):

• First we can note that π−1(0, 0) =
{(

(0, 0), (u : v)
) ∣∣ (u : v) ∈ P1

}
so

E = π−1(0, 0) is isomorphic to P1;

• Let q = (x, y) be a point of C2 \ {(0, 0)}. We have

π−1(q) =
{(

(x, y), (x : y)
)}

∈ Bl(0,0)P2 \ E

so π|Bl(0,0)P2\E is an isomorphism, the inverse being

(x, y) 7→
(
(x, y), (x : y)

)
.

How to compute ? In affine charts: let U (resp. V ) be the open subset
of Bl(0,0)P2 where v 6= 0 (resp. u 6= 0). The open subset U is isomorphic
to C2 via the map

C2 → U, (y, u) 7→
(
(yu, y), (u : 1)

)
;

we can see that V is also isomorphic to C2. In local coordinates we can
define the blow-up by

C2 → C2, (y, u) 7→ (yu, y), E is described by {y = 0}

C2 → C2, (x, v) 7→ (x, xv), E is described by {x = 0}
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Let π : BlpS → S be the blow-up of the point p ∈ S. The morphism π in-
duces a map π∗ from Pic(S) to Pic(BlpS) which sends a curve C on π−1(C).

If C ⊂ S is irreducible, the strict transform C̃ of C is C̃ = π−1(C \ {p}).
We now recall the definition of multiplicity of a curve at a point .

If C ⊂ S is a curve and p is a point of S, we can define the multiplicity
mp(C) of C at p. Let m be the maximal ideal of the ring of functions
Op,S

2. Let f be a local equation of C; then mp(C) can be defined as the
integer k such that f ∈ mk \mk+1. For example if S is rational, we can find
a neighborhood U of p in S with U ⊂ C2, we can assume that p = (0, 0)
in this affine neighborhood, and C is described by the equation

n∑

i=1

Pi(x, y)=0, Pi homogeneous polynomials of degree i in two variables.

The multiplicity mp(C) is equal to the lowest i such that Pi is not equal
to 0. We have

• mp(C) ≥ 0;

• mp(C) = 0 if and only if p 6∈ C;

• mp(C) = 1 if and only if p is a smooth point of C.

Assume that C and D are distinct curves with no common component
then we define an integer (C ·D)p which counts the intersection of C and D
at p:

• it is equal to 0 if either C or D does not pass through p;

• otherwise let f , resp. g be some local equation of C, resp. D in
a neighborhood of p and define (C · D)p to be the dimension of
Op,S/(f, g).

This number is related to C ·D by the following statement.

Proposition 1.1.6 ([109], Chapter V, Proposition 1.4). If C and D are
distinct curves without any common irreducible component on a smooth
surface, we have

C ·D =
∑

p∈C∩D
(C ·D)p;

in particular C ·D ≥ 0.

2Let us recall that if X is a quasi-projective variety and if x is a point of X, then
Op,X is the set of equivalence classes of pairs (U, f) where U ⊂ X is an open subset
x ∈ U and f ∈ C[U ].
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Let C be a curve in S, p = (0, 0) ∈ S. Let us take local coordinates x,
y at p and let us set k = mp(C); the curve C is thus given by

Pk(x, y) + Pk+1(x, y) + . . .+ Pr(x, y) = 0,

where Pi denotes a homogeneous polynomial of degree i. The blow-up of p
can be viewed as (u, v) 7→ (uv, v); the pull-back of C is given by

vk
(
pk(u, 1) + vpk+1(u, 1) + . . .+ vr−kpr(x, y)

)
= 0,

i.e. it decomposes into k times the exceptional divisor E = π−1(0, 0) =
(v = 0) and the strict transform. So we have the following statement:

Lemma 1.1.7. Let π : BlpS → S be the blow-up of a point p ∈ S. We have
in Pic(BlpS)

π∗(C) = C̃ +mp(C)E

where C̃ is the strict transform of C and E = π−1(p).

We also have the following statement.

Proposition 1.1.8 ([109], Chapter V, Proposition 3.2). Let S be a smooth
surface, let p be a point of S and let π : BlpS → S be the blow-up of p. We
denote by E ⊂ BlpS the curve π−1(p) ≃ P1. We have

Pic(BlpS) = π∗Pic(S) + ZE.

The intersection form on BlpS is induced by the intersection form on S via
the following formulas

• π∗C · π∗D = C ·D for any C, D ∈ Pic(S);

• π∗C · E = 0 for any C ∈ Pic(S);

• E2 = E · E = −1;

• C̃2 = C2− 1 for any smooth curve C passing through p and where C̃
is the strict transform of C.

If X is an algebraic variety, the nef cone Nef(X) is the cone of divi-
sors D such that D · C ≥ 0 for any curve C in X.

1.2 Birational maps

A rational map from P2(C) into itself is a map of the following type

f : P2(C) 99K P2(C), (x : y : z) 99K (f0(x, y, z) : f1(x, y, z) : f2(x, y, z))
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where the fi’s are homogeneous polynomials of the same degree without
common factor.

A birational map from P2(C) into itself is a rational map

f : P2(C) 99K P2(C)

such that there exists a rational map ψ from P2(C) into itself satisfying
f ◦ ψ = ψ ◦ f = id.

The Cremona group Bir(P2) is the group of birational maps from
P2(C) into itself. The elements of the Cremona group are also called
Cremona transformations. An element f of Bir(P2) is equivalently
given by (x, y) 7→ (f1(x, y), f2(x, y)) where C(f1, f2) = C(x1, x2), i.e.

Bir(P2) ≃ AutC(C(x, y)).

The degree of f : (x : y : x) 99K (f0(x, y, z) : f1(x, y, z) : f2(x, y, z)) ∈
Bir(P2) is equal to the degree of the fi’s: deg f = deg fi.

Examples 1.2.1. • Every automorphism

f : (x : y : z) 99K (a0x+a1y+a2z : a3x+a4y+a5z : a6x+a7y+a8z),

det(ai) 6= 0

of the complex projective plane is a birational map. The degree of f
is equal to 1. In other words Aut(P2) = PGL3(C) ⊂ Bir(P2).

• The map σ : (x : y : z) 99K (yz : xz : xy) is rational; we can verify
that σ ◦ σ = id, i.e. σ is an involution so σ is birational. We have:
deg σ = 2.

Definitions 1.2.2. Let f : (x:y:z)99K(f0(x, y, z) : f1(x, y, z) : f2(x, y, z))
be a birational map of P2(C); then:

• the indeterminacy locus of f , denoted by Ind f , is the set

{
m ∈ P2(C)

∣∣ f0(m) = f1(m) = f2(m) = 0
}

• and the exceptional locus Exc f of f is given by

{
m ∈ P2(C)

∣∣ det jac(f)(m) = 0
}
.

Examples 1.2.3. • For any f in PGL3(C)=Aut(P2) we have Ind f =
Exc f = ∅.
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• Let us denote by σ the map defined by σ : (x : y : z) 99K (yz : xz : xy);
we note that

Excσ =
{
x = 0, y = 0, z = 0

}
,

Indσ =
{
(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)

}
.

• If ρ is the following map ρ : (x : y : z) 99K (xy : z2 : yz), then

Exc ρ =
{
y = 0, z = 0

}
& Ind ρ =

{
(1 : 0 : 0), (0 : 1 : 0)

}
.

Definition 1.2.4. Let us recall that if X is an irreducible variety and Y
a variety, a rational map f : X 99K Y is a morphism from a non-empty
open subset U of X to Y .

Let f : P2(C) 99K P2(C) be the birational map given by

(x : y : z) 99K (f0(x, y, z) : f1(x : y : z) : f2(x, y, z))

where the fi’s are homogeneous polynomials of the same degree ν, and
without common factor. The linear system Λf of f is the pre-image
of the linear system of lines of P2(C); it is the system of curves given
by

∑
aifi = 0 for (a0 : a1 : a2) in P2(C). Let us remark that if A is

an automorphism of P2(C), then Λf = ΛAf . The degree of the curves
of Λf is ν, i.e. it coincides with the degree of f . If f has one point of
indeterminacy p1, let us denote by π1 : Blp1P2 → P2(C) the blow-up of
p1 and E1 the exceptional divisor. The map ϕ1 = f ◦ π1 is a birational
map from Blp1P2 into P2(C). If ϕ1 is not defined at one point p2 then we
blow it up via π2 : Blp1,p2P2 → P2(C); set E2 = π−1

2 (p2). Again the map
ϕ2 = ϕ1 ◦ π1 : Blp1,p2P2 99K P2(C) is a birational map. We continue the
same processus until ϕr becomes a morphism. The pi’s are called base-
points of f or base-points of Λf . Let us describe Pic(Blp1,...,prP2). First
Pic(P2) = ZL where L is the divisor of a line (Example 1.1.2). Set Ei =
(πi+1 . . . πr)

∗Ei and ℓ = (π1 . . . πr)
∗(L). Applying r times Proposition 1.1.8

we get

Pic(Blp1,...,prP2) = Zℓ⊕ ZE1 ⊕ . . .⊕ ZEr.

Moreover all elements of the basis (ℓ, E1, . . . , Er) satisfy the following re-
lations

ℓ2 = ℓ · ℓ = 1, E2
i = −1,

Ei · Ej = 0 ∀ 1 ≤ i 6= j ≤ r, Ei · ℓ = 0 ∀1 ≤ i ≤ r.

The linear system Λf consists of curves of degree ν all passing through
the pi’s with multiplicity mi. Set Ei = (πi+1 . . . πr)

∗Ei. Applying r times
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Lemma 1.1.7 the elements of Λϕr
are equivalent to νL−∑r

i=1miEi where L
is a generic line. Remark that these curves have self-intersection

ν2 −
r∑

i=1

m2
i .

All members of a linear system are linearly equivalent and the dimension
of Λϕr

is 2 so the self-intersection has to be non-negative. This implies
that the number r exists, i.e. the number of base-points of f is finite.
Let us note that by construction the map ϕr is a birational morphism
from Blp1,...,prP2 to P2(C) which is the blow-up of the points of f−1; we
have the following diagram

S′

πr◦...◦π1

����
��

��
�� ϕr

��>
>>

>>
>>

>

S
f

//_______ S̃

The linear system Λf of f corresponds to the strict pull-back of the system
OP2(1) of lines of P2(C) by ϕ. The system Λϕr

which is its image on
Blp1,...,prP2 is the strict pull-back of the system OP2(1). Let us consider
a general line L of P2(C) which does not pass through the pi’s; its pull-
back ϕ−1

r (L) corresponds to a smooth curve on Blp1,...,prP2 which has
self-intersection −1 and genus 0. We thus have (ϕ−1

r (L))2 = 1 and by
adjunction formula

ϕ−1
r (L) · KBlp1,...,prP2 = −3.

Since the elements of Λϕr
are equivalent to

νL−
r∑

i=1

miEi

and since KBlp1,...,prP2 = −3L+
∑r
i=1Ei we have

r∑

i=1

mi = 3(ν − 1),

r∑

i=1

m2
i = ν2 − 1.

In particular if ν = 1 the map f has no base-points. If ν = 2 then r = 3
and m1 = m2 = m3 = 1. As we will see later (Chapter 4) it doesn’t mean
that “there is one quadratic birational map”.

So there are three standard ways to describe a Cremona map

• the explicit formula (x : y : z) 99K (f0(x, y, z) : f1(x, y, z) : f2(x, yz))
where the fi’s are homogeneous polynomials of the same degree and
without common factor;
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• the data of the degree of the map, the base-points of the map and
their multiplicity (it defines a map up to an automorphism);

• the base-points of π and the curves contracted by η with the nota-
tions of Theorem 1.3.1 (it defines a map up to an automorphism).

1.3 Zariski’s theorem

Let us recall the following statement.

Theorem 1.3.1 (Zariski, 1944). Let S, S̃ be two smooth projective surfaces

and let f : S 99K S̃ be a birational map. There exists a smooth projective
surface S′ and two sequences of blow-ups π1 : S

′ → S, π2 : S
′ → S̃ such that

f = π2π
−1
1

S′

π1

����
��

��
�� π2

��>
>>

>>
>>

>

S
f

//_______ S̃

Example 1.3.2. The involution

σ : P2(C) 99K P2(C), (x : y : z) 99K (yz : xz : xy)

is the composition of two sequences of blow-ups with

A = (1 : 0 : 0), B = (0 : 1 : 0), C = (0 : 0 : 1),

LAB (resp. LAC , resp. LBC) the line passing through A and B (resp. A
and C, resp. B and C) EA (resp. EB , resp. EC) the exceptional divisor

obtained by blowing up A (resp. B, resp. C) and L̃AB (resp. L̃AC , resp.

L̃BC) the strict transform of LAB (resp. LAC , resp. LBC).
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There are two steps in the proof of Theorem 1.3.1. The first one is to
compose f with a sequence of blow-ups in order to remove all the points of
indeterminacy (remark that this step is also possible with a rational map
and can be adapted in higher dimension); we thus have

S′

π1

����
��

��
�� f̃

��>
>>

>>
>>

>

S
f

//_______ S̃

The second step is specific to the case of birational map between two
surfaces and can be stated as follows.

Proposition 1.3.3 ([128]). Let f : S → S′ be a birational morphism be-
tween two surfaces S and S′. Assume that f−1 is not defined at a point
p of S′; then f can be written πφ where π : BlpS

′ → S′ is the blow-up of
p ∈ S′ and φ a birational morphism from S to BlpS

′

BlpS
′

π

!!D
DD

DD
DD

D

S

φ
=={{{{{{{{

f
// S′

Before giving the proof of this result let us give a useful Lemma.

Lemma 1.3.4 ([13]). Let f : S 99K S′ be a birational map between two
surfaces S and S′. If there exists a point p ∈ S such that f is not defined
at p there exists a curve C on S′ such that f−1(C) = p.

Proof of the Proposition 1.3.3. Assume that φ = π−1f is not a morphism.
Let m be a point of S such that φ is not defined at m. On the one hand
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f(m) = p and f is not locally invertible at m, on the other hand there
exists a curve in BlpS

′ contracted on m by φ−1 (Lemma 1.3.4). This curve
is necessarily the exceptional divisor E obtained by blowing up.

Let q1, q2 be two different points of E at which φ−1 is well defined and
let C1, C2 be two germs of smooth curves transverse to E. Then π(C1)
and π(C2) are two germs of smooth curve transverse at p which are the
image by f of two germs of curves at m. The differential of f at m is thus
of rank 2: contradiction with the fact that f is not locally invertible at m.

φ−1(C2)

f

πφ

q2

E

C1 C2

π(C2)

mφ−1(C1)

p = f(m)

π(C1)

q1

S
S′

S̃

We say that f : S 99K P2(C) is induced by a polynomial automor-
phism3 of C2 if

• S = C2 ∪ D where D is a union of irreducible curves, D is called
divisor at infinity ;

• P2(C) = C2 ∪ L where L is a line, L is called line at infinity ;

• f induces an isomorphism between S \D and P2(C) \ L.

If f : S 99K P2(C) is induced by a polynomial automorphism of C2 it
satisfies some properties:

3A polynomial automorphism of C2 is a bijective application of the following type

f : C2 → C2, (x, y) 7→ (f1(x, y), f2(x, y)), fi ∈ C[x, y].
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Lemma 1.3.5. Let S be a surface. Let f be a birational map from S
to P2(C) induced by a polynomial automorphism of C2. Assume that f is
not a morphism. Then

• f has a unique point of indeterminacy p1 on the divisor at infinity;

• f has base-points p2, . . ., ps and for all i = 2, . . . , s the point pi is
on the exceptional divisor obtained by blowing up pi−1;

• each irreducible curve contained in the divisor at infinity is contracted
on a point by f ;

• the first curve contracted by π2 is the strict transform of a curve
contained in the divisor at infinity;

• in particular if S = P2(C) the first curve contracted by π2 is the
transform of the line at infinity (in the domain).

Proof. According to Lemma 1.3.4 if p is a point of indeterminacy of f there
exists a curve contracted by f−1 on p. As f is induced by an automorphism
of C2 the unique curve on P2(C) which can be blown down is the line
at infinity so f has at most one point of indeterminacy. As f is not a
morphism, it has exactly one.

The second assertion is obtained by induction.
Each irreducible curve contained in the divisor at infinity is either con-

tracted on a point, or sent on the line at infinity in P2(C). Since f−1

contracts the line at infinity on a point the second eventuality is excluded.
According to Theorem 1.3.1 we have

S′

π1

����
��

��
�� π2

""D
DD

DD
DD

D

S
f

//_______ P2(C)

where S′ is a smooth projective surface and π1 : S
′ → S, π2 : S

′ → P2(C)
are two sequences of blow-ups. The divisor at infinity in S′ is the union of

• a divisor of self-intersection −1 obtained by blowing-up ps,

• the other divisors, all of self-intersection ≤ −2, produced in the se-
quence of blow-ups,

• and the strict transform of the divisor at infinity in S′.

The first curve contracted by π2 is of self-intersection −1 and cannot be the
last curve produced by π1 (otherwise ps is not a point of indeterminacy); so
the first curve contracted by π2 is the strict transform of a curve contained
in the divisor at infinity.

The last assertion follows from the previous one.
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Some subgroups of the
Cremona group

2.1 A special subgroup: the group of poly-
nomial automorphisms of the plane

A polynomial automorphism of C2 is a bijective application of the
following type

f : C2 → C2, (x, y) 7→ (f1(x, y), f2(x, y)), fi ∈ C[x, y].

The degree of f = (f1, f2) is defined by deg f = max(deg f1,deg f2). Note
that degψfψ−1 6= deg f in general so we define the first dynamical
degree of f

d(f) = lim(deg fn)1/n

which is invariant under conjugacy1. The set of the polynomial automor-
phisms is a group denoted by Aut(C2).

Examples 2.1.1. • The map

C2 → C2, (x, y) 7→ (a1x+ b1y + c1, a2x+ b2y + c2),

ai, bi, ci ∈ C, a1b2 − a2b1 6= 0

is an automorphism of C2. The set of all these maps is the affine
group A.

1The limit exists since the sequence {deg fn}n∈N is submultiplicative

25
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• The map

C2 → C2, (x, y) 7→ (αx+ P (y), βy + γ),

α, β, γ ∈ C, αβ 6= 0, P ∈ C[y]

is an automorphism of C2. The set of all these maps is a group, the
elementary group E.

• Of course

S = A ∩ E =
{
(a1x+ b1y + c1, b2y + c2)

∣∣ ai, bi, ci ∈ C, a1b2 6= 0
}

is a subgroup of Aut(C2).

The group Aut(C2) has a very special structure.

Theorem 2.1.2 (Jung’s Theorem [121]). The group Aut(C2) is the amal-
gamated product of A and E along S :

Aut(C2) = A ∗S E.

In other words A and E generate Aut(C2) and each element f in Aut(C2)\S
can be written as follows

f = (a1)e1 . . . an(en), ei ∈ E \ A, ai ∈ A \ E.

Moreover this decomposition is unique modulo the following relations

aiei = (ais)(s
−1ei), ei−1ai = (ei−1s

′)(s′−1ai), s, s′ ∈ S.

Remark 2.1.3. The Cremona group is not an amalgam ([59]). Neverthe-
less we know generators for Bir(P2) :

Theorem 2.1.4 ([143, 144, 145, 49]). The Cremona group is generated

by Aut(P2) = PGL3(C) and the involution
(

1
x ,

1
y

)
.

There are many proofs of Theorem 2.1.2; you can find a “historical
review” in [128]. We will now give an idea of the proof done in [128] and
give details in §2.2. Let

f̃ : (x, y) 7→ (f̃1(x, y), f̃2(x, y))

be a polynomial automorphism of C2 of degree ν. We can view f̃ as a
birational map:

f : P2(C) 99K P2(C), (x : y : z) 99K
(
zν f̃1

(x
z
,
y

z

)
: zν f̃2

(x
z
,
y

z

)
: zν

)
.
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Lamy proved there exists ϕ ∈ Bir(P2) induced by a polynomial automor-
phism of C2 such that # Ind fϕ−1 < #Ind f ; more precisely “ϕ comes
from an elementary automorphism”. Proceeding recursively we obtain a
map g such that #Ind f = 0, in other words an automorphism of P2(C)
which gives an affine automorphism.

According to Bass-Serre theory ([159]) we can canonically associate a
tree to any amalgamated product. Let T be the tree associated to Aut(C2):

• the disjoint union of Aut(C2)/E and Aut(C2)/A is the set of vertices,

• Aut(C2)/S is the set of edges.

All these quotients must be understood as being left cosets; the cosets
of f ∈ Aut(C2) are noted respectively fE, fA, and fS. By definition the
edge hS links the vertices fA and gE if hS ⊂ fA and hS ⊂ gE (and so fA =
hA and gE = hE). In this way we obtain a graph; the fact that A and E are
amalgamated along S is equivalent to the fact that T is a tree ([159]). This
tree is uniquely characterized (up to isomorphism) by the following pro-
perty: there exists an action of Aut(C2) on T , such that the fundamental
domain of this action is a segment, i.e. an edge and two vertices, with E

and A equal to the stabilizers of the vertices of this segment (and so S is the
stabilizer of the entire segment). This action is simply the left translation:
g(hS) = (g ◦ h)S.

eaE aeA

ẽaE

eãE

ẽA

idE

eA

idA

ãE

ẽãE ãẽA

ãeA

aẽA

aE

From a dynamical point of view affine automorphisms and elemen-
tary automorphisms are simple. Nevertheless there exist some elements in
Aut(C2) with a rich dynamic; this is the case of Hénon automorphisms,
automorphisms of the type ϕg1 . . . gpϕ

−1 with

ϕ ∈ Aut(C2), gi = (y, Pi(y)− δix), Pi ∈ C[y], degPi ≥ 2, δi ∈ C∗.

Note that gi =

∈ A\E︷ ︸︸ ︷
(y, x)

∈ E\A︷ ︸︸ ︷
(−δix+ Pi(y), y) .
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Using Jung’s theorem, Friedland and Milnor proved the following state-
ment.

Proposition 2.1.5 ([92]). Let f be an element of Aut(C2).

Either f is conjugate to an element of E, or f is a Hénon automor-
phism.

If f belongs to E, then d(f) = 1. If f = g1 . . . gp with gi = (y, Pi(y) −

δix), then d(f) =

p∏

i=1

deg gi ≥ 2. Then we have

• d(f) = 1 if and only if f is conjugate to an element of E;

• d(f) > 1 if and only if f is a Hénon automorphism.

Hénon automorphisms and elementary automorphisms are very
different:

• Hénon automorphisms:

no invariant rational fibration ([36]),

countable centralizer ([127]),

infinite number of hyperbolic periodic points;

• Elementary automorphisms:

invariant rational fibration,

uncountable centralizer.

2.2 Proof of Jung’s theorem

Assume that Φ is a polynomial automorphism of C2 of degree n

Φ: (x, y) 7→ (Φ1(x, y),Φ2(x, y)), Φi ∈ C[x, y];

we can extend Φ to a birational map still denoted by Φ

Φ: (x : y : z) 99K
(
znΦ1

(x
z
,
y

z

)
: znΦ2

(x
z
,
y

z

)
: zn

)
.

The line at infinity in P2(C) is z = 0. The map Φ: P2(C) 99K P2(C) has a
unique point of indeterminacy which is on the line at infinity (Lemma 1.3.5).
We can assume, up to conjugation by an affine automorphism, that this
point is (1 : 0 : 0) (of course this conjugacy doesn’t change the number of
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base-points of Φ). We will show that there exists ϕ : P2(C) 99K P2(C) a
birational map induced by a polynomial automorphism of C2 such that

P2(C)
Φ◦ϕ−1

##H
H

H
H

H

P2(C)

ϕ
;;v

v
v

v
v

Φ
//________ P2(C)

and # base-points of Φϕ−1 < # base-points of Φ. To do this we will re-
arrange the blow-ups of the sequences π1 and π2 appearing when we apply
Zariski’s Theorem: the map ϕ is constructed by realising some blow-ups
of π1 and some blow-ups of π2.

2.2.1 Hirzebruch surfaces

Let us consider the surface F1 obtained by blowing-up (1 : 0 : 0) ∈ P2(C).
This surface is a compactification of C2 which has a natural rational fi-
bration corresponding to the lines y = constant. The divisor at infinity is
the union of two rational curves (i.e. curves isomorphic to P1(C)) which
intersect in one point. One of them is the strict transform of the line at
infinity in P2(C), it is a fiber denoted by f1; the other one, denoted by
s1 is the exceptional divisor which is a section for the fibration. We have:
f21 = 0 and s21 = − 1 (Proposition 1.1.8). More generally for any n we
denote by Fn a compactification of C2 with a rational fibration and such
that the divisor at infinity is the union of two transversal rational curves:
a fiber f∞ and a section s∞ of self-intersection −n. These surfaces are
called Hirzebruch surfaces:

PP1(C)
(
OP1(C) ⊕OP1(C)(n)

)
.

Let us consider the surface Fn. Let p be the intersection of sn and fn,
where fn is a fiber. Let π1 be the blow-up of p ∈ Fn and let π2 be the

contraction of the strict transform f̃n of fn. We can go from Fn to Fn+1

via π2π
−1
1 :

0

f
n p

s
n

-n

Fn

-1

-1f
n

~

s
n

~

- n+( 1)
- n+( 1)

0

Fn+1

n+1
s

1 2
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We can also go from Fn+1 to Fn via π2π
−1
1 where

• π1 is the blow-up of a point p ∈ Fn+1 which belongs to the fiber fn
and not to the section sn+1,

• π2 the contraction of the strict transform f̃n of fn :

sns̃n+1

−(n+ 1)

0−1

−1

−(n+ 1)

sn+1

p

0

−n

Fn+1 Fn

π2fn π1 f̃n

2.2.2 First step: blow-up of (1 : 0 : 0)

The point (1 : 0 : 0) is the first blown-up point in the sequence π1. Let us
denote by ϕ1 the blow-up of (1 : 0 : 0) ∈ P2(C), we have

F1

ϕ1

||y
y

y
y

g1

""E
E

E
E

P2(C)
Φ

//_______ P2(C)

Note that # base-points of g1 = # base-points of Φ−1. Let us come back
to the diagram given by Zariski’s theorem. The first curve contracted by π2
which is a curve of self-intersection −1 is the strict transform of the line at
infinity (Lemma 1.3.5, last assertion); it corresponds to the fiber f1 in F1.
But in F1 we have f21 = 0; the self-intersection of this curve has thus to
decrease so the point of indeterminacy p of g1 has to belong to f1. But p
also belongs to the curve produced by the blow-up (Lemma 1.3.5, second
assertion); in other words p = f1 ∩ s1.

2.2.3 Second step: Upward induction

Lemma 2.2.1. Let n ≥ 1 and let h : Fn 99K P2(C) be a birational map
induced by a polynomial automorphism of C2. Suppose that h has only one
point of indeterminacy p such that p = fn∩sn. Let ϕ : Fn 99K Fn+1 be the
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birational map which is the blow-up of p composed with the contraction of
the strict transform of fn. Let us consider the birational map h′ = h◦ϕ−1:

Fn+1

h′

##G
G

G
G

G

Fn

ϕ
==z

z
z

z

h
//________ P2(C)

Then

• # base-points of h′ = # base-points of h− 1;

• the point of indeterminacy of h′ belongs to fn+1.

Proof. Let us apply Zariski Theorem to h; we obtain

S
π1

����
��

��
�� π2

!!D
DD

DD
DD

D

Fn
h

//______ P2(C)

where S is a smooth projective surface and π1, π2 are two sequences of
blow-ups.

Since s̃n
2 ≤ −2 (where s̃n is the strict transform of sn) the first curve

contracted by π2 is the transform of fn (Lemma 1.3.5). So the transform of
fn in S is of self-intersection −1; we also have f2n = 0 in Fn. This implies
that after the blow-up of p the points appearing in π1 are not on fn.
Instead of realising these blow-ups and then contracting the transform of
fn we first contract and then realise the blow-ups. In other words we have
the following diagram

S

~~||
||

||
||

|

η
""E

EE
EE

EE
EE

η

  @
@@

@@
@@

@@

π

����
��

��
��

S′

""D
DD

DD
DD

D

}}{{
{{

{{
{{

Fn

h

44T U W Y Z \ ] _ a b d e g i
Fn+1

h′
//_______ P2(C)

where π is the blow-up of p and η the contraction of fn. The map ηπ−1

is exactly the first link mentioned in §2.2.1. We can see that to blow-
up p allows us to decrease the number of points of indeterminacy and to
contract fn does not create some point of indeterminacy. So

# base-points of h′ = # base-points of h −1
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Moreover the point of indeterminacy of h′ is on the curve obtained by the
blow-up of p, i.e. fn.

After the first step we are under the assumptions of the Lemma 2.2.1
with n = 1. The Lemma gives an application h′ : F2 99K P2(C) such that
the point of indeterminacy is on f2. If this point also belongs to s2 we can
apply the Lemma again. Repeating this as long as the assumptions of the
Lemma 2.2.1 are satisfied, we obtain the following diagram

Fn
g2

""E
E

E
E

F1

ϕ2

>>~
~

~
~

g1
//_______ P2(C)

where ϕ2 is obtained by applying n− 1 times Lemma 2.2.1. Moreover

# base-points of g2 = # base-points of g1 − n+ 1

and the point of indeterminacy of g2 is on fn but not on sn (remark: as,
for n ≥ 2, there is no morphism from Fn to P2(C), the map g2 has a point
of indeterminacy).

2.2.4 Third step: Downward induction

Lemma 2.2.2. Let n ≥ 2 and let h : Fn 99K P2(C) be a birational map
induced by a polynomial automorphism of C2. Assume that h has only
one point of indeterminacy p, and that p belongs to fn but not to sn.
Let ϕ : Fn 99K Fn−1 be the birational map which is the blow-up of p com-
posed with the contraction of the strict transform of fn. Let us consider
the birational map h′ = h ◦ ϕ−1:

Fn−1

h′

##G
G

G
G

G

Fn

ϕ
==z

z
z

z

h
//________ P2(C)

Then

• # base-points of h′ = # base-points of h− 1;

• if h′ has a point of indeterminacy, it belongs to fn−1 and not to sn−1.
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Proof. Let us consider the Zariski decomposition of h

S
π1

����
��

��
�� π2

!!D
DD

DD
DD

D

Fn
h

//______ P2(C)

Since s̃n
2
= −n with n ≥ 2, the first curve blown down by π2 is the

transform of fn (Lemma 1.3.5). Like in the proof of Lemma 2.2.1 we
obtain the following commutative diagram

S

~~||
||

||
||

|

η
""E

EE
EE

EE
EE

η

  @
@@

@@
@@

@@

π

����
��

��
��

S′

""D
DD

DD
DD

D

}}{{
{{

{{
{{

Fn

h

44T U W Y Z \ ] _ a b d e g i
Fn−1

h′
//_______ P2(C)

where π is the blow-up of p and η the contraction of fn. We immediately
have:

# base-points of h′ = # base-points of h− 1.

Let F ′ be the exceptional divisor associated to π; the map h has a base-

point on F ′. Assume that this point is F ′ ∩ f̃n, then (π−1
1 (fn))

2 ≤ −2:
contradiction with the fact that it is the first curve blown down by π2. So

the base-point of h is not F ′ ∩ f̃n and so it is the point of indeterminacy
of h′ that is on fn−1 but not on sn−1.

After the second step the assumptions in Lemma 2.2.2 are satisfied. Let
us remark that if n ≥ 3 then the map h′ given by Lemma 2.2.2 still satisfies
the assumptions in this Lemma. After applying n− 1 times Lemma 2.2.2
we have the following diagram

F1

g3

""E
E

E
E

Fn

ϕ3

>>~
~

~
~

g2
//_______ P2(C)
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2.2.5 Last contraction

Applying Zariski’s theorem to g3 we obtain

S
ϕ

����
��

��
�� π2

!!D
DD

DD
DD

D

F1 g3
//______ P2(C)

The fourth assertion of the Lemma 1.3.5 implies that the first curve con-
tracted by π2 is either the strict transform of f1 by π1, or the strict trans-
form of s1 by π1. Assume that we are in the first case; then after realising
the sequence of blow-ups π1 and contracting this curve the transform of
s1 is of self-intersection 0 and so cannot be contracted: contradiction with
the third assertion of Lemma 1.3.5. So the first curve contracted is the
strict transform of s1 which can be done and we obtain

P2(C)
g4

##H
H

H
H

H

F1

ϕ4

==zzzzzzzz

g3
//________ P2(C)

The morphism ϕ4 is the blow-up of a point and the exceptional divisor
associated to its blow-up is s1; up to an automorphism we can assume
that s1 is contracted on (1 : 0 : 0). Moreover

# base-points of g3 = # base-points of g4.

2.2.6 Conclusion
After all these steps we have

P2(C)
g4

##H
H

H
H

H

P2(C)

ϕ4◦ϕ3◦ϕ2◦ϕ1

;;v
v

v
v

v

Φ
//________ P2(C)

where # base-points of g4 = # base-points of Φ− 2n+ 1 (with n ≥ 2).
Let us check that ϕ = ϕ4 ◦ ϕ3 ◦ ϕ2 ◦ ϕ1 is induced by an element of

E. It is sufficient to prove that ϕ preserves the fibration y = constant, i.e.
the pencil of curves through (1 : 0 : 0); indeed

• the blow-up ϕ1 sends lines through (1 : 0 : 0) on the fibers of F1;

• ϕ2 and ϕ3 preserve the fibrations associated to F1 and Fn;
• the morphism ϕ4 sends fibers of F1 on lines through (1 : 0 : 0).
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Finally g4 is obtained by composing Φ with a birational map induced by
an affine automorphism and a birational map induced by an element of E
so g4 is induced by a polynomial automorphism; morevoer

# base-points of g4 < # base-points of Φ.

2.2.7 Example
Let us consider the polynomial automorphism Φ of C2 given by

Φ =
(
y + (y + x2)2 + (y + x2)3, y + x2

)
.

Let us now apply to φ the method just explained above. The point of
indeterminacy of Φ is (0 : 1 : 0). Let us compose Φ with (y, x) to deal with
an automorphism whose point of indeterminacy is (1 : 0 : 0). Let us blow
up this point

F1

||zz
zz

zz
zz

P2(C)

Then we apply Lemma 2.2.1

~~~~
~~

~~
~

  @
@@

@@
@@

F1

||zz
zz

zz
zz

F2

P2(C)

On F2 the point of indeterminacy is on the fiber, we thus apply
Lemma 2.2.2

~~~~
~~

~~
~

  @
@@

@@
@@

~~~~
~~

~~
~

  @
@@

@@
@@

F1

||zz
zz

zz
zz

F2 F1

P2(C)

and contracts s1

~~~~
~~

~~
~

  @
@@

@@
@@

~~~~
~~

~~
~

  @
@@

@@
@@

F1

||zz
zz

zz
zz

F2 F1

""D
DD

DD
DD

D

P2(C)
(x+y2,y)(y,x)

//____________________ P2(C)
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We get the decomposition Φ = Φ′(x+ y2, y)(y, x) with

Φ′ = (y + x2 + x3, x) = (x+ y2 + y3, y)(y, x).

We can check that Φ′ has a unique point of indeterminacy (0 : 1 : 0). Let
us blow up the point (1 : 0 : 0)

F1

||zz
zz

zz
zz

P2(C)

and then apply two times Lemma 2.2.1

~~~~
~~

~~
~

  @
@@

@@
@@

~~~~
~~

~~
~

  @
@@

@@
@@

F1

||zz
zz

zz
zz

F2 F3

P2(C)

then two times Lemma 2.2.2

~~~~
~~

~~
~

  @
@@

@@
@@

~~~~
~~

~~
~

  @
@@

@@
@@

~~~~
~~

~~
~

  @
@@

@@
@@

~~~~
~~

~~
~

  @
@@

@@
@@

F1

||zz
zz

zz
zz

F2 F3 F2 F1

P2(C)

Finally we contract the section s1

��~~
~~

~~
~

��@
@@

@@
@@

��~~
~~

~~
~

��@
@@

@@
@@

��~~
~~

~~
~

��@
@@

@@
@@

��~~
~~

~~
~

��@
@@

@@
@@

F1

}}{{
{{

{{
{{

F2 F3 F2 F1

!!C
CC

CC
CC

C

P2(C)
Φ′=(x+y2+y3,y)(y,x)

//_________________________________ P2(C)

and obtain Φ′ = (x+ y2 + y3, y)(y, x).
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2.3 The de Jonquières group

The de Jonquières maps are, up to birational conjugacy, of the following
type (

a(y)x+ b(y)

c(y)x+ d(y)
,
αy + β

γy + δ

)
,

[
a(y) b(y)
c(y) d(y)

]
∈ PGL2(C(y)),

[
α β
γ δ

]
∈ PGL2(C);

let us remark that the family of lines y = constant is preserved by such
a Cremona transformation. De Jonquières maps are exactly the Cremona
maps which preserve a rational fibration2. The de Jonquières maps form
a group, called de Jonquières group and denoted by dJ. Remark that
the exceptional set of φ is reduced to a finite number of fibers y = cte and
possibly the line at infinity.

In some sense dJ ⊂ Bir(P2) is the analogue of E ⊂ Aut(C2). In the 80’s
Gizatullin and Iskovskikh give a presentation of Bir(P2) (see [100, 117]);
let us state the result of Iskovskikh presented in P1(C) × P1(C) which is
birationally isomorphic to P2(C).

Theorem 2.3.1 ([117]). The group of birational maps of P1(C) × P1(C)
is generated by dJ and Aut(P1(C)× P1(C)) 3.

Moreover the relations in Bir(P1(C) × P1(C)) are the relations of dJ,
of Aut(P1(C)× P1(C)) and the relation

(ηe)3 =

(
1

x
,
1

y

)
where η : (x, y) 7→ (y, x) & e : (x, y) 7→

(
x,
x

y

)
.

Let f be a birational map of P2(C) of degree ν. Assume that f has a
base-point p1 of multiplicity m1 = ν − 1. Then we have

ν2 − (ν − 1)2 −
r∑

i=2

m2
i = 1, 3ν − (ν − 1)−

r∑

i=2

mi = 3

where p2, . . ., pr are the other base-points of f and mi the multiplicity
of pi. This implies that

∑r
i=2mi(mi − 1) = 0, hence m2 = . . . = mr = 1

and r = 2ν−1. For simplicity let us assume that the pi’s are in P2(C). The
homaloidal system Λf consists of curves of degree ν with singular point p1
of multiplicity ν − 1 passing simply to 2ν − 2 points p2, . . ., p2ν−1. The
corresponding Cremona transformation is a de Jonquières transformation.

2Here a rational fibration is a rational application from P2(C) into P1(C) whose fibers
are rational curves.

3The de Jonquières group is birationally isomorphic to the subgroup of Bir(P1(C)×
P1(C)) which preserves the first projection p : P1(C)× P1(C) → P1(C).
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Indeed let Γ be an element of Λf . Let Ξ be the pencil of curves of Λf
that have in common with Γ a point m distinct from p1, . . ., p2ν−1. The
number of intersections of Γ with a generic curve of Ξ that are absorbed
by the pi’s is at least

(ν − 1)(ν − 2) + 2ν − 2 + 1 = ν(ν − 1) + 1

one more than the number given by Bezout’s theorem. The curves of Ξ
are thus all split into Γ and a line of the pencil centered in p1. Let us
assume that p1 = (1 : 0 : 0); then Γ is given by

xψν−2(y, z) + ψν−1(y, z), degψi = i.

To describe Λf we need an arbitrary curve taken from Λf and outside Ξ
which gives

(xψν−2 + ψν−1)(a0y + a1z) + xϕν−1(y, z) + ϕν(y, z), degϕi = i.

Therefore f can be represented by

(x : y : z) 99K
(
xϕν−1 + ϕν : (xψν−2 + ψν−1)(ay + bz) : (xψν−2 + ψν−1)(cy + dz)

)

with ad − bc 6= 0. We can easily check that f is invertible and that Λf
and Λf−1 have the same type. At last we have in the affine chart z = 1

(
xϕν−1(y) + ϕν(y)

xψν−2(y) + ψν−1(y)
,
ay + b

cy + d

)
.

2.4 No dichotomy in the Cremona group

There is a strong dichotomy in Aut(C2) (see §2.1); we will see that there
is no such dichotomy in Bir(P2). Let us consider the family of birational
maps (fα,β) given by

P2(C) 99K P2(C), (x : y : z) 7→ ((αx+ y)z : βy(x+ z) : z(x+ z)),

α, β ∈ C∗, |α| = |β| = 1

so in the affine chart z = 1

fα,β(x, y) =

(
αx+ y

x+ 1
, βy

)
.
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Theorem 2.4.1 ([66]). The first dynamical degree4 of fα,β is equal to 1;
more precisely deg fnα,β ∼ n.

Assume that α and β are generic and have modulus 1. If g commutes
with fα,β , then g coincides with an iterate of fα,β ; in particular the cen-
tralizer of fα,β is countable.

The elements f2α,β have two fixed points m1, m2 and

• there exists a neighborhood V1 of m1 on which fα,β is conjugate
to (αx, βy); in particular the closure of the orbit of a point of V1

(under fα,β) is a torus of dimension 2;

• there exists a neighborhood V2 of m2 such that f2α,β is locally lineari-
zable on V2; the closure of a generic orbit of a point of V2 (under
f2α,β) is a circle.

In the affine chart (x, y) the maps fα,β preserve the 3-manifolds |y|= cte.
The orbits presented below are bounded in a copy of R2×S1. The dynamic
happens essentially in dimension 3; different projections allow us to have
a good representation of the orbit of a point. In the affine chart z = 1 let
us denote by p1 and p2 the two standard projections. The given pictures
are representations (in perspective) of the following projections.

• Let us first consider the set

Ω1(m,α, β) =
{
(p1(f

n
α,β(m)), Im(p2(f

n
α,β(m))))

∣∣n = 1..30000
}
;

this set is contained in the product of R2 with an interval. The
orbit of a point under the action of fα,β is compressed by the double
covering (x, ρeiθ) → (x, ρ sin θ).

• Let us introduce

Ω2(m,α, β) =
{
(Re(p1(f

n
α,β(m))), p2(f

n
α,β(m)))

∣∣n = 1..30000
}

which is contained in a cylinder R×S1; this second projection shows
how to “decompress” Ω1 to have the picture of the orbit.

Let us assume that α = exp(2i
√
3) and β = exp(2i

√
2); let us denote

by Ωi(m) instead of Ωi(m,α, β).

4For a birational map f of P2(C) the first dynamical degree is given by λ(f) =

lim
n→+∞

(deg fn)1/n.
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The following pictures illustrate Theorem 2.4.1.

Ω1(10
−4i, 10−4i) Ω2(10

−4i, 10−4i)

It is “the orbit” of a point in the linearization domain of (0 : 0 : 1); we
note that the closure of an orbit is a torus.

Ω1(10000 + 10−4i, 10000 + 10−4i) Ω2(10000 + 10−4i, 10000 + 10−4i)

It is “the orbit” under f2α,β of a point in the linearization domain of
(0 : 1 : 0); the closure of an “orbit” is a topological circle. The singularities
are artifacts of projection.

Remark 2.4.2. The line z = 0 is contracted by fα,β on (0 : 1 : 0) which
is blow up on z = 0 : the map fα,β is not algebraically stable (see Chapter
3) that’s why we consider f2α,β instead of fα,β .

The theory does not explain what happens outside the linearization
domains. Between V1 and V2 the experiences suggest a chaotic dynamic
as we can see below.

Ω1(0.4 + 10−4i, 0.4 + 10−4i) Ω2(0.4 + 10−4i, 0.4 + 10−4i)

We note a deformation of the invariant tori.
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Ω1(0.9 + 10−4i, 0.9 + 10−4i) Ω2(0.9 + 10−4i, 0.9 + 10−4i)

Ω1(1 + 10−4i, 1 + 10−4i) Ω2(1 + 10−4i, 1 + 10−4i)

Ω1(1.08 + 10−4i, 1.08 + 10−4i) Ω2(1.08 + 10−4i, 1.08 + 10−4i)

The invariant tori finally disappear; nevertheless the pictures seem to
organize themselves around a closed curve.

So if there is no equivalence between first dynamical degree strictly
greater than 1 and countable centraliser we have an implication; more
precisely we have the following statement.

Theorem 2.4.3 ([43]). Let f be a birational map of the complex projective
plane with first dynamical degree λ(f) strictly greater than 1. If ψ is an
element of Bir(P2) which commutes with f, there exist two integers m in
N∗ and n in Z such that ψm = fn.



Chapter 3

Classification and
applications

3.1 Notions of stability and dynamical de-
gree

Let X, Y be two compact complex surfaces and let f : X 99K Y be a dom-
inant meromorphic map. Let Γf be the graph of f and let π1 : Γf → X,
π2 : Γf → Y be the natural projections. If Γf is a singular submani-
fold of X × Y , we consider a desingularization of Γf without changing
the notation. If β is a differential form of bidegree (1, 1) on Y , then π∗

2β
determines a form of bidegree (1, 1) on Γf which can be pushed forward
as a current f∗β := π1∗π

∗
2β on X thanks to the first projection. Let us

note that f∗ induces an operator between H1,1(Y,R) and H1,1(X,R) : if β
and γ are homologous, then f∗β and f∗γ are homologous. In a similar way
we can define the push-forward f∗ := π2∗π∗

1 : H
p,q(X) → Hp,q(Y ). Note

that when f is bimeromorphic f∗ = (f−1)∗.
Assume that X = Y . The map f is algebraically stable if there

exists no curve V in X such that fk(V ) belongs to Ind f for some integer
k ≥ 0.

Theorem-Definition 3.1.1 ([73]). Let f : S → S be a dominating mero-
morphic map on a Kähler surface and let ω be a Kähler form. Then f is
algebraically stable if and only if any of the following holds:

• for any α ∈ H1,1(S) and any k in N, we have (f∗)kα = (fk)∗α;

• there is no curve C in S such that fk(C) ⊂ Ind f for some integer
k ≥ 0;

• for all k ≥ 0 we have (fk)∗ω = (f∗)kω.

42
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In other words for an algebraically stable map the following does not
happen

. . ... . .
fffff

C

i.e. the positive orbit1 of p1 ∈ Ind f−1 intersects Ind f .

Remark 3.1.2. Let f be a Cremona transformation. The map f is not
algebraically stable if and only if there exists an integer k such that

deg fk < (deg f)k.

So if f is algebraically stable, then λ(f) = deg f.

Examples 3.1.3. • An automorphism of P2(C) is algebraically stable.

• The involution σ : P2(C) 99K P2(C), (x : y : z) 7→ (yz : xz : xy)
is not algebraically stable: Indσ−1 = Indσ−1; moreover deg σ2 = 1
and (deg σ)2 = 4.

Examples 3.1.4. Let A be an automorphism of the complex projective
plane and let σ be the birational map given by

σ : P2(C) 99K P2(C), (x : y : z) 99K (yz : xz : xy).

Assume that the coefficients of A are positive real numbers. The map Aσ
is algebraically stable ([52]).

Let A be an automorphism of the complex projective plane and let ρ be
the birational map given by

ρ : P2(C) 99K P2(C), (x : y : z) 99K (xy : z2 : yz).

Assume that the coefficients of A are positive real numbers. We can verify
that Aρ is algebraically stable. The same holds with

τ : P2(C) 99K P2(C), (x : y : z) 99K (x2 : xy : y2 − xz).

Let us say that the coefficients of an automorphism A of P2(C) are al-
gebraically independent if A has a representative in GL3(C) whose coeffi-
cients are algebraically independent over Q. We can deduce the following:
let A be an automorphism of the projective plane whose coefficients are
algebraically independent over Q, then Aσ and (Aσ)−1 are algebraically
stable.

1The positive orbit of p1 under the action of f is the set {fn(p1) |n ≥ 0}.
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Diller and Favre prove the following statement.

Theorem 3.1.5 ([73], theorem 0.1). Let S be a rational surface and let
f : S 99K S be a birational map. There exists a birational morphism
ε : S̃ → S such that εfε−1 is algebraically stable.

Idea of the proof. Let us assume that f is not algebraically stable; hence
there exists a curve C and an integer k such that C is blown down onto p1
and pk = fk−1(p1) is an indeterminacy point of f .

The idea of Diller and Favre is the following: after blowing up the
points pi the image of C is, for i = 1, . . . , k, a curve. Doing this for any
element of Exc f whose an iterate belongs to Ind f we get the statement.

Remark 3.1.6. There is no similar result in higher dimension. Let us
recall the following statement due to Lin ([129, Theorem 5.7]): suppose
that A = (aij) ∈ Mn(Z) is an integer matrix with det A = 1. If λ and
λ are the only eigenvalues of A of maximal modulus, also with algebraic
multiplicity one, and if λ = |λ|e2iπϑ with ϑ ∈ Q; then there is no toric
birational model which makes the corresponding monomial map

fA : Cn → Cn, (x1, . . . , xn) 7→


∏

j

x
a1j
j , . . . ,

∏

j

x
anj

j




algebraically stable. A 3× 3 example is ([110])

A =




−1 1 0
−1 0 1
1 0 0


 ;

in higher dimension

[
A 0
0 Id

]
where 0 is the zero matrix and Id is the

identity matrix works.

The first dynamical degree of f is defined by

λ(f) = lim sup
n→+∞

|(fn)∗|1/n

where | . | denotes a norm on End(H1,1(X,R)) ; this number is greater or
equal to 1 (see [157, 91]). Let us remark that for all birational maps f we
have the inequality

λ(f)n ≤ deg fn

where deg f is the algebraic degree of f (the algebraic degree of f = (f0 :
f1 : f2) is the degree of the homogeneous polynomials fi).
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Examples 3.1.7. • The first dynamical degree of a birational map of
the complex projective plane of finite order is equal to 1.

• The first dynamical degree of an automorphism of P2(C) is equal to 1.

• The first dynamical degree of an elementary automorphism (resp. a
de Jonquières map) is equal to 1.

• The first dynamical degree of a Hénon automorphism of degree d is
equal to d.

• The first dynamical degree of the monomial map

fB : (x, y) 7→ (xayb, xcyd)

is the largest eigenvalue of B =

[
a b
c d

]
.

• Let us set E = C/Z[i], Y = E × E = C2/Z[i] × Z[i] and B =[
a b
c d

]
. The matrix B acts linearly on C2 and preserves Z[i]×Z[i]

so B induces a map GB : E×E → E×E. The surface E×E is not
rational whereas X = Y/(x, y) ∼ (ix, iy) is. The matrix B induces a
map GB : E×E → E×E that commutes with (ix, iy) so GB induces
a map gB : X → X birationally conjugate to an element of Bir(P2).
The first dynamical degree of gB is equal to the square of the largest
eigenvalue of B.

Let us give some properties about the first dynamical degree. Let us
recall that a Pisot number is a positive algebraic integer greater than 1
all of whose conjugate elements have absolute value less than 1. A real al-
gebraic integer is a Salem number if all its conjugate roots have absolute
value no greater than 1, and at least one has absolute value exactly 1.

Theorem 3.1.8 ([73]). The set

{
λ(f) | f ∈ Bir(P2)

}

is contained in {1} ∪ P ∪ S where P (resp. S) denotes the set of Pisot
(resp. Salem) numbers.

In particular it is a subset of algebraic numbers.

3.2 Classification of birational maps

Theorem 3.2.1 ([99, 73, 32]). Let f be an element of Bir(P2); up to
birational conjugation, exactly one of the following holds.
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• The sequence |(fn)∗| is bounded, the map f is conjugate either to
(αx : βy : z) or to (αx : y + z : z);

• the sequence |(fn)∗| grows linearly, and f preserves a rational fibra-
tion. In this case f cannot be conjugate to an automorphism of a
projective surface;

• the sequence |(fn)∗| grows quadratically, and f is conjugate to an
automorphism preserving an elliptic fibration.

• the sequence |(fn)∗| grows exponentially; the spectrum of f∗

outside the unit disk consists of the single simple eigenvalue λ(f),
the eigenspace associated to λ(f) is generated by a nef class θ+ ∈
H1,1(P2(C)). Moreover f is conjugate to an automorphism if and
only if (θ+, θ+) = 0.

In the second and third cases, the invariant fibration is unique.

Definition 3.2.2. Let f be an element of Bir(P2).

• If
{
deg fk

}
k∈N is bounded, f is elliptic;

• if
{
deg fk

}
k∈N grows linearly (resp. quadratically), then f is a de

Jonquières twist (resp. an Halphen twist);

• if
{
deg fk

}
k∈N grows exponentially, f is hyperbolic.

Remark 3.2.3. If
{
deg fk

}
k∈N grows linearly (resp. quadratically) then f

preserves a pencil of rational curves (resp. elliptic curves); up to birational
conjugacy f preserves a pencil of lines, i.e. belongs to the de Jonquières
group (resp. preserves an Halphen pencil, i.e. a pencil of (elliptic) curves
of degree 3n passing through 9 points with multiplicity n).

3.3 Picard-Manin space

Manin describes in [132, Chapter 5] the inductive limit of the Picard group
of any surface obtained by blowing up any point of a surface S. Then he
shows that the group Bir(S) linearly acts on this limit group.

• Let S be a Kähler compact complex surface. Let Pic(S) be the Picard
group of S and let NS(S) be its Néron-Severi group2. Let us consider the
morphism from Pic(S) into NS(S) which associates to any line bundle L
its Chern class c1(L); its kernel is denoted by Pic0(S). The dimension
of NS(R)⊗ R is called the Picard number of S and is denoted by ρ(S).

2The Néron-Severi group of a variety is the group of divisors modulo algebraic equiv-
alence.
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There is an intersection form on the Picard group, there is also one on
the Néron-Severi group; when S is projective, its signature is (1, ρ(S)− 1).
The nef cone is denoted by NS+(S) or Pic+(S) when NS(S) = Pic(S). Let
S and S′ be two surfaces and let π : S → S′ be a birational morphism.
The morphism π∗ is injective and preserves the nef cone: π∗(NS+(S′)) ⊂
NS+(S). Moreover for any ℓ, ℓ′ in Pic(S), we have (π∗ℓ, π∗ℓ′) = (ℓ, ℓ′).

• Let S be a Kähler compact complex surface. Let B(S) be the category
which objects are the birational morphisms π′ : S′ → S. A morphism
between two objects π1 : S

′
1 → S and π2 : S

′
2 → S of this category is a

birational morphism ε : S′1 → S′2 such that π2ε = π1. In particular the set
of morphisms between two objects in either empty, or reduced to a unique
element.

This set of objects is ordered as follows: π1 ≥ π2 if and only if there
exists a morphism from π1 to π2; we thus say that π1 (resp. S′1) domi-
nates π2 (resp. S′2). Geometrically this means that the set of base-points
of π−1

1 contains the set of base-points of π−1
2 . If π1 and π2 are two objects

of B(S) there always exists another one which simultaneously dominates
π1 and π2. Let us set

Z(S) = lim
→

NS(S′)

the inductive limit is taken following the injective morphism π∗.
The group Z(S) is called Picard-Manin space space of S. The inva-

riant structures of π∗ induce invariant structures for Z(S):

• an intersection form (, ) : Z(S)×Z(S) → Z;

• a nef cone Z+(S) = lim
→

NS+(S);

• a canonical class, viewed as a linear form Ω: Z(S) → Z.

Note that NS(S′) embeds into Z(S) so we can identify NS(S′) and its
image in Z(S).

Let us now describe the action of birational maps of S on Z(S). Let S1
and S2 be two surfaces and let f be a birational map from S1 to S2. Accor-
ding to Zariski Theorem we can remove the indeterminacy of f thanks
to two birational morphisms π1 : S

′ → S1 and π2 : S
′ → S2 such that

f = π2π
−1
1 . The map π1 (resp. π2) embeds B(S′) into B(S1) (resp. B(S2)).

Since any object of B(S1) (resp. B(S2)) is dominated by an object of
π1∗(B(S)) (resp. π2∗(B(S))) we get two isomorphisms

π1∗ : Z(S′) → Z(S1), π2∗ : Z(S′) → Z(S2).

Then we set f∗ = π2∗π
−1
1∗ .

Theorem 3.3.1 ([132], page 192). The map f 7→ f∗ induces an injective
morphism from Bir(S) into GL(Z(S)).



48 Julie Déserti

If f belongs to Bir(S), the linear map f∗ preserves the intersection form
and the nef cone.

Let us denote by Eclat(S) the union of the surfaces endowed with a
birational morphism π : S′ → S modulo the following equivalence relation:
S ∋ p1 ∼ p2 ∈ S if and only if ε−1

2 ε1 sends p1 onto p2 and is a local
isomorphism between a neighborhood of p1 and a neighborhood of p2. A
point of Eclat(S) corresponds either to a point of S, or to a point on an
exceptional divisor of a blow-up of S etc. Any surface S′ which dominates
S embeds into Eclat(S). Let us consider the free abelian group Ec(S)
generated by the points of Eclat(S); we have a scalar product on Ec(S)

(p, p)E = −1, (p, q) = 0 if p 6= q.

The group Ec(S) can be embedded in Z(S) (see [43]). If p is a point
of Eclat(S) let us denote by ep the point of Z(S) associated to p, i.e. ep
is the class of the exceptional divisor obtained by blowing up p. This
determines the image of the basis of Ec(S) in Z(S) so we have the morphism
defined by

Ec(S) → Z(S),
∑

a(p)p 7→
∑

a(p)ep.

Using this morphism and the canonical embedding from NS(S) into Z(S)
we can consider the morphism

NS(S)× Ec(S) → Z(S).

Proposition 3.3.2 ([132], p.197). The morphism NS(S)×Ec(S) → Z(S)
induces an isometry between (NS(S), (·, ·))⊕(Ec(S), (·, ·)E) and (Z(S), (·, ·)).

Example 3.3.3. Let us consider a point p of P2(C), BlpP2 the blow-up
of p and let us denote by Ep the exceptional divisor. Let us now consider
q ∈ BlpP2 and as previously we define Blp,qP2 and Eq. The elements ep
and eq belong to the image of NS(Blp,qP2) in Z(P2). If Ẽp is the strict

transform of Ep in Blp,qP2 the element ep (resp. eq) corresponds to Ẽp+Eq
(resp. Eq). We can check that (ep, eq) = 0 and (ep, ep) = 1.

• The completed Picard-Manin space Z(S) of S is the L2-completion
of Z(S); in other words

Z(S) =
{
[D] +

∑
ap[Ep]

∣∣ [D] ∈ NS(S), ap ∈ R,
∑

a2p <∞
}
.

Note that Z(S) corresponds to the case where the ap vanishes for all but
a finite number of p ∈ Eclat(S).
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Example 3.3.4. For S = P2(C) the Néron-Severi group NS(S) is iso-
morphic to Z[H] where H is a line. Thus the elements of Z(S) are given
by

a0[H] +
∑

p∈Eclat(S)

ap[Ep], with
∑

a2p <∞.

The group Bir(S) acts on Z(S); let us give details when S = P2(C).
Let f be a birational map from P2(C) into itself. According to Zariski
Theorem there exist two morphisms π1, π2 : S → P2(C) such that f =
π2π

−1
1 . Defining f∗ by f∗ = (π∗

1)
−1π∗

2 and f∗ by f∗ = (f∗)−1 we get
the representation f 7→ f∗ of the Cremona group in the orthogonal group
of Z(P2) (resp. Z(P2)) with respect to the intersection form. Since for
any p in P2(C) such that f is defined at p we have f∗(ep) = ef(p) this
representation is faithful; it also preserves the integral structure of Z(P2)
and the nef cone.

• Only one of the two sheets of the hyperboloid
{
[D]∈Z(P2)

∣∣ [D]2=1
}

intersects the nef cone Z(P2); let us denote it by HZ . In other words

HZ =
{
[D] ∈ Z(P2)

∣∣ [D]2 = 1, [H] · [D] > 0
}
.

We can define a distance on HZ :

cosh(dist([D1], [D2])) = [D1] · [D2].

The space HZ is a model of the “hyperbolic space of infinite dimension”;
its isometry group is denoted by Isom(HZ) (see [103], §6). As the action
of Bir(P2) on Z(P2) preserves the two-sheeted hyperboloid and as the
action also preserves the nef cone we get a faithful representation of Bir(P2)
into Isom(HZ). In the context of the Cremona group we will see that
the classification of isometries into three types has an algebraic-geometric
meaning.

• As HZ is a complete cat(−1) metric space, its isometries are either
elliptic, or parabolic, or hyperbolic (see [98]). In the case of hyperbolic
case we can characterize these isometries as follows:

• elliptic isometry: there exists an element ℓ in Z(S) such that f∗(ℓ) =
ℓ and (ℓ, ℓ) > 0 then f∗ is a rotation around ℓ and the orbit of any p
in Z(S) (resp. any p in HZ) is bounded;

• parabolic isometry: there exists a non zero element ℓ in Z+(S) such
that f∗(ℓ) = ℓ. Moreover (ℓ, ℓ) = 0 and Rℓ is the unique inva-
riant line by f∗ which intersects Z+(S). If p belongs to Z+(S), then
lim
n→∞

fn∗ (Rp) = Rℓ.
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• hyperbolic isometry: there exists a real number λ > 1 and two ele-
ments ℓ+ and ℓ− in Z(S) such that f∗(ℓ+) = λℓ+ and f∗(ℓ−) =
(1/λ)ℓ−. If p is a point of Z+(S) \ Rℓ−, then

lim
n→∞

(
1

λ

)n
fn∗ (p) = v ∈ Rℓ+ \ {0},

We have a similar property for ℓ− and f−1.

This classification and Diller-Favre classification (Theorem 3.2.1) are
related by the following statement.

Theorem 3.3.5 ([43]). Let f be a birational map of a compact complex
surface S. Let f∗ be the action induced by f on Z(S).

• f∗ is elliptic if and only if f is an elliptic map: there exists an
element ℓ in Z+(S) such that f(ℓ) = ℓ and (ℓ, ℓ) > 0, then f∗ is a
rotation around ℓ and the orbit of any p in Z(S) (resp. any p in HZ)
is bounded.

• f∗ is parabolic if and only if f is a parabolic map: there exists a non
zero ℓ in Z∗(S) such that f(ℓ) = ℓ. Moreover (ℓ, ℓ) = 0 and Rℓ is
the unique invariant line by f∗ which intersects Z+(S). If p belongs
to Z∗(S), then lim

n→+∞
(f∗)

n(Rp) = Rℓ.

• f∗ is hyperbolic if and only if f is a hyperbolic map: there exists a
real number λ > 1 and two elements ℓ+ and ℓ− in Z(S) such that
f∗(ℓ+) = λℓ+ and f∗(ℓ−) = (1/λ)ℓ−. If p belongs to Z+ \ Rℓ− then

lim
n→+∞

(
1

λ

)n
fn∗ (p) = v ∈ Rℓ+ \ {0};

there is a similar property for ℓ− and f−1.

3.4 Applications

3.4.1 Tits alternative

Linear groups satisfy Tits alternative.

Theorem 3.4.1 ([168]). Let k be a field of characteristic zero. Let Γ be
a finitely generated subgroup of GLn(k). Then

• either Γ contains a non abelian, free group;

• or Γ contains a solvable3 subgroup of finite index.

3Let G be a group; let us set G(0) = G et G(k) = [G(k−1),G(k−1)] =
〈aba−1b−1 | a, b ∈ G(k−1)〉 for k ≥ 1. The group G is solvable if there exists an in-
teger k such that G(k) = {id}.
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Let us mention that the group of diffeomorphisms of a real manifold
of dimension ≥ 1 does not satisfy Tits alternative (see [97] and refer-
ences therein). Nevertheless the group of polynomial automorphisms of
C2 satisfies Tits alternative ([127]); Lamy obtains this property from the
classification of subgroups of Aut(C2), classification established by using
the action of this group on T :

Theorem 3.4.2 ([127]). Let G be a subgroup of Aut(C2). Exactly one of
the followings holds:

• any element of G is conjugate to an element of E, then

– either G is conjugate to a subgroup of E;

– or G is conjugate to a subgroup of A;

– or G is abelian, G =
⋃
i∈N Gi with Gi ⊂ Gi+1 and any Gi is

conjugate to a finite cyclic group of the form 〈(αx, βy)〉 with α,
β roots of unicity of the same order. Any element of G has a
unique fixe point4 and this fixe point is the same for any element
of G. Finally the action of G fixes a piece of the tree T .

• G contains Hénon automorphisms, all having the same geodesic, in
this case G is solvable and contains a subgroup of finite index iso-
morphic to Z.

• G contains two Hénon automorphisms with distinct geodesics, G thus
contains a free subgroup on two generators.

One of the common ingredients of the proofs of Theorems 3.4.1, 3.4.2,
3.4.6 is the following statement, a criterion used by Klein to construct free
products.

Lemma 3.4.3. Let G be a group acting on a set X. Let us consider Γ1

and Γ2 two subgroups of G, and set Γ = 〈Γ1,Γ2〉. Assume that

• Γ1 (resp. Γ2) has only 3 (resp. 2) elements,

• there exist X1 and X2 two non empty subsets of X such that

X2 * X1; ∀α ∈ Γ1 \ {id}, α(X2) ⊂ X1; ∀β ∈ Γ2 \ {id}, β(X1) ⊂ X2.

Then Γ is isomorphic to the free product Γ1 ∗ Γ2 of Γ1 and Γ2.

Example 3.4.4. The matrices

[
1 2
0 1

]
and

[
1 0
2 1

]
generate a free

subgroup of rank 2 in SL2(Z). Indeed let us set

Γ1 =

{[
1 2
0 1

]n ∣∣n ∈ Z
}
, Γ2 =

{[
1 0
2 1

]n ∣∣n ∈ Z
}
,

4as polynomial automorphism of C2
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X1 =
{
(x, y) ∈ R2

∣∣ |x| > |y|
}

& X2 =
{
(x, y) ∈ R2

∣∣ |x| < |y|
}
.

Let us consider an element γ of Γ1 \ {id} and (x, y) an element of X2, we
note that γ(x, y) is of the form (x+my, y), with |m| ≥ 2; therefore γ(x, y)
belongs to X1. If γ belongs to Γ2 \ {id} and if (x, y) belongs to X1, the
image of (x, y) by γ belongs to X2. According to Lemma 3.4.3 we have

〈[
1 2
0 1

]
,

[
1 0
2 1

]〉
≃ F2 = Z ∗ Z = Γ1 ∗ Γ2.

We also obtain that
[

1 k
0 1

]
and

[
1 0
k 1

]

generate a free group of rank 2 in SL2(Z) for any k ≥ 2. Nevertheless it is
not true for k = 1, the matrices

[
1 1
0 1

]
and

[
1 0
1 1

]

generate SL2(Z).

Example 3.4.5. Two generic matrices in SLν(C), with ν ≥ 2, generate a
free group isomorphic to F2.

In [43] Cantat characterizes the finitely generated subgroups of Bir(P2);
Favre reformulates, in [86], this classification:

Theorem 3.4.6 ([43]). Let G be a finitely generated subgroup of the Cre-
mona group. Exactly one of the following holds:

• Any element of G is elliptic thus

– either G is, up to finite index and up to birational conjugacy,
contained in the connected component of Aut(S) where S de-
notes a minimal rational surface;

– or G preserves a rational fibration.

• G contains a (de Jonquières or Halphen) twist and does not contain
hyperbolic map, thus G preserves a rational or elliptic fibration.

• G contains two hyperbolic maps f and g such that 〈f, g〉 is free.

• G contains a hyperbolic map and for any pair (f, g) of hyperbolic
maps, 〈f, g〉 is not a free group, then

1 −→ ker ρ −→ G
ρ−→ Z −→ 1

and ker ρ contains only elliptic maps.
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One consequence is the following statement.

Theorem 3.4.7 ([43]). The Cremona group Bir(P2) satisfies Tits alter-
native.

3.4.2 Simplicity

Let us recall that a simple group has no non trivial normal subgroup. We
first remark that Aut(C2) is not simple; let φ be the morphism defined by

Aut(C2) → C∗, f 7→ det jac f.

The kernel of φ is a proper normal subgroup of Aut(C2). In the seventies
Danilov has established that ker φ is not simple ([60]). Thanks to some
results of Schupp ([158]) he proved that the normal subgroup5 generated
by

(ea)13, a = (y,−x), e = (x, y + 3x5 − 5x4)

is strictly contained in Aut(C2).

More recently Furter and Lamy gave a more precise statement. Before
giving it let us introduce a length ℓ(.) for the elements of Aut(C2).

• If f belongs to A ∩ E, then ℓ(f) = 0;

• otherwise ℓ(f) is the minimal integer n such that f = g1 . . . gn with
gi in A or E.

The length of the element given by Danilov is 26.
We note that ℓ(.) is invariant by inner conjugacy, we can thus assume

that f has minimal length in its conjugacy class.

Theorem 3.4.8 ([94]). Let f be an element of Aut(C2). Assume that
det jac f = 1 and that f has minimal length in its conjugacy class.

• If f is non trivial and if ℓ(f) ≤ 8, the normal subgroup generated
by f coincides with the group of polynomial automorphisms f of C2

with det jac f = 1;

• if f is generic6 and if ℓ(f) ≥ 14, the normal subgroup generated by f
is strictly contained in the subgroup

{
f ∈ Aut(C2)

∣∣ det jac f = 1
}

of Aut(C2).

5 Let G be a group and let f be an element of G; the normal subgroup generated by
f in G is 〈hfh−1 | h ∈ G〉.

6 See [94] for more details.
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Is the Cremona group simple ?
Cantat and Lamy study the general situation of a group G acting by

isometries on a δ-hyperbolic space and apply it to the particular case of
the Cremona group acting by isometries on the hyperbolic space HZ . Let
us recall that a birational map f induces a hyperbolic isometry f∗ ∈ HZ
if and only if {deg fk}k∈N grows exponentially (Theorem 3.3.5). Another
characterization given in [46] is the following: f induces a hyperbolic isome-
try f∗ ∈ HZ if and only if there is a f∗-invariant plane in the Picard-Manin
space that intersects HZ on a curve Ax(f∗) (a geodesic line) on which f∗
acts by a translation:

dist(x, f∗(x)) = log λ(f), ∀x ∈ Ax(f∗).

The curve Ax(f∗) is uniquely determined and is called the axis of f∗. A
birational map f is tight if

• f∗ ∈ Isom(HZ) is hyperbolic;

• there exists a positive number ε such that: if g is a birational map
and if g∗(Ax(f∗)) contains two points at distance ε which are at
distance at most 1 from Ax(f∗) then g∗(Ax(f∗)) = Ax(f∗);

• if g is a birational map and g∗(Ax(f∗)) = Ax(f∗) then gfg−1 = f
or f−1.

Applying their results on group acting by isometries on δ-hyperbolic space
to the Cremona group, Cantat and Lamy obtain the following statement.

Theorem 3.4.9 ([46]). Let f be a birational map of the complex projec-
tive plane. If f is tight, then fk generates a non trivial normal subgroup
of Bir(P2) for some positive interger k.

They exhibit tight elements by working with the unique irreducible
component of maximal dimension

Vd =
{
φψϕ−1 |φ, ϕ ∈ Aut(P2), ψ ∈ dJ, degψ = d

}

of Bird.

Corollary 3.4.10 ([46]). The Cremona group contains an uncountable
number of normal subgroups.

In particular Bir(P2) is not simple.

3.4.3 Representations of cocompact lattices of SU(n, 1)
in the Cremona group

In [64] Delzant and Py study actions of Kähler groups on infinite dimen-
sional real hyperbolic spaces, describe some exotic actions of PSL2(R) on
these spaces, and give an application to the study of the Cremona group.
In particular they give a partial answer to a question of Cantat ([43]):
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Theorem 3.4.11 ([64]). Let Γ be a cocompact lattice in the group SU(n, 1)
with n ≥ 2. If ρ : Γ → Bir(P2) is an injective homomorphism, then one of
the following two possibilities holds:

• the group ρ(Γ) fixes a point in the Picard-Manin space;

• the group ρ(Γ) fixes a unique point in the boundary of the Picard-
Manin space.



Chapter 4

Quadratic and cubic
birational maps

4.1 Some definitions and notations

Let Ratk be the projectivization of the space of triplets of homogeneous
polynomials of degree k in 3 variables:

Ratk = P
{
(f0, f1, f2)

∣∣ fi ∈ C[x, y, z]k
}
.

An element of Ratk has degree ≤ k.
We associate to f = (f0 : f1 : f2) ∈ Ratk the rational map

f• : (x : y : z) 99K δ(f0(x, y, z) : f1(x, y, z) : f2(x, y, z)),
where δ = 1

pgcd(f0,f1,f2)
.

Let f be in Ratk; we say that f = (f0 : f1 : f2) is purely of degree k if
the fi’s have no common factor. Let us denote by R̊atk the set of rational
maps purely of degree k. Whereas Ratk can be identified to a projective
space, R̊atk is an open Zariski subset of it. An element of Ratk \ R̊atk can
be written ψf = (ψf0 : ψf1 : ψf2) where f belongs to Ratℓ, where ℓ < k,
and ψ is a homogeneous polynomial of degree k− ℓ. Let us denote by Rat

the set of all rational maps from P2(C) into itself: it is
⋃

k≥1

R̊atk. It’s also

the injective limite of the Rat•k’s where

Rat•k =
{
f•

∣∣ f ∈ Ratk
}
.

Note that if f ∈ Ratk is purely of degree k then f can be identified to f•.
This means that the application

R̊atk → Rat•k

56
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is injective. Henceforth when there is no ambiguity we use the notation f
for the elements of Ratk and for those of Rat•k. We will also say that an
element of Ratk “is” a rational map.

The space Rat contains the group of birational maps of P2(C). Let
Birk ⊂ Ratk be the set of birational maps f of Ratk such that f• is
invertible, and let us denote by B̊irk ⊂ Birk the set of birational maps
purely of degree k. Set

Bir•k =
{
f•

∣∣ f ∈ Birk
}
.

The Cremona group can be identified to
⋃

k≥1

B̊irk.Note that B̊ir1≃PGL3(C)

is the group of automorphisms of P2(C); we have B̊ir1 ≃ Bir•1 = Bir1. The
set Rat1 can be identified to P8(C) and R̊at1 is the projectivization of the
space of matrices of rank greater than 2.

For k = 2 the inclusion B̊ir2 ⊂ Bir2 is strict. Indeed if A is in PGL3(C)
and if ℓ is a linear form, ℓA is in Bir2 but not in B̊ir2.

There are two “natural” actions on Ratk. The first one is the action
of PGL3(C) by dynamic conjugation

PGL3(C)× Ratk → Ratk, (A,Q) 7→ AQA−1

and the second one is the action of PGL3(C)2 by left-right composition
(l.r.)

PGL3(C)× Ratk × PGL3(C) → Ratk, (A,Q,B) 7→ AQB−1.

Remark that R̊atk, Birk and B̊irk are invariant under these two actions.
Let us denote by Odyn(Q) (resp. Ol.r.(Q)) the orbit of Q ∈ Ratk under the
action of PGL3(C) by dynamic conjugation (resp. under the l.r. action).

Examples 4.1.1. Let σ be the birational map given by

P2(C) 99K P2(C), (x : y : z) 99K (yz : xz : xy).

The map σ is an involution whose indeterminacy and exceptional sets are
given by:

Indσ =
{
(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)

}
, Excσ =

{
x = 0, y = 0, z = 0

}
.

The Cremona transformation ρ : (x : y : z) 99K (xy : z2 : yz) has two
points of indeterminacy which are (0 : 1 : 0) and (1 : 0 : 0); the curves
contracted by ρ are z = 0, resp. y = 0. Let τ be the map defined by
(x : y : z) 99K (x2 : xy : y2 − xz); we have

Ind τ =
{
(0 : 0 : 1)

}
, Exc τ =

{
x = 0

}
.
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Notice that ρ and τ are also involutions.
The Cremona transformations f and ψ are birationally conjugate if

there exists a birational map η such that f = ψηψ−1. The three maps σ, ρ
and τ are birationally conjugate to some involutions of PGL3(C) (see for
example [80]).

Let us continue with quadratic rational maps.
Let C[x, y, z]ν be the set of homogeneous polynomials of degree ν in

C3. Let us consider the rational map det jac defined by

det jac : Rat2 99K P(C[x, y, z]3) ≃
{
curves of degree 3

}

[Q] 99K [det jacQ = 0].

Remark 4.1.2. The map det jac is not defined for maps [Q] such that
det jacQ ≡ 0; such a map is up to l.r. conjugacy (Q0 : Q1 : 0) or
(x2 : y2 : xy).

Proposition 4.1.3 ([52]). The map det jac is surjective.

Proof. For the map σ we obtain three lines in general position, for ρ the
union of a “double line” and a line, for τ one “triple line” and for (x2 :
y2 : (x− y)z) the union of three concurrent lines.

With

det jac

(
− 1

α
x2 + z2 : −α

2
xz +

1 + α

4
x2 − 1

4
y2 : xy

)

= [y2z = x(x− z)(x− αz)]

we get all cubics having a Weierstrass normal form.
If Q : (x : y : z) 99K (xy : xz : x2+yz), then det jacQ = [x(x2−yz) = 0]

is the union of a conic and a line in generic position.
We have det jac (y2 : x2+2xz : x2+xy+yz) = [y(2x2−yz) = 0] which

is the union of a conic and a line tangent to this conic.
We use an argument of dimension to show that the cuspidal cubic

belongs to the image of det jac.
Up to conjugation we obtain all plane cubics, we conclude by using the

l.r. action.

4.2 Criterion of birationality

We will give a presentation of the classification of the quadratic birational
maps. Let us recall that if φ is a rational map and P a homogeneous
polynomial in three variables we say that φ contracts P if the image by φ
of the curve [P = 0] \ Indφ is a finite set.
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Remark 4.2.1. In general a rational map doesn’t contract det jac f (it is
the case for f : (x : y : z) 99K (x2 : y2 : z2)). Buts if f is a birational map
of P2(C) into itself, then det jac f is contracted by f .

Let A and B be two elements of PGL3(C). Set Q = AσB (resp.
Q = AρB, resp. Q = AτB). Then det jacQ is the union of three lines in
general position (resp. the union of a “double” line and a “simple” line,
resp. a triple line). We will give a criterion which allows us to determine
if a quadratic rational map is birational or not.

Theorem 4.2.2 ([52]). Let Q be a rational map; assume that Q is purely
quadratic and non degenerate (i.e. det jacQ 6≡ 0). Assume that Q con-
tracts det jacQ; then det jacQ is the union of three lines (non-concurrent
when they are distincts) and Q is birational.

Moreover:

• if det jacQ is the union of three lines in general position, Q is, up to
l.r. equivalence, the involution σ;

• if det jacQ is the union of a “double” line and a “simple” line,
Q = ρ up to l.r. conjugation.

• if det jacQ is a “triple” line, Q belongs to Ol.r.(τ).

Corollary 4.2.3 ([52]). A quadratic rational map from P2(C) into itself
belongs to Ol.r.(σ) if and only if it has three points of indeterminacy.

Remark 4.2.4. A birational map Q of P2(C) into itself contracts det jacQ
and doesn’t contract any other curve. Is the Theorem 4.2.2 avalaible in
degree strictly larger than 2 ? No, as soon as the degree is 3 we can exhibit
elements Q contracting det jacQ but which are not birational:

Q : (x : y : z) 99K (x2y : xz2 : y2z).

Remark 4.2.5. We don’t know if there is an analogue to Theorem 4.2.2
in any dimension; [151] can maybe help to find an answer in dimension 3.

Remark 4.2.6. In [52, Chapter 1, §6] we can find another criterion which
allows us to determine if a quadratic rational map is rational or not.

Proof of Theorem 4.2.2. Let us see that det jacQ is the union of three
lines.

Assume that det jacQ is irreducible. Let us set Q : (x : y : z) 99K (Q0 :
Q1 : Q2). Up to l.r. conjugacy we can assume that det jacQ is contracted
on (1 : 0 : 0); then detjacQ divides Q1 and Q2 which is impossible.

In the same way if det jacQ = Lq where L is linear and q non degene-
rate and quadratic, we can assume that q = 0 is contracted on (1 : 0 : 0);
then Q : (x : y : z) 99K (q1 : q : αq) and so is degenerate.
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Therefore det jacQ is the product of three linear forms.

First of all let us consider the case where, up to conjugacy, det jacQ =
xyz. If the lines x = 0 and y = 0 are contracted on the same point,
for example (1 : 0 : 0), then Q : (x : y : z) 99K (q : xy : αxy) which is
degenerate. The lines x = 0, y = 0 and z = 0 are thus contracted on
three distinct points. A computation shows that they cannot be aligned.
We can assume that x = 0 (resp. y = 0, resp. z = 0) is contracted on
(1 : 0 : 0) (resp. (0 : 1 : 0), resp. (0 : 0 : 1)); let us note that Q is the
involution (x : y : z) 99K (yz : xz : xy) up to l.r. conjugacy.

Now let us consider the case when det jacQ has two branches x = 0
and z = 0. As we just see, the lines x = 0 and z = 0 are contracted on
two distinct points, for example (1 : 0 : 0) and (0 : 1 : 0). The map Q is
up to l.r. conjugacy Q : (x : y : z) 99K (z(αy + βz) : x(γx + δy) : xz). A
direct computation shows that Q is birational as soon as βδ−αγ 6= 0 and
in fact l.r. equivalent to ρ.

Then assume that det(jacQ) = z3. We can suppose that z = 0 is
contracted on (1 : 0 : 0); then Q : (x : y : z) 99K (q : zℓ1 : zℓ2) where q is a
quadratic form and the ℓi’s are linear forms.

• If (z, ℓ1, ℓ2) is a system of coordinates we can write up to conjugacy

Q : (x : y : z) 99K (q : xz : yz), q = ax2 + by2 + cz2 + dxy.

The explicit computation of det(jacQ) implies: a = b = d = 0,
i.e. either Q is degenerate, or Q represents a linear map which is
impossible.

• Assume that (z, ℓ1, ℓ2) is not a system of coordinates, i.e.

ℓ1 = az + ℓ(x, y), ℓ2 = bz + εℓ(x, y).

Let us remark that ℓ is nonzero (otherwise Q is degenerate), thus we
can assume that ℓ = x. Up to l.r. equivalence

Q : (x : y : z) 99K (q : xz : z2).

An explicit computation implies the following equality: detjacQ =
−2z2 ∂q∂y ; thus z divides

∂q
∂y . In other words q = αz2+βxz+γx2+δyz.

Up to l.r. equivalence, we obtain Q = τ.

Finally let us consider the case: det(jacQ) = xy(x − y). As we just
see the lines x = 0 and y = 0 are contracted on two distinct points, for
example (1 : 0 : 0) and (0 : 1 : 0). So

Q : (x : y : z) 99K (y(ax+ by + cz) : x(αx+ βy + γz) : xy)
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with a, b, c, α, β, γ ∈ C. Let us note that the image of the line x = y
by Q is ((a+ b)x+ cz : (α+ β)x+ γz : x); it is a point if and only if c and
γ are zero, then Q does not depend on z.

Set

Σ3 := Ol.r.(σ), Σ2 := Ol.r.(ρ), Σ1 := Ol.r.(τ).

Let us consider a birational map represented by

Q : (x : y : z) 99K ℓ(ℓ0 : ℓ1 : ℓ2)

where ℓ and the ℓi’s are linear forms, the ℓi’s being independent. The
line given by ℓ = 0 is an apparent contracted line; indeed the action of Q
on P2(C) is obviously the action of the automorphism (ℓ0 : ℓ1 : ℓ2) of
P2(C). Let us denote by Σ0 the set of these maps

Σ0 =
{
ℓ(ℓ0 : ℓ1 : ℓ2)

∣∣ ℓ, ℓi linear forms, the ℓi’s being independent
}
.

We will abusively call the elements of Σ0 linear elements; in fact the
set

(Σ0)• =
{
f•

∣∣ f ∈ Σ0
}

can be identified to PGL3(C). We have Σ0 = Ol.r.(x(x : y : z)): up to l.r.
conjugacy a map ℓA can be written xA′ then xid. This approach allows
us to see degenerations of quadratic maps on linear maps.

Let us remark that an element of Σi has i points of indeterminacy and
i contracted curves.

An element of Σi cannot be linearly conjugate to an element of Σj where
j 6= i; nevertheless they can be birationally conjugate: the involutions σ,
ρ and τ are birationally conjugate to involutions of PGL3(C). Let us
mention that a generic element of Σi, i ≥ 1, is not birationally conjugate
to a linear map.

Corollary 4.2.7 ([52]). We have

B̊ir2 = Σ1 ∪ Σ2 ∪ Σ3, Bir2 = Σ0 ∪ Σ1 ∪ Σ2 ∪ Σ3.

Remarks 4.2.8. i. A Nœther decomposition of ρ is

(z − y : y − x : y)σ(y + z : z : x)σ(x+ z : y − z : z).

We recover the classic fact already mentioned in [115, 3]: for any bi-
rational quadratic map Q with two points of indeterminacy, there exist ℓ1,
ℓ2 and ℓ3 in PGL3(C) such that Q = ℓ1σℓ2σℓ3.
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ii. The map τ = (x2 : xy : y2−xz) of Σ1 can be written ℓ1σℓ2σℓ3σℓ4σℓ5
where

ℓ1 = (y − x : 2y − x : z − y + x), ℓ2 = (x+ z : x : y),

ℓ3 = (−y : x+ z − 3y : x), ℓ4 = (x+ z : x : y),

ℓ5 = (y − x : −2x+ z : 2x− y).

Therefore each element of Σ1 is of the following type ℓ1σℓ2σℓ3σℓ4σℓ5 where
ℓi is in PGL3(C) (see [115, 3]). The converse is false: if the ℓi’s are generic
then ℓ1σℓ2σℓ3σℓ4σℓ5 is of degree 16.

4.3 Some orbits under the left-right action

As we saw Bir2 is a finite union of l.r. orbits but it is not a closed algebraic
subset of Rat2 : the “constant” map (yz : 0 : 0) is in the closure of Ol.r.(σ)
but not in Bir2. To precise the nature of Bir2 we will study the orbits of
σ, ρ, τ and x(x : y : z).

Proposition 4.3.1 ([52]). The dimension of Σ3 = Ol.r.(σ) is 14.

Proof. Let us denote by Isotσ the isotropy group of σ. Let (A,B) be
an element of (SL3(C))2 such that Aσ = σB; a computation shows that
(A,B) belongs to

〈((
x

α
:
y

β
: αβz

)
,

(
αx : βy :

z

αβ

))
, S6 × S6

∣∣α, β ∈ C∗
〉

where

S6 =
{
id, (x : z : y), (z : y : x), (y : x : z), (y : z : x), (z : x : y)

}
.

This implies that dim Isotσ = 2.

Proposition 4.3.2 ([52]). The dimension of Σ2 = Ol.r.(ρ) is 13.

Proof. We will compute Isot ρ, i.e. let A and C be two elements of SL3(C)
such that Aρ = ηρC where η is in C∗. Let us recall that

Ind ρ =
{
(0 : 1 : 0), (1 : 0 : 0)

}
;

the equality Aρ = ηρC implies that C preserves Ind ρ. But the points of
indetermincay of ρ “are not the same”, they don’t have the same multi-
plicity so C fixes (0 : 1 : 0) and (1 : 0 : 0); thus C = (ax+bz : cy+dz : ez),
where ace 6= 0. A computation shows that

A = (ηγδx+ ηβδz : ηα2y : ηαδz), C = (γx+ βz : δy : αz)

with η3α2δ = αγδ = 1. The dimension of the isotropy group is then 3.
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Notice that the computation of Isot ρ shows that we have the following
relations

(γδx+ βδz : α2y : αδz)ρ = ρ(γx+ βz : δy : αz), α, γ, δ ∈ C∗, β ∈ C.

We can compute the isotropy group of τ and show that:

Proposition 4.3.3 ([52]). The dimension of Σ1 is 12.

In particular we obtain the following relations: Aτ = τB when

A =




αε 0 βε
εγ + 2αβ α2 (εδ + β2)

0 0 ε2


 , B =



α β 0
0 ε 0
γ δ α/ε


 ,

where β, γ, δ ∈ C, α, ε ∈ C∗.
A similar computation allows us to state the following result.

Proposition 4.3.4 ([52]). The dimension of Σ0 = Ol.r.(x(x : y : z)) is 10.

4.4 Incidence conditions; smoothness of Bir2
and non-smoothness of Bir2

Let us study the incidence conditions between the Σi’s and the smoothness
of Bir2 :

Proposition 4.4.1 ([52]). We have

Σ0 ⊂ Σ1, Σ1 ⊂ Σ2, Σ2 ⊂ Σ3

(the closures are taken in Bir2); in particular Σ3 is dense in Bir2.

Proof. By composing σ with (z : y : εx+ z) we obtain

σε1 =
(
y(εx+ z) : z(εx+ z) : yz

)

which is for ε 6= 0 in Ol.r.(σ). But σ
ε
1 is l.r. conjugate to

σε2 =
(
xy : (εx+ z)z : yz

)
.

Let us note that lim
ε→0

σε2 = (xy : z2 : yz) = ρ; so Σ2 ⊂ Σ3.

If we compose ρ with (z : x + y : x), we have up to l.r. equivalence
(yz + xz : x2 : xy). Composing with (x : y : y + z), we obtain up to l.r.
conjugation the map f = (yz+y2+xz : x2 : xy). Set gε := f(x/ε : y : −εz);
up to l.r. conjugation gε can be written (−εyz + y2 − xz : x2 : xy). For
ε = 0 we have the map τ . Therefore Σ1 is contained in Σ2.
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If ε is nonzero, then τ can be written up to l.r. conjugation:

(x2 : xy : ε2y2 + xz);

for ε = 0 we obtain x(x : y : z) which is in Σ0. Hence Σ0 ⊂ Σ1.

Thus we can state the following result.

Theorem 4.4.2 ([52]). The closures being taken in Bir2 we have

Σ0 = Σ0, Σ1 = Σ0 ∪ Σ1, Σ2 = Σ0 ∪ Σ1 ∪ Σ2,

B̊ir2 = Σ1 ∪ Σ2 ∪ Σ3, Bir2 = Σ3 = Σ0 ∪ Σ1 ∪ Σ2 ∪ Σ3

with

dimΣ0 = 10, dimΣ1 = 12, dimΣ2 = 13 and dimΣ3 = 14.

Theorem 4.4.3 ([52]). The set of quadratic birational maps is smooth in
the set of rational maps.

Proof. Because any Σi is one orbit and because of the incidence conditions
it is sufficient to prove that the closure of Σ3 is smooth along Σ0.

The tangent space to Σ0 in x(x : y : z) is given by:

Tx(x:y:z)Σ
0 =

{
(α1x

2 + α4xy + α5xz : β1x
2 + β2y

2 + β4xy + β5xz + β6yz :

γ1x
2 + β6z

2 + γ4xy + γ5xz + β2yz)
∣∣αi, βi, γi ∈ C

}
.

The vector space S generated by

(y2 : 0 : 0), (z2 : 0 : 0), (yz : 0 : 0), (0 : z2 : 0),

(0 : 0 : y2), (0 : 0 : z2), (0 : 0 : yz)

is a supplementary of Tx(x:y:z)Σ
0 in Rat2. Let f be an element of Σ3∩{

x(x : y : z) + S
}
, it can be written

(x2 +Ay2 +Bz2 + Cyz : xy + az2 : xz + αy2 + βz2 + γyz).

Necessarily f has three points of indeterminacy.
Assume that a 6= 0; let us remark that the second component of a

point of indeterminacy of f is nonzero. If (x : y : z) belongs to Ind f, then
x = −az2/y. We have

f(−az2/y : y : z) = (a2z4+Ay4+By2z2+Cy3z : 0 : −az3+αy3+βyz2+γy2z)

= (P : 0 : Q).
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As f has three points of indeterminacy, the polynomials P and Q have to
vanish on three distinct lines. In particular Q divides P :

a2z4 +Ay4 +By2z2 + Cy3z = (My +Nz)(−az3 + αy3 + βyz2 + γy2z).

Thus

B = −β2 − aγ, C = −βγ − aα, A = −αβ. (4.4.1)

These three equations define a smooth graph through f and x(x : y : z),
of codimension 3 as Σ3.

Assume now that a is zero; a point of indeterminacy (x : y : z) of f
satisfies xy = 0. If x = 0 we have

f(0 : y : z) = (Ay2 +Bz2 + Cyz : 0 : αy2 + βx2 + γyz)

and if y = 0 we have f(x : 0 : z) = (x2 + Bz2 : 0 : xz + βz2). The map f
has a point of indeterminacy of the form (x : 0 : z) if and only if B = −β2.
If it happens, f has only one such point of indeterminacy. Since f has
three points of indeterminacy, two of them are of the form (0 : y : z) and
the polynomials Ay2+Bz2+Cyz and αy2+βz2+γyz are C-colinear. We
obtain the conditions

• a = 0, B = −β2, A = −αβ and C = −βγ if β is nonzero;

• a = B = β = Aγ − αC = 0 otherwise.

Let us remark that in this last case f cannot have three points of inde-
terminacy. Finally we note that Σ3 ∩

{
x(x : y : z) + S

}
is contained in

the graph defined by the equations (4.4.1). The same holds for the closure
Σ3∩

{
x(x : y : z)+S

}
which, for some reason of dimension, coincides thus

with this graph. Then Σ3 is smooth along Σ0.

Remark 4.4.4. Since Σ3 is smooth along Σ0 and since we have incidence
conditions, Σ3 is smooth along Σ2 and Σ1. Nevertheless we can show these
two statements by constructing linear families of birational maps (see [52]).

Proposition 4.4.5 ([52]). The closure of Bir2 in P17 ≃ Rat2 is not
smooth.

Proof. Let φ be a degenerate birational map given by z(x : y : 0). The
tangent space to Ol.r.(φ) in φ is given by

TφOl.r.(φ) =
{
(α1x

2 + α3z
2 + α4xy + α5xz + α6yz : α4y

2 + β3z
2

+α1xy + β5xz + β6yz : γ5xz + γ6yz)
∣∣αi, βi, γi ∈ C

}
.
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A supplementary S of TφOl.r.(φ) is the space of dimension 8 generated
by

(y2 : 0 : 0), (0 : x2 : 0), (0 : y2 : 0), (0 : xy : 0),

(0 : 0 : x2), (0 : 0 : y2), (0 : 0 : z2), (0 : 0 : xy).

We will prove that
{
φ + S

}
∩ Σ3 contains a singular analytic subset of

codimension 3. Since Σ3 is also of codimension 3 we will obtain, using the
l.r. action, the non-smoothness of Σ3 along the orbit of φ. An element Q
of

{
φ+ S

}
can be writen

(xz + ay2 : yz + bx2 + cy2 + dxy : ex2 + fy2 + gz2 + hxy).

The points of indeterminacy are given by the three following equations

xz + ay2 = 0, yz + bx2 + cy2 + dxy = 0, ex2 + fy2 + hxy = 0;

after eliminating z this yields to P1 = P2 = 0 where

P1 = −ay3 + bx3 + cxy2 + dx2y, P2 = ex4 + fx2y2 + a2gy4 + hx3y.

Let us remark that if, for some values of the parameters, P1 vanishes on
three distinct lines and divides P2, then the corresponding map Q has
three points of indeterminacy and is birational, more precisely Q is in Σ3.
The fact that P1 divides P2 gives

P2 = (Ax+By)P1 ⇔





e = bA
f = cA+ dB
a2g = −aB
h = dA+ bB
aA = cB

(4.4.2)

Let us note that the set Λ of parameters such that

a = 0, bf − ce = 0, bh− de = 0

satisfies the system (4.4.2) (with A = e/b and B = 0). The set Λ is of
codimension 3 and is not smooth. The intersection Λ′ of quadrics bf−ce =
0 and bh − de = 0 is not smooth. Indeed Λ′ contains the linear space E
given by b = e = 0 but is not reduced to E: for example the space defined
by b = c = d = e = f = h is contained in Λ′ and not in E. Since
codim E = codim Λ′ the set Λ′ is thus reducible and then not smooth; it
is the same for Λ. If a = b = e = 0 (resp. b = c = d = e = f = h = 1,
a = 0) the polynomial P1 is equal to cxy2 + dx2y (resp. x3 + xy2 + x2y)
and in general vanishes on three distinct lines. So we have constructed in
Σ3 ∩

{
φ+ S

}
a singular analytic set of codimension 3.
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4.5 A geometric description of quadratic bi-
rational maps

4.5.1 First definitions and first properties

In a plane P let us consider a net of conics, i.e. a 2-dimensional linear
system Λ of conics. Such a system is a homaloidal net if it possesses
three base-points, that is three points through which all the elements of Λ
pass. There are three different such nets

• the nets Λ3 of conics with three distinct base-points;

• the nets Λ2 of conics passing through two points, all having at one
of them the same tangent;

• the nets Λ1 of conics mutually osculating at a point.

In order to have three conics that generate a homaloidal net Λ it suffices
to annihilate the minors of a matrix

[
ℓ0 ℓ1 ℓ2
ℓ′0 ℓ′1 ℓ′2

]

whose elements are linear forms in the indeterminates x, y and z. Indeed
the two conics described by

ℓ0ℓ
′
1 − ℓ′0ℓ1 = 0, ℓ0ℓ

′
2 − ℓ2ℓ

′
0 = 0 (4.5.1)

have four points in common. One of them ((ℓ0 = 0)∩ (ℓ′0 = 0)) doesn’t be-
long to the third conic ℓ1ℓ

′
2−ℓ′1ℓ2 = 0 obtained from (4.5.1) by eliminating

ℓ0/ℓ
′
0. So Λ is given by

a0(ℓ0ℓ
′
1 − ℓ′0ℓ1) + a1(ℓ0ℓ

′
2 − ℓ2ℓ

′
0) + a2(ℓ1ℓ

′
2 − ℓ′1ℓ2) = 0

with (a0 : a1 : a2) ∈ P2(C).
Let x, y, z be some projective coordinates in P and let u, v, w be some

projective coordinates in P ′, another plane which coincides with P. Let f
be the algebraic correspondance between these two planes; it is defined by

{
ϕ(x, y, z;u, v, w) = 0
ψ(x, y, z;u, v, w) = 0.

As f is a birational isomorphism we can write ϕ and ψ as follows

{
ϕ(x, y, z;u, v, w) = uℓ0(x, y, z) + vℓ1(x, y, z) + wℓ2(x, y, z),
ψ(x, y, z;u, v, w) = uℓ′0(x, y, z) + vℓ′1(x, y, z) + wℓ′2(x, y, z)
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and also

{
ϕ(x, y, z;u, v, w) = xL0(u, v, w) + yL1(u, v, w) + zL2(u, v, w),
ψ(x, y, z;u, v, w) = xL′

0(u, v, w) + yL′
1(u, v, w) + zL′

2(u, v, w)

where ℓi, ℓ
′
i, Li and L

′
i are some linear forms. This implies in particular

that

(u : v : w) = (ℓ1ℓ
′
2 − ℓ2ℓ

′
1 : ℓ2ℓ

′
0 − ℓ0ℓ

′
2 : ℓ0ℓ

′
1 − ℓ1ℓ

′
0) (4.5.2)

i.e. u (resp. v, resp. w) is a quadratic form in x, y, z.

On can note that if m = (u : v : w) ∈ P ′ belongs to the line D given
by a0u+ a1v+ a2w = 0 the point (x : y : z) corresponding to it via (4.5.2)
belongs to the conic given by

a0(ℓ1ℓ
′
2 − ℓ2ℓ

′
1) + a1(ℓ2ℓ

′
0 − ℓ0ℓ

′
2) + a2(ℓ0ℓ

′
1 − ℓ1ℓ

′
0) = 0.

So the lines of a plane thus correspond to the conics of a homaloidal net
of the other plane.

Conversely we can associate a quadratic map between two planes to a
homaloidal net of conics in one of them. Let Λ be an arbitrary homaloidal
net of conics in P and let us consider a projectivity θ between Λ and the
net of lines in P ′. Let m be a point of P and let us assume that m is
not a base-point of Λ. The elements of Λ passing through m is a pencil
of conics with four base-points: the three base-points of Λ and m. To this
pencil corresponds a pencil of lines whose base-point m̃ is determined by
m. To a point m′ ∈ P ′ corresponds a pencil of conics in P, the image of
the pencil of lines centered in m. Therefore the map which sends m to m̃
gives rise to a Cremona map from P into P ′ which sends the conics of P
into the lines of P ′.

So we have the following statement.

Proposition 4.5.1. To give a quadratic birational map between two planes
is, up to an automorphism, the same as giving a homaloidal net of conics
in one of them.

Remark 4.5.2. To a base-point of one of the two nets is associated a line
in the other plane which is an exceptional line.

4.5.2 Classification of the quadratic birational maps
between planes

We can deduce the classification of the quadratic birational maps between
planes from the description of the homaloidal nets Λ of conics in P.
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• If Λ has three distinct base-points we can assume that these points
are p0 = (1 : 0 : 0), p1 = (0 : 1 : 0), p2 = (0 : 0 : 1) and Λ is thus
given by

a0yz + a1xz + a2xy = 0, (a0 : a1 : a2) ∈ P2(C).

The map f is defined by (x : y : z) 99K (yz : xz : xy) and can easily
be inverted (f is an involution).

• If Λ has two distinct base-points, we can assume that the conics of
Λ are tangent at p2 = (0 : 0 : 1) to the line x = 0 and also pass
through p0 = (1 : 0 : 0). Then Λ is given by

a0xz + a1xy + a2y
2 = 0, (a0 : a1 : a2) ∈ P2(C).

The map f is defined by (x : y : z) 99K (xz : xy : y2) and its inverse
is (u : v : w) 99K (v2 : vw : uw).

• If the conics of Λ are mutually osculating at p2 = (0 : 0 : 1), we
can assume that Λ contains the two degenerated conics x2 = 0 and
xy = 0. Let C be an irreducible conic in Λ; assume that C ∩ (y =
0) = p0 and that p1 = (0 : 1 : 0) is the pole of y = 0 with respect
to C. Assume finally that (1 : 1 : 1) belongs to C then C is given by
xz + y2 = 0 and Λ is defined by

a0(xz + y2) + a1x
2 + a2xy = 0, (a0 : a1 : a2) ∈ P2(C).

The map f is (x : y : z) 99K (xz − y2 : x2 : xy) and its inverse is
(u : v : w) 99K (v2 : vw : uv + w2).

Remark 4.5.3. We can see that f and f−1 have the same type. So the
homaloidal nets associated to f and f−1 have the same type.

4.6 Cubic birational maps

The space of birational maps which are purely of degree 2 is smooth and
connected. Is it the case in any degree ? Let us see what happens in
degree 3. In the old texts we can find a description of cubic birational
maps which is based on enumerative geometry. In [52, Chapter 6] we give
a list of normal forms up to l.r. conjugation, the connectedness appearing
as a consequence of this classification. The methods are classical: topo-
logy of the complement of some plane curves, contraction of the jacobian
determinant... Unfortunately, as soon as the degree is greater than 3 we
have no criterion as in degree 2: if f is the map (x2y : xz2 : y2z), the
zeroes of det jac f are contracted but f is not invertible. Nevertheless if f
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is birational, the curve det jac f = 0 is contracted and it helps in a lot of
cases. We show that in degree 3 the possible configurations of contracted
curves are the following unions of lines and conics:

{5}{4}{3}{2}{1}

{10}{9}{8}{7}{6}

{15}{14}{13}{12}{11}

The following table gives the classification of cubic birational maps up
to conjugation:
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(xz2 + y3 : yz2 : z3) {1} {1} 13
(xz2 : x2y : z3) {2} {2} 15

(xz2 : x3 + xyz : z3) {2} {2} 15
(x2z : x3 + z3 + xyz : xz2) {2} {2} 14

(x2z : x2y + z3 : xz2) {2} {2} 15
(xyz : yz2 : z3 − x2y) {2} {8} 14

(x3 : y2z : xyz) {3} {3} 15
(x2(y − z) : xy(y − z) : y2z) {3} {10} 15

(x2z : xyz : y2(x− z)) {3} {10} 15
(xyz : y2z : x(y2 − xz)) {3} {10} 15
(x3 : x2y : (x− y)yz) {4} {4} 15

(x2(x− y) : xy(x− y) : xyz + y3) {4} {4} 16
(xz(x+ y) : yz(x+ y) : xy2) {5} {5} 16

(x(x+ y)(y + z) : y(x+ y)(y + z) : xyz) {5} {12} 16
(x(x+ y + z)(x+ y) : y(x+ y + z)(x+ y) : xyz) {5} {12} 16

(x(x2 + y2 + γxy) : y(x2 + y2 + γxy) : xyz), γ2 6= 4 {6} {6} 15 1 parameter
(xz(y + x) : yz(y + x) : xy(x− y)) {7} {7} 16

(x(x2 + y2 + γxy + γ+xz + yz) : y(x2 + y2 + γxy + γ+xz + yz) : xyz) {7} {14} 16 1 parameter
(y(x− y)(x+ z) : x(x− y)(z − y) : yz(x+ y)) {7} {14} 16

(x(x2 + yz) : y3 : y(x2 + yz)) {8} {2} 14
(y2z : x(xz + y2) : y(xz + y2)) {9} {9} 15
(x(y2 + xz) : y(y2 + xz) : xyz) {10} {3} 15
(x(y2 + xz) : y(y2 + xz) : xy2) {10} {3} 15
(x(x2 + yz) : y(x2 + yz) : xy2) {10} {3} 15

(x(xy + xz + yz) : y(xy + xz + yz) : xyz) {11} {11} 16
(x(x2 + yz + xz) : y(x2 + yz + xz) : xyz) {11} {11} 16
(x(x2 + xy + yz) : y(x2 + xy + yz) : xyz) {12} {5} 16

(x(x2 + yz) : y(x2 + yz) : xy(x− y)) {12} {5} 16
(x(y2 + γxy + yz + xz) : y(y2 + γxy + yz + xz) : xyz), γ 6= 0, 1 {13} {13} 16 1 parameter
(x(x2 + y2 + γxy + xz) : y(x2 + y2 + γxy + xz) : xyz), γ2 6= 4, {14} {7} 16 1 parameter

(x(x2 + yz + xz) : y(x2 + yz + xz) : xy(x− y)) {14} {7} 16
(x(x2 + y2 + γxy + δxz + yz) : y(x2 + y2 + γxy + δxz + yz) : xyz), γ2 6= 4, δ 6= γ± {15} {15} 16 2 parameters
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where γ denotes a complex number and where

γ+ :=
γ +

√
γ2 − 4

2
γ− :=

γ −
√
γ2 − 4

2
.

For any model we mention the configuration of contracted curves of the
map (second column), the configuration of the curves contracted by the
inverse (third column), the dimension of its orbit under the l.r. action
(fourth column) and the parameters (fifth column).

Any cubic birational map can be written, up to dynamical conjuga-
tion, Af where A denotes an element of PGL3(C) and f an element of the
previous table. This classification allows us to prove that the “generic”
element has the last configuration and allows us to establish that the di-
mension of the space B̊ir3 of birational maps purely of degree 3 is 18. Up to
l.r. conjugation the elements having the generic configuration {15} form a
family of 2 parameters: in degree 2 there are 3 l.r. orbits, in degree 3 an
infinite number.

Let us note that the configurations obtained by degenerescence from
picture {15} do not all appear. In degree 2 there is a similar situation: the
configuration of three concurrent lines is not realised as the exceptional
set of a quadratic birational map.

Let us denote by X the set of birational maps purely of degree 3
having configuration {15}. We establish that the closure of X in B̊ir3 is
B̊ir3. We can show that B̊ir3 is irreducible, in fact rationally connected
([52, Chapter 6]); but if Bir2 is smooth and irreducible, Bir3, viewed in
P29(C) ≃ Rat3, doesnt have the same properties ([52, Theorem 6.38]).

Let us mention another result. Let dJd be the subset of dJ made of
birational maps of degree d and let Vd be the subset of Bir(P2) defined by

Vd =
{
AfB

∣∣A, B ∈ PGL3(C), f ∈ dJd
}
.

The dimension of Bird is equal to 4d + 6 and Vd its unique irreducible
component of maximal dimension ([141]).



Chapter 5

Finite subgroups of the
Cremona group

The study of the finite subgroups of Bir(P2) began in the 1870′s with
Bertini, Kantor and Wiman ([25, 122, 172]). Since then, many mathe-
maticians has been interested in the subject, let us for example mention
[12, 15, 16, 29, 61, 79]. In 2006 Dolgachev and Iskovkikh improve the re-
sults of Kantor and Wiman and give the description of finite subgroups
of Bir(P2) up to conjugacy. Before stating one of the key result let us
introduce some notions.

Let S be a smooth projective surface. A conic bundle η : S → P1(C)
is a morphism whose generic fibers have genus 0 and singular fibers are the
union of two lines. A surface endowed with conic bundles is isomorphic
either to Fn, or to Fn blown up in a finite number of points, all belonging to
different fibers (the number of blow-ups is exactly the number of singular
fibers).

A surface S is called a del Pezzo surface if −KS is ample, which
means that −KS · C > 0 for any irreducible curve C ⊂ S. Any del Pezzo
surface except P1(C) × P1(C) is obtained by blowing up r points p1, . . .,
pr of P2(C) with r ≤ 8 and no 3 of pi are collinear, no 6 are on the same
conic and no 8 lie on a cubic having a singular point at one of them. The
degree of S is 9− r.

Theorem 5.0.1 ([131, 116]). Let G be a finite subgroup of the Cremona
group. There exists a smooth projective surface S and a birational map
φ : P2(C) 99K S such that φGφ−1 is a subgroup of Aut(S). Moreover one
can assume that

• either S is a del Pezzo surface;

• or there exists a conic bundle S → P1(C) invariant by φGφ−1.

73
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Remark 5.0.2. The alternative is not exclusive: there are conic bundles
on del Pezzo surfaces.

Dolgachev and Iskovskikh give a characterization of pairs (G,S) satisfy-
ing one of the possibilities of Theorem 5.0.1. Then they use Mori theory to
determine when two pairs are birationally conjugate. Let us note that the
first point was partially solved by Wiman and Kantor but not the second.
There are still some open questions ([79] §9), for example the description
of the algebraic varieties that parametrize the conjugacy classes of the fi-
nite subgroups of Bir(P2). Blanc gives an answer to this question for finite
abelian subgroups of Bir(P2) with no elements with an invariant curve of
positive genus, also for elements of finite order (resp. cyclic subgroups of
finite order) of the Cremona group ([29, 30]).

5.1 Birational involutions

5.1.1 Geiser involutions

Let p1, . . . , p7 be seven points of P2(C) in general position. Let L be the
linear system of cubics through the pi’s. A cubic is given by a homogeneous
polynomial of degree 3 in 3 variables. The dimension of the space of homo-
geneous polynomials of degree 3 in 3 variables is 10 thus dim{C |C cubic}=
10− 1 = 9; cubics have to pass through p1, . . ., p7 so dimL = 2. Let p be
a generic point of P2(C); let us consider the pencil Lp containing elements
of L through p. A pencil of generic cubics

a0C0 + a1C1, C0, C1 two cubics (a0 : a1) ∈ P1(C)

has nine base-points (indeed by Bezout’s theorem the intersection of two
cubics is 3 × 3 = 9 points); so we define by IG(p) the ninth base-point
of Lp.

The involution IG = IG(p1, . . . , p7) which sends p to IG(p) is a Geiser
involution .

We can check that such an involution is birational, of degree 8; its
fixed points form an hyperelliptic curve of genus 3, degree 6 with 7 ordi-
nary double points which are the pi’s. The exceptional locus of a Geiser
involution is the union of seven cubics passing through the seven points of
indeterminacy of IG and singular in one of these seven points (cubics with
double point).

The involution IG can be realized as an automorphism of a del Pezzo
surface of degree 2.
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5.1.2 Bertini involutions

Let p1, . . . , p8 be eight points of P2(C) in general position. Let us consider
the set of sextics S = S(p1, . . . , p8) with double points in p1, . . . , p8. Let
m be a point of P2(C). The pencil given by the elements of S having a
double point in m has a tenth base double point m′. The involution which
swaps m and m′ is a Bertini involution IB = IB(p1, . . . , p8).

Its fixed points form a non hyperelliptic curve of genus 4, degree 9 with
triple points in the pi’s and such that the normalisation is isomorphic to
a singular intersection of a cubic surface and a quadratic cone in P3(C).

The involution IB can be realized as an automorphism of a del Pezzo
surface of degree 1.

5.1.3 de Jonquières involutions

Let C be an irreductible curve of degree ν ≥ 3. Assume that C has a
unique singular point p and that p is an ordinary multiple point with
multiplicity ν − 2. To (C, p) we associate a birational involution IJ which
fixes pointwise C and which preserves lines through p. Let m be a generic
point of P2(C) \ C; let rm, qm and p be the intersections of the line (mp)
and C; the point IJ(m) is defined by the following property: the cross ratio
of m, IJ(m), qm and rm is equal to −1. The map IJ is a de Jonquières
involution of degree ν centered in p and preserving C. More precisely its
fixed points are the curve C of genus ν − 2 for ν ≥ 3.

For ν = 2 the curve C is a smooth conic; we can do the same construc-
tion by choosing a point p not on C.

5.1.4 Classification of birational involutions

Definition 5.1.1. We say that an involution is of de Jonquières type it
is birationally conjugate to a de Jonquières involution. We can also speak
about involution of Geiser type, resp. Bertini type.

Theorem 5.1.2 ([25, 12]). A non-trivial birational involution of P2(C) is
either of de Jonquières type, or Bertini type, or Geiser type.

More precisely Bayle and Beauville obtained the following statement.

Theorem 5.1.3 ([12]). The map which associates to a birational involu-
tion of P2 its normalized fixed curve establishes a one-to-one correspon-
dence between:

• conjugacy classes of de Jonquières involutions of degree d and iso-
morphism classes of hyperelliptic curves of genus d− 2 (d ≥ 3);

• conjugacy classes of Geiser involutions and isomorphism classes of
non-hyperelliptic curves of genus 3;
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• conjugacy classes of Bertini involutions and isomorphism classes of
non-hyperelliptic curves of genus 4 whose canonical model lies on a
singular quadric.

The de Jonquières involutions of degree 2 form one conjugacy class.

5.2 Birational involutions and foliations

5.2.1 Foliations: first definitions

A holomorphic foliation F of codimension 1 and degree ν on P2(C) is
given by a 1-form

ω = u(x, y, z)dx+ v(x, y, z)dy + w(x, y, z)dz

where u, v and w are homogeneous polynomials of degree ν + 1 without
common component and satisfying the Euler identity xu + vy + wz = 0.
The singular locus SingF of F is the projectivization of the singular
locus of ω

Singω =
{
(x, y, z) ∈ C3

∣∣u(x, y, z) = v(x, y, z) = w(x, y, z) = 0
}
.

Let us give a geometric interpretation of the degree. Let F be a foliation of
degree ν on P2(C), let D be a generic line, and let p a point of D \ SingF .
We say that F is transversal to D if the leaf Lp of F in p is transversal
to D in p, otherwise we say that p is a point of tangency between F
and D. The degree ν of F is exactly the number of points of tangency
between F and D. Indeed, if ω is a 1-form of degree ν + 1 on C3 defining
F , it is of the following type

ω = P0dx+ P1dy + P2dz, Pi homogeneous polynomial of degree ν + 1.

Let us denote by ω0 the restriction of ω to the affine chart x = 1

ω0 = ω|x=1 = P1(1, y, z)dy + P2(1, y, z)dz.

Assume that the line D =
{
z = 0

}
is a generic line. In the affine chart

x = 1 the fact that the radial vector field vanishes on D implies that

P0(1, y, 0) + yP1(1, y, 0) = 0.

Generically (on the choice of D) the polynomial P0(1, y, 0) is of degree ν+1
so P1(1, y, 0) is of degree ν. Since ω0|D = P1(1, y, 0)dy, the restriction of ω0

to D vanishes into ν points: the number of tangencies between F and D
is ν.

The classification of foliations of degree 0 and 1 on P2(C) is known
since the XIXth century. A foliation of degree 0 on P2(C) is a pencil
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of lines, i.e. is given by xdy − ydx = x2d
(
y
x

)
, the pencil of lines being

y
x = cte. Each foliation of degree 1 on the complex projective plane has
3 singularities (counting with multiplicity), has at least one invariant line
and is given by a rational closed 1-form (in other words there exists a
homogeneous polynomial P such that ω/P is closed); the leaves are the
connected components of the “levels” of a primitive of this 1-form. The
possible 1-forms are

xλ0yλ1zλ2 , λi ∈ C,
∑

i

λi = 0,
x

y
exp

(
z

y

)
,

Q

x2

where Q is a quadratic form of maximal rank. More generally a foliation
of degree 0 on Pn(C) is associated to a pencil of hyperplanes, i.e. is given
by the levels of ℓ1/ℓ2 where ℓ1, ℓ2 are two independent linear forms. Let
F be a foliation of degree 1 on Pn(C). Then

• either there exists a projection τ : Pn(C) 99K P2(C) and a foliation
of degree 1 on P2(C) such that F = τ∗F1,

• or the foliation is given by the levels of Q/L2 where Q (resp. L) is
of degree 2 (resp. 1).

For ν ≥ 2 almost nothing is known except the generic nonexistence of
an invariant curve ([118, 53]). Let us mention that

• there exists a description of the space of foliations of degree 2 in
P3(C) (see [54]);

• any foliation of degree 2 is birationally conjugate to another (not
necessary of degree 2) given by a linear differential equation dy

dx =
P (x, y) where P is in C(x)[y] (see [55]).

A regular point m of F is an inflection point for F if Lm has an
inflection point in m. Let us denote by FlexF the closure of these points.
A way to find this set has been given by Pereira in [153]: let

Z = E
∂

∂x
+ F

∂

∂y
+G

∂

∂z

be a homogeneous vector field on C3 non colinear to the radial vector field
R = x ∂

∂x + y ∂
∂y + z ∂

∂z describing F (i.e. ω = iRiZdx ∧ dy ∧ dz). Let us
consider

H =

∣∣∣∣∣∣

x E Z(E)
y F Z(F )
z G Z(G)

∣∣∣∣∣∣
;

the zeroes of H is the union of FlexF and the lines invariant by F .
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5.2.2 Foliations of degree 2 and involutions

To any foliation F of degree 2 on P2(C) we can associate a birational
involution IF : let us consider a generic pointm of F , since F is of degree 2,
the tangent TmLm to the leaf through m is tangent to F at a second
point p, the involution IF is the map which swaps these two points. More
precisely let us assume that F is given by the vector field χ. The image
by IF of a generic point m is the point m+ sχ(m) where s is the unique
nonzero parameter for which χ(m) and χ(m+ sχ(m)) are colinear.

Let q be a singular point of F and let P(q) be the pencil of lines
through q. The curve of points of tangency Tang(F ,P(q)) between F and
P(q) is blown down by IF on q. We can verify that all contracted curves
are of this type.

Jouanolou example

The foliation FJ is described in the affine chart z = 1 by

(x2y − 1)dx− (x3 − y2)dy;

this example is due to Jouanolou and is the first known foliation without
invariant algebraic curve.

We can compute IFJ
:

(xy7 + 3x5y2z − x8 − 5x2y4z2 + 2y3z5 + x3yz4 − xz7 :

3xy5z2 + 2x5z3 − x7y − 5x2y2z4 + x4y3z + yz7 − y8 :

xy4z3 − 5x4y2z2 − y7z + 2x3y5 + 3x2yz5 − z8 + x7z).

its degree is 8 and

Ind IFJ
= SingFJ =

{
(ξj : ξ−2j : 1)

∣∣ j = 0, . . . , 6, ξ7 = 1
}
.

As there is no invariant algebraic curve for FJ we have

FlexFJ = Fix IFJ
= 2(3x2y2z2 − xy5 − x5z − yz5);

this curve is irreducible.
The subgroup of Aut(P2) which preserves a foliation F of P2(C) is

called the isotropy group of F ; it is an algebraic subgroup of Aut(P2)
denoted by

Iso F =
{
ϕ ∈ Aut(P2)

∣∣ϕ∗F = F
}
.

The point (1 : 1 : 1) is a singular point of FlexFJ , it is an ordinary
double point. If we let IsoFJ act, we note that each singular point of
FJ is an ordinary double point of FlexFJ and that FlexFJ has no other

singular point. Therefore FlexFJ has genus (6−1)(6−2)
2 − 7 = 3.
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The singular points of SingFJ are in general position so IFJ
is a Geiser

involution.
The group 〈IFJ

, IsoFJ〉 is a finite subgroup of Bir(P2); it cannot be
conjugate to a subgroup of Aut(P2) because Fix IJ is of genus 3. This
group of order 42 appears in the classification of finite subgroups of Bir(P2)
(see [80]).

The generic case

Let us recall that if F is of degree ν, then #SingF = ν2 + ν + 1 (let
us precise that points are counted with multiplicity). Thus a quadratic
foliation has seven singular points counted with multiplicity; moreover if
we choose seven points p1, . . . , p7 in general position, there exists one and
only one foliation F such that SingF =

{
p1, . . . , p7

}
(see [101]).

Theorem 5.2.1 ([50]). Let p1, . . . , p7 be seven points of P2(C) in general
position. Let F be the quadratic foliation such that SingF =

{
p1, . . . , p7

}

and let IG be the Geiser involution associated to the pi’s. Then IG and
IF coincide.

Corollary 5.2.2 ([50]). The involution associated to a generic quadratic
foliation of P2(C) is a Geiser involution.

This allows us to give explicit examples of Geiser involutions. Indeed
we can explicitely write a generic foliation of degree 2 of P2(C) : we can
assume that (0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0) and (1 : 1 : 1) are singular
for F and that the line at infinity is not preserved by F so the foliation F
is given in the affine chart z = 1 by the vector field

(
x2y + ax2 + bxy + cx+ ey

) ∂
∂x

+
(
xy2 +Ay2 +Bxy + Cx+ Ey

) ∂
∂y

with 1+a+b+c+e = 1+A+B+C+E = 0. Then the construction detailed
in 5.1.1 allows us to give an explicit expression for the involution IF .
Remark 5.2.3. Let us consider a foliation F of degree 3 on P2(C). Every
generic line of P2(C) is tangent to F in three points. The “application”
which switches these three points is in general multivalued; we give a crite-
rion which says when this application is birational. This allows us to give
explicit examples of trivolutions and finite subgroups of Bir(P2) (see [50]).

5.3 Number of conjugacy classes of birational
maps of finite order

The number of conjugacy classes of birational involutions in Bir(P2) is infi-
nite (Theorem 5.1.3). Let n be a positive integer; what is the number ν(n)
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of conjugacy classes of birational maps of order n in Bir(P2) ? De Fernex
gives an answer for n prime ([61]); there is a complete answer in [27].

Theorem 5.3.1 ([27]). For n even, ν(n) is infinite; this is also true for
n = 3, 5.

For any odd integer n 6= 3, 5 the number of conjugacy classes ν(n) of
elements of order n in Bir(P2) is finite. Furthermore

• ν(9) = 3;

• ν(15) = 9;

• ν(n) = 1 otherwise.

Let us give an idea of the proof. Assume that n is even. Let us consider
an element P of C[xn] without multiple root. Blanc proves that there exists
a birational map f of order 2n such that fn is the involution (x, P (x)/y)
that fixes the hyperelliptic curve y2 = P (x). So the case n = 2 allows to
conclude for any even n ≥ 4.

To any elliptic curve C we can associate a birational map fC of the com-
plex projective plane whose set of fixed points is C. Indeed let us consider
the smooth cubic plane curve C = {(x : y : z) ∈ P2(C) |P (x, y, z) = 0}
where P is a non-singular form of degree 3 in three variables. The surface
S = {(w : x : y : z) ∈ P3(C) |w3 = P (x, y, z)} is a del Pezzo surface of
degree 3 (see for example [124]). The map fC : w 7→ exp(2iπ3 )w gives rise to
an automorphism of S whose set of fixed points is isomorphic to C. Since
the number of isomorphism classes of ellitpic curves is infinite the number
of conjugacy classes in Bir(P2) of elements of order 3 is thus also infinite.
A similar construction holds for birational maps of order 5.

To show the last part of the statement Blanc applies Theorem 5.0.1 to
the subgroup generated by a birational map of odd order n ≥ 7.

5.4 Birational maps and invariant curves

Examining Theorem 5.1.3, it is not surprising that simultaneously, Castel-
nuovo was interested in birational maps that preserve curves of positive
genus. Let C be an irreducible curve of P2(C); the inertia group of C,
denoted by Ine(C), is the subgroup of Bir(P2) that fixes pointwise C.
Let C ⊂ P2(C) be a curve of genus > 1, then an element of Ine(C) is
either a de Jonquières map, or a birational map of order 2, 3 or 4 (see
[48]). This result has been recently precised as follows.

Theorem 5.4.1 ([33]). Let C ⊂ P2(C) be an irreducible curve of genus
> 1. Any f of Ine(C) is either a de Jonquières map, or a birational map
of order 2 or 3. In the first case, if f is of finite order, it is an involution.
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To prove this statement Blanc, Pan and Vust follow Castelnuovo’s idea;
they construct the adjoint linear system of C: let π : Y → P2(C) be an

embedded resolution of singularities of C and let C̃ be the strict transform
of C. Let ∆ be the fixed part of the linear system |C̃ + KY |. If |C̃ + KY |
is neither empty, nor reduced to a divisor, π∗|C̃ + KY | \ ∆ is the adjoint
linear system. By iteration they obtain that any element f of Ine(C)
preserves a fibration F that is rational or elliptic. If F is rational, f is a
de Jonquières map. Let us assume that F is elliptic. Since C is of genus
> 1 the restriction of f to a generic fiber is an automorphism with at most
two fixed points: f is thus of order 2, 3 or 4. Applying some classic results
about automorphisms of elliptic curves Blanc, Pan and Vust show that f
is of genus 2 or 3. Finally they note that this result cannot be extended to
curves of genus ≤ 1; this eventuality has been dealt with in [150, 28] with
different technics.

Let us also mention results due to Diller, Jackson and Sommese that
are obtained from a more dynamical point of view.

Theorem 5.4.2 ([74]). Let S be a projective complex surface and f be a
birational map on S. Assume that f is algebraically stable and hyperbolic.
Let C be a connected invariant curve of f . Then C is of genus 0 or 1.

If C is of genus 1, then, after contracting some curves in S, there exists
a meromorphic 1-form such that

• f∗ω = αω with α ∈ C,

• and −C is the divisor of poles of ω.

The constant α is determined solely by C and f|C.

They are also interested in the number of irreducible components of
an invariant curve of a birational map f ∈ Bir(S) where S denotes a
rational surface. They prove that except in a particular case, this number
is bounded by a quantity that only depends on S.

Theorem 5.4.3 ([74]). Let S be a rational surface and let f be a birational
map on S. Assume that f is algebraically stable and hyperbolic. Let C ⊂ S
be a curve invariant by f .

If one of the connected components of C is of genus 1 the number of
irreducible components of C is bounded by dimPic(S) + 2.

If every connected component of C has genus 0 then

• either C has at most dimPic(S) + 1 irreducible components;

• or there exists an holomorphic map π : S → P1(C), unique up to
automorphisms of P1(C), such that C contains exactly k ≥ 2 dis-
tinct fibers of π, and C has at most dimPic(S) + k − 1 irreducible
components.



Chapter 6

Automorphism groups

6.1 Introduction

A lot of mathematicians have been interested in and are still interested in
the algebraic properties of the diffeomorphisms groups of manifolds. Let
us for example mention the following result. Let M and N be two smooth
manifolds without boundary and let Diffp(M) denote the group of Cp-
diffeomorphisms of M. In 1982 Filipkiewicz proves that if Diffp(M) and
Diffq(N) are isomorphic as abstract groups then p = q and the isomorphism
is induced by a Cp-diffeomorphism from M to N.

Theorem 6.1.1 ([87]). Let M and N be two smooth manifolds without
boundary. Let ϕ be an isomorphism between Diffp(M) and Diffq(N). Then
p is equal to q and there exists ψ : M → N of class Cp such that

ϕ(f) = ψfψ−1, ∀f ∈ Diffp(M).

There are similar statements for diffeomorphisms which preserve a vo-
lume form, a symplectic form ([7, 8])... If M is a Riemann surface of
genus larger than 2, then the group of diffeomorphisms which preserve
the complex structure is finite. Thus there is no hope to obtain a similar
result as Theorem 6.1.1: we can find two distinct curves of genus 3 whose
automorphisms group is trivial. More generally if M is a complex compact
manifold of general type, then Aut(M) is finite and often trivial. On the
contrary let us mention two examples of homogeneous manifolds:

• any automorphism of Aut(P2) is the composition of an inner auto-
morphism, the action of an automorphism of the field C and the
involution u 7→ t u−1 (see for example [71]);

• the automorphisms group of the torus C/Γ is the semi-direct product
C/Γ⋊ Z/2Z ≃ R2/Z2 ⋊ Z/2Z for all lattices Γ 6= Z[i], Z[j].

82
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In the first part of the Chapter we deal with the structure of the group
of automorphisms of the affine group Aff(C) of the complex line (Theo-
rem 6.2.1). Let us say a few words about it. Let φ be an automorphism
of Aff(C) and let G be a maximal (for the inclusion) abelian subgroup
of Aff(C); then φ(G) is still a maximal abelian subgroup of Aff(C). We
get the nature of φ from the precise description of the maximal abelian
subgroups of Aff(C).

In the second part of the Chapter we are focused on the automor-
phisms group of polynomial automorphisms of C2. Let φ be an auto-
morphism of Aut(C2). Using the structure of amalgamated product of
Aut(C2) (Theorem 2.1.2) Lamy determines the centralisers of the elements
of Aut(C2) (see [127]); we thus obtain that the set of Hénon automor-
phisms is preserved by φ (Proposition 6.3.5). Since the elementary group
E is maximal among the solvable subgroups of length 3 of Aut(C2) (Propo-
sition 6.3.7) we establish a property of rigidity for E: up to conjugation by
a polynomial automorphism of the plane φ(E) = E (see Proposition 6.3.8).
This rigidity allows us to characterize φ.

We finish Chapter 6 with the description of Aut(Bir(P2)). Let φ be an
automorphism of Bir(P2). The study of the uncountable maximal abelian
subgroups G of Bir(P2) leads to the following alternative: either G owns an
element of finite order, or G preserves a rational fibration (that is G is, up
to conjugation, a subgroup of dJ = PGL2(C(y))⋊PGL2(C)). This allows
us to prove that PGL3(C) is pointwise invariant by φ up to conjugacy and
up to the action of an automorphism of the field C. The last step is to
establish that ϕ(σ) = σ; we then conclude with Theorem 2.1.4.

6.2 The affine group of the complex line

Let Aff(C) =
{
z 7→ az + b

∣∣ a ∈ C∗, b ∈ C
}

be the affine group of the

complex line.

Theorem 6.2.1. Let φ be an automorphism of Aff(C). Then there exist
τ an automorphism of the field C and ψ an element of Aff(C) such that

φ(f) = τ(ψfψ−1), ∀ f ∈ Aff(C).

Proof. If G is a maximal abelian subgroup of Aff(C) then φ(G) too. The
maximal abelian subgroups of Aff(C) are

T =
{
z 7→ z + α

∣∣α ∈ C
}

and Dz0 =
{
z 7→ α(z − z0) + z0

∣∣α ∈ C∗
}
.

Note that T has no element of finite order so φ(T) = T and φ(Dz0) = Dz′0 .
Up to a conjugacy by an element of T one can suppose that φ(D0) = D0.
In other words one has
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• an additive morphism τ1 : C → C such that

φ(z + α) = z + τ1(α), ∀α ∈ C;

• a multiplicative one τ2 : C∗ → C∗ such that

φ(αz) = τ2(α)z, ∀α ∈ C∗.

On the one hand we have

φ(αz + α) = φ(αz)φ(z + 1) = τ2(α)z + τ2(α)τ1(1)

and on the other hand

φ(αz + α) = φ(z + α)φ(αz) = τ2(α)z + τ1(α).

Therefore τ1(α) = τ2(α)κ where κ = τ1(1). In particular τ1 is multiplicative
and additive, i.e. τ1 is an automorphism of the field C (and τ2 too).

Then

φ(αz + β) = τ2(α)z + τ1(β) = τ2(α)z + τ2(β)κ = τ2(αz + τ−1
2 (κ)β)

= τ2(τ
−1
2 (κ)z ◦ αz + β ◦ τ2(κ)z).

Let us denote by Aut(Cn) the group of polynomial automorphisms of
Cn. Ahern and Rudin show that the group of holomorphic automorphisms
of Cn and the group of holomorphic automorphisms of Cm have different
finite subgroups when n 6= m (see [2]); in particular the group of holo-
morphic automorphisms of Cn is isomorphic to the group of holomorphic
automorphisms of Cm if and only if n = m. The same argument holds for
Aut(Cn) and Aut(Cm).

6.3 The group of polynomial automorphisms
of the plane

6.3.1 Description of the automorphisms group of Aut(C2)

Theorem 6.3.1 ([66]). Let φ be an automorphism of Aut(C2). There
exist ψ in Aut(C2) and an automorphism τ of the field C such that

φ(f) = τ(ψfψ−1), ∀ f ∈ Aut(C2).
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Remark 6.3.2. Let us mention the existence of a similar result for the
subgroup of tame automorphisms of Aut(Cn): every automorphism of the
group of polynomial automorphisms of complex affine n-space inner up
to field automorphisms when restricted to the subgroup of tame automor-
phisms ([126]).

The section is devoted to the proof of Theorem 6.3.1 which uses the
well known amalgamated product structure of Aut(C2) (Theorem 2.1.2).
Let us recall that a Hénon automorphism is an automorphism of the
type ϕg1 . . . gpϕ

−1

ϕ ∈ Aut(C2), gi = (y, Pi(y)− δix), Pi ∈ C[y], degPi ≥ 2, δi ∈ C∗,

and that

A =
{
(a1x+ b1y + c1, a2x+ b2y + c2)

∣∣ ai, bi, ci ∈ C, a1b2 − a2b1 6= 0
}
,

E =
{
(αx+ P (y), βy + γ)

∣∣α, β, γ ∈ C, αβ 6= 0, P ∈ C[y]
}
.

Let us also recall the two following statements.

Proposition 6.3.3 ([92]). Let f be an element of Aut(C2).
Either f is conjugate to an element of E, or f is a Hénon automor-

phism.

Proposition 6.3.4 ([127]). Let f be a Hénon automorphism; the central-
izer of f is countable.

Proposition 6.3.3 and Proposition 6.3.4 allow us to establish the fol-
lowing property:

Proposition 6.3.5 ([66]). Let φ be an automorphism of Aut(C2). Then
φ(H) = H where

H =
{
f ∈ Aut(C2)

∣∣ f is a Hénon automorphism
}
.

We also have the following: for any f in E, φ(f) is up to conjugacy
in E. But Lamy proved that a non-abelian subgroup whose each element
is conjugate to an element of E is conjugate either to a subgroup of A, or
to a subgroup or E. So we will try to “distinguish” A and E.

We set E(1) = [E, E] =
{
(x, y) 7→ (x + P (y), y + α)

∣∣α ∈ C, P ∈ C[y]
}

and
E(2) = [E(1), E(1)] =

{
(x, y) 7→ (x+ P (y), y)

∣∣P ∈ C[y]
}
.

The group E(2) satisfies the following property.

Lemma 6.3.6 ([66]). The group E(2) is a maximal abelian subgroup of E.
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Proof. Let K ⊃ E(2) be an abelian group. Let g = (g1, g2) be in K. For
any polynomial P and for any t in C let us set ftP = (x + tP (y), y). We
have

(⋆) ftP g = gftP .

If we consider the derivative of (⋆) with respect to t at t = 0 we obtain

(⋄) ∂g1
∂x

P (y) = P (g2), (⋄⋄) ∂g2
∂x

P (y) = 0.

The equality (⋄⋄) implies that g2 depends only on y. Thus from (⋆⋆) we
get: ∂g1

∂x is a function of y, i.e. ∂g1
∂x = R(y) and g1(x, y) = R(y)x +Q(y).

As g is an automorphism, R is a constant α which is non-zero. Then (⋆⋆)
can be rewritten αP (y) = P (g2). For P ≡ 1 we obtain that α = 1 and
for P (y) = y we have g2(y) = y. In other words g = (x+Q(y), y) belongs
to E(2).

Let G be a group; set

G(0) = G, G(1) = [G,G], . . . , G(p) = [G(p−1),G(p−1)], . . .

The group G is solvable if there exists an integer k such that G(k) = id; the
smallest integer k such that G(k) = id is the length of G. The Lemma 6.3.6
allows us to establish the following statement.

Proposition 6.3.7 ([66]). The group E is maximal among the solvable
subgroups of Aut(C2) of length 3.

Proof. Let K be a solvable group of length 3. Assume that K ⊃ E. The
group K(2) is abelian and contains E(2). As E(2) is maximal, K(2) = E(2).
The group K(2) is a normal subgroup of K so for all f = (f1, f2) ∈ K and
g = (x+ P (y), y) ∈ K(2) = E(2) we have

(⋆) f1(x+ P (y), y) = f1(x, y) + Θ(P )(f2(x, y))

(⋆⋆) f2(x+ P (y), y) = f2(x, y)

where Θ: C[y] → C[y] depends on f . The second equality implies that f2 =
f2(y). The derivative of (⋆) with respect to x implies ∂f1

∂x (x + P (y), y) =
∂f1
∂x (x, y) thus

∂f1
∂x = R(y) and

f1(x, y) = R(y)x+Q(y), Q, R ∈ C[y].

As f is an automorphism we have f1(x, y) = αx + Q(y), α 6= 0. In other
words K = E.

This algebraic characterization of E and the fact that a non-abelian
subgroup whose each element is conjugate to an element of E is conjugate
either to a subgroup of A or to a subgroup or E (see [127]) allow us to
establish a rigidity property concerning E.
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Proposition 6.3.8 ([66]). Let φ be an automorphism of Aut(C2). There
exists a polynomial automorphism ψ of C2 such that φ(E) = ψEψ−1.

Assume that φ(E) = E; we can show that φ(D) = D and φ(Ti) = Ti
where

D =
{
(x, y) 7→ (αx, βy)

∣∣α, β ∈ C∗
}
,

T1 =
{
(x, y) 7→ (x+ α, y)

∣∣α ∈ C
}
, T2 =

{
(x, y) 7→ (x, y + β)

∣∣β ∈ C
}
.

With an argument similar to the one used in §6.2 we obtain the follow-
ing statement.

Proposition 6.3.9 ([66]). Let φ be an automorphism of Aut(C2). Then
up to inner conjugacies and up to the action of an automorphism of the
field C the group E is pointwise invariant by φ.

It is thus not difficult to check that if E is pointwise invariant, then
φ(x, x+y) = (x, x+y).We conclude using the following fact: E and (x, x+
y) generate Aut(C2).

6.3.2 Corollaries

Corollary 6.3.10 ([66]). An automorphism φ of Aut(C2) is inner if and
only if for any f in Aut(C2) we have

jacφ(f) = jac f

where jac f is the determinant of the jacobian matrix of f.

Proof. There exists an automorphism τ of the field C and a polynomial
automorphism ψ such that for any polynomial automorphism f we have
φ(f) = τ(ψ−1fψ). Hence

jacφ(f) = jac τ(f) = τ(jac f),

so jacφ(f) = jac f for any f if and only if τ is trivial.

Corollary 6.3.11. An isomorphism of the semi-group End(C2) in itself
is inner up to the action of an automorphism of the field C.

Proof. Let φ be an isomorphism of the semi-group End(C2) in itself; φ
induces an automorphism of C2. We can assume that, up to the action of
an inner automorphism and up to the action of an automorphism of the
field C, the restriction of φ to Aut(C2) is trivial (Theorem 6.3.1).
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For any α in C2, let us denote by fα the constant endomorphism of C2,
equal to α. For any g in End(C2) we have fαg = fα. This equality implies
that φ sends constant endomorphisms onto constant endomorphisms; this
defines an invertible map κ from C2 into itself such that φ(fα) = fκ(α).
Since gfα = fg(α) for any g in End(C2) and any α in C2 we get: φ(g) =
κgκ−1. The restriction φ|Aut(C2) is trivial so κ is trivial.

6.4 The Cremona group

6.4.1 Description of the automorphisms group of Bir(P2)

Theorem 6.4.1 ([67]). Any automorphism of the Cremona group is the
composition of an inner automorphism and an automorphism of the field C.

Let us recall the definition of a foliation on a compact complex
surface . Let S be a compact complex surface; let (Ui) be a collection
of open sets which cover S. A foliation F on S is given by a family (χi)i
of holomorphic vector fields with isolated zeros defined on the U ′

is. The
vector fields χi satisfy some conditions

on Ui ∩ Uj we have χi = gijχj , gij ∈ O∗(Ui ∩ Uj).

Note that a non trivial vector field χ on S defines such a foliation.
The keypoint of the proof of Theorem 6.4.1 is the following Lemma.

Lemma 6.4.2 ([67]). Let G be an uncountable maximal abelian subgroup
of Bir(P2). There exists a rational vector field χ such that

f∗χ = χ, ∀ f ∈ G.

In particular G preserves a foliation.

Proof. The group G is uncountable so there exists an integer n such that

Gn =
{
f ∈ G

∣∣ deg f = n
}

is uncountable. Then the Zariski’s closure Gn of Gn in

Birn =
{
f ∈ Bir(P2)

∣∣ deg f ≤ n
}

is an algebraic set and dimGn ≥ 1. Let us consider a curve in Gn, i.e. a
map

η : D → Gn, t 7→ η(t).

Remark that the elements of Gn are commuting birational maps.
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For each p in P2(C) \ Ind η(0)−1 set

χ(p) =
∂η(s)

∂s

∣∣∣
s=0

(η(0)−1(p)).

This formula defines a rational vector field on P2(C) which is non iden-
tically zero. By derivating the equality fη(s)f−1(p) = η(s)(p) we obtain
f∗χ = χ. Then χ is invariant by Gn; we note that in fact χ is invariant
by G.

So take an uncountable maximal abelian subgroup G of Bir(P2) with-
out periodic element and an automorphism φ of Bir(P2). Then φ(G) is
an uncountable maximal abelian subgroup of Bir(P2) which preserves a
foliation F .

Let F be an holomorphic singular foliation on a compact complex pro-
jective surface S. Such foliations have been classified up to birational equi-
valence by Brunella, McQuillan and Mendes ([37, 136, 137]). Let Bir(S,F)
(resp. Aut(S,F)) be the group of birational (resp. biholomorphic) sym-
metries of F , i.e. mappings g which send leaf to leaf. For a foliation F of
general type, Bir(S,F) = Aut(S,F) is a finite group. In [45] the authors
classify those triples (S,F , g) for which Bir(S,F) (or Aut(S,F)) is infinite.
The classification leads to five classes of foliations listed below:

• F is left invariant by a holomorphic vector field;

• F is an elliptic fibration;

• S = T /G is the quotient of a complex 2-torus T by a finite group
and F is the projection of the stable foliation of some Anosov diffeo-
morphism of T ;

• F is a rational fibration;

• F is a monomial foliation on P1(C) × P1(C) (or on the desingular-
isation of the quotient P1(C) × P1(C) by the involution (z, w) 7→
(1/z, 1/w)).

We prove that as φ(G) is uncountable, maximal and abelian without
periodic element, F is a rational fibration1. In other words φ(G) is up to
conjugacy a subgroup of

dJ = PGL2(C(y))⋊ PGL2(C).

The groups

dJa =
{
(x, y) 7→ (x+ a(y), y)

∣∣ a ∈ C(y)
}

1Here a rational fibration is a rational application from P2(C) into P1(C) whose fibers
are rational curves.
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and

T =
{
(x, y) 7→ (x+ α, y + β)

∣∣α, β ∈ C
}

are uncountable, maximal, abelian subgroups of the Cremona group; more-
over they have no periodic element. So φ(dJa) and φ(T) are contained
in dJ. After some computations and algebraic considerations we obtain
that, up to conjugacy (by a birational map),

φ(dJa) = dJa and φ(T) = T.

As D =
{
(αx, βy)

∣∣α, β ∈ C∗
}

acts by conjugacy on T we establish

that φ(D) = D. After conjugating φ by an inner automorphism and an
automorphism of the field C the groups T and D are pointwise invariant

by φ. Finally we show that φ preserves (y, x) and
(

1
x ,

1
y

)
; in particular we

use the following identity due to Gizatullin ([100])

(hσ)3 = id, h =

(
x

x− 1
,
x− y

x− 1

)
.

Since Bir(P2) is generated by Aut(P2) = PGL3(C) and
(

1
x ,

1
y

)
(Theo-

rem 2.1.4) we have after conjugating φ by an inner automorphism and an
automorphism of the field C: φ|Bir(P2) = id.

We will give another proof of Theorem 6.4.1 in Chapter 7.

6.4.2 Corollaries

We obtain a similar result as Corollary 6.3.11.

Corollary 6.4.3 ([67]). An isomorphism of the semi-group of the rational
maps from P2(C) into itself is inner up to the action of an automorphism
of the field C.

We also can prove the following statement.

Corollary 6.4.4 ([67]). Let S be a complex projective surface and let ϕ
be an isomorphism between Bir(S) and Bir(P2). There exists a birational
map ψ : S 99K P2(C) and an automorphism of the field C such that

ϕ(f) = τ(ψfψ−1) ∀ f ∈ Bir(S).



Chapter 7

Cremona group and
Zimmer conjecture

7.1 Introduction

In the 80’s Zimmer suggests to generalise the works of Margulis on the
linear representations of the lattices of simple, real Lie groups of real rank
strictly greater than 1 (see [133, 170]) to the non-linear ones. He thus
establishes a program containing several conjectures ([176, 177, 178, 179]);
among them there is the following one.

Conjecture (Zimmer). Let G be a real, simple, connected Lie group
and let Γ be a lattice of G. If there exists a morphism of infinite image
from Γ into the diffeomorphisms group of a compact manifold M, the real
rank of G is bounded by the dimension of M.

There are a lot of results about this conjecture (see for example [95,
173, 96, 38, 39, 140, 155, 90, 42]). In the case of the Cremona group we
have the following statement.

Theorem 7.1.1 ([65]). 1) The image of an embedding of a subgroup of
finite index of SL3(Z) into Bir(P2) is, up to conjugation, a subgroup of
PGL3(C).

More precisely let Γ be a subgroup of finite index of SL3(Z) and let ρ
be an embedding of Γ into Bir(P2). Then ρ is, up to conjugation, either
the canonical embedding or the involution u 7→ t(u−1).

2) Let Γ be a subgroup of finite index of SLn(Z) and let ρ be an embed-
ding of Γ into the Cremona group. If ρ has infinite image, then n is less
or equal to 3.

In the same context Cantat proves the following statement.

91
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Theorem 7.1.2 ([43]). Let Γ be an infinite countable subgroup of Bir(P2).
Assume that Γ has Kazhdan’s property1; then up to birational conjugacy Γ
is a subgroup of PGL3(C).

The proof uses the tools presented in Chapter 3 and in particular Theo-
rem 3.4.6. Let us give an idea of the proof: since Γ has Kazhdan property
the image of Γ by any ρ : Γ → Bir(P2) is a subgroup of Bir(P2) whose
all elements are elliptic. According to Theorem 3.4.6 we have the follow-
ing alternative: either ρ(Γ) is conjugate to a subgroup of PGL3(C), or
ρ(Γ) preserves a rational fibration that implies that ρ has finite image
(Lemma 7.4.4).

Let τ be an automorphism of the field C ; we can associate to a bi-
rational map f the birational map τ(f) obtained by the action of τ on
the coefficients of f given in a fixed system of homogeneous coordinates.
Theorem 7.1.1 allows us to give another proof of the following result.

Theorem 7.1.3 ([67]). Let φ be an automorphism of the Cremona group.
There exist a birational map ψ and an automorphism τ of the field C such
that

φ(f) = τ(ψfψ−1), ∀ f ∈ Bir(P2).

The Cremona group has a lot of common points with linear groups
nevertheless we have the following statement.

Proposition 7.1.4 ([52]). The Cremona group cannot be embedded into
GLn(k) where k is a field of characteristic zero.

First let us recall a result of linear algebra due to Birkhoff.

Lemma 7.1.5 ([26]). Let k be a field of characteristic zero and let A, B, C
be three elements of GLn(k) such that [A,B] = C, [A,C] = [B,C] = id
and Cp = id with p prime. Then p ≤ n.

Proof of Proposition 7.1.4. Assume that there exists an embedding ς of
the Cremona group into GLn(k). For all prime p let us consider in the
affine chart z = 1 the group

〈(
exp

(
−2iπ

p

)
x, y

)
, (x, xy),

(
x, exp

(
2iπ

p

)
y

)〉
.

The images by ς of the three generators satisfy Lemma 7.1.5 so p ≤ n ; as
it is possible for every prime p we obtain a contradiction.

1Let us recall that G has Kazhdan’s property if any continuous affine isometric action
of G on a real Hilbert space has a fixed point.
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This Chapter is devoted to the proof of Theorem 7.1.1. Let us de-
scribe the steps of the proof. First of all let us assume to simplify that
Γ = SL3(Z). Let ρ denote an embedding of Γ into Bir(P2). The group
SL3(Z) contains many Heisenberg groups, i.e. groups having the following
presentation

H = 〈f, g, h | [f, g] = h, [f, h] = [g, h] = id〉.
The key Lemma (Lemma 7.4.3) says if ς is an embedding of H into Bir(P2)
then λ(ς(h)) = 1. Then either ς(h) is an elliptic birational map, or ς(h) is
a de Jonquières or Halphen twist (Theorem 3.2.1). Using the well-known
presentation of SL3(Z) (Proposition 7.2.4) we know that the image of any
generator eij of SL3(Z) satisfies this alternative; moreover the relations
satisfied by the eij ’s imply the following alternative

• one of the ρ(eij) is a de Jonquières or Halphen twist;

• any ρ(eij) is an elliptic birational map.

In the first situation ρ(SL3(Z)) thus preserves a rational or elliptic fibra-
tion that never happen because of the group properties of SL3(Z) (Propo-
sition 7.4.5). In the second situation the first step is to prove that the
Heisenberg group 〈ρ(e12), ρ(e13), ρ(e23)〉 is, up to finite index and up to
conjugacy, a subgroup of Aut(S) where S is either P2(C), or a Hirzebuch
surface (§7.3). In both cases we will prove that ρ(Γ) is up to conjugacy a
subgroup of Aut(P2) = PGL3(C) (Lemmas 7.4.6, 7.4.7).

7.2 First Properties

7.2.1 Zimmer conjecture for the group Aut(C2)

Let us recall the following statement that we use in the proof of Theo-
rem 7.1.1.

Theorem 7.2.1 ([47]). Let G be a real Lie group and let Γ be a lattice of G.
If there exists embedding of Γ into the group of polynomial automorphisms
of the plane, then G is isomorphic either to PSO(1, n) or to PSU(1, n) for
some integer n.

Idea of the proof (for details see [47]). The proof of this result uses
the amalgamated product structure of Aut(C2) (Theorem 2.1.2). Let us
recall that the group of affine automorphisms is given by

A =
{
(x, y) 7→ (a1x+b1y+c1, a2x+b2y+c2)

∣∣ ai, bi, ci ∈ C, a1b2−a2b1 6= 0
}

and the group of elementary automorphisms by

E =
{
(x, y) 7→ (αx+ P (y), βy + γ)

∣∣α, β ∈ C∗, γ ∈ C, P ∈ C[y]
}
.
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Theorem 7.2.2 ([121, 128]). The group Aut(C2) is the amalgamated prod-
uct of A and E along A ∩ E.

There exists a tree on which Aut(C2) acts by translation (Bass-Serre
theory, see §2.1) ; the stabilizers of the vertex of the tree are conjugate
either to A or to E. So if a group G can be embedded into Aut(C2), then :

• either G acts on a tree without fixing a vertex;

• or G embeds into either A or E.

Using this fact, Cantat and Lamy study the embeddings of Kazhdan
groups (see [63], chapter I or [133], chapter III) having (FA) property and
thus the embeddings of lattices of Lie groups with real rank greater or
equal to 2.

7.2.2 The groups SLn(Z)

Let us recall some properties of the groups SLn(Z) (see [164] for more
details).

For any integer q let us denote by Θq : SLn(Z) → SLn(Z/qZ) the
morphism which sends M onto M modulo q. Let Γn(q) be the kernel of Θq
and let Γ̃n(q) be the reciprocical image of the diagonal group of SLn(Z/qZ)
by Θq ; the Γn(q) are normal subgroups of SLn(Z), called congruence
groups.

Theorem 7.2.3 ([10]). Let n ≥ 3 be an integer and let Γ be a subgroup
of SLn(Z).

If Γ is of finite index, there exists an integer q such that Γ contains a
subgroup Γn(q) and is contained in Γ̃n(q).

If Γ is of infinite index, then Γ is central and, in particular, finite.

Let δij be the Kronecker matrix 3× 3 and let us set eij = id + δij .

Proposition 7.2.4. The group SL3(Z) admits the following presentation :

〈eij, i 6=j | [eij , ekℓ] =





id if i 6= ℓ& j 6= k
eiℓ if i 6= ℓ& j = k
e−1
kj if i = ℓ& j 6= k

, (e12e
−1
21 e12)

4 = id 〉

The eqij generate Γ3(q) and satisfy equalities similar to those verified by

the eij except (e12e
−1
21 e12)

4 = id ; we will call them standard generators
of Γ3(q). The system of roots of sl3(C) is of type A2 (see [93]) :
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r3 r2

r1

r6r5

r4

Each standard generator of a Γ3(q) is an element of the group of one
parameter associated to a root ri of the system ; the system of roots thus
allows us to find most of the relations which appear in the presentation
of SL3(Z). For example r1 + r3 = r2 corresponds to [e12, e23] = e13, the
relation r2 + r4 = r3 to [e13, e21] = e−1

23 and the fact that r1 + r2 is not a
root to [e12, e13] = id.

7.2.3 Heisenberg groups

Definition 7.2.5. Let k be an integer. We call k-Heisenberg group a
group with the presentation :

Hk = 〈f, g,h | [f,h] = [g,h] = id, [f, g] = hk〉.

By convention H = H1 ; it is a Heisenberg group.

Let us remark that the Heisenberg group generated by f, g and hk is a
subgroup of index k of Hk. We call f, g and h the standard generators
of Hk.

Remark 7.2.6. Each eq
2

ij can be written as the commutator of two eqkℓ with
whom it commutes. The group SL3(Z) thus contains a lot of k-Heisenberg
groups ; for example 〈eq12, eq13, eq23〉 is one (for k = q).

7.3 Representations of Heisenberg groups

As we said the groups SLn(Z) contain Heisenberg groups, we thus naturally
study the representations of those ones in the automorphisms groups of
Hirzebruch surfaces and of P2(C). Let us begin with some definitions and
properties.

Definition 7.3.1. Let S be a compact complex surface. The birational map
f : S 99K S is an elliptic birational map if there exist a birational map
η : S 99K S̃ and an integer n > 0 such that ηfnη−1 is an automorphism
of S̃ isotopic to the identity (i.e. ηfnη−1 ∈ Aut0(S)).

Two birational maps f and g on S are simultaneously elliptic if the
pair (η, S̃) is common to f and g.
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Remark 7.3.2. Let C1 and C2 be two irreducible homologous curves of
negative auto-intersection then C1 and C2 coincide. Thus an automor-
phism f of S isotopic to the identity fixes each curve of negative self-
intersection; for any sequence of blow-downs ψ from S to a minimal model
S̃ of S, the element ψfψ−1 is an automorphism of S̃ isotopic to the identity.

Lemma 7.3.3 ([65]). Let f and g be two birational elliptic maps on a
surface S. Assume that f and g commute; then f and g are simultaneously
elliptic.

Proof. By hypothesis there exist a surface S̃, a birational map ζ : S 99K S̃
and an integer n such that ζ−1fnζ is an automorphism of S̃ isotopic to
the identity. Let us work on S̃ ; to simplify we will still denote by f (resp.
g) the automorphism ζ−1fnζ (resp. ζ−1gζ).

First let us prove that there exists a birational map η : Y 99K S̃ such
that η−1f ℓη is an automorphism of Y isotopic to the identity for some
integer ℓ and that η−1gη is algebraically stable. Let us denote by N(g)
the minimal number of blow-ups needed to make g algebraically stable.

If N(g) is zero, then we can take η = id.
Assume that the result is true for the maps f and g satisfying N(g) ≤ j;

let us consider the pair (f̃ , g̃) and assume that it satisfies the assumption
of the statement and that N(g̃) = j + 1. As g̃ is not algebraically stable,
there exists a curve V in Exc g̃ and an integer q such that g̃q(V ) is a point

of indeterminacy p of g̃. As f̃ and g̃ commute, f̃k fixes the irreducible
components of Ind g̃ for some integer k. Let us consider κ the blow-up of p;
this point being fixed by f̃k, on the one hand κ−1f̃kκ is an automorphism
and on the other hand N(κ−1g̃κ) = j. Then, by induction, there exists

η : Y 99K S̃ and ℓ such that η−1f̃ ℓη is an automorphism isotopic to the
identity and that η−1g̃η is algebraically stable.

Let us set f = η−1f ℓη and g = η−1gη. Using [73], Lemma 4.1,
we see that the maps f and g are simultaneously elliptic. Indeed the
first step to get an automorphism from g is to consider the blow-down
ε1 of a curve of Exc g−1 ; as the curves contracted by g−1 are of nega-
tive self-intersection and as f is isotopic to the identity, these curves are
fixed by f so by ε1fε

−1
1 . The i-th step is to repeat the first one with

εi−1 . . . ε1fε
−1
1 . . . ε−1

i−1 and εi−1 . . . ε1gε
−1
1 . . . ε−1

i−1, we then obtain the re-
sult. According to [73] the process ends and a power of ε−1gε is isotopic
to the identity.

We have a similar result for the standard generators of a k-Heisenberg
group.

Proposition 7.3.4 ([65]). Let ς be a representation of Hk into the Cre-
mona group. Assume that each standard generator of ς(Hk) is elliptic.
Then ς(f), ς(g) and ς(h) are simultaneously elliptic.
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Proof. According to Lemma 7.3.3 the maps ς(f) and ς(h) are simultane-
ously elliptic. Since g and h commute, Exc ς(g) and Ind ς(g) are invariant
by ς(h). The relation [f, g] = hk implies that Exc ς(g) and Ind ς(g) are
invariant by ς(f). Using the idea of the proof of Lemma 7.3.3 and ([73],
Lemma 4.1), we obtain the result.

In the sequel we are interested in the representations of Hk in the au-
tomorphisms groups of minimal surfaces which are P1(C)× P1(C), P2(C)
and the Hirzebruch surfaces Fm. In an affine chart (x, y) of such a sur-
face S, if f is an element of Bir(S), we will denote f by its two components
(f1(x, y), f2(x, y)). Let us recall that in some good affine charts we have

Aut(P1(C)× P1(C)) = (PGL2(C)× PGL2(C))⋊ (y, x)

and

Aut(Fm) =
{(

ζx+ P (y)

(cy + d)m
,
ay + b

cy + d

) ∣∣∣
[
a b
c d

]
∈ PGL2(C),

ζ ∈ C∗, P ∈ C[y], degP ≤ m
}
.

(7.3.1)

Lemma 7.3.5 ([65]). Let ς be a morphism from Hk into Aut(P1(C) ×
P1(C)). The morphism ς is not an embedding.

Proof. We can assume that f, g and h fixe the two standard fibrations
(if it is not the case we can consider H2k ⊂ Hk), i.e. im ς is contained
in PGL2(C) × PGL2(C). For j = 1, 2 let us denote by πj the j-th pro-
jection. The image of ς(H2k) by πj is a solvable subgroup of PGL2(C);
as πj(ς(h

k)) is a commutator, this homography is conjugate to the transla-
tion z + βj . Assume that βj is nonzero ; then πj(ς(f)) and πj(ς(g))
are also some translations (they commute with πj(ς(h

k))). The relation
[πj(ς(f)), πj(ς(g))] = πj(ς(h

k)) thus implies that βj is zero : contradiction.
So βj is zero and the image of h2k by ς is trivial : ς is not an embedding.

Concerning the morphisms from Hk to Aut(Fm), m ≥ 1, we obtain a
different statement. Let us note that we can see Aut(C2) as a subgroup
of Bir(P2); indeed any automorphism (f1(x, y), f2(x, y)) of C2 can be ex-
tended to a birational map:

(znf1(x/z, y/z) : z
nf2(x/z, y/z) : z

n) where n = max(deg f1,deg f2).

Lemma 7.3.6 ([65]). Let ς be a morphism from Hk into Aut(Fm) with
m ≥ 1. Then ς(Hk) is birationally conjugate to a subgroup of E. Moreover,
ς(h2k) can be written (x+ P (y), y) where P denotes a polynomial.
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Remark 7.3.7. The abelian subgroups of PGL2(C) are, up to conjugation,
some subgroups of C, C∗ or the group of order 4 generated by −y and 1

y .

Proof. Let us consider the projection π from Aut(Fm) into PGL2(C). We

can assume that π(ς(Hk)) is not conjugate to
{
y,−y, 1y ,− 1

y

}
(if it is the

case let us consider H2k). Therefore π(ς(Hk)) is, up to conjugation, a
subgroup of the group of the affine maps of the line; so ς(Hk) is, up to
conjugation, a subgroup of E (see (7.3.1)). The relations satisfied by the
generators imply that ς(h2k) can be written (x+ P (y), y).

Lemma 7.3.8 ([65]). Let ς be an embedding of Hk into PGL3(C). Up to
linear conjugation, we have

ς(f) = (x+ ζy, y + β), ς(g) = (x+ γy, y + δ) and ς(hk) = (x+ k, y)

with ζδ − βγ = k.

Proof. The Zariski closure ς(Hk) of ς(Hk) is an algebraic unipotent sub-
group of PGL3(C) ; as ς is an embedding, the Lie algebra of ς(Hk) is
isomorphic to:

h =








0 ζ β
0 0 γ
0 0 0



∣∣∣ ζ, β, γ ∈ C



 .

Let us denote by π the canonical projection from SL3(C) into PGL3(C).
The Lie algebra of π−1(ς(Hk)) is, up to conjugation, equal to h. The
exponential map sends h in the group H of the upper triangular matrices
which is a connected algebraic group. Therefore the identity component
of π−1(ς(Hk)) coincides with H. Any element g of π−1(ς(Hk)) acts by
conjugation on H so belongs to the group generated by H and j.id where
j3 = id. Since π(j.id) is trivial, the restriction of π to H is surjective on
ς(Hk) ; but it is injective so it is an isomorphism. Therefore ς can be lifted
in a representation ς̃ from Hk into H :

Hk
ς̃ //

ς
""E

EE
EE

EE
E H

π|H
��

ς(Hk)

As ς̃(hk) can be written as a commutator, it is unipotent. The relations
satisfied by the generators imply that we have up to conjugation in SL3(C)

ς̃(hk) = (x+ k, y), ς̃(f) = (x+ ζy, y + β) and ς̃(g) = (x+ γy, y + δ)

with ζδ − βγ = k.
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7.4 Quasi-rigidity of SL3(Z)

7.4.1 Dynamic of the image of an Heisenberg group

Definition 7.4.1. Let G be a finitely generated group, let
{
a1, . . . , an

}

be a part which generates G and let f be an element of G.

• The length of f , denoted by |f |, is the smallest integer k such that
there exists a sequence (s1, . . . , sk), si ∈

{
a1, . . . , an, a

−1
1 , . . . , a−1

n

}
,

with f = s1 . . . sk.

• The quantity lim
k→+∞

|fk|
k

is the stable length of f (see [62]).

• An element f of G is distorted if it is of infinite order and if its
stable length is zero. This notion is invariant by conjugation.

Lemma 7.4.2 ([65]). Let Hk = 〈f, g,h〉 be a k-Heisenberg group. The
element hk is distorted. In particular the standard generators of SLn(Z)
are distorded.

Proof. As [f,h] = [g,h] = id, we have hknm = [fn, gm] for any pair (n,m)

of integers. For n = m we obtain hkn
2

= [fn, gn] ; therefore |hkn2 | ≤ 4n.
Each standard generator eij of SLn(Z) can be written as follows eij =

[eik, ekj ], moreover we have [eij , eik] = [eij , ekj ] = id (Remark 7.2.6).

Lemma 7.4.3 ([65]). Let G be a finitely generated group and let{
a1, . . . , an

}
be a set which generates G. Let f be an element of G and

let ς be an embedding of G into Bir(P2). There exists a constant m ≥ 0
such that

1 ≤ λ(ς(f)) ≤ exp

(
m
|fn|
n

)
.

In particular, if f is distorted, the stable length of f is zero and the first
dynamical degree of ς(f) is 1.

Proof. The inequalities λ(ς(f))n ≤ deg ς(f)n ≤ maxi(deg ς(ai))
|fn| imply

0 ≤ log λ(ς(f)) ≤ |fn|
n

log(max
i

(deg ς(ai))).

If f is distorted, the quantity lim
k→∞

|fk|
k

is zero and the first dynamical

degree of ς(f) is 1.
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7.4.2 Notations

In the sequel, ρ will denote an embedding of SL3(Z) into Bir(P2). Lemmas
7.4.2 and 7.4.3 imply that λ(ρ(eij)) = 1. Thanks to Proposition 7.2.4 and
Theorem 3.2.1, we have :

• either one of the ρ(eij) preserves a unique fibration, rational or el-
liptic;

• or each standard generator of Γ3(q) is an elliptic birational map.

We will study these two possibilities.

7.4.3 Invariant fibration

Lemma 7.4.4 ([65]). Let Γ be a finitely generated group with the Kazh-
dan’s property (T). Let ρ be a morphism from Γ to PGL2(C(y)) (resp.
PGL2(C)). Then the image of ρ is finite.

Proof. Let us denote by γi the generators of Γ and let

[
ai(y) bi(y)
ci(y) di(y)

]
be

their image by ρ. A finitely generated Q-group is isomorphic to a subfield
of C so Q(ai(y), bi(y), ci(y), di(y)) is isomorphic to a subfield of C and we
can assume that im ρ ⊂ PGL2(C) = Isom(H3). As Γ has property (T),
each continuous action of Γ by isometries on a real or complex hyperbolic
space has a fixed point ; the image of ρ is thus, up to conjugacy, a sub-
group of SO3(R). A result of Zimmer implies that the image of ρ is finite
(see [63]).

Proposition 7.4.5 ([65]). Let ρ be a morphism from a congruence sub-
group Γ3(q) of SL3(Z) into Bir(P2). If one of the ρ(eqij) preserves a unique
fibration, then the image of ρ is finite.

Proof. Let us denote by ẽqij the image of eqij by ρ ; Remark 7.2.6 implies
that the different generators play a similar role; we can thus assume, with-
out loss of generality, that ẽq12 preserves a unique fibration F .

The relations imply that F is invariant by all the ẽq
2

ij ’s. Indeed as
ẽq12 commutes with ẽq13 and ẽq32, the elements ẽq13 and ẽq32 preserve F (it’s

the unicity) ; then the relation [ẽq12, ẽ
q
23] = ẽq

2

13, which can also be written

ẽq23ẽ
q
12ẽ

−q
23 = ẽq

2

13ẽ12, implies that ẽq23 preserves F . Thanks to [ẽq12, ẽ
q
31] =

ẽ−q
2

32 we obtain that F is invariant by ẽq31. Finally as [ẽq23, ẽ
q
31] = ẽq

2

21, the

element ẽq
2

21 preserves F .

Then, for each ẽq
2

ij , there exists hij in PGL2(C) and

F : P2(C) → Aut(P1(C))
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defining F in such a way that F ◦ ẽq
2

ij = hij ◦ F . Let us consider the
morphism ς given by

Γ3(q
2) → PGL2(C), ẽq

2

ij 7→ hij .

As Γ3(q
2) has Kazhdan’s property (T) the group Γ = ker ς is of finite index

(Lemma 7.4.4) so it also has Kazhdan’s property (T). If F is rational, we
can assume that F = (y = cte) where y is a coordinate in an affine chart
of P2(C) ; as the group of birational maps which preserve the fibration
y = cte can be identified with PGL2(C(y)) ⋊ PGL2(C), the image of Γ
by ρ is contained in PGL2(C(y)). In this case ρ(Γ) is thus finite (Lemma
7.4.4) which implies that ρ(Γ3(q

2)) and ρ(Γ3(q)) are also finite. The fi-
bration F cannot be elliptic ; indeed the group of birational maps which
preserve pointwise an elliptic fibration is metabelian and a subgroup of
Γ3(q

2) cannot be metabelian.

7.4.4 Factorisation in an automorphism group

Assume that every standard generator of SL3(Z) is elliptic; in particular
every standard generator of SL3(Z) is isotopic to the identity. According
to Remark 7.3.2, Proposition 7.3.4, Lemmas 7.4.2 and 7.4.3, the images of
en12, e

n
13 and en23 by ρ are, for some n, automorphisms of a minimal surface

S. First of all let us consider the case S = P2(C).

Lemma 7.4.6 ([65]). Let ρ be an embedding of SL3(Z) into Bir(P2). If
ρ(en12), ρ(e

n
13) and ρ(en23) belongs, for some integer n, to PGL3(C), then

ρ(Γ3(n
2)) is a subgroup of PGL3(C).

Idea of the proof. According to Lemma 7.3.8 we have normal forms for
ρ(en12), ρ(e

n
13) and ρ(en23) up to conjugation. A computation gives the

following alternative

• either all ρ(en
2

ij ) are polynomial automorphisms of C2;

• of all ρ(en
2

ij ) are in PGL3(C).

The first case cannot occur (Theorem 7.2.1).

The following statement deals with the case of Hirzebruch surfaces.

Lemma 7.4.7 ([65]). Let ρ be a morphism from SL3(Z) to Bir(P2). As-
sume that ρ(en12), ρ(e

n
13) and ρ(e

n
23) are, for some integer n, simultaneously

conjugate to some elements of Aut(Fm) with m ≥ 1 ; then the image of ρ
is either finite, or contained, up to conjugation, in PGL3(C).
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7.4.5 Proof of Theorem 7.1.1 1)

According to Proposition 7.4.5 any standard generator of SL3(Z) is vir-
tually isotopic to the identity. The maps ρ(en12), ρ(e

n
13) and ρ(en23) are,

for some integer n, conjugate to automorphisms of a minimal surface S
(Proposition 7.3.4); we don’t have to consider the case S = P1(C)×P1(C)
(Lemma 7.3.5). We finally obtain that ρ(Γ3(n

2)) is, up to conjugation, a
subgroup of PGL3(C) (Lemmas 7.4.6 and 7.4.7).

The restriction of ρ to Γ3(n
2) can be extended to an endomorphism of

Lie group of PGL3(C) (see [164]); as PGL3(C) is simple, this extension
is injective and thus surjective. According to [71], chapter IV, the auto-
morphisms of PGL3(C) are obtained from inner automorphisms, automor-
phisms of the field C and the involution u 7→ t(u−1) ; since automorphisms
of the field C don’t act on Γ3(n

2), we can assume, up to linear conjugation,
that the restriction of ρ to Γ3(n

2) coincides, up to conjugation, with the
identity or the involution u 7→ t(u−1).

Let f be an element of ρ(SL3(Z)) \ ρ(Γ3(n
2)) which contracts at least

one curve C = Exc f . The group Γ3(n
2) is normal in Γ ; therefore the

curve C is invariant by ρ(Γ3(n
2)) and so by ρ(Γ3(n2)) = PGL3(C) (where

the closure is the Zariski closure) which is impossible. So f belongs
to PGL3(C) and ρ(SL3(Z)) is contained in PGL3(C).

7.4.6 Proof of Theorem 7.1.1 2)

Theorem 7.4.8 ([65]). Each morphism from a subgroup of finite index
of SL4(Z) in the Cremona group is of finite image.

Proof. Let Γ be a subgroup of finite index of SL4(Z) and let ρ be a mor-
phism from Γ into Bir(P2). To simplify we will assume that Γ = SL4(Z).
Let us denote by Eij the images of the standard generators of SL4(Z)
by ρ. The morphism ρ induces a faithful representation ρ̃ from SL3(Z)
into Bir(P2) :

SL4(Z) ⊃
[

SL3(Z) 0
0 1

]
→ Bir(P2).

According to the first assertion of Theorem 7.1.1, the map ρ̃ is, up to
conjugation, either the identity or the involution u 7→ t(u−1).

Let us begin with the first case. The element E34 commutes with E31

and E32 so ρ(E14) commutes with (x, y, ax + by + z) where a and b are
two complex numbers and Exc ρ(E34) is invariant by (x, y, ax + by + z).
Moreover E34 commutes with E12 and E21, in other words with the follo-
wing SL2(Z):

SL4(Z) ⊃




SL2(Z) 0 0
0 1 0
0 0 1


 → Bir(P2).
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But the action of SL2(Z) on C2 has no invariant curve; the curves con-
tracted by ρ(E34) are contained in the line at infinity. The image of this
one by (x, y, ax+ by+ z) intersects C2; so Exc ρ(E34) is empty and ρ(E34)
belongs to PGL3(C). With a similar argument we show that ρ(E43) be-
longs to PGL3(C). The relations thus imply that ρ(Γ4(q)) is in PGL3(C) ;
so the image of ρ is finite.

We can use a similar idea when ρ̃ is the involution u 7→ t(u−1).

Conclusion of the proof of Theorem 7.1.1. Let n be an integer greater or
equal to 4 and let Γ be a subgroup of finite index of SLn(Z). Let ρ be
a morphism from Γ to Bir(P2) ; let us denote by Γn(q) the congruence
subgroup contained in Γ (Theorem 7.2.3). The morphism ρ induces a
representation from Γ4(q) to Bir(P2); according to Theorem 7.4.8 its kernel
is finite, so ker ρ is finite.

7.5 Automorphisms and endomorphisms of
the Cremona group

We will prove Theorem 7.1.3. To do it we will use that (Theorem 2.1.4)

Bir(P2) = 〈Aut(P2) = PGL3(C),
(
1

x
,
1

y

)
〉.

Lemma 7.5.1 ([65]). Let φ be an automorphism of the Cremona group.
If φ|SL3(Z) is trivial, then, up to the action of an automorphism of the
field C, φ|PGL3(C) is trivial.

Proof. Let us denote by H the group of upper triangular matrices :

H =








1 a b
0 1 c
0 0 1


 ∣∣ a, b, c ∈ C



 .

The groups H and SL3(Z) generate PGL3(C) so PGL3(C) is invariant by φ
if and only if φ(H) = H. Let us set :

fb(x, y) = φ(x+ b, y), ga(x, y) = φ(x+ ay, y) and hc(x, y) = φ(x, y + c).

The birational map fb (resp. hc) commutes with (x+1, y) and (x, y+1) so
fb (resp. hc) can be written as (x+η(b), y+ζ(b)) (resp. (x+γ(c), y+β(c)))
where η and ζ (resp. γ and β) are two additive morphisms; as ga commute
with (x+ y, y) and (x+ 1, y) we have: ga = (x+Aa(y), y). The equality

(x+ ay, y)(x, y + c)(x+ ay, y)−1(x, y + c)−1 = (x+ ac, y)
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implies that, for any complex numbers a and c, we have: gahc = fachcga.
Therefore fb = (x+η(b), y), ga = (x+µ(a)y+δ(a), y) and µ(a)β(c) = η(ac).
In particular φ(H) is contained in H. Since µ(a)β(c) = η(ac) we have
η = µ = β (because η(1) = µ(1) = β(1) = 1); let us note that this equality
also implies that η is multiplicative.

Let T denote the group of translations in C2 ; each element of T can
be written

(x+ a, y)(x, y + b).

As fb, resp. hc is of the type (x + η(b), y), resp. (x + η(c), y + η(c)), the
image of T by φ is a subgroup of T. The group of translations is a maximal
abelian subgroup of Bir(P2), so does φ(T) and the inclusion φ(T) ⊂ T is
an equality. The map η is thus surjective and φ(H) = H. So φ induces
an automorphism of PGL3(C) trivial on SL3(Z). But the automorphisms
of PGL3(C) are generated by inner automorphisms, automorphisms of the
field C and the involution u 7→ t(u−1) (see [71]). Then up to conjugation
and up to the action of an automorphism of the field C, φ|PGL3(C) is trivial
(the involution u 7→ t(u−1) on SL3(Z) is not the restriction of an inner
automorphism).

Corollary 7.5.2 ([65]). Let φ be an automorphism of the Cremona group.
If φ|SL3(Z) is the involution u 7→ t(u−1) then also φ|PGL3(C).

Proof. Let us denote by ψ the composition of φ|SL3(Z) with the restriction
C of the involution u 7→ t(u−1) to SL3(Z). The morphism ψ can be ex-

tended to a morphism ψ̃ from PGL3(C) into Bir(P2) by ψ̃ = φ|PGL3(C) ◦C.
The kernel of ψ̃ contains SL3(Z) ; as the group PGL3(C) is simple, ψ̃ is
trivial.

Lemma 7.5.3 ([65]). Let φ be an automorphism of the Cremona group
such that φ|PGL3(C) is trivial or is the involution u 7→ t(u−1). There exist

a, b two nonzero complex numbers such that φ(σ) =
(
a
x ,

b
y

)
where σ is the

involution
(

1
x ,

1
y

)
.

Proof. Assume that φ|PGL3(C) is trivial. The map φ(σ) can be writ-

ten
(
F
x ,

G
y

)
where F and G are rational. The equality σ(βx, µy) =

(β−1x, µ−1y)σ implies (F,G)(βx, µy) = (F,G) ; as this equality is true
for any pair (β, µ) of nonzero complex numbers, the functions F and G
are constant.

The involution u 7→ t(u−1) preserves the diagonal group; so φ|PGL3(C)
coincides with u 7→ t(u−1).
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Proof of Theorem 7.1.3. Theorem 7.1.1, Corollary 7.5.2 and Lemma 7.5.1
allow us to assume that up to conjugation and up to the action of an
automorphism of the field C, φ|PGL3(C) is trivial or is the involution u 7→
t(u−1). Assume we are in the last case and let us set h = (x, x−y, x−z) ;
the map (hσ)3 is trivial (see [99]). But φ(h) = (x + y + z,−y,−z) and

φ(σ) =
(
a
x ,

b
y ,

1
z

)
(Lemma 7.5.3) so φ(hσ)3 6= id: contradiction. We

thus can assume that φ|PGL3(C) is trivial ; the equality (hσ)3 = id implies
φ(σ) = σ and Theorem 2.1.4 allows us to conclude.

Using the same type of arguments we can describe the endomorphisms
of the Cremona group.

Theorem 7.5.4 ([68]). Let φ be a non-trivial endomorphism of Bir(P2).
There exists an embedding τ of the field C into itself and a birational map ψ
of P2(C) such that

φ(f) = τ(ψfψ−1), ∀ f ∈ Bir(P2).

This allows us to state the following corollary.

Corollary 7.5.5 ([68]). The Cremona group is hopfian: any surjective
endomorphism of Bir(P2) is an automorphism.



Chapter 8

Centralizers in the
Cremona group

8.1 Introduction

The description of the centralizers of the discrete dynamical systems is an
important problem in real and complex dynamic. Julia ([120, 119]) and
then Ritt ([156]) show that the set

Cent(f,RatP1) =
{
ψ : P1 → P1

∣∣ fψ = ψf
}

of rational functions commuting with a fixed rational function f is in gene-
ral fN0 =

{
fn0

∣∣n ∈ N
}

for some f0 in Cent(f,RatP1) except in some
special cases (up to conjugacy z 7→ zk, Tchebychev polynomials, Lattès
examples...) In the 60’s Smale asks if the centralizer of a generic diffeo-
morphism f : M → M of a compact manifold is trivial, i.e. if

Cent(f,Diff∞(M)) =
{
g ∈ Diff∞(M)

∣∣ fψ = ψf
}

coincides with fZ =
{
fn

∣∣n ∈ Z
}
. Several mathematicians have worked

on this problem, for example Bonatti, Crovisier, Fisher, Palis, Wilkinson,
Yoccoz ([125, 35, 88, 89, 147, 148, 149]).

Let us precise some of these works. In [125] Kopell proves the existence
of a dense open subset Ω of Diff∞(S1) having the following property: the
centralizer of any element of Ω is trivial.

Let f be a Cr-diffeomorphism of a compact manifold M without boun-
dary. A point p of M is non-wandering if for any neighborhood U of
p and for any integer n0 > 0 there exists an integer n > n0 such that
fnU ∩ U 6= ∅. The set of such points is denoted by Ω(f), it is a closed
invariant set; Ω(f) is hyperbolic if

106



Chapter 8. Centralizers in the Cremona group 107

• the tangent bundle of M restricted to Ω(f) can be written as a con-
tinuous direct sum of two subbundles TΩ(f)M = Es ⊕Eu which are
invariant by the differential Df of f ;

• there exists a riemannian metric on M and a constant 0 < µ < 1
such that for any p ∈ Ω(f), v ∈ Esp, w ∈ Eup

||Dfpv|| ≤ µ||v||, ||Df−1
p w|| ≤ µ||w||.

In this case the sets

Ws(p) =
{
z ∈ M

∣∣ d(fn(p), fn(z)) → 0 as n→ ∞
}

and
Wu(p) =

{
z ∈ M

∣∣ d(f−n(p), f−n(z)) → 0 as n→ ∞
}

are some immersed submanifolds of M called stable and unstable mani-
folds of p ∈ Ω(f). We say that f satisfies axiom A if Ω(f) is hyperbolic
and if Ω(f) coincides with the closure of periodic points of f (see [163]). Fi-
nally we impose a “strong” transversality condition : for any p ∈ Ω(f)
the stable Ws(p) and unstable Wu(p) manifolds are transverse. In [147]
Palis proves that the set of diffeomorphisms of M satisfying axiom A and
the strong transversality condition contains a dense open subset Λ such
that: the centralizer of any f in Λ is trivial. Anderson shows a similar
result for the Morse-Smale diffeomorphisms ([5]).

In the study of the elements of the group Diff(C, 0) of the germs of holo-
morphic diffeomorphism at the origin of C, the description of the centrali-
zers is very important. Ecalle proves that if f ∈ Diff(C, 0) is tangent to
the identity, then, except for some exceptional cases, its centralizer is a fZ0
(see [84, 85]); it allows for example to describe the solvable non abelian
subgroups of Diff(C, 0) (see [56]). Conversely Perez-Marco gets the ex-
istence of uncountable, non linearizable abelian subgroups of Diff(C, 0)
related to some difficult questions of small divisors ([154]).

In the context of polynomial automorphisms of the plane, Lamy ob-
tains that the centralizer of a Hénon automorphism is almost trivial. More
precisely we have the following statement: let f be a polynomial automor-
phism of C2; then

• either f is conjugate to an element of the type

(αx+ P (y), βy + γ), P ∈ C[y], α, β, γ ∈ C, αβ 6= 0

and its centralizer is uncountable,

• or f is a Hénon automorphism ψg1 . . . gnψ
−1 where

ψ ∈ Aut(C2), gi = (y, Pi(y)− δix), Pi ∈ C[y], degPi ≥ 2, δi ∈ C∗

and its centralizer is isomorphic to Z ⋊ Z/pZ (see [127, Proposi-
tion 4.8]).
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We will not give the proof of Lamy but will give a “related“ result due to
Cantat (Corollary 8.2.4)

Let us also mention the recent work [75] of Dinh and Sibony.

8.2 Dynamics and centralizer of hyperbolic
diffeomorphisms

Let S be a complex surface and let f : S → S be a holomorphic map. Let q
be a periodic point of period k for f , i.e. fk(q) = q and f ℓ(q) 6= q for all
1 ≤ ℓ ≤ k − 1. Let λu(q) and λs(q) be the eigenvalues of Df(q). We say
that f is hyperbolic if

|λs(q)| < 1 < |λu(q)|.

Let us denote by Pk(f) the set hyperbolic periodic points of period k
of f .

Let us consider q ∈ Pk(f); locally around q the map f is well defined.
We can linearize fk. The local stable manifold Ws

loc(q) and local un-
stable manifold Wu

loc(q) of f
k in q are the image by the linearizing map

of the eigenvectors of Dfkq . To simplify we can assume that up to con-

jugation Dfkq is given by

[
α 0
0 β

]
with |α| < 1 < |β|; there exists a

holomorphic diffeomorphism κ : (U , q) → (C2, 0) where U is a neighbor-

hood of q such that κfkκ−1 =

[
α 0
0 β

]
. Then Ws

loc(q) = κ−1(y = 0)

and Wu
loc(q) = κ−1(x = 0):

Ws
loc(q)

Wu
loc(q)

In the sequel, to simplify, we will denote f instead of fk.

Lemma 8.2.1. There exist entire curves ξsq , ξ
u
q : C → S such that

• ξuq (0) = ξsq(0) = q;

• the global stable and global unstable manifolds of f in q are
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defined by

Ws(q) =
⋃

n>0

fn(Ws
loc(q)), Wu(q) =

⋃

n>0

fn(Wu
loc(q)).

• f(ξuq (z)) = ξuq (α
u(z)), f(ξsq(z)) = ξsq(α

s(z)) for all z ∈ C;

• if ηuq : C → S (resp. ηsq : C → S) satisfies the first three proper-
ties, then ηuq (z) = ξuq (µz) (resp. ηsq(z) = ξsq(µ

′z)) for some µ ∈ C∗

(resp. µ′ ∈ C∗).

Proof. As we just see there exists a holomorphic diffeomorphism
κ : (U , q) → D where U is a neighborhood of q and D a small disk cen-

tered at the origin such that κfkκ−1 =

[
α 0
0 β

]
. Moreover Wu

loc(q) =

κ−1(x = 0) and Ws
loc(q) = κ−1(y = 0). Let us extend κ. Let z be a point

which does not belong to D; there exist an integer m such that z/αm be-
longs to D. We then set ξuq (z) = fm

(
κ−1

(
z
αm

))
. Let us note that if z

αm

and z
αk both belong to D we have

fm
(
κ−1

( z

αm

))
= fk

(
κ−1

( z

αk

))

and ξsq(z) is well-defined. By construction we get

• ξuq (0) = ξsq(0) = q;

• Ws(q) =
⋃

n>0

fn(Ws
loc(q)), W

u(q) =
⋃

n>0

fn(Wu
loc(q)).

• f(ξuq (z)) = ξuq (α
u(z)), f(ξsq(z)) = ξsq(α

s(z)) for all z ∈ C.

The map ξsq is the analytic extension of κ−1
|y=0. Let ∆ be a subset

of
{
y = 0

}
containing 0. Set q = ξsq(1). Let ηsq : ∆ → Ws

loc(q) be a
non-constant map such that

• ηsq(0) = q,

• ηsq(αz) = f(ηsq(z)) for any z in ∆ such that αz belongs to ∆.

Working with ηsq ◦ (z 7→ µz) for some good choice of µ instead of ηsq we
can assume that ηsq(1) = q. Since

ηsq(0) = ξsq(0), ηsq(1) = ξsq(1), ηsq

(
1

αn

)
= ξsq

(
1

αn

)
∀n ∈ Z

we have ηsq = ξsq .



110 Julie Déserti

Let ψ be an automorphism of S which commutes with f . The map ψ
permutes the elements of Pk(f). If Pk(f) is finite, of cardinal Nk > 0, the
map ψNk! fixes any element of Pk(f). The stable and unstable manifolds
of the points q of Pk(f) are also invariant under the action of ψ. When
the union of Wu(q) and Ws(q) is Zariski dense in S, then the restrictions
of ψ to Wu

loc(q) and Ws
loc(q) completely determine the map ψ : S → S.

Let us denote by Ak the subgroup of Cent(f,Aut(S)) which contains
the automorphisms of S fixing any of the Nk points of Pk(f). Then ψ
preserves Wu(q) and Ws(q). We thus can define the morphism

α : Ak → C∗ × C∗, ψ 7→ α(ψ) = (αs(ψ), αu(ψ))

such that

∀ z ∈ C, ξsq(α
s(ψ)z) = ψ(ξsq(z)) and ξuq (α

u(ψ)z) = ψ(ξuq (z)).

When the union of Ws(q) and Wu(q) is Zariski dense, this morphism is
injective. In particular Ak is abelian and Cent(f,Aut(S)) contains an
abelian subgroup of finite index with index ≤ Nk!.

Lemma 8.2.2 ([43]). The subset Λ of C× C defined by

Λ =
{
(x, y) ∈ C× C

∣∣ ξuq (x) = ξsq(y)
}

is a discrete subset of C× C.
The set Λ intersects {0} × C (resp. C× {0}) only at (0, 0).

Proof. Let (x, y) be an element of Λ and let m be the point of S defined
by m = ξsq(x) = ξuq (y). In a sufficiently small neighborhood of m, the
connected components of Ws(q) and Wu(q) which contain m are two dis-
tinct complex submanifolds and so intersect in a finite number of points.
Therefore there exist a neighborhood U of x and a neighborhood V of y
such that ξsq(U) ∩ ξuq (V) = {m}. The point (x, y) is thus the unique point
of Λ in U × V so Λ is discrete.

Since ξuq and ξsq are injective, we have the second assertion.

Proposition 8.2.3 ([43]). Let f be a holomorphic diffeomorphism of a
connected complex surface S. Assume that there exists an integer k such
that

• the set Pk(f) is finite and non empty;

• for at least one point q in Pk(f) we have #(Ws(q) ∩Wu(q)) ≥ 2.

Then the cyclic group generated by f is of finite index in the group of
holomorphic diffeomorphisms of S which commute with f .
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Proof. Let us take the notations introduced previously and let us set A :=
α(Ak). Since #(Ws(q) ∩ Wu(q)) ≥ 2, the manifolds Ws(q) and Wu(q)
intersect in an infinite number of points and there exists a neighborhood U
of q such that any holomorphic function on U which vanishes on U∩ Wu(q)
vanishes everywhere. The morphism α is thus injective and Λ is a discrete
and infinite subset of C× C invariant under the diagonal action of A.

Let us show that A is discrete. Let A be the closure of A in C∗ × C∗.
Since Λ is discrete, Λ is A-invariant. Let us assume that A is not dis-
crete; then A contains a 1-parameter non-trivial subgroup of the type
t 7→ (etu, etv). Since Λ is discrete, one of the following property holds:

• Λ = {(0, 0)},

• u = 0 and Λ ⊂ C× {0},

• v = 0 and Λ ⊂ {0} × C.

But according to Lemma 8.2.2 none of this possibilities hold. So A doesn’t
contain a 1-parameter non-trivial subgroup and A is discrete. In particular
there is a finite index abelian free subgroup A′ of A such that the rank
of A′ is less or equal to 2. Since f is an element of infinite order of
Cent(f,Aut(S)), the group 〈fk〉 is a free subgroup of rank 1 of Ak so the
lower bound of the rank of A′ is 1 and if this lower bound is reached
then 〈f〉 is of finite index in Cent(f,Aut(S)). Let us consider

exp: C× C → C∗ × C∗,

then exp−1(Λ∩ (C∗×C∗)) is a discrete subgroup of C2 ≃ R4. Its rank is 3
or 4; indeed the kernel of exp contains 2iπZ×2iπZ and also (αu(f), αs(f)).

If A′ is of rank 2, then A′ is a discrete and co-compact subgroup of C∗×
C∗ and there exists an element ψ in Cent(f,Aut(S)) such that

|αu(ψ)| < 1, |αs(ψ)| < 1, (αu(ψ), αs(ψ)) ∈ A.

Let (x, y) be a point of Λ \ {(0, 0)}; the sequence

ψn(x, y) =
(
(αu(ψ))nx, (αs(ψ))ny

)

is thus an infinite sequence of elements of Λ and ψn(x, y) → (0, 0) as
n→ +∞: contradiction. This implies that A′ is of rank 1.

Corollary 8.2.4 ([43]). Let f be a Hénon automorphism. The cyclic
group generated by f is of finite index in the group of biholomorphisms of
C2 which commute with f .

Proof. According to [23] if k is large enough, then the automorphism f has
n > 0 hyperbolic periodic points of period k whose unstable and stable
manifolds intersect each other. Proposition 8.2.3 allows us to conclude.
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8.3 Centralizer of hyperbolic birational maps

In this context we can also define global stable and unstable manifolds but
this time we take the union of strict transforms of Ws

loc(q) and Wu
loc(q) by

fn. They are parametrized by holomorphic applications ξuq , ξ
s
q which are

not necessarily injective: if a curve C is contracted on a point p by f and
if Ws(q) intersects E infinitely many times, then Ws(q) passes through p
infinitely many times.

Lemma 8.3.1 ([43]). Let Λ be the set of pairs (x, y) such that ξuq (x) =
ξsq(y). The set Λ is a discrete subset of C×C which intersects the coordinate
axis only at the origin.

Proof. Let (x, y) be a point of Λ and set m = ξuq (x) = ξsq(y). The unstable
and stable manifolds can a priori pass through m infinitely many times.

But since each of these manifolds is the union of the f±n(Wu/s
loc (q)), there

exist two open subsets U ∋ x and V ∋ y of C and an open subset W of S
containing m such that ξuq (U)∩ W and ξsq(V)∩W are two distinct analytic
curves of W. We can assume that # (ξuq (U) ∩ ξsq(V)) = 1 (if it is not the
case we can consider U ′ ⊂ U and V ′ ⊂ V such that #(ξuq (U ′)∩ξsq(V ′)) = 1);
therefore (x, y) is the only point of Λ contained in U × V. The set Λ is
thus discrete. Since q is periodic there is no curve contracted onto q by
an iterate of f , the map ξuq (resp. ξsq) doesn’t pass again through q. So Λ
intersects the axis-coordinates only at (0, 0).

Let us recall that if a map f is algebraically stable then the positive
orbits fn(p), n ≥ 0, of the elements p of Ind f−1 do not intersect Ind f .
We say that f satisfies the Bedford-Diller condition if the sum

∑

n≥0

1

λ(f)n
log(dist(fn(p), Ind f))

is finite for any p in Ind f−1; in other words the positive orbit fn(p), n ≥ 0,
of the elements p of Ind f−1 does not go too fast to Ind f . Note that
this condition is verified by automorphisms of P2(C) or also by birational
maps whose points of indeterminacy have finite orbit. Let us mention the
following statement.

Theorem 8.3.2 ([18, 83]). Let f be a hyperbolic birational map of complex
projective surface. Assume that f satisfies the Bedford-Diller condition.
Then there is a infinite number of hyperbolic periodic points whose stable
and unstable manifolds intersect.
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8.3.1 Birational maps satisfying Bedford-Diller condi-
tion

Proposition 8.3.3 ([43]). Let f be a hyperbolic birational map of a com-
plex projective surface S. If f satisfies the Bedford-Diller condition, then
the cyclic subgroup generated by f is of finite index in the group of bira-
tional maps of S which commute with f .

Proof. The set of hyperbolic periodic points of f of period k is a finite set.
According to Theorem 8.3.2 there exists an integer k such that

• q is a hyperbolic periodic point of period k;

• Ws(q) and Wu(q) are Zariski dense in S;

• #(Ws(q) ∩Wu(q)) is not finite.

Let ψ be a birational map of S which commutes with f . The map ψ
permutes the unstable and stable manifolds of hyperbolic periodic points
of f even if these manifolds pass through a point of indeterminacy of ψ.
Indeed, if q is a periodic point of f and Wu(q) is Zariski-dense, then ψ is
holomorphic in any generic point of Wu(q) so we can extend ψ analytically
along Wu(q). Since f has νk hyperbolic periodic points of period k, there
exists a subgroup Bk of Cent(f,Bir(S)) of index less than νk!; any element
of Bk fixes Ws(q) and Wu(q). More precisely there exists a morphism

α : Bk → C∗ × C∗, ψ 7→ (αu(ψ), αs(ψ))

such that ψ(ξ
u/s
q (z)) = ξ

u/s
q (αu/s(ψ)z) for any ψ of Bk and for any z of C

such that ψ is holomorphic on a neighborhood of ξ
u/s
q (z).

As Ws(q) and Wu(q) are Zariski dense, α is injective. Then we can
apply the arguments of Proposition 8.2.3.

8.3.2 Birational maps that don’t satisfy Bedford-Diller
condition

Let f be a birational map of a complex surface S; assume that f is alge-
braically stable. Let p be a point of indeterminacy of f . If C is a curve
contracted on p by an iterate f−n, n > 0, of f , then we say that C comes
from p. If q is a point of S for which there exists an integer m such that

∀ 0 ≤ ℓ < m, f ℓ(q) 6∈ Ind f, fm(q) = p

we say that q is a point of indeterminacy of f passing through p at the
time m. Since f is algebraically stable, the iterates f−m of f , m ≥ 0,
are all holomorphic in a neighborhood of p so the unique point passing
through p at the time m is f−m(p). We say that p has an infinite negative
orbit if the set

{
f−m(p) |m ≥ 0

}
is infinite.
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Lemma 8.3.4 ([43]). Let f be a birational map of S. Assume that f
is algebraically stable. Let p be a point of indeterminacy of f having an
infinite negative orbit. One of the following holds:

i. there exist an infinite number of irreducible curves contracted on p
by the iterates f−n of f , n ∈ N;

ii. there exists a birational morphism π : S → S′ such that πfπ−1 is
an algebraically stable birational map of S′ whose all iterates are
holomorphic in a neighborhood of π(p).

We will say that a point of indeterminacy p is persistent if there exists
no birational morphism π : S → S′ satisfying property ii.

Proof. Assume that the union of the curves contracted by f−n, n ≥ 0,
onto p is a finite union C of curves.

Let us consider a curve C in C such that

• fm is holomorphic on C;

• fm(C) is a point.

We can then contract the divisor C by a birational map π : S → S′ and
the map πfπ−1 is still algebraically stable. By induction we can suppose
that there is no such curve C in C.

If C is empty the second assertion of the statement is satisfied.
Assume that C is not empty. If C belongs to C and fm(C) does not

belong to C then fm(C) is a point which does not belong to C and fm

is holomorphic along C: contradiction. So for any curve C of C, fm(C),
m ≥ 0, belongs to C. We can hence assume that C is invariant by any
fm with m ≥ 0. The set C is invariant by fn for any n in Z so f−n(p),
n > 0, is a sequence of points of C. Let C be an irreducible component of
C passing through p. Since C contains curves coming from p there exists
an integer k such that f−k is holomorphic along C and contracts C onto p.
Therefore the negative orbit of p passes periodically through p and cannot
be infinite: contradiction.

Lemma 8.3.5 ([58, 74]). Let S be a compact complex surface and let f be
a birational map of S. If f preserves an infinite number of curves, then f
preserves a fibration.

Proposition 8.3.6 ([43]). Let f be an algebraically stable birational map
of a compact complex surface S. Let p be a persistent point of indetermi-
nacy of f whose negative orbit is infinite. If ψ is a birational map of S
which commutes with f then

• either ψ preserves a pencil of rational curves;

• or an iterate ψm of ψ, m 6= 0, coincides with an iterate fn of f .
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Proof. Let us set ν := # Ind f , and consider ψν! instead of ψ. Since the
negative orbit of p is infinite, there exists an integer k0 such that ψ is
holomorphic around the points f−k(p) for any k ≥ k0. For any n ≥ 0
let us denote by Cn the union of curves coming from p. The periodic
point p is persistent, so according to Lemma 8.3.4 there is an infinite
number of curves coming from p. Hence there exists an integer n0 such
that for any n ≥ n0 the map ψ does not contract Cn. Since f and ψ
commute, ψ(f−k(p)) is a point of indeterminacy of fm for at least an
integer

0 ≤ m ≤ n0 + k + 1 (∀ k ≥ k0).

This point of indeterminacy passes through p. Let us consider ψf ℓ for some
good choice of ℓ; we can thus assume that ψ(f−k(p)) is a point of indeter-
minacy of f passing through p at the time k and so ψ(f−k(p)) = f−k(p)
for any k ≥ k0. Moreover for n sufficiently large we have ψ(Cn) = Cn. We
conclude with Lemma 8.3.5.

Corollary 8.3.7 ([43]). Let f be a birational map of a compact complex
surface S which is algebraically stable. Assume that

• the map f is hyperbolic;

• f has a persistent point of indeterminacy whose negative orbit is
infinite.

If ψ is a birational map of S which commutes with f , there exists n ∈ Z
and m ∈ Z \ {0} such that ψm = fn.

Proof. Let ψ be in Cent(f,Bir(P2)). Assume that ψ preserves a pencil
of curves P. As f is hyperbolic, f doesn’t preserve a pencil of curves
so ψ preserves two distinct pencils P and f(P). According to [73] an
iterate of ψ is conjugate to an automorphism isotopic to the identity on
a minimal rational surface S′; let us still denote by f and by ψ the maps
of S′ obtained from f and ψ by conjugation. Assume that ψ has infinite
order; let us denote by G the Zariski closure of the cyclic group generated
by ψ in Aut(S′). It is an abelian Lie group which commutes with f . Any
subgroup of one parameter of G determines a flow which commutes with
f : fφt = φtf . If the orbits of φt are algebraic curves, f preserves a pencil
of curves: contradiction with λ(f) > 1. Otherwise φt fixes a finite number
of algebraic curves and among these we find all the curves contracted by f
or by some fn; hence there is a finite number of such curves: contradiction
with the second assumption.

Since then Blanc and Cantat got a more precise statement.

Theorem 8.3.8 ([31]). Let f be a hyperbolic birational map. Then

Cent(f,Bir(P2)) ≃ Z ⋊ F

where F denotes a finite group.
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8.4 Centralizer of elliptic birational maps of
infinite order

Let us recall ([32, Proposition 1.3]) that an elliptic birational map f
of P2(C) of infinite order is conjugate to an automorphism of P2(C) which
restricts to one of the following automorphisms on some open subset iso-
morphic to C2:

• (αx, βy), where α, β ∈ C∗, and where the kernel of the group homo-
morphism Z2 → C∗ given by (i, j) 7→ αiβj is generated by (k, 0) for
some k ∈ Z.

• (αx, y + 1), where α ∈ C∗.

We can describe the centralizers of such maps.

Lemma 8.4.1 ([32]). Let us consider f = (αx, βy) where α, β are in
C∗, and where the kernel of the group homomorphism Z2 → C∗ given by
(i, j) 7→ αiβj is generated by (k, 0) for some k ∈ Z. Then the centralizer
of f in Bir(P2) is

Cent(f,Bir(P2))=
{
(η(x), yR(xk))

∣∣R∈C(x), η∈PGL2(C), η(αx)=αη(x)
}
.

Lemma 8.4.2 ([32]). Let us consider f = (αx, y + β) where α, β ∈ C∗.
Then Cent(f,Bir(P2)) is equal to

{
(η(x), y+R(x))

∣∣ η ∈ PGL2(C), η(αx) = αη(x), R ∈ C(x), R(αx) = R(x)
}
.

8.5 Centralizer of de Jonquières twists

Let us denote by π2 the morphism from dJ (see Chapter 2, §2.3) into
PGL2(C), i.e. π2(f) is the second component of f ∈ dJ. The elements
of dJ which preserve the fibration with a trivial action on the basis of the
fibration form a normal subgroup dJ0 of dJ (kernel of the morphism π2);
of course dJ0 ≃ PGL2(C(y)). Let f be an element of dJ0; it is, up to
conjugacy, of one of the following form (see for example [67])

a (x+ a(y), y), b (b(y)x, y), c

(
c(y)x+ F (y)

x+ c(y)
, y

)
,

with a in C(y), b in C(y)∗ and c, F in C[y], F being not a square (if F is
a square, then f is conjugate to an element of type b).

The non finite maximal abelian subgroups of dJ0 are

dJa =
{
(x+ a(y), y)

∣∣ a ∈ C(y)
}
, dJm =

{
(b(y)x, y)

∣∣ b ∈ C(y)∗
}
,
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dJF =

{
(x, y),

(
c(y)x+ F (y)

x+ c(y)
, y

) ∣∣∣ c ∈ C(y)
}

where F denotes an element of C[y] which is not a square ([67]). We
can assume that F is a polynomial with roots of multiplicity one (up
to conjugation by a map (a(y)x, y)). Therefore if f belongs to dJ0 and
if Ab(f) is the non finite maximal abelian subgroup of dJ0 that contains f
then, up to conjugacy, Ab(f) is either dJa, or dJm, or dJF . More precisely
if f is of type a (resp. b, resp. c), then Ab(f) = dJa (resp. Ab(f) = dJm,
resp. Ab(f) = dJF ).

In [51] we first establish the following property.

Proposition 8.5.1 ([51]). Let f be an element of dJ0. Then

• either Cent(f,Bir(P2)) is contained in dJ;

• or f is periodic.

Proof. Let f = (ψ(x, y), y) be an element of dJ0, i.e. ψ ∈ PGL2(C(y)).
Let ϕ = (P (x, y), Q(x, y)) be a rational map that commutes with f .

If ϕ does not belong to dJ, then Q = cte is a fibration invariant by f which
is not y = cte. Hence f preserves two distinct fibrations and the action on
the basis is trivial in both cases so f is periodic.

This allows us to prove the following statement.

Theorem 8.5.2 ([51]). Let f be a birational map which preserves a ratio-
nal fibration, the action on the basis being trivial. If f is a de Jonquières
twist, then Cent(f,Bir(P2)) is a finite extension of Ab(f).

This result allows us to describe, up to finite index, the centralisers of
the elements of dJ\dJ0, question related to classical problems of difference
equations. A generic element of dJ \ dJ0 has a trivial centralizer.

In this section we will give an idea of the proof of Theorem 8.5.2.

8.5.1 Maps of dJa

Proposition 8.5.3 ([51]). The centralizer of f = (x+ 1, y) is

{
(x+ b(y), ν(y))

∣∣ b ∈ C(y), ν ∈ PGL2(C)
}
≃ dJa ⋊ PGL2(C).

Proof. The map f is not periodic and so, according to Proposition 8.5.1,
any map ψ which commutes with f can be written as (ψ1(x, y), ν(y)) with ν
in PGL2(C). The equality fψ = ψf implies ψ1(x + 1, y) = ψ1(x, y) + 1.
Thus ∂ψ1

∂x (x+ 1, y) = ∂ψ1

∂x (x, y) and ∂ψ1

∂x depends only on y, i.e.

ψ1(x, y) = A(y)x+B(y).
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Writing again ψ1(x+ 1, y) = ψ1(x, y) + 1 we get A = 1. Hence

ψ = (x+B(y), ν(y)), B ∈ C(y) ν ∈ PGL2(C).

Corollary 8.5.4. The centralizer of a non trivial element (x+ b(y), y) is
thus conjugate to dJa ⋊ PGL2(C).
Proof. Let f = (x+ a(y), y) be a non trivial element of dJa, i.e. a 6= 0; up
to conjugation by (a(y)x, y) we can assume that f = (x+ 1, y).

8.5.2 Maps of dJm

If a ∈ C(y) is non constant, we denote by stab(a) the finite subgroup of
PGL2(C) defined by

stab(a) =
{
ν ∈ PGL2(C)

∣∣ a(ν(y)) = a(y)
}
.

Let us also introduce the subgroup

Stab(a) =
{
ν ∈ PGL2(C)

∣∣ a(ν(y)) = a(y)±1
}
.

We remark that stab(a) is a normal subgroup of Stab(a).

Example 8.5.5. If k is an integer and if a(y) = yk, then

stab(a) =
{
ωky

∣∣ωk = 1
}

& Stab(a) =
〈1
y
, ωky

∣∣ωk = 1
〉
.

Let us denote by stab(a) the linear group

stab(a) =
{
(x, ν(y))

∣∣ ν ∈ stab(a)
}
.

By definition the group Stab(a) is generated by stab(a) and the elements(
1
x , ν(y)

)
, with ν in Stab(a) \ stab(a).

Proposition 8.5.6 ([51]). Let f = (a(y)x, y) be a non periodic element
of dJm.

If f is an elliptic birational map, i.e. a is a constant, the centralizer
of f is {(

b(y)x, ν(y)
) ∣∣ b ∈ C(y)∗, ν ∈ PGL2(C)

}
.

If f is a de Jonquières twist, then Cent(f,Bir(P2)) = dJm ⋊ Stab(a).

Remarks 8.5.7. • For generic a the group Stab(a) is trivial; so for
generic f ∈ dJm, the group Cent(f,Bir(P2)) coincides with dJm =
Ab(f).

• If f = (a(y)x, y) with a non constant, then Cent(f,Bir(P2)) is a
finite extension of dJm = Ab(f).

• If f = (ax, y), a ∈ C∗, we have Cent(f,Bir(P2)) = dJm ⋊ Stab(a)
(here we can define Stab(a) = PGL2(C)).
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8.5.3 Maps of dJF

Let us now consider the elements of dJF ; as we said we can assume that F
only has roots with multiplicity one. We can thus write f as follows:

f =

(
c(y)x+ F (y)

x+ c(y)
, y

)
c ∈ C(y);

the curve of fixed points C of f is given by x2 = F (y). Since the eigenvalues

of

[
c(y) F (y)
1 c(y)

]
are c(y)±

√
F (y) we note that f is periodic if and only

if c is zero; in that case f is periodic of period 2. Assume now that f is
not periodic. As F has simple roots the genus of C is ≥ 2 for degF ≥ 5,
is equal to 1 for degF ∈ {3, 4}; finally C is rational when degF ∈ {1, 2}.

Assume that the genus of C is positive

Since f is a de Jonquières twist, f is not periodic. The map f has two fixed
points on a generic fiber which correspond to the two points on the cur-
ve x2 = F (y). The curves x2 = F (y) and the fibers y = cte are invariant
by f and there is no other invariant curve. Indeed an invariant curve which
is not a fiber y = cte intersects a generic fiber in a finite number of points
necessary invariant by f ; since f is of infinite order it is impossible (a
Moebius transformation which preserves a set of more than three elements
is periodic).

Proposition 8.5.8 ([51]). Let f =
(
c(y)x+F (y)
x+c(y) , y

)
be a non periodic map

(i.e. c 6= 0), where F is a polynomial of degree ≥ 3 with simple roots (i.e.
the genus of C is ≥ 1). Then if F is generic, Cent(f,Bir(P2)) coincides
with dJF ; if it is not, Cent(f,Bir(P2)) is a finite extension of dJF = Ab(f).

Suppose that C is rational

Let f be an element of dJF ; assume that f is a de Jonquières twist.
The curve of fixed points C of f is given by x2 = F (y). Let ψ be

an element of Cent(f,Bir(P2)); either ψ contracts C, or ψ preserves C.
According to Proposition 8.5.1 the map ψ preserves the fibration y =
constant; the curve C is transverse to the fibration so ψ cannot contract
C. Therefore ψ belongs to dJ and preserves C. As soon as degF ≥ 3 the
assumptions of Proposition 8.5.8 are satisfied; so assume that degF ≤ 2.
The case degF = 2 can be deduced from the case degF = 1. Indeed let us

consider f =
(
c(y)x+y
x+c(y) , y

)
. Let us set ϕ =

(
x

cy+d ,
ay+b
cy+d

)
. We can check

that ϕ−1fϕ can be written
(
c̃(y)x+ (ay + b)(cy + d)

x+ c̃(y)
, y

)
,
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and this allows to obtain all polynomials of degree 2 with simple roots. If

degF = 1, i.e. F (y) = ay + b, we have, up to conjugation by
(
x, y−ba

)
,

F (y) = y.

Lemma 8.5.9 ([51]). Let f be a map of the form
(
c(y)x+y
x+c(y) , y

)
with c

in C(y)∗. If ψ is an element of Cent(f,Bir(P2)), then π2(ψ) is either α
y ,

α ∈ C∗, or ξy, ξ root of unity; moreover, π2(ψ) belongs to stab
(

4c(y)2

c(y)2−y

)
.

For α in C∗ we denote by D∞(α) the infinite dihedral group

D∞(α) =
〈α
y
, ωy

∣∣ω root of unity
〉
;

let us remark that any D∞(α) is conjugate to D∞(1).
If c is a non constant element of C(y)∗, then S(c;α) is the finite sub-

group of PGL2(C) given by

S(c;α) = stab

(
4c(y)2

c(y)2 − y

)
∩D∞(α).

The description of Cent(f,Bir(P2)) with f in dJF and C = Fix f ratio-
nal is given by:

Proposition 8.5.10 ([51]). Let us consider f =
(
c(y)x+y
x+c(y) , y

)
with c in

C(y)∗, c non constant. There exists α in C∗ such that

Cent(f,Bir(P2)) = dJy ⋊ S(c;α).

Propositions 8.5.3, 8.5.6, 8.5.8 and 8.5.10 imply Theorem 8.5.2.

8.6 Centralizer of Halphen twists

For the definition of Halphen twists, see Chapter 3, §3.2.
Proposition 8.6.1 ([43, 99]). Let f be an Halphen twist. The centralizer
of f in Bir(P2) contains a subgroup of finite index which is abelian, free
and of rank ≤ 8.

Proof. Up to a birational change of coordinates, we can assume that f
is an element of a rational surface with an elliptic fibration π : S → P1

and that this fibration is f -invariant. Moreover we can assume that this
fibration is minimal (there is no smooth curve of self intersection −1 in the
fibers) and so f is an automorphism. The elliptic fibration is the unique
fibration invariant by f (see [73]) so it is invariant by Cent(f,Bir(P2));
thus Cent(f,Bir(P2)) is contained in Aut(S).
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As the fibration is minimal, the surface S is obtained by blowing up
P2(C) in the nine base-points of an Halphen pencil1 and the rank of its
Neron-Severi group is equal to 10 (Proposition 1.1.8). The automorphism
group of S can be embedded in the endomorphisms of H2(S,Z) for the
intersection form and preserves the class [KS ] of the canonical divisor,
i.e. the class of the elliptic fibration. The dimension of the orthogonal
hyperplane to [KS] is 9 and the restriction of the intersection form on its
hyperplane is semi-negative: its kernel coincides with Z[KS]. Hence Aut(S)
contains an abelian group of finite index whose rank is ≤ 8.

1An Halphen pencil is a pencil of plane algebraic curves of degree 3n with nine
n-tuple base-points.



Chapter 9

Automorphisms with
positive entropy, first
definitions and properties

Let V be a complex projective manifold. Let φ be a rational or holomorphic
map on V. When we iterate this map we obtain a “dynamical system”: a
point p of V moves to p1 = φ(p), then to p2 = φ(p1), to p3 = φ(p2) . . . So
φ “induces a movement on V”. The set

{
p, p1, p2, p3, . . .

}
is the orbit

of p.
Let A be a projective manifold; A is an Abelian variety of dimen-

sion k if A(C) is isomorphic to a compact quotient of Ck by an additive
subgroup.

Multiplication by an integer m > 1 on an Abelian variety, endomor-
phisms of degree d > 1 on projective spaces are studied since XIXth cen-
tury in particular by Julia and Fatou ([4]). These two families of maps
“have an interesting dynamic”. Consider the first case; let fm denote
the multiplication by m. Periodic points of fm are repulsive and dense in
A(C) : a point is periodic if and only if it is a torsion point of A; the
differential of fnm at a periodic point of period n is an homothety of ratio
mn > 1.

Around 1964 Adler, Konheim and McAndrew introduce a new way
to measure the complexity of a dynamical system: the topological en-
tropy ([1]). Let X be a compact metric space. Let φ be a continuous map
from X into itself. Let ε be a strictly positif real number. For all integer
n let N(n, ε) be the minimal cardinal of a part Xn of X such that for all
y in X there exists x in X satisfying

dist(f j(x), f j(y)) ≤ ε, ∀ 0 ≤ j ≤ n.

122
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We introduce htop(f, ε) defined by

htop(f, ε) = lim sup
n→+∞

1

n
log N(n, ε).

The topological entropy of f is given by

htop(f) = lim
ε→0

htop(f, ε).

For an isometry of X the topological entropy is zero. For the multi-
plication by m on a complex Abelian variety of dimension k we have:
htop(f) = 2k log m. For an endomorphism of Pk(C) defined by homoge-
neous polynomials of degree d we have: htop(f) = k log d (see [104]).

Let V be a complex projective manifold. On which conditions do ra-
tional maps with chaotic behavior exist ? The existence of such rational
maps implies a lot of constraints on V :

Theorem 9.0.2 ([14]). A smooth complex projective hypersurface of di-
mension greater than 1 and degree greater than 2 admits no endomorphism
of degree greater than 1.

Let us consider the case of compact homogeneous manifolds V : the
group of holomorphic diffeomorphisms acts faithfully on V and there are
a lot of holomorphic maps on it. Meanwhile in this context all endomor-
phisms with topological degree strictly greater than 1 come from endomor-
phisms on projective manifolds and nilvarieties.

So the “idea” is that complex projective manifolds with rich polynomial
dynamic are rare; moreover it is not easy to describe the set of rational or
holomorphic maps on such manifolds.

9.1 Some dynamics

9.1.1 Smale horseshoe

The Smale horsehoe is the hallmark of chaos. Let us now describe it (see
for example [160]). Consider the embedding f of the disc ∆ into itself.
Assume that

• f contracts the semi-discs f(A) and f(E) in A;

• f sends the rectangles B and D linearly to the rectangles f(B)
and f(D) stretching them vertically and shrinking them horizontally,
in the case of D it also rotates by 180 degrees.

We dont care what the image f(C) of C is, as long as f(C)∩ (B ∪C ∪
D) = ∅. In other words we have the following situation
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E

D

C

B

A

f(C)

f(D)f(B)

f(A) f(E)

There are three fixed points: p ∈ f(B), q ∈ A, s ∈ f(D). The points q is
a sink in the sense that for all z ∈ A∪C∪E we have lim

n→+∞
fn(z) = q. The

points p and s are saddle points: if m lies on the horizontal through p
then fn squeezes it to p as n → +∞, while if m lies on the vertical
through p then f−n squeezes it to p as n → +∞. In some coordinates
centered in p we have

∀(x, y) ∈ B, f(x, y) = (kx,my)

for some 0 < k < 1 < m; similarly f(x, y) = (−kx,−my) on D for some
coordinates centered at s. Let us recall that the sets

W s(p) =
{
z
∣∣ fn(z) → p as n→ +∞

}
,

Wu(p) =
{
z
∣∣ fn(z) → p as n→ −∞

}

are called stable and unstable manifolds of p. They intersect at r, which is
what Poincaré called a homoclinic point . Homoclinic points are dense
in

{
m ∈ ∆

∣∣ fn(m) ∈ ∆, n ∈ Z
}
.

The keypart of the dynamic of f happens on the horseshoe

Λ =
{
z
∣∣ fn(z) ∈ B ∪D ∀n ∈ Z

}
.

Let us introduce the shift map on the space of two symbols. Take two

symbols 0 and 1, and look at the set Σ =
{
0, 1

}Z
of all bi-infinite sequences

a = (an)n∈Z where, for each n, an is 0 or 1. The map σ : Σ → Σ that sends
a = (an) to σ(a) = (an+1) is a homeomorphism called the shift map. Let
us consider the itinerary map i : Λ → Σ defined as follows: i(p) = (sn)n∈Z
where sn = 1 if fn(p) is in B and sn = 0 if fn(p) belongs to D. The
diagram

Σ

i

��

σ // Σ

i

��
Λ

f
// Λ
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commutes so every dynamical property of the shift map is possessed equally
by f|Λ. Due to conjugacy the chaos of σ is reproduced exactly in the
horseshoe: the map σ has positive entropy: log 2; it has 2n periodic orbits
of period n, and so must be the set of periodic orbits of f|Λ.

To summarize: every dynamical system having a transverse homoclinic
point also has a horseshoe and thus has a shift chaos, even in higher di-
mensions. The mere existence of a transverse intersection between the
stable and unstable manifolds of a periodic orbit implies a horseshoe;
since transversality persists under perturbation, it follows that so does
the horseshoe and so does the chaos.

The concepts of horseshoe and hyperbolicity are related. In the descrip-
tion of the horseshoe the derivative of f stretches tangent vectors that are
parallel to the vertical and contracts vectors parallel to the horizontal, not
only at the saddle points, but uniformly throughout Λ. In general, hy-
perbolicity of a compact invariant set such as Λ is expressed in terms of
expansion and contraction of the derivative on subbundles of the tangent
bundle.

9.1.2 Two examples

Let us consider Pc(z) = z2 + c. A periodic point p of Pc with period n is
repelling if |(Pnc (p))′| > 1 and the Julia set of Pc is the closure of the set
of repelling periodic points. Pc is a complex horseshoe if it is hyperbolic
(i.e. uniformly expanding on the Julia set) and conjugate to the shift on
two symbols. The Mandelbrot set M is defined as the set of all points c
such that the sequence (Pnc (0))n does not escape to infinity

M =
{
c ∈ C

∣∣ ∃ s ∈ R, ∀n ∈ N,
∣∣Pnc (0)

∣∣ ≤ s
}
.

The complex horseshoe locus is the complement of the Mandelbrot set.

Let us consider the Hénon family of quadratic maps

φa,b : R2 → R2, φa,b(x, y) = (x2 + a− by, x).

For fixed parameters a and b, φa,b defines a dynamical system, and we
are interested in the way that the dynamic varies with the parameters.
The parameter b is equal to det jacφa,b; when b = 0, the map has a one-
dimensional image and is equivalent to Pc. As soon as b is non zero, these
maps are diffeomorphisms, and maps similar to Smale’s horseshoe example
occur when a << 0 (see [70]).

In the 60’s it was hoped that uniformly hyperbolic dynamical systems
might be in some sense typical. While they form a large open sets on all
manifolds, they are not dense. The search for typical dynamical systems
continues to be a great problem, in order to find new phenomena we try
the framework of compact complex surfaces.
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9.2 Some algebraic geometry

9.2.1 Compact complex surfaces

Let us recall some notions introduced in Chapters 1 and 3 and some others.
To any surface S we associate its Dolbeault cohomology groups Hp,q(S)

and the cohomological groups Hk(S,Z), Hk(S,R) and Hk(S,C). Set

H1,1
R (S) = H1,1(S) ∩H2(S,R).

Let f : X 99K S be a dominating meromorphic map between compact
complex surfaces, let Γ be a desingularization of its graph and let π1, π2
be the natural projections. A smooth form α in C∞

p,q(S) can be pulled back
as a smooth form π∗

2α ∈ C∞
p,q(Γ) and then pushed forward as a current.

We define f∗ by
f∗α = π1∗π

∗
2α

which gives a L1
loc form on X that is smooth outside Ind f. The action of f∗

satisfies: f∗(dα) = d(f∗α) so descends to a linear action on Dolbeault
cohomology.

Let {α} ∈ Hp,q(S) be the Dolbeault class of some smooth form α. We
set

f∗{α} = {π1∗π∗
2α} ∈ Hp,q(X).

This defines a linear map f∗ from Hp,q(S) into Hp,q(X). Similarly we can
define the push-forward f∗ = π2∗π∗

1 from Hp,q(X) into Hp,q(S). When f
is bimeromorphic, we have f∗ = (f−1)∗. The operation (α, β) 7→

∫
α ∧ β

on smooth 2-forms induced a quadratic intersection form, called product
intersection , denoted by (·, ·) on H2(S,C). Its structure is given by the
following fundamental statement.

Theorem 9.2.1 ([9]). Let S be a compact Kähler surface and let h1,1 de-
note the dimension of H1,1(S,R) ⊂ H2(S,R). Then the signature of the
restriction of the intersection product to H1,1(S,R) is (1,h1,1 − 1). In par-
ticular, there is no 2-dimensional linear subspace L in H1,1(S,R) with the
property that (v, v) = 0 forall v in L.

The Picard group Pic(P2) is isomorphic to Z (see Chapter 1, Ex-
ample 1.1.2); similarly H2(P2(C),Z) is isomorphic to Z. We may identi-
fy Pic(P2) and H2(P2(C),Z).

9.2.2 Exceptional configurations and characteristic
matrices

Let f ∈ Bir(P2) be a birational map of degree ν. By Theorem 1.3.1 there
exist a smooth projective surface S′ and π, η two sequences of blow-ups
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such that

S

π

}}zz
zz

zz
zz

η

!!D
DD

DD
DD

D

P2(C)
f

//______ P2(C)

We can rewrite π as follows

π : S = Sk
πk→ Sk−1

πk−1→ . . .
π2→ S1

π1→ S0 = P2(C)

where πi is the blow-up of the point pi−1 in Si−1. Let us set

Ei = π−1
i (pi), Ei = (πi+1 ◦ . . . ◦ πk)∗Ei.

The divisors Ei are called the exceptional configurations of π and
the pi base-points of f.

For any effective divisor D 6= 0 on P2(C) let multpiD be defined induc-
tively in the following way. We set multp1D to be the usual multiplicity
of D at p1 : it is defined as the largest integer m such that the local equa-
tion of D at p1 belongs to the m-th power of the maximal ideal mP2,p1 .
Suppose that multp1D is defined. We take the proper inverse transform
π−1
i D of D in Si and define multpi+1

D = multpi+1
π−1
i D. It follows from

the definition that

π−1D = π∗(D)−
k∑

i=1

miEi

where mi = multpiD.
There are two relationships between ν and the mi’s (Chapter 1, §1.2):

1 = ν2 −
k∑

i=1

m2
i , 3 = 3ν −

k∑

i=1

mi.

An ordered resolution of f is a decomposition f = ηπ−1 where η
and π are ordered sequences of blow-ups. An ordered resolution of f
induces two basis of Pic(S)

• B =
{
e0 = π∗H, e1 = [E1], . . . , ek = [Ek]

}
,

• B′ =
{
e′0 = η∗H, e′1 = [E ′

1], . . . , e
′
k = [E ′

k]
}
,

where H is a generic line. We can write e′i as follows

e′0 = νe0 −
k∑

i=1

miei, e′j = νje0 −
k∑

i=1

mijei, j ≥ 1.



128 Julie Déserti

The matrix of change of basis

M =




ν ν1 . . . νk
−m1 −m11 . . . −m1k

...
...

...
−mk −mk1 . . . −mkk




is called characteristic matrix of f. The first column ofM, which is the
characteristic vector of f, is the vector (ν,−m1, . . . ,−mk). The other
columns (νi,−m1i, . . . ,−mki) describe the “behavior of E ′

i”: if νj > 0,
then π(E ′

j) is a curve of degree νj in P2(C) through the points pℓ of f with
multiplicity mℓj .

Example 9.2.2. Consider the birational map

σ : P2(C) 99K P2(C), (x : y : z) 99K (yz : xz : xy).

The points of indeterminacy of σ are P = (1 : 0 : 0), Q = (0 : 1 : 0)
and R = (0 : 0 : 1); the exceptional set is the union of the three lines
∆ = {x = 0}, ∆′ = {y = 0} and ∆′′ = {z = 0}.

First we blow up P ; let us denote by E the exceptional divisor and by
D1 the strict transform of D. Set

{
y = u1
z = u1v1

E = {u1 = 0}
∆′′

1 = {v1 = 0}

{
y = r1s1
z = s1

E = {s1 = 0}
∆′

1 = {r1 = 0}

On the one hand

(u1, v1) → (u1, u1v1)(y,z) → (u1v1 : v1 : 1)

=

(
1

u1
,

1

u1v1

)

(y,z)

→
(

1

u1
,
1

v1

)

(u1,v1)

;

on the other hand

(r1, s1) → (r1s1, s1)(y,z) → (r1s1 : 1 : r1)

=

(
1

r1s1
,
1

s1

)

(y,z)

→
(

1

r1
,
1

s1

)

(r1,s1)

.

Hence E is sent on ∆1; as σ is an involution ∆1 is sent on E.

Now blow up Q1; this time let us denote by F the exceptional divisor
and by D2 the strict transform of D1 :

{
x = u2
z = u2v2

F = {u2 = 0}
∆′′

2 = {v2 = 0}

{
x = r2s2
z = s2

E = {s2 = 0}
∆2 = {r2 = 0}
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We have

(u2, v2) → (u2, u2v2)(x,z) → (v2 : u2v2 : 1)

=

(
1

u2
,

1

u2v2

)

(x,z)

→
(

1

u2
,
1

v2

)

(u2,v2)

and

(r2, s2) → (r2s2, s2)(x,z) → (1 : r2s2 : r2)

=

(
1

r2s2
,
1

s2

)

(x,z)

→
(

1

r2
,
1

s2

)

(r2,s2)

.

Therefore F → ∆′
2 and ∆′

2 → F.

Finally we blow up R2; let us denote by G the exceptional divisor and
set

{
x = u3
y = u3v3

G = {u3 = 0}
∆′′

3 = {v3 = 0}

{
x = r3s3
z = s3

E = {s3 = 0}
∆2 = {r3 = 0}

Note that

(u3, v3) → (u3, u3v3)(x,y) → (v3 : 1 : u3v3)

=

(
1

u3
,

1

u3v3

)

(x,y)

→
(

1

u3
,
1

v3

)

(u3,v3)

and

(r3, s3) → (r3s3, s3)(x,y) → (1 : r3 : r3s3)

=

(
1

r3s3
,
1

s3

)

(x,y)

→
(

1

r3
,
1

s3

)

(r3,s3)

.

Thus G → ∆′
3 and ∆′

3 → G. There are no more points of indeterminacy,
no more exceptional curves; in other words σ is conjugate to an automor-
phism of BlP,Q1,R2

P2.

Let H be a generic line. Note that E1 = E, E2 = F, E3 = H. Consider
the basis {H, E, F, G}. After the first blow-up ∆ and E are swapped; the
point blown up is the intersection of ∆′ and ∆′′ so ∆ → ∆+F+G. Then
σ∗E = H− F−G. Similarly we have:

σ∗F = H− E−G and σ∗G = H− E− F.

It remains to determine σ∗H. The image of a generic line by σ is a conic
hence σ∗H = 2H −m1E −m2F −m3G. Let L be a generic line described
by a0x+ a1y + a2z. A computation shows that

(u1, v1) → (u1, u1v1)(y,z) → (u21v1 : u1v1 : u1) → u1(a0v2 + a1u2v2 + a2)
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vanishes to order 1 on E = {u1 = 0} thus m1 = 1. Note also that

(u2, v2) → (u2, u2v2)(x,z) → (u2v2 : u22v2 : u2) → u2(a0v2 + a1u2v2 + a2),

respectively

(u3, v3) → (u3, u3v3)(x,y) → (u3v3 : u3 : u23v3) → u3(a0v3 + a1 + a2u3v3)

vanishes to order 1 on F = {u2 = 0}, resp. G = {u3 = 0} so m2 = 1,
resp. m3 = 1. Therefore σ∗H = 2H − E − F − G and the characteristic
matrix of σ in the basis

{
H, E, F, G

}
is

Mσ =




2 1 1 1
−1 0 −1 −1
−1 −1 0 −1
−1 −1 −1 0


 .

Example 9.2.3. Let us consider the involution given by

ρ : P2(C) 99K P2(C), (x : y : z) 99K (xy : z2 : yz).

We can show that Mρ =Mσ.

Example 9.2.4. Consider the birational map

τ : P2(C) 99K P2(C), (x : y : z) 99K (x2 : xy : y2 − xz).

We can verify that Mτ =Mσ.

9.3 Where can we find automorphisms with
positive entropy ?

9.3.1 Some properties about the entropy

Let f be a map of class C∞ on a compact manifold V; the topological
entropy is greater than the logarithm of the spectral radius of the linear
map induced by f on H∗(V,R), direct sum of the cohomological groups
of V:

htop(f) ≥ log r(f∗).

Remark that the inequality htop(f) ≥ log r(f∗) is still true in the mero-
morphic case ([76]). Before stating a more precise result when V is Kähler
we introduce some notation: for all integer p such that 0 ≤ p ≤ dimC V we
denote by λp(f) the spectral radius of the map f∗ acting on the Dolbeault
cohomological group Hp,p(V,R).
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Theorem 9.3.1 ([104, 102, 174]). Let f be a holomorphic map on a com-
pact complex Kähler manifold V; we have

htop(f) = max
0≤p≤dimC V

log λp(f).

Remark 9.3.2. The spectral radius of f∗ is strictly greater than 1 if and
only if one of the λp(f)’s is and, in fact, if and only if λ(f) = λ1(f) > 1.
In other words in order to know if the entropy of f is positive we just have
to study the growth of (fn)∗{α} where {α} is a Kähler form.

Examples 9.3.3. • Let V be a compact Kähler manifold and Aut0(V)
be the connected component of Aut(V) which contains the identity
element. The topological entropy of each element of Aut0(V) is zero.

• The topological entropy of an holomorphic endomorphism f of the
projective sapce is equal to the logarithm of the topological degree
of f.

• Whereas the topological entropy of an elementary automorphism is
zero, the topological entropy of an Hénon automorphism is positive.

9.3.2 A theorem of Cantat

Before describing the pairs (S, f) of compact complex surfaces S carry-
ing an automorphism f with positive entropy, let us recall that a surface
S is rational if it is birational to P2(C). A rational surface is always
projective ([9]). A K3 surface is a complex, compact, simply connected
surface S with a trivial canonical bundle. Equivalently there exists a holo-
morphic 2-form ω on S which is never zero; ω is unique modulo multipli-
cation by a scalar. Let S be a K3 surface with a holomorphic involution
ι. If ι has no fixed point the quotient is an Enriques surface, otherwise
it is a rational surface. As Enriques surfaces are quotients of K3 surfaces
by a group of order 2 acting without fixed points, their theory is similar
to that of algebraic K3 surfaces.

Theorem 9.3.4 ([40]). Let S be a compact complex surface. Assume that
S has an automorphism f with positive entropy. Then

• either f is conjugate to an automorphism on the unique minimal
model of S which is either a torus, or a K3 surface, or an Enriques
surface;

• or S is rational, obtained from P2(C) by blowing up P2(C) in at
least 10 points and f is birationally conjugate to a birational map of
P2(C).

In particular S is kählerian.
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Examples 9.3.5. • Set Λ = Z[i] and E = C/Λ. The group SL2(Λ)
acts linearly on C2 and preserves the lattice Λ×Λ; then each element
A of SL2(Λ) induces an automorphism fA on E×E which commutes
with ι(x, y) = (ix, iy). Each automorphism fA can be lifted to an

automorphism f̃A on the desingularization of (E × E)/ι which is a

K3 surface. The entropy of f̃A is positive as soon as the modulus of
one eigenvalue of A is strictly greater than 1.

• We have the following statement due to Torelli.

Theorem 9.3.6. Let S be a K3 surface. The morphism

Aut(S) → GL(H2(S,Z)), f 7→ f∗

is injective.

Conversely assume that ψ is an element of GL(H2(S,Z)) which pre-
serves the intersection form on H2(S,Z), the Hodge decomposition
of H2(S,Z) and the Kähler cone of H2(S,Z). Then there exists an
automorphism f on S such that f∗ = ψ.

The case of K3 surfaces has been studied by Cantat, McMullen, Sil-
verman, Wang and others (see for example [41, 134, 162, 171]). The con-
text of rational surfaces produces much more examples (see for example
[135, 19, 20, 21, 69]).

9.3.3 Case of rational surfaces

Let us recall the following statement due to Nagata.

Proposition 9.3.7 ([138], Theorem 5). Let S be a rational surface and
let f be an automorphism on S such that f∗ is of infinite order; then
there exists a sequence of holomorphic maps πj+1 : Sj+1 → Sj such that
S1 = P2(C), SN+1 = S and πj+1 is the blow-up of pj ∈ Sj .

Remark that a surface obtained from P2(C) via generic blow-ups has
no nontrivial automorphism ([114, 123]). Moreover we have the following
statement which can be found for example in [72, Proposition 2.2.].

Proposition 9.3.8. Let S be a surface obtained from P2(C) by blowing
up n ≤ 9 points. Let f be an automorphism on S. The topological entropy
of f is zero.

Moreover, if n ≤ 8 then there exists an integer k such that fk is bira-
tionally conjugate to an automorphism of the complex projective plane.
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Proof. Assume that f has positive entropy log λ(f) > 0. According to
[40] there exists a non-trivial cohomology class θ in H2(S,R) such that
f∗θ = λ(f)θ and θ2 = 0. Moreover f∗KS = f∗KS = KS. Since

(θ,KS) = (f∗θ, f∗KS) = (λ(f)θ,KS)

we have (θ,KS) = 0. The intersection form on S has signature (1, n − 1)
and K2

S ≥ 0 for n ≤ 9 so θ = cKS for some c < 0. But then f∗θ = θ 6=
λ(f)θ: contradiction. The map f thus has zero entropy.

If n ≤ 8, then K2
S > 0. The intersection form is thus strictly negative

on the orthogonal complement H ⊂ H2(S,R) of KS. But dimH is finite,
H is invariant under f∗ and f∗ preserves H2(S,Z) so f∗ has finite order on
H. Therefore fk∗ is trivial for some integer k. In particular fk preserves
each of the exceptional divisors in X that correspond to the n ≤ 8 points
blown up in P2(C). So fk descends to a well-defined automorphism of
P2(C).

Let f be an automorphism with positive entropy on a Kähler surface.
The following statement gives properties on the eigenvalues of f∗.

Theorem 9.3.9 ([17], Theorem 2.8, Corollary 2.9). Let f be an auto-
morphism with positive entropy log λ(f) on a Kähler surface. The first
dynamical degree λ(f) is an eigenvalue of f∗ with multiplicity 1 and this
is the unique eigenvalue with modulus strictly greater than 1.

If η is an eigenvalue of f∗, then either η belongs to {λ(f), λ(f)−1},
or |η| is equal to 1.

Proof. Let v1, . . ., vk denote the eigenvectors of f
∗ for which the associated

eigenvalue µℓ has modulus > 1. We have

(vj , vk) = (f∗vj , f
∗vk) = µjµk(vj , vk), ∀ 1 ≤ j ≤ k

so (vj , vk) = 0. Let L be the linear span of v1, . . ., vk. Each element v =∑
i αivi in L satisfies (v, v) = 0. According to Theorem 9.2.1 dimL ≤ 1.

But since λ(f) > 1, L is spanned by a unique nontrivial eigenvector. If v
has eigenvalue µ, then v has eigenvalue µ so we must have µ = µ = λ(f).

Let us see that λ(f) has multiplicity one. Assume that it has not; then
there exists θ such that f∗θ = λ(f)θ + cv. In this case

(θ, v) = (f∗θ, f∗v) = (λ(f)θ + cv, λv) = λ2(θ, v)

so (θ, v) = 0. Similarly we have (θ, θ) = 0 so by Theorem 9.2.1 again, the
space spanned by θ and v must have dimension 1; in other words λ(f) is
a simple eigenvalue.

We know that λ(f) is the only eigenvalue of modulus > 1. Since
(f∗)−1 = (f−1)∗, if η is an eigenvalue of f∗, then 1

η is an eigenvalue of

(f−1)∗. Applying the first statement to f−1 we obtain that λ is the only
eigenvalue of (f−1)∗ with modulus strictly larger than 1.
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Let χf denote the characteristic polynomial of f∗. This is a monic
polynomial whose constant term is ±1 (constant term is equal to the de-
terminant of f∗). Let Ψf be the minimal polynomial of λ(f). Except for
λ(f) and λ(f)−1 all zeroes of χf (and thus of Ψf ) lie on the unit circle.
Such polynomial is a Salem polynomial and such a λ(f) is a Salem
number . So Theorem 9.3.9 says that if f is conjugate to an automor-
phism then λ(f) is a Salem number; in fact the converse is true ([31]).
There exists another birational invariant which allows us to characterize
birational maps that are conjugate to automorphisms (see [32, 31]).

9.4 Linearization and Fatou sets

9.4.1 Linearization

Let us recall some facts about linearization of germs of holomorphic dif-
feomorphism in dimension 1 when the modulus of the multipliers is 1. Let
us consider

f(z) = αz + a2z
2 + a3z

3 + . . . , α = e2iπθ, θ ∈ R \Q (9.4.1)

We are looking for ψ(z) = z + b2z
2 + . . . such that fψ(z) = ψ(αz).

Since we can formally compute the coefficients bi

b2 =
a2

α2 − α
, . . . , bn =

an +Qn
αn − α

with Qn ∈ Z[ai, i ≤ n− 1, bi, i ≤ n] we say that f is formally lineari-
zable . If ψ converges, we say that the germ f is analytically lineariz-
able .

Theorem 9.4.1 (Cremer). If lim inf |αq − α|1/q = 0, there exists an ana-
lytic germ f of the type (9.4.1) which is not analytically linearizable.

More precisely if lim inf |αq − α| 1
νq = 0, then no polynomial germ

f(z) = αz + a2z
2 + . . .+ zν

of degree ν is linearizable.

Theorem 9.4.2 (Siegel). If there exist two constants c and M strictly
positive such that |αq − α| ≥ c

qM
then any germ f(z) = αz + a2z

2 + . . . is
analytically linearizable.

Let us now deal with the case of two variables. Let us consider

f(x, y) = (αx, βy) + h.o.t.

with α, β of modulus 1 but not root of unity. The pair (α, β) is resonant
if there exists a relation of the form α = αaβb or β = αaβb where a, b
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are some positive integers such that a+ b ≥ 2. A resonant monomial is
a monomial of the form xayb. We say that α and β are multiplicatively
independent if the unique solution of αaβb = 1 with a, b in Z is (0, 0).
The numbers α and β are simultaneously diophantine if there exist
two positive constants c and M such that

min
(
|αaβb − α|, |αaβb − β|

)
≥ c

|a+ b|M ∀a, b ∈ N, a+ b ≥ 2.

Theorem 9.4.3. If α and β are simultaneously diophantine then f is
linearizable.

If α and β are algebraic and multiplicatively independent then they are
simultaneously diophantine.

For more details see [6, 34, 111, 161].

9.4.2 Fatou sets

Definitions and properties

Let f be an automorphism on a compact complex manifold M. Let us recall
that the Fatou set F(f) of f is the set of points which own a neighborhood
V such that

{
fn|V , n ≥ 0

}
is a normal family. Let us consider

G = G(U) =
{
ψ : U → U

∣∣ψ = lim
nj→+∞

fnj
}
.

We say that U is a rotation domain if G is a subgroup of Aut(U), that is,
if any element of G defines an automorphism of U . An equivalent definition
is the following: if U is a component of F(f) which is invariant by f , we
say that U is a rotation domain if f|U is conjugate to a linear rotation; in
dimension 1 this is equivalent to have a Siegel disk. We have the following
properties ([22]).

• If f preserves a smooth volume form, then any Fatou component is
a rotation domain.

• If U is a rotation domain, G is a subgroup of Aut(M).

• A Fatou component U is a rotation domain if and only there exists
a subsequence such that (nj) → +∞ and such that (fnj ) converges
uniformly to the identity on compact subsets of U .

• If U is a rotation domain, G is a compact Lie group and the action
of G on U is analytic real.

Let G0 be the connected component of the identity of G. Since G is a
compact, infinite, abelian Lie group, G0 is a torus of dimension d ≥ 0; let
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us note that d ≤ dimC M. We say that d is the rank of the rotation
domain . The rank is equal to the dimension of the closure of a generic
orbit of a point in U .

We have some geometric information on the rotation domains: if U is
a rotation domain then it is pseudo-convex ([22]).

Let us give some details when M is a kählerian surface carrying an
automorphism with positive entropy.

Theorem 9.4.4 ([22]). Let S be a compact, kählerian surface and let f be
an automorphism of S with positive entropy. Let U be a rotation domain
of rank d. Then d ≤ 2.

If d = 2 the G0-orbit of a generic point of U is a real 2-torus.
If d = 1, there exists a holomorphic vector field which induces a foliation

by Riemann surfaces on S whose any leaf is invariant by G0.

We can use an argument of local linearization to show that some fixed
points belong to the Fatou set. Conversely we can always linearize a fixed
point of the Fatou set.

Fatou sets of Hénon automorphisms

Let f be a Hénon automorphism. Let us denote by K± the subset of C2

whose positive/negative orbit is bounded:

K± =
{
(x, y) ∈ C2

∣∣ {f±n(x, y) |n ≥ 0
}
is bounded

}
.

Set

K = K+ ∩ K−, J± = ∂K±, J = J + ∩ J−, U+ = C2 \ K+.

Let us state some properties.

• The family of the iterates fn, n ≥ 0, is a normal family in the interior
of K+.

• If (x, y) belongs to J + there exists no neighborhood U of (x, y) on
which the family

{
fn|U

∣∣n ≥ 0
}
is normal.

We have the following statement.

Proposition 9.4.5. The Fatou set of a Hénon map is C2 \ J +.

Definitions 9.4.6. Let Ω be a Fatou component; Ω is recurrent if there
exist a compact subset C of Ω and a point m in C such that fnj (m) belongs
to C for an infinite number of nj → +∞. A recurrent Fatou component
is periodic.
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A fixed point m of f is a sink if m belongs to the interior of the stable
manifold

Ws(m) =
{
p
∣∣ lim
n→+∞

dist(fn(m), fn(p)) = 0
}
.

We say that Ws(m) is the basin of m. If m is a sink, the eigenvalues
of Dfm have all modulus less than 1.

A Siegel disk (resp. Herman ring) is the image of a disk (resp. of
an annulus) ∆ by an injective holomorphic map ϕ having the following
property: for any z in ∆ we have

fϕ(z) = ϕ(αz), α = e2iπθ, θ ∈ R \Q.

We can describe the recurrent Fatou components of a Hénon map.

Theorem 9.4.7 ([24]). Let f be a Hénon map with jacobian < 1 and let
Ω be a recurrent Fatou component. Then Ω is

• either the basin of a sink;

• or the basin of a Siegel disk;

• or a Herman ring.

Under some assumptions the Fatou component of a Hénon automor-
phisms are recurrent.

Proposition 9.4.8. The Fatou component of a Hénon map which pre-
serves the volume are periodic and recurrent.

9.4.3 Fatou sets of automorphisms with positive en-
tropy on torus, (quotients of) K3, rational sur-
faces

If S is a complex torus, an automorphism of positive entropy is essentially
an element of GL2(Z); since the entropy is positive, the eigenvalues satisfy:
|λ1| < 1 < |λ2| and the Fatou set is empty.

Assume that S is a K3 surface or a quotient of a K3 surface. Since there
exists a volume form, the only possible Fatou components are rotation
domains. McMullen proved there exist non algebraic K3 surfaces with
rotation domains of rank 2 (see [134]); we can also look at [146].

The other compact surfaces carrying automorphisms with positive en-
tropy are rational ones; in this case there are rotation domains of rank 1,
2 (see [20, 135]). Other phenomena like attractive, repulsive basins can
happen ([20, 135]).
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Weyl groups and
automorphisms of
positive entropy

In [135] McMullen, thanks to Nagata’s works and Harbourne’s works, es-
tablishes a result similar to Torelli’s theorem for K3 surfaces: he con-
structs automorphisms on some rational surfaces prescribing the action of
the automorphisms on cohomological groups of the surface. These rational
surfaces own, up to multiplication by a constant, a unique meromorphic
nowhere vanishing 2-form Ω. If f is an automorphism on S obtained via
this construction, f∗Ω is proportional to Ω and f preserves the poles of Ω.
When we project S on the complex projective plane, f induces a birational
map preserving a cubic.

The relationship of the Weyl group to the birational geometry of the
plane, used by McMullen, is discussed since 1895 in [122] and has been
much developed since then ([82, 138, 139, 57, 99, 130, 105, 132, 106, 142,
107, 77, 114, 175, 81]).

10.1 Weyl groups

Let S be a surface obtained by blowing up the complex projective plane
in a finite number of points. Let

{
e0, . . . , en

}
be a basis of H2(S,Z); if

e0 · e0 = 1, ej · ej = −1, ∀ 1 ≤ j ≤ k, ei · ej = 0, ∀ 0 ≤ i 6= j ≤ n

then
{
e0, . . . , en

}
is a geometric basis. Consider α in H2(S,Z) such

that α · α = −2, then Rα(x) = x + (x · α)α sends α on −α and Rα fixes
each element of α⊥; in other words Rα is a reflection in the direction α.

138
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Consider the vectors given by

α0 = e0 − e1 − e2 − e3, αj = ej+1 − ej , 1 ≤ j ≤ n− 1.

For all j in {0, . . . , n− 1} we have αj ·αj = −2. When j is nonzero the
reflection Rαj

induces a permutation on {ej , ej+1}. The subgroup genera-
ted by the Rαj

’s, with 1 ≤ j ≤ n − 1, is the set of permutations on the
elements {e1, . . . , en}. Let Wn ⊂ O(Z1,n) denote the group

〈Rαj
| 0 ≤ j ≤ n− 1〉

which is called Weyl group.
The Weyl groups are, for 3 ≤ n ≤ 8, isomorphic to the following finite

groups

A1 ×A2, A4, D5, E6, E7, E8

and are associated to del Pezzo surfaces. For n ≥ 9 Weyl groups are infinite
and for n ≥ 10 Weyl groups contain elements with a spectral radius strictly
greater than 1.

If Y and S are two projective surfaces, let us recall that Y dominates S
if there exists a surjective algebraic birational morphism from Y to S.

Theorem 10.1.1 ([78]). Let S be a rational surface which dominates
P2(C).

• The Weyl group Wk ⊂ GL(Pic(S)) does not depend on the chosen
exceptional configuration.

• If E and E ′ are two distinct exceptional configurations, there exists
w in Wk such that w(E) = E ′.

• If S is obtained by blowing up k generic points and if E is an excep-
tional configuration, then for any w in the Weyl group w(E) is an
exceptional configuration.

If f is an automorphism of S, by a theorem of Nagata there exists a
unique element w in Wn such that

Z1,n

ϕ

��

w // Z1,n

ϕ

��
H2(S,Z)

f∗ // H2(S,Z)

commutes; we said that the automorphism f realizes ω.
A product of generators Rαj

is a Coxeter element of Wn. Note that
all Coxeter elements are conjugate so the spectral radius of a Coxeter
element is well defined.
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The map σ is represented by the reflection κijk = Rαijk
where αijk =

e0 − ei − ej − ek and i, j, k ≥ 1 are distinct elements; it acts as follows

e0 → 2e0 − ei − ej − ek, ei → e0 − ej − ek, ej → e0 − ei − ek

ek → e0 − ei − ej , eℓ → eℓ if ℓ 6∈ {0, i, j, k}.

When n = 3, we say that κ123 is the standard element of W3. Con-
sider the cyclic permutation

(123 . . . n) = κ123Rα1
. . . Rαn−1

∈ Σn ⊂ Wn;

let us denote it by πn. For n ≥ 4 we define the standard element w of
Wn by w = πnκ123. It satisfies

w(e0) = 2e0 − e2 − e3 − e4, w(e1) = e0 − e3 − e4,w(e2) = e0 − e2 − e4,

w(e3) = e0 − e2 − e3, w(ej) = ej+1, 4 ≤ j ≤ n− 2, w(en−1) = e1.

10.2 Statements

In [135] McMullen constructs examples of automorphisms with positive
entropy “thanks to” elements of Weyl groups.

Theorem 10.2.1 ([135]). For n ≥ 10, the standard element of Wn can
be realizable by an automorphism fn with positive entropy log(λn) of a
rational surface Sn.

More precisely the automorphism fn : Sn → Sn can be chosen to have
the following additional properties:

• Sn is the complex projective plane blown up in n distinct points p1,
. . . , pn lying on a cuspidal cubic curve C,

• there exists a nowhere vanishing meromorphic 2-form η on Sn with
a simple pole along the proper transform of C,

• f∗n(η) = λn · η,

• (〈fn〉,Sn) is minimal in the sense of Manin1.

1Let Z be a surface and G be a subgroup of Aut(S). A birational map f : S 99K S̃ is G-

equivariant if G̃ = fGf−1 ⊂ Aut(S̃). The pair (G, S) is minimal if every G-equivariant
birational morphism is an isomorphism.



Chapter 10. Weyl groups and automorphisms of positive entropy 141

The first three properties determine fn uniquely. The points pi admit
a simple description which leads to concrete formulas for fn.

The smallest known Salem number is a root λLehmer ∼ 1.17628081 of
Lehmer’s polynom

L(t) = t10 + t9 − t7 − t6 − t5 − t4 − t3 + t+ 1.

Theorem 10.2.2 ([135]). If f is an automorphism of a compact complex
surface with positive entropy, then htop(f) ≥ log λLehmer.

Corollary 10.2.3 ([135]). The map f10 : S10 → S10 is an automorphism
of S10 with the smallest possible positive entropy.

Theorem 10.2.4 ([135]). There is an infinite number of n for which the
standard element of Wn can be realized as an automorphism of P2(C) blown
up in a finite number of points having a Siegel disk.

Let us also mention a more recent work in this direction ([169]). Diller
also find examples using plane cubics ([72]).

10.3 Tools

10.3.1 Marked cubic curves

A cubic curve C ⊂ P2(C) is a reduced curve of degree 3. It can be
singular or reducible; let us denote by C∗ its smooth part. Let us recall
some properties of the Picard group of such a curve (see [108] for more
details). We have the following exact sequence

0 −→ Pic0(C) −→ Pic(C) −→ H2(C,Z) −→ 0

where Pic0(C) is isomorphic to

• either a torus C/Λ (when C is smooth);

• or to the multiplicative group C∗ (it corresponds to the following
case: C is either a nodal cubic or the union of a cubic curve and a
transverse line, or the union of three line in general position);

• or to the additive group C (when C is either a cuspidal cubic, or
the union of a conic and a tangent line, or the union of three lines
through a single point).

Amarked cubic curve is a pair (C, η) of an abstract curve C equipped
with a homomorphism η : Z1,n → Pic(C) such that

• the sections of the line bundle η(e0) provide an embedding of C
into P2(C);



142 Julie Déserti

• there exist distinct base-points pi on C∗ for which η(ei) = [pi] for
any i = 2, . . . , n.

The base-points pi are uniquely determined by η since C∗ can be em-
bedded into Pic(C). Conversely a cubic curve C which embeds into P2(C)
and a collection of distinct points on C∗ determine a marking of C.

Remark 10.3.1. Different markings of C can yield different projective
embeddings C →֒ P2(C) but all these embeddings are equivalent under the
action of Aut(C).

Let (C, η) and (C′, η′) be two marked cubic curves; an isomorphism
between (C, η) and (C′, η′) is a biholomorphic application f : C → C′ such
that η′ = f∗ ◦ η.

Let (C, η) be a marked cubic curve; let us set

W (C, η) =
{
w ∈ Wn

∣∣ (C, ηw) is a marked cubic curve
}
,

Aut(C, η) =
{
w ∈W (C, η)

∣∣ (C, η)& (C′, η′) are isomorphic
}
.

We can decompose the marking η of C in two pieces

η0 : ker(deg ◦η) → Pic0(C), deg ◦η : Z1,n → H2(C,Z).

We have the following property.

Theorem 10.3.2 ([135]). Let (C, η) be a marked cubic curve. The appli-
cations η0 and deg ◦η determine (C, η) up to isomorphism.

A consequence of this statement is the following.

Corollary 10.3.3 ([135]). An irreducible marked cubic curve (C, η) is
determined, up to isomorphism, by η0 : Ln → Pic0(C).

10.3.2 Marked blow-ups

A marked blow-up (S,Φ) is the data of a smooth projective surface S
and an isomorphism Φ: Z1,n → H2(S,Z) such that

• Φ sends the Minkowski inner product (x ·x) = x2 = x20−x21− . . .−x2n
on the intersection pairing on H2(S,Z);

• there exists a birational morphism π : S → P2(C) presenting S as the
blow-up of P2(C) in n distinct base-points p1, . . . , pn;

• Φ(e0) = [H] and Φ(ei) = [Ei] for any i = 1, . . ., n where H is the
pre-image of a generic line in P2(C) and Ei the divisor obtained by
blowing up pi.
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The marking determines the morphism π : S → P2(C) up to the action
of an automorphism of P2(C).

Let (S,Φ) and (S′,Φ) be two marked blow-ups; an isomorphism be-
tween (S,Φ) and (S′,Φ′) is a biholomorphic application F : S → S′ such
that the following diagram

Z1,n

Φ

zzuuuuuuuuu
Φ′

$$J
JJJJJJJJ

H2(S,Z)
F∗

// H2(S′,Z)

commutes. If (S,Φ) and (S′,Φ′) are isomorphic, there exists an automor-
phism ϕ of P2(C) such that p′i = ϕ(pi).

Assume that there exist two birational morphisms π, π′ : S → P2(C)
such that S is the surface obtained by blowing up P2(C) in p1, . . . , pn (resp.
p′1, . . . , p

′
n) via π (resp. π′).There exists a birational map f : P2(C) 99K

P2(C) such that the diagram

S

π

}}zz
zz

zz
zz

π′

!!D
DD

DD
DD

D

P2(C)
f

//______ P2(C)

commutes; moreover there exists a unique element w in Z1,n such that
Φ′ = Φw.

The Weyl group satisfies the following property due to Nagata: let
(S,Φ) be a marked blow-up and let w be an element of Z1,n. If (S,Φw) is
still a marked blow-up, then w belongs to the Weyl group Wn. Let (S,Φ)
be a marked blow-up; let us denote by W (S,Φ) the set of elements w of
Wn such that (S,Φw) is a marked blow-up:

W (S,Φ) =
{
w ∈ Wn

∣∣ (S,Φw) is a marked blow-up
}
.

The right action of the symmetric group reorders the base-points of a blow-
up so the group of permutations is contained in W (S,Φ). The following
statement gives other examples of elements of W (S,Φ).

Theorem 10.3.4 ([135]). Let (S,Φ) be a marked blow-up and let σ be the
involution (x : y : z) 99K (yz : xz : xy). Let us denote by p1, . . . , pn the
base-points of (S,Φ). If, for any 4 ≤ k ≤ n, the point pk does not belong
to the line through pi and pj , where 1 ≤ i, j ≤ 3, i 6= j, then (S,Φκ123) is
a marked blow-up.
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Proof. Let π : S → P2(C) be the birational morphism associated to the
marked blow-up (S,Φ). Let us denote by q1, q2 and q3 the points of inde-
terminacy of σ. Let us choose some coordinates for which pi = qi for i = 1,
2, 3; then π′ = σπ : S → P2(C) is a birational morphism which allows us to
see (S,Φκ123) as a marked blow-up with base-points p1, p2, p3 and σ(pi)
for i ≥ 4. These points are distinct since, by hypothesis, p4, . . . , pn do not
belong to the lines contracted by σ.

A root α of Θn is a nodal root for (S,Φ) if Φ(α) is represented by
an effective divisor D. In this case D projects to a curve of degree d > 0
on P2(C); thus α = de0 −

∑
i≥1miei is a positive root. A nodal root is

geometric if we can write D as a sum of smooth rational curves.

Theorem 10.3.5 ([135]). Let (S,Φ) be a marked blow-up. If three of the
base-points are colinear, (S,Φ) has a geometric nodal root.

Proof. After reordering the base-points p1, . . . , pn, we can assume that
p1, p2 and p3 are colinear; let us denote by L the line through these three
points. We can suppose that the base-points which belong to L are p1,
. . . , pk. The strict transform L̃ of L induces a smooth rational curve on S
with [L̃] = [H−∑k

i=1 Ei] so

Φ(α123) = [L̃+

k∑

i=1

Ei].

Theorem 10.3.6 ([135]). Let (S,Φ) be a marked blow-up. If (S,Φ) has
no geometric nodal root, then

W (S,Φ) = Wn.

Proof. If (S,Φ) has no geometric nodal root and if w belongs to W (S,Φ),
then (S,Φw) has no geometric nodal root. It is so sufficient to prove that
the generators of Wn belong to W (S,Φ). Since the group of permutations
is contained in W (S,Φ), it is clear for the transpositions; for κ123 it is a
consequence of Theorems 10.3.4 and 10.3.5.

Corollary 10.3.7 ([135]). A marked surface has a nodal root if and only
if it has a geometric nodal root.
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10.3.3 Marked pairs

First definitions

Let (S,Φ) be a marked blow-up. Let us recall that an anticanonical
curve is a reduced curve Y ⊂ S such that its class in H2(S,Z) satisfies

[Y ] = [3H−
∑

i

Ei] = −KS. (10.3.1)

Amarked pair (S,Φ, Y ) is the data of a marked blow-up (S,Φ) and an
anticanonical curve Y. An isomorphism between marked pairs (S,Φ, Y )
and (S′,Φ′, Y ′) is a biholomorphism f from S into S′, compatible with
markings and which sends Y to Y ′. If n ≥ 10, then S contains at most
one irreducible anticanonical curve; indeed if such a curve Y exists, then
Y 2 = 9− n < 0.

From surfaces to cubic curves

Let us consider a marked pair (S,Φ, Y ). Let π be the projection of S to
P2(C) compatible with Φ. The equality (10.3.1) implies that C = π(Y )
is a cubic curve through any base-point pi with multiplicity 1. Moreover,
Ei · Y = 1 implies that π : Y → C is an isomorphism. The identification
of H2(S,Z) and Pic(S) allows us to obtain the natural marking

η : Z1,n Φ−→ H2(S,Z) = Pic(S)
r−→ Pic(Y )

π∗−→ Pic(C)

where r is the restriction r : Pic(S) → Pic(Y ). Therefore a marked pair
(S, Y,Φ) determines canonically a marked cubic curve (C, η).

From cubic curves to surfaces

Conversely let us consider a marked cubic curve (C, η). Then we have base-
points pi ∈ C determined by (η(ei))1≤i≤n and an embedding C ⊂ P2(C)
determined by η(e0). Let (S,Φ) be the marked blow-up with base-points pi
and Y ⊂ S the strict transform of C. Hence we obtain a marked pair
(S,Φ, Y ) called blow-up of (C, η) and denoted by Bl(C, η).

This construction inverts the previous one, in other words we have the
following statement.

Proposition 10.3.8 ([135]). A marked pair determines canonically a
marked cubic curve and conversely.
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10.4 Idea of the proof

The automorphisms constructed to prove the previous results are obtained
from a birational map by blowing up base-points on a cubic curve C; the
cubic curves play a very special role because its transforms Y are anti-
canonical curves.

Assume that w ∈ Wn is realized by an automorphism F of a rational
surface S which preserve an anticanonical curve Y . A marked cubic curve
(C, η) is canonically associated to a marked pair (S,Φ, Y ) (Theorem 10.3.8).
Then there exists a birational map f : P2(C) 99K P2(C) such that:

• the lift of f to S coincides with F,

• f preserves C ,

• and f induces an automorphism f∗ of Pic0(C) which satisfies η0w =
f∗η0. In other words [η0] is a fixed point for the natural action of w
on the moduli space of markings.

Conversely to realize a given element w of the group Wn we search a
fixed point η0 in the moduli space of markings. We can associate to η0 a
marked cubic (C, η) up to isomorphism (Corollary 10.3.3). Let us denote
by (S,Φ, Y ) the marked pair canonically determined by (C, η). Assume
that, for any α in Θn, η0(α) is non zero (which is a generic condition); the
base-points pi do not satisfy some nodal relation (they all are distinct, no
three are on a line, no six are on a conic, etc). According to a theorem of
Nagata there exists a second projection π′ : S → P2(C) which corresponds
to the marking Φw. Let us denote by C′ the cubic π′(Y ). Since [η0] is a
fixed point of w, the marked cubics (C′, ηw) and (C, η) are isomorphic. But
such an isomorphism is an automorphism F of S satisfying F∗Φ = Φw.

Let us remark that in [114, 105, 152, 72] there are also constructions
with automorphisms of surfaces and cubic curves.

10.5 Examples

Let us consider the family of birational maps f : P2(C) 99K P2(C) given in
the affine chart z = 1 by

f(x, y) =
(
a+ y, b+

y

x

)
, a, b ∈ C.

Let us remark that the case b = −a has been studied in [152] and [11].
The points of indeterminacy of f are p1 = (0 : 0 : 1), p2 = (0 : 1 : 0)

and p3 = (1 : 0 : 0). Let us set p4 = (a : b : 1) and let us denote by
∆ (resp. ∆′) the triangle whose vertex are p1, p2, p3 (resp. p2, p3, p4).
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The map f sends ∆ onto ∆′ : the point p1 (resp. p2, resp. p3) is blown
up on the line (p1p4) (resp. (p2p3), resp. (p3p4)) and the lines (p1p2)
(resp. (p1p3), resp. (p2p3)) are contracted on p2 (resp. p4, resp. p3).

If a and b are chosen such that p1 = p4, then ∆ is invariant by f and
if we blow up P2(C) at p1, p2, p3 we obtain a realization of the standard
Coxeter element of W3. Indeed, f sends a generic line onto a conic through
the pi; so w(e0) = 2e0 − e1 − e2 − e3. The point p1 (resp. p2, resp. p3) is
blown up on the line through p2 and p3 (resp. p1 and p3, resp. p1 and p2).
Therefore

w(e1) = e0 − e2 − e3, w(e2) = e0 − e1 − e3, w(e3) = e0 − e1 − e2.

More generally we have the following statement.

Theorem 10.5.1 ([135]). Let us denote by pi+4 the i-th iterate f i(p4)
of p4.

The realization of the standard Coxeter element of Wn corresponds to
the pairs (a, b) of C2 such that

pi 6∈ (p1p2) ∪ (p2p3) ∪ (p3p1), pn+1 = p1.

Proof. Assume that there exists an integer i such that f i(p4) = pi+4.
Let (S, π) be the marked blow-up with base-points pi. The map f lifts to
a morphism F0 : S → P2(C). Since any pi is now the image F0(ℓi) of a
line in S, the morphism F0 lifts to an automorphism F of S such that f
lifts to F. Let us find the element w realized by F. Let us remark that
f sends a generic line onto a conic through p2, p3 and p4 thus w(e0) =
2e0 − e2 − e3 − e4. The point p1 is blown up to the line through p3 and p4
so w(e1) = e0 − e3 − e4; similarly we obtain

w(e2) = e0 − e2 − e4, w(e3) = e0 − e2 − e3,

w(ei) = ei+1 for 4 ≤ i < n , w(en) = e1.

Conversely if an automorphism F : S → S realizes the standard Coxeter
element w = πnκ123, we can normalize the base-points such that

{
p1, p2, p3

}
=

{
(0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0)

}
;

the birational map f : P2(C) 99K P2(C) covered by F is a composition of
the standard Cremona involution and an automorphism sending (p1, p2)
onto (p2, p3). Such a map f has the form in the affine chart z = 1

f(x, y) = (a′, b′) + (Ay,By/x)

so up to conjugacy by (Bx,By/A), we have f(x, y) = (a, b)+ (y, y/x).
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Automorphisms of
positive entropy: some
examples

A possibility to produce an automorphism f on a rational surface S is the
following: starting with a birational map f of P2(C), we find a sequence
of blow-ups π : S → P2(C) such that the induced map fS = πfπ−1 is an
automorphism of S. The difficulty is to find such a sequence π... If f is
not an automorphism of the complex projective plane, then f contracts a
curve C1 onto a point p1; the first thing to do to obtain an automorphism
from f is to blow up the point p1 via π1 : S1 → P2(C). In the best case
fS1

= π1fπ
−1
1 sends the strict transform of C1 onto the exceptional di-

visor E1. But if p1 is not a point of indeterminacy, fS1
contracts E1 onto

p2 = f(p1). This process thus finishes only if f is not algebraically stable.

In [21] Bedford and Kim exhibit a continuous family of birational maps
(fa)a∈Ck−2 . We will see that this family is conjugate to automorphisms
with positive entropy on some rational surface Sa (Theorem 11.6.1). Let
us hold the parameter c fixed; the family fa induces a family of dynamical
systems of dimension k/2−1: there exists a neighborhood U of 0 in Ck/2−1

such that if a = (a0, a2, . . . , ak−2), b = (b0, b2, . . . , bk−2) are in U then fa
and fb are not smoothly conjugate (Theorem 11.6.3). Moreover they show,
for k ≥ 4, the existence of a neighborhood U of 0 in Ck/2−1 such that if a, b
are two distinct points of U , then Sa is not biholomorphically equivalent
to Sb (Theorem 11.6.4).

The results evoked in the last section are also due to Bedford and Kim
([22]); they concern the Fatou sets of automorphisms with positive en-
tropy on rational non-minimal surfaces obtained from birational maps of
the complex projective plane. Bedford and Kim prove that such automor-

148
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phisms can have large rotation domains (Theorem 11.7.1).

11.1 Description of the sequence of blow-ups
([19])

Let fa,b be the birational map of the complex projective plane given by

fa,b(x, y, z) =
(
x(bx+ y) : z(bx+ y) : x(ax+ z)

)
,

or in the affine chart x = 1

fa,b(y, z) =

(
z,
a+ z

b+ y

)
.

We note that Ind fa,b = {p1, p2, p∗} and Exc fa,b = Σ0 ∪ Σβ ∪ Σγ with

p1 = (0 : 1 : 0), p2 = (0 : 0 : 1), p∗ = (1 : −b : −a),
Σ0 = {x = 0}, Σβ = {bx+ y = 0}, Σγ = {ax+ z = 0}.

Σγ

ΣB

ΣC

Σ0

p∗p2

q

Σβ

p1

Set Y = Blp1,p2P2, π : Y → P2(C) and fa,b, Y = π−1fa,bπ. Let us prove
that after these two blow-ups Σ0 does not belong to Exc fa,b, Y .

To begin let us blow up p2. Let us set x = r2 and y = r2s2; then
(r2, s2) is a system of local coordinates in which Σβ = {s2 + b = 0} and
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E2 = {r2 = 0}. We remark that

(r2, s2) → (r2, r2s2)(x,y) → (r2(b+ s2) : b+ s2 : ar2 + 1)

=

(
r2(b+ s2)

ar2 + 1
,
b+ s2
ar2 + 1

)

(x,y)

→
(
r2(b+ s2)

ar2 + 1
,
1

r2

)

(r2,s2)

.

Thus Σβ is sent onto E2 and E2 sur Σ0.
Let us now blow up p1. Set x = u2v2 and y = v2; the exceptional

divisor E2 is given by v2 = 0 and Σ0 by u2 = 0. We have

(u2, v2) → (u2v2, v2)(x,y) → (u2v2(bu2 + 1) : bu2 + 1 : u2(au2v2 + 1))

=

(
v2(bu2 + 1)

au2v2 + 1
,

bu2 + 1

u2(au2v2 + 1)

)

(x,y)

→
(
u2v2,

bu2 + 1

u2(au2v2 + 1)

)

(u2,v2)

;

therefore E2 is sent onto Σ0.
Let us set x = r1, z = r1s1; in the coordinates (r1, s1) we have E1 =

{r1 = 0}. Moreover

(r1, s1) → (r1, r1s1)(x,z) → (br1 + 1 : b+ s1(br1 + 1) : r1(a+ s1)).

Hence E1 is sent onto ΣB .
Set x = u1v1 and z = v1; in these coordinates Σ0 = {u1 = 0}, E1 =

{v1 = 0} and

(u1, v1) → (u1v1, v1)(x,z) → (u1(bu1v1 + 1) : bu1v1 + 1 : u1v1(au1 + 1))

=

(
u1,

u1v1(au1 + 1)

bu1v1 + 1

)

(x,z)

→
(
u1,

v1(au1 + 1)

bu1v1 + 1

)

(r1,s1)

.

So Σ0 → E1 and Σβ → E2 → Σ0 → E1 → ΣB . In particular

Ind fa,b, Y = {p∗} & Exc fa,b, Y = {Σγ}.

We remark that
{
H, E1, E2

}
is a basis of Pic(Y ). The exceptional

divisor E1 is sent on ΣB ; since p1 belongs to ΣB we have E1 → ΣB →
ΣB +E1. On the other hand E2 is sent onto Σ0; as p1 and p2 belong to Σ0

we have
E2 → Σ0 → Σ0 + E1 + E2.

Let H be a generic line of P2(C); it is given by ℓ = 0 with ℓ = a0x+a1y+a2z.
Its image by fa,b, Y is a conic thus

f∗a,b, YH = 2H−
2∑

i=1

miEi.
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Let us find the mi’s. As

(r2, s2) → (r2, r2s2)(x,y) → (r2(b+ s2) : b+ s2 : ar2 + 1)

→ r2

(
a0r2(b+ s2) + a1(b+ s2) + a2(ar2 + 1)

)

and E2 = {r2 = 0} the integer m2 is equal to 1. Since

(r1, s1) → (r1, r1s1)(x,z) → (br1 + 1 : b+ s1(br1 + 1) : r1(a+ s1))

→ s1r1

(
a0(bs1r1 + 1) + a1s1(bs1r1 + 1) + s1r1(a+ s1)

)

and E1 = {s1 = 0} we get m1 = 1. That’s why

Mfa,b, Y
=




2 1 1
−1 −1 −1
−1 0 −1


 .

The characteristic polynomial ofMfa,b, Y
is 1+ t− t3. Let us explain all the

information contained inMfa,b, Y
. Let L be a line and L its class in Pic(Y ).

If L does not intersect neither E1, nor E2, then L = H. As f∗a,b, YH =
2H − E1 − E2 the image of L by fa,b, Y is a conic which intersects E1

and E2 with multiplicity 1. If L contains p∗, then fa,b, Y (L) is the union
of ΣC and a second line. Assume that p∗ does not belong to L∪fa,b, Y (L),
then

f2a,b, Y (L) =M2
fa,b




1
0
0


 = 2H− E2;

in other words f2a,b, Y (L) is a conic which intersects E2 but not E1. If p∗
does not belong to L ∪ fa,b, Y (L) ∪ f2a,b, Y (L), then

f3a,b, Y (L) =M3
fa,b




1
0
0


 = 3H− E1 − E2,

i.e. f3a,b, Y (L) is a cubic which intersects E1 and E2 with multiplicity 1.
If p∗ does not belong to

L ∪ fa,b, Y (L) ∪ . . . ∪ fn−1
a,b, Y (L),

the iterates of fa,b, Y are holomorphic on the neighborhood of L and

(f∗a,b, Y )
n(H) = fna,b, Y L.

The parameters a, b are said generic if p∗ does not belong to
∞⋃

j=0

f ja,b, Y (L).

Theorem 11.1.1. Assume that a and b are generic; fa,b, Y is algebraically
stable and λ(fa,b) ∼ 1.324 is the largest eigenvalue of the characteristic
polynomial t3 − t− 1.
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11.2 Construction of surfaces and automor-
phisms ([19])

Let us consider the subset Vn of C2 given by

Vn =
{
(a, b) ∈ C2

∣∣ f ja,b, Y (q) 6= p∗ ∀ 0 ≤ j ≤ n− 1, fna,b, Y (q) = p∗
}
.

Theorem 11.2.1. The map fa,b, Y is conjugate to an automorphism on a
rational surface if and only if (a, b) belongs to Vn for some n.

Proof. If (a, b) does not belong to Vn, Theorem 11.1.1 implies that λ(fa,b)
is the largest root of t3− t−1; we note that λ(fa,b) is not a Salem number
so fa,b is not conjugate to an automorphism (Theorem 9.3.9).

Conversely assume that there exists an integer n such that (a, b) belongs
to Vn. Let S be the surface obtained from Y by blowing up the points q,
fa,b, Y (q), . . . , f

n
a,b, Y (q) = p∗ of the orbit of q. We can check that the

induced map fa,b, S is an automorphism of S.

Let us now consider f∗a,b, S which will be denoted by f∗a,b.

Theorem 11.2.2. Assume that (a, b) belongs to Vn for some integer n.
If n ≤ 5, the map fa,b is periodic of period ≤ 30. If n is equal to 6,
the degree growth of fa,b is quadratic. Finally if n ≥ 7, then

{
deg fka,b

}
k

grows exponentially and λ(fa,b) is the largest eigenvalue of the character-
istic polynomial

χn(t) = tn+1(t3 − t− 1) + t3 + t2 − 1.

Moreover, when n tends to infinity, λ(fa,b) tends to the largest eigenvalue
of t3 − t− 1.

The action fa,b, S∗ on the cohomology is given by

E2 → Σ0 = H− E1 − E2 → E1 → ΣB = H− E1 −Q

where Q denotes the divisor obtained by blowing up the point q which is
on ΣB . As p∗ is blown-up by fa,b on ΣC , we have

Q → fa,b(Q) → . . .→ fna,b(Q) → ΣC = H− E2 −Q.

Finally a generic line L intersects Σ0, Σβ and Σγ with multiplicity 1; the
image of L is thus a conic through q, p1 and p2 so H → 2H−E1 −E2 −Q.
In the basis {

H, E1, E2, Q, fa,b(Q), . . . , fna,b(Q)
}
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we have

Mfa,b
=




2 1 1 0 0 . . . . . . 0 1
−1 −1 −1 0 0 . . . . . . 0 0
−1 0 −1 0 0 . . . . . . 0 −1
−1 −1 0 0 0 . . . . . . 0 −1
0 0 0 1 0 . . . . . . 0 0

0 0 0 0 1 0 . . . 0
...

...
...

...
... 0

. . .
. . .

...
...

...
...

...
...

...
. . .

. . . 0 0
0 0 0 0 0 . . . 0 1 0




.

11.3 Invariant curves ([20])

In the spirit of [74] (see Chapter 5, §5.4) Bedford and Kim study the
curves invariant by fa,b. There exists rational maps ϕj : C → C2 such that
if (a, b) = ϕj(t) for some complex number t, then fa,b has an invariant
curve C with j irreducible components. Let us set

ϕ1(t) =

(
t− t3 − t4

1 + 2t+ t2
,
1− t5

t2 + t3

)
, ϕ2(t) =

(
t+ t2 + t3

1 + 2t+ t2
,
t3 − 1

t+ t2

)
,

ϕ3(t) =

(
1 + t, t− 1

t

)
.

Theorem 11.3.1. Let t be in C \ {−1, 1, 0, j, j2}. There exists a cubic C
invariant by fa,b if and only if (a, b) = ϕj(t) for a certain 1 ≤ j ≤ 3; in
that case C is described by an homogeneous polynomial Pt,a,b of degree 3.

Moreover, if Pt,a,b exists, it is given, up to multiplication by a constant,
by

Pt,a,b(x, y, z) = ax3(t− 1)t4 + yz(t− 1)t(z + ty)

+ x
(
2byzt3 + y2(t− 1)t3 + z2(t− 1)(1 + bt)

)

+ x2(t− 1)t3
(
a(y + tz) + t(y + (t− 2b)z)

)
.

More precisely we have the following description.

• If (a, b) = ϕ1(t), then Γ1 = (Pt,a,b = 0) is a irreducible cuspidal
cubic. The map fa,b has two fixed points, one of them is the singular
point of C.
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• If (a, b) = ϕ2(t), then Γ2 = (Pt,a,b = 0) is the union of a conic and a
tangent line to it. The map fa,b has two fixed points.

• If (a, b) = ϕ3(t), then Γ3 = (Pt,a,b = 0) is the union of three concur-
rent lines; fa,b has two fixed points, one of them is the intersection
of the three components of C.

There is a relationship between the parameters (a, b) for which there
exists a complex number t such that ϕj(t) = (a, b) and the roots of the
characteristic polynomial χn.

Theorem 11.3.2. Let n be an integer, let 1 ≤ j ≤ 3 be an integer and
let t be a complex number. Assume that (a, b) := ϕj(t) does not belong to
any Vk for k < n. Then (a, b) belongs to Vn if and only if j divides n and
t is a root of χn.

We can write χn as Cnψn where Cn is the product of cyclotomic factors
and ψn is the minimal polynomial of λ(fa,b).

Theorem 11.3.3. Assume that n ≥ 7. Let t be a root of χn not equal
to 1. Then either t is a root of ψn, or t is a root of χj for some 0 ≤ j ≤ 5.

Bedford and Kim prove that #(Γj ∩ Vn) is, for n ≥ 7, determined by
the number of Galois conjugates of the unique root of ψn strictly greater
than 1 : if n ≥ 7 and 1 ≤ j ≤ 3 divides n, then

Γj ∩ Vn =
{
ϕj(t)

∣∣ t root of ψn
}
;

in particular Γj ∩ Vn is not empty.

Let X be a rational surface and let g be an automorphism of X. The
pair (X, g) is said minimal if any birational morphism π : X → X ′ which
sends (X, g) on (X ′, g′), where g′ is an automorphism of X ′, is an isomor-
phism. Let us recall a question of [135]. Let X be a rational surface and
let g be an automorphism of X. Assume that (X, g) is minimal. Does
there exist a negative power of the class of the canonical divisor KX which
admits an holomorphic section ? We know since [109] that the answer is
no if we remove the assumption “(X, g) minimal”.

Theorem 11.3.4. There exists a surface S and an automorphism with
positive entropy fa,b on S such that (S, fa,b) is minimal and such that fa,b
has no invariant curve.

If g is an automorphism of a rational surface X such that a negative
power of KX admits a holomorphic section, g preserves a curve; so Theo-
rem 11.3.4 gives an answer to McMullen’s question.
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11.4 Rotation domains ([20])

Assume that n ≥ 7 (so f is not periodic); if there is a rotation domain,
then its rank is 1 or 2 (Theorem 9.4.4). We will see that both happen; let
us begin with rotation domains of rank 1.

Theorem 11.4.1. Assume that n ≥ 7. Assume that j divides n and that
(a, b) belongs to Γj∩ Vn. There exists a complex number t such that (a, b) =
ϕj(t). If t is a Galois conjugate of λ(fa,b), not equal to λ(fa,b)

±1, then fa,b
has a rotation domain of rank 1 centered in
(

t3

1 + t
,
t3

1 + t

)
if j = 1,

(
− t2

1 + t
,− t2

1 + t

)
if j = 2, (−t,−t) if j = 3.

Let us now deal with those of rank 2.

Theorem 11.4.2. Let us consider an integer n ≥ 8, an integer 2 ≤ j ≤ 3
which divides n. Assume that (a, b) = ϕj(t) and that |t| = 1; moreover
suppose that t is a root of ψn. Let us denote by η1, η2 the eigenvalues
of Dfa,b at the point

m =

(
1 + t+ t2

t+ t2
,
1 + t+ t2

t+ t2

)
if j = 2, m =

(
1 +

1

t
, 1 +

1

t

)
if j = 3.

If |η1| = |η2| = 1 then fa,b has a rotation domain on rank 2 centered
at m.

There are examples where rotation domains of rank 1 and 2 coexist.

Theorem 11.4.3. Assume that n ≥ 8, that j = 2 and that j divides n.
There exists (a, b) in Γj∩Vn such that fa,b has a rotation domain of rank 2
centered at

(
1 + t+ t2

t+ t2
,
1 + t+ t2

t+ t2

)
if j = 2,

(
1 +

1

t
, 1 +

1

t

)
if j = 3

and a rotation domain of rank 1 centered at
(
− t2

1 + t
,− t2

1 + t

)
if j = 2, (−t,−t) if j = 3.

11.5 Weyl groups ([20])

Let us recall that E1 and E2 are the divisors obtained by blowing up p1
and p2. To simplify let us introduce some notations: E0 = H, E3 = Q,
E4 = f(Q), . . . , En = fn−3(Q) and let πi be the blow-up associated to Ei.
Let us set

e0 = E0, ei = (πi+1 . . . πn)
∗Ei, 1 ≤ i ≤ n;
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the basis
{
e0, . . . , en

}
of Pic(S =) is geometric.

Bedford and Kim prove that they can apply Theorem 10.5.1 and deduce
from it the following statement.

Theorem 11.5.1. Let X be a rational surface obtained by blowing up
P2(C) in a finite number of points π : X → P2(C) and let F be an automor-
phism on X which represents the standard element of the Weyl group Wn,
n ≥ 5. There exists an automorphism A of P2(C) and some complex num-
bers a and b such that

fa,bAπ = AπF.

Moreover they get that a representation of the standard element of the
Weyl group can be obtained from fa,b, Y .

Theorem 11.5.2. Let X be a rational surface and let F be an automor-
phism on X which represents the standard element of the Weyl group Wn.
There exist

• a surface Ỹ obtained by blowing up Y in a finite number of distinct
points π : Ỹ → Y,

• an automorphism g on Ỹ ,

• (a, b) in Vn−3

such that (F,X) is conjugate to (g, Ỹ ) and πg = fa,b, Y π.

11.6 Continuous families of automorphisms
with positive entropy ([21])

In [21] Bedford and Kim introduce the following family:

fa(y, z) =
(
z,−y + cz +

k−2∑

j=1

j pair

aj
yj

+
1

yk

)
,

a = (a1, . . . , ak−2) ∈ Ck−2, c ∈ R, k ≥ 2.

(11.6.1)

Theorem 11.6.1. Let us consider the family (fa) of birational maps given
by (11.6.1).

Let j, n be two integers relatively prime and such that 1 ≤ j ≤ n. There
exists a non-empty subset Cn of R such that, for any even k ≥ 2 and for
any (c, aj) in Cn × C, the map fa is conjugate to an automorphism of a
rational surface Sa with entropy log λn,k where log λn,k is the largest root
of the polynomial

χn,k = 1− k

n−1∑

j=1

xj + xn.
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Let us explain briefly the construction of Cn. The line ∆ = {x = 0} is
invariant by fa. An element of ∆\{(0 : 0 : 1)} can be written as (0 : 1 : w)
and f(0 : 1 : w) =

(
0 : 1 : c− 1

w

)
. The restriction of fa to ∆ coincides

with g(w) = c− 1
w . The set of values of c for which g is periodic of period

n is {
2 cos(jπ/n)

∣∣ 0 < j < n, (j, n) = 1
}
.

Let us set ws = gs−1(c) for 1 ≤ s ≤ n− 1, in other words the wi’s encode
the orbit of (0 : 1 : 0) under the action of f. The wj satisfy the following
properties:

• wjwn−1−j = 1;

• if n is even, then w1 . . . wn−2 = 1;

• if n is odd, let us set w∗(c) = w(n−1)/2 then w1 . . . wn−2 = w∗.

Let us give details about the case n = 3, k = 2, then C3 = {−1, 1}.
Assume that c = 1; in other words

fa = f =
(
xz2 : z3 : x3 + z3 − yz2

)
.

The map f contracts only one line ∆′′ = {z = 0} onto the point R = (0 :
0 : 1) and blows up exactly one point, Q = (0 : 1 : 0). Let us describe the
sequence of blow-ups that allows us to “solve indeterminacy”:

• first blow-up. First of all let us blow up Q in the domain and R in the
range. Let us denote by E (resp. F) the exceptional divisor obtained
by blowing up Q (resp. R). One can check that E is sent onto F, ∆′′

1

is contracted onto S = (0, 0)(a1,b1) and Q1 = (0, 0)(u1,v1) is a point
of indeterminacy;

• second blow-up. Let us then blow up Q1 in the domain and S in the
range; let G, resp. H be the exceptional divisors. One can verify
that the exceptional divisor G is contracted onto T = (0, 0)(c2,d2),
∆′′

2 onto T and U = (0, 0)(r2,s2) is a point of indeterminacy;

• third blow-up. Let us continue by blowing up U in the domain and
T in the range, where K and L denote the associated exceptional
divisors. One can check that W = (1, 0)(r3,s3) is a point of indeter-
minacy, K is sent onto L and G1 is contracted on V = (1, 0)(c3,d3)
and ∆′′

3 on V ;

• fourth blow-up. Let us blow up W in the domain and V in the
range, let M and N be the associated exceptional divisors. Then
∆′′

4 is contracted on X = (0, 0)(c4,d4), Y = (0, 0)(r4,s4) is a point of
indeterminacy, G1 is sent onto N and M onto H;
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• fifth blow-up. Finally let us blow up Y in the domain and X in the
range, where Λ, Ω are the associated exceptional divisors. So ∆′′

5 is
sent onto Ω and Λ onto ∆′′

5 .

Theorem 11.6.2. The map f =
(
xz2 : z3 : x3 + z3 − yz2

)
is conjugate to

an automorphism of P2(C) blown up in 15 points.

The first dynamical degree of f is 3+
√
5

2 .

Proof. Let us denote by P̂1 (resp. P̂2) the point infinitely near obtained by
blowing up Q, Q1, U, W and Y (resp. R, S, T, V and X). By following the
sequence of blow-ups we get that f induces an isomorphism between BlP̂1

P2

and BlP̂2
P2, the components being switched as follows

E → F, ∆′′ → Ω, K → L, M → H, Λ → ∆′′, G → N.

A conjugate of f has positive entropy on P2(C) blown up in ℓ points
if ℓ ≥ 10; we thus search an automorphism A of P2(C) such that (Af)2A

sends P̂2 onto P̂1. We remark that f(R) = (0 : 1 : 1) and f2(R) = Q then

that f2(P̂2) = P̂1 so A = id is such that (Af)2A sends P̂2 onto P̂1.

The components are switched as follows

∆′′ → fΩ, E → fF, G → fN, K → fL, M → fH,

Λ → f∆′′, fF → f2F, fN → f2N, fL → f2L, fH → f2H,

fΩ → f2Ω, f2F → E, f2N → G, f2L → K, f2H → M,

f2Ω → Λ.

Therefore the matrix of f∗ is given in the basis

{∆′′, E, G, K, M, Λ, fF, fN, fL, fH, fΩ, f2F, f2N, f2L, f2H, f2Ω}
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by




0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 3 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 3 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −3 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 −3 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 −2 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0




;

the largest root of the characteristic polynomial

(X2 − 3X + 1)(X2 −X + 1)(X + 1)2(X2 +X + 1)3(X − 1)4

is 3+
√
5

2 , i.e. the first dynamical degree of f is 3+
√
5

2 . Let us remark that
the polynomial χ3,2 introduced in Theorem 11.6.1 is 1− 2X − 2X2 +X3

whose the largest root is 3+
√
5

2 .

The considered family of birational maps is not trivial, i.e. parameters
are effective.

Theorem 11.6.3. Let us hold the parameter c ∈ Cn fixed. The family
of maps (fa) defined by (11.6.1) induces a family of dynamical systems of
dimension k/2−1. In other words there is a neighborhood U of 0 in Ck/2−1

such that if a = (a0, a2, . . . , ak−2), b = (b0, b2, . . . , bk−2) are in U then fa
and fb are not smoothly conjugate.

Idea of the proof. Such a map fa has k + 1 fixed points p1, . . . , pk+1. Let
us set a = (a1, . . . , ak−2). Bedford and Kim show that the eigenvalues of
Dfa at pj(a) depend on a; it follows that the family varies non trivially
with a. More precisely they prove that the trace of Dfa varies in a non-
trivial way. Let τj(a) denote the trace of Dfa at pj(a) and let us consider
the map T defined by

a 7→ T (a) = (τ1(a), . . . , τk+1(a)).
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The rank of the map T is equal to k
2 − 1 at a = 0. In fact the fixed

points of fa can be written (ξs, ξs) where ξs is a root of

ξ = (c− 1)ξ +

k−2∑

j=1

j pair

aj
ξj

+
1

ξk
. (11.6.2)

When a is zero, we have for any fixed point ξk+1 = 1
2−c . By differentiating

(11.6.2) with respect to aℓ we get for a = 0 the equality
(
2− c+

k

ξk+1

)
∂ξ

∂aℓ
=

1

ξℓ
;

this implies that
∂ξ

∂aℓ

∣∣∣
a=0

=
1

(2− c)(k + 1)ξℓ
.

The trace of Dfa(y,z)
is given by

τ = c−
k−2∑

j=1

j pair

jaj
yj+1

− k

yk+1
.

For y = ξa we have

∂τ(ξa)

∂aℓ

∣∣∣
a=0

= − ℓ

yℓ+1
+
k(k + 1)

yk+2

∂ξa
∂aℓ

= − ℓ

yℓ+1
+

k

2− c

1

ξk+1ξℓ+1

= − ℓ

yℓ+1
+

k

yξℓ
=
k − ℓ

ξℓ+1
.

If we let ξj range over k
2 − 1 distinct choices of roots 1

(2−c)k+1 , the

matrix essentially is a (k2 − 1) × (k2 − 1) Vandermondian and so of rank
k
2 − 1.

There exists a neighborhood U of 0 in C k
2−1 such that, for any a,

b in U with a 6= b, the map fa is not diffeomorphic to fb. In fact the
map C k

2−1 → Ck+1, a 7→ T (a) is locally injective in a neighborhood of
0. Moreover, for a = 0, the fixed points p1, . . . , pk+1, and so the values

τ1(0), . . . , τk+1(0), are distinct. Thus C k
2−1 ∋ a 7→ {τ1(a), . . . , τk+1(a)}

is locally injective in 0. So if U is a sufficiently small neighborhood of 0
and if a and b are two distinct elements of U , the sets of multipliers at the
fixed points are not the same; it follows that fa and fb are not smoothly
conjugate.

Let fa be a map which satisfies Theorem 11.6.1. Bedford and Kim
show that for all the cases under their consideration the representation

Aut(Sa) → GL(Pic(Sa)), φ 7→ φ∗
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is at most ((k2 − 1) : 1); moreover if ak−2 is non zero, it is faithful.
When n = 2, the image of Aut(Sa) → GL(Pic(Sa)), φ 7→ φ∗ coincides with
elements of GL(Pic(Sa)) that are isometries with respect to the intersec-
tion product, and which preserve the canonical class of Sa as well as the
semigroup of effective divisors; this subgroup is the infinite dihedral group
with generators fa∗ and ι∗ where ι denotes the reflection (x, y) 7→ (y, x).
They deduce from it that, always for n = 2, the surfaces Sa are, in general,
not biholomorphically equivalent.

Theorem 11.6.4. Assume that n = 2 and that k ≥ 4 is even. Let a be
in Ck/2−1 and c be in C2. There exists a neighborhood U of 0 in Ck/2−1

such that if a, b are two distinct points of U and if ak−1 is nonzero, then Sa
is not biholomorphically equivalent to Sb.

11.7 Dynamics of automorphisms with posi-
tive entropy: rotation domains ([22])

If S is a compact complex surface carrying an automorphism with positive
entropy f , a theorem of Cantat (Theorem 9.3.4) says that

• either f is conjugate to an automorphism of the unique minimal
model of S which has to be a torus, a K3 surface or an Enriques
surface;

• or f is birationally conjugate to a birational map of the complex
projective plane ([40]).

We also see that if S is a complex torus, the Fatou set of f is empty.
If S is a K3 surface or a quotient of a K3 surface, the existence of a volume
form implies that the only possible Fatou components are the rotation
domains. McMullen proved the existence of non-algebraic K3 surfaces with
rotation domains of rank 2 (see [134]). What happen if S is a rational non-
minimal surface ? The automorphisms with positive entropy on rational
non-minimal surfaces can have large rotation domains.

Theorem 11.7.1. There exists a rational surface S carrying an automor-
phism with positive entropy h and a rotation domain U . Moreover, U is a
union of invariant Siegel disks, h acting as an irrational rotation on any
of these disks.

The linearization is a very good tool to prove the existence of rotation
domains but it is a local technique. In order to understand the global
nature of the Fatou component U , Bedford and Kim introduce a global
model and get the following statement.



162 Julie Déserti

Theorem 11.7.2. There exist a surface L obtained by blowing up P2(C)
in a finite number of points, an automorphism L on L, a domain Ω of L
and a biholomorphic conjugacy Φ: U → Ω which sends (h,U) onto (L,L).

In particular, h has no periodic point on U \ {z = 0}.

Let us consider for n, m ≥ 1 the polynomial

Pn,m(t) =
t(tnm − 1)(tn − 2tn−1 + 1)

(tn − 1)(t− 1)
+ 1.

If n ≥ 4, m ≥ 1 or if n = 3, m ≥ 2 this polynomial is a Salem polynomial.

Theorem 11.7.3. Let us consider the birational map f given in the affine
chart z = 1 by

f(x, y) =

(
y,−δx+ cy +

1

y

)

where δ is a root of Pn,m which is not a root of unity and c = 2
√
δ cos(jπ/n)

with 1 ≤ j ≤ n− 1, (j, n) = 1.
There exists a rational surface S obtained by blowing up P2(C) in a

finite number of points π : S → P2(C) such that π−1fπ is an automorphism
on S.

Moreover, the entropy of f is the largest root of the polynomial Pn,m.

Bedford and Kim use the pair (fk,S) to prove the statements 11.7.1
and 11.7.2.



Chapter 12

A “systematic” way to
construct automorphisms
of positive entropy

This section is devoted to a “systematic” construction of examples of ra-
tional surfaces with biholomorphisms of positive entropy. The strategy is
the following: start with a birational map f of P2(C). By the standard
factorization theorem for birational maps on surfaces as a composition of
blow-ups and blow-downs, there exist two sets of (possibly infinitely near)

points P̂1 and P̂2 in P2(C) such that f can be lifted to an automorphism

between BlP̂1
P2 and BlP̂2

P2. The data of P̂1 and P̂2 allows to get auto-
morphisms of rational surfaces in the left PGL3(C)-orbit of f : assume

that k ∈ N is fixed and let ϕ be an element of PGL3(C) such that P̂1,

ϕP̂2, (ϕf)ϕP̂2, . . . , (ϕf)
k−1ϕP̂2 have all distinct supports in P2(C) and

(ϕf)kϕP̂2 = P̂1. Then ϕf can be lifted to an automorphism of P2(C) blown
up at P̂1, ϕP̂2, (ϕf)ϕP̂2, . . . , (ϕf)

k−1ϕP̂2. Furthermore, if the conditions
above are satisfied for a holomorphic family of ϕ, we get a holomorphic
family of rational surfaces (whose dimension is at most eight). Therefore,
we see that the problem of lifting an element in the PGL3(C)-orbit of f to

an automorphism is strongly related to the equation u(P̂2) = P̂1, where u

is a germ of biholomorphism of P2(C) mapping the support of P̂2 to the

support of P̂1. In concrete examples, when P̂1 and P̂2 are known, this equa-
tion can actually be solved and involves polynomial equations in the Taylor
expansions of u at the various points of the support of P̂2. It is worth point-
ing out that in the generic case, P̂1 and P̂2 consist of the same number d of
distinct points in the projective plane, and the equation u(P̂2) = P̂1 gives
2d independent conditions on u (which is the maximum possible number

163
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if P̂1 and P̂2 have length d). Conversely, infinitely near points can consid-
erably decrease the number of conditions on u as shown in our examples.
This explains why holomorphic families of automorphisms of rational sur-
faces occur when blow-ups on infinitely near point are made. We illustrate
the method on two examples.

We end the chapter with a summary about the current knowledge on
automorphisms of rational surfaces with positive entropy.

12.1 Birational maps whose exceptional
locus is a line

Let us consider the birational map defined by

Φn =
(
xzn−1 + yn : yzn−1 : zn

)
, n ≥ 3.

The sequence (deg Φkn)k∈N is bounded (it’s easy to see in the affine chart
z = 1), so Φn is conjugate to an automorphism on some rational surface S
and an iterate of Φn is conjugate to an automorphism isotopic to the
identity ([73]). The map Φn blows up one point P = (1 : 0 : 0) and blows
down one curve ∆ = {z = 0}.

Here we will assume that n = 3 but the construction is similar for
n ≥ 4 (see [69]). We first construct two infinitely near points P̂1 and P̂2

such that Φ3 induces an isomorphism between BlP̂1
P2 and BlP̂2

P2. Then

we give “theoretical” conditions to produce automorphisms ϕ of P2(C)
such that ϕΦ3 is conjugate to an automorphism on a surface obtained
from P2(C) by successive blow-ups.

12.1.1 First step: description of the sequence of
blow-ups

First blow up the point P in the domain and in the range. Set y = u1
and z = u1v1; remark that (u1, v1) are coordinates near P1 = (0, 0)(u1,v1),
coordinates in which the exceptional divisor is given by E = {u1 = 0}
and the strict transform of ∆ is given by ∆1 = {v1 = 0}. Set y = r1s1
and z = s1; note that (r1, s1) are coordinates near Q = (0, 0)(r1,s1),
coordinates in which E = {s1 = 0}. We have

(u1, v1) → (u1, u1v1)(y,z) →
(
v21 + u1 : v21u1 : v31u1

)

=

(
v21u1
v21 + u1

,
v31u1
v21 + u1

)

(y,z)

→
(

v21u1
v21 + u1

, v1

)

(u1,v1)
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and

(r1, s1) → (r1s1, s1)(y,z) →
(
1 + r31s1 : r1s1 : s1

)

=

(
r1s1

1 + r31s1
,

s1
1 + r31s1

)

(y,z)

→
(
r1,

s1
1 + r31s1

)

(r1,s1)

;

therefore P1 is a point of indeterminacy, ∆1 is blown down to P1 and E is
fixed.

Let us blow up P1 in the domain and in the range. Set u1 = u2 and
v1 = u2v2. Note that (u2, v2) are coordinates around P2 = (0, 0)(u2,v2) in
which ∆2 = {v2 = 0} and F = {u2 = 0}. If we set u1 = r2s2 and v1 = s2
then (r2, s2) are coordinates near A = (0, 0)(r2,s2); in these coordinates
F = {s2 = 0}. Moreover

(u2, v2) → (u2, u2v2)(u1,v1) →
(
1 + u2v

2
2 : u22v

2
2 : u32v

3
2

)

and
(r2, s2) → (r2s2, s2)(r1,s1) →

(
r2 + s2 : r2s

2
2 : r2s

3
2

)
.

Remark that A is a point of indeterminacy. We also have

(u2, v2) → (u2, u2v2)(u1,v1) →
(
1 + u2v

2
2 : u22v

2
2 : u32v

3
2

)

→
(

u22v
2
2

1 + u2v22
,

u32v
3
2

1 + u2v22

)

(y,z)

→
(

u22v
2
2

1 + u2v22
, u2v2

)

(u1,v1)

→
(

u2v2
1 + u2v22

, u2v2

)

(r2,s2)

so F and ∆2 are blown down to A.

Now let us blow up A in the domain and in the range. Set r2 = u3
and s2 = u3v3; (u3, v3) are coordinates near A1 = (0, 0)(u3,v3), coordi-
nates in which F1 = {v3 = 0} and G = {u3 = 0}. If r2 = r3s3 and
s2 = s3, then (r3, s3) is a system of coordinates in which E2 = {r3 = 0}
and G = {s3 = 0}. We have

(u3, v3) → (u3, u3v3)(r2,s2) →
(
1 + v3 : u23v

2
3 : u33v

3
3

)
,

(r3, s3) → (r3s3, s3)(r2,s2) →
(
1 + r3 : r3s

2
3 : r3s

3
3

)
.
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The point T = (−1, 0)(r3,s3) is a point of indeterminacy. Moreover

(u3, v3) →
(
u23v

2
3

1 + v3
,
u33v

3
3

1 + v3

)

(y,z)

→
(
u23v

2
3

1 + v3
, u3v3

)

(u1,v1)

→
(
u3v3
1 + v3

, u3v3

)

(r2,s2)

→
(

1

1 + v3
, u3v3

)

(r3,s3)

;

so G is fixed and F1 is blown down to S = (1, 0)(r3,s3).

Let us blow up T in the domain and S in the range. Set r3 = u4−1 and
s3 = u4v4; in the system of coordinates (u4, v4) we have G1 = {v4 = 0}
and H = {u4 = 0}. Note that (r4, s4), where r3 = r4s4 − 1 and s3 = s4, is
a system of coordinates in which H = {s4 = 0}. On the one hand

(u4, v4) → (u4 − 1, u4v4)(r3,s3) →
(
(u4 − 1)u4v

2
4 , (u4 − 1)u24v

3
4

)
(y,z)

→
(
(u4 − 1)u4v

2
4 , u4v4

)
(u1,v1)

→
(
(u4 − 1)v4, u4v4

)
(r2,s2)

→
(
(u4 − 1)v4,

u4
u4 − 1

)

(u3,v3)

so H is sent on F2. On the other hand

(r4, s4) → (r4s4 − 1, s4)(r3,s3) →
(
r4 : (r4s4 − 1)s4 : (r4s4 − 1)s24

)
;

hence B = (0, 0)(r4,s4) is a point of indeterminacy.

Set r3 = a4+1, s3 = a4b4; (a4, b4) are coordinates in which G1 = {b4 =
0} and K = {a4 = 0}. We can also set r3 = c4d4 + 1 and s3 = d4; in the
system of coordinates (c4, d4) the exceptional divisor K is given by d4 = 0.

Note that

(u3, v3) →
(

1

1 + v3
, u3v3

)

(r3,s3)

→
(
− v3
1 + v3

,−u3(1 + v3)

)

(a4,b4)

;

thus F2 is sent on K.
We remark that

(u1, v1) →
(
v21 + u1 : u1v

2
1 : u1v

3
1

)
=

(
u1v

2
1

u1 + v21
,
u1v

3
1

u1 + v21

)

(y,z)

→
(

u1v
2
1

u1 + v21
, v1

)

(u1,v1)

→
(

u1v1
u1 + v21

, v1

)

(r2,s2)

→
(

u1
u1 + v21

, v1

)

(r3,s3)

→
(
− v1
u1 + v21

, v1

)

(c4,d4)

;

so ∆4 is blown down to C = (0, 0)(c4,d4).
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Now let us blown up B in the domain and C in the range. Set r4 = u5,
s4 = u5v5 and r4 = r5s5, s4 = s5. Then (u5, v5) (resp. (r5, s5)) is a
system of coordinates in which L = {u5 = 0} (resp. H1 = {v5 = 0} and
L = {s5 = 0}). We note that

(u5, v5) → (u5, u5v5)(r4,s4) →
(
1 : v5(u

2
5v5 − 1) : u5v

2
5(u

2
5v5 − 1)

)

and

(r5, s5) → (r5s5, s5)(r4,s4) →
(
r5 : r5s

2
5 − 1 : s5(r5s

2
5 − 1)

)
.

Therefore L is sent on ∆5 and there is no point of indeterminacy.
Set c4 = a5, d4 = a5b5 and c4 = c5d5, d4 = d5. In the first (resp.

second) system of coordinates the exceptional divisor M is given by {a5 =
0} (resp. {d5 = 0}). We have

(u1, v1) →
(
− v1
u1 + v21

, v1

)

(c4,d4)

→
(
− 1

u1 + v21
, v1

)

(c5,d5)

;

in particular ∆5 is sent on M.

Proposition 12.1.1 ([69]). Let P̂1 (resp. P̂2) be the point infinitely near
P obtained by blowing up P2(C) at P, P1, A, T and U (resp. P, P1, A, S
and U ′).

The map Φ3 induces an isomorphism between BlP̂1
P2 and BlP̂2

P2.

The different components are swapped as follows

∆ → M, E → E, F → K, G → G, H → F, L → ∆.

12.1.2 Second step: gluing conditions

The gluing conditions reduce to the following problem: if u is a germ of
biholomorphism in a neighborhood of P, find the conditions on u in order
that u(P̂2) = P̂1.

Proposition 12.1.2 ([69]). Let u(y, z)=(
∑

(i,j)∈N2

mi,jy
izj ,

∑

(i,j)∈N2

ni,jy
izj)

be a germ of biholomorphism at P.
Then u can be lifted to a germ of biholomorphism between BlP̂2

P2

and BlP̂1
P2 if and only if

m0,0 = n0,0 = n1,0 = m3
1,0 + n20,1 = 0, n2,0 =

3m0,1n0,1
2m1,0

.
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12.1.3 Examples

In this section, we will use the two above steps to produce explicit examples
of automorphisms of rational surfaces obtained from birational maps in the
PGL3(C)-orbit of Φ3. As we have to blow up P2(C) at least ten times to
have non zero-entropy, we want to find an automorphism ϕ of P2(C) such
that

(ϕΦ3)
kϕ(P̂2) = P̂1 with (k + 1)(2n− 1)

≥ 10(ϕΦ3)
iϕ(P ) 6= P for 0 ≤ i ≤ k − 1

(12.1.1)

First of all let us introduce the following definition.

Definition 12.1.3. Let U be an open subset of Cn and let ϕ : U →
PGL3(C) be a holomorphic map. If f is a birational map of the projective
plane, we say that the family of birational maps (ϕα1, ..., αn

f)(α1, ..., αn)∈U
is holomorphically trivial if for every α0 = (α0

1, . . . , α
0
n) in U there ex-

ists a holomorphic map from a neighborhood Uα0 of α0 to PGL3(C) such
that

• Mα0
1, ..., α

0
n
= Id,

• ∀ (α1, . . . , αn)∈Uα0 , ϕα1, ..., αn
f=Mα1, ..., αn

(ϕα0
1, ..., α

0
n
f)M−1

α1, ..., αn
.

Theorem 12.1.4. Let ϕα be the automorphism of the complex projective
plane given by

ϕα =




α 2(1− α) (2 + α− α2)
−1 0 (α+ 1)
1 −2 (1− α)


 , α ∈ C \ {0, 1}.

The map ϕαΦ3 is conjugate to an automorphism of P2(C) blown up
in 15 points.

The first dynamical degree of ϕαΦ3 is 3+
√
5

2 > 1.
The family ϕαΦ3 is holomorphically trivial.

Proof. The first assertion is given by Proposition 12.1.2.
The different components are swapped as follows (§12.1.1)

∆ → ϕαM, E → ϕαE, F → ϕαK,

G → ϕαG, H → ϕαF, L → ϕα∆,

ϕαE → ϕαΦ3ϕαE, ϕαF → ϕαΦ3ϕαF, ϕαG → ϕαΦ3ϕαG,

ϕαK → ϕαΦ3ϕαK, ϕαM → ϕαΦ3ϕαM, ϕαΦ3ϕαE → E,

ϕαΦ3ϕαF → F, ϕαΦ3ϕαG → G, ϕαΦ3ϕαK → H,

ϕαΦ3ϕαM → L.
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So, in the basis

{
∆, E, F, G, H, L, ϕαE, ϕαF, ϕαG, ϕαK, ϕαMϕαΦ3ϕαE,

ϕαΦ3ϕαF, ϕαΦ3ϕαG, ϕαΦ3ϕαK, ϕαΦ3ϕαM
}
,

the matrix of (ϕαΦ3)∗ is




0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 3 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 3 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 −3 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 −3 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0




and its characteristic polynomial is

(X2 − 3X + 1)(X2 −X + 1)(X + 1)2(X2 +X + 1)3(X − 1)4.

Thus

λ(ϕαΦ3) =
3 +

√
5

2
> 1.

Fix a point α0 in C\{0, 1}.We can find locally around α0 a matrixMα

depending holomorphically on α such that for all α near α0 we have

ϕαΦ3 =M−1
α ϕα0

Φ3Mα :

if µ is a local holomorphic solution of the equation α = µnα0 such that
µ0 = 1 we can take

Mα =




1 0 α0 − α
0 1 0
0 0 1


 .
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12.2 A birational cubic map blowing down
one conic and one line

Let ψ denote the following birational map

ψ =
(
y2z : x(xz + y2) : y(xz + y2)

)
;

it blows up two points and blows down two curves, more precisely

Indψ =
{
R = (1 : 0 : 0), P = (0 : 0 : 1)

}
,

Excψ =
(
C =

{
xz + y2 = 0

})
∪
(
∆′ =

{
y = 0

})
.

We can verify that ψ−1 = (y(z2 − xy) : z(z2 − xy) : xz2) and

Indψ−1 =
{
Q = (0 : 1 : 0), R

}
,

Excψ−1 =
(
C′ =

{
z2 − xy = 0

})
∪
(
∆′′ =

{
z = 0

})
.

The sequence of blow-ups is a little bit different; let us describe it. Denote
by ∆ the line x = 0.

• First we blow up R in the domain and in the range and denote by
E the exceptional divisor. We can show that C1 = {u1 + v1 = 0} is
sent on E, E is blown down to Q = (0 : 1 : 0) and S = E ∩∆′′

1 is a
point of indeterminacy.

• Next we blow up P in the domain and Q in the range and denote
by F (resp. G) the exceptional divisor associated with P (resp. Q).
We can verify that F is sent on C′

2, E1 is blown down to T = G∩∆2

and ∆′
2 is blown down to T.

• Then we blow up S in the domain and T in the range and denote
by H (resp. K) the exceptional divisor obtained by blowing up S
(resp. T ). We can show that H is sent on K; E2, ∆

′
3 are blown down

to a point V on K and there is a point of indeterminacy U on H.

• We will now blow up U in the domain and V in the range; let
L (resp. M) be the exceptional divisor obtained by blowing up U
(resp. V ). There is a point of indeterminacy Y on L, L is sent on
G2, E3 on M and ∆′

4 is blown down to a point Z of M.

• Finally we blow up Y in the domain and Z in the range. We have: ∆′
5

is sent on Ω and N on ∆′′
5 , where Ω (resp. N) is the exceptional divisor

obtained by blowing up Z (resp. Y ).
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Proposition 12.2.1. Let P̂1 (resp. P̂2) denote the point infinitely near R
(resp. Q) obtained by blowing up R, S, U and Y (resp. Q, T, V and Z).
The map ψ induces an isomorphism between BlP̂1,P

P2 and BlP̂2,R
P2. The

different components are swapped as follows:

C → E, F → C′, H → K, L → G, E → M, ∆′ → Ω, N → ∆′′.

The following statement gives the gluing conditions.

Proposition 12.2.2. Let u(x, z) =


 ∑

(i,j)∈N2

mi,jx
izj ,

∑

(i,j)∈N2

ni,jx
izj




be a germ of biholomorphism at Q.
Then u can be lifted to a germ of biholomorphism between BlP̂2

P2 and

BlP̂1
P2 if and only if

• m0,0 = n0,0 = 0;

• n0,1 = 0;

• n0,2 + n1,0 +m2
0,1 = 0;

• n0,3 + n1,1 + 2m0,1(m0,2 +m1,0) = 0.

Let ϕ be an automorphism of P2. We will adjust ϕ such that (ϕψ)kϕ

sends P̂2 onto P̂1 and R onto P. As we have to blow up P2 at least ten
times to have nonzero entropy, k must be larger than two,

P̂1, ϕP̂2, ϕψϕP̂2, (ϕψ)
2ϕP̂2, . . . , (ϕψ)

k−1ϕP̂2

must all have distinct supports and (ϕψ)kϕP̂2 = P̂1. We provide such
matrices for k = 3; then by Proposition 12.2.2 we have the following state-
ment.

Theorem 12.2.3. Assume that ψ =
(
y2z : x(xz + y2) : y(xz + y2)

)
and

that

ϕα =




2α3

343 (37i
√
3 + 3) α − 2α2

49 (5i
√
3 + 11)

α2

49 (−15 + 11i
√
3) 1 − α

14 (5i
√
3 + 11)

−α
7 (2i

√
3 + 3) 0 0


 , α ∈ C∗.

The map ϕαψ is conjugate to an automorphism of P2 blown up in 15 points.

The first dynamical degree of ϕαψ is λ(ϕαψ) =
3+

√
5

2 .
The family ϕαψ is locally holomorphically trivial.
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Proof. In the basis

{
∆′, E, F, H, L, N, ϕαE, ϕαG, ϕαK, ϕαM, ϕαΩ,

ϕαψϕαE, ϕαψϕαG, ϕαψϕαK, ϕαψϕαM, ϕαψϕαΩ
}

the matrix M of (ϕαψ)∗ is




0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 2 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 2 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 2 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 1 −1 0 0 0 0 0 0 0 0 0 0
0 0 −2 1 0 −1 0 0 0 0 0 0 0 0 0 0
0 1 −3 0 0 −1 0 0 0 0 0 0 0 0 0 0
1 0 −4 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0




.

Its characteristic polynomial is

(X − 1)4(X + 1)2(X2 −X + 1)(X2 +X + 1)3(X2 − 3X + 1).

Hence λ(ϕαψ) =
3+

√
5

2 .

Fix a point α0 in C∗. We can find locally around α0 a matrix Mα

depending holomorphically on α such that for all α near α0, we have
ϕαψ =M−1

α ϕα0
ψMα : take

Mα =




1 0 0
0 α

α0
0

0 0 α2

α2
0


 .

12.3 Scholium

There are now two different points of view to construct automorphisms
with positive entropy on rational non-minimal surfaces obtained from bi-
rational maps of the complex projective plane.
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The first one is to start with birational maps of P2(C) and to adjust
their coefficients such that after a finite number of blow-ups the maps
become automorphisms on some rational surfaces S. Then we compute
the action of these maps on the Picard group of S and in particular obtain
the entropy. There is a systematic way to do explained in [69] and applied
to produce examples. Using examples coming from physicists Bedford and
Kim

• exhibit continuous families of birational maps conjugate to automor-
phisms with positive entropy on some rational surfaces;

• show that automorphisms with positive entropy on rational non-
minimal surfaces obtained from birational maps of P2(C) can have
large rotation domains and that rotation domains of rank 1 and 2
coexist.

Let us also mention the idea of [72]: the author begins with a quadratic
birational map that fixes some cubic curve and then use the “group law” on
the cubic to understand when the indeterminacy and exceptional behavior
of the transformation can be eliminated by repeated blowing up.

The second point of view is to construct automorphisms on some ratio-
nal surfaces prescribing the action of the automorphisms on cohomological
groups; this is exactly what does McMullen in [135]: for n ≥ 10, the stan-
dard element of the Weyl groupWn can be realized by an automorphism fn
with positive entropy log(λn) of a rational surface Sn. This result has been
improved in [169]:

{
λ(f) | f is an automorphism on some rational surface

}

=
{
spectral radius of w ≥ 1 |w ∈ Wn, n ≥ 3

}
.

In [44] the authors classify rational surfaces for which the image of the
automorphisms group in the group of linear transformations of the Picard
group is the largest possible; it can be rephrased in terms of periodic orbits
of birational actions of infinite Coxeter groups.
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ping. Comm. Math. Phys., 67(2):137–146, 1979.
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Sud Département de Mathématique, Orsay, 1981. Les fonctions
résurgentes appliquées à l’itération.
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confinement in projective space. Chaos Solitons Fractals, 11(1-3):29–
32, 2000. Integrability and chaos in discrete systems (Brussels, 1997).

[113] J. Hietarinta and C. Viallet. Singularity confinement and degree
growth. In SIDE III—symmetries and integrability of difference
equations (Sabaudia, 1998), volume 25 of CRM Proc. Lecture Notes,
pages 209–216. Amer. Math. Soc., Providence, RI, 2000.

[114] A. Hirschowitz. Symétries des surfaces rationnelles génériques. Math.
Ann., 281(2):255–261, 1988.

[115] H. P. Hudson. Cremona Transformations in Plane and Space. Cam-
bridge University Press. 1927.

[116] V. A. Iskovskikh. Minimal models of rational surfaces over arbitrary
fields. Izv. Akad. Nauk SSSR Ser. Mat., 43(1):19–43, 237, 1979.

[117] V. A. Iskovskikh. Proof of a theorem on relations in the two-
dimensional Cremona group. Uspekhi Mat. Nauk, 40(5(245)):255–
256, 1985.
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