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The second part deals with the family of random-cluster models. It
studies the Russo-Seymour-Welsh theory of crossing probabilities for these
models. As an application, the critical point of the random-cluster model
is computed on the square lattice. Then, the parafermionic observable is
introduced and two of its applications are described in detail. This part
contains a chapter describing basic properties of the random-cluster model.

The third part is devoted to the Ising model and its random-cluster
representation, the FK-Ising model. After a first chapter gathering the
basic properties of the Ising model, the theory of s-holomorphic functions
as well as Smirnov and Chelkak-Smirnov’s proofs of conformal invariance
(for these two models) are presented. Conformal invariance paves the way
to a better understanding of the critical phase and the two next chapters
are devoted to the study of the geometry of the critical phase, as well as
the relation between the critical and near-critical phases.

The last part presents possible directions of future research by describing
other models and several open questions.



Acknowledgments

This book is based on my PhD thesis [DC11], done in the university
of Geneva from october 2008 to november 2011 under the direction of
professor Stanislav Smirnov. I thank him for introducing me to this
beautiful area of research, and Wendelin Werner for advising me to go
to Geneva.

I had the privilege of working with many wonderful mathematicians
whom I thank warmfully (Vincent Beffara, Dmitry Chelkak, Clément
Hongler, Antti Kemppainen, Pierre Nolin, Vladas Sidoravicius, Stanislav
Smirnov and Vincent Tassion to mention only those whose joint work is
presented in this book). I trust that we will have the opportunity to keep
collaborating for many more years.

This book would obviously not have been possible without the
opportunity given by the editors of Ensaios Matematicos and we thank
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Part I

Introduction





Chapter 1

What is statistical
physics?

1.1 Phase transitions

When we heat a block of ice, it turns to water. This very familiar
phenomenon hides a rather intricate one: the properties of H2O molecules
do not depend continuously on the temperature. More precisely,
macroscopic properties of a large system of H2O molecules evolve non-
continuously when the temperature rises. For instance, when the
temperature passes through 0 degree Celsius, the density increases from
0.91 to 1 (it is even more impressive when passing from water to vapor,
where the density drops by a factor 1600). This example of everyday life
is an instance of phase transition. In a system composed of many particles
interacting directly only with their neighbors, a phase transition occurs
if a macroscopic property of the system changes abruptly as a relevant
parameter (temperature, porosity, density) varies continuously through a
critical value.

An example of phase transition is given by superconductors.
Superconductivity is the phenomenon of exact zero electrical resistance
occurring in special materials at very low temperature. It was discovered
by Heike Kamerlingh Onnes and his student Gilles Holst in 1911 when
studying solid mercury at very low temperature (liquid helium had been
recently discovered, allowing to work with cryogenic temperatures). Below
a certain critical temperature Tc = 4.2 K, the mercury loses its resistance
abruptly (they also discovered the superfluid transition of helium at
Tc = 2.2 K). Since then, superconductivity has been studied extensively,
and the number of examples of superconductors has exploded. Practical
applications are numerous, and everyone has the image of a superconductor
levitating above a magnet in mind.

13



14 Hugo Duminil-Copin

Another experiment was performed in 1895 by Pierre Curie. He
showed that a ferromagnet loses its magnetization when heated above
a critical temperature, now called Curie temperature. The experiment
is fairly simple theoretically: one attaches a rod of iron to an axis,
near a large magnet. At room temperature, the rod is attracted by the
magnet. When the rod gets hot enough, the axis abruptly comes back
to vertical, indicating a loss of magnetization. In practice, the difficulty
of the experiment comes from the fact that this temperature equals 770
degrees Celsius for iron. If the composition of the magnet is different,
the critical temperature changes (it can be 30 degrees Celsius only), yet
the phenomenon remains the same: it is always possible to demagnetize
matter by heating it, which naturally leads to the following question: what
is the microscopic phenomenon explaining this macroscopic behavior?

Understanding how local interactions govern the behavior of the whole
system is extremely hard in general, and involves all fields of physics. In
order to simplify the problem, one can introduce a model, i.e. an idealized
system of particles following elementary rules, which should mimic the
behavior of the real model. The area of science in charge of modeling large
systems mathematically is called statistical physics.

1.2 Three models of statistical physics

The previous examples illustrate that different kinds of phase transitions
occur in nature. Before starting, a warning: not everything contained
in this section is necessarily proved mathematically! We simply plan
to motivate through three examples the introduction of diverse notions,
such as critical exponents, universality, correlation length, order of a
phase transition and thermodynamical quantities before we study them
thoroughly in the rest of this book.

1.2.1 Percolation

Definition and phase transition. Percolation is probably the model
of statistical physics which is easiest to define. It was introduced by
Broadbent and Hammersley in 1957 as a model for a fluid in a porous
medium [BH57]. The medium contains a network of randomly arranged
microscopic pores through which fluid can flow. One can interpret the d-
dimensional medium as being a lattice (for instance the hypercubic lattice
with Zd as sites and edges between nearest neighbors), each edge being a
possible hole in the medium. In our setting, an edge is called open if it is a
hole, and closed otherwise. One can then think of the sites of Zd together
with open edges as a subgraph of Zd.
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In order to model the randomness inside the medium, we simply state
that edges are open with probability p, and closed with probability 1 − p,
and this independently of each other. The random graph obtained is called
ωp, and the probability measure is denoted by Pp.

For a fluid to flow through the medium there must exist a macroscopic
set of connected open edges. The phase transition in this model on Zd
thus corresponds to the emergence of an infinite connected component
(sometimes called cluster) of open edges.

Intuitively, there are more and more open edges in the graph when
p increases. It is thus not surprising that there exists a critical
pc = pc(Zd) ∈ [0,1] such that
� for p < pc(Zd), there is no infinite cluster almost surely,
� for p > pc(Zd), there is an infinite cluster almost surely.

The behavior changes drastically when the porosity parameter p evolves
continuously through pc(Zd). This is the sign of a phase transition if
pc(Zd) lies strictly between 0 and 1. Actually, pc(Z) equals 1 (when the
edge-density equals p < 1, there are always closed edges to the right and
left of every given site), and there is no phase transition in dimension 1.
However, as soon as d > 1 the phase transition occurs in the sense that
pc(Zd) ∈ (0,1). Let us mention that pc(Z2) = 1/2 (we will present a proof
of this fact in this book).

Infinite-cluster density θ(p) and universality. When p > pc(Zd),
there is in fact a unique infinite cluster (this result is non-trivial and will
be proved in this book). Via invariance by translation, this cluster has a
positive density θ(p), which can be defined as

θ(p) = Pp(0 belongs to the infinite cluster).

We are interested in the behavior of θ(p) when p↘ pc(Zd). This behavior
is very similar in every dimension, even though subtle differences do occur.
More precisely, θ(p) is always predicted to follow a power law decay in
p − pc. The exponent, usually named β, depends on the dimension in the
following way:

θ(p) ≈ (p − pc)β where β =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

5/36 if d = 2,

numerical value if d ∈ {3,4,5},
1 if d ≥ 6.

The value β is called a critical exponent.
As mentioned earlier, one can consider percolation on the hypercubic

lattice. Nevertheless, percolation can be defined on any graph or lattice.
For instance, it could be defined on the hexagonal lattice or the triangular
lattice in dimension two. A striking feature of percolation, and more
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generally of a relevant statistical model, is that the behavior is universal:
the microscopic properties of the model depend on the local geometry of
the graph, while the macroscopic do not. It mimics real phase transitions:
the critical temperature for superconductors ranges from a few degrees
Kelvin to thirty or even more degrees Kelvin, yet the phase transition is
similar. In the case of percolation, connectivity properties between two
neighbors in the square or the hexagonal lattices are not the same, yet the
thermodynamical properties, such as the infinite-cluster density, behave
similarly and the exponent β is expected to be the same for any lattice of
a fixed dimension. For instance, β equals 5/36 for the hexagonal, triangular
and square lattices.

Correlation length ξ(p) and order of a phase transition. As a
matter of fact, phase transitions occur always in infinite volume. To
illustrate this, let us make a brief detour and discuss the physical notion of
correlation length. It is also a great opportunity to introduce an additional
critical exponent.

Assume that p is unknown and consider one realization of the percolation
of parameter p on a box of size N ∈ (0,∞]. Let us take the point of view
of a statistician in this paragraph and try to test whether the unknown
parameter p is smaller or larger than pc(Zd). When N = ∞ (in other
words, we look at the percolation on Zd itself), testing the existence or
not of an infinite cluster provides us with a perfect test. Now, if N is
finite, the situation is more intricate. Indeed, when N is not too large, it
is even difficult to give good bounds on p while when N is very large, the
configuration looks pretty much like the one on Zd, and the existence or
not of very large clusters is a good test of p > pc(Zd) against p < pc(Zd).
Roughly speaking, the correlation length is the smallest N = N(p) for
which we can recognize with good probability if p is supercritical or not.
Similarly, the correlation length in the subcritical phase (when p < pc(Zd))
is the smallest N = N(p) for which we can decide if p is subcritical or not.

Mathematically, the correlation length is defined in an a priori
completely different fashion. When p < pc(Zd), the largest connected
components in boxes of size N are typically of size logN . Equivalently,
the probability for 0 to be connected by a path of adjacent open edges to
distance N decays exponentially fast like

Pp(the cluster of 0 is of radius larger than N) = exp [ − N
ξ(p)(1 + oN(1))]

where ξ(p) ∈ (0,∞) is called the correlation length. In the supercritical
case, a corresponding definition can be introduced.

In the case of percolation, the correlation length is finite when p ≠ pc
and goes to infinity when p ↗ pc. This is not the case for every model
(in general, the divergence of the correlation length is an indicator of a
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second order phase transition which is one among several possible types of
phase transitions). Once again, the behavior of ξ(p) is expected to follow
a power law governed by a critical exponent:

ξ(p) ≈ ∣p − pc∣−ν where ν =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

4/3 if d = 2,

numerical value if d ∈ {3,4,5},
1/2 if d ≥ 6.

Remark 1.1. The results above are still conjectural for percolation on Z2

but they have been proved thanks to the works of Smirnov and Lawler-
Schramm-Werner for site percolation on the triangular lattice (see the
references in [BDC13]) and by Hara and Slade for Zd with d ≥ 19 in [HS90]
(this bound was recently improved to d ≥ 15 by Fitzner in his PhD thesis
[Fit13]).

1.2.2 Ising model

The celebrated Lenz-Ising model is one of the simplest models in statistical
physics exhibiting an order-disorder transition. It was introduced by Lenz
in [Len20] and studied by his student Ising in his thesis [Isi25]. It is a
model for ferromagnetism as an attempt to explain Curie’s temperature.
See [Nis09] for a historical review of the classical theory.

Definition. The definition is slightly more intricate than for percolation.
In the Ising model, iron is modeled as a collection of atoms with fixed
positions on a crystalline lattice. In order to simplify, each atom has a
magnetic “spin”, pointing in one of two possible directions. We set the spin
to be equal to 1 or −1 depending on their direction. Each configuration
of spins has an intrinsic energy, which takes into account the fact that
neighboring sites prefer to be aligned (meaning that they have the same
spin), exactly like magnets tend to attract or repel each other.

Formally, fix a box Λ in dimension d. Let σ ∈ {−1,1}Λ be a configuration
of spins 1 or −1. The energy of the configuration σ is given by the
Hamiltonian

H f
Λ(σ) ∶= −∑

x∼y
σxσy

where x ∼ y means that x and y are neighbors in Λ. Note that up to an
additive constant (equal to minus the number of couples x ∼ y in Λ), H f

Λ

is twice the number of disagreeing neighbors.
Following a fundamental principle of physics, we wish to construct

a model of random spin configurations that favors configurations with
small energy. A natural choice is to sample a random configuration
proportionally to its Boltzman weight: at a temperature T , the probability
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Figure 1.1: A configuration of the Ising model on the square lattice.

µf
T,Λ of a configuration σ satisfies

µf
T,Λ(σ) ∶= e

− 1
T H

f
Λ(σ)

Zf(T,Λ)

where
Zf(T,Λ) ∶= ∑

σ̃∈{−1,1}Λ

e−
1
T H

f
Λ(σ̃)

is the so-called partition function defined in such a way that the sum of
the weights over all possible configurations equals 1.

Note that the configurations minimizing the energy, and therefore the
most likely, are the extremal ones: either all +1 or all −1. Nevertheless,
there are only two of them, thus the probability to see them in nature is
tiny. In other words, there is a competition between energy and entropy.
The number of configurations for some level of energy can balance the
decrease of energy. This balance between energy and entropy depends on
the temperature. For instance, if T converges to ∞, the configurations
become equally likely and the model is almost equivalent to a percolation
model (on sites this time) where sites are independent. This phase is
called disordered. On the contrary, when T goes to 0, the energy outdoes
the entropy and configurations with a large majority of +1 (or −1) become
typical. This phase is called ordered. The existence of two different phases
suggests a phase transition.
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Phase transition of the Ising model. Assume that spins on the
boundary of the box Λ are conditioned to be +1 — we denote the measure
thus obtained by µ+T,Λ — and define the magnetization at the origin in the
box Λ by

MΛ(T ) ∶= µ+T,Λ(σ0),

where σ0 is the spin at 0 (µ+T,Λ also denotes the expectation with respect
to the measure µ+T,Λ: the magnetization is therefore the average value of
the spin at 0). Since the boundary favors pluses, this magnetization is
positive. When letting the size of the box go to infinity, the magnetization
decreases and converges to a limit, called the spontaneous magnetization
M(T ) ∶= limΛ↗ZdMΛ(T ).

The phase transition in dimension d ≥ 2 can now be formulated: there
exists a critical temperature Tc = Tc(d) ∈ (0,∞) such that
� when T > Tc, M(T ) = 0,
� when T < Tc, M(T ) > 0.

In other words, when the temperature is large, the correlation between
the spin at the origin and the boundary conditions tends to 0: there is no
long-range memory. When the temperature is low, the spin keeps track of
the boundary conditions at infinity and is still plus with probability larger
than 1/2.

We are now in a position to explain Curie’s experiment. A magnet
imposes an exterior field on an iron rod, forcing exterior sites to be aligned
with it. At low temperature, sites deep inside “remember” that boundary
sites are aligned, while at high temperature, they do not. Therefore,
sites become globally aligned at low temperature, hence explaining the
magnetization and the attraction.

In his thesis, Ising proved that there is no phase transition when d = 1. In
other words, at any positive temperature, the spontaneous magnetization
equals 0. He predicted the absence of a phase transition to be the norm in
every dimension. This belief was widely shared, and motivated Heisenberg
to introduce a famous alternative model where spins take value in the
sphere S3 in 3d (in fact, this is the classical counterpart, first studied in
[Hei28] of the quantum Heisenberg model).

However, some years later Peierls [Pei36] used estimates on the length
of interfaces between spin clusters to disprove the conjecture, showing a
phase transition in the two dimensional case. In fact, a phase transition
occurs in every dimension d ≥ 2, thus proving the prediction of Ising to
be wrong. The name “Ising model” was actually coined by Peierls in his
publication. Ising retired from academia, discovering 25 years later that
his model had become one of the most famous models of statistical physics.

Physical phase transition. Fixing boundary conditions to be +1 or
−1 is not completely satisfying physically. In order to mimic the real life
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experiment, let us add a magnetic field h in the following way: redefine
the energy to be

H f
Λ,h(σ) ∶= −∑

x∼y
σxσy − h∑

x∈Λ
σx.

Obviously, h favors pluses when it is positive (the energy decreases for each
spin +1), and minuses when it is negative. Exactly as before, the measure
µΛ,T,h is defined by assigning to each configuration a weight proportional to
exp[− 1

T
H f

Λ,h(σ)]. As expected, M(T,h) ∶= µΛ,T,h(σ0) is strictly positive
when h > 0 and strictly negative when h < 0, but what about h going
to 0? This operation corresponds to removing the magnetic field in the
model. A phase transition occurs in infinite volume, at the same critical
temperature Tc as above in the following way:
� When T > Tc, M(T,h) goes to 0 as h goes to 0.
� When T < Tc, M(T,h) goes to M(T ) > 0 as h goes to 0 from above,

and to −M(T ) as h goes to 0 from below.
Therefore, at low temperature, the magnet keeps a spontaneous
magnetization of the sign of the magnetic field that was surrounding it.

Can we find the equivalent of the percolation critical exponent
β? Let us study the phase transition, and in particular try to find the
equivalent of percolation critical exponents. Exactly as in the percolation
case, the behavior of the magnetization M(T ) when T approaches Tc from
below follows a power law:

M(T ) ≈ (Tc − T )β where β =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1/8 if d = 2,

0.3269 . . . if d = 3,

1/2 if d ≥ 4.

The critical exponent β can be related to the exponent for the infinite-
cluster density of percolation via the class of random-cluster models (see
Chapter 7). We may also define the exponent ν as follows. First, when
T < Tc, it is predicted that

µf
T (σ0σx) = exp [ − ∣x∣

ξ(T )
(1 + o∣x∣(1))],

where ξ(T ) is called the correlation length. The exponent ν is then defined
by the formula ξ(T ) ≈ (Tc − T )−ν as T ↗ Tc (see Chapter 11 for more
details).

1.2.3 Self-avoiding walks

Around the middle of the twentieth century, Flory and Orr introduced
self-avoiding walks (SAW) as a model for ideal polymers [Flo53, Orr47].
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Consider a lattice L (for instance Zd or the hexagonal lattice H): a
self-avoiding walk is a self-avoiding sequence of neighboring sites. More
formally, a walk of length n ∈ N is a map γ ∶ {0, . . . , n} → L such that γi
and γi+1 are nearest neighbors for each i ∈ {0, . . . , n−1}. An injective walk
is called self-avoiding.

Enumeration of self-avoiding walks. The first question that pops to
mind is the question of the enumeration of self-avoiding walks of length n:

What is the number cn of SAWs of length n (on the lattice L)

that start from the origin?

While computations for small values of n can be made by hand (Orr
found c6 = 16 926 on L = Z3), they quickly become impossible to
perform, due to the fact that cn grows exponentially fast. With today’s
technology and efficient algorithms, one may enumerate walks up to
length 71 on Z2 (see [Cli13]) and 36 on Z3 (see [SBB11] where a new
algorithm is used together with 50 000 hours of computing time to get
c36 = 2 941 370 856 334 701 726 560 670).

No exact formula is expected to hold for general values of n but it is
still possible to study the asymptotic behavior of cn as n becomes large.
Since a (n +m)-step SAW can be uniquely cut into a n-step SAW and a
parallel translation of a m-step SAW, we infer that

cn+m ≤ cncm,

from which it follows that there exists µc(L) ∈ [1,+∞) such that

µc(L) ∶= lim
n→∞

c
1
n
n .

The positive real number µc(L) is called the connective constant of the
lattice. We thus obtain that cn = µc(L)n+o(n) and the computation of the
connective constant becomes the first step towards the understanding of
the asymptotic behavior of cn.

Unfortunately, explicit formulæ for µc(L) are not expected to be
frequent, and mathematicians and physicists only possess numerical
predictions for the most common lattices1 with the notable exception of

the hexagonal lattice H, for which µc(H) is exactly equal to
√

2 +
√

2 (see
the next chapter).

Overcoming the deception due to the absence (in general) of an explicit
formula for µc(L), one can use this quantity to get sharper predictions

1for instance µc(Z2) = 2.638 158 530 35(2) [CJ12] and µ(Z3) = 4.684039931(27)
[Cli13], where the parentheses correspond to the margin errors.
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Figure 1.2: A 1000-step self-avoiding walk on the square lattice (©
Vincent Beffara).

on the behavior of cn. Physicists (always one step ahead) conjecture that

cn ≈ nγ−1µc(L)n where γ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

43/32 if d = 2,

1.162 . . . if d = 3,

1 if d ≥ 4 with log corrections for d = 4.

Above, d refers to the dimension of the lattice. Once again, γ is therefore
a universal exponent depending only on the dimension of the lattice. In
this context, universality seems even more surprising: it implies that even
though the number of SAWs is growing exponentially at different speeds for
say the hexagonal and the square lattice, the correction to the exponential
growth is the same for both lattices.

Mean-square displacement. Flory was not interested in the
combinatorial aspect of SAWs but rather in its geometry. He predicted
that the averaged squared Euclidean distance between the ending point
and the origin for SAWs of length n

⟨∣γ(n)∣2⟩ ∶= 1

cn
∑

γ of lengthn

∣γ(n)∣2

behaves like n3/2 in dimension 2, where γ(n) is the last step of an n-steps
SAW. Later, physicists provided strong evidence that

⟨∣γ(n)∣2⟩ ≈ n2ν where ν =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

3/4 if d = 2,

0.59 . . . if d = 3,

1/2 if d ≥ 4.
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It is now a good place to compare SAWs to the simple random walks
model on d-dimensional lattices. A walk is a trajectory which is possibly
self-crossing. The number of walks of length n is obviously Dn, where
D is the degree of the lattice, and the uniform measure on the family of
walks of length n has a nice interpretation: it corresponds to the random
walk constructed as follows: every step, the walker chooses a neighbor
uniformly at random. This model is much better understood than the
SAW (for instance, ⟨∣γ(n)∣2⟩ behaves asymptotically like n).

SAWs are more spread (they go further) than simple random walks in
dimensions 2 and 3. This fact is expected since a self-avoiding trajectory
repulses itself. Interestingly, it is no longer true when the dimension
becomes larger. It is actually possible to guess that this would occur,
since the simple random walk itself becomes macroscopically self-avoiding
at large scales when d ≥ 4.

Phase transition for SAWs. So far, the SAW is not fitting in the
framework of statistical physics since it does not depend on any parameter
and does not exhibit a phase transition. For this reason, let us restate the
model in a slightly different way.

Imagine we are now modeling a polymer in a solvent tied between two
points a and b on the boundary of a domain Ω. We can model these
polymers by SAWs on a fine lattice Ωδ ∶= δL ∩ Ω of mesh size δ ≪ 1.
In order to take into consideration the properties of the solvent, let x be
a real positive number. Our polymer will be a curve picked at random
among every possible SAWs in Ωδ from aδ to bδ (aδ and bδ are the closest
points to a and b on Ωδ), with probability proportional to x∣γ∣, where ∣γ∣
is the length of the SAW γ. More precisely, let Γδ(Ω, a, b) be the set of
self-avoiding trajectories from aδ to bδ in Ωδ. The random polymer will
have the law

Pµ,δ(γδ) ∶= x∣γδ ∣

∑
γ∈Γδ(Ω,a,b)

x∣γ∣
.

This model of random interface exhibits a phase transition when x
varies2. On the one hand, when x is very small, the walk is penalized
very much by its length, and it tends to be as straight as possible. On the
other hand, if x is very large, the walk is favored by its length and tends
to be as long as possible. Therefore, there exists xc such that:

� When x < xc, γδ (which is a random curve) becomes ballistic when
δ goes to 0: it converges to the (deterministic) geodesic between a
and b in Ω [Iof98].

2Here, δ → 0 replaces the passage to the infinite-volume n →∞ for percolation and
Ising.
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� When x > xc, γδ converges to a random continuous curve filling the
whole domain Ω when δ goes to 0 [DCKY11].

It is possible to prove that xc = 1/µc(L). In other words, in order to
obtain a critical model, one should penalize a walk of length n by µc(L)−n
(which is somewhat intuitive, since there are roughly µc(L)n of them).
When x = xc, the sequence (γδ) should converge in the space of random
continuous curves when δ goes to 0. In particular, the possible limit
curves should be invariant under scaling. Typical objects having the scale-
invariance property are called fractals, and it is conjectured that the scaling
limit of SAWs at x = xc is indeed a random fractal.

Flory’s exponents and mean-field approximation. Since it is of
historical interest, let us sketch Flory’s original determination of ν (a little
bit of sweetness in the hostile world of critical exponents). We wish to
identify the typical distance N of the last site γ(n) of a n-step self-avoiding
walk. In order to do so, we compute the probability of ∣γ(n)∣ = N in two
different ways.

First, let us make the assumption that sites are roughly spread on the
box of size N (actually one could take cst ⋅N with a very large constant
instead of N , but this would not matter), and that all sites play symmetric
roles with respect to each other. We thus know that at each step k+1 ≤ n,
a random walker must avoid the k previous sites if it wants to remain self-
avoiding, so that it must choose one of the Nd − k available sites. Thus,
the probability that γ is still self-avoiding after n steps is of order

n−1

∏
k=0

(N
d − k
Nd

) ≈ exp(−
n−1

∑
k=0

k/Nd) ≈ exp(− n2

2Nd
)

as long as n≪ Nd. The assumption consisting in forgetting geometry (we
do not require that the (k + 1)-th site is a neighbor of the k-th one) is
called the mean-field approximation.

Second, make the natural assumption that the end-point of the walk is
distributed as a Gaussian, the probability for a walk to be at x after n
steps would then be of the order of

1

nd/2
exp(−∥x∥2/n).

Therefore, the probability that it ends at distance N from the origin is
then of the order of

Nd−1 ⋅ 1

nd/2
exp(−N2/n).

(The term Nd−1 comes from the fact that there are of order Nd−1 sites
at distance N from the origin.) Equaling the two quantities, we find
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that n3 ≈ Nd+2 i.e. N ≈ n3/(d+2). It gives the following predictions for
d = 1,2,3,4:

νFlory =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if d = 1,

3/4 if d = 2,

3/5 if d = 3,

1/2 if d = 4.

Flory’s argument is slightly more involved and checks in particular that
the reasoning cannot be valid when d > 4. Surprisingly, the prediction is
true for d = 1,2 and 4. It is slightly off for d = 3. In fact, the prediction is
obvious when d = 1. For d = 4, the mean-field approximation is valid,
even though its rigorous justification is a very hard problem which is
currently under investigation [BIS09, BDS11]. Interestingly enough, the
prediction in dimension 2 is saved by the surprising cancellation of two
large mistakes. The probability to be self-avoiding is much smaller than
the one described above. In the same time the Gaussian behavior of the
walk is also completely wrong.

Flory’s argumentation (especially in dimension 4) emphasizes an
important fact of statistical physics: the mean-field approximation
(i.e. assuming that the system lives on the complete graph) provides
tractable ways to predict values for critical exponents and in large enough
dimensions, these predictions are right. The reason for this connection
is actually much deeper than Flory’s argument. Roughly speaking, high-
dimensional lattices behave with respect to statistical models like trees
or complete graphs (in such case we speak of mean-field behavior). The
dimension at which lattice exponents start to equal mean-field exponents is
called the upper critical dimension dc. It is equal to 4 for the self-avoiding
walk and the Ising model, while it is 6 for percolation.

On the contrary in low dimensions, the behavior does not correspond
to the mean-field one. Interestingly, the critical exponents in this case
are all rational and fairly simple, which suggests a specific feature of two-
dimensions that we shall discuss now.

1.3 Why two dimensions?

In the previous section, we studied three very different models of statistical
physics which shared properties concerning their phase transitions. On
the one hand, critical exponents become independent of the dimension
when exceeding the upper critical dimension of the model. On the other
hand, exponents have rational values in two dimensions, which suggests
the existence of a deep underlying mechanism coming from physical laws.
Our goal is to understand the phase transition in the latter case and we
now fix d = 2 for the rest of the book.
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In the next paragraphs, we will restrict our attention to critical
models for the following reason. The critical exponents related to
the thermodynamical quantities describing the phase transition are not
independent: they are connected via so-called scaling relations, which do
not depend on the model. For instance, one example of scaling relation is
given by β = νη, where β and ν were defined in the context of percolation
and the Ising model (they also exist for other statistical models), and η is
the one-arm critical exponent, which is defined as follows:
� for percolation at criticality, there is no infinite cluster and the

probability for 0 and x to be connected converges to 0 when x tends
to ∞. In fact, the behavior should be

Ppc(0↔ x) ≈ 1

∣x∣d−2+η ,

� for the Ising model, the magnetization equals 0 and we have

µTc(σ0σx) ≈
1

∣x∣d−2+η .

The relation β = νη provides one relation between exponents but there
are other such relations (see e.g. [Kes87, BCKS99] for the fundamental
example of percolation, and Sections 11.4 and 13.2.3 for more details). The
important feature of these relations is that they relate exponents defined
away from criticality (for instance ν and β) to fractal properties of the
critical regime. In other words, the behavior of a model through its phase
transition is intimately related to its behavior at criticality. It is therefore
natural to focus on the critical phase, which has a rich geometry that we
now discuss.

1.3.1 Exactly solvable models and Conformal Field
Theory:

The planar Ising model has been the subject of experimentations for both
mathematical and physical theories for almost a century. Through a
short history of this model, we shall explain two physical perspectives
on statistical physics.

Exactly solvable models. After Peierls’ proof of the existence of a
phase transition, the next step in the understanding of the Ising model was
achieved by Onsager in 1944. In a series of seminal papers [Ons44, KO50],
Onsager and Kaufman computed the free energy of the model. The formula
led to an explosion in the number of results on the planar Ising model
(papers published on the Ising model can now be counted by thousands).
Among the most noteworthy results:
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� the two-point function was proved to decay as the distance to the
power 1

4
by Onsager and Kaufman3 (i.e. η = 1

4
with the definition of

the previous page);
� Yang clarified the connection between the spontaneous magnetiza-

tion and the two-point function [Yan52] (the result was derived non
rigorously by Onsager himself);

� McCoy and Wu [MW73] computed many important quantities of
the Ising model including several critical exponents. The study
culminated with the exact derivation of two-point correlations
µT (σ0σx) between sites 0 and x = (n,n) in the whole plane.

See the more recent book of Palmer [Pal07] for an exposition of these and
other results and for precise references.

The computation of the partition function was accomplished later by
several other methods and the model became the most prominent example
of an exactly solvable model. The most classical techniques include the
transfer-matrices technique introduced by Kramers and Wannier (they
were also used by Onsager and then developed by Lieb and Baxter [Lie67,
Bax71] for more general models), the Pfaffian method, initiated by Fisher
and Kasteleyn, using a connection with dimer models [Fis66, Kas61], and
the combinatorial approach to the Ising model, initiated by Kac and Ward
[KW52] and then developed by Sherman [She60] and Vdovichenko [Vdo65],
see also the more recent [DZM+99, Cim12, KLM13].

Despite the number of results that can be obtained using the free energy,
the impossibility to compute it explicitly enough in finite volume makes
the geometric study of the model very hard to perform using the classical
methods. The lack of understanding of the geometric nature of the model
remained unsatisfying for years.

Renormalization Group and Conformal Field Theory. The arrival
of the Renormalization Group (see [Fis98] for a historical exposition)
led to a better physical and geometrical understanding, albeit mostly
non-rigorous. It suggests that block-spin renormalization transformation
(coarse-graining, e.g. replacing a block of neighboring sites by one site
having a spin equal to the dominant spin in the block) corresponds
to appropriately changing the scale and the temperature of the model.
The critical point arises then as the fixed point of the renormalization
transformations. In particular, under simple rescaling the Ising model at
the critical temperature should converge to a scaling limit, a “continuous”
version of the originally discrete Ising model, corresponding to a quantum
field theory. This continuous model leads naturally to the concept of
universality: the Ising models on different regular lattices or even more

3This result represented a shock for the community: it was the first mathematical
evidence that the mean-field behavior was inaccurate in low dimensions!
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general planar graphs belong to the same renormalization space, with a
unique critical point, and so at criticality the scaling limit of the Ising
model should always be the same: it should be independent of the lattice
while the critical temperature depends on it4.

Being unique, the scaling limit at the critical point must be invariant
under translations, rotations and scaling. This prediction enabled [PP66,
Kad66] to deduce some information about correlations.

In [BPZ84b, BPZ84a] Belavin, Polyakov and Zamolodchikov suggested
a much stronger invariance of the model. Since the scaling-limit quantum
field theory is a local field, it should be invariant by any map which is
locally a composition of translations, rotations and homotheties. Thus it
becomes natural to postulate full conformal invariance (under all conformal
transformations5 of subregions). This prediction generated an explosion of
activity in conformal field theory6, allowing for non rigorous explanations
of many phenomena, see [ISZ88] for a collection of the original papers of
the subject.

Note that planarity enters into consideration through the fact that
conformal maps form a rich family of operators: conformal maps in
dimension d ≥ 3 are simply compositions of translations, rotations and
inversions, while many other conformal maps can be found in two
dimensions.

Where are we now? The above exposition shows two different
approaches to the same problem relying heavily on two-dimensionality:

� The exact solvability of the (discrete) planar Ising model which
allows rigorous derivations of important quantities yet at the same
time provides a poor geometric understanding.

� The non-rigorous conformal field theory approach, with the
postulate of a “continuum limit” invariant under many geometric
transformations, which allows a deep geometric understanding of the
model.

1.3.2 A mathematical setting for conformal invariance
of lattice models

To summarize, Conformal Field Theory asserts that a planar statistical
model, such as percolation, Ising or self-avoiding walk, admits a “scaling

4The same phenomenon occurs for self-avoiding walks: the connective constant
depends on the lattice, while the polynomial correction to the exponential term does
not.

5Conformal maps are maps on open sets of C conserving the angles. Equivalently,
they are the one-to-one holomorphic maps.

6Conformal field theory is the domain of physics studying quantum field theories
which are invariant under conformal transformations.
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limit” at criticality, and that this scaling limit is a conformally invariant
object. From a mathematical perspective, the notion of conformal
invariance of an entire model is ill-posed, since the meaning of scaling
limit depends on the object we wish to study (interfaces, size of clusters,
crossings, etc). Nevertheless, a mathematical setting for studying scaling
limits of interfaces has been developed in recent years, and for this reason
we choose to focus on this aspect in this document.

Let us start with the study of one interface, meaning one curve
separating two phases of the model. For pedagogical reasons, we simplify
the presentation as much as possible by providing three examples in
elementary cases. Fix a simply connected domain (Ω, a, b) with two points
on the boundary and consider discretizations (Ωδ, aδ, bδ) of (Ω, a, b) by an
hexagonal lattice of mesh size δ. The clockwise boundary arc of Ωδ from
aδ to bδ is denoted by aδbδ, and the one from bδ to aδ by bδaδ.
� The simplest model to start with is the critical SAW. The model of

random polymer between aδ and bδ contains by definition only one
interface (the walk itself), denoted by γSAW

δ .
� Let us now turn our interest to the critical Ising model on the

triangular lattice (the definition is similar to the definition on the
square lattice). Sites of the triangular lattice can be seen as faces of
the hexagonal one, and we may therefore see this model as a random
assignment of spins −1 and +1 on faces of the hexagonal lattice.
Assume now that we fix the spins to be +1 on the faces outside Ωδ
and adjacent to aδbδ and −1 on the faces outside Ωδ and adjacent
to bδaδ. With this convention, there exists a unique interface on the
hexagonal lattice between +1 and −1 going from aδ to bδ. We denote
this interface by γIsing

δ .
� We may also consider a percolation model defined as follows. Every

face of the hexagonal lattice is open with probability 1/2, and closed
with probability 1/2. If we fix faces outside Ωδ and adjacent to aδbδ
to be open, and faces outside Ωδ and adjacent to bδaδ to be closed,
we obtain a unique interface between closed and open faces going
from aδ to bδ. This interface is called γperco

δ .

Conformal field theory leads to the prediction that γSAW
δ , γIsing

δ and γperco
δ

converge as δ → 0 to a random, continuous, non-self-crossing curve from a
to b staying in Ω, and which is expected to be conformally invariant in the
following sense.

Definition 1.2. A family of random non-self-crossing continuous curves
γ(Ω,a,b), going from a to b and contained in Ω, indexed by simply connected
domains with two marked points on the boundary (Ω, a, b) is conformally
invariant if for any (Ω, a, b) and any conformal map ψ ∶ Ω→ C,

ψ(γ(Ω,a,b)) has the same law as γ(ψ(Ω),ψ(a),ψ(b)).
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Figure 1.3: The interface of an Ising model at critical temperature (©
Stanislav Smirnov).

In words, the random curve obtained by taking the scaling limit of SAWs
on (ψ(Ω), ψ(a), ψ(b)) has the same law as the image by ψ of the scaling
limit of SAWs on (Ω, a, b) (and similarly for percolation and the Ising
model). Let us emphasize how powerful this prediction is: it is clear,
when working on the hexagonal lattice, that rotations by an angle π/3 are
preserving the model. Conformal Field Theory predicts that the model
possesses much more symmetries, such as rotations by any angle, as soon
as we consider the scaling limit.

In 1999, Schramm proposed a natural candidate for the possible
conformally invariant families of continuous non-self-crossing curves. He
noticed that interfaces of models further satisfy the domain Markov
property7 which, together with the assumption of conformal invariance,
determine a one-parameter families of possible curves. In [Sch00], he
introduced the Stochastic Loewner evolution (SLE for short) which is
now known as the Schramm–Loewner evolution. For κ > 0, a domain
Ω and two points a and b on its boundary, SLE(κ) is the random Loewner
evolution in Ω from a to b with driving process

√
κBt, where (Bt) is a

standard Brownian motion8. By construction, the process is conformally
invariant, random and fractal. In addition, it is possible to study quite
precisely the behavior of SLEs using stochastic calculus and to derive path

7See Section 9.2 for a formal definition.
8The precise definition of SLE is presented in Section 9.2.



Chapter 1. What is statistical physics? 31

properties such as the Hausdorff dimension, intersection exponents, etc...
Depending on κ, the behavior of the process is very different, as one can
see on Fig. 1.4. The prediction of Conformal Field Theory then translates
into the following predictions for models: γSAW

δ , γIsing
δ and γperco

δ converge
as δ → 0 to Schramm-Loewner Evolutions9.

The parameter κ depends on the model. It is usually possible to
guess which one it should be and for instance, self-avoiding walks should
converge to SLE(8/3), while Ising interfaces should converge to SLE(3)
and percolation interfaces to SLE(6).

For completeness, let us mention that when considering not only a single
curve but multiple interfaces, families of interfaces in a model are also
expected to converge in the scaling limit to a conformally invariant family
of non-intersecting loops. In the case of self-avoiding walks, the problem
does not make sense, yet for the Ising or percolation models, there are
many interfaces. For instance, consider the Ising model with +1 boundary
conditions in an approximation of Ω. Interfaces between +1s and −1s
now form a family of loops. By consistency, each loop should look like
a SLE(3). Sheffield and Werner (see e.g. [SW10, SW12]) introduced
a one-parameter family of processes of non-intersecting loops which are
conformally invariant. These processes are called the Conformal Loop
Ensembles CLE(κ) for κ > 8/3. The CLE(κ) process is related to the
SLE(κ) in the following manner: the loops of CLE(κ) are locally similar
to SLE(κ).

1.3.3 Conformal invariance of an observable in
percolation and Ising models

Even though we now have a mathematical framework for conformal
invariance, proving convergence of the interfaces in (Ωδ, aδ, bδ) to SLE
remains an extremely hard task. Nevertheless, working with interfaces
offers an important simplification that we illustrate in the cases of
percolation and the Ising model.

In 1992, the observation that properties of interfaces should also be
conformally invariant led Langlands, Pouliot and Saint-Aubin [LPSA94]
to publish numerical values in agreement with the conformal invariance in
the scaling limit of crossing probabilities in percolation10. More precisely,
consider a Jordan domain Ω with four points A,B,C and D on the
boundary. The 5-tuple (Ω,A,B,C,D) is called a topological rectangle.
The authors checked numerically that the probability Cδ(Ω,A,B,C,D)
of having a path of adjacent open sites between the boundary arcs AB
and CD converges as δ goes to 0 towards a limit which is the same for

9See Section 9.2 for more details on the notion of convergence considered here.
10The authors attribute the conjecture on conformal invariance of the limit of crossing

probabilities to Aizenman.
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Figure 1.4: Two examples of Schramm-Loewner Evolutions (SLE(8/3) and
SLE(6)). The behavior is very different: the first one is almost surely a
simple curve (i.e. non intersecting) while the second one has self-touching
points. The Haussdorff dimensions are also different. (© V. Beffara).
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(Ω,A,B,C,D) and (Ω′,A′,B′,C ′,D′) if they are images of each other by
a conformal map. Notice that the existence of such a crossing property can
be expressed in terms of properties of a well-chosen interface, thus keeping
this discussion in the frame proposed earlier.

The paper [LPSA94], while only numerical, attracted many
mathematicians to the domain. The same year (1992), Cardy [Car92]
proposed an explicit formula for the limit. In 2001, Smirnov [Smi01] proved
Cardy’s formula rigorously for critical site percolation on the triangular
lattice, hence rigorously providing a concrete example of a conformally
invariant property of the model. A remarkable consequence of this theorem
is that, even though Cardy’s formula provides information on crossing
probabilities only, it can in fact be used to prove much more. In particular,
it implies the convergence of interfaces to the trace of SLE(6). In other
words, conformal invariance of one well-chosen quantity can be sufficient
to prove conformal invariance of interfaces.

This phenomenon is not expected to be restricted to the percolation case.
In 2010, Smirnov struck a second time by exhibiting conformally covariant
(see Chapter 9 for a definition of this concept) observables for the so-called
FK-Ising [Smi10] and Ising [CS12] models. Nonetheless, in this case the
study of the critical regime is harder than in the percolation case: long-
range dependence at criticality makes the mathematical understanding
more involved and even proving convergence of interfaces to SLEs is
difficult. However, the philosophy remains the same and full conformal
invariance follows from conformal covariance of these observables.

We conclude this paragraph with a warning (or a touch of hope,
depending on personal opinion): there are very few models which have
been proved to be conformally invariant. For instance, the self-avoiding
walk does not belong to this restricted club and it remains a very important
open problem to prove convergence of self-avoiding walks to SLE(8/3).

1.3.4 Discrete holomorphicity and statistical models

The previous section explained that it is sufficient to prove convergence
of discrete observables to conformally covariant objects in order to
understand the critical phase, but how do we do it? Archetypical examples
of conformally covariant objects are holomorphic solutions to boundary
value problems such as Dirichlet or Riemann problems. It becomes natural
that discrete observables which are conformally covariant in the scaling
limit are naturally preharmonic or preholomorphic functions, i.e. relevant
discretizations of harmonic and holomorphic functions, which are solutions
of discretization of classical Boundary Value Problems. It therefore comes
as no surprise that proofs of conformal invariance are based on discrete
complex analysis in a substantial way.

The use of discrete holomorphicity appeared first in the case of
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dimers [Ken00] and has been extended to several statistical physics
models since then. Other than being interesting in themselves,
preholomorphic functions have found several applications in geometry,
analysis, combinatorics, probability, and we refer the interested reader
to the expositions by Lovász [Lov04], Stephenson [Ste05], Mercat [Mer01],
Bobenko and Suris [BS08].

To conclude this section, we are now in possession of a natural
mathematical framework to prove conformal invariance of a model: one
needs to prove conformal covariance of an observable. Proving this requires
a deep understanding of discrete complex analysis, and of its connections to
the model. Very often, the integrability properties of the underlying model
are at the heart of this connection, thus exhibiting a new link between
exactly solvable models and Conformal Field Theory.

1.4 A model to rule them all: the random-
cluster model

Percolation, Ising and self-avoiding walks provide us with three examples
of models which are conformally invariant in the scaling limit (only
conjecturally for the self-avoiding walk). They correspond to three values
of the Schramm-Loewner Evolution (κ equals 6, 3 and 8/3 respectively).
But what about other values of κ? Is it always possible to find a
conformally invariant model whose interfaces converge to SLE(κ)? More
importantly, can these seemingly very different models be related to each
other? At last, can this relation explain the similarities between the
different models? The answer to these questions come from the existence
of two families of models, the random-cluster model and the O(n)-models.
These models will be at the heart of this book and we would like to briefly
present the random-cluster model now to motivate the next chapters.

Fortuin and Kasteleyn introduced the random-cluster model in 1969.
Roughly speaking, the random-cluster model (it is also named Fortuin-
Kasteleyn percolation) on a graph G is also a percolation model, in the
sense that the output is a random subgraph of G with the same set of sites
and a subset of its edges, but no longer independent.

More precisely, let p ∈ [0,1] and q ∈ (0,∞). An edge of a finite graph G
is either open or closed. The random-cluster configuration ω is the graph
obtained by keeping only the open edges. The probability of ω for the
random-cluster model on G with parameters p, q is given by

φp,q(ω) ∶= 1

ZG,p,q
p# open edges(1 − p)# closed edgesq# connected components

where ZG,p,q is once again a normalizing factor called the partition function
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of the model. When q = 1, the model is simply percolation. When q ≠ 1,
the model is different and exhibits long range dependence.

Figure 1.5: A macroscopic cluster in a critical percolation configuration
with p = 1/2.

The previous measures are a priori defined on finite subgraphs of Z2,
however it is possible to extend the model to Z2. As for percolation, the
random-cluster model with fixed q > 0 should encounter a phase transition
in p. Below some critical parameter pc(q), there is no infinite cluster, while
above it, there exists a unique infinite cluster.

The phase transition is different when q varies, and the richness of this
behavior is one of the successes of random-cluster models. More precisely,

� when q ∈ (0,4], the transition is expected to be continuous, in the
sense that the density θ(p, q) of the infinite cluster converges to 0
when p ↘ pc(q). The critical phase should also be conformally
invariant, and the collection of interfaces at criticality11 should

11We did not describe interfaces in bond percolation on Z2 or the random-cluster
model, yet one can consider the boundary of connected components for instance. We
will provide more details in the next chapters.
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converge to CLE(κ), where

κ = 4π/arccos(−√q/2).

� when q > 4, the phase transition becomes first order and p ↦ θ(p, q)
does not converge to 0 when p goes down to pc(q).

Another important advantage of the random-cluster model is its
connection to other models. When p → 0 with q/p → 0, we obtain a
model of a random connected graph, called the uniform spanning tree,
see [LSW11]. When q is an integer, one can play the following game.
Color independently each connected component of a (p, q)-random-cluster
configuration ω with one of q fixed colors chosen uniformly12. We obtain
a random coloring σ ∈ {1, . . . , q}G of G. The probability measure P is a
Boltzman measure with energy given by

Hq,G(σ) ∶= 2 ∑
x∼y

1σx≠σy .

The random coloring of the lattice with law P is called the Potts model
with q colors at temperature T . When q = 2, it corresponds to the Ising
model (simply call one color +1 and the other −1). Therefore, there
exists a coupling of the Ising model with the q = 2 random-cluster model.
This property links the Ising model to random-cluster models and thus to
percolation.

Conclusion
We presented several aspects of planar statistical physics and we

sketched important links between physics and mathematics. Nevertheless,
most of what we presented is still conjectural. In this book, we make some
of the connections between physics and mathematics rigorous by studying
random-cluster and O(n)-models.

In particular, we will focus on two important theories: the so-called
Russo-Seymour-Welsh theory of crossing events for random-cluster models,
and the discrete holomorphicity of so-called parafermionic observables. In
the specific case of the Ising model and its random-cluster representation
(i.e. with cluster-weight q = 2), these two tools will lead to the rigorous
proof of conformal invariance. For more general cluster-weights, conformal
invariance remains out of reach, but the observable can still be used to
discriminate between second-order and first-order phase transitions (we
will define these concepts later) and to formulate precise conjectures.

12By this we mean that we choose a color for each cluster, and we color every site of
the cluster in this color.
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1.5 Organization of the book

The book is organized as follows. Chapter 2 should be understood as a
warm-up: it provides a typical example of the application of parafermionic
observables in the simplest context of self-avoiding walks. Chapter 3
describes the definitions for graphs that will be used in the reminder of
the book.

We then devote an important part of this book to random-cluster models
with cluster-weights q ≥ 1 which are treated in Chapters 4, 5 and 6.
Chapter 4 begins with a description of basic properties of the random-
cluster model. Chapter 5 is devoted to the Russo-Seymour-Welsh theory
and its applications (computation of the critical point, mixing properties,
etc). Chapter 6 deals with the other important tool described in this
book, namely the parafermionic observable. We define the observable and
we describe two of its applications.

The third part of the book focuses on the Ising model and its random-
cluster representation, the FK-Ising model. In this case, the observable
can be proved to be discrete holomorphic. Chapter 7 gathers classical
features of the Ising model. Chapter 8 develops the theory of discrete and
s-holomorphic functions, two crucial concepts for the study of the critical
Ising model. Chapter 9 presents the proofs of conformal invariance of Ising
and FK-Ising models. Chapter 10 dives further into the study of crossings
for the FK-Ising model and their applications to arm-events. Chapter 11
concludes this part of the book by discussing the non-critical Ising model
(in particular we will compute the correlation length).

The last part of the book is composed of two chapters opening new
perspectives. The first one describes parafermionic observables and their
applications to other models. The last one lists important open problems.

Chapter 2

Chapter 1

Chapter 4

Chapter 3

Chapter 7 Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 5 Chapter 6

Chapter 12

Chapter 13

Part 2

Part 3

Part 4

Part 1

Sec. 5.2

definition FK-Ising

def graphs

s-holomorphicitybasic properties Ising

basic properties RCMbasic properties RCM



Chapter 2

A warm-up: the
connective constant of the
honeycomb lattice equals
√

2 +
√

2

The present chapter is intended to offer an elementary application of the
parafermionic observable. It will provide us with the first example of a
parafermionic observable, which can in fact be very easily defined in this
context.

Let H be the hexagonal lattice of mesh size 1, translated and rotated
in such a way that 0 is the center of an horizontal edge. Consider self-
avoiding walks between mid-edges of H, i.e. centers of edges of H (the set
of mid-edges will be denoted by H). The length `(γ) of the walk is the
number of vertices belonging to γ. Note that it is equal to the number of
mid-edges visited by the walk minus 1. In particular, a singleton is a walk
of length zero. We wish to estimate the number of self-avoiding walks of
length n starting from the origin1. Let cn be the number of self-avoiding
walks of length n starting from 0.

Lemma 2.1 (Hammersley). There exists µc ∈ [
√

2,2] such that

lim
n→∞

c1/nn = µc(H).

1The number of SAWs of length n between two vertices is related to the number of
self-avoiding walks of length n starting from mid-edges. The formula is not very explicit
but the ratio of these two quantities is clearly between 1 and 4. Therefore, studying
SAWs starting from vertices or mid-edges will be equivalent as long as we are interested
in a rough estimation of the number of such walks.

38
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Proof. As explained in the introduction, a (n +m)-step SAW can be
uniquely cut into a n-step SAW and a parallel translation of a m-step
SAW. Hence,

cn+m ≤ cncm,

from which it follows (by a classical lemma on sub-multiplicative sequences
of real numbers) that there exists µc(H) ∈ [1,+∞) such that

µc(H) ∶= lim
n→∞

c
1
n
n .

Now, a SAW is in particular non-backtracking, and therefore, cn ≤ 3×2n−1.
On the other hand, if we force the walk to take a step to the right every
two steps, we necessarily obtain a self-avoiding trajectory, and therefore
cn ≥ 2⌊n/2⌋. ◻

The previous lemma illustrates the fact that one may estimate µc(H)
by adding more and more conditions on the local geometry of the walk.
The values

√
2 and 2 can obviously be improved, since for instance a self-

avoiding walk is not only non-backtracking, but it also does not contain
any cycle of length 6, a fact which prevents many more walks, and shows
that µc(H) < 2. There is a priori no good reason for being able to
compute µc(H) explicitly. Nevertheless, the hexagonal lattice possesses
special properties which make such a derivation possible. More precisely,
B. Nienhuis [Nie82, Nie84] used the Coulomb gas formalism to predict that

µc(H) is equal to
√

2 +
√

2. Unfortunately, Nienhuis’s derivation is based
on assumptions that seem difficult to justify. In this chapter, we propose
an alternative way of approaching the problem and we rigorously prove
the following statement.

Theorem 2.2 (Duminil-Copin, Smirnov [DCS12b]). For the hexagonal

lattice, µc(H) =
√

2 +
√

2.

We will write γ ∶ a→ E if a walk γ starts at a and ends at some mid-edge
of E ⊂ H. In the case E = {b}, we simply write γ ∶ a → b. Let x > 0. We
will work with the (increasing in x) sum

Z(x) = ∑
γ ∶a→H

x`(γ) ∈ (0,+∞].

This sum does not depend on the choice of a. Establishing µ =
√

2 +
√

2

is equivalent to showing that Z(x) = +∞ for x > 1/
√

2 +
√

2 and

Z(x) < +∞ for x < 1/
√

2 +
√

2. To this effect, we first restrict walks to
bounded domains and weigh them counting their windings. The vertex
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operator obtained like that leads to a parafermionic2 observable which is
a generalization of the spin fermionic observable. To simplify formulæ

below, we set xc ∶= 1/
√

2 +
√

2.
The chapter is organized as follows. In Section 2.1, the parafermionic

observable is introduced and its principal property is derived. Section 2.2
contains the proof of Theorem 2.2.

2.1 Parafermionic observable

A (hexagonal lattice) domain Ω ⊂H is a union of all mid-edges emanating
from a given collection of vertices V (Ω) (see Fig. 2.1): a mid-edge z
belongs to Ω if at least one end-point of its associated edge is in V (Ω),
it belongs to ∂Ω if only one of them is in V (Ω). We further assume Ω
to be simply connected, i.e. being connected and having a connected
complement.

z
Ω

a

Figure 2.1: Left. A domain Ω with two marked mid-edges a and z. Right.
The winding of a curve γ can also be seen as the number of left turns minus
the number of right turns times π

3
. We deduce that on the top, the winding

equals 2π (17 left turns and 11 right turns), in the middle −2π (6 left turns
and 12 right turns) and for the two bottom examples, 0 (respectively 3 and
6 left and right turns).

Definition 2.3. The winding Wγ(a, b) of a self-avoiding walk γ between
mid-edges a and b (not necessarily the start and the end) is the total
rotation of the direction in radians when γ is traversed from a to b, see
Fig. 2.1.

2The name parafermionic will be justified later in the book.
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The parafermionic observable is defined as follows: for a ∈ ∂Ω and z ∈ Ω,
set

F (z) = F (a, z, x, σ) = ∑
γ⊂Ω∶ a→z

e−iσWγ(a,z)x`(γ).

Lemma 2.4. If x = xc(= 1/
√

2 +
√

2) and σ = 5
8

, then F satisfies the
following relation for every vertex v ∈ V (Ω):

(p − v)F (p) + (q − v)F (q) + (r − v)F (r) = 0, (2.1)

where p, q, r are the mid-edges of the three edges adjacent to v.

Note that with σ = 5/8, the term e−iσWγ(a,z) gives a weight λ or λ̄ per
left or right turn of γ, where

λ = exp ( − i
5

8
⋅ π

3
) = exp ( − i

5π

24
).

Proof. In this proof, we further assume that the mid-edges p, q and r are
oriented counterclockwise around v. Note that (p− v)F (p)+ (q − v)F (q)+
(r − v)F (r) is a sum of “contributions”

c(γ) = (z − v)e−iσWγ(a,z)x`(γ)c

over all possible walks γ finishing at z ∈ {p, q, r}. The set of walks γ
finishing at p, q or r can be partitioned into pairs and triplets of walks in
the following way, see Fig 2.2:

� If a walk γ1 visits all three mid-edges p, q and r, it means that the
edges belonging to γ1 form a self-avoiding path plus (up to a half-
edge) a self-avoiding loop from v to v. One can associate to γ1 the
walk passing through the same edges, but exploring the loop from v
to v in the other direction. Hence, walks visiting the three mid-edges
can be grouped in pairs.

� If a walk γ1 visits only one mid-edge, it can be grouped with two
walks γ2 and γ3 that visit exactly two mid-edges by prolonging the
walk one step further (there are two possible choices). The reverse is
true: a walk visiting exactly two mid-edges belongs to the group of
a walk visiting only one mid-edge (this walk is obtained by erasing
the last step). Hence, walks visiting one or two mid-edges can be
grouped in triplets.

If the sum of contributions for each pair and each triplet vanishes, then
the total sum is zero. We now intend to show that this is the case.

Let γ1 and γ2 be two walks that are grouped as in the first case. Without
loss of generality, we assume that γ1 ends at q and γ2 ends at r. Note that
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γ1 and γ2 coincide up to the mid-edge p since (γ1, γ2) are matched together.
We deduce that `(γ1) = `(γ2) and

⎧⎪⎪⎨⎪⎪⎩

Wγ1(a, q) = Wγ1(a, p) +Wγ1(p, q) = Wγ1(a, p) − 4π
3
,

Wγ2(a, r) = Wγ2(a, p) +Wγ2(p, r) = Wγ1(a, p) + 4π
3
.

In order to evaluate the winding of γ1 between p and q, we used the fact
that a is on the boundary and Ω is simply connected. Altogether,

c(γ1) + c(γ2) = (q − v)e−iσWγ1
(a,q)x`(γ1)

c + (r − v)e−iσWγ2
(a,r)x`(γ2)

c

= (p − v)e−iσWγ1
(a,p)x`(γ1)

c (jλ̄4 + j̄λ4) = 0

where j = ei2π/3. The last equality is due to the chosen value
λ = exp(−i5π/24).

Let γ1, γ2, γ3 be three walks matched as in the second case. Without loss
of generality, we assume that γ1 ends at p and that γ2 and γ3 extend γ1 to
q and r respectively. As before, we easily find that `(γ2) = `(γ3) = `(γ1)+1
and ⎧⎪⎪⎨⎪⎪⎩

Wγ2(a, q) = Wγ2(a, p) +Wγ2(p, q) = Wγ1(a, p) − π
3
,

Wγ3(a, r) = Wγ3(a, p) +Wγ3(p, r) = Wγ1(a, p) + π
3
.

Following the same steps as above, we obtain

c(γ1) + c(γ2) + c(γ3) = (p − v)e−iσWγ1
(a,p)x`(γ1)

c (1 + xcjλ̄ + xcj̄λ) = 0.

Here is the only place where we use the crucial fact that x−1
c =

√
2 +

√
2 =

2 cos π
8

. The claim follows readily by summing over all pairs and triplets.
◻

γ1 γ2 γ1 γ2 γ3

Figure 2.2: Left: a pair of walks visiting the three mid-edges and matched
together. Right: a triplet of walks, one visiting one mid-edge, the other
twos visiting two mid-edges, which are matched together.

Remark 2.5. Coefficients above are three cube roots of unity multiplied
by p− v, so that the left-hand side can be seen as a discrete integral along
an elementary contour on the dual lattice in the following sense. Let H∗

be the triangular lattice constructed as follows: put a dual vertex v in the
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center of each face of H, and edges between nearest neighbors. For a path
γ ∶ {0, . . . , n} Ð→ H⋆, where γi and γi+1 are neighbors for every 0 ≤ i < n,
the discrete integral of a function F ∶H → C is defined by

∮
γ
F (z)dz ∶=

n−1

∑
i=0

F (γi + γi+1

2
) (γi+1 − γi). (2.2)

Equation (2.1) implies that for any v ∈ V (Ω), the integral of F along
the path γ0 = a, γ1 = b, γ2 = c and γ3 = a, where a, b and c are the three
dual vertices corresponding to faces around v, is zero. More generally, let
γ ∶ {0, . . . , n} Ð→ H⋆ be a self-avoiding path with γn = γ0. By summing
the previous relation over vertices surrounded by γ, the discrete integral
along γ also vanishes.

The fact that the integral of the parafermionic observable along discrete
contours vanishes is a glimpse of conformal invariance of the model in the
sense that the observable satisfies a weak notion of discrete holomorphicity,
see Chapter 13 for more details. Nevertheless, these relations do not
uniquely determine F : given a function f on the boundary, the solution of
the Boundary Value Problem: discrete contours of F vanish and F (z) =
f(z) for any z on the boundary of Ω is not unique. Indeed, the number
of mid-edges (and therefore of unknown variables) exceeds the number of
linear relations (2.1) (which corresponds to the number of vertices). (We
will see later that stronger notions of discrete holomorphicity will satisfy
this crucial property that boundary value problems possess unique discrete
holomorphic solutions.)

Let us conclude this remark by mentioning that these relations may also
be understood as discrete Cauchy-Riemann equations around vertices of
H. We will provide more details in the case of the square lattice later in
the book.

2.2 Proof of Theorem 2.2

Counting argument in a strip domain. We consider a vertical strip
domain ST composed of T strips of hexagons, and its finite version ST,L
cut at height L at an angle of π/3, see Fig. 2.3. Then

V (ST ) = {z ∈ V (H) ∶ 0 ≤ Re(z) ≤ 3T + 1

2
} ,

V (ST,L) = {z ∈ V (ST ) ∶ ∣
√

3Im(z) −Re(z)∣ ≤ 3L} .

Denote by α the left boundary of ST and by β the right one. Symbols
ε and ε̄ denote the top and bottom boundaries of ST,L. Introduce the
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following positive quantities:

AxT,L ∶= ∑
γ⊂ST,L∶a→α∖{a}

x`(γ),

BxT,L ∶= ∑
γ⊂ST,L∶a→β

x`(γ),

ExT,L ∶= ∑
γ⊂ST,L∶a→ε∪ε̄

x`(γ).

0

ST,L

a

T hexagons

L hexagons

Figure 2.3: The domain ST,L and its boundary parts α, β, ε and ε̄.

Lemma 2.6. When x = xc, we have

1 = cαAxcT,L +B
xc
T,L + cεE

xc
T,L, (2.3)

where cα = cos ( 3π
8
) and cε = cos (π

4
).

Remark 2.7. The proof (see below) of this lemma can be understood
in the following way: we used the fact that the discrete integral along
the exterior boundary of ST,L vanishes. Then, we add the information
that the winding of self-avoiding walks ending at boundary mid-edges is
deterministic and explicit. Miraculously, even if the fact that discrete
contour integrals vanish does not determine a function from boundary
values, it is still sufficient to study their “average boundary value” and to
obtain highly non-trivial relations like (2.3).
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Proof. Sum the relation (2.1) over all vertices in V (ST,L). Values at
interior mid-edges disappear and we arrive at

0 = −∑
z∈α

F (z) +∑
z∈β

F (z) + j∑
z∈ε
F (z) + j̄∑

z∈ε̄
F (z), (2.4)

where j = e2iπ/3 again. Using the symmetry mirror image of the domain,
we deduce that F (z̄) = F̄ (z), where z̄ is the symmetric of z with respect
to the real axis. Observe that the winding of any self-avoiding walk from
a to the bottom part of α is −π while the winding to the top part is π. We
conclude

∑
z∈α

F (z) = F (a) + ∑
z∈α∖{a}

F (z) = 1 + e−iσπ + eiσπ

2
AxT,L

= 1 − cos(3π

8
) AxT,L = 1 − cαAxT,L.

Above, we have used the fact that the only walk from a to a is of length
0. Similarly, the winding from a to any half-edge in β (resp. ε and ε̄) is 0
(resp. 2π

3
and − 2π

3
), therefore

∑
z∈β

F (z) = BxT,L and j∑
z∈ε
F (z) + j̄∑

z∈ε̄
F (z) = cos(π

4
) ExT,L = cεExT,L.

The lemma follows readily by plugging these three formulæ in (2.4). ◻

Observe that sequences (AxT,L)L>0 and (BxT,L)L>0 are increasing in L
and are bounded for x ≤ xc thanks to (2.3) and the monotonicity in x.
Thus, they have limits

AxT ∶= lim
L→∞

AxT,L = ∑
γ⊂ST ∶a→α∖{a}

x`(γ),

BxT ∶= lim
L→∞

BxT,L = ∑
γ⊂ST ∶a→β

x`(γ).

When x = xc, via (2.3) again, we conclude that (ExcT,L)L>0 decreases and

converges to a limit ExcT ∶= limL→∞ExcT,L. Then, (2.3) implies

1 = cαAxcT +BxcT + cεExcT . (2.5)

Proof of Theorem 2.2. Let us first prove that Z(xc) = +∞, which

implies µ ≥
√

2 +
√

2. Suppose that for some T , ExcT > 0. As noted before,
ExcT,L decreases in L and therefore

Z(xc) ≥ ∑
L>0

ExcT,L ≥ ∑
L>0

ExcT = +∞,
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which completes the proof. Assume on the contrary that ExcT = 0, then
(2.5) simplifies to

1 = cαAxcT +BxcT . (2.6)

Observe that walks entering into account for AxcT+1 and not for AxcT have to
visit some vertex adjacent to the right edge of ST+1. Cutting such a walk
at the first such point (and adding half-edges to the two halves), we obtain
two walks “crossing” ST+1 (these walks are sometimes called bridges). We
conclude that

AxcT+1 −A
xc
T ≤ xc (BxcT+1)

2
. (2.7)

Combining (2.6) for T and T + 1 with (2.7), we can write

0 = 1 − 1 = (cαAxcT+1 +B
xc
T+1) − (cαAxcT +BxcT )

= cα(AxcT+1 −A
xc
T ) +BxcT+1 −B

xc
T

≤ cαxc (BxcT+1)
2 +BxcT+1 −B

xc
T ,

so
cαxc (BxcT+1)

2 +BxcT+1 ≥ B
xc
T .

By induction, it is easy to check that

BxcT ≥
min[Bxc1 ,1/(cαxc)]

T

for every T ≥ 1. This implies

Z(xc) ≥ ∑
T>0

BxcT = +∞.

This completes the proof of the inequality µ ≥ x−1
c =

√
2 +

√
2.

Let us turn to the other needed inequality µ ≤ x−1
c . First of all, let

us restrict our attention to self-avoiding walks starting and ending at the
mid-edge of an horizontal edge. Let Z̃(x) be the partition function of such
walks. The reader may easily check that the number of self-avoiding walks
of length n starting and ending at a mid-edge of an horizontal edge is within
a bounded (in n) multiplicative factor of cn, and that therefore Z(x) <∞
if and only if Z̃(x) <∞. A bridge of width T is a self-avoiding walk in ST
from one side to the opposite side, defined up to vertical translation. The
partition function of bridges of width T is exactly BxT . Using (2.5), we can
bound BxcT by 1. Noting that a bridge of width T has length at least T ,
we obtain for x < xc

BxT ≤ ( x
xc

)
T

BxcT ≤ ( x
xc

)
T

.

Let us now state the following lemma.
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Lemma 2.8. For any x > 0, Z̃(x) ≤ 1
x3 ∏

T≥0

(1 + xBxT )2.

Before proving this lemma, let us conclude the proof of the theorem.
The series ∑T≥0B

x
T converges whenever x < xc and so does the product

∏T≥0(1 + xBxT ). This implies that Z̃(x) <∞ and thus µ ≤ x−1
c =

√
2 +

√
2.

In conclusion, we only need to prove the previous lemma in order to finish
the proof of the theorem. ◻

Proof of the lemma. Let us show that a self-avoiding walk starting and
ending at the mid-edge of an horizontal edge can be canonically divided
into two so-called “half-space walks”, each of which can be decomposed
into bridges in a canonical way. This decomposition was first introduced
in the case of the square lattice by Hammersley and Welsh in [HW62] (for
a modern treatment, see [MS93, Section 3.1] or [BDCGS12]).

Figure 2.4: Left: Decomposition of a half-plane walk into four bridges
with widths 8 > 3 > 1 > 0. The first bridge corresponds to the maximal
bridge containing the origin. Note that the decomposition contains one
bridge of width 0 (the walk corresponding to the decomposition without
this last bridge would not contain the last dotted steps). Right: The
reverse procedure. If the starting mid-edge and the first vertex are fixed,
the decomposition is unambiguous.

First assume that the first coordinate of the starting mid-edge of γ is
extremal. We prove by induction on the width that the walk admits a
canonical decomposition into bridges of widths T0 > ⋯ > Tj . Without
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loss of generality, assume that the starting mid-edge is minimal. If γ is
a bridge, the decomposition is the walk itself. If this is not the case,
proceed as follows. Out of the vertices visited by the walk and having
maximal first coordinate, choose the one visited last, say after n steps.
The walk up to this vertex together with the additional mid-edge on its
right form a bridge γ̃1 (of width T0). This bridge is the first bridge of
our decomposition. Erase γ̃1 and the part of the walk between the n-th
vertex and the mid-edge between the (n + 1)-th and (n + 2)-th vertices
(the removed piece is composed of an edge plus a half-edge). The starting
mid-edge of the walk composed of the consequent steps corresponds to an
horizontal edge and has now maximum first coordinate among remaining
mid-edges. Note that the width T1 of the remaining walk is strictly smaller
than T0. Using the induction hypothesis, we obtain a decomposition of this
new walk into bridges of widths T1 > ⋯ > Tj . The decomposition of γ is
created by adding γ̃1 to this decomposition.

Let us make two important observations:

� The sum of the lengths of bridges in the decomposition of γ is equal
to the length of γ minus j (recall that some steps of the walks are
deleted in-between bridges).

� Assume that the starting mid-edge of γ is minimal. The walk
is determined by its decomposition. Indeed, there is a natural
reconstruction procedure defined inductively as follows, see Fig. 2.4.
Consider the first bridge in the decomposition. If there is only this
bridge in the decomposition, the walk is simply this bridge. If there
is more than one bridge in the decomposition, modify the end of
the first bridge as follows. Let v be the last vertex visited by the
bridge. By definition, the bridge passes through two mid-edges p
and q before and after v, and q is the middle of an horizontal edge.
Remove this mid-edge and replace it by the third mid-edge r around
v (it corresponds to turning by 2π

3
or − 2π

3
the last half-edge around

the last vertex). Then, add to this walk an additional step from r to
the middle of the next horizontal edge (there is only one way of doing
so if we want the walk to remain self-avoiding). We then concatenate
the second bridge to the end of this new walk. If there is no bridge
left, we have found γ. Otherwise, we modify the end of the walk like
we did for the first bridge, and we concatenate the next bridge, and
so on. We proceed like that until we reach the last bridge. The final
concatenation gives us γ.

LetH(x) be the generating function of half-space walks, i.e. of self-avoiding
walks whose starting mid-edge has minimal first coordinate. The two
observations above have the following consequence:

H(x) ≤
∞
∑
j=0

(xj ∑
T0>T1>⋅⋅⋅>Tj

BT0BT1 . . .BTj) = 1
x ∏
T≥0

(1 + xBxT ).
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Now, a self-avoiding walk in the plane can be divided into two pieces γ1

and γ2 by cutting at the first vertex v of minimal first coordinate. Add
to γ1 and γ2 the additional mid-edge on the left of v. The two walks γ2

and γ1 are respectively a half-space walk and the time-reversal of one. We
deduce that

Z̃(x) ≤ 1
x
H(x)2 ≤ 1

x3 ∏
T≥0

(1 + xBxt )2

and we are done. ◻

Remark 2.9. There are variations on the observable used above. For
instance, let x, y > 0 and introduce the observable

G(z) = G(a, z, x, y, σ) = ∑
γ⊂ST,L∶ a→z

e−iσWγ(a,z)x`(γ)yn(γ)

where n(γ) is the number of visits of γ to the right boundary of ST,L. This
observable can be used to show that the so-called critical fugacity yc for
surface adsorption of self-avoiding walks on the hexagonal lattice equals
1 +

√
2. Let us add a few words on this. Assume that the weight of a

half-space walk of length n is not uniform but proportional to yn(γ) where
n(γ) is the number of intersections with the y-axis. Then,

� For y > yc, there exists c = c(y) > 0 such that the probability that
a random half-space walk of length n visits the y-axis more than cn
times tends to 1 as n tends to infinity;

� For y < yc and for any ε > 0, the probability that the random half-
space walk of length n visits the y-axis more than εn times tends to
zero exponentially fast in n.

We refer to [BBMDC+12] for more details.

Conclusion. The proof presented above involves several interesting
ingredients to which we will come back in other parts of this book. Let us
highlight them one more time.

1. A function expressed in terms of the self-avoiding walk model is
defined in finite subgraphs of the lattice. This function satisfies exact
local relations at some specific “integrable point” (here x = xc).

2. While the local relations do not determine the function explicitly
(in the sense that the boundary conditions are not sufficient to
reconstruct the function inside the domain), they are still sufficient
to understand the average boundary behavior.

3. This behavior enables us to exhibit a specific set of properties
satisfied at x = xc.
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4. A completely different argument shows that these properties can only
be satisfied at the critical point of the model, thus identifying xc as
this critical point.

We will see variations around this strategy. The goal of the program
will often be different, and therefore Step 4 will be very different. In some
cases, Step 3 will be much more evolved, while in other cases, Step 1 will be
vastly improved, thus leading to a strong notion of discrete holomorphicity.



Chapter 3

Notation and definitions
for the graphs

We work with subsets of the plane. Points will therefore be considered
as elements of R2 as well as elements of C depending on the context.
Seeing points as complex numbers will have its advantages. For instance,
an oriented edge of the medial lattice naturally gives rise to a complex
number. The distance between two points x and y will be measured by
the complex modulus ∣x−y∣. Equivalently, it corresponds to the Euclidean
norm on R2. The distance between a point x and a closed set F is defined
by d(x,F ) ∶= inf{∣x − y∣ ∶ y ∈ F}.

3.1 Primal, dual and medial lattices

We will work with subgraphs of the following lattices, see Fig. 3.1.

� The square lattice (Z2,E) is the graph with vertex set
Z2 = {(n,m) ∶ n,m ∈ Z} and edge set E given by edges between
nearest neighbors. The square lattice will be identified with the set
of vertices, i.e. Z2.

� The dual square lattice (Z2)⋆ is the dual graph of Z2. The vertex
set is ( 1

2
, 1

2
) +Z2 and the edges are given by nearest neighbors. The

vertices and edges of (Z2)⋆ are called dual-vertices and dual-edges. In
particular, every edge e of Z2 is naturally associated to a dual-edge,
denoted by e⋆, that it crosses in its center.

� The medial lattice (Z2)◇ is the graph with the centers of edges of
Z2 as vertex set, and edges connecting nearest vertices. This lattice
is a rotated and rescaled (by a factor 1/

√
2) version of Z2. The

vertices and edges of (Z2)◇ are called medial-vertices and medial-
edges. We will often identify the faces of (Z2)◇ with the vertices
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of Z2 and (Z2)⋆. For instance, we may speak of the medial-edge
bordering a vertex or a dual-vertex: by this, we mean bordering the
face of (Z2)◇ associated to this vertex or dual-vertex. A face of the
medial lattice is said to be black if it corresponds to a vertex of Z2,
and white otherwise. Edges of (Z2)◇ are oriented counterclockwise
around black faces, so that the medial lattice can sometimes be seen
as an oriented graph.

We will only consider subgraphs of Z2, (Z2)⋆ or (Z2)◇, and use the
following notations. For a graph G, we denote by VG its vertex set and by
EG its edge set. If we do not need to put a special emphasis on VG, we will
simply write G instead of VG. An edge e of G with endpoints x and y is
denoted by [xy]; we then say that x and y are neighbors (in G) and write
x ∼ y. Furthermore, if x is an end-point of e, we say that e is incident to
x. Finally, the boundary of G, denoted by ∂G, is the set of vertices of G
with strictly fewer than four incident edges in EG.

Let Λn be the subgraph of Z2 induced by [−n,n]2.

3.2 Discrete domains

In this section and the next one, we encourage the reader to look at pictures
as much as possible in order to get a better intuition of the definitions.

Discrete domains provide a discrete analog of simply connected open
sets. They are defined as follows.

Consider a sequence ∂ = {v0 ∼ v1 ∼ v2 ∼ ⋅ ⋅ ⋅ ∼ vn−1 ∼ vn ∼ v0} of
neighboring medial-edges satisfying the following conditions:

� The path ∂ is edge-avoiding, i.e. it does not use the same medial-edge
twice.

� The path follows the orientation of the medial lattice, i.e. [vivi+1] is
oriented from vi to vi+1.

� The corresponding oriented path is going counterclockwise.

We do not assume that all the end-points of edges of ∂ are distinct: the
path may visit the same medial-vertex twice. Nonetheless, the path is
necessarily non-self-crossing since it follows the orientation of the medial
lattice. Also observe that the orientation of the lattice determines an
interior and an exterior.

Definition 3.1 (medial discrete domain). Let ∂ be a path as above, and
Ω◇ the subgraph of (Z2)◇ induced by the medial-vertices that are either
enclosed by ∂, or endpoints of an edge of ∂. Such a graph Ω◇ is said to be
a medial discrete domain, see Fig. 3.2.

The graph Ω◇ is necessarily connected as a subgraph of (Z2)◇.
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Figure 3.1: Top left. Square lattice. By convention, edges will always
be drawn with plain lines. Top right. Dual of the square lattice. By
convention, dual-edges will always be drawn in dashed lines. Bottom
left. Medial lattice. Bottom right. Medial lattice with the orientation
on edges. The faces corresponding to vertices of Z2 are gray, the others
are white.

Remark 3.2. The graph Ω◇ may be seen as a closed subset F of the plane
by taking the union of the medial faces enclosed by ∂. Some points are
pinched points (i.e. that removing them disconnects the set). We may see
Ω◇ as a simply connected domain of the plane by taking the interior of the
union of F and small balls of radius ε≪ 1 around the pinched points, see
Fig. 3.3.

Pinched points are medial-vertices of ∂ visited twice by the path. In the
reverse direction, medial-vertices visited twice are not necessarily pinched
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v�

u�

x�

y�
z�

t�

Figure 3.2: A medial discrete domain with two marked points on its
boundary. The medial-vertices x◇, y◇ and z◇ provide examples of medial-
vertices visited twice that correspond to two prime-ends. The medial-
vertex t◇ is another example of medial-vertex visited twice. This one
corresponds to a pinched point of the domain.

points. They can on the contrary correspond to “two points” of the
boundary. It will be important to distinguish between these two points
and we do so as follows. Consider the conformal map from the unit disk
onto the open domain enclosed by ∂. Then, two different points of the
unit circle may be mapped to a single medial-vertex of ∂ visited twice. In
such case, the medial-vertex corresponds to two distinct prime ends in the
standard complex analysis sense. Therefore, instead of considering such a
medial-vertex as one medial-vertex of degree 4, it is natural to consider it
as two distinct prime ends of degree 2. In particular, these vertices belong
to ∂Ω◇.

In conclusion, medial-vertices of ∂ visited twice are either pinched points
or medial-vertices corresponding to two prime-ends.

Remark 3.3. Since the boundary ∂Ω◇ of Ω◇ is the set of medial-vertices
having less than four incident medial-edges in EΩ◇ , it corresponds to only
roughly half of the end-points of ∂.
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v�

u�

x�

y�
z�

t�

Figure 3.3: One example of the open domain associated to a medial
discrete domain. Observe the additional small patch near t◇, which
guarantees that the domain is simply connected.

Definition 3.4 (primal and dual discrete domains). Let Ω◇ be a medial
discrete domain. Let Ω be the subgraph of Z2 with edge-set given by edges
corresponding to medial-vertices of Ω◇ ∖∂Ω◇1, and vertex-set given by the
end-points of these edges. The graph Ω is said to be a primal discrete
domain, see Fig. 3.4. Let Ω⋆ be the subgraph of (Z2)⋆ with edge-set given
by dual-edges corresponding to medial-vertices of Ω◇ and vertex-set given
by the end-points of these dual-edges. The graph Ω⋆ is said to be a dual
discrete domain, see Fig. 3.4.

The notations Ω, Ω⋆ and Ω◇ will always refer to graphs that are primal,
dual and medial discrete domains, respectively. We drop the reference to
primal, dual and medial, and simply speak of discrete domain.

3.3 Dobrushin domains

Dobrushin domains are introduced to provide a discrete analogue of simply
connected domains with two marked points on their boundary. They are

1Recall that doubly-visited vertices are either pinched points, in which case they do
not belong to ∂Ω◇, or two prime-ends, in such case they do belong to the boundary,
and therefore primal edges going through such medial-vertices are not included.
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Figure 3.4: The primal and dual discrete domains associated to the medial
discrete domain drawn in Fig. 3.2.

defined as follows.

Let a◇ and b◇ be two distinct medial-vertices, and ∂◇ab = {v0 ∼ v1 ∼ ⋅ ⋅ ⋅ ∼
vn}, ∂◇ba = {w0 ∼ w1 ∼ ⋅ ⋅ ⋅ ∼ wm} two paths of neighboring medial-vertices
satisfying the following properties:

� The paths start from a◇ and end at b◇, i.e. v0 = w0 = a◇ and
vn = wm = b◇.

� The paths follow the orientation of the medial lattice.
� The path ∂◇ab goes counterclockwise, while ∂◇ba goes clockwise.
� The paths are edge-avoiding.
� The paths intersect only at a◇ and b◇.

Note that ∂◇ab ∪ ∂◇ba is a non-self crossing edge-avoiding polygon. However,
some vertices might be visited twice.

Definition 3.5 (medial Dobrushin domains). Let ∂◇ab and ∂◇ba be two paths
as above, and let Ω◇ be the subgraph of (Z2)◇ induced by the medial-
vertices that are enclosed by or in the path ∂◇ab ∪ ∂◇ba. Then, (Ω◇, a◇, b◇) is
called a medial Dobrushin domain. An example is given in Fig. 3.5.

Remark 3.6. As before, the medial Dobrushin domains give rise to a
simply connected domain of the plane by taking the union of faces plus
small balls around medial vertices of ∂◇ab ∪ ∂◇ba corresponding to pinched
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ebb⋄

a⋄

ea

∂⋄
ab

∂⋄
ba

x⋄

y⋄

z⋄ t⋄

Figure 3.5: A medial Dobrushin domain. Note the position of ea and eb.

points of the graph. As before, medial-vertices may be considered as prime-
ends.

As it stands, a◇ and b◇ have three incident medial-edges in EΩ◇ . Call ea
and eb the fourth medial-edges incident to a◇ and b◇ respectively. In what
follows, we will consider that ea and eb are also in EΩ◇ , but we will not
add in VΩ◇ the end-points of ea and eb which are not a◇ and b◇. Therefore,
ea and eb have only one end-point in Ω◇.

Remark 3.7. Once again, the boundary ∂Ω◇ of Ω◇ does not coincide
with all the elements of ∂◇ab and ∂◇ba but only with roughly half of them.
Moreover, a◇ and b◇ do not belong to ∂Ω◇ since with ea and eb respectively,
they possess four incident medial-edges.

We are now in a position to define the (primal) and (dual) Dobrushin
domains, see Fig. 3.6.

Definition 3.8 (primal and dual Dobrushin domains with two marked
points). Let (Ω◇, a◇, b◇) be a medial Dobrushin domain.

Let Ω ⊂ Z2 be the graph with edge set composed of edges passing through
end-points of medial-edges in EΩ◇ ∖∂◇ab (if a medial-vertex is the end-point
of a medial-edge in EΩ◇ ∖∂◇ab and one in ∂◇ab, it is included) and vertex set
given by the end-points of these edges. Let a and b be the two vertices of
Ω bordered by ea and eb. The triplet (Ω, a, b) is called a primal Dobrushin
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b
b⋆

a
a⋆

∂ba

∂⋆
ab

∂ab

∂⋆
ba

Figure 3.6: The primal and dual Dobrushin domains associated to a
medial Dobrushin domain. Note the position of a, a⋆, b and b⋆.

domain. We denote by ∂ba the set of edges corresponding to medial-vertices
in ∂Ω◇, including doubly-visited ones, which are also end-points of medial-
edges in ∂◇ba, and set ∂ab = ∂Ω ∖ ∂ba.

Let Ω⋆ ⊂ (Z2)⋆ be the graph with edge set composed of dual-edges
passing through medial-edges in EΩ◇ ∖∂◇ba and vertex set given by the end-
points of these dual-edges. Let a⋆ and b⋆ be the two dual-vertices of Ω⋆

bordered by ea and eb. The triplet (Ω⋆, a⋆, b⋆) is called a dual Dobrushin
domain. We denote by ∂⋆ab the set of dual-edges corresponding to medial-
vertices in ∂Ω◇, including doubly-visited ones, which are also end-points
of medial-edges in ∂◇ab, and set ∂⋆ba = ∂Ω⋆ ∖ ∂⋆ab.

The notations (Ω, a, b), (Ω⋆, a⋆, b⋆) and (Ω◇, a◇, b◇) will always refer to
a primal, dual and medial Dobrushin domain, respectively. The three
triplets are in direct correspondence. We will forget about the reference
to primal, dual and medial in the future and speak of Dobrushin domain.

Remark 3.9. We will often consider discrete domains Ω◇ with two marked
points u◇ and v◇ on ∂Ω◇ (see for instance Fig. 3.2). Note that this graph
is not a Dobrushin domain with two marked points on the boundary.
Indeed, u◇ and v◇ have degree 2 (meaning that two medial-edges are
incident to them), while a◇ and b◇ have degree 4 in the case of a Dobrushin
domain. Furthermore, ∂ is oriented counter-clockwise, while ∂◇ab and ∂◇ba



Chapter 3. Notation and definitions for the graphs 59

are oriented from a◇ to b◇. Conversely, when forgetting about a◇ and b◇

in a Dobrushin domain (Ω◇, a◇, b◇), the graph Ω◇ is not a discrete domain
for the same reason.

3.4 Discretizations of domains

We will be interested in finer and finer graphs approximating continuous
domains. For δ > 0, we consider the rescaled square lattice δZ2. The
definitions of dual and medial Dobrushin domains extend to this context.
Note that the medial lattice (δZ2)◇ has mesh-size δ/

√
2.

Generically, discrete domains on δZ2, (δZ2)⋆ and (δZ2)◇ will be denoted
by Ωδ, Ω⋆

δ and Ω◇
δ . Similarly, Dobrushin domains on δZ2, (δZ2)⋆ and

(δZ2)◇ will be denoted by (Ωδ, aδ, bδ), (Ω⋆
δ , a

⋆
δ , b

⋆
δ) and (Ω◇

δ , a
◇
δ , b

◇
δ).

We wish to speak of discrete domains and Dobrushin domains
approximating a continuous domain with marked points on its boundary
(by a marked point, we mean a marked prime end). In order to quantify
how close a discrete graph is to its continuum counterpart, we introduce the
notion of Carathéodory convergence. Consider a discrete domain Ω◇

δ or a
Dobrushin domain (Ω◇

δ , a
◇
δ , b

◇
δ) as a simply connected domain as explained

previously (in this case, the small additional balls are of size ε ≪ δ). Let
H = {z ∈ C ∶ Im(z) > 0} be the upper half-plane.

Definition 3.10. Let (Ω, a, b) be a simply connected domain with two
marked points on its boundary. Consider a sequence of Dobrushin domains
(or discrete domains with two marked points on the boundary) (Ω◇

δ , a
◇
δ , b

◇
δ).

We say that (Ω◇
δ , a

◇
δ , b

◇
δ) converges to (Ω, a, b) in the Carathéodory sense

if
fδ Ð→ f on any compact subset K ⊂ H,

where fδ (resp. f) is the unique conformal map from H to Ω◇
δ (resp. Ω)

satisfying fδ(0) = a◇δ , fδ(∞) = b◇δ and f ′δ(∞) = 1 (resp. f(0) = a, f(∞) = b
and f ′(∞) = 1).

Let us mention that this notion of convergence coincides with the
Haussdorff convergence in the case of smooth domains. Therefore, one
may simply think of the Carathéodory convergence as being a very natural
notion of convergence and not bother with details. For sufficiently smooth
domains, a possible example of a converging sequence is provided by
Ωδ = Ω ∩ (δZ2) with aδ and bδ being the closest vertices of Ωδ to a and b,
but we may consider more general approximations.

We will be considering sequences of functions on Ωδ (more precisely
VΩδ) for δ going to 0 and we wish to speak of uniform convergence on
every compact subset of Ω. In order to do this, we implicitly perform the
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following operation: for a function f on Ωδ, choose a diagonal for every
(square) face and extend the function to the faces of Ωδ in a piecewise
linear way on the two triangles made of the diagonal and two edges. Since
no confusion will be possible, the extension will be denoted by f as well.
Constructed like that, the function is not necessarily defined on all of Ω
(since the union of faces of Ωδ may be different from Ω), nevertheless, it is
defined on any compact subset of Ω provided that δ is small enough (how
small it must be depends on the compact subset). The same procedure
will also be applied to functions defined on Ω⋆

δ and Ω◇
δ .

Remark 3.11. The Carathéodory convergence implies that for every
compact subset K of Ω, there exists δ0 > 0 such that for any δ < δ0,
K ⊂ Ωδ. Therefore, it is possible to speak of uniform convergence on
compact subsets of Ω for any sequence of functions (fδ) defined on a
sequence of domains Ωδ converging to Ω.
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Chapter 4

Basic properties of the
two-dimensional
random-cluster model

Before diving into the study of the random-cluster model, and in particular
the Russo-Seymour-Welsh theory and the applications of parafermionic
observables, we need to gather several classical properties on this model.
For additional information, we refer to the extensive literature on the
subject, e.g. to [Gri06].

4.1 Formal definition of the random-cluster
model

The random-cluster model can be defined on any graph. However, we
restrict ourselves to the square lattice. Let G be a finite subgraph of Z2.
A configuration ω is an element of {0,1}EG . An edge e with ω(e) = 1 is said
to be open, otherwise it is said to be closed. The configuration ω can be seen
as a subgraph of G, with vertex set VG and edge set {e ∈ EG ∶ ω(e) = 1}.

Two sites a and b are said to be connected if there is an open path, i.e.
a path a = v0, . . . , vn = b with ei = (vi, vi+1) ∈ EG and ω(ei) = 1 for any
0 ≤ i < n (this event will be denoted by a ↔ b). Two sets A and B are
connected if there exists an open path connecting a ∈ A and b ∈ B (denoted
A↔ B). The maximal connected components of ω are called clusters.

Boundary conditions ξ are given by a partition P1 ⊔ ⋅ ⋅ ⋅ ⊔Pk of ∂G. Two
vertices are wired in ξ if they belong to the same Pi. The graph obtained
from the configuration ω by identifying the wired vertices together is

63
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denoted by ωξ 1. Boundary conditions should be understood informally
as encoding how sites are connected outside of G. Let o(ω) and c(ω)
denote the number of open and closed edges of ω and k(ωξ) the number
of connected components of the graph ωξ.

Definition 4.1. The probability measure φξp,q,G of the random-cluster

model on G with edge-weight p ∈ [0,1] and cluster-weight q > 0 and
boundary conditions ξ is defined by

φξp,q,G({ω}) ∶= p
o(ω)(1 − p)c(ω)qk(ω

ξ)

Zξp,q,G
(4.1)

for every configuration ω on G. The constant Zξp,q,G is a normalizing
constant, referred to as the partition function, defined in such a way that
the sum over all configurations equals 1. From now on, φξp,q,G denotes the
measure and the expectation with respect to this measure.

Four boundary conditions play a special role in the study of the random-
cluster model.

� The wired boundary conditions: they are specified by the fact that
all the vertices on the boundary are pairwise wired (the partition is
equal to {∂G}). The random-cluster measure with wired boundary
conditions on G is denoted by φ1

p,q,G.

� The free boundary conditions: they are specified by no wiring
between vertices on the boundary (the partition is composed of
singletons only). The random-cluster measure with free boundary
conditions on G is denoted by φ0

p,q,G.

� The periodic boundary conditions: for n ≥ 1, the torus Tn of size n
can be seen as a subgraph of Z2 with specific boundary conditions
as follows. Consider the subgraph of Z2 induced by the vertex set
{0, . . . , n}2, with the boundary conditions obtained by wiring (i,0)
and (i, n) for every i ∈ {0, . . . , n}, and (0, j) and (n, j) for every
j ∈ {0, . . . , n}. The random-cluster measure on the torus of size n is
denoted by φper

p,q,n.

� The Dobrushin boundary conditions, or domain-wall boundary
conditions: let (Ω, a, b) be a discrete Dobrushin domain. The
Dobrushin boundary conditions are defined to be free on ∂ab and

1Formally, ωξ can be seen as (Ṽ , Ẽ), where Ṽ is the vertex set VG quotiented by
the equivalence relation xRy if x and y are in the same Pi, and Ẽ is the image of the
open edges of ω by the canonical projection from EVG to EṼ . We will not really use
this formal definition.
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wired on ∂ba (in other words, the partition is composed of ∂ba
together with singletons). These arcs are referred to as the free
arc and the wired arc, respectively. The measure associated to these
boundary conditions will be denoted by φa,bp,q,Ω.

Other boundary conditions will come from a configuration outside the
graph G (see the next paragraph). For a configuration ξ on E ∖ EG, the
boundary conditions induced by ξ are defined by the partition P1⊔⋅ ⋅ ⋅⊔Pk,
where x and y are in the same Pi if and only if there exists a path in
ξ connecting x and y. In general, we identify the boundary conditions
induced by ξ with the configuration itself, and we denote the random-
cluster measure by φξp,q,G.

4.2 Finite energy and Domain Markov
properties

4.2.1 The domain Markov property

The following theorem describes how the influence of the configuration
outside a graph F on the measure within F can be encoded using
appropriate boundary conditions ξ. This property is the analog of the
Dobrushin-Lanford-Ruelle property for Gibbs measures (see [Geo11] or
Proposition 7.4 for the Ising case). It will be useful when decoupling
events depending on disjoint sets of edges.

Let FE be the σ-algebra of events depending on the states of edges in
E only.

Theorem 4.2. Let p ∈ [0,1], q > 0 and ξ some boundary conditions.
Fix F ⊂ G two finite subgraphs of Z2. For any FEF -measurable random
variable X,

φξp,q,G(X ∣ω(e) = ψ(e),∀e ∈ EG ∖EF )(ψ) = φψ
ξ

p,q,F (X),

where ψ ∈ {0,1}EG∖EF (recall the definition of ψξ from the previous
section).

From now on, we set ω∣E to denote the restriction of ω to edges in E
only.

Proof. Let us deal with the case F = (VG,EG ∖ {e}). Let ω be a
configuration on G and set ωe to be the configuration on G equal to 1
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on e and ω elsewhere. We find

φξp,q,G(ω∣EF ∣ω(e) = 1) =
φξp,q,G(ωe)

φξp,q,G(ω(e) = 1)

=

po(ω∣EF )+1(1 − p)c(ω∣EF )qk((ω
e)ξ)

Zξp,q,G

∑
ω̃∈{0,1}EG ∶ω̃(e)=1

po(ω̃)(1 − p)c(ω̃)qk(ω̃
ξ)

Zξp,q,G

= po(ω∣EF )+1(1 − p)c(ω∣EF )q
k(ωξ

e

∣EF
)

∑
ω̃∣EF ∈{0,1}EF

po(ω̃∣EF )+1(1 − p)c(ω̃∣EF )q
k(ω̃ξ

e

∣EF
)

= φξ
e

p,q,F (ω∣EF )

where ξe is given by the boundary conditions ξ with the two end-points of
e wired together. Similarly

φξp,q,G(ω∣EF ∣ω(e) = 0) = φξp,q,F (ω∣EF )

and the claim follows easily for F . The result can be deduced for
every random variable X by linearity. Now, one can repeat the previous
reasoning recursively and the result follows for any subgraph F of G. ◻

Example. Let F ⊂ G with EG ∖ EF connected. Then if ψ(e) = 1 for
any e ∉ EF , ψξ corresponds to wired boundary conditions. Similarly, if
ψ(e) = 0 for any e ∉ EF , ψξ corresponds to free boundary conditions. This
justifies the notations 0 and 1 for the free and wired boundary conditions.

4.2.2 Finite energy property

The finite energy property roughly yields that the conditional probability
for an edge to be open knowing the states of all the other edges is bounded
away from 0 and 1 uniformly in p ∈ [ε,1− ε] (here ε ∈ (0,1/2) is fixed) and
in the states of all the other edges. This fact extends to any finite family
of edges. This property is a useful tool when comparing the probabilities
of two configurations differing by only finitely many edges.
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Lemma 4.3. Let ε ∈ (0,1/2), q > 0 and F ⊂ G two finite graphs. There
exists c = c(ε, q, F ) > 0 such that for any p ∈ [ε,1 − ε], any configuration
ψ ∈ {0,1}EF and any boundary conditions ξ,

c ≤ φξp,q,G(ω∣F = ψ) ≤ 1 − c.

Of course, the control on c = c(ε, q, F ) deteriorates exponentially fast in
the size of F .

Proof. Let us first prove that

c < φξp,q,G(ω(e) = 1) < 1 − c

uniformly on G and p ∈ [ε,1 − ε]. In order to see this, observe that
conditionally on the states of the edges different from e, the two only
boundary conditions on the graph composed solely of the edge e and its
end-points are either the free boundary conditions (the two end-points of
e are not connected by the configuration outside e), or the wired ones (the
two end-points are connected outside e). In the first case, the probability
is equal to p/[p + (1 − p)q], in the second one, it is equal to p.

The claim follows readily by successive applications of the domain
Markov property and by setting c = min{ε, ε/[εq + (1− ε)]}∣EG∣ (the power
∣EG∣ comes from these successive applications). ◻

Proposition 4.4. Let ε ∈ (0,1/2), q > 0 and F ⊂ G two finite graphs.
There exists c = c(ε, q, F ) > 0 such that for any event A depending on
edges outside F and any η ∈ {0,1}EF ,

φξp,q,G(A ∩ {ω∣EF = η}) ≥ cφξp,q,G(A).

Proof. Let c = c(ε, q, F ) > 0 given by the previous lemma. We obtain

φp,q,G
ξ(A ∩ {ω∣EF = η})

= ∑
ψ∈{0,1}EG∖EF

φξp,q,G({ω∣EG∖EF = ψ} ∩ {ω∣EF = η} ∩A)

= ∑
ψ∈{0,1}EG∖EF

φξp,q,G({ω∣EG∖EF = ψ} ∩A)φξp,q,G(ω∣EF = η∣ω∣EG∖EF = ψ)

= ∑
ψ∈{0,1}EG∖EF

φξp,q,G({ω∣EG∖EF = ψ} ∩A)φξ
ψ

p,q,F (η)

≥ c ∑
ψ∈{0,1}EG∖EF

φξp,q,G({ω∣EG∖EF = ψ} ∩A) = φξp,q,G(A).

In the second line, we drop the condition on A in the conditioning since
this would be redundant: if ψ is not in A, then the first term equals 0
anyway. ◻
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Remark 4.5. A typical example of a model not satisfying the finite energy
property is the uniform measure on spanning trees. Indeed, knowing the
whole configuration outside an edge e, it is not necessarily possible for e
to be open (for instance if there is a cycle once e is open).

4.3 Planar duality

The planar random-cluster model enjoys a very interesting property called
planar duality. The next sections are devoted to this notion but before, let
us introduce a useful involution on edge-weights. For any p and q, define

p⋆ = p⋆(p, q) ∶= (1 − p)q
(1 − p)q + p

, (4.2)

and the self-dual point psd = psd(q) as being the unique solution of the
equation p⋆(psd, q) = psd, i.e.

psd(q) =
√
q

1 +√
q
. (4.3)

4.3.1 Planar duality for planar boundary conditions

Let G be a finite graph. We start by discussing planarity for planar
boundary conditions on G, i.e. boundary conditions coming from a planar
configuration outside G. In this section, let G⋆ be the graph with edge-set
E⋆ = {e⋆ ∶ e ∈ EG} and vertex-set given by the end-points of E⋆.

Definition 4.6. For a configuration ω ∈ {0,1}EG , we define the dual
configuration ω⋆ ∈ {0,1}EG⋆ by the formula

ω⋆(e⋆) = 1 − ω(e), ∀e ∈ EG.

A dual-edge e⋆ is said to be dual-open if ω⋆(e⋆) = 1 and dual-closed
otherwise. Two sites u and v in G⋆ are said to be dual-connected if there
is a dual-open path, i.e. a path of open dual-edges between u and v.
Two sets U and V are dual-connected if there exists a dual-open path

connecting u ∈ U and v ∈ V . These events are denoted by u
⋆←→ v and

U
⋆←→ V respectively. The maximal dual-connected components will be

called dual-clusters.

Proposition 4.7 (Duality for planar boundary conditions). Let ξ ∈
{0,1}E∖EG . The dual model of the random-cluster on G with parameters
(p, q) and boundary conditions ξ is the random-cluster with parameters
(p⋆, q) on G⋆ with boundary conditions induced by ξ⋆, where ξ⋆ is defined
by ξ⋆(e⋆) = 1 − ξ(e) for any e ∉ EG.
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Figure 4.1: A configuration and its dual configuration. The graphs G and
G⋆ are in black and ξ and ξ⋆ are in gray.

Proof. Recall that the graph ωξ is obtained from ω by identifying the
vertices of ∂G which are connected in ξ. Since ξ ∈ {0,1}E∖EG , the boundary
conditions ξ are planar in the sense that ωξ is planar. Let (ωξ)⋆ be the dual
of ωξ in the standard graph theoretical sense, meaning that the vertices
correspond to faces of ωξ, and the edges connect vertices associated to
adjacent faces. Then, (ωξ)⋆ is equal to (ω⋆)ξ

⋆
(in fact, sometimes it

possesses an additional isolated vertex but this will be irrelevant here).
Let f(ωξ) be the number of faces in ωξ. Using Euler’s formula applied

to ωξ, we find that

∣Eωξ ∣ + k(ωξ) + 1 = ∣Vωξ ∣ + f(ωξ).

Recall that Vωξ = VGξ does not depend on ω. From the definition of the
dual configuration ω⋆ of ω, we have o(ω)+o(ω⋆) = ∣EG∣, where o(ω⋆) is the
number of open dual-edges, and therefore ∣Eωξ ∣+o(ω⋆) = o(ω)+o(ω⋆) does

not depend on ω. Moreover, connected components of (ω⋆)ξ
⋆

correspond

exactly to faces of ωξ, so that f(ωξ) = k((ω⋆)ξ
⋆
). Overall, there exists a

constant Cξ not depending on ω such that

k(ωξ) = Cξ + k((ω⋆)ξ
⋆
) + o(ω⋆).

The probability of ω⋆ is equal to φξp,q,G(ω) which can be rewritten in terms
of ω⋆ as follows:
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φξp,q,G(ω) = 1

Zξp,q,G
po(ω)(1 − p)c(ω)qk(ω

ξ)

= (1 − p)∣EG∣

Zξp,q,G
[p/(1 − p)]o(ω)qk(ω

ξ)

= (1 − p)∣EG∣

Zξp,q,G
[p/(1 − p)]∣EG∣−o(ω⋆)qCξ+k((ω

⋆)ξ
⋆
)+o(ω⋆)

= p∣EG∣qCξ

Zξp,q,G
[q(1 − p)/p]o(ω

⋆)qk((ω
⋆)ξ

⋆
)

= p∣EG∣qCξ

Zξp,q,G
[p⋆/(1 − p⋆)]o(ω

⋆)qk((ω
⋆)ξ

⋆
)

= p∣EG∣qCξ

(1 − p⋆)∣EG⋆ ∣Zξp,q,G
(p⋆)o(ω

⋆)(1 − p⋆)c(ω
⋆)qk((ω

⋆)ξ
⋆
)

= φξ
⋆

p⋆,q,G⋆(ω⋆).

In the third and sixth lines, we used the relation o(ω⋆)+o(ω) = ∣EG⋆ ∣ = ∣EG∣.
The Euler formula was invoked in the third line, and the relation between
p and p⋆ in the fifth. ◻

Let us provide a few examples of dual boundary conditions.

Example 1 (free boundary conditions). Let Ω be a discrete domain. In such
case, ξ = 0 and therefore ξ⋆ = 1. We obtain wired boundary conditions on
the dual graph Ω⋆ (defined as in the introduction).

Example 2 (wired boundary conditions). Let Ω be a discrete domain. Note
that the state of edges between vertices of ∂Ω is not relevant for wired
boundary conditions. Indeed, they are open with probability p and closed
with probability 1 − p (since their end-points are connected anyway), and
furthermore the connectivity properties of the configuration are not altered
by the states of these edges. For this reason, we will usually assume that
these edges are open. In such case ξ can be chosen to be all 1 and therefore
ξ⋆ = 0. The dual of wired boundary conditions is therefore free boundary
conditions. With our convention, it is defined on the dual graph of Ω∖∂Ω,
which is slightly smaller than Ω⋆.

Example 3 (Dobrushin boundary conditions). Let (Ω, a, b) be a Dobrushin
domain. The Dobrushin boundary conditions are achieved by taking ξ to
be 0 everywhere, except on ∂ba for which it is 1. Then, ξ⋆ is equal to
0 on {e⋆ ∶ e ∈ ∂ba} and 1 everywhere else. Equivalently, the boundary
conditions induced by ξ⋆ correspond to the boundary conditions induced



Chapter 4. Basic properties of the 2D random-cluster model 71

by the configuration equal to 1 on ∂⋆ab and 0 everywhere else. Therefore
the dual of Dobrushin boundary conditions on (Ω, a, b) are Dobrushin
boundary conditions on (Ω⋆, b⋆, a⋆).

Example 4 (mixed boundary conditions). Let Ω be a discrete domain with
four marked points a, b, c and d found in counter-clockwise order on
its boundary. These points determine arcs ∂ab, ∂bc, ∂cd and ∂da when
going around the boundary in the counter-clockwise order. The boundary
conditions mix are wired on ∂ab and ∂cd, and free elsewhere. Note that
∂ab and ∂cd are not wired together. Then, the dual boundary conditions
are wired on ∂∗bc ∪∂∗da (this time the two arcs are wired together), and free
elsewhere, where the dual arcs are defined in a similar way to Dobrushin
domains.

Remark 4.8. Often, most of the configurations ξ (or equivalently ξ⋆)
will not be necessary to determine which partition on ∂G is associated
to the configuration. In such case, we do not keep track of the whole
configuration in E, but only of some subset of the edges. For instance, if
any edge outside G with one end-point on ∂G is closed, then the associated
boundary conditions are necessarily free.

4.3.2 Duality for periodic boundary conditions

The case of periodic boundary conditions, or equivalently the case of the
random-cluster model defined on a torus (with no boundary conditions) is
a little more involved: its dual is not a random-cluster model because its
boundary conditions cannot be achieved by a planar configuration. Yet,
the dual model is not very different from a random-cluster model, and that
will be enough for our purposes.

In order to state duality in this case, additional notations expressed
in terms of the geometry of the torus are required. Let f(ω) be the
number of faces delimited by ω, i.e. the number of connected components
of the complement of the set of open edges. We also introduce an
additional parameter δ(ω). Call a cluster of ω a net if it contains two
non-contractible simple loops of different homotopy classes, and a cycle if
it is non-contractible but is not a net. Notice that every configuration ω
can be of one of three types:

� One of the clusters of ω is a net. Then no other cluster of ω can be
a net or a cycle. In that case, let δ(ω) = 2;

� One of the clusters of ω is a cycle. Then no other cluster can be a
net, but other clusters can be cycles as well (in which case all the
involved, simple loops are in the same homotopy class). Then let
δ(ω) = 1;
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� None of the clusters of ω is a net or a cycle. Let δ(ω) = 0.

With this additional notation, Euler’s formula becomes

∣VTn ∣ + f(ω) + δ(ω) = k(ω) + 1 + o(ω). (4.4)

Besides, these terms transform in a simple way under duality: o(ω)+o(ω⋆)
is a constant, f(ω) = k(ω⋆) and δ(ω) = 2 − δ(ω⋆).

Define the balanced random-cluster model with weights

φ̃per
p,q,n({ω}) =

√
q

1−δ(ω) ⋅ p
o(ω)(1 − p)c(ω)qk(ω)

Ẑper
p,q,n

,

where Ẑper
p,q,n is a normalizing constant defined in such a way that the sum

over all configurations equals 1. The same proof as that of usual duality
implies the following result.

Proposition 4.9. The dual model of the balanced random-cluster on the
torus Tn of size n with parameters (p, q) and periodic boundary conditions
is the balanced random-cluster with parameters (p⋆, q) on T⋆n.

This means that even though the dual model of the random-cluster
model with periodic boundary conditions is not exactly a random-cluster
model at the dual parameter, it is absolutely continuous with respect to a
self-dual model and the Radon-Nikodym derivative is bounded from above
and below by constants depending only on q. More precisely, the partition
functions of both models differ by a multiplicative factor at most q, while
the denominators involved in the expressions of the probabilities also
differ by a multiplicative factor at most q. Overall, the Radon-Nikodym
derivative is therefore between 1/q2 and q2.

4.4 Strong positive association when q ≥ 1

A partial order can be naturally defined on {0,1}EG : ω ≤ ω′ if and only if
for any e ∈ EG, ω(e) ≤ ω′(e). A function f ∶ {0,1}EG Ð→ R is increasing if
it is increasing for this order. An event A is increasing if 1A is increasing,
which is equivalent to the fact that ω ∈ A and ω ≤ ω′ implies ω′ ∈ A. (In
words, an event is increasing if it is preserved by addition of open edges.)
Let us give several examples.

Example 1. ω(e) is an increasing function.

Example 2. The number of open edges in E ⊂ EG is an increasing function.

Example 3. The event that two sets of vertices A and B are connected by
an open path is increasing (even if the open paths are constrained to use
edges in E ⊂ EG only).
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Example 4. The event that there exists a cluster of radius larger than n is
an increasing event.

The class of increasing events is central in the study of random-cluster
models because of the so-called positive association of the model. We will
present this link in detail in the next section, but let us first introduce the
central notion of stochastic domination.

Definition 4.10. A measure µ1 stochastically dominates µ2 if for every
increasing event A, µ1(A) ≥ µ2(A).

4.4.1 Holley criterion and FKG inequality

Let us start by discussing stochastic ordering and correlation inequalities
for general probability measures on {0,1}EG . Define ω1 ∨ ω2 and ω1 ∧ ω2

by the formulæ

(ω1 ∨ ω2)(e) = max{ω1(e), ω2(e)} and (ω1 ∧ ω2)(e) = min{ω1(e), ω2(e)}.

Theorem 4.11 (Holley inequality [Hol74]). Let µ1, µ2 be two positive
measures on {0,1}EG such that

µ1(ω1 ∨ ω2)µ2(ω1 ∧ ω2) ≥ µ1(ω1)µ2(ω2), ω1, ω2 ∈ {0,1}EG , (4.5)

then µ1 stochastically dominates µ2.

We sketch the proof here. For a configuration ω and an edge e, define
the configurations ωe and ωe as the two configurations coinciding with ω
for f ≠ e, and equal to respectively 1 and 0 at e. Formally,

ωe(f) =
⎧⎪⎪⎨⎪⎪⎩

ω(f) if f ≠ e,
1 if f = e,

ωe(f) =
⎧⎪⎪⎨⎪⎪⎩

ω(f) if f ≠ e,
0 if f = e.

(We already used ωe in the proof of Theorem 4.2.)

Proof. Let us construct a coupling P with marginals µ1 and µ2 in such
a way that P(ω1 ≥ ω2) = 1. The result will follow from the fact that

µ2(A) = P(ω2 ∈ A) = P(ω2 ∈ A and ω1 ≥ ω2) ≤ P(ω1 ∈ A) = µ1(A).

In the inequality, we used the fact that A is increasing.
An efficient way of constructing the measure P is to consider a Markov

chain whose stationary measure is P. Since we want the two marginals to
be µ1 and µ2, we need the induced (marginal) Markov chains to have
stationary measures µ1 and µ2. This strongly suggests the following
Markov chain: consider the infinitesimal generator on

Ω = {(ω, η) ∈ {0,1}EG × {0,1}EG ∶ ω ≥ η}
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defined by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

H(ω, ηe, ωe, ηe) = 1,

H(ωe, η, ωe, ηe) = µ1(ωe)
µ1(ωe)

,

H(ωe, ηe, ωe, ηe) = µ2(ηe)
µ2(ηe)

− µ1(ωe)
µ1(ωe)

.

It is easy to check that the continuous time Markov chain with infinitesimal
generator is aperiodic and thus possesses a unique stationary measure
P. Now, when starting from the configuration (ω, η) with ω(e) = 1 and
η(e) = 0 for any e ∈ EG, every step preserves the inequality ω ≥ η and so
P(ω ≥ η) = 1. Finally, the Markov chains induced on the first and second
coordinates can be checked to have stationary measures µ1 and µ2. All
these facts together imply the proof readily. ◻

Theorem 4.11 possesses an elegant simplification: (4.5) does not need
to be checked for every configurations ω1 and ω2. It is in fact sufficient to
check that for any ω and e ≠ f ,

µ1(ωe)µ2(ωe) ≥ µ1(ωe)µ2(ωe) (4.6)

and µ1(ωef)µ2(ωef) ≥ µ1(ωfe )µ2(ωef), (4.7)

where ωef = (ωe)f , ωfe = (ωe)f and ωef = (ωe)f . We refer to [Gri06,
Theorem 2.3] for more details on the reduction of the general Holley
criterion to this simpler inequalities.

The Holley criterion is particularly suitable to prove the famous Fortuin-
Kasteleyn-Ginibre inequality [FKG71] (FKG inequality in short). First
proved by Harris in the case of product measures (in this case, it is called
Harris inequality), the inequality relates the probability of the intersection
of two increasing events to the product of the probabilities.

Theorem 4.12 (FKG lattice condition). Let G be a finite graph and µ be
a positive measure on {0,1}EG . If for any configuration ω and e ≠ f ∈ EG

µ(ωef)µ(ωef) ≥ µ(ωfe )µ(ωef), (4.8)

then for any increasing events A and B,

µ(A ∩B) ≥ µ(A)µ(B). (4.9)

Proof. Equation (4.9) can be understood as µ( ⋅ ∣B) stochastically
dominating µ. Let us check Holley criterion (more precisely inequalities
(4.6) and (4.7)) for these two measures. Fix ω as well as e ≠ f . Let us
start by the inequality (4.6). We have

1ωe∈B µ(ωe)µ(ωe) ≥ 1ωe∈B µ(ωe)µ(ωe)
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since the indicator function on the left is equal to 1 if the one on the right
is equal to 1 (recall that B is increasing). Dividing by µ(B), we get

µ(ωe∣B)µ(ωe) ≥ µ(ωe∣B)µ(ωe)

which is (4.6). We now focus on (4.7). We obtain

1ωef ∈B µ(ωef)µ(ωef) ≥ 1ωfe ∈B µ(ωfe )µ(ωef).

We used that 1ωef ∈B ≥ 1ωfe ∈B (because B is increasing) and (4.8). Dividing

once again by µ(B) gives us (4.7). ◻

Remark 4.13. By taking complements, the inequality µ(A ∩ B) ≥
µ(A)µ(B) holds for decreasing events. Similarly, if A is increasing and B
is decreasing, then µ(A∩B) ≤ µ(A)µ(B). The theorem above also implies
that µ(XY ) ≥ µ(X)µ(Y ) for any two increasing (resp. decreasing) random
variables X,Y . Indeed, by adding constants one may prove this result for
positive random variables only. Now, observe that {X > t} and {Y > s} are
increasing for any s, t > 0. Since X = ∫

∞
0 1{X>t}dt and Y = ∫

∞
0 1{Y >s}ds,

the FKG inequality applied in the second line gives

µ(XY ) = ∫
∞

0
∫

∞

0
µ({X > t} ∩ {Y > s})dtds

≥ ∫
∞

0
∫

∞

0
µ(X > t)µ(Y > s)dtds

= (∫
∞

0
µ(X > t)dt)(∫

∞

0
µ(Y > s)ds) = µ(X)µ(Y ).

4.4.2 The FKG inequality for random-cluster models

The technology developed in the previous section enables us to prove the
following fundamental inequality.

Theorem 4.14 (Fortuin-Kasteleyn-Ginibre inequality [FKG71]). Let p ∈
[0,1], q ≥ 1, and boundary conditions ξ. For any two increasing events A
and B,

φξp,q,G(A ∩B) ≥ φξp,q,G(A)φξp,q,G(B). (4.10)

Remark 4.15. Beware of the fact that q is required to be larger than
or equal to 1: the result is false when q < 1. It is in fact natural to
conjecture that negative association would hold whenever q < 1 (uniform
spanning trees can be obtained as limits of the random-cluster model with
q going to 0 and thus provide one example of negatively correlated random-
cluster model with q < 1). The theorem of negative association is not so
understood. We refer to [Pem00] for details on the subject.
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Proof. Let us check the condition (4.8). Fix a configuration ω and two
edges e ≠ f . By multiplying by partition functions, we need to prove that

po(ω
ef )+o(ωef )(1 − p)o(ω

ef )+o(ωef )qk(ω
ef )+k(ωef )

≥ po(ω
f
e )+o(ω

e
f )(1 − p)o(ω

f
e )+o(ω

e
f )qk(ω

f
e )+k(ω

e
f ).

The terms involving p and (1 − p) do not create any difficulty since
o(ωef) + o(ωef) = o(ωfe ) + o(ωef) and c(ωef) + c(ωef) = c(ωfe ) + c(ωef).
Recalling that q ≥ 1, we only need to check that k(ωef) + k(ωef) ≥
k(ωfe ) + k(ωef). This inequality follows by studying whether both end-
points of f are already connected or not in ω∣EG∖{e,f}. ◻

Remark 4.16 (Square-root trick). Let us mention an important
implication of the FKG inequality, called the square-root trick. Let A
and B be two increasing events. Then,

max{φξp,q,G(A), φξp,q,G(B)} ≥ 1 − (1 − φξp,q,G(A ∪B))1/2. (4.11)

This trick will be very useful since (4.11) improves the standard bound

max{φξp,q,G(A), φξp,q,G(B)} ≥ 1
2
φξp,q,G(A ∪B).

We now turn to two important applications of the FKG inequality.

4.4.3 Stochastic ordering of random-cluster measures

Corollary 4.17 (Comparison in p). Fix boundary conditions ξ and q ≥ 1.

For any p1 ≤ p2, φξp2,q,G
stochastically dominates φξp1,q,G

.

This corollary legitimates the intuition that the larger p is, the more edges
are open.

Proof. An easy computation implies the existence of K > 0 such that for
every random variable X,

φξp2,q,G
(X) = φξp1,q,G

(XY )/K

where

Y (ω) = (p2/(1 − p2)
p1/(1 − p1)

)
o(ω)

.

Plugging X = 1, we find K = φξp1,q,G
(Y ). Now, Y ≥ 0 is increasing (recall

that p1 ≤ p2), so that if X is also assumed to be increasing, the FKG
inequality implies

φξp2,q,G
(X) = φξp1,q,G

(XY )/φξp1,q,G
(Y ) ≥ φξp1,q,G

(X).

◻
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Remark 4.18. The previous result about stochastic ordering between
random-cluster measures can in fact be extended as follows [Gri06,

Theorem (3.21)]: if q1 ≤ q2 and p1

q1(1−p1) ≤ p2

q2(1−p2) , then φξp1,q1,G
is

stochastically dominated by φξp2,q2,G
.

4.4.4 Comparison between boundary conditions

Let ξ and ψ be two boundary conditions. We say that ξ ≤ ψ if any
two vertices wired in ξ are wired in ψ. In other words, the partition
corresponding to ψ is coarser than the one corresponding to ξ.

Corollary 4.19 (Comparison between boundary conditions). Fix p ∈
[0,1] and q ≥ 1. For any boundary conditions ξ ≤ ψ and any increasing
event A,

φξp,q,G(A) ≤ φψp,q,G(A). (4.12)

Proof. Consider boundary conditions ψ corresponding to the partition
V1⊔⋅ ⋅ ⋅⊔Vk and construct a new graph by adding, for each i, edges between
vertices of Vi. Call this new graph G0 and the set of additional edges E
(we have E = EG0 ∖EG). Now, the domain Markov property implies

φξp,q,G(⋅) = φξp,q,G0
(⋅ ∣ω(e) = 0,∀e ∈ E)

φψp,q,G(⋅) = φξp,q,G0
(⋅ ∣ω(e) = 1,∀e ∈ E).

Using the FKG inequality twice, we obtain

φξp,q,G(A) ≤ φξp,q,G0
(A) ≤ φψp,q,G(A)

for any increasing event A depending on edges in EG only. ◻

Let us take some time to discuss in detail some applications of the
comparison between boundary conditions. We start by the easiest
observation and we go towards harder and harder corollaries, adding more
and more steps in the reasoning. These arguments will be used repeatedly
in the book. The easiest corollary is the following.

Corollary 4.20. Let p ∈ [0,1], q ≥ 1 and G a finite graph. For any
increasing event A and any boundary conditions ξ,

φ0
p,q,G(A) ≤ φξp,q,G(A) ≤ φ1

p,q,G(A). (4.13)

We sometimes say that for the stochastic order, the free and the wired
boundary conditions are extremal.
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Proof. The definition of the ordering implies immediately that 0 ≤ ξ ≤ 1.
◻

Combined with the domain Markov property, the comparison between
boundary conditions will allow us to decouple events as follows.

Corollary 4.21. Let p ∈ [0,1], q ≥ 1, a finite graph G and ξ some boundary
conditions on G. Let G1 and G2 be two subgraphs of G with disjoint sets
of edges. Then, for any increasing events A and B depending on edges of
G1 and G2 respectively,

φ0
p,q,G1

(A)φ0
p,q,G2

(B) ≤ φξp,q,G(A ∩B) ≤ φ1
p,q,G1

(A)φ1
p,q,G2

(B).

Proof. We treat the free boundary conditions. The wired boundary
conditions are handled similarly.

Let us first look at the conditional expectation φξp,q,G(B∣A). The event

A depends on edges in G1 only so that it can be seen as a subset Ã of
{0,1}EG∖EG2 . By partitioning A into events

Eψ = {ω(e) = ψ(e),∀e ∉ EG2} ⊂ {0,1}EG ,

where ψ ∈ Ã (the event Eψ corresponds to fixing the configuration outside
G2 to be equal to ψ), we obtain

φξp,q,G(B∣A) = ∑
ψ∈Ã

φξp,q,G(B∣Eψ)φξp,q,G(Eψ ∣A)

= ∑
ψ∈Ã

φξ
ψ

p,q,G2
(B)φξp,q,G(Eψ ∣A)

≥ φ0
p,q,G2

(B) ∑
ψ∈Ã

φξp,q,G(Eψ ∣A) = φ0
p,q,G2

(B).

We used the domain Markov property in the second line, the comparison
between boundary conditions in the third, and the fact that A is
partitioned into the events Eψ for ψ ∈ Ã in the last equality.

By exchanging the roles of A and B, one gets φξp,q,G(A∣B) ≥ φ0
p,q,G1

(A).
Setting B to be the full state-space {0,1}EG in this inequality gives

φξp,q,G(A) ≥ φ0
p,q,G1

(A). (4.14)

Therefore

φξp,q,G(A ∩B) = φξp,q,G(A)φξp,q,G(B∣A) ≥ φ0
p,q,G1

(A)φ0
p,q,G2

(B).

◻
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Example. Let A be an increasing event depending on edges in F ⊂ G only.
By applying the previous corollary (more precisely (4.14)), we find

φ0
p,q,F (A) ≤ φ0

p,q,G(A) and φ1
p,q,F (A) ≥ φ1

p,q,G(A). (4.15)

The use of the Markov property and the comparison between boundary
conditions sometimes requires to “push boundary conditions away”. We
illustrate this reasoning with the following fundamental example (note how
intuitive the statement is).

Lemma 4.22. Let p ∈ [0,1], q ≥ 1, k ≤ n and arbitrary boundary conditions
ξ on ∂Λn. For any increasing event A depending on edges in Λk only,

φξp,q,Λn(A ∣∂Λk /←→ ∂Λn) ≤ φ0
p,q,Λn(A).

Proof. Let C be the set of dual self-avoiding circuits γ = {γ0 ∼ γ1 ∼
⋅ ⋅ ⋅ ∼ γm ∼ γ0} on Λ⋆

n surrounding Λk. Define γ to be the subgraph of Λn
surrounded by γ ∈ C 2. Dual circuits in C are naturally ordered via the
following order relation: γ1 is “more exterior” than γ2 if γ2 is included in
γ1.

On the event {∂Λk /←→ ∂Λn}, define Γ to be the random-variable given
by the outermost dual-open circuit in C. Partition {∂Λk /←→ ∂Λn} into
the events {Γ = γ} for γ ∈ C to obtain

φξp,q,Λn(A ∣∂Λk /←→ ∂Λn) = ∑
γ∈C

φξp,q,Λn(A ∩ {Γ = γ}∣∂Λk /←→ ∂Λn)

= ∑
γ∈C

φξp,q,Λn(A∣Γ = γ)φξp,q,Λn(Γ = γ∣∂Λk /←→ ∂Λn).

For γ ∈ C, the event {Γ = γ} is measurable with respect to the edges in
EΛn ∖Eγ only. Indeed, Γ = γ if all the dual-edges of γ are open in ω⋆ and
if any other self-avoiding circuit which is more exterior that γ contains at
least one closed dual-edge in ω⋆.

The fact that {Γ = γ} is measurable with respect to edges in EΛn ∖Eγ
implies that the configuration inside γ follows the law of a random-cluster
model with some boundary conditions which we can identify easily: since
conditionally on {Γ = γ}, all dual-edges of γ are open in ω⋆, the boundary
conditions on the primal graph γ are free (all edges connecting a vertex of
the boundary of γ to a vertex outside γ are closed in ω). As a consequence,
one may rewrite

φξp,q,Λn(A∣Γ = γ) = φ0
p,q,γ(A) ≤ φ0

p,q,Λn(A),

where the inequality is due to the example following Corollary 4.21 applied
to F = γ and G = Λn.

2The graph γ is composed of the vertices and edges in the finite component of R2∖γ,
when γ is considered as a piecewise linear curve in the plane.



80 Hugo Duminil-Copin

Altogether, we find

φξp,q,Λn(A ∣∂Λk /←→ ∂Λn) ≤ ∑
γ∈C

φ0
p,q,Λn(A)φξp,q,Λn(Γ = γ∣∂Λk /←→ ∂Λn)

= φ0
p,q,Λn(A). (4.16)

In the last equality we used the fact that the sets {Γ = γ} for γ ∈ C
partition the set {∂Λk /←→ ∂Λn}. ◻

We will be using the strategy of the last proof quite often. Rather
than including all the details, we will say that we are conditioning on the
outermost closed circuit satisfying a certain condition (we will sometimes
do it with the outermost open circuit but it works the same).

In the previous argument, A and {∂Λk /←→ ∂Λn} are depending on a
disjoint set of edges but we only used the fact that on its intersection with
{Γ = γ}, the set A depends on edges in γ only. We will sometimes use the
previous argument for events that do not depend on disjoint edges a priori
but that satisfy this weaker condition instead. The following lemma will
both illustrate one important example and be useful several times in the
book.

Lemma 4.23. Let p ∈ [0,1], q ≥ 1 and 1 ≤ k ≤ n,

φ0
p,q,Λn (0←→ ∂Λk) ≤ ∑

m≥k
72m4 max

a∈{0}×[0,m]
b∈{m}×[0,m]

φ0
p,q,[0,m]2 (a←→ b) .

The interest of this lemma lies in the fact that on the right-hand side, a
and b are on the boundary of a graph with free boundary conditions (these
events will be easier to control, see later in the book).

Proof. For x = (x1, x2), define ∥x∥∞ = max{∣x1∣, ∣x2∣}.
Define C to be the connected component of the origin. Consider the

event that a and b are two vertices in C maximizing the ∥ ⋅ ∥∞-distance
between each other. Since these vertices are at maximal distance, they
can be placed on the two opposite sides of a square box Λ in such a way
that C is included in this box. Let Amax(a, b,Λ) the event that a and b are
connected in Λ and that their cluster is contained in Λ.

We now wish to estimate the probability of Amax(a, b,Λ). Let Λ⋆ be
the dual discrete domain associated to Λ 3. Let C be the set of dual self-
avoiding circuits γ = {γ0 ∼ γ1 ∼ ⋅ ⋅ ⋅ ∼ γm ∼ γ0} on Λ⋆ surrounding a and b.
As before, we denote by γ the interior of γ.

3Recall that it is the subgraph of (Z2)⋆ composed of dual-edges whose end-points
correspond to faces touching Λ (they can be included in Λ or simply share an edge with
it).
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On the event C, there exists γ ∈ C which is dual-open4, and a and b are
connected in γ. As before, we may condition on the outermost dual-open
circuit Γ in C. We deduce as in the last proof that

φξp,q,Λn(a←→ b in γ ∣Γ = γ) = φ0
p,q,γ(a←→ b in γ)

≤ φ0
p,q,Λ(a←→ b in γ)

≤ φ0
p,q,Λ(a←→ b)

and following the same two lines as in (8.20) (meaning that we partition
Amax(a, b,Λ) into the events {Γ = γ}), we find

φξp,q,Λn(Amax(a, b,Λ)) ≤ φ0
p,q,Λ(a←→ b)

and therefore

φξp,q,Λn(Amax(a, b,Λ)) ≤ max
a∈{0}×[0,m]
b∈{m}×[0,m]

φ0
p,q,[0,m]2 (a←→ b) , (4.17)

where m = ∥a − b∥∞.

We may now use the fact that if 0 is connected to distance k, there exist
a and b at distance m ≥ k of each others and a box Λ having a and b on
opposite sides such that Amax(a, b,Λ) occurs. Let us bound the number
of choices for a, b and Λ.

For a fixed m ≥ k, there are ∣Λm∣ = (2m+ 1)2 choices for a (since a must
be at distance smaller or equal to m from the origin). Then a must be on
the boundary of Λ and there are therefore ∣∂Λ∣ = 4m choices for Λ. The
number of choices for b is bounded by m + 1 (it must be on the opposite
sides of Λ). Therefore, for fixed m we can bound the number of possible
triples (a, b,Λ) by 4m(2m+1)2(m+1) ≤ 72m4. We have been very wasteful
in the previous reasoning and the bound on this number could be improved
greatly but this will be irrelevant for applications.

Overall, (4.17) and a union bound gives

φ0 (0↔ ∂Λk) ≤ ∑
m≥k

72m4 max
a∈{0}×[0,m]
b∈{m}×[0,m]

φ0
[0,m]2 (a←→ b) .

◻

4Note that this is true even when Λ = Λn since free boundary conditions can be seen
as dual-wired boundary conditions on Λ⋆

n, and that therefore ∂Λ⋆
n provides us with a

dual self-avoiding circuit in C which is dual-open. A similar reasoning applies when Λ
only shares some sides with Λn.
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4.5 Infinite-volume measures and phase
transition.

4.5.1 Definition of infinite-volume measures

The definition of an infinite-volume random-cluster measure is not direct.
Indeed, one cannot count the number of open or closed edges on (Z2,E)
since they could be (and would be) infinite. We thus define infinite-volume
measures indirectly: they are the measures which coincide, when restricted
to a finite box, with random-cluster measures in finite volume.

Definition 4.24. Let p ∈ [0,1] and q > 0. A probability measure
φ on {0,1}E is called an infinite-volume random-cluster measure with
parameters p and q if for every finite graph G and any configuration
ξ ∈ {0,1}E∖EG ,

φ(ω∣EG = η ∣ω(e) = ξ(e) ∶ ∀e ∉ EG) = φξp,q,G(η) , ∀η ∈ {0,1}EG , (4.18)

where ξ are the boundary conditions induced by the configuration ξ.

Remark 4.25. Note that the conditional probability on the left of
(4.18) is not properly defined for any ξ, since {ω(e) = ξ(e) ∶ e ∉ EG}
has probability 0, but this formula still determines the random variable
φ(ω∣EG = η ∣FE∖EG) (in particular because it depends on the partition
induced by ξ only, and that there are only finitely many such partitions).

Remark 4.26. Many properties of these infinite-volume measures can be
deduced from measures in finite volume thanks to (4.18). Often, we will
use a result in finite volume and then pass to the limit. When passing to
the limit is straightforward, we shall not mention it.

Proving the existence of an infinite-volume measure is not very difficult:
one may take a sequence of measures on Λn and take a sub-sequential
limit (the space of probability measures is compact). Nevertheless,
this construction is not very explicit and we prefer the following one.
The domain Markov property and the comparison between boundary
conditions allow us to construct two interesting infinite-volume measures
when q ≥ 1.

Proposition 4.27. Let q ≥ 1. There exist two (possibly equal)
infinite-volume random-cluster measures φ0

p,q and φ1
p,q, called the infinite-

volume random-cluster measures with free and wired boundary conditions
respectively, such that for any event A depending on a finite number of
edges,

lim
n→∞

φ1
p,q,Λn(A) = φ1

p,q(A) and lim
n→∞

φ0
p,q,Λn(A) = φ0

p,q(A).
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Proof. We deal with the case of free boundary conditions. Wired
boundary conditions are treated similarly. Fix an increasing event A
depending on edges in ΛN only. Applying (4.15) to F = Λn and G = Λn+1,
we find that for any n ≥ N ,

φ0
p,q,Λn+1

(A) ≥ φ0
p,q,Λn(A).

We deduce that (φ0
p,q,Λn

(A))n≥0 is increasing, and therefore converges to
a certain value P (A) as n tends to infinity.

Since the φ0
p,q,Λn

-probability of an event B depending on finitely many
edges can be written by inclusion-exclusion as a linear combination of the
φ0
p,q,Λn

-probability of increasing events, taking the same linear combination
defines a natural value P (B) for which

φ0
p,q,Λn(B)Ð→ P (B).

The fact that (φ0
p,q,Λn

)n≥0 are probability measures implies that the
function P (which is a priori defined on the set of events depending on
finitely many edges) can be extended into a probability measure on FE.
We denote this measure by φ0

p,q. ◻

The free and wired infinite-volume measures have special properties that
we describe now. Let τx ∶ {0,1}E → {0,1}E defined by

τxω({a, b}) = ω({a + x, b + x}) ∀{a, b} ∈ E.

Let τxA = {ω ∈ {0,1}E ∶ τxω ∈ A}. An event A is translational-invariant if
for any x ∈ Z2, τxA = A. A measure µ is invariant under translations if
µ(τxA) = µ(A) for any event A.

Theorem 4.28. Fix p ∈ [0,1] and q > 0. The measures φ1
p,q and φ0

p,q are
invariant under translations and any translational-invariant event A has
probability 0 or 1.

The second property is called ergodicity of the measure.

Proof. Let us treat the case of φ1
p,q. Let A be an increasing event

depending on finitely many edges and x ∈ Z2 which is a neighbor of the
origin (this will imply the result for every x ∈ Z2 by successive applications
of this result). We have

φ1
p,q(A) = lim

n→∞
φ1
p,q,Λn(A) = lim

n→∞
φ1
p,q,τxΛn(τxA).

Now, Λn−1 ⊂ τxΛn ⊂ Λn+1 and therefore (4.15) implies that

φ1
p,q,Λn+1

(τxA) ≤ φ1
p,q,τxΛn(τxA) ≤ φ1

p,q,Λn−1
(τxA)
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and thus
lim
n→∞

φ1
p,q,τxΛn(τxA) = φ1

p,q(τxA).

We conclude that φ1
p,q(A) = φ1

p,q(τxA) for any increasing event depending
on finitely many edges. Since the increasing events depending on finitely
many edges span the σ-algebra of measurable events, we obtain that φ1

p,q

is invariant under translations.
Since any (translation-invariant) events can be approximated by events

depending on finitely many edges, the ergodicity follows from the fact5

that for any events A and B depending on finitely many edges,

lim
∣x∣→∞

φ1
p,q(A ∩ τxB) = φ1

p,q(A)φ1
p,q(B).

Observe that by inclusion-exclusion, it is sufficient to prove the equivalent
result for A and B increasing and depending on finitely many edges. Let
us give ourselves these two increasing events A and B depending on edges
in ΛN only, and x ∈ Z2. The FKG inequality implies that

φ1
p,q(A ∩ τxB) ≥ φ1

p,q(A)φ1
p,q(τxB) = φ1

p,q(A)φ1
p,q(B).

In the other direction, the comparison between boundary conditions
implies that for ∣x∣ ≥ 2N ,

φ1
p,q(A ∩ τxB) ≤ φ1

p,q,Λ∣x∣/2
(A)φ1

p,q,τxΛ∣x∣/2
(τxB) = φ1

p,q,Λ∣x∣/2
(A)φ1

p,q,Λ∣x∣/2
(B).

In the equality, we used the invariance under translation. The result follows
by taking ∣x∣ to infinity.

The case of φ0
p,q follows by taking A and B decreasing instead of

increasing. ◻

The construction of φ1
p,q and φ0

p,q can be performed with many other
sequences of measures, as explained previously. It could also be possible
to see infinite-volume measures existing intrinsically, in the sense that they
are not limits of random-cluster measures in finite volume. We conclude
this section by discussing uniqueness criteria for these infinite-volume
measures.

Proposition 4.29. Let p ∈ [0,1] and q ∈ (0,∞). If φ1
p,q = φ0

p,q, then there
exists a unique infinite-volume measure with parameters p and q.

5Let us briefly justify this classical fact. Let C be an event which is invariant under
translation. Let ε > 0 and A be an event depending on finitely many edges such that
φ1
p,q(A∆C) ≤ ε. We deduce that

φ1
p,q(C) = φ1

p,q(C ∩τxC) = φ1
p,q(A∩τxA)+O(ε)Ð→ φ1

p,q(A)2 +O(ε) = φ1
p,q(C)2 +O(ε),

where the limit means x → ∞. Letting ε tend to 0 gives us that φ1
p,q(C) = φ1

p,q(C)2

and therefore φ1
p,q(C) ∈ {0,1}.
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Proof. Let φp,q be an infinite-volume measure. Equation (4.18) and
the comparison between boundary conditions implies that φ0

p,q,Λn
(A) ≤

φp,q(A) ≤ φ1
p,q,Λn

(A) for any n ≥ N and any increasing event A depending
on edges in ΛN only. Taking the limit as n tends to infinity, we find

φ0
p,q(A) ≤ φp,q(A) ≤ φ1

p,q(A).

Now if φ1
p,q = φ0

p,q, we deduce that φ0
p,q(A) = φp,q(A) = φ1

p,q(A). Since
increasing events depending on finitely many edges generate the σ-algebra,
we obtain that φ0

p,q = φp,q = φ1
p,q. ◻

The following theorem shows that the set of edge-weights for which
uniqueness fails is somehow small.

Theorem 4.30. For q ≥ 1, the set Dq of edge-weight p for which
uniqueness fails is at most countable.

The proof is based on the differentiability of the free energy.

Lemma 4.31. There exists a quantity, called the free energy, such that

f(p, q) = lim
n→∞

1

∣EΛn ∣
log [Zξp,q,Λn],

where the convergence holds uniformly in the choice of boundary conditions
ξ.

Proof. We will simplify the proof and present it only for the subsequence
of boxes of size 2n. The general case follows using the dyadic decomposition
of n. Define

fξn(p, q) =
1

∣EΛn ∣
log [Zξp,q,Λn].

Now,

Z1
p,q,Λ2n

= ∑
ω∈{0,1}EΛ2n

po(ω)(1 − p)c(ω)qk(ω
1)

≥ ∑
ω∈{0,1}EΛ2n

po(ω)(1 − p)c(ω)qk1(ω1)+⋅⋅⋅+k4(ω1)

= (Z1
p,q,Λn

)4
,

where k1(ω1), k2(ω1), k3(ω1) and k4(ω1) are the numbers of clusters
(counted with wired boundary conditions) in the graphs ω∣τ(−n,−n)Λn ,
ω∣τ(−n,n)Λn , ω∣τ(n,−n)Λn and ω∣τ(n,n)Λn .

Hence, the sequence (f1
2n(p, q))n≥0 is increasing and converges to a limit

denoted by f(p, q).
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Now, consider boundary conditions ξ. Since

k(ωξ) ≤ k(ω1) ≤ k(ωξ) + ∣∂Λn∣,

taking the logarithm and letting n go to infinity implies the convergence
to the same limit. ◻

Proof of Theorem 4.30. We will use the variable π defined by
π(p) = log[p/(1 − p)]. Also set pπ = eπ

1+eπ . We set f̃(π, q) and f̃ξn(π, q)
for f(pπ, q) − log(1 + eπ) and fξn(pπ, q) − log(1 + eπ). When differentiating

f̃ξn(π, q) =
1

∣EΛn ∣
log ( ∑

ω∈{0,1}EΛn

eπo(ω)qk(ω
ξ))

in π, we find

∂π f̃
ξ
n(π, q) =

1

∣EΛn ∣
∑
e∈Λn

φξpπ,q,Λn(ω(e) = 1)

which is increasing in p. As a consequence, f̃ξn(π, q) is convex, and
therefore its limit f̃(π, q) also is. This immediately implies that f̃(π, q) is
differentiable except for at most countably many points.

Let us now prove that φ0
pπ,q(ω(e) = 1) = φ1

pπ,q(ω(e) = 1) for values of π

for which f̃(π, q) is differentiable. Since f̃1
n(π, q) is convex, differentiable

in π and increasing to f̃(π, q), we deduce that

lim
ε↘0

f̃(π + ε, q) − f̃(π, q)
ε

= lim
n→∞

1

∣EΛ2n
∣ ∑
e∈EΛ2n

φ1
pπ,q,Λ2n

(ω(e) = 1)

= φ1
pπ,q(ω(e) = 1).

The first equality is due to a general fact about convex functions, and the
second equality to the invariance under translations and the convergence
of φ1

pπ,q,Λ2n
to φ1

pπ,q. Similarly, one may prove that f̃0
n(π, q) is decreasing

to f̃(π, q) and therefore

lim
ε↘0

f̃(π − ε, q) − f̃(π, q)
−ε

= φ0
pπ,q(ω(e) = 1).

Putting these two facts together, we obtain that at any point of
differentiability in π of f̃(π, q),

φ1
pπ,q(ω(e) = 1) = φ0

pπ,q(ω(e) = 1). (4.19)



Chapter 4. Basic properties of the 2D random-cluster model 87

We are close to the end of the proof. We need to prove that (4.19)
implies that the infinite volume measure is unique at pπ. Proposition 4.29
shows that it is sufficient to prove that φ0

pπ,q = φ
1
pπ,q. Recall that φ0

pπ,q,Λn

is stochastically dominated by φ1
pπ,q,Λn

. In other words, there exists a

coupling Pn with marginals φ0
pπ,q,Λn

and φ1
pπ,q,Λn

such that Pn(ω1 ≤ ω2) =
1. By passing to the limit we obtain a coupling P with marginals φ0

pπ,q

and φ1
pπ,q. Let us consider an increasing event A depending on a finite set

E of edges. We find

0 ≤ φ1
pπ,q(A) − φ0

pπ,q(A) = P(ω2 ∈ A and ω1 ∉ A)
≤ P(∃e ∈ E ∶ ω2(e) = 1 and ω1(e) = 0)
≤ ∑
e∈E

P(ω2(e) = 1 and ω1(e) = 0)

= ∑
e∈E

φ1
pπ,q(ω(e) = 1) − φ0

pπ,q(ω(e) = 0) = 0.

Since φ1
pπ,q(A) = φ0

pπ,q(A) for any increasing event A depending on finitely
many edges, we deduce the claim. ◻

Remark 4.32. It will sometimes be convenient to work in an infinite
subgraph G of Z2. Let ξ be some boundary conditions for G. We define
the random-cluster measure in G with boundary conditions ξ on ∂G, wired
at infinity as the monotone limit

φ1,ξ
G = limφξnG∩Λn

, (4.20)

where the boundary conditions ξn are wired on the boundary intersecting
∂Λn, and defined by ξ on the rest of the boundary. We define similarly
the measure φ0,ξ

G with free boundary conditions at infinity.

Remark 4.33. One example of infinite set that will come back several
times in this book is the strip Sn = Z × [0, n]. The finite energy property
(Proposition 4.4) implies that for any p < 1, there exists c = c(p) > 0 such
that each vertical segment {k}× [0, n] (k ∈ Z) is composed of closed edges
only with probability larger or equal to c, and this independently of the
state of the other edges. We easily deduce that there is no infinite cluster
in Sn almost surely, independently of p < 1 and of the boundary conditions.
Also, φ0,ξ

Sn = φ1,ξ
Sn for any boundary conditions ξ.

4.5.2 Critical point

We are now in a position to discuss the phase transition of the random-
cluster model.
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Theorem 4.34. There exists a critical point pc ∈ [0,1] such that:
� For p < pc, any infinite-volume measure has no infinite cluster almost

surely.
� For p > pc, any infinite-volume measure has an infinite cluster almost

surely.

Proof. Let us define

pc = inf{p ∈ [0,1] ∶ φ0
p,q(0↔∞) > 0}.

Since the event 0 ↔∞ is increasing, we deduce that φ0
p,q(0 ↔∞) > 0 for

any p > pc. Ergodicity implies that

φ0
p,q(there exists an infinite cluster) = 1.

Furthermore, Proposition 4.29 implies that this claim is true for any
infinite-volume measure, since φ0

p,q is the smallest among all of them.
On the other hand, let p < pc. There exists p < p0 < pc such that there

is a unique infinite-volume measure at p0 (since the set Dq is at most
countable). We deduce that for any infinite-volume measure φp,q and any
x ∈ Z2

φp,q(x↔∞) ≤ φ1
p,q(x↔∞) ≤ φ1

p0,q(x↔∞) = φ0
p0,q(x↔∞) = 0

by uniqueness of the measure at p0 and p0 < pc. The claim follows by
taking the union over all x ∈ Z2. ◻

Remark 4.35. In order to complete the picture of the existence of a phase
transition, we should prove that pc lies strictly between 0 and 1. The
most elementary argument would be an extension of the famous Peierls
argument [Pei36]. Since we will compute the critical value explicitly in
the next chapter, and since the Peierls argument will be presented in its
original context (the Ising model) in Section 7.5.3, we do not spend more
time on it now.

We do not resist the pleasure of presenting one of the most beautiful
arguments in probability theory, namely the Burton-Keane argument. Let
` ∈ N ∪ {∞}. Define E` to be the event that there exist exactly ` distinct
infinite clusters.

Proposition 4.36 (Uniqueness of the infinite cluster [BK89]). Fix
p ∈ [0,1] and q ≥ 1. For any ` ≥ 2, we have that φ1

p,q(E`) = φ0
p,q(E`) = 0.

In other words, either there is no infinite cluster almost surely, or there
is a unique infinite cluster almost surely.
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Proof. We present the proof in the case of ξ = 0. The case of ξ = 1 is
treated similarly.

Step 1: proof of φ0
p,q[E`] = 0 for 2 ≤ ` <∞. Let ` ≥ 2. Let Fn be the

event that the ` infinite clusters intersect Λn. Fix N large enough that
φ0
p,q[FN ] ≥ 1

2
φ0
p,q[E`]. Since FN depends on edges outside ΛN only, the

finite-energy property (Proposition 4.4) implies that

φ0
p,q[FN ∩ {ω(e) = 1,∀e ∈ ΛN}] ≥ c

2
φ0
p,q[E`].

Any configuration in the event on the left contains exactly one infinite
cluster since all the vertices in ΛN are connected. Therefore,

φ0
p,q[E1] ≥ c

2
φ0
p,q[E`].

Ergodicity implies that φ0
p,q[E`] and φ0

p,q[E1] are equal to 0 or 1, therefore

φ0
p,q[E`] = 0.

Step 2: proof of φ0
p,q[E∞] = 0. Assume that φ0

p,q[E∞] > 0 and consider
N > 0 large enough that

φ0
p,q[three distinct infinite clusters intersect the box ΛN ] > 0.

The finite-energy property (Proposition 4.4) implies that φ0
p,q[CT0] > 0,

where CT0 is the following event:
� all vertices in ΛN are connected to each other in ΛN ,
� if C is the cluster of 0, then C ∩ (Zd ∖ ΛN) contains at least three

distinct infinite connected components.
A vertex x ∈ (2N + 1)Zd is called a coarse trifurcation if τxCT0 =∶ CTx
occurs. By invariance under translation, φ0

p,q[CTx] = φ0
p,q[CT0].

Fix n ≫ N . The set T of coarse trifurcations in Λn has a natural
structure of forest F constructed inductively as follows.

Step 1: At time 0, all the vertices in T are unexplored.

Step 2: If there does not exist any unexplored vertex in T left, the
algorithm terminates. Otherwise, pick an unexplored vertex
t ∈ T and mark it explored (by this we mean that it is not
considered as an unexplored vertex anymore). Go to Step 3.

Step 3: Consider the cluster Ct of vertices x ∈ Zd connected to t in
Λn. This cluster decomposes into k ≥ 3 disjoint connected
components of Zd ∖ (x + ΛN) denoted by C(1), . . . ,C(k). For
i = 1 . . . k, do the following

– if there exists a vertex x ∈ C(i) ∩ ∂Λn and there exists an
open path in Λn going from x to t and not passing at
distance N from a coarse-trifurcation in C(i) ∩ (T ∖ {t}),
then add the vertex x to F together with the edge {t, x}.
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– if there is no such vertex, then there must be a coarse-
trifurcation s connected by an open path not passing at
distance N from a trifurcation in C(i) ∩ (T ∖ {t, s}). If s
is not already a vertex of F , add it. Then, add the edge
{t, s}.

Step 4: Go to Step 2.

The graph obtained is a forest (due to the structure of coarse-trifurcations).
Each coarse-trifurcation corresponds to a vertex of the forest of degree at
least three. Thus, the number of coarse-trifurcations must be smaller than
the number of leaves N of the forest. Taking the expected number of
coarse-trifurcations, we find

φ0
p,q[CT0]

(2n + 1)2

(2N + 1)2
≤ φ0

p,q[N ]. (4.21)

Yet, leaves are vertices of ∂Λn, thus

φ0
p,q[N ] ≤ 8n

which gives

0 <
φ0
p,q[CT0]

(2N + 1)2
≤
φ0
p,q[N ]

(2n + 1)2
Ð→ 0 as n→∞.

This contradicts φ0
p,q[CT0] > 0 and therefore φ0

p,q[E∞] > 0. The claim
follows. ◻

Remark 4.37. The original Burton-Keane argument does not invoke
the notion of coarse trifurcation, but simply trifurcation (which would
correspond to N = 0). There is a tiny difficulty when working with
trifurcations (some rewiring construction) that we avoid when working
with coarse-trifurcations, at the cost of a slight loss in elegance.

4.5.3 The inequality pc ≥ psd

Overall, the existence of a critical point is not completely direct.
Nevertheless, it is now a classical fact which is well understood in many
models. The computation of the critical point on the other hand is a
much harder task and the existence of a nice formula for pc(q) is not even
obvious in general. For the random-cluster model on the square lattice, it is
nevertheless natural to conjecture that the critical point satisfies pc = psd.

Let us start by a lower bound for the critical value which can be derived
using an elegant argument (due to Zhang in the case of percolation) based
on the uniqueness of the infinite cluster
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Proposition 4.38. For q ≥ 1, there exists almost surely no infinite cluster
at psd(q) for the infinite-volume measure with free boundary conditions. As
a consequence, psd(q) ≤ pc(q).

Proof. Let ε ≪ 1. Assume that φ0
psd,q

(0 ↔ ∞) > 0 and choose n large
enough that

φ0
psd,q

(Λn ↔∞) > 1 − ε.

The integer n exists since the infinite cluster exists almost surely (therefore
the quantity on the left tends to 1 as n tends to infinity).

Let Aleft (resp. Aright, Atop and Abottom) be the events that {−n} ×
[−n,n] (resp. {n}×[−n,n], [−n,n]×{n} and [−n,n]×{−n}) are connected
to infinity in the complement of Λn. By symmetry,

φ0
psd,q

(Aleft ∪Aright) = φ0
psd,q

(Atop ∪Abottom)

and
φ0
psd,q

(Aleft) = φ0
psd,q

(Aright).

We also find that

φ0
psd,q

(Aleft ∪Aright ∪Atop ∪Abottom) = φ0
psd,q

(Λn ↔∞) > 1 − ε.

We can thus invoke the square-root trick (4.11) twice to obtain that

φ0
psd,q

(Aleft) ≥ 1 − ε1/4.

As a consequence,

φ0
psd,q

(Aleft ∩Aright) ≥ 1 − 2ε1/4.

We now use that p⋆sd = psd. Note that the dual measure stochastically
dominates the primal one since the dual measure of φ0

psd,q
is φ1

psd,q
6. In

particular, let A⋆
top and A⋆

bottom be the events that [−(n+ 1
2
), n+ 1

2
]×{n+ 1

2
}

and [−(n− 1
2
), n+ 1

2
]×{−(n+ 1

2
)} are dual-connected to infinity using edges

outside E⋆
Λn

= {e⋆ ∶ e ∈ EΛn}. Following the same argument as for the
primal model, we find that

φ1
psd,q

(A⋆
top ∩A⋆

bottom) ≥ 1 − 2ε1/4.

Putting all these facts together, we obtain

φ0
psd,q

(Aleft ∩Aright ∩A⋆
top ∩A⋆

bottom) > 1 − 4ε1/4.

6One can easily see that the duality relation between free and wired boundary
conditions extends to infinite volume by looking at measures on Λn and letting n go to
infinity
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0∞

∞

∞

∞

Figure 4.2: In this configuration, two infinite clusters (in bold) coexist.

Now, Let B be the event that every dual-edge in E⋆
Λn

is open in ω⋆.
The events B and Aleft ∩ Aright ∩ A∗

top ∩ A∗
bottom depend on disjoint sets.

The finite-energy property (Proposition 4.4) implies that

φ0
psd,q

(B ∩Aleft ∩Aright ∩A∗
top ∩A∗

bottom) > 0,

see Fig. 4.2. But this last event is contained in the event that there
are two disjoint infinite clusters, which we excluded, thus leading to a
contradiction. ◻

Remark 4.39. The much more difficult inequality pc ≤ psd will be proved
in Chapter 5.

Let us conclude this chapter by a useful corollary.

Corollary 4.40. Fix q ≥ 1. The unique edge-weight p ∈ [0,1] for which
there can exist distinct infinite-volume measures is psd(q).

Remark 4.41. From now on, when p ≠ psd(q), the unique infinite-volume
measure with parameters (p, q) is denoted by φp,q. This measure can be
equivalently thought of as φ0

p,q or φ1
p,q.
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Proof. By Proposition 4.29, we only need to prove that φ0
p,q = φ1

p,q. Fix
p < psd and an increasing event A depending on a finite number of edges
(all included in the box of size say k). For N ≥ n ≥ k, Lemma 4.22 (in fact
a trivial modification of it) implies that

φ1
p,q,ΛN

(A ∩ {∂Λk /←→ ∂Λn}) ≤ φ0
p,q,Λn(A)φ1

p,q,ΛN
(∂Λk /←→ ∂Λn).

Letting N tends to infinity, we find that

φ1
p,q(A ∩ {∂Λk /←→ ∂Λn) ≤ φ0

p,q,Λn(A)φ1
p,q(∂Λk /←→ ∂Λn).

Since p < psd(q) ≤ pc(q) (by Proposition 4.38), the term on the right tends
to φ0

p,q(A) as n tends to infinity. The left-hand side tends to φ1
p,q(A).

Therefore, we have φ1
p,q(A) ≤ φ0

p,q(A). Since the other inequality is trivial

by stochastic domination, we find that φ1
p,q(A) = φ0

p,q(A) for any increasing
event A depending on finitely many edges. Since these events generate the
whole algebra of measurable events, we obtain that φ1

p,q = φ0
p,q.

For p > psd, we use that the dual measures of φ1
p,q and φ0

p,q are

respectively φ0
p⋆,q and φ1

p⋆,q. Since these two measures are equal, we deduce

that φ1
p,q = φ0

p,q in this case as well. ◻



Chapter 5

RSW theory for the
random-cluster model
with q ≥ 1

Motivated by the fact that critical exponents of the random-cluster model
may be obtained by studying fractal properties of the critical phase (see
the introduction for more details), we now focus on the global geometry of
big clusters in a large box. Obviously, keeping track of all long open paths
in a box would be inefficient, and we are therefore looking for a better
way of encoding the information. In the nineties, Aizenman suggested to
consider only the information that some subdomains Ω with four points
a, b, c and d on their boundary contain “an open path from the arc ab
to the arc cd staying in Ω” or not. If one possesses this information for a
sufficiently large family of subdomains (for instance, one may look at those
which are roughly of the size of the box), one understands the geometry
of the big clusters fairly well.

This (vague) discussion motivates our interest in so-called crossing
events. For simplicity, we will restrict our attention to subdomains which
have a rectangular shape (we will treat more general shapes in Chapter 10).

Definition 5.1. A rectangle R is a graph of the form [a, b] × [c, d]. For a
rectangle R = [a, b]× [c, d], let Cv(R) denote the event that there exists an
open path from top to bottom in R, i.e. from [a, b] × {c} to [a, b] × {d}.
Such a path is called a vertical (open) crossing of the rectangle.

Similarly, define Ch(R) to be the event that there exists an open path
from left to right in R. Such a path is called an horizontal (open) crossing
between the left and the right sides.

94
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When the configuration is supercritical (p > pc), one may easily check
that most rectangles are crossed vertically and horizontally provided that
they are big enough1 (the infinite cluster will then visit the rectangle
with large probability). On the contrary, when the model is subcritical
(p < pc), one may prove (it is the object of Theorem 5.18) that the largest
cluster in a box of size n is of size O(logn) with large probability. In
particular, the probability that a rectangle of the size of the box is crossed
vertically or horizontally is very small (see Remark 5.20). Thus, the phase
at p = pc seems to be of specific interest for crossing events. We will see
in this chapter that in such case, the probability of crossing for rectangles
remains bounded away from 0 and 1 provided that the aspect ratio of these
rectangles remains bounded away from 0 and ∞. Note that in our case,
pc is expected to be psd.

The most important result of this chapter will be a proof that for p = psd
and α > 0, the probability of Ch([0, αn] × [0, n]) remains bounded away
from 0 or 1 uniformly in n. This result extends the Russo-Seymour-
Welsh (RSW) theory available for Bernoulli percolation. This theory
started with the articles [Rus78] and [SW78] on percolation (also see the
more recent approaches of Bollobas and Riordan [BR06a, BR10, BR06c]).
Nevertheless, all known approaches are based on independence. In the
random-cluster model with q > 1, the dependence inherent in the model
forces us to develop new arguments. In particular, specific boundary
conditions will be easier to handle and we will start by periodic boundary
conditions. Later in the chapter, we will treat general boundary conditions.

The chapter is organized as follows. Section 5.1 is devoted to the
development of the RSW theory for periodic boundary conditions. In
Section 5.2, we present the most important application of this theory: the
determination of the critical value pc =

√
q/(1 +√

q). In Section 5.3, we
show exponential decay of correlations in the subcritical phase. Section 5.4
presents a more general version of the RSW theory. This improved theory
represents a milestone in the theory of the critical random-cluster model
for q ≥ 1 and one important application is directly presented in Section 5.5.

Remark 5.2. The Russo-Seymour-Welsh theory usually refers to a
specific aspect of the study of probabilities of crossings: namely the
fact that the probability of crossing vertically a rectangle of the form
[0, n] × [0, αn] with α > 0 can be expressed in terms of the probability
of crossing vertically the rectangle [0, n]× [0, βn] with β < α in such a way
that if the later remains bounded away from 0 in n, so does the former.
In this book, we will allow ourselves some latitude and simply refer to the
Russo-Seymour-Welsh theorem as being the fact that crossing probabilities
remain bounded away from 0 and 1 provided that α is fixed.

1And also that their aspect ratio is not to small or too big, see Remark 5.20.
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5.1 RSW theory for periodic boundary
conditions

The following theorem states that, at the self-dual point, the probability of
crossing a rectangle horizontally is bounded away from 0 uniformly in the
sizes of both the rectangle and the torus provided that the aspect ratio of
the rectangle remains constant. The size of the ambient torus is denoted
by m.

Theorem 5.3 (Beffara, Duminil-Copin [BDC12a]). Let α > 1 and q ≥ 1.
There exists c(α) > 0 such that for every m > αn > 0,

c(α) ≤ φper
psd,q,m

(Ch([0, αn] × [0, n])) ≤ 1 − c(α). (5.1)

By invariance under rotations, we obtain similar bounds for crossings from
bottom to top.

The periodic boundary conditions are not helping the existence of a dual-
open crossing from top to bottom that would be preventing the existence
of an open crossing from left to right, in the sense that the dual model also
has periodic boundary conditions2. Therefore, it is natural to expect such
a result to hold at least for a square shape (this statement will in fact be
easy to prove, see Lemma 5.7). The difficult part of the proof will be to
extend this result to aspect ratio α ≠ 1.

Remark 5.4. Note that even for α = 1, the above result would not
necessarily be true when working with free boundary conditions for
example, since the dual model would have wired boundary conditions,
and it could be that the existence of a dual-open crossing from top to
bottom would be much more likely than the existence of a open crossing
from left to right (even if α≪ 1). We will discuss this phenomenon in the
next chapters.

Theorem 5.3 implies a similar result for the infinite-volume random-
cluster measure with wired boundary conditions3.

Corollary 5.5. Let α > 1 and q ≥ 1; there exists c(α) > 0 such that for
every n ≥ 1,

φ1
psd,q

[Ch([0, αn] × [0, n])] ≥ c(α). (5.2)

2As least when working with the balanced model, see Section 4.3.2.
3Note that in this case also, the dual model has free boundary conditions, and

therefore the probability that there exists a dual crossing is a priori smaller than the
probability of primal crossings.
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Proof. Let α > 1 and m > 2αn > 0. Using the invariance under
translations of φper

psd,q,m
and comparison between boundary conditions, we

have

φ1
psd,q,Λm/2

[Ch([0, αn] × [0, n])] ≥ φp
psd,q,m

[Ch([0, αn] × [0, n])] ≥ c(α).

When m goes to infinity, we find

φ1
psd,q

[Ch([0, αn] × [0, n])] ≥ c(α).

◻

We now focus on the proof of Theorem 5.3 and we work on the torus of
size m. For technical reasons, it will be convenient to rotate the lattice
in this torus by π/4 for the reminder of this section. In such case,
the graph [0, αn]×[0, n] is then the intersection of the rotated lattice with
the rectangle [0, αn]× [0, n] (when seen as a subset of R2). The definition
of the events Ch and Cv is extended to this context (we still go from left
to right, and from top to bottom). We will prove the following result.

Proposition 5.6. Let q ≥ 1. There exists c > 0 such that for every
m > 3

2
n > 0,

φper
psd,q,m

(Ch([0, 3
2
n] × [0, n])) ≥ c. (5.3)

Let us explain how this result implies Theorem 5.3.

Proof of Theorem 5.3. We use Proposition 5.6. Let us emphasize once
again that in the statement and also in this proof, the lattice is rotated by
π/4. Let R = T ([0, n]×[0, αn]), where T is the composition of the rotation
of angle π/4 and the translation of vector (n

2
,0), see Figure 5.1. Define

the following rectangles:

Rvj = [j n
4
, (j + 1)n

4
] × [j n

4
, (j + 3

2
)n

4
],

Rhj = [j n
4
, (j + 3

2
)n

4
] × [(j + 1

2
)n

4
, (j + 3

2
)n

4
],

for j ∈ [0, ⌊4
√

2α⌋ + 4], where ⌊x⌋ denotes the integer part of x. If every
rectangle Rhj is crossed horizontally, and every rectangle Rvj is crossed
vertically, then T ([0, αn] × [0, n]) is crossed in the long direction. The
FKG inequality and Proposition 5.6 provide us with a lower bound on the
crossing probability.

Now, the graph T ([0, αn] × [0, n]) is isomorphic to the rectangle
[0, αn] × [0, n] when the lattice is not rotated. This concludes the proof.
◻

The proof of Proposition 5.6 begins with a lemma, which corresponds
to the existence of c(1) and is based on the self-duality of the (balanced)
random-cluster measures on the torus. This lemma is the starting point
for any attempt to obtain bounds on crossing probabilities.
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Rh0

Rv1 R

0

3n
8

n
4

n√
2

n√
2

Figure 5.1: A combination of crossings in smaller rectangles creating a
crossing of a very long rectangle.

Lemma 5.7. Let q ≥ 1, there exists c(1) = c(1, q) > 0 such that for every
m > n ≥ 1, φper

psd,q,m
(Ch([0, n]2)) ≥ c(1).

Proof. We will use the balanced random-cluster measure φ̃per
psd,q,m

on the

torus of size m. Note that the dual of the subgraph of Z2 induced by [0, n]2
is the subgraph of (Z2)⋆ induced by [0, n]2 (the latter graph is isomorphic
to the former), see Figure 5.2. If there is no open crossing from left to
right in [0, n]2, there exists necessarily a dual-open crossing from top to
bottom in the dual configuration. Hence, the complement of Ch([0, n]2) is
the event C⋆v ([0, n]2) that there exists a vertical dual-open dual path from
top to bottom in [0, n]2 (this dual-open path prevents the existence of an
horizontal open crossing), thus yielding

φ̃per
psd,q,m

(Ch([0, n]2)) + φ̃per
psd,q,m

(C⋆v ([0, n]2)) = 1.

Using the duality property for periodic boundary conditions and the
symmetry of the lattice, the probability φ̃per

psd,q,m
(C⋆v ([0, n]2)) is equal to

φ̃per
psd,q,m

(Ch([0, n]2)), giving

φ̃per
psd,q,m

(Ch([0, n]2)) = 1/2.
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e

Figure 5.2: The square [0, n]2 and its dual. The event Ch([0, n]2) is
occurring. If the right edge e is turned to closed, then C⋆v ([0, n]2) occurs.

Using the fact that the Radon-Nykodym derivative of the random-cluster
model with respect to the balanced random-cluster model is bounded by
a constant depending on q only, the result follows. ◻

The only major difficulty is now to prove that rectangles of aspect ratio
α are crossed in the horizontal direction — with probability uniformly
bounded away from 0 — for α = 3

2
. There are many ways of proving this

in the case of percolation. Nevertheless, these strategies always involve
independence in a crucial way. In our case, independence fails, thus a new
argument is needed. The main idea is to invoke self-duality in order to
force the existence of crossings, even in the case where boundary conditions
could look disadvantageous. In order to do that, we introduce the following
family of domains, which are in some sense nice symmetric domains.

Define the line d ∶= {(x, y) ∶ x = −
√

2/4}. The orthogonal symmetry σd
with respect to this line maps eiπ/4Z2 to eiπ/4(Z2)⋆. Let γ1 and γ2 be two
paths on eiπ/4Z2 satisfying the following Hypothesis (⋆) (see Figure 5.3):
� γ1 remains on the left of d and γ2 remains on the right;



100 Hugo Duminil-Copin

d = −
√

2
4 + iR

γ2

γ1

σd(γ2)

σd(γ1)

G(γ1, γ2)

free on this arc

Figure 5.3: Two paths γ1 and γ2 satisfying Hypothesis (⋆) and the graph
G(γ1, γ2).

� γ2 begins at 0 and γ1 begins on a vertex of eiπ/4Z2 ∩ d′, where
d′ = {(x, y) ∶ x = −

√
2/2};

� γ1 and σd(γ2) do not intersect (as curves in the plane);
� γ1 and σd(γ2) end at two vertices (one primal and one dual) which

are at distance
√

2/2 from each other.
Note that σd(γ1) and σd(γ2) are paths on eiπ/4(Z2)⋆. The definition
extends trivially via translation, so that the pair (γ1, γ2) is said to satisfy
Hypothesis (⋆) if one of its translations does.

When following the paths in counter-clockwise order, one can create
a circuit by linking by a straight line the end points of γ1 and σd(γ2),
the start points of σd(γ2) and γ2, the end points of γ2 and σd(γ1), and
the start points of σd(γ1) and γ1. Constructed like that, the circuit
(γ1, σd(γ2), γ2, σd(γ1)) surrounds a set of vertices. Define the graph
G(γ1, γ2) composed of the vertices that are surrounded by the circuit
(γ1, σd(γ2), γ2, σd(γ1)), and of edges that remain entirely within the circuit
(boundary included).

The mixed boundary conditions on this graph are wired on γ1 (all
the edges are pairwise connected), wired on γ2, and free elsewhere.
The measure on G(γ1, γ2) with parameters (psd, q) and mixed boundary
conditions is denoted by φpsd,q,γ1,γ2 or more simply φγ1,γ2 .

Lemma 5.8. For any pair (γ1, γ2) satisfying Hypothesis (⋆), the following
estimate holds:

φγ1,γ2(γ1 ←→ γ2) ≥
1

1 + q2
,

where γ1 ↔ γ2 means that γ1 and γ2 are connected inside G(γ1, γ2).
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Proof. On the one hand, if γ1 and γ2 are not connected in ω, σd(γ1) and
σd(γ2) must be connected by a dual path in ω⋆ (this event corresponds to
σd(γ1)←→ σd(γ2) in the dual model). Hence,

1 = φγ1,γ2(γ1 ←→ γ2) + σd ∗ φ⋆γ1,γ2
(γ1 ←→ γ2), (5.4)

where σd ∗ (φ⋆γ1,γ2
) denotes the image under σd of the dual measure of

φγ1,γ2 . This measure lies on G(γ1, γ2) as well and has parameters (psd, q).
As explained in Section 4.3.1, the dual boundary conditions of the mixed

boundary conditions wired on γ1 and γ2, and free elsewhere are wired
on γ1 ∪ γ2 and free elsewhere (observe that we went to the dual model
and then used the reflection σd). It is very important to notice that the
boundary conditions are not exactly the mixed one, since γ1 and γ2 are
wired together. Nevertheless, the Radon-Nikodym derivative of σd ∗φ⋆γ1,γ2

with respect to φγ1,γ2 is easy to bound. Indeed, for any configuration ω,
the number of clusters can differ only by 1 when counted in σd ∗ φ⋆γ1,γ2

or
φγ1,γ2 so that the ratio of partition functions belongs to [1/q, q]. Therefore,
the ratio of probabilities of the configuration ω remains between 1/q2 and
q2. This estimate extends to events by summing over all configurations.
Therefore,

σd ∗ φ⋆γ1,γ2
(γ1 ←→ γ2) ≤ q2φγ1,γ2(γ1 ←→ γ2).

When plugging this inequality into (5.4), we obtain

φγ1,γ2(γ1 ←→ γ2) + q2φγ1,γ2(γ1 ←→ γ2) ≥ 1

which implies the claim. ◻

Remark 5.9. The most important example (on the rotated lattice)
of a symmetric domain is the rotated version of a square (it has a ◇
shape). When rotating back the shape and the lattice, we obtain a
“standard” square with wired/free/wired/free boundary conditions (i.e.
mixed boundary conditions) and we thus obtain the following useful
inequality on the square lattice: for every n ≥ 1,

φmixed
pc,q,[0,n]2 (Ch([0, n]2) ≥

1

1 + q2
. (5.5)

We are now in a position to prove Proposition 5.6.

Proof of Proposition 5.6. The proof goes as follows: we start with
creating two paths crossing square boxes, and we then prove that they are
connected with good probability.
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Step 1: setting of the proof. Consider the rectangle R = [0,3n/2] ×
[0, n] which is the union of the rectangles R1 = [0, n] × [0, n] and
R2 = [n/2,3n/2] × [0, n], see Figure 5.4. Let A be the event defined by
the following conditions:

� R1 and R2 are both crossed horizontally (these events have
probability at least c(1) to occur, using Lemma 5.7);

� [n/2, n]×{0} is connected inside R2 to the top side of R2 (this event
has probability greater than c(1)/2 to occur using symmetry and
Lemma 5.7).

Employing the FKG inequality, we deduce that

φper
psd,q,m

(A) ≥ c(1)
3

2
. (5.6)

When A occurs, define Γ1 to be the top-most open self-avoiding path
crossing R1 horizontally, and Γ2 the right-most open self-avoiding path
crossing R2 from [n/2, n] × {0} to the top side. Note that this path is
automatically connected by an open path to the right-hand side of R2 —
which is the same as the right-most side of R. In particular, if Γ1 and
Γ2 are connected, then there exists a horizontal crossing of R. In the
following, Γ1 and Γ2 are shown to be connected with good probability.

Step 2: the reflection argument. Assume first that Γ1 = γ1 and
Γ2 = γ2, and that they do not intersect. Let x be the vertex at the right
end of γ1 (it is the unique vertex in γ1 which is on the right side of R1). We
wish to define a set G0(γ1, γ2) similar to those considered in Lemma 5.8.
Apply the following “surgical procedure” (see Figure 5.4 to help visualize):

� First, define the symmetric paths σd(γ1) and σd(γ2) of γ1 and γ2

with respect to the line d ∶= {(x, y) ∶ x = n −
√

2/4}.

� Then, parametrize the path σd(γ1) by the number of steps (along
the path) from the starting point σd(x) and define γ̃1 ⊂ γ1 so that
σd(γ̃1) is the part of σd(γ1) between the beginning of the path and
the first time it intersects γ2. As before, the paths are considered as
curves of the plane. Denote the intersection point of the two curves
by z. Note that γ1 and γ2 do not intersect, which forces σd(γ1) and
γ2 to do.

� From this, parametrize the path γ2 by the distance to its “starting
point” on [n

2
, n]×{0} and set y to be the last visited vertex in ei

π
4 Z2

before the intersection z. Define γ̃2 to be the part of γ2 between the
last point intersecting {n} × [0, n] before y and y itself.
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γ1

γ2

G0(γ̃1, γ̃2)

σd(γ̃1)

σd(γ1)

G(γ̃1, γ̃2)

σd(γ̃2)

x
γ̃1

γ̃2

σd(γ2)

y
z

Figure 5.4: The light gray area denotes the edges of R on which the event
{Γ1 = γ1} ∩ {Γ2 = γ2} depend. The dark gray is the domain G0(γ̃1, γ̃2).
All the paths involved in the construction are depicted. Note that dashed
curves are “virtual paths” of the dual lattice obtained by the reflection σd:
they are not necessarily dual open.

� Paths γ̃1 and γ̃2 satisfy Hypothesis (⋆) so that the graph G(γ̃1, γ̃2)
can be defined.

� Construct a sub-graph G0(γ̃1, γ̃2) of G(γ̃1, γ̃2) as follows: the
edges are given by the edges of eiπ/4Z2 included in the connected
component of G(γ̃1, γ̃2) ∖ (γ1 ∪ γ2) (i.e. G(γ̃1, γ̃2) minus the set
γ1 ∪ γ2) containing d (it is the connected component which contains
x − (0, ε), where ε > 0 is a very small number), and the vertices are
given by their endpoints.

Step 3: conditional probability estimate. Still assuming that γ1

and γ2 do not intersect, we would like to estimate the probability of γ1

and γ2 being connected by a path knowing that Γ1 = γ1 and Γ2 = γ2. The
very important fact here is that {Γ1 = γ1} ∩ {Γ2 = γ2} is measurable in
terms of edges above or on γ1 and on the right of or on γ2. In particular,
the event is measurable in terms of edges outside G(γ̃1, γ̃2) and edges in
γ1 and γ2 (This is the same argument as the outermost dual-circuit in
the proof of Corollary 4.21). Therefore, the configuration in the domain
follows a random-cluster model with specific boundary conditions.

The boundary of G0(γ̃1, γ̃2) can be split into several sub-arcs of various
types (see Figure 5.4): some are sub-arcs of γ1 or γ2, while the others
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are (adjacent to) sub-arcs of their symmetric images σd(γ1) and σd(γ2).
The conditioning on Γ1 = γ1 and Γ2 = γ2 ensures that the edges along
the sub-arcs of the first type are open; the connections along the others
depend on the configuration outside G0(γ̃1, γ̃2) in a much more intricate
way, but in any case the boundary conditions imposed on the configuration
inside G(γ̃1, γ̃2) are larger than the mixed boundary conditions. Notice,
for instance by looking at Fig. 5.4, that any boundary conditions dominate
the free one and that γ̃1 and γ̃2 are two sub-arcs of the first type (they
are then wired). Thus, the measure restricted to G0(γ̃1, γ̃2) stochastically
dominates the restriction of φγ̃1,γ̃2 to G0(γ̃1, γ̃2).

From these observations, we deduce that for any increasing event B
depending only on edges in G0(γ̃1, γ̃2),

φper
psd,q,m

(B∣Γ1 = γ1,Γ2 = γ2) ≥ φγ̃1,γ̃2(B). (5.7)

In particular, this inequality can be applied to {γ1 ↔ γ2 in G0(γ̃1, γ̃2)}.
If γ̃1 and γ̃2 are connected in G(γ̃1, γ̃2), then γ1 and γ2 are connected
in G0(γ̃1, γ̃2). The first event is of φγ̃1,γ̃2 -probability at least 1/(1 + q2)
(Lemma 5.8), thus implying

φper
psd,q,m

(γ1 ↔ γ2∣Γ1 = γ1,Γ2 = γ2) ≥ φγ̃1,γ̃2(γ1 ↔ γ2 in G0(γ̃1, γ̃2))

≥ φγ̃1,γ̃2(γ̃1 ↔ γ̃2) ≥
1

1 + q2
. (5.8)

Step 5: conclusion of the proof. Note the following obvious fact: if
γ1 and γ2 intersect, the conditional probability that Γ1 and Γ2 intersect,
knowing Γ1 = γ1 and Γ2 = γ2 is equal to 1 — in particular, it is greater
than 1/(1 + q2). Now,

φper
psd,q,m

(Ch(R)) ≥ φper
psd,q,m

(Ch(R) ∩A)
≥ φper

psd,q,m
({Γ1 ↔ Γ2} ∩A)

= φper
psd,q,m

(φper
psd,q,m

(Γ1 ↔ Γ2∣Γ1,Γ2)1A)

≥ 1

1 + q2
φper
p,q,m(A) ≥ c(1)3

2(1 + q)2

where the first two inequalities are due to inclusion of events, the third
one to the definition of conditional expectation, and the fourth and fifth
ones, to (5.8) and (5.6) respectively. ◻
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5.2 Application I: critical point of the
random-cluster model

5.2.1 Statement of the theorem

The RSW theory for periodic boundary conditions has a very important
consequence: it enables us to compute the critical value of the random-
cluster model.

Theorem 5.10 (Beffara, Duminil-Copin [BDC12a]). Let q ≥ 1. The
critical point pc = pc(q) for the random-cluster model with cluster-weight q
on the square lattice satisfies

pc = psd(q) =
√
q

1 +√
q
.

A rigorous derivation of the critical point was previously known in three
cases. For q = 1, the model is simply bond percolation, proved by Kesten
in 1980 [Kes80] to be critical at pc(1) = 1/2. Onsager derived the critical
temperature of the Ising model in 1944 [Ons44]. One can actually couple
realizations of the Ising and random-cluster models to relate their critical
points, see Chapter 7, so that the q = 2 case follows from Onsager’s result.
For modern proofs in that case, see [AKN87] or Chapter 11. Finally, for
sufficiently large q, a proof is known based on the fact that the random-
cluster model exhibits a first order phase transition; see [LMMS+91, KS82]
(the proofs are valid for q larger than 25.72). Let us mention that
physicists derived the critical temperature for the Potts models with q ≥ 4
in 1978, using non-geometric arguments based on analytic properties of
the Hamiltonian [HKW78], and that we will present an alternative proof
for this special case in Section 6.3.

Now, a few words on the method of proofs. The first ingredient is the
RSW theory for periodic boundary conditions. The second ingredient is
a collection of sharp threshold theorems, which were originally introduced
for product measures.

5.2.2 Sharp threshold for boolean functions

Let us start by presenting the sharp threshold theorems. We wish to
understand the behavior of the function p ↦ φξp,q,n(A) for an increasing

event A (different from ∅ and {0,1}ETn ). This increasing function is equal
to 0 at p = 0 and to 1 at p = 1, and we are interested in the range of p
for which its value is between ε and 1 − ε for some positive ε. Under mild
conditions on A, the width will be bounded from above in terms of the
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size of the underlying graph, which is known as a sharp threshold behavior.
The proof of this fact is based on differential inequalities.

Historically, the general theory of sharp thresholds was first developed
by Bourgain, Kahn, Kalai, Katznelson and Linial [BKK+92] (see also
[Fri04, FK96, KS06]) in the case of product measures. In lattice models
such as percolation, these results have been used (see [BR06a, BR06b]) via
a differential equality known as Russo’s formula (see [Gri99, Rus81]). Both
sharp threshold theory and Russo’s formula were later extended to random-
cluster measures with q ≥ 1, see references below. These arguments being
not totally standard, we remind the readers of the classical results and
refer them to [Gri06] for general statements. Except for Theorem 5.13,
the proofs are quite short so that it is natural to include them. The proofs
are directly extracted from Grimmett’s monograph [Gri06].

Intuitively, the derivative of φξp,q,G(A) with respect to p is governed
by the influence of edges switching from closed to open. The following
definition is therefore natural in this setting. The (conditional) influence
on A of the edge e ∈ EG, denoted by IA(e), is defined as

IA(e) ∶= φξp,q,G(A∣ω(e) = 1) − φξp,q,G(A∣ω(e) = 0).

Proposition 5.11. Let G be a finite graph, q ≥ 1 and ε > 0; there exists
c = c(q, ε) > 0 such that for any p ∈ [ε,1 − ε], any boundary conditions ξ,
and any increasing event A,

d

dp
φξp,q,G(A) ≥ c ∑

e∈EG
IA(e).

Proof. Let A be an increasing event. The key step is the following
inequality which can be obtained by differentiating with respect to p (for
details of the computation, see [Gri06, Theorem (2.46)]):

d

dp
φξp,q,G(A) = 1

p(1 − p) ∑
e∈EG

[φξp,q,G(1Aω(e)) − φξp,q,G[ω(e)]φξp,q,G(A)] .

(5.9)
A similar differential formula is actually true for any random variable X,

but this fact will not be used in the proof. Note that, by definition of
IA(e),
φξp,q,G(1Aω(e)) − φξp,q,G(A)φξp,q,G(ω(e)) = IA(e)φξp,q,G(ω(e))[1 − φξp,q,G(ω(e))]

so that (5.9) becomes

d

dp
φξp,q,G(A) = 1

p(1 − p) ∑
e∈EG

φξp,q,G(ω(e))[1 − φξp,q,G(ω(e))]IA(e)

= ∑
e∈EG

φξp,q,G(ω(e))[1 − φξp,q,G(ω(e))]
p(1 − p)

IA(e) (5.10)
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from which the claim follows since the term

φξp,q,G(ω(e))[1 − φξp,q,G(ω(e))]
p(1 − p)

(5.11)

is bounded away from 0 uniformly in p ∈ [ε,1 − ε] and e ∈ EG when q is
fixed thanks to the finite-energy property (Proposition 4.4). ◻

Remark 5.12. When q = 1, (5.10) corresponds to Russo’s formula.

Indeed, let φp = φξp,1,G. The influence can be rewritten as

IA(e) =
φp(A,ω(e) = 1)

p
− φp(A,ω(e) = 0)

1 − p

= φp(ω
e ∈ A,ωe ∉ A,ω(e) = 1)

p
+ φp(ωe ∈ A,ω(e) = 1)

p
− φp(ωe ∈ A,ω(e) = 0)

1 − p
= φp(ωe ∈ A,ωe ∉ A).

In the last line, we used that ω(e) is independent of the events ωe ∈ A and
ωe ∈ A, and the independence of the measure. Furthermore, the inequality
is an equality since (5.11) equals 1. The event {ωe ∈ A,ωe ∉ A} is usually
called e is pivotal for A. We thus obtain

d

dp
φp(A) = ∑

e∈A
φp(e is pivotal for A).

There has been an extensive study of the largest influence in the case of
product measures. It was initiated in [BKK+92]. The following theorem
is a special case of the generalization to positively-correlated measures.

Theorem 5.13 (Graham, Grimmett [GG06, GG11]). Let G be a finite
graph, q ≥ 1 and ε > 0 as well as boundary conditions ξ. There exists a
constant c = c(q, ε) > 0 such that the following holds. For every p ∈ [ε,1−ε]
and every increasing event A,

max{IA(e) ∶ e ∈ EG} ≥ cφξp,q,G(A)(1 − φξp,q,G(A)) log ∣EG∣
∣EG∣

.

There is a particularly efficient way of using Proposition 5.11 together
with Theorem 5.13. In the case of a translation-invariant event on a torus
of size n, horizontal (resp. vertical) edges play symmetric roles, so that the
influence is the same for all the edges of a given orientation. In particular,
Proposition 5.11 together with Theorem 5.13 provide us with the following
differential inequality:

Theorem 5.14. Let q ≥ 1 and ε > 0. There exists a constant c = c(q, ε) > 0
such that the following holds. For every p ∈ [ε,1−ε], every n ≥ 1 and every
increasing translation-invariant event A on Tn,

d

dp
φper
p,q,n(A) ≥ c(φper

p,q,n(A)(1 − φper
p,q,n(A)) logn.
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The presence of φper
p,q,n(A)(1−φper

p,q,n(A)) should not be a surprise. When
the probability of the event A becomes close to 0 or 1, the lower bound
on the derivative cannot be large (since the derivative is small), which one
can see since φper

p,q,n(A) or 1 − φper
p,q,n(A) is small.

For a non-empty increasing event A, the previous inequality can be
integrated between two parameters p1 < p2 (we recognize the derivative of
log(x/(1 − x))) to obtain

1 − φper
p1,q,n(A)

φper
p1,q,n(A)

≥
1 − φper

p2,q,n(A)
φper
p2,q,n(A)

nc(p2−p1).

If φper
p1,q,n(A) is assumed to stay bounded away from 0 uniformly in n ≥ 1,

we deduce the existence of c′ > 0 such that

φper
p2,q,n(A) ≥ 1 − c′n−c(p2−p1). (5.12)

This inequality will be instrumental in the next section. In conclusion, one
may keep in mind that probabilities of nontrivial (meaning different from
∅ and {0,1}ETn ) symmetric increasing events undergo a sharp threshold
when p is varied from 0 to 1.

5.2.3 The proof of Theorem 5.10

We adapt the method developed first by Bollobàs and Riordan [BR06a,
BR06b] in the case of Bernoulli percolation. Let us sketch the main steps
of the proof first. We first argue that crossing probabilities tend to 1
(as n tends to infinity) when p > psd. In order to see that, consider the
translational-invariant event that some rectangle of Tn with width n/2 and
height α2n (with α ≫ 1) is crossed vertically. At p = psd, the probability
of this event is known to be bounded away from 0 uniformly in the size
of the torus (thanks to Theorem 5.3). Therefore, Theorem 5.14 can be
applied to conclude that the probability goes to 1 when p > psd (there is
also an explicit lower bound on the probability). It is then an easy step
to deduce that the probability of crossing vertically a particular rectangle
with width n and height αn also tends to 1. Note that in order to go from
some rectangle to a particular one, we will need to change the aspect-ratio
of rectangles we are considering (see the proof for more details).

Theorem 5.10 is then proved by constructing a path from 0 to infinity
when p > psd, which is usually done by combining crossings of rectangles.
There is a major difficulty in doing such a construction: one needs
to transform estimates in the torus into estimates in the whole plane.
One solution is to replace the periodic boundary conditions by wired
boundary conditions. The path construction is a little tricky since it
must propagate wired boundary conditions through the construction (see
Proposition 5.17); it does not follow the standard lines.
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We now implement the program sketched above. We start with proving
that crossings of long rectangles exist with very high probability when
p > psd.

Lemma 5.15. Let α > 1, q ≥ 1 and p > psd. There exist ε0 = ε0(p, q,α) > 0
and c0 = c0(p, q,α) > 0 such that for every n ≥ 1

φper
p,q,α2n

(Cv([0, n] × [0, αn])) ≥ 1 − c0n−ε0 . (5.13)

Proof. The proof will make it clear that it is sufficient to treat the case
of integer α, we therefore assume that α is a positive integer (not equal to
1). Let B be the event that there exists a vertical crossing of a rectangle
with dimensions (n/2, α2n) in the torus of size α2n. This event is invariant
under translations and satisfies

φper
psd,q,α2n

(B) ≥ φper
psd,q,α2n

(Cv([0, n/2] × [0, α2n])) ≥ c(2α2)

uniformly in n. Since B is increasing, Theorem 5.14 (more precisely (5.12))
can be applied to deduce that for any p > psd, there exist ε = ε(p, q,α) and
c = c(p, q,α) such that

φper
p,q,α2n

(B) ≥ 1 − cn−ε. (5.14)

If B holds, one of the 2α3 rectangles

[in/2, in/2+n]× [jαn, (j + 1)αn], (i, j) ∈ {0, . . . ,2α2 − 1}× {0, . . . , α− 1}

must be crossed from top to bottom. Denote these events by Aij — they
are translates of Cv([0, n] × [0, αn]). We find

φper
p,q,α2n

(B) = 1 − φper
p,q,α2n

(Bc) ≤ 1 − φper
p,q,α2n

(⋂
i,j

Acij)

≤ 1 −∏
i,j

φper
p,q,α2n

(Acij)

= 1 − [1 − φper
p,q,α2n

(Cv([0, n] × [0, αn])]
2α3

.

The FKG inequality was used in the second line (the reader may recognize
the implementation of the “square-root trick” mentioned earlier). Plugging
(5.14) into the previous inequality, we deduce

φper
p,q,α2n

(Cv([0, n] × [0, αn])) ≥ 1 − (cn−ε)1/(2α3).

The claim follows by setting c0 ∶= c1/(2α)
3

and ε0 ∶= ε/(2α3). ◻

Let K > 1 and n ≥ 1; define the annulus

AKn ∶= ΛKn+1 ∖ΛKn .
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An open circuit in an annulus is an open path which surrounds the origin.
Denote by AKn the event that there exists an open circuit surrounding the
origin and contained in AKn , together with an open path from this circuit
to the boundary of ΛKn+2 , see Figure 5.5. The following lemma shows that
the probability of AKn goes to 1, provided that p > psd and that boundary
conditions are wired on ΛKn+2 .

ΛKn+2

ΛKn+1

ΛKn

Figure 5.5: The event AKn . The gray area is the part of Z2 delimited by the
outermost open self-avoiding circuit in AKn . The configuration inside this
outermost open self-avoiding circuit (namely the gray area) stochastically
dominates a random-cluster configuration with wired boundary conditions
on the boundary of the box. The combination of events AKn constructs a
path from the origin to infinity.

Lemma 5.16. Let K > 1, q ≥ 1 and p > psd. There exist c1 = c1(p, q,K) > 0
and ε1 = ε1(p, q,K) > 0 such that for every n ≥ 1,

φ1
p,q,Kn+2(AKn ) ≥ 1 − c1e−ε1n.
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Proof. First, observe that AKn occurs whenever the following events
occur simultaneously:

� The following rectangles are crossed vertically:

R1 ∶= [Kn,Kn+1] × [−Kn+1,Kn+1],
R2 ∶= [−Kn+1,−Kn] × [−Kn+1,Kn+1].

� The following rectangles are crossed horizontally:

R3 ∶= [−Kn+1,Kn+1] × [Kn,Kn+1],
R4 ∶= [−Kn+1,Kn+1] × [−Kn+1,−Kn],
R5 ∶= [−Kn+2,Kn+2] × [−Kn,Kn].

Using the comparison between periodic boundary conditions and wired
boundary conditions on ∂ΛKn+2 , the previous lemma implies that the
probability of each of these events is greater than 1 − c(Kn)−ε with
c = c0(p, q,K ′) and ε = ε0(p, q,K ′), where K ′ = max{K2,2K/(K − 1)}.
Using the FKG inequality, we obtain

φ1
p,q,Kn+2(AKn ) ≥ (1 − c(Kn)−ε)5.

The claim follows by setting c1 ∶= 5c and ε1 ∶= ε logK. ◻

We wish to prove that the probability of the intersection of events
AKn for n ≥ 0 is of positive probability when p > psd. So far, we only
know that there is an open circuit with very high probability when we
consider the random-cluster measure with wired boundary conditions in a
slightly larger box. In order to prove the result, assume the existence of
a large circuit. Then, we iteratively condition on events AKn−k, k ≥ 0. By
conditioning “from the outside to the inside”, there exists an outermost
open self-avoiding circuit in AKn−k+1 that surrounds AKn−k at every step
k. Using comparison between boundary conditions, the measure in AKn−k
stochastically dominates the measure in AKn−k+1 with wired boundary
conditions. In other words, we keep track of advantageous boundary
conditions. Note that the reasoning, while reminiscent of Kesten’s
construction of an infinite path for percolation, is not standard.

Let p > psd and q ≥ 1. Recall that φp,q is the unique infinite-volume
measure on Z2.

Proposition 5.17. Let K > 1, q ≥ 1 and p > psd. There exist c, c1, ε1 > 0
(depending on p, q and K) such that for every N ≥ 1,

φp,q( ⋂
n≥N
AKn ) ≥ c

∞
∏
n=N

(1 − c1e−ε1n) > 0.
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We will only use N = 1 in order to prove Theorem 5.10. Nevertheless,
the more general statement with arbitrary N will be useful in the next
section.

Proof. Let K > 1, q ≥ 1, p > psd and N ≥ 1. For every n ≥ 1, we know
that

φp,q(
n

⋂
k=N
AKk ) = φp,q(AKn )

n−1

∏
k=N

φp,q(AKk ∣AKj , k + 1 ≤ j ≤ n). (5.15)

Let N ≤ k < n. We now wish to estimate the probability of AKk
conditionally on AKj for k + 1 ≤ j ≤ n. In order to do so, we use a
“conditioning on the outermost circuit” argument (we refer to Section 4.4.4
for more details on this argument). This time, the circuits are primal
instead of dual, and the boundary conditions that we will use to make the
comparison are the wired ones. Let us spell the whole argument.

Conditionally on AKj , k + 1 ≤ j ≤ n, there exists an open self-avoiding

circuit in the annulus AKk+1. Consider the outermost such circuit, denoted
by Γ. Conditionally on Γ = γ, the configuration in the inner part γ of
the box ΛKk+2 has the law of a random-cluster configuration with wired
boundary condition. In particular, the conditional probability that there
exists a circuit in AKk connected to γ is greater than the probability that
there exists a circuit in AKk connected to the boundary of ΛKk+2 with wired
boundary conditions. Therefore, we obtain that almost surely

φp,q(AKk ∣AKj , k + 1 ≤ j ≤ n) = φp,q(φp,q(AKk ∣Γ)∣AKj , k + 1 ≤ j ≤ n)
≥ φp,q(φ1

p,q,Kk+2(AKk ))

≥ 1 − c1e−ε1k,

where Lemma 5.16 was harnessed in the last inequality.
For p = psd, consider the event AKn on Z2. Thanks to Corollary 5.5,

its probability is bounded away from 0 uniformly in n. Since the event is
increasing, there exists c = c(K) > 0 such that

φp,q(AKn ) = φ1
p,q(AKn ) ≥ φ1

psd,q
(AKn ) ≥ c

for any n ≥ N and p > psd. Plugging the two estimates into (5.15), we
obtain

φp,q(
n

⋂
k=N
AKk ) ≥ c

n−1

∏
k=N

(1 − c1e−ε1k) ≥ c
∞
∏
k=N

(1 − c1e−ε1k).

Letting n go to infinity concludes the proof. ◻
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Proof of Theorem 5.10. The bound pc ≥ psd is provided by Zhang’s
argument (Proposition 4.38). For p > psd, fix K > 1. Applying
Proposition 5.17 with N = 1, we find

φp,q(0↔∞) ≥ cφp,q( ⋂
n≥1

AKn ) > 0

so that p is supercritical. The constant c > 0 is due to the fact that ΛK2

is required to contain open edges only, and therefore c > 0 exists using the
finite-energy property (Proposition 4.4). Therefore p ≥ pc for every p > psd
and we deduce pc ≤ psd. ◻

5.3 Application II: exponential decay in the
subcritical phase

In this section, we study the subcritical and supercritical phases. In the
subcritical phase, the probability for two vertices x and y to be connected
by an open path is proved to decay exponentially fast with respect to the
distance between x and y. In the supercritical phase, the same behavior
holds in the dual model since pc = psd. This phenomenon is known as a
sharp phase transition.

Theorem 5.18 (Beffara, Duminil-Copin [BDC12a]). Let q ≥ 1. For any
p < pc(q), there exists c = c(p, q) > 0 such that for any x, y ∈ Z2,

φp,q(x↔ y) ≤ e−c∣x−y∣. (5.16)

Remark 5.19. Theorem 5.18 has important consequences. Over the last
twenty years, a deep understanding of the subcritical regime was developed
under the hypothesis that probabilities of connection between two vertices
decay exponentially fast in the distance between them. Unfortunately,
this assumption was known only for small p. The result above justifies
this assumption in the whole subcritical regime. We refer to [Gri06] for
more details on potential applications of Theorem 5.18.

Remark 5.20. Going back for a moment to crossing probabilities, one sees
that in the subcritical phase p < pc, the probability of crossing vertically
R = [0, n] × [0, αn] decays exponentially fast in n. In fact, the largest
cluster in R can be proved (simply use the union bound) to be smaller
than C logn, where C = C(p) depends on α and the constant c of the
theorem only. In the reverse direction, the probability of not crossing
vertically the rectangle R for p > pc is exactly the probability of crossing
horizontally the dual graph of R in the dual configuration. Since the dual
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model is subcritical, this probability decays exponentially fast. In other
words, the probability of crossing vertically R tends to 1 exponentially
fast.

Remark 5.21. The previous result has been extended to more general
planar random-cluster models. More precisely, it is proved in [DCM13a]
that the phase transition is sharp: correlations decay exponentially fast in
the subcritical phase.

The proof runs as follows. Combining the fact that the crossing
probabilities go to 0 when p < psd with a very general differential inequality
(see the proposition below), we deduce that the cluster-size at the origin
has finite moments of any order. It is then a classical step to deduce
exponential decay using a general result on the greedy lattice animals
model, see [CGGK93, GK94] for details.

Consider a configuration ω as a vertex of the graph {0,1}EG . For
A ⊂ {0,1}EG , let HA(ω) be the graph distance between the configuration
ω and A. This quantity is called the Hamming distance of ω to A. Another
way of seeing the Hamming distance is simply to say that it is the minimum
number of edges that must be changed on ω in order to be in A. For a set
A ⊂ {0,1}EG , the Hamming distance can also be seen as a random variable
HA.

Proposition 5.22. Let q ≥ 1 and G be a finite graph. For any random-
cluster measure φξp,q,G with p ∈ (0,1) and any increasing event A,

d

dp
φξp,q,G(A) ≥ 4φξp,q,G(A)φξp,q,G(HA), (5.17)

where HA(ω) is the Hamming distance between ω and A.

Proof. Define ∣ω∣ to be the number of open edges in the configuration,
i.e. simply the sum over e ∈ EG of random variables ω(e). With this
notation, one can rewrite (5.9) as

d

dp
φξp,q,G(A) = 1

p(1 − p)
[φξp,q,G(∣ω∣1A) − φξp,q,G(∣ω∣)φξp,q,G(A)]

= 1

p(1 − p)
[φξp,q,G((∣ω∣ +HA)1A) − φξp,q,G(∣ω∣ +HA)φξp,q,G(A)

− φξp,q,G(HA1A) + φξp,q,G(HA)φξp,q,G(A)]

≥ 1

p(1 − p)
φξp,q,G(HA)φξp,q,G(A).

To obtain the second line, simply add and subtract the same quantities.
In order to go from the second line to the third, remark two things: in
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the second line, the third term equals 0 (when A occurs, the Hamming
distance to A is 0), and the sum of the first two terms is positive thanks to
the FKG inequality (indeed, it is easy to check that ∣ω∣+HA is increasing).
The claim follows since p(1 − p) ≤ 1/4. ◻

This proposition has an interesting reformulation: integrating the
formula (5.17) between p1 and p2 > p1, we obtain

φξp1,q,G
(A) ≤ φξp2,q,G

(A) exp [ − 4(p2 − p1)φξp2,q,G
(HA)] (5.18)

(we used that HA is a decreasing random variable). If one can prove that
the typical value of HA is sufficiently large, for instance because A occurs
with small probability, then one can obtain good bounds for the probability
of A.

Remark 5.23. The inequalities (5.17) and (5.18) hold in infinite-volume
provided that A depends on finitely many edges by taking the limit of
inequalities in finite volume (we implicitly use the fact that HA depends
on the same edges as A).

Proof of Theorem 5.18. Let x be a vertex of Z2, and let Cx be the
cluster of x. Its cardinality is denoted by ∣Cx∣. We first prove that ∣Cx∣ has
finite moments of any order at p < pc. Then we deduce that the probability
of {∣Cx∣ ≥ n} decays exponentially fast in n for p′ < p by proving that the
expected Hamming distance is of order n at p. The proof of this second
step is extracted from [Gri06].

Step 1: finite moments for ∣Cx∣. Using the invariance under
translations, we may assume without loss of generality that x = 0. Let
d > 0 and p < psd; we wish to prove that

φp,q(∣C0∣d) <∞. (5.19)

In order to do so, let p1 ∶= (p + psd)/2 and denote by Hn the Hamming
distance to {0←→ ∂Λn} (recall that Hn(ω) is the graph distance between
ω and {0 ←→ ∂Λn} in {0,1}E). In this specific case, Hn is simply the
minimal number of closed edges that must be crossed in order to go from
0 to ∂Λn. Let

K ∶= exp [ p1 − p
2d + 1

] > 1.

From Proposition 5.17 applied to the (supercritical) dual model, the
probability of ⋂n>N(AKn )⋆ is larger than c∏∞

N (1 − c1e−ε1n) > 0 (where
(AKn )⋆ is the occurrence of AKn in the dual model). Hence, there exists
N = N(p1, q, α) sufficiently large such that

φp1,q (
∞
⋂
n≥N

(AKn )⋆) ≥ 1

2
.
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On this event, Hn is greater than (logn/ logK)−N since there is at least
one closed circuit in each annulus AKk with k ≥ N (thus increasing the
Hamming distance by 1). We obtain

φp1,q(Hn) ≥ ( logn

logK
−N)φp1,q (

∞
⋂
n≥N

(AKn )⋆) ≥ logn

4 logK

for n sufficiently large. Then, since {0←→ ∂Λn} depends on finitely many
edges, (5.18) and Remark 5.23 imply

φp,q(0←→ ∂Λn) ≤ φp1,q(0←→ ∂Λn) exp [ − 4(p1 − p)φp1,q(Hn)] ≤ n−(2d+1)

(5.20)
for n sufficiently large.

Now, for x > 0, let u(x) = inf{k > 0 ∶ ∣Λk ∣ ≥ x} and observe that
u(x) = Θ(

√
x) as x tends to infinity. Therefore,

φp,q(∣C0∣d) = ∑
n≥1

φp,q[∣C0∣d ≥ n] = ∑
n≥1

φp,q[∣C0∣ ≥ n1/d]

≤ ∑
n≥1

φp,q[0←→ ∂Λu(n1/d)]

≤ 1 + ∑
n≥2

u(n1/d)−(2d+1) ≤ C ∑
n≥1

n−(1+1/(2d)) <∞,

where the constant C is universal. The first inequality is due to the
fact that C0 cannot be included in the box of radius u(n1/d) − 1 if it has
cardinality n1/d.

Step 2: exponential decay. Let p < pc. From the first inequality of
(5.18) (and Remark 5.23) applied to p′ < p, it is sufficient to prove that
there exists c > 0 such that

φp,q(Hn) ≥ cn, ∀n ≥ 0

in order to prove that φp′,q(Dn) decays exponentially. It is thus enough
to prove that there exists c > 0 such that,

φp,q( lim inf
n→∞

Hn

n
> c) = 1.

Consider a (not necessarily open) self-avoiding path γ going from the origin
to the boundary of the box of size n. The number T (γ) of closed edges
divided by n along this path can be bounded from below by the following
quantity:

1 + T (γ)
n

≥ 1 + T (γ)
∣γ∣

≥ 1

∣γ∣ ∑z∈γ
1

∣Cz ∣
≥
⎛
⎝

1

∣γ∣ ∑z∈γ
∣Cz ∣

⎞
⎠

−1

.
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We obtained the second inequality by noticing that the number of closed
edges in γ is larger than the number of distinct clusters intersecting γ
(if C denotes such a cluster, we have that 1 ≥ ∑z∈γ ∣C∣−11z∈C). The last
inequality is due to Jensen’s inequality. Since Hn can be rewritten as the
infimum of T (γ) on paths going from 0 to the boundary of the box, we
obtain

1 +Hn

n
≥ 1

max
γ∶0↔∂Λn

1

∣γ∣ ∑z∈γ
∣Cz ∣

. (5.21)

This inequality comes in handy for the following reason: it translates
the problem of bounding Hn from below into a last-passage percolation
problem. Roughly speaking, the last-passage percolation model is defined
as follows. A random variable ωz, also called weight, is associated to every
vertex of Zd and the goal is to maximize the average of weights 1

∣γ∣ ∑z∈γ ωz
along a certain family of subsets of Zd. This type of problems is classical
in the case of iid weights on Zd. In particular, if ωz has finite moments
of sufficiently high order, then the maximal average of weights is bounded
uniformly. Here, the subsets on which we maximize the average of weights
are the self-avoiding walks from 0 to ∂Λn. The weights are ωz = ∣Cz ∣ and
therefore the distribution of weights has finite moments of any order (since
p < pc, this fact follows from Step 1). If the weights would be iid, it would
exactly mean that the Hamming distance is linear in n. Unfortunately,
the weight distribution is correlated. In order to circumvent this difficulty,
we will compare these weights with iid weights.

We proceed in two steps. First, we replace these highly correlated
weights by weights which are expressed in terms of iid weights. Let
(C̃z)z∈Λn be a family of independent subsets of Z2 distributed as Cz. We
claim that (∣Cz ∣)z∈Λn is stochastically dominated by the family (Mz)z∈Λn
defined as

Mz ∶= sup{∣C̃y ∣ ∶ y ∈ Z2 such that C̃y contains z}.

Let v1, v2, . . . be a deterministic ordering of Z2. Given the random family
(C̃z)z∈Λn , we shall construct a family (Dz)z∈Λn having the same joint law
as (Cz)z∈Λn and satisfying the following condition: for each z, there exists
y such that Dz ⊂ C̃y. First, set Dv1 = C̃v1 . Given Dv1 , Dv2 , . . . , Dvn ,
define E = ⋃ni=1Dvi . If vn+1 ∈ E, set Dvn+1 = Dvj for some j such that
vn+1 ∈ Dvj . If vn+1 ∉ E, proceed as follows. Let ∂eE be the set of edges

of Z2 having exactly one end-vertex in E. A (random) subset F of C̃vn+1

may be found in such a way that F has the conditional law of Cvn+1 given
that all edges in ∂eE are closed; now set Dvn+1 = F . The domain Markov
property and the positive association can be used to show that the law of
Cvn+1 depends only on ∂eE, and is stochastically dominated by the law of
the cluster in the bulk without any conditioning. The required stochastic



118 Hugo Duminil-Copin

domination follows accordingly. In particular, ∣Cz ∣ ≤Mz and Mz has finite
moments. From the previous stochastic domination, we get that almost
surely

sup
γ∶0↔∂Λn

1

∣γ∣ ∑z∈γ
∣Cz ∣ ≤ sup

γ∶0↔∂Λn

1

∣γ∣ ∑z∈γ
Mz.

The second step is now to replace Mz by random variables that are really
independent. The trick is to enlarge the set of subsets of Z2 on which
the average of weights is maximized. Namely, Lemma 2 of [FN93] can be
harnessed to show that

sup
γ∶0↔∂Λn

1

∣γ∣ ∑z∈γ
Mz ≤ 2 sup

∣Γ∣≥n

1

∣Γ∣ ∑z∈γ
∣C̃z ∣2 (5.22)

almost surely, where the second supremum is over all finite connected
graphs Γ of cardinality larger than n that contain the origin (also called
lattice animals). Since the ∣C̃z ∣2 are now independent and have finite
moments of any order at p by Step 1, the main result of [CGGK93, GK94]
guarantees that there exists C > 0 such that

2φp,q( lim sup
n→∞

sup
∣Γ∣≥n

1

∣Γ∣ ∑z∈γ
∣C̃z ∣2 ≤ C) = 1. (5.23)

Putting (5.23) and (5.22) in (5.21) implies that lim infHn/n ≥ 1/C almost
surely, which concludes the proof. ◻

5.4 Strong RSW theory

5.4.1 Statement

The RSW theory for periodic boundary conditions enables us to compute
the critical value of the random-cluster model, yet it provides us with a
rather weak understanding of the critical regime. One of the weaknesses of
the previous crossing estimates is that they deal with periodic boundary
conditions which are somehow balanced between the primal and dual
model. It will be important for applications to understand what happens
for more general boundary conditions4. In this section, we show that
the fact that Theorem 5.3 holds for more general boundary conditions
is equivalent to several other conditions which are easier to check. The
following theorem is very important, yet we would advise the reader to skip
the technical proof in a first reading and to come back to it afterwards.

4In fact, an equivalent of Theorem 5.3 will not be true in general for arbitrary
boundary conditions (we will discuss for which value of q it is in Section 6.2).
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Theorem 5.24 (Duminil-Copin, Sidoravicius, Tassion [DCST13]). Let
q ≥ 1. The following assertions are equivalent :

P1 (Absence of infinite cluster at criticality) φ1
pc,q (0←→∞) = 0.

P2 φ0
pc,q = φ

1
pc,q.

P3 (Infinite susceptibility) χ0(pc, q) ∶= ∑
x∈Z2

φ0
pc,q (0←→ x) =∞.

P4 (Sub-exponential decay for free boundary conditions)

lim
n→∞

1
n

logφ0
pc,q (0←→ ∂Λn) = 0.

P5 (RSW) Let α > 0. There exists c1 > 0 such that for all n ≥ 1 and any
boundary conditions ξ,

c1 ≤ φξpc,q,[−n,(α+1)n]×[−n,2n] (Ch([0, αn] × [0, n])) ≤ 1 − c1.

The previous theorem does not show that these conditions are all
satisfied, but that they are equivalent. In fact, whether the conditions
are satisfied or not will depend on the value of q, see Section 6.2 for a
more detailed discussion.

The previous result was previously known in a few cases:
� Bernoulli percolation (random-cluster model with q = 1). In such case

P2 is obviously satisfied. Furthermore, Russo [Rus78] proved that
P1, P3 and P4 are all true (and therefore equivalent). Finally, P5
was proved by Russo [Rus78] and Seymour-Welsh [SW78].

� Random-cluster model with q = 2. This model is directly related to
the Ising model as we will see in Chapter 7. Therefore, all of these
properties can be proved to be true using the following results on the
Ising model: Onsager proved that the critical Ising measure is unique
and that the phase transition is continuous in [Ons44], thus implying
P1 and P2. Properties P3 and P4 follow from Simon’s correlation
inequality for the Ising model [Sim80]. Property P5 was proved in
[DCHN11] using a proof specific to the Ising model. Interestingly, in
the Ising case each property is derived independently and no direct
equivalence was known previously.

� Random-cluster model with q ≥ 25.72. In this case, none of the
above properties are satisfied, as proved by using the Pirogov-Sinai
technology [LMR86].

Remark 5.25. P4⇒P1 implies that whenever there is an infinite cluster
for the wired boundary conditions, correlations decay exponentially fast
at criticality for free boundary conditions.
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Before presenting the proof of this theorem, let us discuss alternative
conditions which could replace the conditions P1–P5.

Proposition 5.26. Let q ≥ 1. The following properties are equivalent:

P1 (Absence of infinite cluster at criticality) φ1
pc,q (0←→∞) = 0.

P1’ (Continuous phase transition) lim
p↘pc

φp,q (0←→∞) = 0.

Note that the (almost sure) absence of an infinite-cluster for φ0
pc,q follows

from Zhang’s argument (Proposition 4.38) but that it does not imply the
continuity of the phase transition nor the (almost sure) absence of an
infinite-cluster for φ1

pc,q. In order to prove Proposition 5.26, we start with
a simple lemma, which is very useful.

Lemma 5.27. The weak limits as p ↗ pc and p ↘ pc of φp,q are
respectively φ0

pc,q and φ1
pc,q. Furthermore, for every increasing event A

depending on finitely many edges,

φ0
pc,q(A) = sup

p<pc
φp,q(A) and φ1

pc,q(A) = inf
p>pc

φp,q(A).

Proof. First observe that the supremum and the infimum are in fact
limits by monotonicity in p. Now, the second part of the lemma implies
the first one, since increasing events depending on finitely many edges
generate the whole σ-algebra.

Let us therefore focus on the second part of the statement. Assume that
A depends on the state of edges in Λk only. We have

φ0
pc,q(A) = sup

n≥k
φ0
pc,q,Λn(A) = sup

n≥k
sup
p<pc

φ0
p,q,Λn(A)

= sup
p<pc

sup
n≥k

φ0
p,q,Λn(A) = sup

p<pc
φ0
p,q(A) = sup

p<pc
φp,q(A).

In the first and fourth inequalities, we used the convergence of finite-
volume measures to the infinite-volume measure and the comparison
between boundary conditions (to show that the limit is in fact a
supremum). The third equality is due to the continuity in p in finite volume
(everything is even analytic in such case). The last equality follows from
the uniqueness of the infinite-volume measure (Corollary 4.40). Similarly,

φ1
pc,q(A) = inf

n≥k
φ1
pc,q,Λn(A) = inf

n≥k
inf
p>pc

φ1
pc,q,Λn(A)

= inf
p>pc

inf
n≥k

φ1
p,q,Λn(A) = inf

p>pc
φ1
p,q(A) = inf

p>pc
φp,q(A).

◻
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Remark 5.28. The second part of the lemma extends to many events
depending on infinitely many edges. We will see examples in the next
proofs.

Proof of Proposition 5.26. We only need to check that

lim
p↘pc

φp,q (0←→∞) = φ1
pc,q (0←→∞) .

The previous lemma used in the third equality implies

lim
p↘pc

φp,q (0←→∞) = inf
p>pc

inf
n∈N

φp,q (0←→ ∂Λn) = inf
n∈N

inf
p>pc

φp,q (0←→ ∂Λn)

= inf
n∈N

φ1
pc,q (0←→ ∂Λn) = φ1

pc,q (0←→∞) .

◻

Proposition 5.29. Let q ≥ 1. The following properties are equivalent:

P2 φ0
pc,q = φ

1
pc,q.

P2’ The infinite-volume measure at pc and q is unique.

This proposition is a direct reformulation of Proposition 4.29.

Remark 5.30. P1 together with P3 have an interesting consequence in
terms of the order of the phase transition for the so-called Potts model. We
do not enter in the details here since we have not introduced this model
but let us briefly mention that properties P1 and P3 are respectively
equivalent to the continuity and the non-differentiability with respect to
the magnetic field h of the Potts model free energy at (β = βc, h = 0).
Therefore, these properties mean that the phase transition of the Potts
model is of second order.

Let us now turn to P4 which can be understood in terms of the so-called
correlation length.

Lemma 5.31. Let q ≥ 1 and p < pc. Then, the quantity

ξ(p, q) = ( − lim
n→∞

1
n

logφp,q[(0,0)←→ (n,0)])
−1

is well-defined and ξ(p, q) ∈ (0,∞).

The quantity ξ(p, q) is called the correlation length (see Chapter 11 for
more details).
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Proof. Let p < pc. For every n,m > 0, the FKG inequality implies that

φp,q[(0,0)←→ (n +m,0)] ≥ φp,q[(0,0)←→ (n,0) and (n,0)←→ (n +m,0)]
≥ φp,q[(0,0)←→ (n,0)] ⋅ φp,q[(0,0)←→ (m,0)].

Fekete’s lemma (for a supermultiplicative sequence) implies that
ξ(p, q) ∈ (0,∞] is well defined. Furthermore,

φp,q[(0,0)←→ (n,0)] ≤ exp[−n/ξ(p, q)]. (5.24)

Finally, Theorem 5.18 forces ξ(p, q) <∞. ◻

Proposition 5.32. Let q ≥ 1. The following properties are equivalent:

P4 (sub-exponential decay for free boundary conditions)

lim
n→∞

1
n

logφ0
pc,q (0←→ ∂Λn) = 0.

P4’ (vanishing mass-gap) ξ(p, q) tends to +∞ as p↗ pc(q).

Proof. Let us first assume that P4 is not satisfied. In such case, there
exists c > 0 such that

lim
n→∞

1
n

logφ0
p,q ((0,0)←→ (n,0)) ≤ lim

n→∞
1
n

logφ0
p,q (0←→ ∂Λn)

≤ lim
n→∞

1
n

logφ0
pc,q (0←→ ∂Λn) =∶ −c < 0.

In particular, ξ(p, q) ≤ 1
c

for any p < pc and P4’ is not satisfied as well.

Let us now assume that P4’ is not satisfied and that ξ(p, q) ≤ M for
every p < pc. In such case,

φ0
pc,q

[(0,0)←→ (n,0)] = sup
k≥n

φ0
pc,q

[(0,0)←→ (n,0) in Λk]

= sup
k≥n

sup
p<pc

φp,q[(0,0)←→ (n,0) in Λk]

= sup
p<pc

sup
k≥n

φp,q[(0,0)←→ (n,0) in Λk]

= sup
p<pc

φp,q[(0,0)←→ (n,0)]

≤ sup
p<pc

e−n/ξ(p,q) ≤ e−n/M .

In the second line we used Lemma 5.27 and in the last (5.24).
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Now, take x ∈ ∂Λn and assume without loss of generality that the first
coordinate of x is equal to n. The FKG inequality and an orthogonal
reflection with respect to d = {(x1, x2) ∶ x1 = n} imply that

φ0
pc,q[0←→ x]2 = φ0

pc,q[0←→ x]φ0
pc,q[x←→ (2n,0)]

≤ φ0
pc,q[0←→ (2n,0)] ≤ e−2n/M , (5.25)

from which we deduce that

φ0
pc,q[0←→ ∂Λn] ≤ ∣∂Λn∣e−n/M .

As a consequence, P4’ is not satisfied. ◻

The properties P1–P4 (and their equivalent formulations) are classical
definitions describing continuous phase transitions and are believed to be
equivalent for many natural models, even though it is a priori unclear how
this can be proved in a robust way. Now that we have an interpretation
for properties P1–P4, let us explain why Property P5 is of particular
interest: it provides an equivalent to Theorem 5.3 uniform in boundary
conditions. The uniformity with respect to boundary conditions is crucial
for applications, especially when trying to decouple events, see e.g.
Section 5.5.

Before diving into the proof, let us mention two equivalent formulations
of P5. For z ∈ R2, define An(z) to be the event that there exists an
open circuit (i.e. an open path v0 ∼ v1 ∼ ⋅ ⋅ ⋅ ∼ vk ∼ v0) in the annulus
z + (Λ2n ∖Λn) surrounding z. Also define An = An(0).

Proposition 5.33. The following propositions are equivalent;

P5 For any α > 0, there exists c1 = c1(α) > 0 such that for all n ≥ 2
and for all boundary conditions ξ on the boundary of [−n, (α+1)n]×
[−n,2n], we have

c1 ≤ φξpc,q,[−n,(α+1)n]×[−n,2n] (Ch([0, αn] × [0, n])) ≤ 1 − c1.

P5’ There exists c2 > 0 such that for all n ≥ 2,

φ0
pc,q,Λ2n∖Λn (An) ≥ c2.

P5” For any R ≥ 2, there exists c3 = c3(R) > 0 such that for all n ≥ 2,

φ0
pc,q,ΛRn

(An) ≥ c3.

Proof. The proof of P5’⇒P5” is obvious by comparison between
boundary conditions. In order to prove P5⇒P5’, consider the four
rectangles



124 Hugo Duminil-Copin

R1 ∶= [4n/3,5n/3] × [−5n/3,5n/3],
R2 ∶= [−5n/3,−4n/3] × [−5n/3,5n/3],
R3 ∶= [−5n/3,5n/3] × [4n/3,5n/3],
R4 ∶= [−5n/3,5n/3] × [−5n/3,−4n/3].

If the intersection of Cv(R1), Cv(R2), Ch(R3) and Ch(R4) occurs, then An
occurs. In particular, the FKG inequality and the comparison between
boundary conditions implies that c2 can be chosen to be equal to c1(10)4.

Let us now turn to the proof of P5”⇒P5. We start by the lower bound.
Fix some R ≥ 2 as in P5” and the corresponding c3 > 0. Let α > 0. For
n ≥ 4R, the intersection of the eventsAn/(2R)[(j⌊ nR ⌋, n

2
)] for j = 0, . . . , ⌈Rα⌉

is included in Ch([0, αn] × [0, n]). The FKG inequality implies

φ0
pc,q,[−n,(α+1)n]×[−n,2n] (Ch([0, αn] × [0, n])) ≥ c1+R⌈α⌉

3 .

By comparison between boundary conditions, we obtain the lower bound
for every ξ.

The upper bound may be obtained from this lower bound as follows.
By comparison between boundary conditions once again, it is sufficient
to prove the bound for the wired boundary conditions. In such case,
the complement of Ch([0, αn] × [0, n]) is the event that the rectangle
[ 1

2
, αn − 1

2
] × [− 1

2
, 1

2
] is crossed from top to bottom by a dual-open dual-

path. Since the dual of the wired boundary conditions are the free ones,
the boundary conditions for the dual measure are free. We can now harness
P5” for the dual model to construct a dual-open dual-path from top to
bottom with probability bounded away from 0. This finishes the proof. ◻

Remark 5.34. The restriction on boundary conditions being at distance
n from the rectangle can be relaxed in the following way: if P5 holds, then
for any α > 0 and ε > 0, there exists c = c(α, ε) > 0 such that for every
n ≥ 1,

c ≤ φξ
pc,q,[−εn,(α+ε)n]×[−εn,(1+ε)n] (Ch([0, αn] × [0, n])) ≤ 1 − c.

(Simply follow the same proof as above to obtain this result.) It is natural
to ask why boundary conditions are fixed at distance εn of the rectangle
[0, αn]× [0, n] and not simply on the boundary. It may in fact be the case
that P5 holds but that crossing probabilities of rectangles [0, αn] × [0, n]
with free boundary conditions on their boundary converge to zero as n
tends to infinity. Such a phenomenon does not occur for 1 ≤ q < 4 as shown
in [DCST13] (for such values of q, the crossing probabilities on rectangles
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with free boundary conditions directly on the boundary are bounded away
from 0 uniformly in n provided that the aspect ratio remains bounded
away from 0 and 1) but is expected to occur for q = 4. In conclusion,
we will always work with boundary conditions at “macroscopic distance”
from the boundary.

5.4.2 Proof of Theorem 5.24

We now dive into the proof. Once again, we advise to skip this part during
the first reading. In this section, q ≥ 1 is fixed and p = pc(q). In order to
lighten the notation, we drop the reference to p and q and simply write
φξG instead of φξ

pc(q),q,G. Note that φ1 is the infinite-volume measure with

wired boundary conditions at criticality. We will also use the following
notation: the event that A and B are connected by an open path included

in C will be denoted by A
C←→ B.

Preliminaries: easy implications

In order to isolate the hard part of the proof, let us start by checking the
four “simple” implications P1⇒P2, P2⇒P3, P3⇒P4 and P5⇒P1.

Property P1 implies P2: The proof of this fact follows from the proof of
Corollary 4.40 since the only assumption used there was φ1 (0←→∞) = 0.

Property P2 implies P3: If P2 holds,

(2n + 1)φ0 (0←→ ∂Λn) = (2n + 1)φ1 (0←→ ∂Λn)
≥ ∑
x∈{0}×[−n,n]

φ1 (x←→ (x + ∂Λn))

≥ φ1 (Cv([−n,n] × [0, n])) ≥ c,

where c > 0 is a constant independent of n. The first equality is due to
the uniqueness of the infinite-volume measure given by P2 and the second
inequality by Corollary 5.5. This leads to

∑
x∈∂Λn

φ0 (0←→ x) ≥ φ0 (0←→ ∂Λn) ≥
c

2n + 1
.

As a consequence, ∑
x∈Z2

φ0 (0←→ x) =∞ and P3 holds true.

Property P3 implies P4: Assume that P4 does not hold. In this proof,
we recall the dependency in p and q when p ≠ pc(q). In such case, there
exists c > 0 such that

− lim
n→∞

1

n
log[φp,q (0←→ (n,0))] ≥ lim

n→∞
− 1

n
log[φp,q (0←→ ∂Λn)] > c
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for any p < pc. Thus, (5.24) implies that φp,q (0←→ (n,0)) ≤ e−cn uniformly

in n and p < pc. Lemma 5.27 thus leads to φ0 (0←→ (n,0)) ≤ e−cn for every
n ≥ 1. Now, (5.25) implies that for every x = (x1, x2) ∈ Z2,

φ0 (0←→ x) ≤
√
φ0 (0←→ (2∥x∥∞,0)) ≤ e−c∥x∥∞ ,

where ∥x∥∞ = max{∣x1∣, ∣x2∣}. Summing over every x ∈ Z2 gives

∑
x∈Z2

φ0 (0↔ x) <∞

and thus P3 does not hold.

Property P5 implies P1: Recall that P5 implies P5’. We now prove a
slightly stronger result which obviously implies P1 and will be useful later
in the proof.

Lemma 5.35. Property P5’ implies that there exists ε > 0 such that for
any n ≥ 1,

φ1 (0↔ ∂Λn) ≤ n−ε.

Proof. Let k be such that 2k ≤ n < 2k+1. Also define the annuli
Aj = Λ2j ∖Λ2j−1−1 for j ≥ 1. We have

φ1 (0←→ ∂Λn) ≤
k

∏
j=1

φ1 (∂Λ2j−1

Aj←Ð→ ∂Λ2j ∣⋂
i>j

{∂Λ2i−1

Ai←Ð→ ∂Λ2i})

≤
k

∏
j=1

φ1
Aj (∂Λ2j−1

Aj←Ð→ ∂Λ2j) .

In the second line, we used the fact that the event upon which we condition
depends only on edges outside of Λ2j together with the comparison between
boundary conditions (Corollary 4.21).

Now, the complement of {∂Λ2j−1

Aj←Ð→ ∂Λ2j} is the event that there
exists a dual-open circuit in A⋆

j surrounding the origin. Property P5’

implies5 that this dual-open circuit exists with probability larger than or
equal to c > 0 independently of n ≥ 1. This implies that

φ1 (0←→ ∂Λn) ≤
k

∏
j=1

(1 − c) = (1 − c)k ≤ (1 − c)logn/ log 2.

The proof follows by setting ε = − log(1−c)
log 2

. ◻

5There is a slight technical issue here: the annulus A⋆j is not really of the form

Λ2n∖Λn for some n. Nevertheless, it contains a translation of Λ2n∖Λn+1 for n = 2j−1−1.
Now, the open circuit constructed in the proof of P5⇒P5’ is contained in Λ2n ∖Λn+1

and therefore there exists an open circuit in Λ2n ∖ Λn+1 surrounding the origin with
probability bounded away from 0.
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Remark 5.36. The proof of the previous lemma illustrates the need for
bounds which are uniform with respect to boundary conditions. Indeed, it
could be the case that the φ1-probability of an open path from the inner
to the outer sides of Aj is bounded away from 1, but conditioning on the
existence of paths in each annulus Ai (for i < j) could favor open edges
drastically, and imply that the probability of the event under consideration
is close to 1.

The only remaining implication to prove is P4 implies P5. Recall from
Proposition 5.33 that P5 is equivalent to P5” and we therefore rather
choose to prove that P4 implies P5” when R = 8. The proof follows two
steps. First, we prove that either P5” holds or φ0(0 ↔ ∂Λn) tends to 0
stretched-exponentially fast. We then prove that in the second case, the
speed of convergence is actually exponential.

Proposition 5.37. Exactly one of these two cases occurs:

1. inf
n≥1

φ0
Λ8n

(An) > 0.

2. There exists α > 0 such that for any n ≥ 1,

φ0 (0←→ ∂Λn) ≤ exp(−nα).

First, consider the strip G = Z×[−n,3n], and the boundary conditions ξ
defined to be wired on R× {3n}, and free on R× {−n}. Recall that in this

case, φ1,ξ
G and φ0,ξ

G are equal, and we thus write φstrip for this measure.

Lemma 5.38. For all k ≥ 1, there exists a constant c = c(k) > 0 such that,
for all n ≥ 1,

φstrip (Ch([−kn, kn] × [0,2n])) ≥ c. (5.26)

Proof. Fix n, k ≥ 1. We will assume that n is divisible by 9 (one may
adapt the argument for general values of n). By duality, the complement
of Ch([−kn, kn] × [0,2n]) is the event C⋆v (R⋆) that there exits a vertical
dual-open dual crossing in R⋆ ∶= [−kn+ 1

2
, kn− 1

2
]×[− 1

2
,2n+ 1

2
]. Therefore,

either (5.26) is true for c = 1/2, or

φstrip (C⋆v (R⋆)) ≥ 1/2.

We assume that we are in this second situation for the rest of the proof.

The dual of the measure on the strip with free boundary conditions on
the bottom and wired on the top is the measure on the strip with free
boundary conditions on the top and wired on the bottom. This measure
is the image of φstrip under the orthogonal reflection with respect to the
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horizontal line R×{n− 1
4
} composed with a translation by the vector ( 1

2
,0).

We thus obtain that

φstrip (Cv([−kn, kn] × [0,2n])) ≥ φstrip (Cv([−kn, kn − 1] × [−1,2n]))
= φstrip (C⋆v (R⋆)) ≥ 1/2.

Partitioning the segment [−kn, kn] into the union of 18k segments of length
λ ∶= n/9 (note that λ is an integer), the union bound gives us

φstrip (I ←→ R × {2n}) ≥ 1

36k
=∶ c1, (5.27)

where I = [4λ,5λ] × {0}. For future reference, let us also introduce the
segment J = [6λ,7λ] × {0}.

Define the rectangle R = [0,9λ] × [0,2n]. When the event estimated in
equation (5.27) is realized, there exists an open path in R connecting I to
the union of the top, left and right boundaries of R. Using the reflection
with respect to the vertical line {n

2
} ×R, we find that at least one of the

two following inequalities occurs:

Case 1: φstrip (I R←→ [0, n] × {2n}) ≥ c1/3.

Case 2: φstrip (I R←→ {0} × [0,2n]) ≥ c1/3.

Ω

I J

Γ1

Γ2

Figure 5.6: The construction in Case 1 with the two paths Γ1 and Γ2 and
the domain Ω between the two paths. On the right, a combination of paths
creating a long path from left to right.
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Proof of (5.26) in Case 1: Consider the event that there exist

(i) an open path from I to the top of [0,2n]2 contained in [0,2n]2,
(ii) an open path from J to the top of [0,2n]2 contained in [0,2n]2,
(iii) an open path connecting these two paths in [0,2n]2.

Each path in (i) and (ii) exists with probability larger than c1/3 (since
R and (2λ,0) + R are included in [0,2n]2). Furthermore, let Γ1 be the
left-most path satisfying (i) and Γ2 the right-most path satisfying (ii);
see Fig. 5.6. The subgraph of [0,2n]2 between Γ1 and Γ2 is denoted by
Ω. Conditioning on Γ1 and Γ2, the boundary conditions on Ω are wired
on Γ1 and Γ2, and dominate the free boundary conditions on the rest of
∂Ω. Following an argument close to those described in Section 4.4.4, we
deduce that boundary conditions on Ω stochastically dominate boundary
conditions induced by wired boundary conditions on the left and right
sides of the box [0,2n]2, and free on the top and bottom sides. As a
consequence of (5.5), conditionally on Γ1 and Γ2, there exists an open
path in Ω connecting Γ1 to Γ2 with probability larger than 1/(1 + q2). In
conclusion,

φstrip (I
[0,2n]2
←ÐÐÐ→ J) ≥ φstrip ((i), (ii) and (iii) occur) ≥ (c1

3
)

2

× 1

(1 + q2)
.

(5.28)
For x = jλ, where j ∈ {−9k−5, . . . ,9k−6}, define the translate of the event
considered in (5.28):

Ax ∶= (x + I)
x+[0,2n]2
←ÐÐÐÐÐ→ (x + J).

If Ax occurs for every such x, we obtain an open crossing from left to right
in [−kn, kn]× [0,2n]. The FKG inequality implies that this happens with

probability larger than ( c21
9(1+q2))

18k

.

Proof of (5.26) in Case 2: Define the rectangle R′ = [4λ,9λ] × [0,2n].
Note that in Case 2, J is connected to one side of [2λ,11λ] × [0,2n] with
probability bounded from below by c1/3, hence the same is true for R′

(since [2λ,11λ] × [0,2n] is wider than R′). Consider the event that there
exist

(i) an open path from I to the right side of R contained in R,
(ii) an open path from J to the left side of R′ contained in R′,
(iii) an open path connecting these two paths in [0,2n]2.

The first path occurs with probability larger than c1/3, and the second
one with probability larger than c1/6 (there exists a path to one of the
sides with probability at least c1/3, and therefore by symmetry in R′ to
the left side with probability larger than c1/6). By the FKG inequality,
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the event that both (i) and (ii) occur has probability larger than c21/18. We
now wish to prove that conditionally on (i) and (ii) occurring, the event
(iii) occurs with good probability.

Define the segments K(y, z) = {4λ} × [y, z] for y ≤ z ≤∞. They are all
subsegments of the vertical line of first coordinate equal to 4λ.

Consider the right-most open path Γ1 satisfying (ii). It intersects the
segment K(0,2n) at a unique point with second coordinate denoted by y.
Also consider the left-most open path Γ̃2 satisfying (i). Either Γ1 and Γ̃2

intersect, or they do not. In the first case, we are already done since (iii)
automatically occurs. In the second, we consider the subpath Γ2 of Γ̃2

from I to the first intersection with K(y,2n) (this intersection must exist
since Γ̃2 goes to the right side of R′). Let us now show that Γ1 and Γ2 are
connected with good probability. Note the similarity with the construction
in Proposition 5.6 with symmetric domains, except that the lattice is not
rotated here. The proof is therefore slightly more technical and we choose
to isolate it from the rest of the argument.

Claim: There exists c2 > 0 such that for any possible realizations γ1 and
γ2 of Γ1 and Γ2,

φstrip (γ1
R←→ γ2 ∣Γ1 = γ1,Γ2 = γ2) ≥ c2. (5.29)

Proof of the Claim. Fig. 5.7 should be very helpful in order to follow this
proof. Construct the subgraph Ω “between γ1 and γ2” formally delimited
by:
� the arc γ2,
� the segment [0, n] × {0},
� the arc γ1,
� the segment K(y + 1,2n) excluded (the vertices on this segment are

not part of the domain).

We wish to compare Ω (left of Fig. 5.7) to a reference domain D (center
of Fig. 5.7) defined as the upper half-plane minus the edges intersecting
{4λ − 1

2
} × (y,∞). Define the boundary conditions mix on D by:

� wired boundary conditions on K(y,∞) and A ∶= (−∞,4λ] × {0};
� wired boundary conditions at infinity (See Remark 4.32 for more

details on what is meant by wired boundary conditions at infinity);
� free boundary conditions elsewhere.

The boundary conditions on Ω inherited by the conditioning Γ1 = γ1 and
Γ2 = γ2 dominate wired on γ1 and γ2, and free elsewhere. Thus, we deduce
that

φstrip (γ1
Ω←→ γ2 ∣ Γ1 = γ1,Γ2 = γ2) ≥ φmix

D (K(y,∞) D←Ð→ A) . (5.30)

As mentioned above, the domain D is not exactly a symmetric domain
but it is still very close to being one. Consider the domain D̃ (see on the
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right of Fig. 5.7) obtained from D by the reflection with respect to the
vertical line d = {(4λ − 1

4
, y) ∶ y ∈ R} and a translation by ( 1

2
, 1

2
). Let

B = (−∞,4λ − 1] × {0}. Define the boundary conditions mix on D̃ as
� wired boundary conditions on K(y + 1,∞) ∪B (it is very important

that the two arcs are wired together);
� free boundary conditions at infinity;
� free boundary conditions elsewhere.

Γ2

K(y, ∞)

(4λ, y)

Γ1

R′R

I J

Ω

2n

4λ

D D̃

(4λ, 0)

Figure 5.7: Left. The domain Ω. We depicted the part of the domain with
free boundary conditions by putting dual wired boundary conditions on
the associated dual arcs. The wired boundary conditions are depicted in
bold. The rectangles R and R′ are also specified (R′ is in dashed). Center.
The domain D. We depicted the domain Ω in white. The existence of an
open path between K(y,∞) and A implies the existence of an open path
between γ1 and γ2 in D (between the two crossings). Right. The domain
D̃ with one path from K(y+1,∞) to B. The pre image of this path by the
reflection mapping D onto D̃ is a dual-path in D preventing the existence
of an open path from K(y,∞) to A.

Using duality, we find that

φmix
D (K(y,∞)

D

/←→ A) = φmix
D̃

(K(y + 1,∞) D̃←→ B)

and thus

φmix
D (K(y,∞) D←Ð→ A) + φmix

D̃
(K(y + 1,∞) D̃←→ B) = 1. (5.31)
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Define the mix′ boundary conditions on D as wired boundary conditions
on K(y + 1,∞) ∪B (the two arcs are once again wired together) and free
elsewhere (they correspond to the boundary conditions mix on D̃). The
comparison between boundary conditions and the fact that D̃ ⊂D lead to

φmix
D̃

(K(y + 1,∞) D̃←→ B) ≤ φmix′

D (K(y,∞) D←→ A) . (5.32)

The boundary conditions for the probability on the right can be compared
to the boundary conditions mix. First, one may wire the vertices (4λ, y)
and (4λ, y + 1) together, and the vertices (4λ − 1,0) and (4λ,0) together,
which increases the probability of an open path between K(y,∞) and A.
Second, one may unwire the arcs B andK(y+1,∞), paying a multiplicative
cost of q2. Using the previous inequality and the comparison between the
boundary conditions described in this paragraph, we deduce

φmix′

D (K(y,∞) D←→ A) ≤ q2φmix
D (K(y,∞) D←→ A) .

Putting this inequality in (5.32) and then in (5.31), and finally using (5.30),
we find that

φstrip (γ1
Ω←→ γ2 ∣ Γ1 = γ1,Γ2 = γ2) ≥ φmix

D (K(y,∞) D←→ A) ≥ 1

1 + q2
.

◇

It follows from (5.29) and the probabilities of (i) and (ii) that

φstrip (I R←→ J) ≥ 1

1 + q2
× c21

18
.

Here again, 18k translations of the event above guarantee the occurrence
of an open crossing from left to right in [−kn, kn] × [0,2n]. This occurs

with probability larger than ( c21
18(1+q2))

18k thanks to the FKG inequality

again. ◻

In the next lemma, we consider horizontal crossings in rectangular
shaped Dobrushin domains with free boundary conditions on the bottom
and wired elsewhere.

Lemma 5.39. For all k > 0 and ` ≥ 4/3, there exists a constant
c = c(k, `) > 0 such that for all n > 0,

φa,bD (Ch ([−kn, kn] × [0, n])) ≥ c (5.33)

with D = [−kn, kn] × [0, `n], and φa,bD is the random-cluster measure
with Dobrushin boundary conditions on (D,a, b) where a = (−kn,0) and
b = (kn,0).
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Proof. For ` = 4/3, the result follows directly from Lemma 5.38 since

the boundary conditions on φa,bD stochastically dominate wired boundary
conditions on the top of the strip Z× [0, 4n

3
], and free on the bottom, and

therefore there exists an horizontal crossing of the rectangle [−kn, kn] ×
[n

3
, n] with probability bounded away from 0.

Now assume that the result holds for ` and let us prove it for ` + 1/3.
By comparison between boundary conditions in [−kn, kn]× [n

3
, `n+ n

3
], we

know that

φa,bD (Ch([−kn, kn] × [n
3
, 4n

3
])) ≥ c(k, `).

Conditioning on the highest such crossing, the boundary conditions below
this crossing stochastically dominate the Dobrushin boundary conditions
in [−kn, kn] × [0, 4n

3
] with a = (−kn,0) and b = (kn,0). An application of

the case ` = 4
3

enables us to set c(k, ` + 1
3
) = c(k, `)c(k, 4

3
).

The proof follows from the fact that the probability in (5.33) is
decreasing in `. ◻

Lemma 5.40. There exists a constant C <∞ such that, for all n ≥ 1,

φ0
Λ56n

(A7n) ≤ C φ0
Λ8n

(An)2
. (5.34)

Proof. Define z± = (±5n,0). If A7n occurs, the boundary conditions on
Λ7n stochastically dominate the wired boundary conditions on Λ56n due
to the existence of the open circuit in Λ14n ∖Λ7n (simply apply the same
proof as for free boundary conditions in P1⇒P2 above). The use of the
RSW theorem from Section 5.1 (Corollary 5.5) thus implies the existence
of a constant c1 > 0 such that, for all n,

φ0
Λ56n

[An(z+) ∩An(z−)∣A7n] ≥ φ1
Λ56n

[An(z+) ∩An(z−)] ≥ c1. (5.35)

It directly implies that for all n,

φ0
Λ56n

[An(z+) ∩An(z−)] ≥ c1φ0
Λ56n

[A7n]. (5.36)

Now, examine the domain D = [−56n,56n] × [2n,56n] and define
a = (−56n,2n) and b = (56n,2n). Under φ0

56n[ ⋅ ∣An(z+) ∩ An(z−)], the
boundary conditions on D are stochastically dominated by wired boundary
conditions on the bottom and free boundary conditions on the other sides.
Let C⋆h(R⋆

+) be the event that

R⋆
− ∶= [−56n − 1

2
,56n + 1

2
] × [2n + 1

2
,3n − 1

2
]
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contains a dual-open dual-path from left to right. As a consequence,
Lemma 5.39 applied6 to k = 57 and ` = 55 implies that

φ0
Λ56n

[C⋆h (R⋆
+) ∣An(z+) ∩An(z−)] ≥ φ

a,b
D (C⋆h (R⋆

+)) ≥ c2 (5.37)

for some universal constant c2 > 0 independent of n. Similarly,

φ0
Λ56n

(C⋆h (R⋆
−) ∣An(z+) ∩An(z−)) ≥ c2, (5.38)

where C⋆h(R⋆
−) is the event that

R⋆
+ ∶= [−56n − 1

2
,56n + 1

2
] × [−3n + 1

2
,2n − 1

2
]

contains a dual-open dual-path from left to right. Define the event Bn,
illustrated on Fig. 5.8, which is the intersection of the events An(z+),
An(z−), C⋆h (R⋆

+), and C⋆h (R⋆
−). Equations (5.36), (5.37) and (5.38) lead to

the estimate

φ0
Λ56n

(Bn) ≥ c3φ0
Λ56n

(A7n) , (5.39)

where c3 > 0 is a positive constant independent of n.
Assume Bn occurs and define Γ1 to be the top-most horizontal dual-

crossing of R⋆
+ and Γ2 to be the lowest horizontal dual-crossing of R⋆

−. Note
that these paths are dual paths. Let Ω be the set of vertices in [−3n,3n]2
below Γ1 and above Γ2. Exactly as in the proof of Lemma 5.38, when
conditioning on Γ1, Γ2 and everything outside Ω, the boundary conditions
inside Ω are dual-wired on Γ1 and Γ2, and dominated by wired elsewhere.
The dual measure inside Ω therefore dominates the restriction to Ω of the
dual measure on [−3n + 1

2
,3n − 1

2
]2 with dual-wired boundary conditions

on {±(3n − 1
2
)} × [−3n + 1

2
,3n − 1

2
] and dual-free boundary conditions on

[−3n + 1
2
,3n − 1

2
] × {±(3n − 1

2
)}. Using (5.5), we find

φ0
Λ56n

(Cn ∣ Bn) ≥
1

1 + q2
,

where Cn = {Γ1
⋆←→ Γ2 in [−3n,3n]2} (here in [−3n,3n]2 means in the

subgraph of (Z2)⋆ induced by dual-vertices in [−3n,3n]2 when seen as a
subset of R2). Similar inequalities hold for the events

Dn = {Γ1
⋆←→ Γ2 in [−13n,−7n] × [−3n,3n]},

En = {Γ1
⋆←→ Γ2 in [7n,13n] × [−3n,3n]}.

6Morally, one may think that taking k = 56 and ` = 54 is sufficient. Nevertheless, the
rectangle R⋆+ is of length 112n+ 1 and width n− 1 and not 112n and n, thus explaining
why it is necessary to pick k = 57 and ` = 55.
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0 z+

2n

−2n

3n

−3n5n5n

n

Ω
z−

n

z+ + Λ8n

Γ1

Γ2

Figure 5.8: Primal open crossings are in bold, dual-open are in plain. The
events An(z+), An(z−) and the existence of the dual horizontal crossings
of R⋆

+ and R⋆
− form Bn. Conditionally on Bn, Γ1 and Γ2 are connected in

Ω by a dual-open path with probability larger than 1/(1 + q2).

The FKG inequality thus implies

φ0
Λ56n

(Cn ∩Dn ∩ En ∣ Bn) ≥
1

(1 + q2)3
(5.40)

which, together with (5.39), leads to

φ0
Λ56n

(Bn ∩ Cn ∩Dn ∩ En) ≥
c3

(1 + q2)3
φ0

Λ56n
(A7n) . (5.41)

The event estimated in (5.41) implies in particular the existence of dual
circuits in z+ + Λ8n and z− + Λ8n disconnecting z+ + Λ2n from z− + Λ2n.
Writing Fn for the event that such dual circuits exist and using the
comparison between boundary conditions one last time (more precisely
a “conditioning on the outermost dual-circuit” argument), we obtain

φ0
Λ8n

(An)2 = φ0
z−+Λ8n

(An(z−))φ0
z++Λ8n

(An(z+))
≥ φ0

Λ56n
(An(z−) ∣An(z+) ∩Fn)φ0

Λ56n
(An(z+) ∣Fn)φ0

Λ56n
(Fn)

= φ0
Λ56n

(An(z−) ∩An(z+) ∩Fn)

≥ c3
(1 + q2)3

φ0
Λ56n

(A7n) .

This inequality implies the claim. ◻
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Proof of Proposition 5.37. Obviously the cases 1 and 2 cannot occur
simultaneously. Suppose that the first case does not occur and let us prove
that the second does.

For all n ≥ 1, set un = Cφ0
Λ8n

(An), where C is defined as in Lemma 5.40.

With this notation, Lemma 5.40 implies that u7n ≤ u2
n for any n ≥ 1 and

therefore
u7kn0

≤ u2k

n0
(5.42)

for any positive k ≥ 0 and n0 ≥ 1. Now, if lim inf
n→∞

φ0
Λ8n

(An) = 0, then we

may pick n0 such that un0 < 1. By (5.42), there exists c1 > 0 such that for
all n of the form n = 7kn0,

un ≤ exp (−c1nlog 2/ log 7) . (5.43)

Fix n = 7kn0 and consider n
7
≤ m < n. The FKG inequality and the

comparison between boundary conditions imply that

φ0
[0,m]2 ((0, p)←→ (m,`)) ≤ (φ0

[−m,m]×[0,m] ((−m,`)←→ (m,`)) )
1/2

≤ (φ0
Λ8n

(Ch([−2n,2n] × [0,m])) )
1/14

≤ (φ0
Λ8n

(An) )
1/56

≤ exp (−c2nlog 2/ log 7) .

In the first inequality, we used that if (0, p) ←→ (m,`) and (−m,`) ←→
(0, p), then (−m,`) ←→ (m,`). In the second inequality, we have used
that if (x, `) ←→ (x + 2m,`) occur for x = 2mj with j ∈ {−7, . . . ,7}, then
Ch([−2n,2n]× [0,m]) occurs. Finally in the third inequality we combined
four crossings as in the proof of P5⇒P5’. Lemma 4.23 implies the claim.
◻

Theorem 5.24 follows directly from Proposition 5.37 and the following
proposition:

Proposition 5.41. If there exists α > 0 such that for all n ≥ 1,

φ0 (0←→ ∂Λn) ≤ exp(−nα),

then there exists c > 0 such that for all n ≥ 1,

φ0 (0←→ ∂Λn) ≤ exp(−cn).

We start by a lemma. Let n ≥ 1 and θ ∈ [−1,1]. Define the tilted strip
in direction θ:

S(n, θ) = {(x, y) ∈ Z2 ∶ 0 ≤ y − θx ≤ n}.
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Write φ−∞,∞
S(n,θ) for the random-cluster measure on the tilted strip S(n, θ)

with wired boundary conditions on the top side and free on the bottom
side7.

We will also consider a truncated version of the tilted strip S(n, θ). For
m ≥ 0, consider the truncated tilted strip

S(n,m, θ) = S(n, θ) ∩Λm.

We will always assume that θm ∈ N and we will always see S(n,m, θ) as a

Dobrushin domain with a = (−m,−θm) and b = (m,θm). Write φa,b
S(n,m,θ)

for the random-cluster measure with Dobrushin boundary conditions on
(S(n,m, θ), a, b), i.e. free on the bottom side and wired on the other sides.

For simplicity, we will call the bottom side of the strip or the truncated
strip the free arc, and the rest of the boundary the wired arc.

Lemma 5.42. For all m ≥ n ≥ 1 and θ ∈ [−1,1],

φa,b
S(n,m,θ) (0←→ wired arc) ≥ 1

5m2n2
. (5.44)

Proof. Fix n ≥ 0 and θ ∈ [−1,1]. Let us work in the strip S(2n, θ).
From now on, we drop the dependence in n and θ and write for instance
S = S(2n, θ) and S(m) = S(n,m, θ). Beware that there is a slightly
confusing notation here: the height of the strip is 2n while the one of
the truncated strip is n.

For x ∈ S, define the translate Sx(m) ∶= x + S(m) of S(m). We extend
the definition of wired and free arcs to this context. Let A(x) be the event
that x is connected to the wired arc of Sx(m) and every open path from a
vertex y ∉ Sx(m) to x intersects the wired arc (of Sx(m)). In other words,
no open path starting from x “exits” Sx(m) through the free arc (i.e. the
bottom side).

We consider the random function F ∶ NÐ→ [0,2n] defined by

F (k) ∶= min{` ∶ (k, `) is connected to the top side of S} − θk. (5.45)

Recall that θm ∈ N. Therefore, F can take only the 2nm + 1 following
values:

{0, 1
m
, . . . , 2nm−1

m
,2n}.

On the event {F (0) ≤ n}, there must exist k ∈ {−nm2, . . . , nm2} such that
F (k) ≤ n and F (k′) ≥ F (k) for every ∣k′ − k∣ ≤ m. Otherwise, if there is
no such k, then there exists a sequence 0 = k0, . . . , knm with ∣ki+1 − ki∣ ≤m
and 0 < F (ki+1) < F (ki). But this provides nm + 1 distinct values for F ,
all smaller or equal to n and strictly larger than 0, which is contradictory.

7The boundary conditions at infinity are irrelevant since the tilted strip is essentially
a one-dimensional graph (this is the same argument as for φstrip before).
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Now, for k satisfying F (k) ≤ n and F (k′) ≥ F (k) for every ∣k′ − k∣ ≤ m,
the event A((k,F (k))) is realized. In conclusion, if F (0) ≤ n, then there
exists x ∈ S(n,nm2, θ) such that A(x) is realized and the union bound
shows the existence of x in the bottom half S(n, θ) of S such that

φ−∞,∞S (A(x)) ≥
φ−∞,∞S (F (0) ≤ n)

∣S(n,nm2, θ)∣
=
φ−∞,∞S (F (0) ≤ n)
n(2nm2 + 1)

.

Consider the interface between the open cluster connected to the top side
of the box and the dual-open cluster dual-connected to the bottom side.
By duality, this interface intersects {0} × [0, n] with probability larger or
equal to 1/2. Thus, φ−∞,∞S (F (0) ≤ n) ≥ 1

2
and therefore

φ−∞,∞S (A(x)) ≥ 1

5n2m2
.

In order to conclude, we simply need to prove that

φa,b
S(m) (0←→ wired arc of S(m)) ≥ φ−∞,∞S (A(x)) . (5.46)

First, observe that since x is contained in the bottom half S(n, θ) of S,
the set Sx(m) is entirely included in S. Second, since there is no open
path containing x and exiting Sx(m) by the free arc, there exists a lowest
dual-open path in Sx(m), denoted by Γ⋆, preventing the existence of
such a path, see Fig. 5.9. Let Ω be the set of vertices of Sx(m) above
Γ⋆. The law of the random-cluster on Ω is dominated by the law of ω∣Ω,
where ω is sampled according to a random-cluster model on Sx(m) with
Dobrushin boundary conditions. If A(x) occurs, then conditionally on Γ⋆,
x is connected to the wired arc of Sx(m) by an open path contained in Ω.
Thus,

φ−∞,∞S (x←→ wired arc of Sx(m)∣Γ⋆) ≤ φa,b
Sx(m) (x

Ω←→ wired arc of Sx(m))

≤ φa,b
Sx(m) (x←→ wired arc of Sx(m))

= φa,b
S(m) (0←→ wired arc of S(m)) .

We omitted a few lines to get the first inequality since we applied such a
reasoning already several times in this chapter. The equality follows from
invariance under translations. Since the previous bound is uniform in the
possible realizations of Γ⋆, we deduce (5.46) and the result follows readily.
◻

The next lemma will be used recursively in the proof of Proposition 5.41.

Lemma 5.43. Assume that there exists α > 0 such that for all n ≥ 1,

φ0 (0←→ ∂Λn) ≤ exp(−nα).
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Then for ε > 0 small enough, there exists a constant C < ∞ such that for
any n ≥ 1, any u ∈ {−n} × [−n,n] and any v ∈ {n} × [−n,n],

φ0
Λn (u←→ v) ≤ eCn

ε

φ0 (0←→ ∂Λn)2 +Cn6 ∑
k,`≥nε
k+`=2n

φ0 (0←→ ∂Λk)φ0 (0←→ ∂Λ`) .

y = θx

y = θx + n

y = θx + 2n

m

n

Sx(m)

x

Ω

Γ⋆

S

Figure 5.9: The event A(x) and the lowest dual-path Γ⋆.

Proof. Fix ε > 0. Let us translate the box Λn in such a way that u = −v;
the new box is denoted by Λ̃n. Let us also introduce Λ̃⋆

n to be the dual
graph of the Dobrushin domain Λ̃n (recall that it is the subgraph of (Z2)⋆
induced by faces touching Λ̃n). Define the set

D = {z ∈ Λ̃n ∶ d(z, [u, v]) < nε}

(here [u, v] denotes the segment between u and v and the distance is the
Euclidean distance between a point and a set). As illustrated in Fig. 5.10,
we consider the sets D− and D+ of points z ∈ Λ̃n lying respectively below

and above D. On {u Λ̃n←Ð→ v}, define Γ− and Γ+ to be respectively the
lowest and highest open (non-necessarily self-avoiding) paths connecting u
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D+

D

D−

0

v

u = −v

2nǫ

2n

Λ̃n

0

v

u

z

Figure 5.10: Left. The regions D, D− and D+. Note that 0 is not
necessarily at the center of Λ̃n. Right. The situation before closing the

edges surrounding z when Gn(z) and {z + ( 1
2
, 1

2
) ⋆←→ ∂Λ̃⋆

n} occurs. The
dual-open paths are depicted in dash lines.

to v. The event {u Λ̃n←Ð→ v} is included in the union of the following three
sub-events:

E− = {u Λ̃n←Ð→ v} ∩ {Γ− ∩D+ ≠ ∅}, (5.47)

E+ = {u Λ̃n←Ð→ v} ∩ {Γ+ ∩D− ≠ ∅}, (5.48)

E = {u Λ̃n←Ð→ v} ∩ {Γ+ ⊂D+ ∪D} ∩ {Γ− ⊂D− ∪D}. (5.49)

In the rest of the proof, we will bound separately φ0
Λ̃n

(E−) (and therefore

φ0
Λ̃n

(E+) by symmetry) and φ0
Λ̃n

(E), hence the two terms on the right-

hand side of the inequality in the statement.

Estimation of φ0
Λ̃n

(E−). For z ∈D+ ∩Z2, let Gn(z) be the event that:

� u is connected to v in Λ̃n,
� z ∈ Γ− and d(z, [u, v]) = max

z′∈Γ−∩D+
d(z′, [u, v]).

Note that

E− = ⋃
z∈D+

Gn(z). (5.50)

Conditionally on Γ−, what is above Γ− follows a random-cluster measure
with wired boundary conditions on Γ− and free on ∂Λ̃n. Thus, by
comparison between boundary conditions and Lemma 5.42 (with m = n
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and θ = v2−u2

v1−u1
, where u = (u1, u2) and v = (v1, v2)), we find that

φ0
Λ̃n

(z + (1/2,1/2) ⋆←→ ∂Λ̃⋆
n ∣ Gn(z)) ≥

1

5(2n)4
. (5.51)

When both Gn(z) and {z+(1/2,1/2) ⋆←→ ∂Λ̃⋆
n} occur, closing the four dual

edges surrounding the vertex z disconnects Γ− into two paths separated
by dual-open circuits (see Fig. 5.10). The respective ∥ ⋅ ∥∞-end-to-end
distances ` and k of these paths satisfy k + ` ≥ 2n − 2.

Using the comparison between boundary conditions once-again, we find

φ0
Λ̃n

(Gn(z)) ≤ 5(2n)4 φ0
Λ̃n

(Gn(z) ∩ {z + (1/2,1/2) ⋆←→ ∂Λ̃⋆
n}) (5.52)

≤ 80

c4
n4 ∑

k,`≥nε
k+`=2n−2

φ0 (u←→ u + ∂Λk)φ0 (v ←→ v + ∂Λ`) . (5.53)

The finite-energy property (Proposition 4.4) is used in the second line to
close the edges around z. Summing over all possible z ∈D+ gives

φ0
Λ̃n

(E−) ≤ C1n
6 ∑

k,`≥nε
k+`=2n−2

φ0 (0←→ ∂Λk)φ0 (0←→ ∂Λ`) .

The finite-energy property (Proposition 4.4) once again implies that

φ0 (0←→ ∂Λr+1) ≥ cφ0 (0←→ ∂Λr)

for any r ≥ 0 and thus

φ0
Λ̃n

(E−) ≤ C2n
6 ∑
k,`≥nε
k+`=2n

φ0 (0←→ ∂Λk)φ0 (0←→ ∂Λ`) . (5.54)

Estimation of φ0
Λ̃n

(E). First, we wish to justify that conditionally on the

occurrence of E , there exists an open path between u and v which is staying
in D with probability close to 1. To see this, remark that any open path
between u and v must lie in the region Ω between Γ− and Γ+ (see Fig. 5.11).
Furthermore, conditioning on Γ+ and Γ−, the boundary conditions on Ω are
wired. In particular, the configuration in Ω stochastically dominates the
restriction to Ω of a configuration ω̃ sampled according to a random-cluster
measure with wired boundary conditions at infinity. Since Γ+ and Γ− are
already open, u and v are connected in D if there exists an open path in
ω̃ from left to right in D. The complement of this event is included in the
event that a dual-vertex of D⋆ is dual-connected to distance nε of itself in
ω̃. The φ1-probability of this event can thus be bounded by ∣D∣ exp(−nαε)
thanks to the assumption made on connection probabilities. We deduce

φ0
Λ̃n

(u D←Ð→ v) ≥ (1 − ∣D∣ exp(−nαε))φ0
Λ̃n

(E) . (5.55)
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Now, consider the set of edges E of D intersecting the line { 1
2
} ×R. Also

define w− and w+ to be respectively the highest point of D⋆
− and the lowest

point of D⋆
+ with first coordinate equal to 1

2
. Let F be the event that

� all the edges of E are closed,
� w− and w+ are dual-connected to ∂Λ̃⋆

n in D⋆
− and D⋆

+ respectively.

Consider the event u
D←Ð→ v and modify the configuration by closing all

edges in E. The finite-energy property (Proposition 4.4) implies that

φ0
Λ̃n

(F ∩ {u←→ u + ∂Λn} ∩ {v ←→ v + ∂Λn−1}) (5.56)

≥ φ0
Λ̃n

(u D←Ð→ v) × c2
√

2nε × ( 1

5(2n)4
)

2

,

where the term c2
√

2nε is a uniform lower bound for the probability that
all edges in E are closed (a simple computation involving the Euclidean
distance shows that there are less than 2

√
2nε edges in E), and [5(2n)4)]−2

comes from the estimate

φ0
Λ̃n

(w−
⋆←→ ∂Λ̃⋆

n in D⋆
− ∣u D←Ð→ v) ≥ 1

5(2n)4
and

φ0
Λ̃n

(w+
⋆←→ ∂Λ̃⋆

n in D⋆
+ ∣u D←Ð→ v) ≥ 1

5(2n)4

implied by Lemma 5.42. Overall, (5.55) and (5.56) give us

φ0
Λ̃n

(E) ≤ eCn
ε

φ0
Λ̃n

(F ∩ {u←→ u + ∂Λn} ∩ {v ←→ v + ∂Λn−1}) . (5.57)

We are almost done (we only need to bound the right-hand side of the

previous inequality by a constant times φ0 (0←→ ∂Λn)2
). In order to do

so, note that the event F forces the existence of a dual path disconnecting
the cluster of u and the cluster of v (see Fig. 5.11). Conditioning on the
cluster of u and its boundary, the boundary conditions in what remains
are stochastically dominated by free boundary conditions at infinity, and
we deduce (by the the same strategy that we already used several times)
that

φ0
Λ̃n

(F ∩ {u←→ u + ∂Λn} ∩ {v ←→ v + ∂Λn−1})

≤ φ0 (0←→ ∂Λn)φ0 (0←→ ∂Λn−1) ≤
1

c
φ0 (0←→ ∂Λn)2

,

where once again we used insertion tolerance in the last inequality. The
claim follows readily from this inequality and (5.57). ◻

Remark 5.44. The previous lemma implies that φ0
[0,2n]2(u ←→ v) is

bounded by the right hand-side of (5.47) for any u and v on two opposite
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u

v

0C⋆

u

v

0

w+

w−

E

Figure 5.11: Left. The domain Ω between Γ− and Γ+. Inside, a dual
cluster C⋆ preventing the existence of an open path from u to v in D. Since
we assumed that connection probabilities decay as a stretched exponential,
this cluster exists with very small probability. Right. Splitting the open
path from u to v in two pieces.

sides of [0,2n]2. Let us argue that φ0
[0,2n−1]2(u

′ ←→ v′) is also bounded by

a universal constant C times the right-hand side of (5.47) uniformly on u′

and v′ on opposite sides of [0,2n − 1]2. Indeed, the comparison between
boundary conditions shows that

φ0
[0,2n−1]2(u

′ ←→ v′) ≤ φ0
[0,2n]2(u

′ ←→ v′ in [0,2n − 1]2).

Now let u and v be two neighbors of u′ and v′ on opposite sides of [0,2n]2.
The finite-energy property (Proposition 4.4) implies that

φ0
[0,2n−1]2(u

′ ←→ v′) ≤ Cφ0
[0,2n]2(u←→ v)

and we may apply the previous lemma.

Proof of Proposition 5.41. Assume that there exists α > 0 such that

φ0 (0←→ ∂Λn) ≤ exp(−nα) (5.58)

for any n ≥ 0. Fix ε < β < α to be chosen later. Set

qn = en
β

φ0 (0←→ ∂Λn) .
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Lemma 4.23 applied to 2n and Lemma 5.43 (more precisely Remark 5.44)
imply that there exists C3 > 0 such that

q2n ≤ e(2n)
β

∑
m≥n

C3m
4(eCm

ε

φ0(0↔ ∂Λm)2

+Cm6 ∑
k,`≥mε
k+`=2m

φ0(0←→ ∂Λk)φ0(0←→ ∂Λ`))

≤ e(2n)
β

∑
m≥n

C3m
4(eCm

ε

e−2mβq2
m +Cm6 ∑

k,`≥mε
k+`=2m

e−(k
β+`β)qkq`)

≤ ( max
k,`≥nε
k+`≥2n

qkq`)e(2n)
β

∑
m≥n

C3m
4(eCm

ε

e−2mβ +Cm6 ∑
k,`≥mε
k+`=2m

e−(k
β+`β))

≤ C4 max
k,`≥nε
k+`≥2n

qkq`,

where C4 < ∞ is a constant independent of n. The constant C was
introduced in Lemma 5.43. The existence of C4 follows from a simple
computation using ε < β and the fact that β < 1 and k, ` ≥ nε imply

e−(k
β+`β) ≤ e−(k+`)

β

e−c2n
εβ

for some constant c2 > 0 8.
Let us now come back to the proof. The finite-energy property implies

the existence of c3 ∈ (0,∞) such that c3qk ≤ qk+1 ≤ qk/c3 for any
k ≥ 0. Using this fact, the previous inequality immediately extends to
odd integers and there exists C5 <∞ such that

qn ≤ C5 max
k,`≥nε
k+`≥n

qkq`.

Since we do not know a priori that (qn) is decreasing unfortunately, we
need to include the following technical trick. Set Qn = C5 max{qm ∶m ≥ n}.
For this definition, we still get

Qn ≤ max
k,`≥nε
k+`≥n

QkQ`.

We are now in a position to conclude. The assumption implies that (Qn)
tends to zero. Pick n0 such that Qn < 1 for n ≥ nε0. Since (Qn)n≥0 is

8Let us make a small remark before proceeding forward with the proof. It was crucial
to keep the division in the inequality of Lemma 5.43 between a term k = ` = m with a
stretched exponential penalty C3m

4eCm
ε
, and the general term k+` = 2m, for which we

have only a polynomial penalty C3m
4Cm6. If we would have replaced the polynomial

bound by a stretched exponential one for every k and `, the values of k or ` close to nε

would have created difficulties since the correction would have been of the order of the
largest of the two terms.
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decreasing, the maximum of QkQ` is not reached for k ≥ n or ` ≥ n and we
obtain that for n ≥ n0,

Qn ≤ max
n>k,`≥nε
k+`≥n

QkQ`.

We can now proceed by induction to prove that for n ≥ n0,

Qn ≤ exp(−c4n) where c4 ∶= max
nε0≤n≤n0

− 1
n

log(Qn) > 0.

We therefore conclude that

φ0 (0←→ ∂Λn) ≤ exp(nβ)Qn ≤ exp(nβ) ⋅ 1

C5
exp(−c4n).

◻

5.5 Applications of the strong RSW theory
to spatial mixing

The bound P5 on crossing probabilities enables us to study the spatial
mixing properties at criticality. One may decouple events which are
depending on edges in different areas of the space, and therefore
compensate for the lack of independence. The next theorem illustrates
this fact. It will be used in many occasions in the reminder of this book.

Theorem 5.45 (Polynomial ratio weak mixing under condition P5). Fix
q ≥ 1 such that Property P5 of Theorem 5.24 is satisfied. There exists
α > 0 such that for any 2k ≤ n and for any event A depending only on
edges in Λk,

∣φξpc,q,Λn (A) − φψpc,q,Λn (A) ∣ ≤ (k
n
)
α

φξpc,q,Λn (A) (5.59)

uniformly in boundary conditions ξ and ψ.

Together with the Domain Markov property, this result implies the
following inequality for 2k ≤m ≤ n (with n possibly infinite),

∣φξpc,q,Λn (A ∩B) − φξpc,q,Λn (A)φξpc,q,Λn (B) ∣ ≤ ( k
m

)
α

φξpc,q,Λn (A)φξpc,q,Λn (B) ,

where the boundary conditions ξ are arbitrary, A is an event depending
on edges of Λk only, and B is an event depending on edges of Λn ∖Λm.
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Remark 5.46. For p ≠ pc(q), estimates of this type (with an exponential
speed of convergence instead of polynomial) can be established by using
the rate of spatial decay for the influence of a single vertex [Ale98]. At
criticality, the correlation between distant events does not boil down to
correlations between points and a finer argument must be harnessed.
Crossing-probability estimates which are uniform in boundary conditions
are the key in order to prove such results.

Remark 5.47. We will see several specific applications of this theorem
in the next chapters. The most striking consequence is the fact that
the dependence on boundary conditions can be forgotten as long as
the boundary conditions are sufficiently distant from the set of edges
determining whether the events under consideration are satisfied or not.
For instance, it allows us to state several theorems in infinite volume,
keeping in mind that most of these results possess natural counterparts in
finite volume by using the fact that

cφpc,q (A) ≤ φξpc,q,Λ2n
(A) ≤ Cφpc,q (A)

for any event A depending on edges in Λn only, and any boundary
conditions ξ on ∂Λ2n (the constants c and C are universal).

The proof of Theorem 5.45 is based on the following lemma.

Lemma 5.48. Let k ≤ n and ξ arbitrary boundary conditions on ∂Λn.
There exist two couplings P and Q on configurations (ωξ, ω1) with the
following properties:

� ωξ and ω1 have respective laws φξpc,q,Λn and φ1
pc,q,Λn

.

� P-almost surely, if ω⋆1 contains a dual-open dual-circuit in Λ⋆
n ∖ Λ⋆

k

and Γ⋆ is the outermost such circuit, then Γ⋆ is also closed in ωξ,
and furthermore ω1 and ωξ coincide inside Γ⋆.

� Q-almost surely, if ωξ contains an open circuit in Λn∖Λk and Γ̃ is the

outermost such circuit, then Γ̃ is also open in ω1, and furthermore
ω1 and ωξ coincide inside Γ̃.

Proof. Holley’s criterion provides us with a monotonic coupling between
φξpc,q,Λn and φ1

pc,q,Λn
. Nevertheless, this coupling does not necessarily

satisfy the required property. Let us construct another coupling via an
explicit construction. We start by explaining how to sample φξpc,q,Λn .
The Domain Markov property enables us to construct a configuration as
follows. Consider uniform random variables Ue on [0,1] for every edge
e. Choose an edge e1 and declare it open if Ue1 is smaller or equal

to φξpc,q,Λn (ω(e1) = 1). Choose another edge e2 and set it to open if
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Ue2 ≤ φ
ξ
pc,q,Λn

(ω(e2) = 1∣ω(e1)). We iterate this procedure for every edge.
Also note that we can stop the procedure after a certain number of edges
and sample the rest of the edges according to the right conditional law.
The domain Markov property guarantees that the measure thus obtained
is φξpc,q,Λn . Note that the choice of the next edge can be random, as long
as it depends only on the state of edges discovered so far.

Of course, the previous construction is useless for one measure, but it
becomes interesting if we consider two measures: one may sample both
configurations based on the same random variables Ue with a specific way
of choosing the next edges. Let us now describe the way we are choosing
the edges:

� Construction of P: After t steps, the edge et+1 ∈ EΛn ∖EΛk is chosen
in such a way that it has one end-point connected to ∂Λn by an
open path in ω1, until it is not possible anymore. Then sample all
remaining edges at once according to the correct conditional law.
If there is a closed circuit surrounding Λk in ω1, then there was
a time t such that at time t + 1, no undiscovered edges had an
end-point which was connected to the boundary in ω1. Since this
procedure guarantees that ω1 ≥ ωξ, no such edges were connected to
the boundary in ωξ as well. Therefore, the configuration sampled
inside the remaining domain is a random-cluster model with free
boundary conditions in both cases. In particular, both configurations
coincide in Λk.

� Construction of Q: After t steps, the edge et+1 ∈ EΛn ∖EΛk is chosen
in such a way that one end-point of e⋆t+1 is dual-connected to ∂Λ⋆

n by
a dual-open path in ω⋆ξ , until it is not possible anymore. Then sample
all remaining edges according to the correct conditional law. If there
is an open circuit surrounding Λk in ωξ, then there was a first time
t such that the open circuit was discovered at time t. Once again,
ω1 ≥ ωξ and this circuit is also open in ω1. Then, the configuration
inside the connected component of Λk in Λn ∖ {e1, e2, . . . , et} will
be sampled according to a random-cluster configuration with wired
boundary conditions. In particular, both configurations coincide in
Λk.

◻

Proof of Theorem 5.45. It is clearly sufficient to prove that there exists
α > 0 such that

∣φξpc,q,Λn (A) − φ1
pc,q,Λn (A) ∣ ≤ (k

n
)
α

φξpc,q,Λn (A)



148 Hugo Duminil-Copin

for any event A depending on edges in Λk. Let E be the event that there
exists a dual-open dual-circuit in ω⋆ξ included in Λ⋆

n ∖Λ⋆
k. We deduce

φξpc,q,Λn (A) ≥ φξpc,q,Λn (A ∩E) = Q[ωξ ∈ A ∩E] ≥ Q[ω1 ∈ A ∩E]

= φ1
pc,q,Λn (A ∩E) ≥ (1 − (k/n)α)φ1

pc,q,Λn (A)

where in the third inequality, we used the fact that if ω1 belongs to A∩E,
then ω1 and therefore ωξ belong to E. Since ω1 and ωξ coincide in Λk,
then ωξ ∈ A. The existence of α in the last inequality follows exactly as in
the proof of Lemma 5.35 from Property P5’ applied in concentric annuli
Λk2i+1 ∖Λk2i with 0 ≤ i ≤ log2(n/k).

Reciprocally, if F denotes the event that there is an open circuit in
Λn ∖Λk, we find

φ1
pc,q,Λn (A) ≥ φ1

pc,q,Λn (A ∩ F ) = P[ω1 ∈ A ∩ F ] ≥ P[ωξ ∈ A ∩ F ]

= φξpc,q,Λn (A ∩ F ) ≥ (1 − (k/n)α)φξpc,q,Λn (A)

where once again, we used in the third inequality that if ωξ ∈ A ∩ F , then
ω1 is in F , and since ω1 and ωξ then coincide on Λk, we get that ω1 ∈ A.
The last inequality is due to P5’ once again. ◻



Chapter 6

Parafermions in the
random-cluster model

Critical random-cluster models exhibit a rich variety of behaviours
depending on the value of q. Exact computations can be performed (see
[Bax89]), and despite the fact that they do not lead to fully rigorous
mathematical proofs, they do provide insight and conjectures on the
behavior of these models at and near criticality. For instance, the random-
cluster phase transition is conjectured to be of first order for q > 4
and second order for q < 4. In the latter case, the so-called scaling
limit is expected to be conformally invariant (see the second part of the
manuscript for additional details). Despite Baxter’s computations, very
little of the behavior of the model is rigorously understood. In particular,
the question of the order of the phase transition is far from being solved.

In order to understand the phase transition in random-cluster models,
we introduce the so-called parafermionic observables and we study
them in depth. The observable was first introduced in [FK80] before
being rediscovered in [RC06, Smi06]. For random-cluster models with
parameter q ∈ [0,4], these observables are vertex operators that are (anti)-
holomorphic parafermions of fractional spin σ ∈ [0,1].

6.1 The parafermionic observable

The parafermionic observable is defined in terms of the Temperley-Lieb
representation of the random-cluster model (also called the fully packed
loop O(n)-model on the square lattice) in Dobrushin domains with
Dobrushin boundary conditions.

149
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Figure 6.1: The configuration ω with its dual configuration ω∗.

6.1.1 Loop representation of the random-cluster
model

We start by defining the loop-configuration associated to a percolation-
configuration. Fix a Dobrushin domain (Ω, a, b) and consider a configu-
ration ω ∈ {0,1}EΩ together with its dual-configuration ω⋆ ∈ {0,1}EΩ⋆ . As
suggested in the section on planar duality (Section 4.3.1), we define the
Dobrushin boundary conditions by taking the edges (between endpoints)
of ∂ba to be open, and the dual-edges of ∂⋆ab to be dual-open.

Through every vertex of the medial graph Ω◇ of Ω passes either an open
bond of Ω or a dual open bond of Ω⋆. Draw self-avoiding loops on Ω◇

as follows: a loop arriving at a vertex of the medial lattice always makes
a ±π/2 turn so as not to cross the open or dual open bond through this
vertex, see Fig. 6.2. The loop representation contains loops together with
a self-avoiding path going from a◇ to b◇, see Fig. 6.2. This curve is called
the exploration path and is denoted by γ.

Remark 6.1. The loops correspond to the interfaces separating clusters
from dual clusters, and the exploration path corresponds to the interface
between the cluster connected to ∂ba and the dual cluster connected to
∂∗ab.

The loop representation of the random-cluster model is a well-known
representation. It allows to map the random-cluster model to a so-called
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Figure 6.2: The loop representation associated to the primal and dual
configurations in the previous picture. The exploration path is drawn in
bold.

ice-type model (we refer to [Bax89, Chapter 10] for more details on the
subject). We will not use this fact here, but simply the fact that the
probability of a configuration is conveniently rewritten in terms of the
number of loops.

Fix

x = x(p, q) ∶= p
√
q(1 − p)

.

Proposition 6.2. Let (Ω, a, b) be a Dobrushin domain. Let p ∈ (0,1) and
q > 0. For any configuration ω,

φa,bp,q,Ω (ω) =
xo(ω)

√
q`(ω)

Z(Ω, a, b, p, q)
, (6.1)

where `(ω) is the number of loops in the loop configuration associated to
ω and Z(Ω, a, b, p, q) is a normalizing constant.

In particular, when p = psd = pc, we obtain that x = 1 and the probability
of a configuration is expressed in terms of the number of loops only.
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Proof. Let ω⋆ be the dual configuration of ω. The dual of φa,bp,q,Ω is

φb
⋆,a⋆

p⋆,q,Ω⋆ . Recall that

φa,bp,q,Ω(ω) = 1

Z
( p

1 − p
)
o(ω)

qk(ω) and φa
⋆,b⋆

p⋆,q⋆,Ω⋆(ω⋆) =
1

Z⋆ (
p⋆

1 − p⋆
)
o(ω⋆)

qk(ω
⋆),

where Z and Z⋆ are normalizing constants and k(ω) and k(ω⋆) denote the
number of clusters with Dobrushin boundary conditions. We thus obtain

φa,bp,q,Ω(ω)2 = φa,bp,q,Ω(ω) ⋅ φb
⋆,a⋆

p⋆,q,Ω⋆(ω⋆)

= 1

ZZ⋆ (
p

1 − p
)
o(ω)

qk(ω)( p⋆

1 − p⋆
)
o(ω⋆)

qk(ω
⋆)

= 1

ZZ⋆ (
p⋆

1 − p⋆
)
o(ω⋆)+o(ω)

(p(1 − p
⋆)

(1 − p)p⋆
)
o(ω)

qk(ω)+k(ω
⋆)

= 1

Z̃2
(p(1 − p

⋆)
(1 − p)p⋆

)
o(ω)

qk(ω)+k(ω
⋆)−2

where we have set

Z̃2 = ZZ⋆

q2[p⋆/(1 − p⋆)]o(ω)+o(ω⋆)
.

Note that Z̃ does not depend on the configuration since o(ω)+o(ω⋆) = ∣EΩ∣.
Now, the definition of p⋆ gives that

pp⋆

(1 − p)(1 − p⋆)
= q

which implies
p

1 − p
1 − p⋆

p⋆
= p

1 − p
p

(1 − p)q
= x2.

We can also check that `(ω) = k(ω) + k(ω⋆) − 2. Altogether, this implies

φa,bp,q,Ω(ω)2 = 1

Z̃
x2o(ω)q`(ω).

◻

6.1.2 Definition of the parafermionic observable

We are now in a position to define the parafermionic observable.
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Definition 6.3. The winding WΓ(e, e′) of a curve Γ (on the medial lattice)
between two medial-edges e and e′ of the medial graph is the total signed
rotation in radians that the curve makes from the mid-point of the edge
e to that of the edge e′ (see Fig. 6.3). By convention, if Γ does not go
through e′, we set WΓ(e, e′) = 0.

For a curve drawn on the medial lattice, the winding can be computed
in a very simple way: it corresponds to the number of π

2
-turns on the left

minus the number of π
2

-turns on the right times π/2.

Definition 6.4 (Smirnov [Smi10]). Consider a Dobrushin domain
(Ω, a, b). The edge parafermionic observable F = F (p, q,Ω, a, b) is defined
for any medial edge e ∈ EΩ◇ by

F (e) ∶= φa,bp,q,Ω[eiσWγ(e,eb)1e∈γ],

where γ is the exploration path and σ is given by the relation sin(σπ/2) =√
q/2.

Remark 6.5. Note that σ is real for q ≤ 4, and belongs to 1+ iR for q > 4.
For q ∈ [0,4], σ has the physical interpretation of a spin, which is fractional
in general, hence the name parafermionic (fermions have half-integer spin
while bosons have integer spin, there are no particles with fractional spin,
but the use of such fractional spins at a theoretical level has been very
fruitful in physics). For q > 4, σ is not real anymore and does not have
any physical interpretation. Also note that for q = 2, σ = 1/2 corresponds
to the spin of a fermion. For this reason, we will speak of the fermionic
observable in this special case.

Remark 6.6. We will sometimes work with the vertex parafermionic
observable which is defined as follows. For a medial-vertex v ∈ VΩ◇ ∖ ∂VΩ◇

(v has four neighboring medial-vertices in Ω◇), set

F (v) ∶= 1

2
∑
u∼v

F ([uv]).

6.1.3 Contour integrals of the edge-parafermionic
observable

The parafermionic observable satisfies a very specific property at criticality
regarding contour integrals.

Let (Ω, a, b) be a Dobrushin domain. One may define a dual (Ω◇)⋆ of
Ω◇ in the following way: the vertex set of (Ω◇)⋆ is VΩ ∪VΩ⋆ and the edges
of the dual connect nearest vertices together. We extend the definitions
available for other graphs to this context.
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Definition 6.7. A discrete contour C is a finite sequence z0 ∼ z1 ∼ ⋅ ⋅ ⋅ ∼ zn =
z0 in (Ω◇)⋆ such that the path (z0, . . . , zn) is edge-avoiding. The discrete
contour integral of the parafermionic observable F along C is defined by

∮
C
F (z)dz ∶=

n−1

∑
i=0

(zi+1 − zi)F ([zizi+1]⋆) ,

where the zi are considered as complex numbers and [zizi+1]⋆ denotes the
edge of Ω◇ intersecting [zizi+1] in its center.

Theorem 6.8 (Vanishing contour integrals). Let (Ω, a, b) be a Dobrushin
domain, q > 0 and p = pc. For any discrete contour C of (Ω, a, b),

∮
C
F (z)dz = 0.

Remark 6.9. The fact that discrete contour integrals vanish seems to
be close to a well-known property of holomorphic functions: their contour
integrals vanish. Nevertheless, one should be slightly careful when drawing
such a parallel: the edge-observable is defined on edges, and should rather
be understood as the discretization of a form than as the discretization of
a function (the function is the vertex-observable itself). As a form, the
fact that these discrete contour integrals vanish should be interpreted as
the discretization of the property of being closed.

The following lemma will be important for the proof of Theorem 6.8.

Lemma 6.10. Let (Ω, a, b) be a Dobrushin domain, p ∈ [0,1] and q > 0.
Consider v ∈ VG◇ with four incident medial edges A, B, C and D indexed
in counter-clockwise order in such a way that A and C are pointing towards
v (the two others are pointing away). Then,

F (A) − F (C) = ieiα[F (B) − F (D)], (6.2)

where α = α(p, q) ∈ [0,2π) is given by the relation eiα(p) ∶= eiσπ/2 + ix(p)
eiσπ/2x(p) + i

.

When p = pc, α = 0 and the relation (6.2) can be understood as the fact
that the discrete contour integral along the small square surrounding v
is zero. The previous theorem thus follows by summing the relation (6.2)
over vertices of Ω◇ enclosed by C (in other words faces of (Ω◇)⋆ surrounded
by C). We use the fact that C does not surround any boundary point of
Ω◇. This follows from the fact that Ω◇ can be seen as a simply connected
domain of R2 as explained in Chapter 3. In particular, its complement is
a connected graph.
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Proof. Assume that v ∈ VΩ◇ corresponds to a vertical edge of Ω. The
case of an horizontal edge can be treated in a similar fashion.

Let s be the involution (on the space of configurations) switching the
state open or closed of the edge of Ω associated to v. Let e be an edge of
Ω◇ and let

eω ∶= φa,bp,q,Ω (ω) eiσWγ(ω)(e,eb)1e∈γ(ω)

be the contribution of the configuration ω to F (e). With this notation,
F (e) = ∑ω eω. Since s is an involution, the following relation holds:

F (e) = 1
2 ∑
ω

[eω + es(ω)].

To prove (6.2), it is thus sufficient to show that

Aω +As(ω) −Cω −Cs(ω) = eiα(p)i[Bω +Bs(ω) −Dω −Ds(ω)] (6.3)

for any configuration ω.

to eb

from ea

to eb

from ea

Figure 6.3: Left. The neighborhood of v for two associated configurations
ω and s(ω). Right. Three examples for the winding: it is respectively
equal to 2π, 0 and 0.

There are three possible cases:

Case 1. No edge incident to v belongs to γ(ω). Then, none of these edges
is incident γ(s(ω)) either. For any e incident to v, eω and es(ω) equal
0 and (6.3) trivially holds.

Case 2. Two edges incident to v belong to γ(ω), see Fig. 6.3. Since
γ and the medial lattice possess a natural orientation, γ(ω) enters
through either A or C and leaves through B or D. Assume that γ(ω)
enters through the edge A and leaves through the edge D (i.e. that
the primal edge corresponding to v is open). It is then possible to
compute the contributions for ω and s(ω) of all the edges adjacent
to v in terms of Aω. Indeed,

� Since s(ω) has one less open edge and one less loop, we find

φa,bp,q,Ω (s(ω)) = 1

Z
xo(s(ω))

√
q
`(s(ω)) = 1

Z
xo(ω)−1√q`(ω)−1

= 1

x
√
q
φa,bp,q,Ω (ω) .
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� Windings of the curve can be expressed using the winding at
A. For instance, Wγ(ω)(B, eb) =Wγ(ω)(A, eb) − π/2.

The other cases are treated similarly. The contributions are given in
the following table.

configuration A C B D

ω Aω 0 0 eiσπ/2Aω
s(ω) Aω

x
√
q

eiσπ Aω
x
√
q

e−iσπ/2 Aω
x
√
q

eiσπ/2 Aω
x
√
q

Using the identity eiσπ/2−e−iσπ/2 = i√q, we deduce (6.3) by summing
(with the right weight) the contributions of all the edges incident to
v.

Case 3. The four edges incident to v belong to γ(ω). Then only two of
these edges belong to γ(s(ω)) and the computation is similar to Case
2 with s(ω) instead of ω.

In conclusion, (6.3) is always satisfied and the claim is proved. ◻

6.1.4 Boundary values

On the boundary, the complex argument of the observable can be
computed explicitly using the fact that the curve cannot wind around
a boundary point without exiting the domain.

Contrarily to ∂ab and ∂⋆ab which are sets of vertices and dual-vertices
respectively, we remind the reader that ∂◇ab and ∂◇ba are seen as sets of
oriented medial-edges, and therefore as curves in the plane. In particular,
one may consider their winding.

Lemma 6.11 (Boundary conditions). Let (Ω, a, b) be a Dobrushin
domain, p ∈ [0,1] and q > 0.

� For x ∈ ∂ab and e ∈ ∂◇ab bordering x,

F (e) = exp[iσW∂◇
ab
(e, eb)] ⋅ φa,bp,q,Ω (x←→ ∂ba) .

� For u ∈ ∂⋆ba and e ∈ ∂◇ba bordering u,

F (e) = exp[iσW∂◇
ba
(e, eb)] ⋅ φa,bp,q,Ω (u ⋆←→ ∂⋆ab) .
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Proof. We prove the result for x ∈ ∂ab. The proof for u ∈ ∂⋆ba follows the
same lines. Since γ(ω) is the interface between the open cluster connected
to ∂ba and the dual open cluster connected to ∂⋆ab, x is connected to ∂ba if
and only if e is on the exploration path. Therefore,

φa,bp,q,Ω (x←→ ∂ba) = φa,bp,q,Ω (e ∈ γ) .

The edge e being on the boundary, the winding of the curve is deterministic
and equal to W∂◇

ab
(e, eb), we find

F (e) = φa,bp,q,Ω (e
iσW∂◇

ab
(e,eb)

1e∈γ)

= e
iσW∂◇

ab
(e,eb)

φa,bp,q,Ω (e ∈ γ)

= e
iσW∂◇

ab
(e,eb)

φa,bp,q,Ω (x←→ ∂ba) .

◻

6.1.5 Interpretation as a Boundary Value Problem

Let us now make a small detour and a big leap of faith. We wish to
study the possible scaling limits of these observables at criticality. Fix
0 < q < 4, p = pc(q) and a simply connected domain Ω with two points on
its boundary.

Let Fδ be the vertex parafermionic observable (see Remark 6.6)
inside (Ωδ, aδ, bδ), where (Ωδ, aδ, bδ) is a sequence of Dobrushin domains
approximating (Ω, a, b). Assume that properly renormalized, Fδ converges
when δ tends to zero to a continuous function f .

If the discrete contour integrals of the vertex-observable Fδ would vanish,
it would imply that the contour integrals of f also vanish, thus implying by
Morera’s theorem that the function f is holomorphic. Unfortunately, we
do not know this result for the vertex-observable, but only for the edge-
observable. Therefore, this only implies that a certain discrete form is
“closed” 1. Nevertheless, evidences suggest that the curl of the form given
by the edge-observable also vanishes in the scaling limit. It is therefore
natural to conjecture that f is holomorphic.

Now, the previous section shows that for any e ∈ ∂◇ab ∪ ∂◇ba, Fδ(e) is
collinear with ην(e)−σ, where:

1One may think that interpreting the edge-observable Fδ as a discrete form rather
than a function is an unnecessary obstacle, and that Fδ can be thought of as a function
on a different graph. This is indeed true: Fδ is a function on the medial graph of Ω◇.
Nevertheless, the function thus obtained does not converge to a continuous function in
the scaling limit (for instance for q = 2, the complex argument of the edge-observable
is not the same for edges with different orientations, see Chapter 9), and therefore this
interpretation does not provide us with an alternative way of dealing with the problem.
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� η is a complex number of modulus 1 which depends on the domain
only. This term is not important in the interpretation;

� ν(e)−σ equals
exp ( − iσW∂◇

ab
(e, eb))

if e ∈ ∂◇ab. The same definition holds for e on the path ∂◇ba, with
∂◇ba replacing ∂◇ab in the previous formula. The vector ν(e)−σ can be
interpreted as a discretization of the tangent vector to the boundary
to the power −σ (recall that σ ∈ [0,1] for 0 < q < 4).

(At the discrete level, we defined the vertex-observable only inside the
domain but one may in fact extend the definition fairly naturally to
boundary medial-vertices as well. We will discuss this question for the
fermionic observable in Chapter 9.)

In the continuum, the previous boundary conditions at the discrete level
suggest that the limit f “should” satisfy the following boundary conditions:

Im(fηνσ) = 0 on ∂Ω,

where ν is the tangent vector, and be solution of the following Boundary
Value Problem (BVP)

f holomorphic on Ω, continuous on Ω and Im(fηνσ) = 0 on ∂Ω.

These BVPs are called Riemann-Hilbert BVP. In general, the previous
discussion seems hard to justify rigorously. Nevertheless, we will see in the
second part of this book that it is exactly what happens for q = 2.

A natural way of trying to prove that Fδ, properly renormalized,
converges to the solution of the Riemann-Hilbert BVP would be to prove
that Fδ is solution of a discretization of the Riemann-Hilbert BVP, and
the fact that the integrals along discrete contours of the observable vanish
(or equivalently that the equations (6.2) hold) seems to be a good starting
point to try to implement this strategy. Unfortunately, a simple counting
argument shows that the number of unknown variables determining Fδ
is ∣EΩ◇

δ
∣ while the number of relations provided by (6.2) is only ∣VΩ◇

δ
∣.

Therefore, the relations do not determine the observable completely (for
instance, (6.2) is not sufficient to compute the observable using the
boundary values only). In particular, Fδ is not necessarily the unique
solution of the right discrete Riemann-Hilbert BVP.

We sometimes say that the equations given by (6.2) correspond to only
half of the discrete Cauchy-Riemann equations (see Chapter 8), and that
the other half becomes satisfied in the scaling limit. In the next chapters,
we will see that for q = 2, one can extract more information from the
observables. It becomes determined by the equations given by (6.2) and
one may prove that Fδ is indeed the unique solution of a discrete Riemann-
Hilbert BVP.
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6.1.6 Average behavior of the observable on the
boundary

As explained in the previous section, the observable is not determined
by the relations provided by (6.2) and the boundary conditions, and
therefore its behavior is unlikely to be understood completely using (6.2)
only. Nevertheless, a small miracle occurs and the average behavior on the
boundary of the domain can be understood quite well by using the fact
that the integral along the boundary is equal to zero. Let us describe this
now.

For x ∈ ∂ab, define N(x) to be the number of neighboring vertices of x
which are not in Ω. We also set

W (x) ∶= 1

N(x) + 1
∑
e

W∂◇
ab
(e, eb),

where the sum runs over medial-edges e ∈ ∂◇ab bordering the face
corresponding to x. Note that there are N(x) + 1 such medial-edges.
This quantity can thus be interpreted as the average winding on adjacent
medial-edges of ∂◇ab ∪ ∂◇ba. In some sense, it is a discrete version of the
tangent vector to the boundary.

For u ∈ ∂⋆ba, define N(u) to be the number of neighboring dual-vertices
of u which are not in Ω. The quantity W (u) is defined as before, with ∂◇ba
replacing ∂◇ab.

Corollary 6.12. Let (Ω, a, b) be a Dobrushin domain, q > 0 and p = pc.
Then

∑
x∈∂ab

δx φ
a,b
pc,q,Ω

(x←→ ∂ba)− ∑
u∈∂⋆

ba

δu φ
a,b
pc,q,Ω

(u ⋆←→ ∂⋆ab)

= 1 − exp[i(σ − 1)W∂◇
ab
(ea, eb)], (6.4)

where δx ∶= sin [(1 − σ)π
4
N(x)] exp [i(σ − 1)W (x)].

While the notations may be confusing, this statement will be extremely
useful when using the observable for q ≠ 2. The proof can be summarized
as follows: we integrate the edge parafermionic observable along the
outermost contour. Since this contour goes along the boundary, we may
factorize the winding terms using Lemma 6.11. We finish the proof by
grouping the medial-edges depending on which vertex of the boundary
they border.

Proof. Consider the set E of medial-edges of EΩ◇ having only one end-
point in Ω◇∖∂Ω◇. Let Ei be the set of medial-edges of E that are pointing



160 Hugo Duminil-Copin

towards a vertex of Ω◇ ∖∂Ω◇. Similarly, define Eo to be the set of medial-
edges of E that are pointing away from a vertex of Ω◇ ∖ ∂Ω◇.

Now, consider the circuit C passing through the edges of Ei and Eo

orthogonally. Observe that this circuit goes around Ω◇. From Theorem 6.8,
we have

∮
C
F (z)dz = 0.

This can be rewritten as

∑
e∈Ei

e−iW (e,eb)F (e) − ∑
e∈Eo

e−iW (e,eb)F (e) = 0.

Above, W (e, eb) denotes W∂◇
ab
(e, eb) or W∂◇

ba
(e, eb) depending on whether

e ∈ ∂◇ab or e ∈ ∂◇ba.
Each vertex of ∂ab (resp. dual-vertex of ∂⋆ba) is bordered by exactly one

medial-edge in Ei ∖{ea} and one medial-edge in Eo ∖{eb}. We denote this
first medial-edge by ei(x) and the second by eo(x) (similarly ei(u) and
eo(u)). The expression of F on the boundary (Lemma 6.11) thus implies
that

1 − ei(σ−1)W(ea,eb)

+ ∑
x∈∂ab

(ei(σ−1)W (eo(x),eb) − ei(σ−1)W (ei(x),eb))φa,bpc,q,Ω (x←→ ∂ba)

= ∑
u∈∂⋆

ba

(ei(σ−1)W (eo(u),eb) − ei(σ−1)W (ei(u),eb))φa,bpc,q,Ω (u ⋆←→ ∂⋆ab) . (6.5)

We now wish to interpret terms in the parentheses. We do it for x ∈ ∂ab
only (u ∈ ∂⋆ba can be handled similarly). First,

ei(σ−1)W (eo(x),eb) − ei(σ−1)W (ei(x),eb) =

sin [(1 − σ)W (eo(x),eb)−W (ei(x),eb))
2

] exp [i(σ − 1)W (eo(x),eb)+W (ei(x),eb)
2

] .

By construction, W (eo(x), eb) −W (ei(x), eb) = π
2
N(x). Furthermore, one

may check by dividing between the cases where N(x) = 2, 3 or 4, that

W (eo(x), eb) +W (ei(x), eb)
2

=W (x).

This concludes the proof. ◻

6.1.7 The special case q = 4

The case q = 4 is in-between the regime of σ ∈ [0,1] (namely q ∈ (0,4])
and σ ∈ 1 + iR (q ≥ 4). In particular, the parafermionic observable that we
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defined previously is degenerated and does not contain any information
for q = 4: one may easily see that when σ = 1, (6.2) merely says that the
exploration path is a curve, meaning that the number of entries to a vertex
is equal to the number of exits. It is therefore necessary to introduce a
slightly different observable.

Definition 6.13. Consider a Dobrushin domain (Ω, a, b) and p ∈ [0,1].
The edge parafermionic observable F̂ = F̂ (p,4,Ω, a, b) for any medial edge
e ∈ EΩ◇ is defined by

F̂ (e) ∶= φa,bp,q,Ω[Wγ(e, eb)eiWγ(e,eb)1e∈γ]

where γ is the exploration path.

Exactly as before, this parafermionic observable satisfies the following
properties (we do not necessarily assume that we are at criticality here).

Theorem 6.14. Fix q = 4, p ∈ [0,1], and let (Ω, a, b) be a Dobrushin
domain.

� Let v ∈ VG◇ with four incident medial edges A, B, C and D indexed
in counter-clockwise order in such a way that A and C are pointing
towards v (the two others are pointing away). Then,

F̂ (A)− F̂ (C) = i[F̂ (B)− F̂ (D)] + i
π

2

1 − x
1 + x

[F (B)−F (D)]. (6.6)

� For y ∈ ∂ab and e ∈ ∂◇ab bordering y,

F̂ (e) = W∂◇
ab
(e, eb) e

iW∂◇
ab

(e,eb)
φa,bp,q,Ω (y ←→ ∂ba) ,

and for u ∈ ∂⋆ba and e ∈ ∂◇ba bordering u,

F̂ (e) = W∂◇
ba
(e, eb) e

iW∂◇
ba

(e,eb)
φa,bp,q,Ω (u ⋆←→ ∂⋆ab) .

� Let p = pc, for any discrete contour C of (Ω, a, b),

∮
C
F̂ (z)dz = 0.

� Let p = pc,

∑
x∈∂ab

δx φ
a,b
pc,q,Ω

(x←→ ∂ba) − ∑
u∈∂⋆

ba

δu φ
a,b
pc,q,Ω

(u ⋆←→ ∂⋆ab) =W∂◇
ab
(ea, eb),

(6.7)
where δx ∶= π

2
N(x).
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Proof. We only prove (6.6). The other claims are obtained by exactly
the same proofs as in the previous sections.

For this proof only, we will consider different values of q < 4 and let
q tends to 4. For this reason, σ can be equal to 1 or to the solution
σ = σ(q) of sin(σπ/2) = √

q/2. Fix x > 0. Denote the observable at

(p(q), q) ∶= ( x
√
q

1+x√q , q) with spin σ ∈ {1, σ(q)} by Fq,σ. Note that the

choice of p = p(q) is made in such a way that x is fixed.
For any q < 4,

Fq,σ(q)(A) − Fq,σ(q)(C) = ieiα(p)[Fq,σ(q)(B) − Fq,σ(q)(D)]
Fq,1(A) − Fq,1(C) = i[Fq,1(B) − Fq,1(D)],

where α(q) was defined in Lemma 6.10. The first relation is due to the
case q ≠ 4, and the second follows readily from the fact that γ is a curve
(it simply asserts that a curve entering through A or C exits through B or
D). Now, since σ(q) and α(q) tend to 1 and 0 as q ↗ 4, one may develop
the first equation in σ − 1. The first order cancels thanks to the second
equation, and the second order gives the claim. ◻

6.2 Second order phase transition

In this section, we show that the conditions P1–P5 of Theorem 5.24 are all
satisfied when 1 ≤ q ≤ 4. It answers partially Baxter’s conjecture [Bax73]
that P1–P5 if and only if q ≤ 4. The following theorems are extracted from
[DC12, DCST13]. The article [DCST13] also contains a partial result for
q > 4. We refer to the article itself for more details.

6.2.1 Statement of the theorem

Theorem 6.15 (Duminil-Copin [DC12]). Let 1 ≤ q ≤ 4, then

lim
n→∞

1

n
logφ0

pc,q (0←→ ∂Λn) = 0.

Theorem 6.15 together with Theorem 5.24 implies the following corollary.

Corollary 6.16 (Duminil-Copin, Sidoravicius, Tassion [DCST13]). Let
1 ≤ q ≤ 4. The following assertions are satisfied:

P1 φ1
pc,q (0←→∞) = 0.

P2 φ0
pc,q = φ

1
pc,q.
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P3 χ0(pc, q) ∶= ∑
x∈Z2

φ0
pc,q (0←→ x) =∞.

P4 lim
n→∞

1
n

logφ0
pc,q (0←→ ∂Λn) = 0.

P5 Let ρ > 0. There exists c > 0 such that for all n ≥ 2 and any boundary
conditions ξ,

c ≤ φξ
pc,q,[−n,(ρ+1)n]×[−n,2n] (Ch([0, ρn] × [0, n])) ≤ 1 − c.

Note that Theorem 6.15 implies the weakest property among P1–P5
(namely P4). This justifies the energy spent in the previous chapter to
prove Theorem 5.24.

6.2.2 Proof of Theorem 6.15

As for the proof of Theorem 5.24, the reader may skip the proof in a first
reading. The original proof of Theorem 6.15 can be found in [DC12].
However, we choose to present the streamlined proof of [DCST13]. In this
section, we fix 1 ≤ q < 4 and p = pc(q). The case q = 4 follows the same
proof with the modified parafermionic observable. We therefore drop them
from the notations.

Set Cn to be the slit domain obtained by removing from Λn the edges
between the vertices of {(0, k) ∶ 0 ≤ k ≤ n}. We define Dobrushin boundary
conditions on Cn to be wired on {(0, k) ∶ 0 ≤ k ≤ n} and free elsewhere. For
simplicity, we now refer to {(0, k) ∶ 0 ≤ k ≤ n} as the wired arc. The measure
on Cn with these boundary conditions is denoted φdobr

Cn
. Equivalently, one

may obtain φdobr
Cn

by taking φ0
Λn

( ⋅ ∣ω(e) = 1 ∶ for all e in wired arc) and we
therefore think of Cn as the box Λn with free boundary conditions and
{(0, k) ∶ 0 ≤ k ≤ n} wired; see Fig. 6.5.

Lemma 6.17. There exists c > 0 such that for any n ≥ 1,

φdobr
Cn ((0,−n)←→ wired arc) ≥ c

n16
.

The main estimate used in the proof of this lemma is provided by
Corollary 6.12 applied in a well-chosen domain. Then, we work a little
to compare boundary conditions in this domain to Dobrushin boundary
conditions in Cn. To exploit the whole power of Corollary 6.12, we will
consider a domain which is non-planar. Namely, let us introduce the
following graph U (see Fig. 6.4): the vertices are given by Z3 and the
edges by

� [(x1, x2, x3), (x1, x2 + 1, x3)] for every x1, x2, x3 ∈ Z,
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(0, 0, 0)

Figure 6.4: The graph U.

� [(x1, x2, x3), (x1 + 1, x2, x3)] for every x1, x2, x3 ∈ Z such that x1 ≠ 0
or such that x1 = 0 and x2 ≥ 0,

� [(0, x2, x3), (1, x2, x3 + 1)] for every x2 < 0 and x3 ∈ Z.
This graph is the universal cover of Z2 ∖ F , where F is the face centered
at (− 1

2
,− 1

2
). It can also be seen at Z2 with a branching point at (− 1

2
,− 1

2
).

All definitions of dual and medial graphs extend to this context.

Proof. For n ≥ 1, define

Un ∶= {(x1, x2, x3) ∈ U ∶ ∣x1∣, ∣x2∣ ≤ n and ∣x3∣ ≤ n5}.

We wish to apply Corollary 6.12 to (Un,0,0). Even if the domain is non-
planar, the proof works exactly in the same way and we get

∑
x∈∂Un

δx φ
0
Un (x←→ 0) = 1 − ei(σ−1) 3π

2 .

To obtain this equality, we used that:
� ∂ab = ∂Un and ∂⋆ba = ∅;
� W (ea, eb) = 3π

2
;

� The Dobrushin boundary conditions with a = b = 0 are simply free
boundary conditions.

Since ∣δx∣ ≤ 1, we immediately get that

∑
x∈∂Un

φ0
Un (0←→ x) ≥ c1 (6.8)

for some constant c1 = c1(q) > 0 independent of n.
We now wish to bootstrap this estimate to an estimate on Cn. Let

us start by proving the following claim (observe that ∣x3∣ < n5 in the
statement).

Claim: There exists c2 > 0 (independent of n) such that there exists
x = (x1, x2, x3) ∈ ∂Un with ∣x3∣ < n5 and

φ0
Un (0←→ x) ≥ c2

n6
.
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We will prove this fact by showing that vertices x with ∣x3∣ = n5 have
very small probability of being connected to the origin and cannot therefore
account for much in (6.8).

Proof of the Claim. Let R⋆
0 be the dual graph of the subgraph of U

with vertex set R0 ∶= [−n,n] × [0, n] × {0}, i.e. the graph with edge set
{e⋆ ∶ e ∈ ER0} and vertex set given by the end-points of these edges. Note
that uniformly in the state of edges outside R0, the boundary conditions
in R0 are stochastically dominated by wired boundary conditions on the
“bottom side” [−n,n]×{0}×{0} of R0, and free elsewhere. Passing to the
dual model, we deduce that uniformly in the state of edges outside R0,

φ0
Un ((− 1

2
,− 1

2
,0) ⋆←→ ∂U⋆

n in R⋆
0 ∣ edges outside R0)

≥ φdobr
R⋆

0
((− 1

2
,− 1

2
,0) ⋆←→ ∂U⋆

n in R⋆
0) ,

where Dobrushin boundary conditions on R⋆
0 are dual-free on the bottom

and dual-wired everywhere else. Lemma 5.42 (with m = n and θ = 0) thus
implies that

φ0
Un ((− 1

2
,− 1

2
,0) ⋆←→ ∂U⋆

n in R⋆
0 ∣ edges outside R0) ≥

1

5n4
. (6.9)

The same is also true for R⋆
k = (0,0, k) +R⋆

0 with ∣k∣ ≤ n5.
If a vertex x = (x1, x2, x3) ∈ ∂Un with x3 = n5 is connected to (0,0,0),

then none of the dual vertices (− 1
2
,− 1

2
, k) are dual connected to ∂Un in

R⋆
k, for 0 < k < x3 (the symmetric holds for x3 = −n5). Equation (6.9)

applied ∣x3∣ − 1 times implies that

φ0
Un (0←→ x) ≤ (1 − 1

5n4
)
∣x3∣−1

.

The probability is therefore exponentially small when ∣x3∣ = n5. Together
with (6.8), the previous inequality implies that for n large enough,

∑
x∈∂Un∶∣x3∣<n5

φ0
Un (0←→ x) ≥ c1

2
.

The claim follows directly from the union bound, provided that c2 is chosen
small enough. ◇

Fix x given by the claim and rotate and translate vertically2 Un in such
a way that x = (x1,−n,0) for some 0 ≤ x1 ≤ n. Consider Cn as a subgraph
of Un. The boundary conditions on Cn induced by the free boundary

2Seen as a graph, Un is invariant by rotation by π/2 since the line where x3

“increases” is invisible from inside Un.



166 Hugo Duminil-Copin

conditions on Un are dominated by the Dobrushin boundary conditions on
Cn defined above. Furthermore, the existence of an open path from x to
the origin implies the existence of a path from x to the wired arc in Cn.
Thus, the claim implies that

φdobr
Cn (x←→ wired arc) ≥ c2

n6
. (6.10)

To conclude the proof, we need to obtain a lower bound for the
probability that the vertex (0,−n,0) itself is connected to the wired arc.
We use once again a “conditioning on the right-most and left-most paths
type argument”. Since we now work on a sub-domain of Z2, we drop the
third coordinate from the notation.

We may assume that x1 ≥ 0 and that the two vertices x = (x1,−n) and
(−x1,−n) are connected to the wired arc. The FKG inequality implies that
this occurs with probability ( c2

n6 )2. Consider the right-most open path from
(x1,−n) to the wired arc, and the left-most open path from (−x1,−n) to the
wired arc. Let S be the part of Cn between these two paths, see Fig. 6.5.
The boundary conditions in S dominate the free boundary conditions on
the bottom of Cn, and wired elsewhere. Lemma 5.42 (applied to 2n, m = n
and θ = 0) thus implies3 that (0,−n) is connected to the wired arc with
probability larger than 1

20n4 . The claim follows by choosing c small enough.
◻

We are now in a position to prove Theorem 6.15.

Let ∂n be the set of vertices at distance n
16

of the vertex (0,−n) in Cn.
The reasoning is similar to the proof of Lemma 5.40 except that instead of
isolating primal circuits around z− and z+ from each others, we will isolate
the primal path from (0,−n) to ∂n from the wired arc.

Proof of Theorem 6.15. Let R⋆
right ∶= [ n

16
, 5n

16
] × [−n,n] and

R⋆
left ∶= [− 5n

16
,− n

16
] × [−n,n]. Define the three events E = {(0,−n) ←→ ∂n},

Fright and Fleft that there exists a dual-open dual-path from bottom to
top in R⋆

right and R⋆
left respectively.

Let C be the event that there exists a dual-open dual-path in the square

R⋆ ∶= [ − 5n
16
+ 1

2
, 5n

16
− 1

2
] × [ − 3n

4
+ 1

2
,−n

8
− 1

2
],

connecting a dual open path crossing R⋆
left from top to bottom to a dual

open path crossing R⋆
right from top to bottom.

3We use a comparison between boundary conditions. The reasoning is the same as
usual: we compare boundary conditions on S with the boundary conditions induced
by boundary conditions on Λn with free boundary conditions on the bottom and wired
boundary conditions on the other sides.
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(x1, −n, 0)(−x1, −n, 0) (0, −n, 0)

Cn

S

S∗

Cn

Figure 6.5: Top. The two paths connecting the wired arc to (x1,−n,0)
and (−x1,−n,0) (or simply (x1,−n) and (−x1,−n)) and the area S between
them. Bottom. The two dual-open paths in the long rectangles R⋆

right

and R⋆
left.
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Conditioning on Fleft ∩ Fright ∩ C, boundary conditions on Rn are
dominated by free boundary conditions in the plane. Therefore

φ0
Z2 (0↔ ∂Λ n

16
) ≥ φdobr

Cn (E ∣Fleft ∩Fright ∩ C) ≥ φdobr
Cn (E ∩Fleft ∩Fright ∩ C) .

We now prove a lower bound on the term on the right:

φdobr
Cn (E ∩Fleft ∩Fright ∩ C)
= φdobr

Cn (E) ⋅ φdobr
Cn (Fleft ∩Fright∣E) ⋅ φdobr

Cn (C∣E ∩Fleft ∩Fright) .

First, Lemma 6.17 implies that φdobr
Cn

(E) ≥ c
n16 .

Second, conditioned on everything on the left of { n
16

}×[−n,n], boundary
conditions on [ n

16
, n]×[−n,n] are dominated by wired boundary conditions

on the left side and free elsewhere. In particular, boundary conditions for
the dual model stochastically dominate free boundary conditions on the
left side and wired elsewhere. Lemma 5.39 implies that φdobr

Cn
(Fright∣E) ≥ c2

and the same lower bound holds true for φdobr
Cn

(Fleft∣Fright ∩ E). We obtain

φdobr
Cn (Fleft ∩Fright∣E) ≥ c22.

Third, we turn to φdobr
Cn

(C∣E ∩Fleft ∩Fright). Let S⋆ be the area of the
dual graph in R⋆ between the right-most dual open path from top to
bottom in R⋆

right, and the left-most dual open path crossing from top to
bottom in R⋆

left, see Fig. 6.5. The boundary conditions for the dual model
on S⋆ dominate dual-free boundary conditions on top and bottom, and
dual-wired elsewhere. The domain Markov property and the comparison
between boundary conditions imply that boundary conditions for the
dual model on S⋆ dominate dual-free boundary conditions on top and
bottom sides of R⋆, and dual-wired on the two other sides. Therefore, the
probability of having a dual open path in S⋆ crossing from left to right is
larger than 1/(1 + q2) thanks to (5.5). In particular,

φdobr
Cn (C∣E ∩Fleft ∩Fright) ≥

1

1 + q2
.

Putting everything together, we find that

φ0 (0↔ ∂Λn/16) ≥
c

n16
⋅ c22 ⋅

1

1 + q2

and indeed

lim
n→∞

− 1
n

log (φ0 (0↔ ∂Λn) ) = 0.

◻



Chapter 6. Parafermions in the random-cluster model 169

6.3 Alternative computation of pc when q ≥ 4

We conclude this chapter by providing an alternative derivation of the
critical point when q > 4. While this result also follows from the previous
chapter, the technique gives (a little) more information on the critical
phase and is probably more robust.

Theorem 6.18 (Beffara, Duminil-Copin, Smirnov [BDCS12]). Let q > 4.
The critical point pc = pc(q) for the random-cluster model with parameter
q on the square lattice satisfies

pc = psd =
√
q

1 +√
q
.

As mentioned above, when q > 4, the spin variable σ involved in the
definition of the parafermionic observable becomes non-real, therefore it
does not have an immediate physical interpretation. However, this allows
us to write better estimates even in the absence of an interpretation
in terms of holomorphic functions and relate our observables to the

connectivity properties of the model. For p ≠
√
q

1+√q , the observable

is proved to behave like massive harmonic functions and to decay
exponentially fast with respect to the distance to the boundary of the
domain. Translated into connectivity properties, this implies a slightly
stronger theorem than Theorem 6.18, namely the sharpness of the phase
transition for q ≥ 4. It would be nice to obtain a similar computation of
pc based on the observable for 1 ≤ q < 4 or even more so for q < 4.

For x = (x1, x2) ∈ R2, define ∥x∥∞ = max{∣x1∣, ∣x2∣}.

Theorem 6.19. Let q > 4. For every p < psd, there exists c = c(p, q) > 0
such that for any u ∈ Z2,

φ0
p,q(0↔ u) ≤ e−c∥u∥∞ .

Once we have the exponential decay of correlations for p < psd,
Theorem 6.18 follows right away. Let us explain this quickly.

Proof of Theorem 6.18 assuming Theorem 6.19. Fix q > 4 and let
p < psd. Theorem 6.19 and the Borel-Cantelli lemma imply that 0 is not
connected to infinity almost surely and therefore p < pc. We deduce that
pc ≥ psd 4.

Let us now prove that psd ≥ pc. For a dual vertex y ∈ (Z2)⋆, let A(y)
be the event that there exists a dual-open circuit surrounding the origin

4Note that we could have used Zhang’s argument (Proposition 4.38) but once we
have exponential decay, this approach is quicker.
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and passing through y. Observe that on A(y), y is dual-connected to a
dual-vertex z at distance ∥y∥∞ of y.

For p > psd, the dual measure is a random-cluster measure with p⋆ < psd.
Therefore

φ1
p,q(A(y)) ≤ 8∣y∣ exp [ − c(p⋆, q)∥y∥∞]

for any y ∈ (Z2)⋆. The Borel-Cantelli lemma implies that almost surely
there are finitely many dual-circuits around the origin. As a consequence,
there is an infinite cluster almost surely and p ≥ pc. We deduce pc ≤ psd. ◻

Remark 6.20. The comparison between boundary conditions enables us

to extend the previous theorems to q = 4. Indeed, for every p <
√
q

1+√q ,

there exists (p′, q) with q > 4 and p′ <
√
q

1+√q such that the random-cluster

measure φ0
p′,q stochastically dominates the random-cluster measure φ0

p,4

(Remark 4.18). It follows from this stochastic domination that for any
u ∈ Z2,

φ0
p,4(0←→ u) ≤ φ0

p′,q(0←→ u) ≤ exp [ − c(p′, q)∥u∥∞].

6.3.1 Proof of Theorem 6.19

Let (Ω, a, b) be a Dobrushin domain, p ∈ [0,1] and q > 4. With the
notations of Definition 6.4, we define the function F̃ by

F̃ (e) = φa,bp,q,Ω (ei(σ−1)Wγ(e,eb)1e∈γ) . (6.11)

Observe that i(σ − 1) ∈ R whenever q ≥ 4. Furthermore, (6.2) translates
into

F̃ (A) + F̃ (C) −Λ(p)F̃ (B) −Λ(p)F̃ (D) = 0, (6.12)

around any medial-vertex v ∈ VΩ◇ with four incident medial-edges A, B,
C and D indexed in counter-clockwise order in such a way that A and C
are pointing towards v (the two others are pointing away). Above,

Λ(p) = ei(σ−1)π/2 + x(p)
ei(σ−1)π/2x(p) + 1

∈ R+.

Note that Λ(p) = 1 if and only if p =
√
q

1+√q .

For a set E ⊂ EΩ◇ , ∂eE denotes the set of medial-edges sharing exactly
one end-point with a medial-edge in E (in particular they are not in E).
Let Eint be the set of medial-edges having two end-points in Ω◇ ∖ ∂Ω◇.

Proposition 6.21. Fix q > 4 and p < psd. Let (Ω◇, a◇, b◇) be a Dobrushin
domain. There exists C1 = C1(p, q) <∞ such that for any E ⊂ Eint,

∑
e∈E

F̃ (e) ≤ C1 ∑
e∈∂eE

F̃ (e).
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Proof. Since E ⊂ Eint, the end-points of medial-edges in E are in
Ω◇ ∖ ∂Ω◇. We may therefore sum (6.12) over all end-points of edges in
E. It provides a weighted sum of F̃ (e) (with coefficients denoted by c(e))
identical to zero:

∑
e∈E

c(e)F̃ (e) + ∑
e∈∂eE

c(e)F̃ (e) = 0. (6.13)

For an edge e ∈ E, F̃ (e) appears in two identities (6.12), corresponding
to its two end-points. Since the edge e is pointing towards one of its
end-points and away from the other one, the coefficients will be −1
and Λ(p). Thus F̃ (e) for e ∈ E will enter the sum with a coefficient
c(e) = 1 − Λ(p) ≠ 0. For an edge e ∈ ∂eE, F̃ (e) will appear in exactly
one identity (corresponding to the end-point shared with an edge of E).
The coefficient will be −Λ(p) or 1, depending on the orientation of e with
respect to this end-point. In any case, F̃ (e) will enter the sum with a
coefficient c(e) which is bounded. Since F̃ (e) is positive for every e ∈ EΩ◇ ,
the proposition follows immediately by setting

C1 = C1(p, q) ∶=
max{1,Λ(p)}

∣Λ(p) − 1∣
.

◻

For n,m ≥ 0, consider the graph R(m,n) = [0, n] × [−m,m].

Lemma 6.22. Fix q > 4 and p ≤ psd. There exists C2 = C2(q) < ∞ such
that for any n,m ≥ 0,

∑
e∈∂eEint

F (e) ≤ C2,

where F̃ is defined in the Dobrushin domain (R(m,n),0,0).

Proof. Let us start by recalling that Dobrushin boundary conditions on
(R(m,n),0,0) coincide with free boundary conditions.

Every edge e ∈ ∂eEint is on the boundary of R(m,n)◇. Lemma 6.11 thus
implies that

F̃ (e) = ei(σ−1)W (e,eb)φ0
p,q,R(m,n)[x←→ 0],

where x is the vertex of ∂R(m,n) bordered by e. Since −π
2
≤W (e, eb) ≤ 2π,

we find that

∑
e∈∂eEint

F̃ (e) ≤ C1 ∑
x∈∂R(m,n)

φ0
p,q,R(m,n)[x←→ 0].

We wish to prove that the right hand side of the previous inequality
is bounded uniformly in m and n. We may now focus on p = psd by



172 Hugo Duminil-Copin

monotonicity. We use Proposition 6.12 again to obtain:

∑
x∈∂R(m,n)

δx φ
0
p,q,R(m,n)[x←→ 0] = 1 − exp [i(σ − 1)3π

2
],

where we used that ∂ab = ∂R(m,n), ∂⋆ba = ∅ and W (ea, eb) = 3π
2

.
Above, δx is

δx ∶= sin [(1 − σ)π
4
N(x)] exp [i(σ − 1)W (x)]

which is positive since σ ∈ 1 + iR. Furthermore, we once again have
−π

2
≤ W (x) ≤ 3π

2
, and therefore δx is bounded away from 0 and ∞

uniformly in m and n. The claim follows readily. ◻

We are now in a position to prove our key corollary. For a graph Ω, let
us introduce the following graphs constructed recursively. Let Ω(0) ∶= Ω
and Ω(k) ∶= Ω(k−1) ∖ ∂Ω(k−1) for any k ≥ 1. They can be seen as successive
“peelings” of Ω, each step consisting in removing the boundary of the
existing graph. Let Ek ∶= Eint[Ω(k)].

Corollary 6.23. Let q > 4 and p < psd. There exist C1,C2 > 0 such that
for any n,m ≥ 0,

∑
e∈Ek

F̃ (e) ≤ C1C2 ( C1

1 +C1
)
k

,

where F̃ is defined in the Dobrushin domain (R(m,n),0,0).

Proof. Proposition 6.21 can be applied to Ω(k) (with a = b be any point
on ∂Ω(k)) to give

∑
e∈Ek

F̃ (e) ≤ C1

1 +C1
∑

e∈Ek∪∂eEk

F̃ (e).

Since Ek ∪ ∂eEk ⊂ Ek−1 and F̃ (e) ≥ 0, this implies

∑
e∈Ek

F̃ (e) ≤ C1

1 +C1
∑

e∈Ek−1

F̃ (e).

Using the previous bound iteratively, and Proposition 6.21 one last time
(in the second inequality), we find

∑
e∈Ek

F̃ (e) ≤ ( C1

1 +C1
)
k

∑
e∈Eint

F̃ (e) ≤ C1 ( C1

1 +C1
)
k

∑
e∈∂eEint

F̃ (e).

The claim follows by bounding the sum on the right-hand side by C2 using
Lemma 6.22. ◻

Define the strip Sn ∶= [0, n]×Z of with n, and the half-plane HP = N×Z.
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Lemma 6.24. There exists c1 = c1(p, q) > 0 such that for any v = (v1, v2)
with v1 ∈ N,

φ0
p,q,HP(0←→ v) ≤ exp[−c1v1].

Proof. Letm and n in such a way that v ∈ R(m,n). Apply Corollary 6.23
to R(m,n) and k to find (we use the notation of the corollary)

∑
e∈Ek

F̃ (e) ≤ C1C2 ( C1

1 +C1
)
k

.

Consider the orthogonal symmetry τ with respect to d = {x = (x1, x2) ∶
x2 = 0}. Let γ be the exploration path in (R(m,n),0,0) (i.e. starting
from 0). By symmetry, every configuration ω such that e ∈ γ is mapped
by τ to a configuration for which τ(e) ∈ γ. Furthermore, the winding is
transformed from Wγ(e, eb) to 3π

2
−Wτ(γ)(τ(e), eb). This gives that

F̃ (e) + F̃ (τ(e)) = φ0
p,q,R(m,n) [(ei(σ−1)W (e,eb) + ei(σ−1)( 3π

2 −W (e,eb)))1e∈γ]

≥ 2φ0
p,q,R(m,n)(e ∈ γ).

Let C be the cluster of the origin in R(m,n). Define ∂extC to be the
exterior boundary of C, i.e. the set of vertices of C connected by a path
in Z2 ∖ C to the boundary of R(m,n). The exploration path γ is a loop
from 0 to 0 going around C. The exterior boundary ∂extC lies directly on
its exterior. Let d∞(x,F ) denote the distance between x and the set F ,
i.e. min{∥x − y∥∞ ∶ y ∈ F}. We find

φ0
p,q,R(m,n)(∃u ∈ ∂extC ∶ d∞(u, ∂R(m,n)) ≥ k) ≤ ∑

e∈Ek
φ0
p,q,R(m,n)(e ∈ γ)

≤ C1C2 ( C1

1 +C1
)
k

.

Letting m go to infinity and using the uniform bound above,

φ0
p,q,Sn(∃u ∈ ∂extC ∶ d∞(u, ∂Sn) ≥ k) ≤ C1C2 ( C1

1 +C1
)
k

.

Since there is no infinite cluster in Sn almost surely (see Remark 4.33),
the cluster C intersects {u ∈ Sn ∶ d∞(u, ∂Sn) ≥ k} if and only if ∂extC
intersects {u ∈ Sn ∶ d∞(u, ∂Sn) ≥ k}. Hence, for v = (v1, v2) with v1 ≥ 0,

φ0
p,q,Sn(0←→ v) ≤ φ0

p,q,Sn(∃u ∈ C ∶ d∞(u, ∂Sn) ≥ v1)
= φ0

p,q,Sn(∃u ∈ ∂extC ∶ d∞(u, ∂Sn) ≥ v1)

≤ C1C2 ( C1

1 +C1
)
v1

.
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The proof follows by letting n go to infinity and then by choosing
c1 = c1(p, q) > 0 small enough. ◻

The previous lemma implies that for any n ≥ 0 and x ∈ ∂Λn,

φ0
p,q,Λn(0←→ x) ≤ exp[−c1n].

Indeed, rotate the graph Λn in such a way that x = (n,x2). The comparison
between boundary conditions in (n,0) −HP leads to

φ0
p,q,Λn(0←→ x) ≤ φ0

p,q,(n,0)−HP(0←→ x) ≤ exp[−c1n]

thanks to Lemma 6.24. Now, Lemma 4.23 implies that for any k,

φ0
p,q,Λn (0←→ ∂Λk) ≤ ∑

m≥k
64m4 max

a∈{0}×[0,m]
b∈{m}×[0,m]

φ0
p,q,[0,m]2 (a←→ b)

≤ ∑
m≥k

64m4 exp(−c1m) ≤ exp(−c2k), (6.14)

where c2 > 0 is chosen small enough but independent of k. In the
second inequality, we used the comparison between boundary conditions.
Theorem 6.19 thus follows by letting n tend to infinity.



Part III

Ising and FK-Ising models





Chapter 7

Two-dimensional Ising
model

We now enter a new part of this book devoted to the Ising model. As
presented in the introduction, this model is one of the most famous models
of statistical physics. In this chapter, we study the basic properties of this
model.

Define the exterior boundary of a graph G by

∂eG = {x ∉ VG ∶ ∃y ∈ VG s.t. x ∼ y}.

7.1 Definition of the Ising model

7.1.1 Formal definition on the square lattice

The Ising model can be defined on any graph. However, we will once
more restrict ourselves to the square lattice. Let G be a finite subgraph of
Z2, the Ising model with free boundary conditions is a random assignment
σ ∈ {−1,1}VG of spins σx ∈ {−1,+1} (or simply −/+), where σx denotes the
spin at the vertex x. The Hamiltonian of the Ising model is defined by

H f
G(σ) ∶= − ∑

[xy]∈EG
σxσy.

The partition function of the model is

Zf
β,G = ∑

σ∈{−1,1}VG
exp [−βH f

G(σ)] , (7.1)

where β is the inverse temperature of the model. The Ising measure is the
Boltzmann measure with Hamiltonian H f

G. More precisely, the probability

177
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of a configuration σ is equal to

µf
β,G(σ) = 1

Zf
β,G

exp [−βH f
G(σ)] . (7.2)

Below, µf
β,G will also denote the expectation with respect to µf

β,G.

Remark 7.1. In order to get the same definition as in the first chapter,
the constant β should be understood as 1/T , where T is the temperature.
For this reason, we will speak of high-temperature regime when β is small,
and low-temperature regime when β is large.

Remark 7.2. More generally, the Ising model may be defined by the
Hamiltonian

H f
G(σ) ∶= − ∑

x,y∈VG
Jx,yσxσy,

where (Jx,y)x,y∈Z2 is a set of coupling constants, where (Jx,y) is invariant
under translations, i.e. that Jx,y = J0,y−x for any x and y. If Jx,y ≥ 0
for any x and y, the model is called ferromagnetic. If Jx,y = J if x ∼ y
and 0 otherwise, the model is called nearest neighbor, otherwise it is called
long-range. In this book, we focus on the nearest neighbor ferromagnetic
Ising model and we fix J = 1 1.

For a graph G and τ ∈ {−1,+1}Z
2

, one may also define the Ising model
with τ boundary conditions by the Hamiltonian

Hτ
G(σ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

− ∑
x∼y and {x,y}∩VG≠∅

σxσy if σx = τx,∀x ∉ VG,

∞ otherwise.
(7.3)

Note that in this case the state space of spin configurations is formally

{−1,+1}Z
2

. However, since any configuration not corresponding to τ
outside of G has probability 0, the space is in direct correspondence with
{−1,+1}VG . For this reason, we now consider this later set to be the state
space.

Remark 7.3. The boundary conditions τ may be defined as an element
of {−1,+1}∂eG instead since other values outside VG are not relevant.

The approach consisting in considering τ ∈ {−1,1}Z
2

is sometimes more
convenient, in particular when taking the limit (as n tends to infinity)
of µτβ,Λn for a fixed τ . Furthermore, this choice is more consistent with
the general theory of so-called Gibbs measures and long-range models.
Nevertheless, we will sometimes allow ourself some latitude and simply
specify the boundary conditions on ∂eG.

1Multiplying all the coupling constants by the same multiplicative constant boils
down to changing β.
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Similarly to the random-cluster case, several boundary conditions will
be of particular importance in our study:

� free boundary conditions: defined above.
� + and − boundary conditions: the measure with boundary conditions
τx = +1 for all x ∈ Z2 (resp. τx = −1 for all x ∈ Z2) is denoted by µ+β,G
(resp. µ−β,G),

� Dobrushin (or domain-wall) boundary conditions: assume G is a
discrete domain. Assume that ∂eG can be divided into two ⋆-
connected paths ∂− and ∂+ when going around it (x and y are ⋆-
neighbors if ∥x − y∥∞ = 1 and each vertex has eight neighbors). The
Dobrushin boundary conditions are defined to be − on ∂− and +
on ∂+. The Dobrushin boundary conditions force the existence of
macroscopic interfaces in the model between the − cluster connected
to ∂− and the + cluster connected to ∂+.

7.2 General properties

7.2.1 Dobrushin-Lanford-Ruelle property

Similarly to the random-cluster case, the Ising model satisfies a strong
form of domain Markov property, called the DLR conditions; see
[Geo11]. Roughly speaking, this condition asserts that the Ising measure
conditioned on the configuration outside of a graph F is equal to the Ising
measure with boundary conditions inherited from the conditioning. In
particular, the Ising measure only keeps memory of the nearest neighbors.

Proposition 7.4. Let F ⊂ G two finite subgraphs of Z2. Let τ ∈ {−1,1}Z
2

and β > 0. Then

µτβ,G(σ∣VF = η ∣σx = τx ∶ ∀x ∈ VG ∖ VF ) = µτβ,F (η) , ∀η ∈ {−1,1}VF .

Proof. The proof of this statement is left as an exercise. It is very similar
to the proof of the Markov property for random-cluster models. ◻

7.2.2 Positive association of the Ising model

The set {−1,1}VG is equipped with a partial order: σ ≤ σ′ if for any x ∈ VG,
σx ≤ σ′x. A random variable X is increasing if σ ≤ σ′ implies X(σ) ≤X(σ′).
An event A is increasing if 1A is increasing. It is equivalent to the fact
that A is stable by the action of switching some spins from −1 to 1.
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Theorem 7.5 (FKG inequality). Let G be a finite graph, τ be boundary
conditions and β > 0. For any two increasing events A and B,

µτβ,G(A ∩B) ≥ µτβ,G(A)µτβ,G(B).

Proof. In this proof only, we set σ(x) instead of σx. We use the FKG
lattice condition (4.8) once again, but applied to vertices this time. Let
σ be a configuration, and e and f two vertices. Set σef , σef , σef and σfe
to be the configurations agreeing with σ away from e and f , and such
that (σ(e), σ(f)) = (1,1), (−1,−1), (1,−1) and (−1,1) respectively. The
following inequality would imply criterion (4.8) immediately:

Hτ
G(σef) +Hτ

G(σef) ≤Hτ
G(σfe ) +Hτ

G(σef), (7.4)

Let us prove this inequality now. When e and f are not adjacent, the two
sides of (7.4) are equal. When e and f are adjacent, we see that the left-
hand term of (7.4) corresponds to configurations with σ(e) = σ(f), while
the right-hand term corresponds to configurations with σ(e) ≠ σ(f). In
particular, the left-hand side is indeed smaller than the right-hand one. ◻

As before, the FKG inequality implies the following comparison between
boundary conditions.

Theorem 7.6. Let G be a finite graph and β > 0. For boundary conditions
τ1 ≤ τ2 and an increasing event A,

µτ1β,G(A) ≤ µτ2β,G(A). (7.5)

Exactly as in the case of measures on {0,1}EG , we say that µτ2β,G
stochastically dominates µτ1β,G if µτ1β,G(A) ≤ µτ2β,G(A) for any increasing
event A. In this language, the + boundary conditions are the largest ones
in the sense of stochastic ordering, while − are the smallest.

Proof. We prove that Hτ2
G (σef) + Hτ1

G (σef) ≤ Hτ1
G (σfe ) + Hτ2

G (σef)
following the same reasoning as above. We leave the proof as an exercise. ◻

7.3 FK-Ising model and Edwards-Sokal cou-
pling

The Ising model can be coupled to the random-cluster model with cluster-
weight q = 2. For this reason, the q = 2 random-cluster model will from now
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on be called FK-Ising. We now present this coupling, called the Edwards-
Sokal coupling, along with some consequences for the Ising model.

Let G be a finite graph and let ω be a configuration of open and closed
edges on G. A spin configuration σ can be constructed on the graph G as
follows:
� Assign independently to each cluster of ω a “cluster-spin” 1 or −1

with probability 1/2;
� Define the spin σx of a vertex to be equal to the cluster-spin of its

cluster.
Note that all vertices in the same cluster of ω receive the same spin, but
that clusters of pluses (or minuses) in σ can be much bigger than the
original clusters of ω.

Proposition 7.7 (Edwards-Sokal coupling [ES88]). Let p ∈ (0,1) and G
a finite graph. If the configuration ω is distributed according to a random-
cluster measure with parameters (p,2) and free boundary conditions, then
the spin configuration σ is distributed according to an Ising measure with
inverse temperature β = − 1

2
ln(1 − p) and free boundary conditions.

Proof. Consider a finite graph G, and let p ∈ (0,1). Consider a
measure P on pairs (ω,σ), where ω is a random-cluster configuration with
free boundary conditions and σ is the corresponding spin-configuration
constructed as explained above. Then, for (ω,σ), we have:

P [(ω,σ)] = 1

Z0
p,2,G

po(ω)(1 − p)c(ω)2k(ω) ⋅ 2−k(ω) = 1

Z0
p,2,G

po(ω)(1 − p)c(ω).

Now, we construct another measure P̃ on pairs of percolation and spin
configurations as follows. Let σ̃ be a spin-configuration distributed
according to an Ising model with inverse temperature β satisfying e−2β =
1 − p and free boundary conditions. We deduce ω̃ from σ̃ by closing
all edges between neighboring vertices with different spins, and by
independently opening edges between neighboring vertices with same spins
with probability p. Then, for any (ω̃, σ̃),

P̃ [(ω̃, σ̃)] = e
−2βr(σ̃)po(ω̃)(1 − p)∣EG∣−o(ω̃)−r(σ̃)

Z
= p

o(ω̃)(1 − p)c(ω̃)

Z

where r(σ̃) is the number of edges between vertices with different spins,
and Z is a normalizing constant.

To prove that the two measures are the same, we therefore need to
check that the two previous measures are in fact defined on the same set
of “admissible” pairs of configurations (this would imply that Z = Z0

p,2,G

and that the probabilities of each configuration is the same). But the two
spaces of configurations are obviously the same since if σ has been obtained
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from ω, then ω can be obtained from σ via the second procedure described
above, and the same is true in the reverse direction for ω̃ and σ̃.

This implies that P = P̃ and the marginals of P are the random-cluster
model with parameters (p,2) and the Ising model at inverse-temperature
β, which is the claim. ◻

The coupling gives a randomized procedure to obtain an Ising
configuration from an FK-Ising configuration (it suffices to assign random
spins). The proof of Proposition 7.7 also provides a randomized procedure
to obtain an FK-Ising configuration from an Ising configuration. This
observation was used by Swendsen-Wang to create a fast algorithm to
sample the Ising model [SW87].

If one considers wired boundary conditions for the random-cluster, the
Edwards-Sokal coupling provides us with an Ising configuration with +1
boundary conditions if we assign cluster-spins uniformly to each clusters,
except for the clusters touching the boundary that automatically receive
a cluster-spin +1. This extends to other boundary conditions.

Proposition 7.8 (Edwards-Sokal coupling [ES88]). Let p ∈ (0,1) and G
a finite graph. If the configuration ω is distributed according to a random-
cluster measure with parameters (p,2) and wired boundary conditions, then
the spin configuration σ is distributed according to an Ising measure with
inverse temperature β = − 1

2
ln(1 − p) and + boundary conditions.

The Edwards-Sokal coupling provides us with a dictionary between
correlation properties of the Ising model and connectivity properties of
the FK-Ising percolation2. Indeed, two vertices which are connected in the
random-cluster configuration must have the same spin, while vertices which
are not have independent spins. Let us give two examples of applications
of this fact (we will see many more applications of this coupling in the
next sections).

Proposition 7.9. Fix p ∈ (0,1), G a finite graph and β = − 1
2

ln(1 − p).
For any x, y ∈ G,

µ+β,G[σx] = φ1
p,2,G(x↔ ∂G),

µf
β,G[σxσy] = φ0

p,2,G(x←→ y).

Proof. Let us treat the first case. Let P be the coupling between µ+β,G
and φ1

p,q,G and E the expectation with respect to P . We find

µ+β,G[σx] = E[σx1{x /↔∂G}] +E[σx1{x↔∂G}] = P (x↔ ∂G) = φ1
p,2(0↔ ∂G).

2The FK-Ising model is called a geometric representation of the Ising model due to
the fact that correlations are encoded in terms of geometric properties of percolation
configurations.
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In the second equality, we used that conditionally on x /↔ ∂G, the average
spin is 0, while conditionally on x↔ ∂G, it is 1. The second case can be
treated similarly. ◻

7.4 Planar Gibbs measures and phase
transition

Let us start by defining infinite-volume measures (also called Gibbs
measures). See [vEFS93, Section 2.3.2] for details on Gibbs measures.

Definition 7.10 (Gibbs measure). Let β > 0. A measure µ on {−1,1}Z
2

is called an Ising Gibbs measure at inverse-temperature β if for any finite
graph G and any configuration τ on Z2,

µ(σ∣VG = η ∣σx = τx ∶ ∀x ∉ VG) = µτβ,G(η) , ∀η ∈ {−1,1}VG .

Remark 7.11. Note that the previous conditioning is not really defined
since the probability of σx = τx for any x ∉ VG is a priori zero but there is
no difficulty in making sense of this degenerated conditioning (for instance,
one may condition on σx = τx for any x ∈ ∂eG only).

The domain Markov property and the comparison between boundary
conditions allow us to construct Gibbs measures.

Proposition 7.12. There exist three Gibbs measures µ+β, µ−β and µf
β, called

the Gibbs measures with +, − and free boundary conditions respectively,
such that for any event A depending on a finite number of vertices,

lim
n→∞

µ+β,Λn(A) = µ+β(A) ,

lim
n→∞

µ−β,Λn(A) = µ−β(A) ,

lim
n→∞

µf
β,Λn(A) = µf

β(A) .

Proof. The proof may be performed using the comparison between
boundary conditions, but we prefer to use the Edwards-Sokal coupling
since it illustrates the fact that the coupling extends to the infinite-
volume context. Precisely, define the measure µf

β obtained by assigning

spins uniformly to the clusters of φ0
p,2, where β = − 1

2
log(1 − p). It is

then straightforward to deduce the convergence of µf
β,Λn

to µf
β from the

convergence of φ0
p,2,Λn

to φ0
p,2 and the fact that conditionally on the

random-cluster configuration ω, the cluster-spin configuration follows a
product measure on clusters of ω.
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Similarly, µ+β and µ−β can be constructed by considering φ1
p,2 and

assigning spins uniformly except that the infinite cluster (if it exists)
receives spin +1 in the first case, and −1 in the second one. ◻

The measures µ+β , µ−β and µf
β are invariant under translations.

Furthermore, µ+β and µ−β are ergodic but µf
β is not necessarily, as can be

seen from the fact that in the Edwards-Sokal coupling in infinite volume,
the infinite cluster could receive a spin 1 or a spin −1. In fact, µf

β can be

proved to be equal to 1
2
(µ+β+µ−β), and it is therefore ergodic only if µ+β = µ−β .

Let us also mention that µ−β and µ+β are extremal for the stochastic ordering

between measures on {−1,+1}Z
2

.

The Ising model in infinite-volume exhibits a phase transition at some
critical inverse temperature βc, above which a spontaneous magnetization
appears.

Theorem 7.13. There exists βc ∈ (0,∞) such that:
� for any β < βc, µ+β[σ0] = 0,
� for any β > βc, µ+β[σ0] > 0.

Furthermore, βc = 1
2

log(1 +
√

2).

Proof of Theorem 7.13. Proposition 7.9 immediately implies that
βc = − 1

2
ln[1−pc(2)] by passing to the infinite-volume. Then, Theorem 5.10

applied to q = 2 concludes the proof. ◻

The problem of identifying the critical value of the Ising model is
more than fifty years old. Summarizing, Kramers and Wannier identified
(without proof) the critical temperature where a phase transition occurs,
separating an ordered from a disordered phase, using planar duality
[KW41a, KW41b]. Kaufman and Onsager [Ons44, KO50] computed the
free energy of the model, paving the way to an analytic derivation of its
critical temperature. Later, Aizenman, Barsky and Fernández [ABF87]
found a computation of the critical temperature based on differential
inequalities. Here, we use yet another method since we invoke the
determination of the critical value of the FK-Ising model provided in
Chapter 5.

Remark 7.14. One may use the (very useful) Griffiths-Kelly-Sherman
inequality [Gri67, KS68] to prove the existence of βc. This inequality
asserts that for any graph G, any β > 0 and any two sets A,B of vertices
of G,

µ+β,G[σA] ≥ 0,

µ+β,G[σAσB] ≥ µ+β,G[σA]µ+β,G[σB],
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where σA =∏v∈A σv. The second inequality may be used to prove that the
derivative with respect to β of µ+β,G[σ0] is positive:

d

dβ
µ+β,G(σ0) = ∑

x∼y
µ+β,G(σ0σxσy) − µ+β,G(σ0)µ+β,G(σxσy) ≥ 0.

Observe that, similarly to the random-cluster model, one could construct
(a priori) many Gibbs measures and their classification is thus non trivial.
Even though we will not use these facts in the future, let us describe
planar Gibbs measures, starting from the high-temperature regime, then
the critical regime and then the low-temperature regime.

Proposition 7.15. When β < βc, there is a unique infinite-volume
measure.

Proof. Let p such that β = − 1
2

log(1 − p). There is no infinite-cluster
for φ1

p,2 and therefore µ+β and µ−β are constructed from φ1
p,2 in the same

way. We deduce that µ+β = µ−β and by a proof similar to the one of
Proposition 4.29, this implies that there exists a unique infinite-volume
measure. ◻

For general models the classification at criticality is a priori much more
difficult than in the high-temperature regime. For the Ising model, this
is not the case and it turns out that there exists a unique Gibbs measure
at criticality. The result goes back to Onsager [Ons44] (we also proved
it in this book: simply use the Edwards-Sokal coupling together with
Property P2 of Corollary 6.16). We do not resist the temptation to present
a beautiful elementary proof due to W. Werner [Wer09].

Proposition 7.16. On Z2, there exists a unique Gibbs measure at βc.

Let us outline the proof first. We play with the Edwards-Sokal coupling
between Ising and FK-Ising models. We wish to prove that µ+βc = µ

−
βc

. In
order to do so, we first use Zhang’s argument (Proposition 4.38) to show
that there is no infinite cluster at criticality almost surely. The core of the
proof will be to prove that the measure µf

βc
is ergodic. Since it is symmetric

with respect to flipping all spins, it implies that µf
βc

does not possess any

infinite-clusters of pluses or minuses. In particular, there exists µf
βc

-almost
surely an infinite number of + and − circuits (more precisely ⋆-connected
circuits). This last fact can then be used to show that µ+βc ≤ µ

f
βc

≤ µ−βc .

Proof. (sketch) Let us prove that µ+βc = µ−βc . In such case, the
comparison between the boundary conditions implies that the critical
Gibbs measure is unique. First, there is no infinite cluster for φ0

pc,2 thanks
to Proposition 4.38. The core of the proof consists in proving that this
property implies that µf

βc
is ergodic.
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Claim: the measure µf
βc

is ergodic.

Proof of the Claim. Let A and B be two events depending on two sets
of vertices V and W . We consider the coupling P between µf

βc
and φ0

pc,2.
Let x with ∣x∣ ≥ 2n. Assume that V and W are included in Λn. We find

µf
βc(A ∩ τxB) = P (A ∩ τxB)

= E(P (A ∩ τxB∣Γn)1{Γn exists})
+ P (A ∩ τxB ∩ {Γn does not exist}),

where Γn is the union of the two outer-most dual-circuits in Λ∣x∣/2 ∖ Λn
and τx(Λ∣x∣/2 ∖Λn) respectively. Since φ0

pc,2(0↔∞) = 0, the second term
tends to zero as x and then n tend to infinity. The conditional probability
inside the first term is given by

P (A ∩ τxB∣Γn) = µf
βc,On(A)µf

βc,Xn(B),

where On and Xn are the connected component of 0 and x in Z2∖Γn. The
convergence of µf

βc,On
and µf

βc,Xn
to µf

βc
thus implies that the first term

(and therefore the sum of the two) satisfies

lim
∣x∣→∞

µf
βc(A ∩ τxB) = µf

βc(A)µf
βc(B).

◇

The symmetry of µf
βc

under flips of all spins −1/ + 1 together with its
ergodicity implies

µf
βc(∃ an infinite-cluster of +) = µf

βc(∃ an infinite-cluster of −) ∈ {0,1}

and therefore both are equal to zero.
Say that two vertices x = (x1, x2) and y = (y1, y2) are ⋆-neighbors if

∣x1 −y1∣ ≤ 1 and ∣x2 −y2∣ ≤ 1. A ⋆-circuit is a path v0, . . . , vn = v0 such that
vi and vi+1 are ⋆-neighbors for every 0 ≤ i < n. Since there is no infinite
cluster, there exists an infinite number of disjoint pluses and minuses ⋆-
circuits surrounding the origin. We can now apply the same strategy as
in the proof of Corollary 4.40. One may for instance use a “conditioning
on the outer-most ⋆-connected circuit of pluses argument” to prove that
µ+βc ≤ µ

f
βc

. Doing the same with minuses, we can prove that µf
βc

≤ µ−βc . In
conclusion, µ+βc ≤ µ

−
βc

and therefore µ+βc = µ
−
βc

(we already mentioned that
µ−βc ≤ µ

+
βc

). ◻

The classification when β > βc is more interesting and more difficult.
The space of infinite-volume measures is an interval with two extremal
measures µ+β and µ−β .
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Theorem 7.17 (Aizenman, Higuchi [Aiz80, Hig81]). Fix β > βc. The set
of Gibbs measures with inverse-temperature β is given by

{λµ+β + (1 − λ)µ−β ∶ λ ∈ [0,1]}.

Remark 7.18. This result is no longer true in higher dimensions, as shown
by [Dob72] (also see [vB75]). Indeed, consider boxes with + boundary
conditions on the upper half-space and − boundary conditions on the
lower half-space. These boundary conditions imply the existence of a
surface between + and −. In dimensions 3 and higher and at very high
β, this surface does not fluctuate much and it is possible to prove that the
infinite measure constructed by nested sequences of such boxes contains
a hyper-surface passing through the origin with positive probability. This
rules out the possibility of the measure being translationally invariant
in the vertical direction. Since Gibbs measures with + or − boundary
conditions are invariant under translations, this measure is not a linear
combination of them. In 2D, the corresponding construction (+ on the
upper half-plane and − on the lower half-plane) does not lead to the same
contradiction. Indeed, in such case, the interface can be proved to have
Gaussian fluctuations [CIV03]. As a consequence, it passes through the
origin with probability tending to 0 as n tends to infinity.

By studying interfaces in more detail, Coquille and Velenik provided
a new proof of the Aizenman-Higuchi result [CV12]. This result was
extended to so-called Potts models in [CDCIV12] (see the antepenultimate
chapter for a definition of Potts models).

7.5 High and low temperature expansions
and Kramers-Wannier duality

7.5.1 High temperature expansion

The high temperature expansion of the Ising model is a graphical
representation introduced by van der Waerden [vdW41]. It is based on
the following identity (which is true since σxσy ∈ {−1,+1}):

eβσxσy = cosh(β) + σxσy sinh(β) = cosh(β) [1 + tanh(β)σxσy] . (7.6)

For A ⊂ VG, let EG(A) be the set of subgraphs ω of G such that:
� every vertex v ∈ VG ∖A is the end-point of an even number of edges

of ω,
� every vertex v ∈ A is the end-point of an odd number of edges of ω.

Note that if ∣A∣ is odd, EG(A) is empty. The set EG(∅) =∶ EG is simply the
set of even subgraphs of G. For ω ∈ EG(A), we set ∣ω∣ for the number of
edges in ω.

Recall that σA =∏x∈A σx.
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Proposition 7.19. Let G be a finite graph, β > 0, and A ⊂ VG. We find

Zf
β,G = 2∣VG∣ cosh(β)∣EG∣ ∑

ω∈EG
tanh(β)∣ω∣ (7.7)

and

µf
β,G[σA] =

∑
ω∈EG(A)

tanh(β)∣ω∣

∑
ω∈EG

tanh(β)∣ω∣
, (7.8)

Proof. Let us start with the partition function. We know

Zf
β,G = ∑

σ∈{−1,1}VG
∏

{x,y}∈EG
eβσxσy

= cosh(β)∣EG∣ ∑
σ∈{−1,1}VG

∏
{x,y}∈EG

[1 + tanh(β)σxσy]

= cosh(β)∣EG∣ ∑
σ∈{−1,1}VG

∑
ω⊂EG

tanh(β)∣ω∣ ∏
e={x,y}∈ω

σxσy

= cosh(β)∣EG∣ ∑
ω⊂EG

tanh(β)∣ω∣ ∑
σ∈{−1,1}VG

∏
e={x,y}∈ω

σxσy

where we used (7.6) in the second equality. Notice that

∑
σ∈{−1,1}VG

∏
e={x,y}∈ω

σxσy =
⎧⎪⎪⎨⎪⎪⎩

2∣VG∣ if ω ∈ EG
0 otherwise

and the formula for the partition function follows.
Let us now treat the second case. It is sufficient to prove that

∑
σ∈{−1,1}VG

σAe
−βHf

G(σ) = 2∣VG∣ cosh(β)∣EG∣ ∑
ω∈EG(A)

tanh(β)∣ω∣.

The first lines of the computation for the partition function are exactly
the same, and we end up with:

∑
σ∈{−1,1}VG

σAe
−βHf

G(σ)

= cosh(β)∣EG∣ ∑
ω⊂EG

tanh(β)∣ω∣ ∑
σ∈{−1,1}VG

σA ∏
e={x,y}∈ω

σxσy.

Notice that

∑
σ∈{−1,1}VG

σA ∏
e={x,y}∈ω

σxσy =
⎧⎪⎪⎨⎪⎪⎩

2∣VG∣ if ω ∈ EG(A)
0 otherwise

and the formula follows. ◻
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Remark 7.20. The same can be done for any boundary conditions. Let us
mention the case of + boundary conditions. Let δ be an additional vertex
not in G, sometimes called the ghost vertex, and connect every vertex of
∂G to δ to obtain the graph Gδ. Then,

Z+
β,G = 2∣VG∣ cosh(β)∣EGδ ∣ ∑

ω∈EGδ

tanh(β)∣ω∣

(beware of the fact that it is 2 to the power ∣VG∣ and not ∣VGδ ∣) and

µ+β,G[σA] =

∑
ω∈EGδ (A)∪EGδ (A∪{δ})

tanh(β)∣ω∣

∑
ω∈EGδ

tanh(β)∣ω∣
. (7.9)

Note that in the second formula, either EGδ(A) or EGδ(A ∪ {δ}) is empty
depending whether ∣A∣ is odd or even. This representation using the ghost
vertex is also very useful when working with an external field.

Remark 7.21. Several other representations of the Ising model have been
introduced over the years. For instance, a representation exploiting the
expansion

eβσxσy =
∞
∑
k=0

(βσxσy)k

k!

instead of (7.6) was proposed by Aizenman in [Aiz82]. This representation,
called the random current representation, has been used to study the Ising
model above 4 dimensions. It was also the main ingredient in the proof of
[ABF87]. Recently, it was used to prove that the transition of the three
dimensional Ising model is continuous [ADCS13].

7.5.2 The low temperature expansion

The low temperature expansion of the Ising model is a graphical
representation on the dual lattice. The representation consists in drawing
the contours (living on (Z2)⋆) between clusters of spin 1 and clusters of
spin −1. More precisely, let ω(σ) ∈ {0,1}EG⋆ be the family of contours
associated to σ defined for every dual-edge e⋆ by

ω(σ)e⋆ =
⎧⎪⎪⎨⎪⎪⎩

1 if σx ≠ σy (here e = [xy]),
0 otherwise.

Observe that the construction is bijective3, one may reconstruct the spins
(once we know boundary conditions) from the contour configuration.

3More precisely, it is one-to-one for any boundary conditions τ , but it is two-to-one
for free boundary conditions due to the symmetry +1/ − 1.
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For a contour configuration ω, we set ∣ω∣ for the number of dual-edges
in ω (we sometimes speak of the total length of the contours).

The probability of a contour configuration can be easily expressed
in terms of the total lengths of the contours. Indeed, recall that the
probability of a configuration σ is proportional to e−βH

τ
G(σ). Now, Hτ

G(σ) =
2n(σ) − ∣EG∣, where n(σ) is the number of pairs of neighboring vertices
with different spins. By construction, each edge e whose end-points have
different spins in σ is in direct correspondence with an edge e⋆ in ω(σ), thus
n(σ) = ∣ω(σ)∣. In conclusion, the probability of a contour configuration ω
is simply proportional to e−2β∣ω∣.

Example 1 (+ boundary conditions). In this case, the contours use edges of
G⋆ only, where here the dual graph contains dual vertices corresponding to
faces of Z2 adjacent to G (for discrete domains, this definition corresponds
to the definition of the dual graph introduced in Chapter 3). Furthermore,
a family of contours is an even subgraph of G⋆. Let EG⋆ be the set of even
subgraphs of G⋆. We obtain easily

Z+
β,G = eβ∣EG⋆ ∣ ∑

ω∈EG⋆
e−2β∣ω∣ and µ+β,G(σ) = e−2β∣ω(σ)∣

∑
ω∈EG⋆

e−2β∣ω∣ . (7.10)

Example 2 (Dobrushin boundary conditions). Assume that spins are −1 on
∂−, and +1 on ∂+ (recall the definition of ∂− and ∂+ from the beginning of
this chapter). Then, families of contours are composed of loops together
with one interface running between the two edges of (Z2)⋆ separating ∂−
from ∂+. If one adds the two endpoints denoted u and v of these two edges,
we simply obtain that the set of families of contours is EG⋆∪{u,v}({u, v}),
where the notation extends the notation of the previous section to the dual
lattice. Furthermore,

µdobr
β,G (σ) = e−2β∣ω(σ)∣

∑
ω∈EG⋆∪{u,v}({u,v})

e−2β∣ω∣ (7.11)

and

Zdobr
β,G = eβ∣EG⋆ ∣ ∑

ω∈EG⋆∪{u,v}({u,v})
(e−2β)∣ω∣ . (7.12)

Example 3. For general boundary conditions, the contours live on the
edges of G⋆, with possibly additional dual-edges of (Z2)⋆ corresponding
to edges where the boundary conditions switch from 1 to −1 or vice-versa.
In other words, the contours leave on {e⋆ ∶ e ∈ EG∪∂eG}.

Remark 7.22. We are now in a position to expose the Kramers-Wannier
argumentation [KW41a, KW41b]. It is based on the fact that the high
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and low temperature expansions are clearly related to each other, with the
drawback that they live on different graphs.

If β⋆ is set to satisfy tanh(β⋆) = e−2β , then for every graph G, (7.7) and
(7.10) give that

2∣VG⋆ ∣ cosh(β⋆)∣EG⋆ ∣Z+
β,G = eβ∣E

⋆
G∣Zf

β⋆,G⋆ . (7.13)

Physicists expect that the critical point corresponds exactly to the unique
point for which the so-called free energy is not analytic in β. The free
energy is defined by the formula

f(β) = lim
n→∞

1

∣VΛn ∣
log[Z+

β,Λn] = lim
n→∞

1

∣VΛn ∣
log[Zf

β,Λn].

The fact that f is well-defined follows from the same sub-multiplicative
arguments as in the proof of Lemma 4.31 and the fact that the two limits
are equal is due to the fact that for

e−2β∣∂Λn∣ ≤
RRRRRRRRRRR

Z+
β,Λ(σ)

Zf
β,Λn

(σ)

RRRRRRRRRRR
≤ e2β∣∂Λn∣

(only interactions on the boundary change).

Now, (7.13) and ∣EΛ⋆
n
∣ ≈ 2∣VΛn ∣ imply that

f(β⋆) = f(β) + log 2 + 2 log cosh(β⋆) − 2β.

If β⋆c ≠ βc, there would be at least two such singularities at βc and β⋆c . Thus,
βc should be equal to β⋆c , which implies βc = 1

2
ln(1 +

√
2). Of course, the

mathematical justification that there exists a unique singularity requires
some work (which was absent from the original work in [KW41a, KW41b]).

7.5.3 Peierls argument

Since we are almost there anyway, let us mention Peierls argument,
which rigorously proves that βc ∈ (0,∞). It harnesses the low and
high temperature expansions and is of great historical significance.
Interestingly, this argument has been generalized to many models,
including the random-cluster model. In particular, the (omitted) direct
proof that the critical value of the random-cluster model pc(q) is not equal
to 0 or 1 (Theorem 4.34) follows a similar argument.

Proposition 7.23 (Peierls argument [Pei36]). The critical inverse
temperature βc on the square lattice is strictly positive and finite.
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Proof. Let us prove that βc is finite. We wish to estimate µ+β,G[σ0] when
β is very large. Since

µ+β,G[σ0] = 1 − 2µ+β,G[σ0 = −1],

it is sufficient to show that µ+β,G[σ0 = −1] < 1/2 uniformly in the graph
G. The observation is that {σ0 = −1} is included in the event that there
exists a circuit in the low-temperature expansion surrounding 0. Thus,
if ELG⋆ denotes the subset of configurations in EG⋆ containing one self-
avoiding loop surrounding 0 and LG⋆ the set of self-avoiding circuits on
G⋆ surrounding 0, the low-temperature expansion gives that

µ+β,G[σ0 = −1] ≤
∑

ω∈ELG⋆
e−2β∣ω∣

∑
ω∈EG⋆

e−2β∣ω∣ ≤ ∑
γ∈LG⋆

e−2β∣γ∣ ≤
∞
∑
n=1

n4ne−2βn < 1/2

for β large enough. We used the fact that, when removing a prescribed
loop, the weighted sum over all possible even graphs avoiding this loop is
smaller than the one without this constraint and therefore

∑
ω∈ELG⋆

e−2β∣ω∣ ≤ ( ∑
γ∈LG⋆

e−2β∣γ∣)( ∑
ω∈EG⋆

e−2β∣ω∣)

and in the third inequality the fact that the number of paths of length n
surrounding the origin is smaller than n4n.

The inequality 0 < βc can be obtained using the high-temperature
expansion instead of the low-temperature one. Indeed, the second formula
of (7.9) applied to A = {0} implies that

µ+β,G[σ0] =

∑
ω∈EGδ ({0,δ})

tanh(β)∣ω∣

∑
ω∈EGδ

tanh(β)∣ω∣
≤ ∑
γ∈SAW(0,δ)

tanh(β)∣ω∣ ≤
∞
∑
n=d

[4 tanh(β)]n,

where d is the distance from the origin to ∂G and SAW(0, δ) is the set
of self-avoiding walks on G from the origin to the ghost vertex δ. When
β is small enough, this last term decays exponentially fast as d tends to
infinity and the proof is finished.

Note that we used a reasoning similar to what is above: any
configuration in EGδ({0, δ}) is the union of a self-avoiding walk from the
origin to δ plus an even subgraph in EGδ , and when removing the walk, the
weighted sum over all possible even graphs avoiding this walk is smaller
than without this constraint. Altogether, this justifies that indeed
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∑
ω∈EGδ ({0,δ})

tanh(β)∣ω∣ ≤ ( ∑
γ∈SAW(0,δ)

tanh(β)∣ω∣)( ∑
ω∈EGδ

tanh(β)∣ω∣).

◻

Remark 7.24. Observe that we used the low-temperature expansion to
prove that µ+β(σ0) > 0 for low temperatures, and the high-temperature
to prove that µ+β(σ0) = 0 for high temperatures. This justifies the
denomination of low and high temperature expansions, even though these
expansions may be used for any inverse-temperature (for instance we will
use this fact at criticality in the following section).

7.5.4 Spin fermionic observable in discrete domains
with two marked points

Let Ω◇ be a medial discrete domain and let u◇ and v◇ be two medial-
vertices of Ω◇. Let Ω ∪ {u◇, v◇} be the graph obtained from the primal
graph Ω by adding the vertices u◇ and v◇ and replacing the original edges
passing through these medial-vertices by mid-edges emanating from u◇

and v◇; see Fig. 7.1. Define the following subset of configurations on this
new graph:

ÊΩ(u◇, v◇) = EΩ∪{u◇,v◇}({u◇}∆{v◇}),

where ∆ denotes the symmetric difference. While the definition of
ÊΩ(u◇, v◇) involves the graph Ω ∪ {u◇, v◇}, we will use the vocabulary
of the original graph Ω by saying that the edges incident to u◇ and v◇ are
half-edges.

Remark 7.25. The configurations in ÊΩ(u◇, v◇) can be expressed fairly
simply in terms of the high temperature expansion on Ω. They contain two
half-edges (possibly joining to make a full edge if u◇ = v◇) that one may
remove to obtain configurations entering into the framework of the high-
temperature expansion. In particular, the configurations are composed of
edge-avoiding loops together with a non-self-crossing path from u◇ to v◇.

Let ∣ω∣ be the total length of a configuration ω ∈ ÊΩ(u◇, v◇). It is equal
to the number of edges in the configuration when removing the two half-
edges starting from u◇ and v◇ plus 1. In other words, it is simply the total
length of the contours (since half-edges count for 1/2 instead of 1).

The winding WΓ(u◇, v◇) of a curve Γ between two medial vertices u◇

and v◇ of the medial graph is the total signed rotation in radians that
the curve makes from u◇ to v◇. With these notations, we can define the
spin-Ising fermionic observable.
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v�

u�

Figure 7.1: An example of a collection of contours in ÊΩ◇(u◇, v◇) on a
simply connected domain.

Definition 7.26 (Smirnov [Smi06]). Let Ω◇ be a discrete domain and let
u◇ and v◇ be two distinct medial vertices on ∂Ω◇. The spin-Ising fermionic
observable at a third medial vertex z◇ is defined by

FΩ◇,u◇,v◇(z◇) =

∑
ω∈ÊΩ(u◇,z◇)

e−
i
2Wγ(ω)(u◇,z◇)(

√
2 − 1)∣ω∣

∑
ω∈ÊΩ(u◇,v◇)

e−
i
2Wγ(ω)(u◇,v◇)(

√
2 − 1)∣ω∣

,

where γ(ω) is any non-self-crossing path in ω going from u◇ to z◇ (or from
u◇ to v◇).

Remark 7.27. While there may be several choices for the path γ(ω),
the quantity e−

i
2Wγ(ω)(u◇,v◇) does not depend on the choice of a non-self-

crossing path.

Remark 7.28. Fermionic observables in the Ising model are older than
parafermionic observables for the random-cluster model. They essentially
go back to Kaufman-Onsager. They also appeared in several works
from Sato, Miwa, Jimbo [SMJ78, SMJ79a, SMJ79b, SMJ79c, SMJ80].
Nevertheless, the study of Boundary Value Problem, which will eventually
lead to conformal invariance, was only performed recently by Smirnov, see
Chapter 9.
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Remark 7.29. Since the weights of edges are critical (recall that
√

2−1 =
e−2βc), the Kramers-Wannier duality has a enlightening interpretation
here. The high-temperature expansion can be thought of as the low-
temperature expansion of an Ising model on the dual graph with specific
boundary conditions. Let us expand on this. Assume for a moment
that u◇ and v◇ are on the boundary of Ω◇ and extend configurations in
ÊΩ(u◇, v◇) by adding the two missing half-edges adjacent to u◇ and v◇

(they are connecting u◇ and v◇ to the end-points u and v of the primal
edges associated to them that are not in Ω). Applying Kramers-Wannier
duality, the denominator thus corresponds exactly to the low-temperature
expansion of an Ising model on the dual graph with Dobrushin boundary
conditions. This will be crucial in order to connect the behavior of the
spin fermionic observable to the geometry of interfaces (see Fig. 7.2).

Remark 7.30. Let us mention that the numerator of the observable has
also an interpretation using directly the high-temperature expansion. In
fact, it can be shown that it corresponds to the high-temperature expansion
of the partition function of an Ising model with a disorder operator at z◇.
More precisely, this operator introduces a monodromy at z◇: every time
one turns around z◇, the spins are reversed. Equivalently, it boils down
to reversing the correlation constants J to −J along an arbitrary simple
curve from z◇ to the boundary of the domain.

u�u

vv�

Figure 7.2: The Ising configuration on Ω⋆ corresponding to configurations
in ÊΩ(u◇, v◇). We also depicted the vertices u and v.



Chapter 8

Discrete complex analysis
on graphs

Complex analysis is the study of harmonic and holomorphic functions
in complex domains. In this chapter, we shall discuss how to discretize
harmonic and holomorphic functions, and what are the properties of these
discretizations (it is inspired by [DCS12a]).

Since we are aiming at a description of discrete structures that converge
to continuum ones, we will work with discrete approximations of the square
lattice. We use the notations and terminology introduced in Chapter 3.
In particular, Ω, Ω⋆ and Ω◇ always denote discrete domains or Dobrushin
domains except otherwise mentioned. Since we discuss complex analysis,
we will also work with complex coordinates and variables.

This presentation of discrete holomorphicity will be somewhat
biased: it will mostly focus on the relation between discrete
harmonicity/holomorphic maps and discrete Boundary Value Problems
(BVPs). Let us explain the reasons behind this deliberate choice. In
Chapter 6, we saw that parafermionic observables possess properties that
are shared by holomorphic maps. Furthermore, the boundary conditions
of these parafermionic observables suggest that their scaling limit is the
solution of Riemann-Hilbert BVPs:

f is holomorphic on Ω, continuous on Ω, and Im(fνσ) = 0 on ∂Ω,

where ν is the tangent vector on the boundary. For general values of
q, proving that the parafermionic observables converge in the scaling
limit seems to be an Herculean task. Nevertheless, discrete complex
analysis offers us a framework and a strategy to justify such a convergence:
if a parafermionic observable could be proved to be the solution of a
relevant discretization of a Riemann-Hilbert BVP, then its convergence

196
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in the scaling limit could follow from abstract results on so-called discrete
harmonic/holomorphic maps. This fact alone is a compelling motivation
for studying discrete complex analysis from the point of view of BVPs.

We will start with a discussion of discrete harmonic functions and their
relation to the Dirichlet problem, which is the easiest discrete BVP to make
sense of and to solve. Then, we will define discrete holomorphic functions.
We will study these objects very succinctly for the following reason: the
notion of discrete holomorphicity will not be strong enough to enable us
to study discrete Riemann-Hilbert BVPs. We will therefore quickly move
to a notion of discrete holomorphicity introduced by Smirnov, called s-
holomorphicity, which enables us to treat a special case of Riemann-Hilbert
BVP.

This chapter must be understood as a toolbox for what will follow. In
the next chapter, we will show that the strategy outlined above works in
a special case : the fermionic observable (for q = 2 random-cluster model
or for the Ising model) will be proved to be s-holomorphic and the theory
developed in this chapter will be harnessed to prove convergence of these
two observables in the scaling limit.

In this chapter, we identify a graph and its set of vertices (for instance
Ωδ will mean VΩδ).

8.1 Discrete harmonic functions and discrete
Dirichlet BVP

We refer to [Law05] for a deeper or more broader study on discrete
harmonic functions and their link to random walks.

8.1.1 Definition and connection with random walks

In this section, Ωδ denotes a discrete domain or a Dobrushin domain.
Consider the operator ∆δ defined as follows. For f ∶ Ωδ → R and x in
Ωδ ∖ ∂Ωδ, set

∆δf(x) ∶=
1

4
∑
y∼x

[f(y) − f(x)].

Definition 8.1. A function h ∶ Ωδ → R is discrete harmonic (resp. discrete
superharmonic, discrete subharmonic) at x if ∆δh(x) = 0 (resp. ≤ 0, ≥ 0).
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8.1.2 The discrete Dirichlet BVP for harmonic
functions

For a function g ∶ ∂Ωδ → C, a (harmonic) solution of the Dirichlet
Boundary Value Problem on Ωδ with boundary conditions g is given by
a function h ∶ Ωδ → C which is discrete harmonic on Ωδ ∖∂Ωδ and equal to
g on ∂Ωδ.

Theorem 8.2. Consider a discrete domain Ωδ and a function g ∶ ∂Ωδ → R.
There exists a unique solution to the discrete Dirichlet BVP on Ωδ with
boundary conditions g.

In order to prove this theorem, we will need the two following important
facts.

Lemma 8.3 (maximum principle). Let h ∶ Ωδ → R be discrete harmonic
on Ωδ ∖ ∂Ωδ. Then,

max{h(x) ∶ x ∈ Ωδ} = max{h(x) ∶ x ∈ ∂Ωδ}.

Proof. Let m = max{h(x) ∶ x ∈ Ωδ} and let U = {x ∈ Ωδ ∶ f(x) =m}. Let
x ∈ U ∖ ∂Ωδ. Then m = h(x) = 1

4 ∑y∼x h(y) and therefore h(y) =m for any
neighbor y of x. This observation implies that U ∩ ∂Ωδ ≠ ∅, which is the
claim. ◻

Consider the simple random walk (Xn) on δZ2, i.e. the Markov process
on vertices defined by jumping at each time step on one of the nearest
neighbors with equal probability. For a graph Ωδ, let τ be the hitting time
of ∂Ωδ.

Lemma 8.4 (connection with random walks). A function h ∶ Ωδ → R is
discrete harmonic on Ωδ∖∂Ωδ if and only if for any x ∈ Ωδ∖∂Ωδ, h(Xn∧τ)
is a martingale for the simple random walk starting from x.

Proof. Let x ∈ Ωδ ∖ ∂Ωδ and (Xn) be the simple random walk starting
from x, then E[h(X1)] = h(x) is equivalent to ∆δh(x) = 0. This implies
the claim readily. ◻

Proof of Theorem 8.2. Let us start with the uniqueness. Consider
two solutions h1 and h2 of the BVP. Then, h1 − h2 is a solution of
a discrete Dirichlet BVP with boundary conditions 0. The maximum
principle applied to h1 − h2 and h2 − h1 implies that h1 = h2. Let us
now turn to the existence. Consider the function

f(x) = Ex[g(Xτ)],
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where under Ex, (Xn) is a simple random walk starting at x, and τ is
still the hitting time of ∂Ωδ. By definition, this function is equal to g on
the boundary. Since it can easily be seen to be harmonic on Ωδ ∖ ∂Ωδ, we
obtain a solution. ◻

Example 1. A discrete harmonic function is the solution of the Dirichlet
BVP with g = f∣∂Ωδ .

Example 2. The discrete harmonic measure of y ∈ ∂Ωδ is the solution of
the Dirichlet BVP with g(x) = 1 if x = y and 0 otherwise. Equivalently,
HΩδ(x, y) is the probability that a simple random walk starting from x
reaches ∂Ωδ at y.

Let us mention the following formula involving the discrete harmonic
measure.

Proposition 8.5. For any function h ∶ Ωδ → R harmonic on Ωδ ∖ ∂Ωδ,

h = ∑
y∈∂Ωδ

h(y)HΩδ(⋅, y).

Proof. Note that

h − ∑
y∈∂Ωδ

h(y)HΩδ(⋅, y)

is harmonic in Ωδ ∖ ∂Ωδ. Since it vanishes on ∂Ωδ, the uniqueness of the
Dirichlet BVP implies that it is equal to 0 everywhere, hence the claim. ◻

8.1.3 Derivative estimates and compactness criteria

For general functions, a control on the gradient provides regularity
estimates on the function itself. It is a well-known fact that harmonic
functions satisfy the reverse property: controlling the function allows us
to control the gradient. The following lemma shows that the same is true
for discrete harmonic functions. Recall that d(x,F ) = inf{∣x − y∣, y ∈ F}.

Proposition 8.6. There exists C > 0 such that, for any discrete harmonic
function h ∶ Ωδ → R and any two neighboring vertices x and y in Ωδ,

∣h(x) − h(y)∣ ≤ Cδ
sup{∣h(z)∣ ∶ z ∈ Ωδ}
d(x, δZ2 ∖Ωδ)

. (8.1)
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Proof. Let x, y ∈ Ωδ. Let 2r = d(x, δZ2 ∖ Ωδ) > 0, so that
Uδ = (x + [−r, r]2) ∩ δZ2 is included in Ωδ. Lemma 8.4 implies that for
any two neighboring vertices x and y of Ωδ,

h(x) − h(y) = E[h(Xτ) − h(Yτ ′)], (8.2)

where (Xn) and (Yn) are two simple random walks starting respectively
at x and y, and τ and τ ′ are the hitting times of ∂Uδ. Note that we have
some flexibility on the choice of the coupling P (only the marginals are
determined). Consider the following coupling of (Xn) and (Yn): (Xn) is
a simple random walk and (Yn) is constructed as follows,

� if X1 = y, then Yn =Xn+1 for n ≥ 0,

� if X1 ≠ y, then Yn = σ(Xn+1), where σ is the orthogonal symmetry
with respect to the perpendicular bisector ` of the segment [X1y]
until Xn+1 reaches `. As soon as it does, set Yn = Xn+1 for all
subsequent steps.

It is easy to check that (Yn) is also a simple random walk starting at y.
Moreover, we have

∣h(x) − h(y)∣ ≤ E[∣h(Xτ) − h(Yτ ′)∣1Xτ≠Yτ ′ ] ≤ 2( sup
z∈∂Uδ

∣h(z)∣) P(Xτ ≠ Yτ ′)

Using the definition of the coupling, the probability on the right is known:
it is equal to the probability that (Xn) does not touch ` before exiting Uδ.
Since Uδ is of radius r/δ for the graph distance, the gambler ruin implies
that the probability on the right-hand side is smaller than c1

r
δ (with c1 <∞

being a universal constant independent of δ). We deduce that

∣h(x) − h(y)∣ ≤ 2( sup
z∈∂Uδ

∣h(z)∣) c1
r
δ ≤ 2(sup

z∈Ωδ
∣h(z)∣) c1

r
δ.

◻

The following proposition will be very useful. Recall that functions on
Ωδ are implicitly extended to the faces of Ωδ (we denote the union of faces
by Ωδ).

Proposition 8.7. A family (hδ)δ>0 of discrete harmonic functions on the
graphs Ωδ is precompact for the uniform topology on compact subsets of Ω
if one of the following properties holds:

(1) (hδ)δ>0 is uniformly bounded on any compact subset of Ω,
(2) for any compact subset K of Ω, there exists M = M(K) > 0 such

that for any δ > 0
δ2 ∑

x∈Kδ
∣hδ(x)∣2 ≤M.

The first condition corresponds to be bounded in the L∞-norm, the
second in the L2-norm.
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Proof. Let us prove that the proposition holds under the first hypothesis
and then that the second hypothesis implies the first one. Let K be a
compact subset of Ω. We now assume that δ0 > 0 is such that K ⊂ Ωδ0 .
We are faced with a family of continuous maps hδ ∶ K Ð→ C indexed by
δ < δ0. Let 2r = d(K,Ωc) > 0.

Condition (1) We aim to apply the Arzelà-Ascoli theorem. It is sufficient to
prove that functions hδ are uniformly Lipschitz since by assumption they
are uniformly bounded on any compact subset of Ω and therefore on K.
Proposition 8.6 (or more precisely the before last displayed inequality in
its proof) shows that ∣hδ(x)−hδ(y)∣ ≤ CKδ for any two neighbors x, y ∈Kδ,
where

CK = C
supδ>0 sup{∣hδ(z)∣ ∶ z ∈ Ωδ with d(z,K) ≤ r}

2r
,

implying that ∣hδ(x)−hδ(y)∣ ≤ 2CK ∣x−y∣ for any x, y ∈Kδ (not necessarily
neighbors). The Arzelá-Ascoli theorem concludes the proof.

Condition (2) Assume now that the second hypothesis holds, and let us
prove that (hδ)δ>0 is bounded on K. Consider x ∈Kδ. Now,

r

2δ
min{δ2 ∑

y∈∂Λδ
k

∣hδ(y)∣2 ∶ r
2δ

≤ k ≤ r
δ
} ≤ δ2 ∑

y∈Uδ
∣hδ(y)∣2,

where Λδk = x + δΛk is the rescaled version of the box of size k centered
around x. Using the second hypothesis, the right-hand side is bounded
and there exists k ∶= k(x) such that r

2δ
≤ k ≤ r

δ
and

δ ∑
y∈∂Λδ

k

∣hδ(y)∣2 ≤ 2M/r,

where M <∞ is provided by the assumption. Proposition 8.5 implies

hδ(x) = ∑
y∈∂Λδ

k

hδ(y)HΛδ
k
(x, y) (8.3)

for every x ∈ Uδk. Using the Cauchy-Schwarz inequality, we find

hδ(x)2 =
⎛
⎜
⎝
∑

y∈∂Λδ
k

hδ(y)HΛδ
k
(x, y)

⎞
⎟
⎠

2

≤
⎛
⎜
⎝
δ ⋅ ∑

y∈∂Λδ
k

∣hδ(y)∣2
⎞
⎟
⎠

⎛
⎜
⎝

1

δ
⋅ ∑
y∈∂Λδ

k

HΛδ
k
(x, y)2

⎞
⎟
⎠

≤ 2M/r ⋅C2

where C is a uniform constant. The last inequality used the fact that
HΛδ

k
(x, y) ≤ Cδ for some C = C(r) > 0, which is a very easy estimate that

one may obtain using random walks1. ◻

1Observe that the harmonic measure is smaller than the harmonic measure in the
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8.1.4 Convergence to the continuum Dirichlet BVP

Discrete harmonic functions on square lattices of smaller and smaller mesh
size were studied in a number of papers in the early twentieth century (see
e.g. [PW23, Bou26, Lus26]), culminating in the seminal work of Courant,
Friedrichs and Lewy [CFL28]. In this article, solutions to the Dirichlet
problem for a discretization of an elliptic operator were shown to converge
to the solution of the analogous continuous problem as the mesh of the
lattice tends to zero. We discuss this result here.

Let us now turn to the convergence result of [CFL28]. We start by a
lemma.

Lemma 8.8. Let Ω be a domain of the plane and (Ωδ) be a sequence
of discrete approximation converging in the Carathéodory sense to Ω.
Let (hδ)δ>0 be a family of discrete harmonic functions on Ωδ converging
uniformly on any compact subset of Ω to a function h. Then, h is harmonic
in Ω.

Proof. Let (hδ) be a sequence of discrete harmonic functions on Ωδ
converging to h. Via Propositions 8.6 and 8.7, ( 1

δ
[hδ(⋅ + δ) − hδ])δ>0

is precompact and we may extract sub-sequential limits. Note that the
limiting object is continuous. Since ∂xh is the only possible sub-sequential
limit2, ( 1

δ
[hδ(⋅+δ)−hδ])δ>0 converges. Similarly, one can prove convergence

of discrete derivatives of any order. In particular, 1
δ2 ∆δhδ converges to

[∂xxh + ∂yyh] = ∆h. Since the first term is equal to 0, the second also
vanishes and h is harmonic. ◻

We state the result of [CFL28] in the specific context that will be
useful in this book. Namely, we consider a Dirichlet BVP with possible
singularities at two points on the boundary of a simply connected domain.

Theorem 8.9. Let Ω be a discrete domain with two points a and b on
its boundary. Let f be a bounded continuous function on ∂Ω ∖ {a, b}.
We consider a sequence of Dobrushin domains (Ωδ, aδ, bδ) converging to
(Ω, a, b) in the Carathéodory sense. Let fδ ∶ ∂Ωδ → R be a sequence
of uniformly bounded functions converging uniformly away from a and b

strip [−δk, δk] × (δZ). Now in this strip, one may check that the probability of hitting
the top side at y is equal to the probability that XN = y for a simple random walk
X in δZ, where N is the sum of M iid geometric random variables of mean 1/2,
where M is distributed as the first hitting time of {−k, k} for an independent random
walk on Z. It is well-known that M/k2 tends to the random-variable with density
f(t) ∶= 2√

2π
t−3/2 exp(−1/t2), and the result thus follows easily from the local central-

limit theorem. The details are left as an exercise.
2To see that, integrate it between z and z + (ε,0) and let ε tend to 0.
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to f . Let hδ be the unique discrete harmonic function on Ωδ such that
(hδ)∣∂Ωδ = fδ. Then

hδ Ð→ h when δ → 0

uniformly on compact subsets of Ω, where h ∶ Ω ∖ {a, b} → R is the unique
continuous function which is harmonic on Ω and equal to f on ∂Ω∖{a, b}.

Proof. Since (fδ)δ>0 is uniformly bounded by some constant M , the
minimum and maximum principles imply that (hδ)δ>0 is bounded by M .
Therefore, the family (hδ) is precompact (Proposition 8.7). Let h̃ be a sub-
sequential limit. Necessarily, h̃ is harmonic inside the domain (Lemma 8.8)
and bounded. To prove that h̃ = h, it suffices to show that h̃ can be
continuously extended to the boundary by f .

Let x ∈ ∂Ω ∖ {a, b} and ε > 0. There exists R > 0 such that for δ small
enough,

∣fδ(x′) − fδ(x)∣ < ε for every x′ ∈ ∂Ωδ ∩Q(x,R),

where Q(x,R) = x + [−R,R]2. For r < R and y ∈ Q(x, r), we have

∣hδ(y) − fδ(x)∣ = E[fδ(Xτ) − fδ(x)]

for X a random walk starting at y, and τ its hitting time of the boundary.
Decomposing between walks exiting the domain inside Q(x,R) and others,
we find

∣hδ(y) − fδ(x)∣ ≤ ε + 2MP[Xτ ∉ Q(x,R)].
Lemma 8.10 below guarantees that P[Xτ ∉ Q(x,R)] ≤ (r/R)α for some
independent constant α > 0. Taking r = R(ε/2M)1/α and letting δ go to
0, we obtain ∣h̃(y) − f(x)∣ ≤ 2ε for every y ∈ Q(x, r). ◻

Lemma 8.10 (weak Beurling’s estimate). There exists α > 0 such that for
any 0 < r < 1

2
and any curve γ inside D ∶= {z ∶ ∣z∣ < 1} from {z ∶ ∣z∣ = 1} to

{z ∶ ∣z∣ = r}, the probability that a random walk on Dδ starting at 0 exits
Dδ without crossing γ is smaller than rα uniformly in δ > 0.

Proof. There exists c > 0 such that for any annulus Ax ∶= {z ∶ x ≤ ∣z∣ ≤
2x}, with r ≤ x ≤ 1

2
, the random walk trajectory has a probability larger

than c > 0 of closing a loop around the origin while crossing this annulus.
In this case, the trajectory necessarily intersects γ. Since the random walk
trajectory must cross roughly log2 r annuli of the form A2−n , and that at
each step it has a probability at least c > 0 of closing a circuit, the result
follows with α = − log2[1 − c]. ◻
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8.1.5 Discrete Green functions

This paragraph concludes the section by mentioning the important
example of discrete Green functions. While slightly technical, the following
propositions will be useful to the study of s-holomorphic maps. The proof
may be skipped during a first reading.

For y ∈ Ωδ ∖ ∂Ωδ, let GΩδ(⋅, y) be the discrete Green function in the
domain Ωδ with singularity at y, i.e. the unique function on Ωδ such that

� its Laplacian on Ωδ ∖ ∂Ωδ equals 0 except at y, where it equals 1,
� GΩδ(⋅, y) vanishes on the boundary ∂Ωδ.

The quantity −GΩδ(x, y) is the expected number of visits at x of a random
walk started at y and stopped at the first time it reaches the boundary.
Equivalently, it is also the number of visits at y of a random walk started
at x stopped at the first time it reaches the boundary.

Green functions are very convenient, in particular because of the Riesz
representation formula.

Proposition 8.11 (Riesz representation formula). Let f ∶ Ωδ → C be a
(non-necessarily harmonic) function vanishing on ∂Ωδ. We have

f = ∑
y∈Ωδ∖∂Ωδ

∆δf(y)GΩδ(⋅, y).

Proof. Note that f − ∑y∈Ωδ∖∂Ωδ ∆δf(y)GΩδ(⋅, y) is harmonic and
vanishes on the boundary. Hence, it equals 0 everywhere. ◻

Finally, a regularity estimate on discrete Green functions will be needed.
This proposition is slightly technical. In the following, aQδ = [−a, a]2∩δZ2

and ∇f(x) = (f(x + δ) − f(x), f(x + iδ) − f(x)).

Proposition 8.12. There exists C > 0 such that for any δ > 0 and y ∈ 9Qδ,

∑
x∈Qδ

∣∇xG9Qδ(x, y)∣ ≤ Cδ ∑
x∈Qδ

G9Qδ(x, y).

Proof. In the proof, C1, . . . ,C6 denote universal constants. We divide
the proof into two cases depending whether y ∈ 9Qδ ∖ 3Qδ or y ∈ 3Qδ.

Case 1: y ∈ 9Qδ ∖ 3Qδ. Using random walks, one can easily show that
there exists C1 > 0 such that

1

C1
G9Qδ(x, y) ≤ G9Qδ(x

′, y) ≤ C1G9Qδ(x, y)
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for every x,x′ ∈ 2Qδ (we leave this as an exercise3). Using Proposition 8.6,
we deduce

∑
x∈Qδ

∣∇xG9Qδ(x, y)∣ ≤ ∑
x∈Qδ

C2δ max
x∈2Qδ

G9Qδ(x, y) ≤ C1C2δ ∑
x∈Qδ

G9Qδ(x, y)

which is the claim for y ∈ 9Qδ ∖ 3Qδ.

Case 2: y ∈ 3Qδ. We know that the random walk spends an expected time
of C3/δ2 in the box 3Qδ before exiting it. Using the fact that G9Qδ(x, y)
is the number of visits of x for a random walk starting at y (and stopped
on the boundary) and summing over x, we deduce

∑
x∈Qδ

G9Qδ(x, y) ≥ C3/δ2.

Therefore, it suffices to prove that ∑x∈Qδ ∣∇G9Qδ(x, y)∣ ≤ C4/δ. Let
GδZ2(x, ⋅) be the Green function in the whole plane, i.e. the function
with Laplacian equal to 1 for y = x and 0 otherwise, normalized so that
GδZ2(x,x) = 0, and with sub-linear growth at infinity. This function has
been widely studied. In particular, it was proved in [MW40] that

GδZ2(x, y) = 1

π
ln( ∣x − y∣

δ
) +C5 + o(

δ

∣x − y∣
) .

Now, GδZ2(⋅, y)−G9Qδ(⋅, y)− 1
π

ln ( 1
δ
) is harmonic in 9Qδ. Furthermore, the

boundary conditions (on ∂9Qδ) on both G9Qδ(⋅, y) and GδZ2(⋅, y)− 1
π

ln ( 1
δ
)

3This is a special application of the discrete Harnack’s principle. Let us sketch a
proof of this fact based on the random walk itself. Set 2 < λ < 3. Let Hδ be the union
of the top and bottom sides of λQδ. Similarly, define Vδ to be the union of the left and
right sides of λQδ. Also, denote by S the rectangle with same height as λQ and same
width as 3Q, which has the same center as Q. Recall that since G9Qδ (⋅, y) is harmonic
on λQδ, we get

G9Qδ (x, y) = ∑
z∈Hδ

G9Qδ (z, y)HλQδ (x, z).

Without loss of generality, one may assume that L ∶= ∑z∈Vδ G9Qδ (z, y) ≥
∑z∈Hδ G9Qδ (z, y). Now, we previously showed that HλQδ (x, z) ≤ Cδ and therefore

G9Qδ (x, y) ≤ Cδ ∑
z∈∂(λQδ)

G9Qδ (z, y) ≤ 2CδL.

In the other direction, use the harmonicity in Sδ. Since G9Qδ (z, y) is positive for every
z, we find that

G9Qδ (x, y) ≥ ∑
z∈Hδ

G9Qδ (z, y)HSδ (x, z).

A simple computation involving random walks (similar to the argument leading to
HλQδ (x, z) ≤ Cδ) shows that there exists c > 0 such that for any x ∈ 2Qδ and any
z ∈ Hδ, HSδ (x, z) ≥ cδ. We deduce that G9Qδ (x, y) ≥ cδL. In conclusion, we always
have cδL ≤ G9Qδ (x, y) ≤ CδL and the claim follows with C1 = C/c.
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are bounded (the first one is 0, the second is tending to C5 as δ tends to
0). Therefore, Proposition 8.6 implies

∑
x∈Qδ

∣∇x(GδZ2(x, y) −G9Qδ(x, y))∣ ≤ C6δ ⋅ 1/δ2 = C6/δ.

(We used the fact that the gradients in x of GδZ2(x, y) −G9Qδ(x, y) and
GδZ2(x, y)−G9Qδ(x, y)− 1

π
log( 1

δ
) are obviously the same.) Moreover, the

asymptotic of GδZ2(⋅, y) leads to

∑
x∈Qδ

∣∇xGδZ2(x, y)∣ ≤ C7/δ.

Summing the two inequalities, the result follows readily. ◻

8.2 Discrete holomorphic functions

Historically, discrete holomorphic functions appeared implicitly in
Kirchhoff’s work [Kir47] in which a graph is modeled as an electric network.
Besides the original work of Kirchhoff, one of the first notable applications
of discrete holomorphic functions is perhaps the famous article [BSST40]
of Brooks, Smith, Stone and Tutte, where discrete holomorphic functions
were used to construct tilings of rectangles by squares. We now define
discrete holomorphic functions in a more modern fashion.

8.2.1 Isaacs’s definition of discrete holomorphic
functions

Discrete holomorphic functions distinctively appeared for the first time in
the papers [Isa41, Isa52] of Isaacs, where he proposed two definitions4.
Both definitions ask for a discrete version of the Cauchy-Riemann
equations ∂iαF = i∂αF or equivalently that the z̄-derivative is 0. We will
be working with Isaacs’s second definition (although the theories based
on both definitions are almost the same). The definition involves the
following discretization of the ∂̄ = 1

2
(∂x + i∂y) operator. For convenience,

we will consider discrete holomorphic functions on the medial lattice
(more precisely on the medial lattice of a discrete domain or a Dobrushin
domain). For a complex valued function f on Ω◇

δ , and for x ∈ Ωδ ∪ Ω⋆
δ ,

define

∂̄δf(x) = 1
2
[f (E) − f (W )] + i

2
[f (N) − f (S)]

4Isaacs called such functions “mono-diffric” functions.
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where S, E, N and W denote the four vertices of Ω◇
δ adjacent to the medial

vertex x indexed in the obvious way (N , E, S and W stand for cardinal
directions).

Definition 8.13. A function f ∶ Ω◇
δ → C is discrete holomorphic if

∂̄δf(x) = 0 for every x ∈ Ωδ ∪ Ω⋆
δ . The equation ∂̄δf(x) = 0 is called

the discrete Cauchy-Riemann equation at x.

Remark 8.14. In Kirchhoff’s work, every edge of the graph Ωδ is seen as
bearing a unit resistor and for u ∼ v, F (u, v) is the current from u to v.
The first and the second Kirchhoff’s laws of electricity can be restated as

� the sum of currents flowing from a vertex is zero ∑v∼u F (u, v) = 0,
� the sum of the currents around a closed contour γ0 ∼ γ1 ∼ ⋅ ⋅ ⋅ ∼ γk = γ0

is zero: ∑ki=1 F (γi−1, γi) = 0.

For a second, let us consider an orientation of the lattice δZ2 isomorphic
to the one of the medial lattice (namely counterclockwise around black
faces when δZ2 is colored in a chessboard way). For a medial vertex x
associated to an oriented edge e, define f(x) = eF (e), where e is seen as a
complex number. The function f is then discrete holomorphic on Ω◇

δ .

The theory of discrete holomorphic functions starts pretty much like the
usual complex analysis.

Proposition 8.15. Discrete holomorphic functions f, g ∶ Ω◇
δ → C satisfy

the following properties:

� λf + µg is discrete holomorphic for any λ,µ ∈ C.
� Re(f) and Im(f) are harmonic functions for the appropriate

modification of the discrete Laplacian.
� Discrete contour integrals vanish.
� If the family (fδ) of discrete holomorphic functions on Ωδ converge

uniformly on every compact subset of Ω to f , then f is holomorphic.

Proof. The first claim is obvious. Let us now turn to the second. Let
v ∈ Ω◇

δ . Let nw, ne, se and sw be the four nearest neighbors of v in
(δZ2)◇ and n, e, s and w the next nearest neighbors at distance δ of v
(the previous indexation refers once again to cardinal directions). Assume
that these eight medial vertices are in Ω◇

δ . Then, the Cauchy-Riemann
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equation applied to the four faces bordered by v gives that

∆̃f(v) ∶ = 1

4
(f(n) − f(v) + [f(e) − f(v)] + [f(s) − f(v)] + [f(w) − f(v)])

= i

4
(f(ne) − f(nw) + [f(se) − f(ne)] + [f(sw) − f(se)]

+ [f(nw) − f(sw)])

= 0.

Therefore, f is ∆̃-harmonic (the operator ∆̃ is a modified Laplacian on
Ω◇
δ ).
For the third property, we first recall the definition of discrete contours

and discrete observables. It is slightly different from the definition in
Section 6.1.3 since we are dealing with functions on vertices rather than
edges. Let C be a self-avoiding polygon z0 ∼ z1 ∼ ⋅ ⋅ ⋅ ∼ zn = z0 on Ωδ (or
Ω⋆
δ ). We then define

∮
C
f(z)dz ∶=

n−1

∑
i=0

f(zi + zi+1

2
)(zi+1 − zi). (8.4)

Observe that there are two types of contours (primal and dual). The
Cauchy-Riemann equation ∂̄δf(x) can be thought of as the fact that the
integral along the discrete contour formed by the four medial vertices
around the face x equals 0. Exactly as in Chapter 6, the fact that Ω◇

δ

is simply connected implies that any discrete contour vanishes. The last
property is a trivial application of Morera theorem: f is continuous and
its contour integrals vanish. ◻

Remark 8.16. We only need the Cauchy-Riemann equations for every
x ∈ Ωδ to obtain that the integrals along dual discrete contours vanish, or
for every x ∈ Ω⋆

δ to obtain this result for primal discrete contours.

Remark 8.17. Unfortunately, the product of two discrete holomorphic
functions is no longer discrete holomorphic in general: while restrictions
of 1, z, and z2 to the square lattice are discrete holomorphic, the higher
powers are not. This makes the theory of discrete holomorphic functions
significantly harder than the usual complex analysis, since one cannot
transpose proofs from continuum to discrete in a straightforward way.

8.2.2 Discrete Dirichlet and Neumann BVP for
discrete holomorphic maps

In this section, we prefer working with Ωδ ∪ Ω⋆
δ instead of (δZ2)◇. Note

that δZ2∪(δZ2)⋆ is a translate of (δZ2)◇ and therefore one may generalize
the definition of discrete holomorphicity to this graph in an obvious way.
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A function f ∶ Ωδ ∪ Ω⋆
δ → C is a (discrete holomorphic) solution to the

Dirichlet BVP on Ωδ ∪ Ω⋆
δ with boundary conditions g ∶ ∂Ωδ → C if f

is discrete holomorphic and f = g on ∂Ωδ. Note that we fix boundary
conditions on ∂Ωδ only.

Proposition 8.18. Let Ωδ be a discrete domain. For any g ∶ ∂Ωδ → C,
there exists a solution f to the Dirichlet BVP on Ωδ ∪ Ω⋆

δ . Furthermore,
the solution is unique up to the addition of a constant to f∣Ω⋆

δ
.

Proof. Let H1,H2 ∶ Ωδ → R be the harmonic maps on Ωδ ∖ ∂Ωδ which
are the harmonic solutions of the Dirichlet BVP with boundary condition
Re(g) and Im(g). We set f∣Ωδ = H1 + iH2. Let v ∈ Ω⋆

δ and c ∈ C 5. Set
f(v) = c. For w ∼ v, there is one value λ so that the Cauchy-Riemann
equation is satisfied around 1

2
(v + w). We set f(w) = λ. Iterating this

procedure, one can construct f on any dual-vertex of Ω⋆
δ which can be

connected by a sequence of dual edges to v. Since Ωδ is a discrete domain,
Ω⋆
δ is connected and we therefore constructed f∣Ω⋆

δ
everywhere. ◻

Remark 8.19. When g is real valued, f∣Ωδ takes its values in R.
Furthermore, if c ∈ iR, then f∣Ω⋆

δ
takes its values in iR. In such cases, f∣Ωδ

and f∣Ω⋆
δ

are discrete versions of two harmonic conjugates in the continuum.
For this reason, we will often restrict our attention to boundary conditions
g which are real valued. More generally, discrete holomorphic maps are
often decomposed into their real and imaginary parts, leaving respectively
on Ωδ and Ω⋆

δ .

Remark 8.20. Interestingly, when boundary conditions are constant on a
portion of ∂Ωδ, then the “dual boundary conditions” on ∂Ω⋆

δ are Neumann,
in the sense that the discrete normal derivative of the function on Ω⋆

δ is
zero. This duality between Dirichlet and Neumann BVP is very useful in
the continuum, and can be exploited in the discrete world as well. We will
not focus on this here, since we aim for the solution of more complicated
BVPs.

8.3 Riemann-Hilbert BVP and s−holomor-
phic functions

We are now trying to solve a particular form of so-called Riemann-Hilbert
BVPs. These continuum problems can be stated as follows: look for a
continuous function f ∶ Ω→ C such that

f is holomorphic on Ω and Im[fν1/2] = 0 on ∂Ω,

5The existence of the additive constant comes from the freedom in the choice of
c ∈ C.
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where ν is the tangent to ∂Ω viewed as a unit complex number (in order
to define properly this tangent for rough domains, simply use conformal
invariance to map the domain to a smooth domain). Also observe that ν
and −ν do not play symmetric roles here. Therefore, it will be important
to specify the direction along which the tangent vector is considered. In
general, we may also introduce complex singularities on the boundary or
inside the domain.

In this book, we restrict our attention to the following three BVPs:

BVP1 In a simply connected domain Ω with two points a and b on its
boundary,

� the tangent vectors are oriented from a to b on the boundary
arcs ∂ab and ∂ba,

� f has a singularity at a and b,
� Im(∫

y
x f

2) = 1, where x ∈ ∂ab and y ∈ ∂ba are two other fixed
points6.

BVP2 In a simply connected domain Ω with two points u and v on its
boundary,

� the tangent vectors are oriented counterclockwise along the
boundary,

� f has a singularity at u ∈ ∂Ω,
� f(v) = 1.

BVP3 In a simply connected domain Ω with a point x inside the domain,

� the tangent vectors are oriented counterclockwise on the
boundary,

� f has a complex singularity at x ∈ Ω with complex residue 1.

Remark 8.21. In the continuum, the solutions to these problems are not
hard to find. Let us illustrate this fact with the example of a solution f to
BVP1. The method for finding the solution is relevant for what will be
next. The function H = Im(∫

z
f2) is the imaginary part of a holomorphic

map on Ω, and it is therefore harmonic. Now, on the boundary, f2 is
collinear to the complex conjugate of the tangent vector, and therefore H
is constant on ∂ab and ∂ba. Since Im(∫

y
x f

2) =H(y)−H(x) = 1, we obtain
that if H = 0 on ∂ab, then H = 1 on ∂ba. Therefore, f =

√
φ′, where φ

is any holomorphic map on Ω with imaginary part H. Interestingly, φ
can be easily checked to be given by a conformal map from Ω to the strip
R × [0,1], sending a to −∞ and b to ∞.

As explained in the previous sections, there are difficulties when dealing
with the square of a discrete holomorphic function, and this will make

6The choice of x and y is irrelevant here.
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the study of discrete versions of these Riemann-Hilbert BVP much more
intricate (since it seems that introducing the primitive of the square of the
solution is convenient). In order to overcome this difficulty, we introduce s-
holomorphic functions (for spin-holomorphic). This notion was developed
in [Smi10, CS11, CS12].

8.3.1 Definition of s-holomorphic functions

In this section, s-holomorphic functions are defined on vertices of the
medial graph of a discrete domain or a Dobrushin domain. For any edge
e of the medial lattice (the edge e being oriented, it can be thought of
as a complex number), the real line passing through the origin and

√
ē is

denoted by `(e) (the choice of the square root is irrelevant since we will be
looking at projections on lines only). The different lines associated with
medial edges on (δZ2)◇ are eiπ/8R, e−iπ/8R, e−i3π/8R and e−i5π/8R, see
Fig. 8.1. For a line `, define

P`(x) = αRe(αx) = 1
2
(x + α2x),

where α is any unit vector collinear to `.

Definition 8.22 (Smirnov). A function f ∶ Ω◇
δ → C is s-holomorphic if for

any edge e = [xy] of Ω◇
δ , we have

P`(e)[f(x)] = P`(e)[f(y)].

Remark 8.23. The definition differs slightly from the definition in [Smi10]
where the lattice was rotated by π/4.

Let us first confirm that the notion of s-holomorphicity is stronger than
the notion of discrete holomorphicity.

Proposition 8.24. Any s-holomorphic function f ∶ Ω◇
δ → C is discrete

holomorphic on Ω◇
δ .

Proof. Let f ∶ Ω◇
δ → C be a s-holomorphic function. Let v be a vertex

of δZ2 ∪ (δZ2)⋆ corresponding to a face of Ω◇
δ . Assume that v ∈ δZ2, the

case v ∈ (δZ2)⋆ is similar. We wish to show that ∂̄δf(v) = 0. Let N , W , S
and E be the four medial-vertices around v as illustrated in Fig. 8.1, and
let us write one relation provided by the s-holomorphicity, for instance

P e−iπ/8R[f(E)] = P e−iπ/8R[f(S)].

Expressed in terms of f and its complex conjugate f̄ only, the previous
equality becomes

f(E) + e−iπ/4f(E) = f(S) + e−iπ/4f(S).
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Doing the same with the three other relations, we find

f(S) + ie−iπ/4f(S) = f(W ) + ie−iπ/4f(W ),
f(W ) − e−iπ/4f(W ) = f(N) − e−iπ/4f(N),
f(N) − ie−iπ/4f(N) = f(E) − ie−iπ/4f(E).

Multiplying the second identity by −i, the third by −1, the fourth by i,
and then summing the four identities, we obtain

0 = (1 − i) [f(E) − f(W ) + if(N) − if(S)] = 2(1 − i)∂̄δf(v)

which is exactly the discrete Cauchy-Riemann equation around v. ◻

8.3.2 Discrete primitive of f2

Let us now show that the imaginary part of primitives of the square of
s-holomorphic functions are well-defined.

Theorem 8.25. Let f ∶ Ω◇
δ → C be an s-holomorphic function on Ω◇

δ , then
there exists a unique (up to additive constant) function H ∶ Ωδ ∪ Ω⋆

δ → C
such that

H(b) −H(w) =
√

2δ ∣P`(e)[f(x)]∣
2 (=

√
2δ ∣P`(e)[f(y)]∣

2 )

for every edge e = [xy] of Ω◇
δ bordered by b ∈ Ωδ and w ∈ Ω⋆

δ . Furthermore,
for two neighboring vertices b1, b2 ∈ Ωδ, with v being the medial vertex at
the center of [b1b2],

H(b1) −H(b2) = Im [f(v)2 ⋅ (b1 − b2)] , (8.5)

the same relation holding for vertices of Ω⋆
δ .

The last relation legitimizes the fact that H is an analogue of Im (∫
z
f2).

Proof. Set the value of H to be c ∈ R at some vertex b0 (or dual vertex).
The uniqueness of H is straightforward since Ω◇

δ is connected, the value of
H at x ∈ Ωδ ∪Ω⋆

δ is simply the sum of increments along an arbitrary path
from b0 to x.

To obtain the existence, construct the value at some point by summing
increments along an arbitrary path from b0 to this point. The only thing
to check is that the value obtained does not depend on the path chosen to
define it. Since the domain is the union of all the faces of (δZ2)◇ within
it, it is sufficient to check it for elementary “square” contours around each
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e−3iπ
8

e−i
π
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W B

Figure 8.1: The different directions of the lines `(e) for medial edges
around a black face.

medial vertex v (these are the simplest closed contours). Therefore, we
need to prove that

∣P`(ne)[f(v)]∣
2− ∣P`(se)[f(v)]∣

2+ ∣P`(sw)[f(v)]∣
2− ∣P`(nw)[f(v)]∣

2 = 0, (8.6)

where nw, ne, se and sw are the four medial edges with end-point v,
indexed once again according to cardinal directions. Note that `(ne) and
`(sw) (resp. `(se) and `(nw)) are orthogonal. Hence, (8.6) follows from

∣P`(ne)[f(v)]∣
2 + ∣P`(sw)[f(v)]∣

2 = ∣f(v)∣2

= ∣P`(se)[f(v)]∣
2 + ∣P`(nw)[f(v)]∣

2
.

(8.7)

Let us now turn to (8.5). Let b1 ∼ b2 be two neighboring vertices of Ωδ
and v the medial-vertex associated to [b1b2]. Let w be one of the dual-
vertices in Ω⋆

δ adjacent to both b1 and b2 (there may be only one of them
in Ω⋆

δ if b1 and b2 are on the boundary). Let e1 and e2 be the two medial
edges bordered by b1 and w, and b2 and w respectively. We find

H(b1) −H(b2) =
√

2δ[∣P`(e1)[f(v)]∣
2 − ∣P`(e2)[f(v)]∣

2]

= 1

2
[(

√
e1f(v) +

√
e1f(v))

2 − (
√
e2f(v) +

√
e2f(v))

2]

= 1

2
[e1f(v)2 + e1f(v)2 + ∣f(v)∣2 − e2f(v)2 − e2f(v)2 − ∣f(v)∣2]

= 1

2
[(e1 − e2)f(v)2 + (e1 − e2)f(v)2]

= 1

2i
[(b1 − b2)f(v)2 − (b1 − b2)f(v)2] = Im[f(v)2 ⋅ (b1 − b2)].

In the second equality, we used the fact that δ√
2
= ∣e1∣ and δ√

2
= ∣e2∣. ◻

Even if the primitive of a discrete holomorphic map is discrete
holomorphic and thus discrete harmonic, this is not the case of the
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primitive of the square of a discrete holomorphic map. Nonetheless, s-
holomorphicity implies that H satisfies subharmonic and superharmonic
properties. More precisely, denote by H● and H○ the restrictions of
H ∶ Ωδ ∪ Ω⋆

δ → C to Ωδ (black faces) and Ω⋆
δ (white faces) respectively.

Let ∆● and ∆○ be the nearest-neighbor discrete Laplacian for functions on
Ωδ and Ω⋆

δ respectively.

Proposition 8.26. If f ∶ Ω◇
δ → C is s-holomorphic, then H● and H○ are

respectively subharmonic for ∆● on Ωδ ∖ ∂Ωδ and superharmonic for ∆○

on Ω⋆
δ ∖ ∂Ω⋆

δ .

Proof. Let us focus on H● (the proof for H○ follows the same lines). Let
B be a vertex of Ωδ ∖∂Ωδ. Let N , E, S and W be the four medial-vertices
adjacent to B (once again the letters refer to cardinal directions). Also set

a = ei
π
8 P`([ES])[f(E)] = ei

π
8 P`([ES])[f(S)],

b = e−i
π
8 P`([SW ])[f(S)] = e−i

π
8 P`([SW ])[f(W )],

c = e5i
π
8 P`([WN])[f(W )] = e5i

π
8 P`([WN])[f(N)],

d = e3i
π
8 P`([NE])[f(N)] = e3i

π
8 P`([NE])[E)].

Note that a, b, c and d are real. With these definitions, we may rewrite
f(N), f(E), f(S) and f(W ) as follows:

f(E) =
√

2i(e−3iπ/8d + e−iπ/8a),

f(S) =
√

2i(e3iπ/8a − e5iπ/8b),

f(W ) =
√

2i(eiπ/8b − e3iπ/8c),

f(N) =
√

2i(e−iπ/8c − eiπ/8d).

By definition of ∆● and (8.5), we find

∆●H●(B) = δ
4

Im[f(E)2 − if(S)2 − f(W )2 + if(N)2]

= −δ
2

Im[(e−3iπ/8d + e−iπ/8a)2 + i(e3iπ/8a − e5iπ/8b)2

− (eiπ/8b − e3iπ/8c)2 − i(e−iπ/8c − eiπ/8d)2]

= δ[a2 + b2 + c2 + d2 −
√

2(ab + bc + cd − ad)].
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On the other hand, let us compute

∣f(E) − f(S)∣2 + ∣f(W ) − f(N)∣2 = 2∣e−3iπ/8d + e−iπ/8a − e3iπ/8a + e5iπ/8b∣2

+ 2∣eiπ/8b − e3iπ/8c − e−iπ/8c + eiπ/8d∣2

= 2(d +
√

2a − b)2 + 2(b −
√

2c + d)2

= 4(a2 + b2 + c2 + d2) − 4
√

2(ab + bc + cd − ad).

In conclusion,

4∆●H●(B) = δ∣f(E) − f(S)∣2 + δ∣f(W ) − f(N)∣2 ≥ 0 (8.8)

and the claim follows. ◻

Similarly, we could have chosen the term ∣f(S)−f(W )∣2+ ∣f(N)−f(E)∣2
to find

4∆●H●(B) = δ∣f(S) − f(W )∣2 + δ∣f(N) − f(E)∣2 ≥ 0. (8.9)

8.3.3 Precompactness for s-holomorphic maps

We plan to study BVPs. In order to do so, and for the same reason as for
harmonic functions, we will need a pre compactness result. This technical
theorem will be very important in the next sections. One may skip the
proof during a first reading. Below, Q denotes a square, and 9Q denotes
the square of same center, but 9 times bigger.

Theorem 8.27 (Precompactness for s-holomorphic maps). Let Q ⊂ Ω
such that 9Q ⊂ Ω. Let (fδ)δ>0 be a family of s-holomorphic maps on Ω◇

δ

and (Hδ)δ>0 be the corresponding functions defined in the previous section.
If (Hδ)δ>0 is uniformly bounded on 9Q, then (fδ)δ>0 is a precompact family
of functions7on Q.

Proof. Color the vertices of (δZ2)◇ in black and white in a chessboard
way (medial vertices corresponding to vertical primal edges are all colored
the same, and the same for horizontal edges). The sets of black and white
vertices are denoted by (δZ2)◇● and (δZ2)◇○ respectively.

Since fδ is s-holomorphic, it is also holomorphic and therefore harmonic
for the modified Laplacian on Ω◇

δ , which corresponds to the standard
Laplacian on (δZ2)◇● . Imagine for a moment that the family of functions
(fδ) satisfies the second property of Proposition 8.7. In such case,
Proposition 8.7 implies that the restrictions f●δ of functions fδ to Ω◇

δ ∩
(δZ2)◇● form a precompact family of functions.

7Recall that the functions fδ are extended to the faces of Ωδ.
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Let us now use the s-holomorphicity to deduce that (fδ)δ>0 itself is
precompact. Let x ∈ Ω◇

δ ∩ (δZ2)◇○ . Denote the north-east and south-west
neighboring vertices of x in (δZ2)◇● by y and z. The s-holomorphicity
shows that

fδ(x) = P`(xy)(fδ(x)) + P`(xz)(fδ(x))
= P`(xy)(fδ(y)) + P`(xz)(fδ(z))
= fδ(y) +O(∣fδ(z) − fδ(y)∣), (8.10)

where we used the fact `(xy) and `(xz) are orthogonal to each others.
The previous paragraph implies that we may extract a sub-sequence (f●δn)n
converging uniformly on every compact subset of Ω when seen as a function
of Ω◇

δ ∩ (δZ2)◇● . The relation (8.10) implies that (fδn) itself converges
uniformly on every compact subset of Ω.

Therefore, we would be done if we could prove the second property of
Proposition 8.7.

Fix δ > 0. When jumping over a medial-vertex v, the function Hδ

changes by δRe(f2
δ (v)) or δIm(f2

δ (v)) depending on the direction (vertical
or horizontal), so that

δ2 ∑
v∈Q◇

δ

∣fδ(v)∣
2 = δ ∑

x∈Qδ
∣∇H●

δ (x)∣ + δ ∑
x∈Q⋆

δ

∣∇H○
δ (x)∣ (8.11)

where ∇H●
δ (x) = (H●

δ (x + δ) − H●
δ (x),H●

δ (x + iδ) − H●
δ (x)), and ∇H○

δ is
defined similarly for H○

δ . It follows that it is enough to prove uniform
boundedness of the right-hand side in (8.11). We only treat the sum
involving H●

δ , the other sum can be handled similarly.

Write H●
δ = Sδ+Rδ where Sδ is a harmonic function with same boundary

conditions on ∂9Qδ as H●
δ . In order to prove that the sum of ∣∇H●

δ ∣ on Qδ
is bounded by C/δ, we deal separately with ∣∇Sδ ∣ and ∣∇Rδ ∣. First,

∑
x∈Qδ

∣∇Sδ(x)∣ ≤
C1

δ2
⋅C2δ ( sup

x∈9Qδ
∣Sδ(x)∣) = C1

δ2
⋅C2δ ( sup

x∈∂9Qδ

∣Sδ(x)∣)

= C3

δ
( sup
x∈∂9Qδ

∣H●
δ (x)∣) ≤ C4

δ
,

where in the first inequality we used derivative estimates (Proposition 8.6),
in the first equality the maximum principle for Sδ (to show that the
supremum is reached on the boundary), and in the second the fact that Sδ
and H●

δ share the same boundary conditions on 9Qδ. The last inequality
comes from the fact that H●

δ remains bounded uniformly in δ.

Second, let us treat ∣∇Rδ ∣. This function is subharmonic since Sδ is
harmonic andH●

δ is subharmonic (Proposition 8.26). Recall thatG9Qδ(⋅, y)
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is the Green function in 9Qδ with singularity at y. Since Rδ equals 0 on
the boundary, Proposition 8.11 implies

Rδ(x) = ∑
y∈9Qδ

∆Rδ(y)G9Qδ(x, y), (8.12)

thus giving

∇Rδ(x) = ∑
y∈9Qδ

∆Rδ(y)∇xG9Qδ(x, y).

Therefore,

∑
x∈Qδ

∣∇Rδ(x)∣ = ∑
x∈Qδ

∣ ∑
y∈9Qδ

∆Rδ(y)∇xG9Qδ(x, y)∣

≤ ∑
y∈9Qδ

∆Rδ(y) ∑
x∈Qδ

∣∇xG9Qδ(x, y)∣

≤ ∑
y∈9Qδ

∆Rδ(y) C5δ ∑
x∈Qδ

G9Qδ(x, y)

= C5δ ∑
x∈Qδ

∑
y∈9Qδ

∆Rδ(y)G9Qδ(x, y)

= C5δ ∑
x∈Qδ

Rδ(x) = C6/δ.

The second line uses the fact that ∆Rδ ≥ 0, the third Proposition 8.12, the
fifth Proposition 8.11 again, and the last equality the fact that Qδ contains
of order 1/δ2 sites and the fact that Rδ is bounded uniformly in δ (since
Hδ and Sδ are).

Thus, δ∑x∈Qδ ∣∇H
●
δ ∣ is uniformly bounded. Since the same result holds

for H○
δ , we obtain the second condition of Proposition 8.7 and we are

done. ◻

8.3.4 Discrete version of BVP1

Let us now study the discretization of the problem BVP1. We work with
Dobrushin domains (Ω◇

δ , a
◇
δ , b

◇
δ). For a medial vertex x ∈ ∂Ω◇

δ (or rather a
prime end x), we define the tangent vector ν(x) as e + e′, where e and e′

are the two medial edges of ∂◇ab ∪ ∂◇ba incident to x.

We say that fδ satisfies the discrete Riemann-Hilbert BVP1 if
� fδ is s-holomorphic in Ω◇

δ ,
� for any x ∈ ∂Ω◇

δ ∖ {a◇δ , b◇δ}, Im[f(x)ν(x)1/2] = 0,
� P`(eb)[fδ(bδ)] =

1√
2eb

, where eb is defined as in Chapter 3.

Remark 8.28. Note that the renormalization is not exactly the same as in
the continuum formulation, but we will prove that the two normalizations
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are equivalent as δ tends to 0. Also observe ν(x) is defined for vertices
and that the definition is slightly simpler than in Section 6.1.5: the reason
is that we are interested in the complex argument modulo π of (e+ e′)1/2.
This quantity does not depend on the choice of the argument of e + e′
modulo 2π, while it does for (e+e′)σ in general. Therefore, in this context
we may use e+ e′ to define ν(x) but not for other random-cluster models.

The goal of this section is to prove the following result.

Theorem 8.29 (Smirnov [Smi10]). Let Ω be a simply connected domain
with two points a and b on its boundary. Assume that (Ω◇

δ , a
◇
δ , b

◇
δ) is a

family of Dobrushin domains converging to (Ω, a, b) in the Carathéodory
sense. Consider fδ to be the solution of the discrete BVP1 on (Ω◇

δ , a
◇
δ , b

◇
δ).

Then (fδ)δ>0 converges uniformly on (Ω, a, b) to
√
φ′, where φ is any

conformal map from Ω to R × (0,1) mapping a to −∞ and b to ∞.

Remark 8.30. Since
√
φ′ is the solution of the continuum version of

BVP1, we simply wish to prove that the solution of the discrete BVP
converges to the solution of its continuum counterpart. In order to prove
this result, we mimic the continuum story and prove first the convergence
of the discrete version of Im(∫

z
f2), namely Hδ.

In this section, let fδ be a solution of BVP1 and Hδ be given by
Theorem 8.25 with Hδ(bδ) = 1.

Lemma 8.31. The function Hδ equals 0 on ∂⋆ab and 1 on ∂ba.

Proof. We first prove that H●
δ is constant on ∂ba. Let B and B′ be two

adjacent consecutive sites of ∂ba, and x the medial-edge in the middle of
the edge [BB′]. Note that x is on the boundary. Since fδ(x) is parallel
to ν(x)−1/2, (8.5) implies that H●

δ (B) = H●
δ (B′). Hence, H●

δ is constant
along the arc. Since H●

δ (bδ) = 1, the result follows readily.
Similarly, H○

δ is constant on the arc ∂⋆ab. Moreover, the dual white face
b⋆δ ∈ ∂⋆ab bordering bδ (see Fig. 3.6) satisfies

H○
δ (b⋆δ) = H●

δ (bδ) −
√

2δ∣P`(eb)[f(bδ)]∣
2 = 1 − 1 = 0. (8.13)

In the second equality, we used the normalization hypothesis (recall that
∣eb∣ = δ/

√
2). Therefore H○

δ = 0 on ∂⋆ab. ◻

Our goal is now to prove the following result. Let H be the solution of
the Dirichlet BVP with g = 0 on ∂ab and 1 on ∂ba. We would like to prove
that the function Hδ converges to H uniformly away from a and b. To
get an intuition that this should be the case, observe that a subharmonic
function in a domain is smaller than the harmonic function with the same
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boundary conditions. Therefore, H● is smaller than the harmonic function
h● solving the same BVP. Similarly H○ is bigger (since it is superharmonic)
than the harmonic function h○ solving the same BVP. Moreover, H●(b) is
larger than H○(w) for two neighboring faces. Hence, if H● and H○ are
close to each other on the boundary, then they are sandwiched between
two harmonic functions h● and h○ which are close to each other. This
motivates us to understand the BVPs for H● and H○. The previous lemma
provides us with part of the answer (namely boundary values for H●

δ on
∂ba and for H○

δ on ∂⋆ba), but it is not clear how to obtain the relevant
boundary values for H●

δ on ∂ab and H○
δ for ∂⋆ba. For this reason, we use

the so-called boundary trick introduced in [CS12] and extend the functions
outside Ωδ ∪Ω⋆

δ .

Construct the following extension of the graph Ωδ. First, a vertex x ∈ ∂ab
can be seen as a prime-end of the domain Ωδ very much like medial vertices
on ∂Ω◇ may be seen as prime-ends of the domain Ω◇

δ . In particular, the
degree of boundary vertices seen as prime-ends is smaller than 4. Add all
the edges incident to these vertices which are not already in EΩδ together
with their endpoints. We will consider all endpoints as forming different
vertices of a new graph8. The set composed of these vertices is denoted
∂̂ab. Consider Ω̂δ = Ωδ ∪ ∂̂ab. Similarly, construct ∂̂⋆ba and Ω̂⋆

δ .

Definition 8.32. Let Ĥ●
δ be the function on Ω̂δ equal to H●

δ on Ωδ and 0

on ∂̂ab. Let Ĥ○
δ be the function on Ω̂⋆

δ equal to H○
δ on Ω⋆

δ and 1 on ∂̂ba.

Define (X●
t )t≥0 to be the continuous-time random walk on Ω̂δ that jumps

with rate 1 on adjacent vertices, except for the vertices on ∂̂ab onto which
it jumps with rate ρ ∶= 2/(

√
2+1). Let (X○

t )t≥0 denote the continuous-time

random walk on Ω̂⋆
δ that jumps with rate 1 on neighbor vertices, except

for the dual-vertices on ∂̂⋆ba onto which it jumps with rate ρ = 2/(
√

2 + 1).
Let ∆● and ∆○ be the generators of X●

t and X○
t .

One may prefer working with the discrete time random walks (X●
n)n≥0

and (X○
n)n≥0 induced by the continuous-time random walks above. In

such case, (X●
n)n≥0 jumps equally likely on each neighbor in Ωδ, but

with probability 1+
√

2
2

time smaller on neighbors in ∂̂ab. Then for any

x ∈ Ω̂δ ∖ ∂Ω̂δ,

∆●f(x) = ∑
y∼x

Px(X●
1 = y)[f(y) − f(x)].

We are now in a position to tackle the boundary problem on the arc
∂̂ab and ∂̂⋆ba. Before diving into the proof, let us make a small comment

by taking the example of Ĥ●
δ . The difficulty of the BVP does not lie in

8A vertex of Z2 could correspond to the end-points of different such edges, and for
this reason we keep a clear distinction between the different end-points.
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WW1

W2

v

we1

e2BB BEBW

BN

BS

e1 e2
e3e4

x

Figure 8.2: Extend Ω◇
δ by adding one extra layers of medial faces, and

extend the functions H●
δ on these new medial faces. On the right, the

indexation of faces and edges for the proof of Lemma 8.35.

determining boundary conditions since Ĥ●
δ equal 1 on ∂ba and 0 on ∂̂ab,

but rather in explaining the connection between these boundary conditions
(more precisely those on ∂̂ab) and the values of Ĥ●

δ on Ω̂δ ∖∂Ω̂δ. The most

obvious connection would be that Ĥ●
δ would be subharmonic on Ω̂δ ∖∂Ω̂δ.

This is not quite the case, but we can in fact show that Ĥ●
δ is subharmonic

for a modified Laplacian. A similar observation holds true for Ĥ○
δ .

Proposition 8.33. If fδ ∶ Ω◇
δ → C is s-holomorphic, then Ĥ●

δ and Ĥ○
δ are

respectively subharmonic for ∆● on Ω̂δ ∖ ∂Ω̂δ and superharmonic for ∆○

on Ω̂⋆
δ ∖ ∂Ω̂⋆

δ .

Proof. Let us treat the case of vertices in Ωδ. Dual vertices are treated
similarly. Since we already treated vertices in Ωδ ∖ ∂ab, we only need to
look at a vertex B ∈ ∂ab. For ease of exposition, we will assume that B is
incident to three edges in Ωδ, the vertex of ∂̂ab being below B (other cases
can be handled similarly). Denote by BW , BN , BE and BS the black faces
adjacent to B, see Figure 8.2. We claim that

∆●H●
δ(B) = 2 +

√
2

6 + 5
√

2
[H●

δ(BW ) +H●
δ(BN) +H●

δ(BE)] + 2
√

2

6 + 5
√

2
H●
δ(BS) −H●

δ(B)

≥ 0.

Recall that H●
δ (BS) = 0 by construction, and we therefore need to prove

that

∆●H●
δ(B) = 2 +

√
2

6 + 5
√

2
[H●

δ(BW ) +H●
δ(BN) +H●

δ(BE)] −H●
δ(B) ≥ 0. (8.14)

In order to do that, let us denote by e1, e2, e3, e4 the four medial edges
around the medial-vertex x between B and BS , indexed in clockwise order,
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with e1 and e2 along B, and e3 and e4 along BS (see Figure 8.2) – note
that e3 and e4 are not edges of Ω◇

δ , but of (δZ2)◇ ∖Ω◇
δ .

Now, since fδ(x) is proportional to ν(x)−1/2, a small computation gives

∣P`(e3)[fδ(x)]∣
2 = ∣( tan

π

8
)eiπ/4P`(e2)[fδ(x)]∣

2

= 2 −
√

2

2 +
√

2
∣P`(e2)[fδ(x)]∣

2

= 2 −
√

2

2 +
√

2

1√
2δ
H●
δ (B).

We could have chosen the medial edge e4 instead of e3 and we would have
obtained the same result. If H̃●

δ denotes the function defined by H̃●
δ = H●

δ

on B, BW , BN and BE , and by

H̃●
δ (BS) =

√
2δ∣P`(e3)[fδ(x)]∣

2 = 2 −
√

2

2 +
√

2
H●
δ (B). (8.15)

Then, H̃●
δ satisfies the same relation of Theorem 8.25 for e3 and e4, as inside

the domain. Since fδ verifies the same local equations, the computation
performed in Proposition 8.26 applies at B (with H̃δ instead of Hδ), and
we deduce

∆H̃●
δ (B) = 1

4
[H̃●

δ (BW )+H̃●
δ (BN)+H̃●

δ (BE)+H̃●
δ (BS)]−H̃●

δ (B) ≥ 0. (8.16)

Using (8.15), this inequality can be rewritten as

1

4
[H●

δ (BW ) +H●
δ (BN) +H●

δ (BE)] − 6 + 5
√

2

4(2 +
√

2)
H●
δ (B) ≥ 0. (8.17)

and the claim (8.14) follows. ◻

Proof of Theorem 8.29. Since Ĥ●
δ is sub-harmonic for ∆● and has

boundary conditions 0 on ∂̂ab, and 1 on ∂ba, it is thus smaller than the
∆●-harmonic function h●δ with the same boundary conditions. Since h●δ
converges to the solutionH of the continuum Dirichlet BVP with boundary
condition 0 on ∂ab and 1 on ∂ba (one may use Theorem 8.9, or more
precisely a trivial modification of it involving the modified Laplacian on
the boundary), we therefore deduce that

lim sup
δ→0

H●
δ ≤H.



222 Hugo Duminil-Copin

Now, Ĥ○
δ is super-harmonic for ∆○ and has boundary conditions 0 on ∂⋆ab,

and 1 on ∂̂⋆ba. It is thus larger than the ∆○-harmonic function h○δ with the
same boundary conditions. In particular, h○δ converges to H, and therefore

lim inf
δ→0

H○
δ ≥H.

But by construction, H○(W ) is smaller than H●(B) for any neighbor B
of W . Therefore,

H ≤ lim inf
δ→0

H○
δ ≤ lim inf

δ→0
H●
δ ≤H

and the same holds true for the lim sup. Therefore, both H●
δ and H○

δ

converge to H.

Now, let Q ⊂ Ω such that 9Q ⊂ Ω (recall the definition of 9Q from
Theorem 8.27). Since Hδ converges uniformly to a continuous function H,
the family Hδ is bounded uniformly in δ > 0. Theorem 8.27 thus implies
that (fδ)δ>0 is a precompact family of s-holomorphic maps on Q.

Let (fδn)n∈N be a convergent subsequence and denote its limit by f .
Note that f is holomorphic as limit of discrete holomorphic functions
(Proposition 8.15). Furthermore, for two points x and y in Ω, we have:

Hδn(yδn) −Hδn(xδn) = Im(∫
yδn

xδn

f2
δn(z)dz)

where xδn and yδn denote the closest points to x and y in Ωδn . On the
one hand, the convergence of (fδn)n∈N being uniform on any compact
subset of Ω, the right hand side converges to Im (∫

y
x f(z)

2dz). On the
other hand, the left hand side converges to Im(φ(y) − φ(x)), where φ
is a conformal map with Im(φ) = H. Since both H(y) − H(x) and
Im (∫

y
x f(z)

2dz) are harmonic functions of y, there exists C ∈ R such that

φ(y) − φ(x) = C + ∫
y
x f(z)

2dz for every x, y ∈ Ω. We deduce that f equals√
φ′. Since this is true for any convergent subsequence, we find that fδ

tends to
√
φ′.

It only remains to notice that a conformal map φ such that Im(φ) = H
is exactly a conformal map from Ω to R × (0,1) mapping a to −∞ and b
to ∞. This can be done as follows. Fix a conformal map Φ from Ω to
R × (0,1) mapping a to −∞ and b to ∞. The function H ○Φ−1 is solution
of the Dirichlet problem on R × (0,1) with boundary condition 1 on the
top and 0 on the bottom. Therefore, (H ○Φ−1)(z) = Im(z) which leads to
H(z′) = Im(Φ(z′)) for any z′ ∈ Ω. In particular, φ −Φ is holomorphic and
Im(φ −Φ) = 0. The combination of these two facts implies that φ −Φ is a
constant function equal to a real number, which is the claim. ◻
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8.3.5 Discrete version of BVP2

Let Ω◇
δ be a discrete domain and u◇δ , v

◇
δ be two medial vertices on the

boundary of Ω◇
δ . We define the tangent vector as in the previous section

(it goes counterclockwise around the boundary). The function fδ ∶ Ω◇
δ → C

satisfies the discrete BVP2 if

� fδ is s-holomorphic on Ω◇
δ ∖ {u◇δ},

� Im(fδ(z)ν(z)1/2) = 0 for any z ∈ ∂Ω◇
δ ∖ {u◇δ},

� fδ(v◇δ ) = 1.

The two following definitions correspond to the fact that the domain
(respectively discrete domain) looks like the upper half-plane in a
neighborhood of v (respectively v◇δ ). A domain Ω is flat near v if there
exists ε > 0 such that

[−ε, ε] × (0, ε] = (−v +Ω) ∩ [−ε, ε]2.

In the discrete level, Ωδ is flat near v◇δ if there exists ε > 0 such that

(δZ2)◇ ∩ [−ε, ε] × [0, ε] = (−v◇δ − ( 1
2
,0) +Ω◇

δ) ∩ [−ε, ε]2.

Theorem 8.34 (Chelkak, Smirnov [CS12]). Let Ω be a simply connected
domain with two marked points u and v on its boundary, the boundary being
flat in a neighborhood of v. Let Ω◇

δ be a family of discrete simply connected
domains with u◇δ and v◇δ two medial-vertices on its boundary. We assume
that (Ω◇

δ , u
◇
δ , v

◇
δ ) converges to (Ω, u, v) in the Carathéodory sense, and that

the boundary of Ω◇
δ is flat near v◇δ . Let fδ be the s-holomorphic solution

of BVP2 in Ω◇
δ with u◇δ and v◇δ , then

fδ(⋅)→

¿
ÁÁÀ ψ′(⋅)

ψ′(v)
when δ → 0

uniformly on every compact subset of Ω, where ψ is any conformal map
from Ω to the upper half-plane H, mapping u to ∞ and v to 0.

We will also consider the discrete primitive Hδ of f2
δ provided by

Theorem 8.25, with the condition that it is equal to 0 at some w ∈ ∂Ω⋆
δ .

One can check exactly as in Lemma 8.31 that H○
δ = 0 on ∂Ω⋆

δ . Observe
that superharmonicity implies H○

δ ≥ 0 everywhere. As before, we extend Ωδ
by adding one layer ∂̂ except that we do not add the other end-point of the
edge passing through u◇δ (since anyway the function is not s-holomorphic

at u◇δ ). We set H●
δ = 0 on ∂̂. The same computation as in Proposition 8.33

implies that H●
δ is ∆●-subharmonic on Ωδ ∖ {uδ}, where uδ is the vertex

of Ωδ bordered by u◇δ .
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We therefore understand the boundary conditions of H●
δ and H○

δ .
Nevertheless, one may check that H● does not remain bounded in a
neighborhood of u (see below for a proof), and we cannot use the
precompactness criterion provided by Theorem 8.27 directly. We therefore
start by proving precompactness of fδ and Hδ with our bare hands.

Lemma 8.35. The family of functions (Hδ) and (fδ) are precompact on
any square Q such that 9Q ⊂ Ω.

Let us first describe the proof heuristically. We wish to prove that Hδ

is uniformly bounded away from u. If the value of H●
δ is equal to M at

some point B0, then subharmonicity shows that it must be larger than M
on some arc γ from B0 to uδ (see the definition of uδ few lines above).
Furthermore, H●

δ ≥ 0 on the boundary. Therefore, if H●
δ was harmonic,

we would deduce that H●
δ would be larger than M times the harmonic

measure of the arc γ in Ω. Applying this observation to the vertex B next
to v◇δ , we would deduce that

√
2δ∣Fδ(v◇δ )∣2 =H●

δ (B) is larger than M times
the harmonic measure of γ seen from B. The facts that the domain near
v contains a rectangular box and that the arc γ is of macroscopic length
imply that the harmonic measure of the arc seen from B would be larger
than cδ. This would be contradictory with the value of Fδ(v◇δ ).

Unfortunately, H●
δ is not exactly harmonic and one must use H○

δ . This
renders the proof slightly more cumbersome. In particular, one has to
compare the value of H●

δ and H○
δ at neighboring vertices.

Proof. We present the argument succinctly. Let ε > 0. We wish to prove
that (Hδ) is uniformly bounded outside a ball of radius ε > 0 around u. If
this fact can be verified for every ε > 0, this will imply the result directly,
since by Theorem 8.27, (fδ) would be precompact and thus (Hδ) also.

In order to prove this boundedness, consider B0 ∈ Ωδ at distance larger
than ε from u and set H●

δ (B0) =∶ M . By subharmonicity and the fact

that the boundary conditions of H●
δ are 0 on ∂̂, we find that there exists a

sequence γ of vertices uδ = Bn ∼ Bn−1 ∼ ⋅ ⋅ ⋅ ∼ B1 ∼ B0 such that

H●
δ (uδ) ≥H●

δ (Bn−1) ≥ ⋯ ≥H●
δ (B1) ≥H●

δ (B0) ≥M.

First, let us assume the claim below:

Claim: There exists c1 > 0 such that H○
δ (W ) ≥ c1H●

δ (B) for any adjacent
medial-faces B and W ∉ ∂Ω⋆

δ .

Let Γ be the set of dual vertices bordering the path γ. We deduce from
the claim that H○

δ (W ) ≥ c1M for all W ∈ Γ ∖ ∂Ω⋆
δ .

Since H○
δ is equal to zero on ∂Ω⋆

δ and is larger than cM on Γ,
superharmonicity implies that

H○
δ (W0) ≥ ∑

W ∈Γ
H○
δ (W )HΩ⋆

δ
(W0,W ) ≥ c1MHΩ⋆

δ
(W0,Γ),
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where the first inequality is due to superharmonicity and Proposition 8.5,
and in the second HΩ⋆

δ
(W0,Γ) denotes the harmonic measure of the set

Γ seen from W0 (it is the probability that a random walk on Ω⋆
δ starting

from W0 hits Γ before reaching ∂Ω⋆
δ ).

Now, the set Γ is of macroscopic length ε, therefore there exists
c2 = c2(ε) > 0 such that

HΩ⋆
δ
(V,Γ) ≥ c2δ, (8.18)

where V ∈ Ω⋆
δ ∖ ∂Ω⋆

δ is a dual-vertex nearest to v◇δ . In order to see that
(8.18) is satisfied, observe that Γ has “length larger than ε”, which shows
the existence of c3 = c3(ε) > 0 such that HΩ⋆

δ
(W0,Γ) ≥ c3 for any W0

at Euclidean distance ε from the boundary. Furthermore, the harmonic
measure seen from V of the set of dual-vertices at Euclidean distance ε
from the boundary is at least c4δ (this follows from the gambler’s ruin and
the fact that the neighborhood of v◇δ in Ω◇

δ contains a rectangle of size
O(1/δ)). Combining these two facts together yields the existence of c2 > 0
in (8.18).

Now, (8.18) implies

√
2δ =

√
2δ∣fδ(v◇δ )∣2 =H●

δ (B) ≥H○
δ (V ) ≥ c1MHΩ⋆

δ
(V,Γ) ≥ c1M ⋅ c2δ,

where B is the vertex of Ωδ adjacent to v◇δ . This implies that

M ≤
√

2/(c1c2) and H● (and therefore H○) is indeed bounded. In
conclusion, we only need to prove the claim.

Proof of the Claim. In this proof, we use ≫ for “much larger than” and
≈ for “approximatively equal to” (i.e. the difference of the left and right
terms is much smaller than each one of them).

We recommend that the reader takes a look at Fig. 8.2. Consider a
dual-vertex W ∉ ∂Ω⋆

δ and a vertex B ∈ Ωδ which are adjacent and such
that H●

δ (B) ≫H○
δ (W ). Let v and w be the end-points of the medial edge

between B and W and set e = [vw]. Also set W1 and W2 to be the dual-
vertices such that v and w are the centers of [WW1] and [WW2], and e1

and e2 for the two medial-edges between B and W1 and W2.
First, observe that superharmonicity and H○

δ ≥ 0 imply that

H○
δ (W ) ≥ 1

4 ∑
W ′∼W

H○
δ (W ′) ≥ 1

4
H○
δ (W ′)

for any W ′ ∼ W . Therefore, we also have that H○
δ (W1) ≪ H●

δ (B) and
H○
δ (W2) ≪H●

δ (B). In such case,

√
2δ∣P`(e)(fδ(v))∣2 ≈H●

δ (B) ≈
√

2δ∣P`(e1)(fδ(v))∣
2. (8.19)

In particular, the absolute value of the projections of fδ(v) on `(e1) and
`(e) are very close to each other and therefore fδ(v) approximately belongs
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to one of the bisectors of `(e1) and `(e). Similarly, fδ(w) approximately
belongs to one of the bisectors of `(e) and `(e2). In particular, fδ(v) and
fδ(w) have very different complex arguments.

Thus, we find that δ∣fδ(v) − fδ(w)∣2 is of the order of δ∣fδ(v)∣2, which
itself is of the order of H●

δ (B) by (8.19). Since H○
δ (W ′) ≥ 0 for W ′ ∼ W ,

(8.8) applied to H○ gives us that

H○
δ (W ) ≥ −∆○H○

δ (W ) ≥ δ∣fδ(v) − fδ(w)∣2 ≥ c4H●
δ (B)

for a universal constant c4 > 0. In particular, H○
δ (W ) cannot be much

smaller than H●
δ (B) to begin with and we get the claim. Note that we

did not work with constants and used ≫ and ≈ instead, but in a language
with constants, the argument gives the existence of c1 > 0 as claimed. ◇

◻

We now wish to prove that the solution to the discrete version of
BVP2 converges to the solution to the continuum version of BVP2, i.e.√
ψ′/ψ′(v). In order to do that, we prove that any sub-sequential limit

of (fδ) is equal to
√
µψ′ for some constant µ > 0. We then prove that

µ = 1/ψ′(v).

Proof of Theorem 8.34. Once again, the proof is presented completely
but succinctly. Since (fδ)δ>0 and (Hδ)δ>0 form two precompact families
(the precompactness of (Hδ)δ>0 follows from the one of (fδ)δ>0), consider a
subsequence (fδn ,Hδn) converging to (f,H). The function H is harmonic
as limit of subharmonic and superharmonic functions. Since H○

δ equals
0 on the boundary and is superharmonic, it implies that H○

δ is larger or
equal to 0 everywhere and therefore H ≥ 0 in Ω.

Let us now show that H is continuous on Ω ∖ {u} and is equal to 0
on ∂Ω ∖ {u}. The function Ĥ●

δ is equal to 0 on ∂̂ and is subharmonic.
Let z ∈ Ω be such that d(z, ∂Ω) ≪ 2d ∶= d(z, u) and let Zδ be the vertex
of Ωδ closest to z. Also, consider Λ to be the connected component of
z + [−d, d]2 in Ω containing z. The weak Beurling estimate (Lemma 8.10)
together with the fact that Ĥ●

δ is smaller than the harmonic function with
the same boundary conditions on ∂Λδ imply that

Ĥ●
δ (Zδ) ≤ max{H●

δ (B) ∶ B ∈ ∂Λδ} ⋅ (
d(z, ∂Ω)

d
)
α

.

Since H● is uniformly bounded (as δ → 0) away from u, this implies

that H(z) ≤ C (d(z,∂Ω)
d

)
α

for some constant C > 0 depending on the

distance d only. Letting z tend to the boundary, we obtain that H ≤ 0 on
∂Ω ∖ {u}. Since we already have H ≥ 0, we find that H = 0 on ∂Ω ∖ {u}.
Furthermore, the previous displayed equation implies that H tends to 0
when approaching z.
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Overall, H is a positive harmonic function on Ω which is continuous
on Ω ∖ {u} and equal to 0 on the boundary. Let ψ be a conformal map
from Ω to H mapping u to ∞ and v to the origin. We now claim that the
properties listed above imply that H = µIm(ψ) (this implies that f =

√
µψ′

by the same argument as in BVP1) for some µ > 0.

Claim: If H satisfies the properties listed above, then there exists µ > 0
such that H = µIm(ψ), where ψ is a conformal map from Ω to H mapping
u to ∞ and v to 0.

Proof of the Claim. This fact is classical in complex analysis: it
follows from the fact that positive harmonic functions in the disk can be
represented as integrals of the Poisson kernel against a positive measure
on the boundary9 which can be understood as a version of Proposition 8.5
in the continuum. Let us provide a few more details. When working in
Ω, this theorem asserts that a positive harmonic function h on Ω can be
represented as

h(y) = ∫
∂Ω
PΩ(y, x)dν(x),

where ν is a measure on the boundary and PΩ(⋅, ⋅) is the Poisson kernel
in Ω, i.e. that PΩ(⋅, x) is the imaginary part of a certain conformal map
from Ω to H mapping x to infinity (as it stands, the function PΩ(⋅, x) is
defined up to multiplication by a positive constant but this is irrelevant to
the argument).

The fact that H is equal to 0 on the boundary except at u implies that
the only possibility for the measure ν is that it is proportional to a Dirac
mass at u, and the value µ > 0 depends on this constant of proportionality.
◇

9One may also avoid the use of the Poisson kernel by doing the following proof. Note
that by conformal invariance, we may assume that Ω = H, u = ∞ and v = 0. In the
proof, ∂H = R ∪ {∞}.

If H is bounded in a neighborhood of ∞, then H is bounded on the whole domain
H. Since it is equal to 0 on ∂H ∖ {∞}, this implies that H = 0 and we set µ = 0.

If H is unbounded, let Ψ ∶ H → C be an holomorphic map with Im(Ψ) = H. The set
Ψ(H) is included in H since H ≥ 0. Since H = 0 on the boundary except at infinity, we
also get that Ψ(∂R) ⊂ R.

The Cauchy-Riemann equation implies that the x-derivative of Re(Ψ) is equal to
the y-derivative of Im(Ψ) = H and is therefore larger or equal to 0 since H ≥ 0 (the
fact that the derivative is well defined on the boundary follows easily from the Schwarz
reflection principle for instance). We deduce that Im(Ψ) is increasing when going
counter-clockwise along ∂H.

Now, Ψ(H) is unbounded since H is unbounded. Thus Ψ(∂H) = R ∪ {∞} = ∂H.
A slight extension of the principle of corresponding boundaries (here we do not have

that the function is strictly increasing on the boundary but simply increasing), see e.g.
[Lan99, Theorem 4.3], implies that Ψ is a conformal map from H to H sending ∞ to ∞.
By adding a constant in R to H, we may fix the image of 0 to be 0 and therefore Ψ is
an homothety.
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Fix ψ such that f =
√
µψ′. In order to conclude the proof, we now

need to show that µ = 1/ψ′(v) by studying the behavior near v. Let
R(α, ε) ∶= (−ε, ε)×(α, ε) with 0 ≤ α≪ ε≪ 1. The assumption on Ω enables
us to choose ε > 0 so small that R(0, ε) ⊂ Ω. We divide the boundary of
∂R(0, ε)δ into three pieces: the bottom side ∂1, the part ∂2 intersecting
∂R(α, ε), and the rest of the boundary ∂3 (made of two vertical segments).

Subtract the constant
√
µψ′(v) from the function fδ and consider the

function H̃δ constructed from the s-holomorphic function fδ−
√
µψ′(v) via

Theorem 8.25. We wish to prove that H̃δ is small.
Since H̃●

δ is subharmonic, we find that

H̃●
δ (B0) ≤ ∑

B∈∂R(0,ε)δ
H̃δ(B)HΩδ(B0,B), (8.20)

where we remind the reader that HΩδ(⋅, ⋅) denotes the harmonic measure
in Ωδ. The gambler’s ruin together with traditional estimates on exit
probabilities gives us that HΩδ(B0, ∂2) ≤ c1δ/ε, and HΩδ(B0, ∂3) ≤ c2αδ/ε.

The boundary conditions of H̃δ are not difficult to estimate. First, H̃δ

equals 0 on ∂1. Second, at fixed α we deduce from the uniform convergence
of fδ that

H̃δ(z)Ð→ Im [∫
z

0
(
√
µψ′(x) −

√
µψ′(v))2

dx] = o(Im(z)) = o(ε)

on R(α, ε), where o(t) means that the term tends to 0 as t tends to 0.
Finally, note that H̃δ is also uniformly bounded by a constant c3 > 0 on
∂R(α, ε) and therefore the boundary conditions are uniformly bounded on
∂3.

Altogether, by distinguishing in (8.20) between the three parts ∂1, ∂2

and ∂3 of the boundary, we find that

H̃●
δ (B0) ≤ 0 + o(ε) ⋅ c1δ/ε + c3 ⋅ c2δα/ε = δ(c1o(1) + c2c3 αε ),

where the term o(1) tends to zero as ε tends to 0. This implies that

∣Fδ(v◇δ ) −
√
µψ′(v)∣2 ∶= H̃●

δ (B0) ≤ c1o(1) + c2c3 αε .

When δ, and then α and ε tend to 0, we obtain that 1 = limδ→0 Fδ(v◇δ ) =√
µψ′(v). This implies that µ = 1/ψ′(v). ◻

8.3.6 Discrete version of BVP3

We will sometimes be facing s-holomorphic functions with singularities,
i.e. medial-vertices inside Ω◇

δ where the function is not s-holomorphic. We
briefly explain how the problem of discrete singularities can be addressed.
We refer to [HS11] and [Hon10a] for a complete study of this case and we
focus on BVP3 as an example. Let Ω◇

δ be a discrete domain.
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Definition 8.36. Let x◇δ ∈ Ω◇
δ and fδ ∶ Ω◇

δ ∖ {x◇δ}→ C. We say that fδ has
a simple pole at x◇δ with discrete residue µ if

� fδ is s-holomorphic on Ω◇
δ ∖ {x◇δ}.

� There exists λ ∈ C such that the function fδ satisfies:

P`(eNE)[λ] = P`(eNE)[fδ(NE)],
P`(eSE)[λ] = P`(eSE)[fδ(SE)],

P`(eNW )[λ + 2πµ] = P`(eNW )[fδ(NW )],
P`(eSW )[λ + 2πµ] = P`(eSW )[fδ(SW )],

where NE, NW , SW and SE are the medial vertices adjacent to
x◇δ , and eNE , eNW , eNE and eSE are the medial edges between x◇δ
and NE, NW , SW and SE respectively (once again the indexation
refers to cardinal directions).

The function fδ can be thought of as a s-holomorphic function on a
graph where the medial-vertex x◇δ is split into two end-points x+ and x− of
degree 2, with fδ(x+) = λ and fδ(x−) = λ + 2πµ. With this interpretation,
one may easily check that the integrals along discrete contours (see (8.4)
for the definition of the integral of a discrete contour) surrounding the
singularity x◇δ are equal to 2πiµ. Indeed, one may check this fact by
looking at the contour composed of the vertical medial-edge passing by x+

and coming back by x−. Then, the integral equals i(λ + 2πµ) − iλ = 2πiµ.
Any other contour integral can be obtained by adding integrals of contours
not surrounding the singularity which are therefore equal to 0.

The definition above thus corresponds to a discrete version of residues.
In particular, if µ = 0, then one may extend fδ at x◇δ by setting fδ(x◇δ) = λ.

In the continuum, singularities are usually removed by subtracting
Green functions. In the discrete context, we will do the same and it is
therefore necessary to introduce a discrete s-holomorphic Green function.
Discrete holomorphic Green functions were already constructed in [Ken00,
Proposition 10] using dimers. Namely, consider the function of (t, s) ∈ Z2

defined by

C[0, (s, t)] ∶= 1

4π2 ∫
2π

0
∫

2π

0

ei(sθ−tφ)

2i sin(θ) + 2 sin(φ)
dθdφ

and set C[z1, z2] = C[0, z2 − z1]. Kenyon studied the asymptotic of this
function and proved that it is discrete holomorphic. The functions C(⋅, z)
are not s-holomorphic but relevant linear combinations of them are, as
noticed by Hongler and Smirnov in [HS11].

Definition 8.37 (s-holomorphic Green function). For any x◇δ ≠ z◇δ on
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(δZ2)◇, we set Gδ(x◇δ , z◇δ ) = G(x
◇
δ

δ
,
z◇δ
δ
), where

G(x, z) = 4π cos (π
8
) ei

π
8 (C0(2x + 1,2z) +C0(2x − i,2z))

+ 4π sin (π
8
) e−i

3π
8 (C0(2x − 1,2z) +C0(2x + i,2z)) .

The fact that the formula is explicit allows us to derive the convergence
of this Green function from the convergence result of Kenyon.

Proposition 8.38. Let x ≠ z, then

Gδ(x◇δ , z◇δ )Ð→
1

z − x
when δ → 0

uniformly on any compact subset of C ∖ {x}.

We are now in a position to state and solve BVP3. Let x◇δ ∈ Ω◇
δ . The

function fδ ∶ Ω◇
δ → C satisfies the discrete BVP3 if

� fδ is s-holomorphic on Ω◇
δ ∖ {x◇δ},

� Im(fδ(z)ν(z)1/2) = 0 for any z ∈ ∂Ω◇
δ ,

� fδ has a singularity at x◇δ with residue 1.

In the following statement, we extend the notion of Carathéodory
convergence to a simply-connected domain Ω with a marked point x inside.
A sequence of domains (Ω◇

δ , x
◇
δ) converges to (Ω, x) if the conformal map

gδ ∶ D ↦ Ω◇
δ (here Ω◇

δ is seen as a subdomain of the plane as explained in
Chapter 3) with gδ(0) = x◇δ and g′δ(0) > 0 converges on every compact of
D to the conformal map g ∶ D↦ Ω with g(0) = x and g′(0) > 0.

Theorem 8.39 (Hongler, Smirnov [HS11]). Let Ω be a simply connected
domain with a marked point x inside Ω. Consider a family of discrete
simply connected domains Ω◇

δ with x◇δ a medial-vertex in Ω◇
δ . We assume

that (Ω◇
δ , x

◇
δ) converges to (Ω, x) in the Carathéodory sense. Let fδ be the

s-holomorphic solution of BVP3, then fδ − gδ can be extended at x◇δ and
the extension satisfies that

fδ −Gδ →

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
φ′(x)

√
φ′(z)( 1

φ(z)
− i) − 1

z − x
if z ≠ x,

−iφ′(x) otherwise

when δ → 0

uniformly on every compact subset of Ω, where φ is the unique conformal
map from Ω to the unit disk D, with φ(x) = 0 and φ′(x) > 0.

Since Gδ itself converges to 1/(z −x), the previous theorem implies that

fδ Ð→
√
φ′(x)

√
φ′(z)( 1

φ(z)
− i)

uniformly on every compact subset of Ω ∖ {x}.
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Proof. (sketch) By linearity the discrete residue of hδ ∶= fδ −Gδ is 0.
Therefore, this function can be extended to an s-holomorphic on Ω◇

δ . As a
consequence, hδ is solving a Riemann-Hilbert BVP which is a discretization
of the BVP

h holomorphic on Ω and Im[(h + g)ν1/2] = 0 on ∂Ω

with g = 1/(z − x). Since Gδ converges to 1
z−x when δ tends to zero, a

trivial extension of Theorem 8.27 implies that hδ is precompact on every
compact subset of Ω. One may then show that any sub-sequential limit
of hδ tends to a solution of the Riemann-Hilbert BVP listed above. This
part of the proof, which is omitted, is the most technical one of course.

We conclude by checking that

hΩ,x(z) ∶=
√
φ′(x)

√
φ′(z)( 1

φ(z)
− i) − 1

(z − x)

is the unique holomorphic solution of the Riemann-Hilbert BVP above
with g = 1/(z − x). Solutions of continuous Riemann-Hilbert BVP of
this kind are classically unique: simply subtract two solutions to obtain
a solution with g = 0, and then use the fact that the imaginary part of
the primitive of the square is harmonic and constant on the boundary
(it is thus constant everywhere and the square-root of the derivative is
equal to 0). We therefore focus on the fact that hΩ,x is indeed a solution.
Obviously, it is holomorphic inside Ω. Since solutions to this Riemann-
Hilbert BVP are conformally covariant (with covariance exponent 1/2), it
is in fact sufficient to check that hΩ,x is a solution for x = 0 and Ω = D. We
then have φ(z) = z and therefore at z = eiθ, we have that ν(z) = ieiθ and

Im(
√
φ′(x)

√
φ′(z)( 1

φ(z)
− i)ν(z)1/2) = Im(eiπ/4e−iθ/2 + e−iπ/4eiθ/2) = 0.

Therefore, hD,0 is indeed a solution of the BVP when Ω = D and x = 0 and
the result follows. ◻



Chapter 9

Conformal invariance of
the FK-Ising and Ising
models

There are many different definitions of conformal invariance for a model.
For instance, one may speak of conformal invariance of interfaces.
Alternatively, conformal invariance can also refer to the fact that relevant
observables of the model are conformally covariant in the scaling limit. In
this chapter, we explore these different aspects of the conformal invariance
of the Ising and FK-Ising models. We only deal with critical models and
we therefore fix p = pc(2) and β = βc in the whole chapter.

The chapter is organized as follows. The two first sections are devoted
to the proof of conformal invariance of interfaces. This proof follows a
program whose scope exceeds the case of the Ising and FK Ising model.
The program proceeds in two main steps.

1. First, one proves that a certain observable of the model is conformally
invariant in the scaling limit. In order to do so, we show that the
observable is solution of a certain discrete BVP, and we harness the
theory of discrete holomorphic functions to prove that the solution
of this discrete BVP problem converges as the mesh size tends to 0
to the solution of its continuum counterpart.

2. Second, we show that the conformal invariance of this observable
is sufficient to prove conformal invariance of interfaces or other
measurable quantities of the scaling limit.

The last section presents a brief summary of other Ising properties which
have been proved to be conformally invariant in the last few years.

Before starting, let us recall the definition of a conformally covariant
family of functions.

232
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Definition 9.1. A family of functions FΩ,a1,...,an ∶ Ω → C indexed by
simply connected domains with marked points a1, . . . , an ∈ Ω is conformally
covariant if there exist α,α′, β1, β

′
1, . . . , β

′
n, βn > 0 such that for any domain

Ω and any conformal map ψ ∶ Ω → C (i.e. holomorphic and one-to-one),
for every z ∈ Ω,

Fψ(Ω),ψ(a1),...,ψ(an)(ψ(z))

= ψ′(z)αψ′(z)α′ ⋅ ψ′(a1)β1ψ′(a1)β
′
1⋯ψ′(an)βnψ′(an)β′n ⋅ FΩ,a1,...,an(z).

If α = β1 = β′1 = ⋅ ⋅ ⋅ = βn = β′n = 0, the family is said to be conformally
invariant.

Example. An archetype of a conformally covariant family of functions is
the solution to boundary problems such as Dirichlet or Riemann-Hilbert
BVPs.

9.1 Conformal invariance of the Ising and
FK-Ising fermionic observables

A family of observables for random-cluster models with general cluster-
weights q were introduced in Chapter 6. It was argued that the scaling
limits of these observables should be holomorphic when q ∈ [0,4].
The boundary conditions can be determined and correspond to discrete
Riemann-Hilbert BVPs. It provides a good hint that the scaling-limit of
the observable is conformally covariant. Unfortunately, the observables
are not entirely determined by their boundary conditions and the local
relations that they satisfy and it is therefore not possible at the moment
to prove the convergence to a conformally covariant family of functions.

When q = 2 (the case of FK-Ising), the fermionic observable satisfies
specific additional integrability properties that allow us to prove its
s-holomorphicity. The Ising model is also conformally invariant in this
sense: the conformally covariant observable is the fermionic observable
introduced in Chapter 7. We now discuss these two cases.

9.1.1 Convergence of the FK fermionic observable

In this section, we consider a simply connected domain Ω with two marked
points a and b on its boundary. We will work with discretizations of this
Dobrushin domain. For (Ω◇

δ , a
◇
δ , b

◇
δ), define the vertex fermionic observable
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by

Fδ(v) = F (Ω◇
δ , a

◇
δ , b

◇
δ , pc,2, v) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

2
∑
u∼v

F ([uv]) if v ∈ Ω◇
δ ∖ ∂Ω◇

δ ,

2

2 +
√

2
∑
u∼v

F ([uv]) if v ∈ ∂Ω◇
δ ,

where Fδ([uv]) is the edge fermionic observable at the edge [uv] defined
in Chapter 6.

Theorem 9.2 (Smirnov [Smi10]). Let (Ω, a, b) be a simply connected
domain with two marked points on its boundary. Let (Ω◇

δ , a
◇
δ , b

◇
δ) be a

family of Dobrushin domains converging to (Ω, a, b) in the Carathéodory
sense. Let Fδ(v) be the vertex fermionic observable in (Ω◇

δ , a
◇
δ , b

◇
δ). We

have

1√
2eb

Fδ(⋅) →
√
φ′(⋅) when δ → 0 (9.1)

uniformly on any compact subset of Ω, where φ is any conformal map from
Ω to the strip R × (0,1) mapping a to −∞ and b to ∞.

Recall the definition of eb from Chapter 3 and note that ∣2eb∣ =
√

2δ.
Therefore, when rotating the lattice as in [Smi10], we find the original
formulation back.

We aim at proving that 1√
2eb
Fδ is a s-holomorphic solution of BVP1.

The key ingredient is the fact that the spin σ takes the special value 1/2.
This enables us to determine the complex argument (modulo π) of the
observable.

Beware of the fact that Fδ is the vertex fermionic observable. We will
use the same notation for the edge fermionic observable Fδ(e) defined on
the edges of Ω◇

δ .

Lemma 9.3. For an edge e ∈ Ω◇
δ , 1√

2eb
Fδ(e) belongs to `(e).

Proof. The winding Wγ(ω)(e, eb) at an edge e can only take its value in
the set W +2πZ where W is the winding at e of an arbitrary oriented path
going from e to eb. Therefore, the winding weight eiWγ(ω)(e,eb)/2 involved
in the definition of Fδ(e) is always equal to eiW /2 or −eiW /2, ergo Fδ(e) is
proportional to eiW /2. Since 1√

2eb
eiW /2 belongs to `(e) for any e, so does

1√
2eb
Fδ(e). ◻

We are now in a position to prove s-holomorphicity.

Proposition 9.4. The vertex fermionic observable 1√
2eb
Fδ is

s-holomorphic.
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Proof. Consider a medial vertex v ∈ Ω◇
δ ∖∂Ω◇

δ first. Four medial vertices
are adjacent to v. We index them by NW , NE, SE and SW (the notation
refers to cardinal directions once more). Write σ = 1/2 = 1 − σ. When
rewriting (6.2) of Lemma 6.10 by setting 1/2 = 1 − σ, we find

Fδ(NW ) + Fδ(SE) = Fδ(NE) + Fδ(SW )

and therefore

Fδ(NW ) + Fδ(SE) = Fδ(NE) + Fδ(SW ).

The previous equation and the definition of the vertex fermionic observable
imply

Fδ(v) ∶=
1

2
∑
u∼v

Fδ([uv]) = Fδ(NW ) + Fδ(SE) = Fδ(NE) + Fδ(SW ).

Using Lemma 9.3, 1√
2eb
Fδ(NW ) and 1√

2eb
Fδ(SE) belong to `(NW )

and `(SE) (they are in particular orthogonal to each other), so that
1√
2eb
Fδ(NW ) is the projection of 1√

2eb
Fδ(v) on `(NW ) (and similarly

for other edges). Therefore, for a medial edge e = [xy], 1√
2eb
Fδ(e) is the

projection of 1√
2eb
Fδ(x) and 1√

2eb
Fδ(y) with respect to `(e). A direct

consequence is that the two projections are equal, a fact which implies
that the vertex fermionic observable is s-holomorphic.

Let us now treat the case of v ∈ ∂Ω◇
δ . We assume without loss of

generality that v ∈ ∂◇ab and we set x to be the primal-vertex bordered by
v. Let e and e′ be the two medial edges of Ω◇

δ incident to v. Lemma 6.11
implies that

1√
2eb
Fδ(e′) = 1√

2eb
exp [ i

2
W∂◇

ab
(e, eb)] ⋅ φa,bpc,2,Ω,

1√
2eb
Fδ(e′) = 1√

2eb
exp [ i

2
W∂◇

ab
(e′, eb)] ⋅ φa,bpc,2,Ω.

We deduce that

P`(e)(Fδ(v)) =
2

2 +
√

2
[P`(e)(Fδ(e)) + P`(e)(Fδ(e′))]

= 2

2 +
√

2
[Fδ(e) + cos(π

4
)Fδ(e)] = Fδ(e).

(The normalization 2

2+
√

2
was introduced in order to have this property.)

If e = [vw], we deduce that

P`(e)(Fδ(v)) = Fδ(e) = P`(e)(Fδ(w)),

where in the second equality we have used the fact that w belongs
to Ω◇

δ ∖ ∂Ω◇
δ (and we can therefore apply what we proved previously).

A similar statement can be proved for e′, and we deduce that Fδ is
s-holomorphic at v, thus concluding the proof. ◻
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Proof of Theorem 9.2. The previous proposition shows that 1√
2eb
Fδ

is s-holomorphic. By construction, the exploration path must go through
eb so that Fδ(eb) = 1. Furthermore, we know from the previous proof that

1√
2eb
Fδ(eb) is the projection of 1√

2eb
Fδ(b◇δ) on `(eb), so that

P`(eb) [
1√
2eb

Fδ(b◇δ)] =
1√
2eb

Fδ(eb) =
1√
2eb

.

Finally, consider a medial vertex v ∈ ∂Ω◇
δ ∖ {a◇δ , b◇δ} incident to two medial

edges e and e′ of Ω◇
δ . Assume that v ∈ ∂◇ab (the case of v ∈ ∂◇ba can be

treated similarly). Lemma 6.11 once more shows that

1√
2eb

Fδ(v) =
1√
2eb

2

2 +
√

2
[Fδ(e) + Fδ(e′)]

= 1√
2eb

2

2 +
√

2
(e

i
2
W∂◇

ab
(e,eb) + e

i
2
W∂◇

ab
(e′,eb))φaδ,bδΩδ,pc,2

[e ∈ γ]

= 1√
2eb

⋅ 4 cos(π/8)
2 +

√
2

⋅ e
i
4
(W∂◇

ab
(e,eb)+W∂◇

ab
(e,eb)) ⋅ φaδ,bδΩδ,pc,2

[e ∈ γ].

In particular, 1√
2eb
Fδ(v) is collinear with ν

−1/2
v (recall the definition from

Section 8.3.4).
Overall, 1√

2eb
Fδ satisfies BVP1. Theorem 8.29 guarantees the

convergence of 1√
2eb
Fδ towards

√
φ′, where φ is the conformal map from

Ω to R × (0,1) mapping a to −∞ and b to ∞. This gives us the result. ◻

9.1.2 Convergence of the spin fermionic observable

Let us turn our attention to the spin fermionic observable. Recall that Ω
is flat near v if there exists ε > 0 such that

v + [−ε, ε] × (0, ε] = Ω ∩ (v + [−ε, ε]2).

Theorem 9.5 (Chelkak, Smirnov [CS12]). Let Ω be a simply connected
domain with two marked points u and v on its boundary; we assume that
the boundary is flat in a neighborhood of v. Let Ω◇

δ be a family of discrete
domains with two medial-vertices u◇δ and v◇δ on their boundary. We assume
that (Ω◇

δ , u
◇
δ , v

◇
δ ) converges to (Ω, u, v) in the Carathéodory sense and that

the boundary of Ω◇
δ is flat near v◇δ . Let Fδ = FΩ◇

δ
,u◇
δ
,v◇
δ

be the fermionic spin
observable defined in Chapter 7, then

Fδ(⋅) →

¿
ÁÁÀ ψ′(⋅)

ψ′(v)
when δ → 0 (9.2)
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uniformly on every compact subset of Ω, where ψ is any conformal map
from Ω to the upper half-plane H, mapping u to ∞ and v to 0.

Proof. We wish to prove that Fδ is the solution of BVP2. Theorem 8.34
will then imply the result immediately. Recall the definition of ν(z) from
Section 8.3.4.

Let us prove that for δ > 0,
� Fδ is s-holomorphic on Ω◇

δ ,
� Re(Fδ(z)ν(z)1/2) = 0 for any z ∈ ∂Ω◇

δ ∖ {u◇δ},
� Fδ(v◇δ ) = 1.

The third condition is guaranteed by the normalization. The second
condition follows from considerations close to the case of the FK-Ising
model. Indeed, any interface ending at x◇δ ∈ ∂Ω◇

δ has the same winding
denoted by W (x◇δ) (once again, no curve can wind around the boundary
before arriving at a boundary vertex). Since this winding does not
depend on the loop-configuration in ÊΩ(u◇δ , x◇δ), the complex argument
of the observable is equal to − 1

2
[W (x◇δ) − W (v◇δ )] modulo π. Now,

the flatness condition implies that v◇δ is the medical-vertex south of a
boundary vertex. The second condition then follows from the fact that
ν(x◇δ)−1/2 = e−i 1

2 [W (x◇δ)−W (v◇δ)] in this case.
Let us now prove the first condition. Let x and y be two adjacent medial-

vertices connected by the medial-edge e = [xy]. Let B be the vertex of
Ωδ bordering the medial-edge e. Let us further assume that x and y are
the vertices respectively south and east of B (other cases may be handled
similarly). Set xω and yω for the contribution of ω to Fδ(x) and Fδ(y).
We wish to prove that

∑
ω

P`(e)(xω) = ∑
ω

P`(e)(yω). (9.3)

The curve γ(ω) finishes at xω or at yω so that ω cannot contribute to both
Fδ(x) and Fδ(y) at the same time. Thus, it is sufficient to partition the
set of configurations into pairs of configurations (ω,ω′), one contributing
to x, the other one to y, such that P`(e)(xω) = P`(e)(yω′).

There are six types of pairs that one can create depending on what γ(ω)
does, where γ(ω) denotes any non-self-crossing path from u◇δ to x. In each
case of the following list, there is a trivial way of associating configurations
in the two sets; see Fig. 9.1 for more details. Cases C1a and C1b (resp.
C3a and C3b) can be obtained from each other by exchanging the roles of
x and y.

C1a – γ(ω) reaches x before B and stops, and there is a loop going
through B but not through y.

– γ(ω) reaches x and then y in one step (more precisely there is
a choice of γ(ω) doing so).
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Figure 9.1: The different possible cases in the proof of Theorem 9.5: ω is
depicted at the top, and ω′ at the bottom of each case.

C1b – γ(ω) reaches y before B and stops, and there is a loop going
through B but not through x.

– γ(ω) reaches y and then x in one step (more precisely there is
a choice of γ(ω) doing so).

C2 – γ(ω) reaches B first and then makes a half-step to finish at x.
– γ(ω) reaches B first and then makes a half-step to finish at y.

C3a – γ(ω) reaches y before B and stops, and there is a loop in ω
passing by B and x.
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– γ(ω) reaches y, B, then leaves before coming back to x.

C3b – γ(ω) reaches x before B and stops, and there is a loop in ω
passing by B and y.

– γ(ω) reaches x, B, then leaves before coming back to y.

C4 – γ(ω) reaches B before reaching x and then goes around before
coming back to y.

– γ(ω) reaches B before reaching y and then goes around before
coming back to x.

Now, the formulæ for xω and yω′ enable us to express yω′ in terms of xω in
each case (very much in the same way as for random-cluster models). We
obtain the following table for yω′ in terms of xω. Moreover, the argument
modulo π of contributions xω is known in each case since the orientation
of e is known and v◇δ is a boundary medial-vertex south of a vertex in

the domain. When projecting on e−iπ/8R, the result follows (we use that

tan(π/8) =
√

2 − 1 in Cases 1(a) and 1(b)).

config. Case 1(a) Case 1(b) Case 2 Case 3(a) Case 3(b) Case 4

yω′
√

2−1

e−iπ/4
xω

eiπ/4√
2−1

xω e−iπ/4xω e3iπ/4xω e3iπ/4xω e−5iπ/4xω

arg xω
modπ π/2 0 0 π/2 π/2 π/2

◻

9.2 Conformal invariance of interfaces

Let us now discuss conformal invariance of interfaces. Before starting
proving the convergence of interfaces in the FK-Ising and the Ising models,
we would like to identify a family of curves which would be a natural
candidate for the scaling limit of such interfaces.

Recall that a domain is a simply connected open set not equal to C.
We will consider families of random curves (Γ(Ω,a,b)) indexed by domains
with two marked points a and b on their boundaries. The curves Γ(Ω,a,b)
are random non-self-crossing continuous curves in Ω parametrized in such
a way that they start at a and end at b. Recall the following two notions.

Definition 9.6 (Conformal invariance). A family of random non-self-
crossing continuous curves γ(Ω,a,b), going from a to b and contained in
Ω, indexed by simply connected domains with two marked points on the
boundary (Ω, a, b) is conformally invariant if for any (Ω, a, b) and any
conformal map ψ ∶ Ω→ C,

ψ(γ(Ω,a,b)) has the same law as γ(ψ(Ω),ψ(a),ψ(b)).
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The domain Markov property (for random-cluster models) and the DLR
condition (for Ising or other spin models) imply that interfaces in lattice
models naturally satisfy the following property.

Definition 9.7 (Domain Markov property). A family of random
continuous curves Γ(Ω,a,b), going from a to b and contained in Ω, indexed
by simply connected domains with two marked points on the boundary
(Ω, a, b), satisfies the domain Markov property if for every (Ω, a, b) and
every t > 0, the law of the curve Γ(Ω,a,b)[t,∞) conditionally on Γ(Ω,a,b)[0, t]
is the same as the law of Γ(Ωt,Γt,b), where Ωt is the connected component
of Ω ∖ Γ[0, t] having b on its boundary.

As discussed in the introduction, Schramm proposed a natural
candidate for the possible conformally invariant families of non-self-
crossing continuous curves satisfying the domain Markov property, called
the Schramm-Loewner Evolution (SLE). These random curves are indexed
by a parameter κ ≥ 0 and we usually write SLE(κ) for the Schramm-
Loewner Evolution with parameter κ.

Remark 9.8. There exist different kinds of SLE. The curve can go from
boundary point to boundary point (in this case it is called chordal) or
from a boundary point to a point inside the domain (in this case it is
called radial). The curve can also have driving points (we then speak of
SLE(κ, ρ)). In this book, we will only deal with chordal SLEs.

One of the first and most fundamental models for which convergence to
SLE is known is site percolation on the triangular lattice [Smi01, Smi05,
CN07] (in such case it converges to SLE(6)). In [LSW11], loop-erased
random walks were shown to converge to SLE(2). In [SS05], an ad-hoc
model, called the harmonic explorer, was shown to converge to SLE(4).

In the next sections, we will show that the interfaces of the FK-Ising
and Ising model converge to SLE(16/3) and SLE(3) respectively but let
us start first by briefly describing SLEs.

9.2.1 A crash-course on Schramm-Loewner Evolution

In this section, several non-trivial concepts about Loewner chains are used
and we refer to [Law05] for details. We do not aim for completeness
(see [Law05, Wer04, Wer05] for deeper expositions). We simply introduce
notions needed in the next sections. We first explain how a curve between
two points on the boundary of a domain can be encoded via a real function,
called the driving process. We then explain how the procedure can be
reversed. Finally, we define the Schramm–Loewner Evolution.
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From curves in domains to the driving process. Set H to be the
upper half-plane R×(0,∞). Fix a compact set K ⊂ H such that H = H∖K
is simply connected. Riemann’s mapping theorem guarantees the existence
of a conformal map from H onto H. Moreover, there are a priori three
real degrees of freedom in the choice of the conformal map, so that it is
possible to fix its asymptotic behavior as z goes to ∞. Let gK be the
unique conformal map from H onto H such that

gK(z) ∶= z + C
z
+O ( 1

z2
) .

The proof of the existence of this map is not completely obvious and
requires Schwarz’s reflection principle. The constant C is called the
h-capacity of K (it acts like a capacity: it is increasing in K and the
h-capacity of λK is λ2 times the h-capacity of K).

There is a natural way to parametrize certain continuous non-self-
crossing curves Γ ∶ R+ → H with Γ(0) = 0 and with Γ(s) going to ∞ when
s → ∞. For every s, let Hs be the connected component of H ∖ Γ[0, s]
containing ∞. We denote by Ks the hull created by Γ[0, s], i.e. the
compact set H∖Hs. By construction, Ks has a certain h-capacity Cs. The
continuity of the curve guarantees that Cs grows continuously, so that it is
possible to parametrize the curve via a time-change s(t) in such a way that
Cs(t) = 2t. This parametrization is called the h-capacity parametrization.

From now on, we will assume that the parametrization is the h-capacity,
and reflect this by using the letter t for the time parameter from now on.

Remark 9.9. In general, the previous time change is not a proper
parametrization. For instance, the h-capacity is not necessarily increasing
since any part of the curve “hidden from ∞” will not make the h-capacity
grow. It might also be the case that t does not go to infinity along the
curve (e.g. if Γ “crawls” along the boundary of the domain).

With this notation, the curve can be encoded via the family of conformal
maps gt ∶= gKt from Ht to H, in such a way that

gt(z) ∶= z + 2t

z
+O ( 1

z2
) .

Under mild conditions, the infinitesimal evolution of the family (gt) implies
the existence of a continuous real valued function Wt such that for every
t and z ∈Ht,

∂tgt(z) = 2

gt(z) −Wt
. (9.4)

The function Wt is called the driving function of Γ. The typical
required hypothesis for W to be well-defined is the following Local Growth
Condition:
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For any t ≥ 0 and for any ε > 0, there exists δ > 0 such that for any
0 ≤ s ≤ t, the diameter of gs(Ks+δ ∖Ks) is smaller than ε.

This condition is always satisfied in the case of continuous curves (in
general, Loewner chains can be defined for families of growing hulls, see
[Law05] for additional details).

From a driving function to curves. It is important to notice that the
procedure to obtain W from γ is reversible under mild assumptions on the
driving function: if a continuous function (Wt)t>0 is given, it is possible
to reconstruct Ht as the set of points z for which the differential equation
(9.4) with initial condition z admits a solution defined on [0, t]. We then
set Kt = H ∖Ht. The family of hulls (Kt)t>0 is said to be the Loewner
Evolution with driving function (Wt)t>0.

So far, we did not refer to any curve in this reverse construction. If
there exists a parametrized curve (Γt)t>0 such that for any t > 0, Ht is
the connected component of H ∖ Γ[0, t] containing ∞, the Loewner chain
(Kt)t>0 is said to be generated by a curve. In such case, (Γ(t))t>0 is called
the trace of (Kt)t>0.

A general necessary and sufficient condition for a parametrized family of
growing hulls in (Ω, a, b) to be the time-change of the trace of a Loewner
chain is:
(C1) Its h-capacity is continuous;
(C2) Its h-capacity is strictly increasing;
(C3) The hull satisfies the Local Growth Condition.

The Schramm–Loewner Evolution. We are now in a position to
define Schramm–Loewner Evolutions:

Definition 9.10 (SLE in the upper half-plane). The Schramm–Loewner
Evolution in H with parameter κ > 0 is the (random) Loewner chain with
driving process Wt ∶=

√
κBt, where Bt is a standard Brownian motion.

Loewner chains in other domains are defined using conformal maps.

Definition 9.11 (SLE in a general domain). Fix a domain Ω with two
points a and b on the boundary and assume it has a nice boundary
(for instance a Jordan curve). The Schramm–Loewner evolution with
parameter κ > 0 in (Ω, a, b) is the image of the Schramm–Loewner evolution
in the upper half-plane by a conformal map1 from H onto Ω mapping 0 to
a and ∞ to b.

1The scaling properties of Brownian motion ensure that the definition does not
depend on the choice of the conformal map involved; equivalently, the definition is
consistent in the case Ω = H.
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Defined as such, SLE is only a random family of growing hulls, but the
Loewner chain can in fact be shown to be generated by a curve (see [RS05]
for κ ≠ 8 and [LSW11] for κ = 8).

Let us conclude this section by mentioning the following result from
Schramm [Sch00] which justifies why SLE traces arise in planar statistical
physics. Interfaces in lattice models usually satisfy the domain Markov
property, due for instance to the DLR condition or the domain Markov
property of the lattice model itself. Therefore, the following result justifies
SLE processes as the only natural candidates2 for such scaling limits.

Theorem 9.12 (Schramm [Sch00]). Every family of random curves
Γ(Ω,a,b) which

� is conformally invariant,
� satisfies the domain Markov property,
� satisfies that Γ(H,0,∞) is scale invariant,

is the trace of a Schramm–Loewner evolution with a certain parameter
κ ∈ [0,∞).

Remark 9.13. It is formally not necessary to assume scale invariance of
the curve in the case of the upper-half plane, because it can be seen as
a particular case of conformal invariance; we keep it nevertheless in the
previous statement because it is potentially easier, while still informative,
to prove.

9.2.2 Statements of conformal invariance for FK-Ising
interfaces

We are now in a position to state the theorem of conformal invariance for
interfaces of the FK-Ising and Ising models. Let us start by the former.
Let X be the set of continuous parametrized curves and d be the distance
on X defined for γ1 ∶ I → C and γ2 ∶ J → C by

d(γ1, γ2) = min
ϕ1∶[0,1]→I
ϕ2∶[0,1]→J

sup
t∈[0,1]

∣γ1(ϕ1(t)) − γ2(ϕ2(t))∣,

where the minimization is over increasing bijective functions ϕ1 and ϕ2.
Note that I and J can be equal to R+∪{∞}. The topology on (X,d) gives
rise to a notion of weak convergence for random curves on X.

Recall that we are at criticality, i.e. p = pc(2).

2In fact, this is a bit of an exaggeration: some variants of SLE can also rise as scaling
limits of interfaces.
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Theorem 9.14 (Chelkak, Duminil-Copin, Hongler, Kemppainen, Smirnov
[CDCH+13]). Let Ω be a simply connected domain with two marked points
a and b on its boundary. Let (Ωδ, aδ, bδ) be a family of Dobrushin domains
converging to (Ω, a, b) in the Carathéodory sense. The exploration path
γδ of the critical FK-Ising model with Dobrushin boundary conditions in
(Ωδ, aδ, bδ) converges weakly to SLE(16/3) as δ → 0.

The strategy to prove that a family of parametrized curves converges to
SLE(κ) follows two steps:
� First, we prove that the family (γδ) is tight for the weak convergence.
� Second, we identify the possible sub-sequential limits.

This second step is based on the fermionic observable. More precisely,
imagine for a moment that a sub-sequential limit γ can be parametrized
by a Loewner chain, and that its driving process is given by W . We will
show that the fermionic observable may be seen as a martingale for the
exploration process, a fact which implies that its limit is a martingale for
γ. This martingale property, together with Itô’s formula, will allow us
to prove that Wt and W 2

t − κt are martingales (where κ equals 16/3 for
the FK-Ising model). Lévy’s theorem thus implies that Wt =

√
κBt. This

identifies SLE(κ) as being the only possible sub-sequential limit, which
proves that (γδ) converges to SLE(κ).

In order to apply the second step it is crucial to have a strong notion
of tightness in the first step to ensure that any sub-sequential limit can
be parametrized by its h-capacity in such a way that a driving process
is well-defined and continuous. This first step can be performed for any
critical random-cluster model with 1 ≤ q ≤ 4 and is based on Property P5
of Corollary 6.16. We present it here.

9.2.3 Sub-sequential limits of critical random-cluster
interfaces are Loewner chains for 1 ≤ q ≤ 4

Since the result is valid for any random-cluster model with q ∈ [1,4], we
state it in this degree of generality. One may skip this section altogether
and simply assume that the following informal statement is known. We will
consider convergence for the metric space (X,d) and therefore tightness
with respect to this topology.

Pseudo-theorem. The family of exploration paths (γδ) is tight and
any sub-sequential limit can be properly parametrized as a Loewner chain
(generated by a curve) with continuous driving process.

The precise version of this pseudo-theorem is the following much more
technical result. We include it for completeness but this may be skipped in
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a first reading. The proof itself is based on the strong form of the Russo-
Seymour-Welsh theorem proved in the previous chapters and on a highly
non-trivial result of Kemppainen and Smirnov [KS12].

Theorem 9.15 (Duminil-Copin, Sidoravicius, Tassion [DCST13]). Fix
1 ≤ q ≤ 4, p = pc(q) and a simply connected domain Ω with two marked
points on its boundary a and b. Let (Ωδ, aδ, bδ) be a sequence of Dobrushin
domains converging in the Carathéodory sense towards (Ω, a, b). Define
γδ to be the exploration path in (Ωδ, aδ, bδ) with Dobrushin boundary
conditions. Then, the family (γδ) is tight and any sub-sequential limit
γ satisfies the following properties:

R1 γ is almost surely a continuous non-intersecting curve from a to b
staying in Ω.

R2 For any parametrization γ ∶ [0,1] → R+, b is a simple point, in the
sense that γ(t) = b implies t = 1. Furthermore, almost surely γ(t) is
on the boundary of Ω ∖ γ[0, t] for any t ∈ [0,1].

R3 Let Φ be a conformal map from Ω to the upper half-plane
H sending a to 0 and b to ∞. For any parametrization
γ ∶ [0,1] → R+, the h-capacity of the hull K̂s of Φ(γ[0, s]) tends to
∞ when s approaches 1. Furthermore, if (K̂t)t≥0 denotes (K̂s)s∈[0,1]
parametrized by h-capacity, then (K̂t)t≥0 is a Loewner chain with a
driving process (Wt)t≥0 which is α-Hölder for any α < 1/2 almost
surely. Furthermore, there exists ε > 0 such that for any t > 0,
E[exp(εWt/

√
t)] <∞.

Condition R3 guarantees that any sub-sequential limit can be parametrized
by its h-capacity and is obtained by the Loewner Evolution with a certain
continuous driving process. It also shows that the convergence of driving
processes is equivalent to the weak convergence in (X,d). Finally, R2
guarantees that the Loewner chain is generated by a curve.

Proof. In order to prove Theorem 9.15, [KS12] shows that we only need
to check the condition G2 defined now. Consider a fixed domain (Ω, a, b)
and a parametrized continuous curve Γ from a to b in Ω. A connected set
C is said to disconnect Γ(t) from b if it disconnects a neighborhood of Γ(t)
from a neighborhood of b in Ω ∖ Γ[0, t].

Fig. 9.2 will help the reader here. For any annulus A = A(z, r,R) ∶=
z + (ΛR ∖ Λr), let At be the subset of Ω satisfying At ∶= ∅ if ∂(z + Λr) ∩
∂(Ω ∖ Γ[0, t]) = ∅, and otherwise

At ∶= { z ∈ A ∖ Γ[0, t] such that the connected component of z
in A ∖ Γ[0, t] does not disconnect Γ(t) from b in Ω ∖ Γ[0, t] } .

Consider the exploration path γδ as a continuous curve from a◇δ to b◇δ
parametrized in such a way that it goes along one medial vertex in time
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1 (in particular, after time n the path explored n medial-vertices). For
simplicity, once the path reaches b◇δ , it remains at b◇δ for any subsequent
time (and therefore γδ is a curve parametrized by positive real numbers).

Condition G2. There exists C < 1 such that for any (γδ) in (Ωδ, aδ, bδ),
for any stopping time τ and any annulus A = A(z, r,R) with 0 < Cr < R,

φaδ,bδ
pc(q),q,Ωδ(γδ[τ,∞] makes a crossing of A contained in Aτ ∣γδ[0, τ]) < 1

2

where a crossing is a portion of the path connecting the inner and outer
parts of A.

We now prove this condition. Let A(z, r,R) and Aτ as defined above.
We can fix a realization of γδ[0, τ], and work in the slit Dobrushin domain
(Ωδ ∖ γδ[0, τ], cδ, bδ) (see the next paragraph for a precise definition of a
slit domain3).

See Aτ as the union of connected components of the Dobrushin domain
Ω◇
δ seen as an open domain of R2 minus the path γδ[0, τ]. We denote

generically a connected component by C (we see it as a subset of R2).
The connected components can be divided into three classes:
� ∂C intersects both ∂◇c◇

δ
b◇
δ

and ∂◇b◇
δ
c◇
δ
;

� ∂C intersects ∂◇b◇
δ
c◇
δ

but not ∂◇c◇
δ
b◇
δ
;

� ∂C intersects ∂◇c◇
δ
b◇
δ

but not ∂◇b◇
δ
c◇
δ
.

In fact, there cannot be any connected component of the first type. Indeed,
let us assume that such a connected component C does exist. Let γ be a
self-avoiding path in C going from ∂◇b◇

δ
c◇
δ

to ∂◇c◇
δ
b◇
δ
. Topologically, c◇δ and

b◇δ must be on two different sides of γ in Ω◇
τ ∖ γ. But this means that C

disconnects c◇δ(= γδ(τ)) from bδ, and therefore that C is not part of Aτ ,
which is contradictory.

We can therefore safely assume that the connected components are either
of the second or third types. We now come back to the interpretation in
terms of graphs.

Let S be the subgraph of Ωτ given by the union of the connected
components (seen as primal graphs this time) of the second type (see
Fig. 9.2). This set is a subset of Aτ . Furthermore, the boundary
conditions induced by the conditioning on γδ[0, τ] are wired on ∂S ∖ ∂Aτ .
Therefore, conditioned on γδ[0, τ] and the configuration outside A(z, r,R),
the configuration ω in S stochastically dominates ω′∣S , where ω′ follows the

law of a random-cluster model in A(z, r,R) with free boundary conditions
(we faced similar argument before in this book and we therefore omit the

3We apologize for sending the reader to a forthcoming paragraph, but some readers
will have skipped this part of the book and we preferred to define this object in a more
central part of the book.
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details). In particular, if there exists an open circuit in ω′ surrounding
z + Λr in A(z, r,R), then the restriction of this path to S is also open
in ω and it disconnects z + ∂Λr from z + ∂ΛR in S. In particular, the
exploration path γδ[τ,∞] cannot cross Aτ inside S since this would require
the existence of a dual-open path from the outer to the inner part of Aτ .

Property P5’ of Corollary 6.16 implies that this open circuit exists in ω′

with probability larger than a constant c > 0 not depending on δ, and that
therefore γδ[τ,∞] cannot cross Aτ inside S with probability larger than c
uniformly on the configuration outside Aτ .

Let now S⋆ be the subgraph of Ω⋆
τ given by the union of the connected

components (seen as dual graphs) of the third type. The same reasoning
for the dual model implies that with probability c > 0, the exploration path
γδ[τ,∞] cannot cross Aτ inside S⋆.

Altogether, γδ[τ,∞] cannot cross Aτ with probability c2. Now,
Proposition 5.33 shows that c can be taken to be equal to 1 − (1 −
c2)⌊log2(R/r)⌋. Since R/r ≥ C, we can guarantee that c2 ≥ 1/2 by choosing
C large enough. ◻

9.2.4 Convergence of FK-Ising interfaces to SLE(16/3)

We are now ready to implement the last step of our program and prove
Theorem 9.14.

Let us first start by proving that the observable may be seen as a
martingale. In order to do so, let us introduce the notion of slit domain.
Fig. 9.2 may give a good idea of what it is.

Fix a Dobrushin domain (Ωδ, aδ, bδ) and consider the exploration path
γδ in the loop representation on Ωδ. The path γδ can be seen as a random
parametrized curve (the parametrization being simply given by the number
of steps along the curve between a medial-vertex in γδ and a◇δ ).

Definition 9.16. The slit domain Ωδ∖γδ[0, n] is defined as the subdomain
of Ωδ constructed by removing all the primal edges crossed by γδ[0, n]
and by keeping only the connected component of the remaining graph
containing bδ. It is seen as a Dobrushin domain by fixing the points cδ
and bδ, where cδ is the vertex of δZ2 bordered by the last medial edge of
γδ[0, n].

One may associate a dual Dobrushin domain to Ωδ ∖ γδ[0, n]. The
marked point is then c⋆δ , where c⋆δ is the dual-vertex of (δZ2)⋆ bordered
by the last medial edge of γδ[0, n]. It is worth mentioning that the
construction is symmetric for the dual Dobrushin domain: the dual of
the slit domain Ωδ ∖ γ[0, n] is simply the subgraph of Ω⋆

δ obtained by
removing the dual-edges crossed by the curve.



248 Hugo Duminil-Copin

aδ

bδ

cδ

c?δ
γn

S?

S

Figure 9.2: In this picture, t or τ are equal to n. The dashed area is
a connected component of A ∖ γδ[0, n] which is disconnecting γδ(n) from
b◇δ , or equivalently cδ from bδ, and which is therefore not in Aτ . The
black parts are not included in the slit domain since they correspond to
connected components that are not containing b◇δ . Conditioning on γδ[0, n]
induces Dobrushin boundary conditions in the new domain. The dark grey
area is S and the light-gray S⋆. We depicted a blocking open path in S
and a dual-open path in each connected component of S⋆.

Remark 9.17. The notation Ωδ ∖ γδ[0, n] could be somewhat misleading
since Ωδ is a subset of δZ2 and γδ[0, n] is a path of medial edges.
Nevertheless, we allow ourselves some latitude here since we find this
notation both concise and intuitive.

If one starts with Dobrushin boundary conditions on (Ωδ, aδ, bδ), then
conditionally on γδ[0, n] the law of the configuration inside Ωδ ∖ γδ[0, n]
is a FK-Ising model with wired boundary conditions on ∂bδcδ and free
elsewhere. This comes from the fact that the exploration path γδ[0, n]
“slides between open edges and dual-open dual-edges” and therefore the
edges on its left must be open and the dual-edges on its right dual-open.
This implies that the arc ∂aδcδ must be wired (and therefore ∂bδcδ is since
∂bδaδ was already wired to start with) and the dual arc ∂c⋆

δ
a⋆
δ

is dual-wired.
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Remark 9.18. Dobrushin domains of the type (Ωδ ∖γδ[0, n], aδ, bδ) have
specific properties: ∂◇γδ(n)b◇δ

is self-touching on the right but not on the left

and ∂◇b◇
δ
γδ(n) is self-touching on the left but not on the right. In other words,

all doubly-visited vertices on the medial boundary are pinched points and
there is no doubly-visited vertex corresponding to two prime-ends.

We are now in a position to state the martingale-property of the
observable.

Lemma 9.19. Let δ > 0. The random variable

Mδ
n(z) =

1√
2eb

FΩδ∖γδ[0,n],γδ(n),bδ(z)

is a martingale with respect to (Fn) where Fn is the σ-algebra generated
by γδ[0, n].

Proof. The fact that conditionally on γδ[0, n], the law in the slit
domain Ωδ ∖ γδ[0, n] is a FK-Ising model with Dobrushin boundary

conditions implies thatMδ
n(z) is the random variable 1√

2eb
1z∈γδe

1
2 iWγδ

(z,b◇δ)

conditionally on Fn, therefore it is automatically a closed martingale. ◻

Proposition 9.20. Any sub-sequential limit of (γδ)δ>0 which is a Loewner
chain with has a continuous driving process (more precisely satisfying
Property R3 of Theorem 9.15) is the Schramm-Loewner Evolution with
parameter κ = 16/3.

Proof. Consider a sub-sequential limit γ in the domain (Ω, a, b) which
is a Loewner chain. Let φ be a map from (Ω, a, b) to (H,0,∞). Our goal
is to prove that γ̃ = φ(γ) is a SLE(16/3) in the upper half-plane.

Since γ is assumed to be a Loewner chain, γ̃ is a growing hull from 0
to ∞ parametrized by its h-capacity. Let Wt be its continuous driving
process. Also define gt to be the conformal map from H∖ γ̃[0, t] to H such
that gt(z) = z + 2t/z +O(1/z2) when z goes to ∞.

Fix z′ ∈ Ω. For δ > 0, recall that Mδ
n(z′) is a martingale for γδ. Since the

martingale is bounded, the stopping time theorem implies that M δ
τt(z

′) is
a martingale with respect to Fτt , where τt is the first time at which φ(γδ)
has an h-capacity larger than t. Now, we use that M δ

τt(z
′) converges in the

scaling limit thanks to Theorem 9.14. Since the convergence is uniform4,
Mt(z′) ∶= limδ→0M

δ
τt(z

′) is a martingale with respect to Gt, where Gt is

4One would have every right to be troubled by this claim. Hopefully, the doubts
should vanish when reading the paragraph ten lines below.
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the σ-algebra generated by the curve γ̃ up to the first time its h-capacity
exceeds t. By definition, this time is t, and Gt is the σ-algebra generated
by γ̃[0, t].

Recall that Mt(z′) is related to φ(z′) via the conformal map from
H ∖ γ̃[0, t] to R × (0,1), normalized to send γ̃t to −∞ and ∞ to ∞. This
last map is exactly 1

π
ln(gt −Wt). Setting z = φ(z′), we obtain that

√
πMz

t ∶=
√
πMt(z′) =

√
[ln(gt(z) −Wt)]′ =

¿
ÁÁÀ g′t(z)

gt(z) −Wt
(9.5)

is a martingale.
Formally, the previous reasoning is not quite rigorous. Indeed, in order

to apply Theorem 9.14, one needs z′ and the hull of γ[0, τt], or equivalently
z and the hull of γ̃[0, t] to be well apart. For this reason, we only obtain
that Mz

t∧σ is a martingale for Gt∧σ, where σ is the hitting time of the
boundary of the ball of size R < ∣z∣ by the curve γ̃.

Recall that, when z goes to infinity,

gt(z) = z + 2t

z
+O ( 1

z2
) and g′t(z) = 1 − 2t

z2
+O ( 1

z3
) . (9.6)

Thus, for s ≤ t,
√
π ⋅E[Mz

t∧σ ∣Gs∧σ]

= E
⎡⎢⎢⎢⎢⎣

¿
ÁÁÀ 1 − 2(t ∧ σ)/z2 +O(1/z3)

z −Wt∧σ + 2(t ∧ σ)/z +O(1/z2)
∣ Gs∧σ

⎤⎥⎥⎥⎥⎦

= 1√
z
E [1 + 1

2
Wt∧σ/z +

1

8
(3W 2

t∧σ − 16(t ∧ σ)) /z2 +O (1/z3) ∣ Gs∧σ]

= 1√
z
(1 + 1

2
E[Wt∧σ ∣Gs∧σ]/z +

1

8
E[3W 2

t∧σ − 16(t ∧ σ)∣Gs∧σ]/z2 +O (1/z3)) .

Taking s = t yields

√
π ⋅Mz

s∧σ = 1√
z
(1 + 1

2
Ws∧σ/z +

1

8
(3W 2

s∧σ − 16(s ∧ σ))/z2 +O(1/z3)) .

Since Mz
t∧σ is a martingale, E[Mz

t∧σ ∣Gs∧σ] = Mz
s∧σ. Therefore, terms in

the previous asymptotic development can be matched together by letting
z tend to infinity so that

E[Wt∧σ ∣Gs∧σ] =Ws∧σ and E[W 2
t∧σ− 16

3
(t∧σ)∣Gs∧σ] =W 2

s∧σ−
16

3
(s∧σ).

Since the identification only uses the fact that z tends to infinity, one can
now let R go to infinity (and thus σ go to infinity as well) to obtain

E[Wt∣Gs] =Ws and E[W 2
t − 16

3
t∣Gs] =W 2

s − 16
3
s.
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(Note that the integrability condition E[exp(εWt/
√
t)] <∞ was necessary

to justify passing to the limit here.) SinceWt is continuous, Lévy’s theorem

implies that Wt =
√

16
3
Bt where Bt is a standard Brownian motion.

In conclusion, γ is the image by φ−1 of the Schramm-Loewner Evolution
with parameter κ = 16/3 in the upper half-plane. This is exactly the
definition of the Schramm-Loewner Evolution with parameter κ = 16/3 in
the domain (Ω, a, b). ◻

Proof of Theorem 9.14. Theorem 9.15 applied to q = 2 implies
that the family (γδ) is tight for the weak convergence in (X,d) and
that any sub-sequential limit can be parametrized by a Loewner chain
with continuous driving process. Proposition 9.20 implies that any sub-
sequential limit is SLE(16/3), and therefore the sequence (γδ) converges
weakly to SLE(16/3). ◻

9.2.5 Convergence to SLE(3) for Ising interfaces

Let Ω◇
δ be a medial discrete domain with two boundary medial-vertices

u◇δ and v◇δ . We consider the critical Ising model on Ω⋆
δ with Dobrushin

boundary conditions defined as follows. As seen in Chapter 7 (one may
look at Remark 7.29 and Fig. 7.2), the boundary ∂Ω⋆

δ is naturally divided
by u◇δ and v◇δ into two arcs ∂− and ∂+ when going along ∂Ω⋆

δ counter-
clockwise5. Fix the spins of the vertices to be +1 on ∂+ and −1 on ∂−.

Now that we have the Ising measure, we define the interface. The path
γδ is constructed as follows. It starts from u◇δ , lies on the primal lattice and
turns at every vertex of Ωδ in such a way that it has always dual vertices
with spin −1 on its left and +1 on its right. If there is an indetermination
when arriving at a vertex (when going counterclockwise around this vertex,
spins could be +1, −1, +1 and −1), turn left. The process thus obtained is
the interface between spins +1 ⋆-connected6 to ∂+ and spins −1 connected
to ∂−.

Theorem 9.21 (Chelkak, Duminil-Copin, Hongler, Kemppainen, Smirnov
[CDCH+13]). Let Ω be a simply connected domain with two marked points
u and v on its boundary. We assume that the boundary of Ω is flat near v.
Let Ω◇

δ be a family of discrete domains with u◇δ and v◇δ on its boundary. We
assume that (Ω◇

δ , u
◇
δ , v

◇
δ ) converges to (Ω, u, v) in the Carathéodory sense

and that the boundary of Ω◇
δ is flat near v◇δ . Then, the interface γδ of the

critical Ising model on Ω⋆
δ with Dobrushin boundary conditions converges

weakly to SLE(3) in Ω from u to v.

5We refer the reader to the construction (presented in Chapter 7) of Dobrushin
boundary conditions on ∂eΩ when the Ising model is considered on the primal lattice.
This is the relevant adaptation to the dual graph.

6Once again, two vertices are ⋆-neighbors if they are at ∥ ⋅ ∥∞-distance 1.
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Remark 9.22. The choice of turning left when there is an indetermination
was arbitrary. One may equivalently turn right when there is an
indetermination and obtain a different interface γ̂δ. This would correspond
to the interface between spins 1 connected to ∂+ and spins −1 ⋆-connected
to ∂−. In the scaling limit, γ̂δ also converges weakly to SLE(3). Now, the
SLE(3) is almost surely a simple curve (see e.g. [Law05]) and therefore in
the scaling limit, γδ and γ̂δ converge to the same parametrized curve. This
yields the fact that in the scaling limit, the standard notion of connectivity
and the ⋆-connectivity are equivalent for the Ising model.

An equivalent of Theorem 9.21 can also be proved using the same
argument as in the proof of Theorem 9.14, except that the condition G2
follows from the following result.

Proposition 9.23. Let En be the event that there exists a circuit of vertices
with spins +1 in the annulus Λ8n ∖Λn surrounding the origin. Then there
exists c > 0 such that for any n ≥ 1,

µ−βc,Λ8n∖Λn
[En] ≥ c.

Proof. We use the Edwards-Sokal coupling P between the Ising measure
with −1 boundary conditions and the FK-Ising measure with wired
boundary conditions obtained by assigning random cluster-spins to clusters
except for the clusters touching ∂Λn or ∂Λ8n which automatically receive
cluster-spin −1.

Divide the annulus Λ8n ∖ Λn into three annuli A1 = Λ2n ∖ Λn,
A2 = Λ4n ∖ Λ2n and A3 = Λ8n ∖ Λ4n. Let Fn be the event that A1

and A3 contains dual-open dual-circuits surrounding the origin, and A2

contains an open circuit surrounding the origin. Property P5’ for crossing
probabilities in the critical FK-Ising model shows the existence of c1 > 0
such that

φ1
pc,2,Λ8n∖Λn[Fn] ≥ c1

for every n ≥ 1. Now, the Edwards-Sokal coupling guarantees that
conditionally on a configuration in Fn, the cluster of the primal circuit
in A2 receives spin +1 with probability 1/2 (since it is not connected to
the boundary). This implies that

µ−βc,Λ8n∖Λn[En] ≥ c1/2.

◻

We now turn our attention to the spin fermionic observable. We prove
that it is a martingale for the curve. Before stating the lemma, let us write
a few things in more detail. Assume we work in (Ω◇

δ , u
◇
δ , v

◇
δ ). The curve γδ

lives on Ωδ, except the half-edges at its beginning and its end (therefore
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the starting and ending points are medial-vertices). Let us parametrize
the curve in such a way that at time n, the curve contains n vertices on it
(in such case it contains n + 1 medial-vertices).

As before, we define slit domains. We work directly with medial discrete
domains Ω◇

δ with two marked points u◇δ and v◇δ and a curve γδ[0, n]. For
such a domain, the slit domain Ω◇

δ ∖ γδ[0, n] is obtained in three steps:

1. Remove all the vertices of Ωδ visited by γδ[0, n] and all the edges
emanating from these vertices;

2. Take the medial graph of each connected component of the new
graph;

3. Keep the connected component containing vδ.

One may see by trying to construct slit domains on Fig. 7.2 that the
definition corresponds to the intuition of removing the curve γδ[0, n].

Lemma 9.24. Consider the critical Ising model on (Ω◇
δ , u

◇
δ , v

◇
δ ) with

Dobrushin boundary conditions. Let γδ be the interface defined above. For
any z ∈ Ω◇

δ , the spin fermionic observable Mδ
n(z) = FΩ◇

δ
∖γδ[0,n],γδ(n),v◇δ (z)

is a martingale with respect to (Fn), where Fn be the σ-algebra generated
by γδ[0, n].

The proof is slightly more intricate than for the FK-Ising model due
to the lack of a direct interpretation of the observable in terms of the
expectation of a random variable. For this reason, we need to work slightly
more but the philosophy is still the same.

Proof. Let µu,vβc be the critical Ising measure with Dobrushin boundary
conditions on Ω⋆

δ . In this proof, we work mostly on the medial lattice and
we therefore drop the subscript δ and the superscript ◇.

It is sufficient to check that Mn(z) has the martingale property when
γ = γ(ω) makes one step γ1. In this case F0 is the trivial σ-algebra, so
that we wish to prove that

µu,vβc [FΩ∖[uγ1],γ1,v(z)] = FΩ,u,v(z). (9.7)

Set γ1 =∶ x and Z and Zx for the partition functions of the Ising model with
Dobrushin boundary conditions on Ω◇

δ with marked points u and v, and in
Ωδ ∖ [ux] with marked points x and v. The high-temperature expansion
described in Chapter 7 implies that
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Zµu,vβc (γ1 = x) = (
√

2 − 1)Zx

= (
√

2 − 1)ei
1
2Wγ(x,v)

∑
ω∈ÊΩ∖[ux](x,z)

e−i
1
2Wγ(x,z)(

√
2 − 1)∣ω∣

FΩ∖[ux],x,v(z)

= ei
1
2Wγ(u,v)

∑
ω∈ÊΩ(u,z)

e−i
1
2Wγ(u,z)(

√
2 − 1)∣ω∣1{γ1=x}

FΩ∖[ux],x,v(z)
.

In the third equality, we used the fact that ÊΩ∖[ux](x, z) is in bijection

with configurations of ÊΩ(u, z) such that γ1 = x. There is still a difference
of weight of

√
2 − 1 between two associated configurations that explains

the disappearance of
√

2 − 1 between the second and the third line. Thus,

µu,vβc (γ1 = x)FΩ∖[ux],x,v(z) =
∑ω∈E(u,z) e−i

1
2Wγ(u,z)(

√
2 − 1)∣ω∣1{γ1=x}

e−i
1
2Wγ(u,v)Z

.

The same holds for all possible first steps. Summing over all possibilities,
we obtain (9.7) (on the right, we indeed obtain FΩ,u,v(z), and on the left,
the expectation of FΩ∖[uγ1],γ1,v(z)). ◻

We then prove the equivalent of Proposition 9.20 by expanding√
ψ′/ψ′(v) instead of

√
φ′. If a sub-sequential limit is a Loewner chain

with continuous driving process Wt, the development implies that Wt and
W 2
t − 3t are martingales for the curve. This implies that Wt =

√
3Bt, and

therefore this sub-sequential limit is SLE(3). The theorem follows.

Remark 9.25. Slit discrete domains Ω◇
δ∖γδ[0, n] have a specific structure:

the boundary ∂ is self-touching on the left but not on the right. In other
words, doubly-visited medial vertices are all corresponding to two prime
ends and there is no pinched vertices.

9.3 The energy and spin fields

From a physics point of view, the scaling limit of the Ising model
corresponds to a minimal model of Conformal Field Theory with central
charge c = 1/2. Let us discuss two so-called primary fields: the energy
field and the spin field. The n-point correlations of these two fields
were computed in the full plane in recent years (see [BdT10, BdT11]
for the energy field, and [Dub11] for the spin field). We wish to discuss
these fields in simply connected domains (in particular their conformal
covariance structure). We focus on + boundary conditions, but free
boundary conditions and more general boundary conditions can be treated
(at the cost of additional technical difficulties in the latter).
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9.3.1 Energy field

Before stating the theorem, let us recall what the Pfaffian of a matrix is.
For an anti-symmetric matrix A ∈M2n(C), set

Pfaff(A) = 1

2nn!
∑

σ∈S2n

sgn(σ)
n

∏
j=1

Aσ(2j−1),σ(2j),

where S2n is the set of permutations of the set {1, . . . ,2n}, and sgn(σ)
denotes the signature of the permutation σ. This definition makes sense
for any matrix. In the case of complex valued entries, we can simply check
that

Pfaff(A)2 = det(A).

For 2n distinct points x1, . . . , x2n in C, define the matrix

K(x1, x2, . . . , x2n)ij =
⎧⎪⎪⎨⎪⎪⎩

1
xj−xi if i ≠ j,
0 otherwise.

The energy density at an edge e = [xy] is given by the formula7

εe =
√

2
2
− σxσy.

The value
√

2
2

is determined by the fact that in infinite volume,

µβc(σxσy) =
√

2
2

.

For a ∈ Ω, let e(aδ) be an edge having aδ for an endpoint (there are a
priori four edges like that, but the choice of the edge is irrelevant).

Theorem 9.26 (Hongler [Hon10a]). Let Ω be a simply connected domain
and a1, . . . , an ∈ Ω. Consider a sequence of simply connected domains
Ωδ with marked points aδ1, . . . , a

δ
n converging to (Ω, a1, . . . , an) in the

Carathéodory sense8. Then,

lim
δ→0

1

(
√

2δ)n
µ+βc,Ωδ[εe(aδ1)⋯ εe(aδn)] = ⟨εa1⋯ εan⟩Ω,

where ⟨εa1⋯ εan⟩Ω satisfies

⟨εa1
⋯ εan⟩Ω = ∣φ′(a1)∣⋯ ∣φ′(an)∣⟨εφ(a1)⋯ εφ(an)⟩φ(Ω)

7One may wonder why we do not defined εe as
√

2
2
+ σxσy instead of

√
2

2
− σxσy to

avoid some unpleasant signs: the reason is that we wish to keep the physical intuition
of an energy.

8In this context, the Carathéodory convergence corresponds to the fact that (Ωδ, aδ1)
converges to (Ω, a1), and aδi Ð→ ai for any 2 ≤ i ≤ n.
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for any simply connected domain Ω, any a1, . . . , an ∈ Ω, and any conformal
map φ on Ω.

Furthermore, for the upper half-plane, we possess the following explicit
formula:

⟨εa1⋯ εan⟩H ∶= 1
(πi)n ⋅Pfaff[K(a1, . . . , an, an, . . . , a1)],

where K is the matrix defined above.

Observe that the answer does not depend on the choice of the orientation
of e(aδ). The result can also be obtained for more general boundary
conditions, and for points on the boundary of smooth domains. Let us
mention that for n = 1, we find the following formula.

Corollary 9.27 (Hongler, Smirnov [HS11]). Let Ω be a simply connected
domain and a ∈ Ω. Then

⟨εa⟩Ω = −φ
′(a)
π

,

where φ is the conformal map from Ω to the unit disk D = {z ∈ C ∶ ∣z∣ < 1}
sending a to 0 and such that φ′(a) > 0.

We will not prove the theorem, but we will sketch the proof of
Corollary 9.27. We refer to the original articles for more details. Our
goal is to highlight the fact that the different steps of the proof are similar
to the proof of conformal invariance of the spin fermionic observable.

Proof. For simplicity, the Ising model itself will lie on the dual graph
and we are interested in the energy-density for the dual-edge [xy] passing
through the medial-vertex a◇δ . We assume that the dual-edge is vertical.

So far, we considered observables depending on a point u◇δ on the
boundary of a domain, but we could allow more flexibility and move u◇δ
inside the domain: we define the fermionic observable FΩ◇

δ
,a◇
δ
(z◇δ ) by

FΩ◇
δ
,a◇
δ
(z◇δ ) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
ω∈ÊΩδ

(a◇
δ
,z◇
δ
)
e−

1
2 iWγ(ω)(a◇δ,z

◇
δ)(

√
2 − 1)∣ω∣

∑
ω∈EΩδ

(
√

2 − 1)∣ω∣
if z◇δ ≠ a◇δ ,

∑
ω∈EΩδ

∶e∉ω
(
√

2 − 1)∣ω∣

∑
ω∈EΩδ

(
√

2 − 1)∣ω∣
if z◇δ = a◇δ .

(9.8)
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The edge e is the primal edge passing through a◇δ . The choice of the value
of the observable at z◇δ = a◇δ will be justified by the next paragraphs.

The function FΩ◇
δ
,a◇
δ

can be shown to be s-holomorphic on Ωδ∖{a◇δ} (the
argument is similar to the proof of Theorem 9.5). Now, by computing the
local contributions of the function near a◇δ , the function can be shown
to have a singularity at a◇δ with discrete residue 1

−2πi
. Furthermore,

−2πiFΩ◇
δ
,a◇
δ

satisfies some Riemann-Hilbert boundary conditions and
therefore −2πiFΩ◇

δ
,a◇
δ

satisfies BVP3.

Thus, Theorem 8.39 implies that 1
−2πi

FΩ◇
δ
,a◇
δ
−GΩ◇

δ
(⋅, a◇δ) can be extended

at a◇δ into a s-holomorphic function. Some tedious computations
of the projections around the singularity show that we must set
G(x◇δ , x◇δ) = −i(2 +

√
2)π/2 in order to extend the function correctly.

The uniform convergence guaranteed by Theorem 8.39 applied to z◇δ = a◇δ
implies that

1

δ
[FΩ◇

δ
,a◇
δ
(a◇δ) −

2 +
√

2

4
] = 1

δ
[FΩ◇

δ
,a◇
δ
(a◇δ) − 1

−2πi
Gδ(a◇δ , a◇δ)]Ð→

1

2π
φ′(a).

We now translate this convergence into a result for the energy-density. The

expectation of the energy-density9 ε(a◇δ) ∶=
√

2
2
− σxσy can be expressed

in terms of the existence or not of the edge e via the low-temperature
expansion of the Ising model on the dual graph. Indeed, if σx = σy, the
edge e separating the two vertices is not present in the low-temperature
expansion and thus

µ+βc,Ω⋆
δ
(σx = σy) =

∑
ω∈EΩδ

∶e∉ω
(
√

2 − 1)∣ω∣

∑
ω∈EΩδ

(
√

2 − 1)∣ω∣
= FΩ◇

δ
,a◇
δ
(a◇δ)

which in turn implies that

µ+βc,Ω⋆
δ
[ε(a◇δ)] =

√
2

2
− µ+βc,Ω⋆

δ
[σxσy] =

√
2

2
− (2µβc,Ω⋆

δ
(σx = σy) − 1)

= −2(FΩ◇
δ
,a◇
δ
(a◇δ) −

2 +
√

2

4
).

Hence, the previous convergence result implies the result. ◻

The general results follow after introducing a similar fermionic ob-
servable Fδ depending on 2n medial vertices (a◇1)δ, (b◇1)δ, . . . , (a◇n)δ, (b◇n)δ
which can be expressed in terms of

µ+βc,Ω⋆
δ
[ε(a◇1 δ)⋯ ε(a◇nδ)]

9Recall that in this proof the Ising model is defined on the dual graph so that the

formula ε(a◇δ) =
√

2
2
− σxσy corresponds exactly to the definition of the energy-density

of the dual-edge passing through a◇δ .
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when taking (aj δ)◇ and (bj δ)◇ two medial vertices which are neighbors
of aj . The fermionic observable can then be proved to satisfy recursive
relations (in terms of a1, . . . , an) which are also satisfied by Pfaffians10.
This implies that the n-point energy correlation also satisfy these relations.
These recursive formulas allow a drastic simplification: it is in fact
sufficient to treat the case n = 2. For this case, technicalities arise but the
general philosophy is the same: one proves that the observable is solution of
a discrete Riemann-Hilbert BVP. Its convergence in the scaling limit then
follows from the convergence of solutions of a discrete Riemann-Hilbert
BVP to its continuum counterpart.

9.3.2 Spin-spin correlations

In the past paragraph, we explored the case of the energy density of the
Ising model. We now focus on other important quantities, namely the
spin-spin correlations. Let C = 21/6 exp[− 3

2
ζ ′(−1)] be a (lattice-dependent)

constant.

Theorem 9.28 (Chelkak, Hongler, Izyurov [CHI12]). Let Ω be a
simply connected domain and a1, . . . , an ∈ Ω. Consider a sequence of
simply connected domains Ωδ with marked points aδ1, . . . , a

δ
n converging to

(Ω, a1, . . . , an). Then,

lim
δ→0

1

(
√

2 δ)n/8
µ+βc,Ωδ[σaδ1⋯σaδn] = C

k⟨σa1⋯σan⟩Ω,

where ⟨σa1⋯σan⟩Ω satisfies

⟨σa1⋯σan⟩Ω = ∣φ′(a1)∣1/8⋯ ∣φ′(an)∣1/8⟨σφ(a1)⋯σφ(an)⟩φ(Ω)

for any simply connected domain Ω, and a1, . . . , an ∈ Ω, and any conformal
map φ on Ω.

The general form of ⟨−−⟩Ω was predicted by means of Conformal Field
Theory in [BG87]. The method of [CHI12] gives another formula (which
is slightly less explicit). At the moment, there is no direct proof that the
two formulas coincide though it can be checked in several situations. For
instance, when n = 1 or 2, its value can be computed.

10Let us quote these formulas for completeness: For a matrix A in M2n(C) and
j, k ∈ {1, . . . ,2n}, let Ajk be the matrix of M2n−2(C) obtained by removing the j-th
and k-th lines and columns. We have

Pfaff(A) = ∑
j≥1

(−1)jAj1Pfaff(Aj1).
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Theorem 9.29 (Chelkak, Hongler, Izyurov [CHI12]). Let Ω be a simply
connected domain and a, b ∈ Ω. Then,

⟨σa⟩Ω = φ′(a)1/8 and

⟨σaσb⟩Ω = ⟨σa⟩Ω⟨σb⟩Ω[1 − e−2dΩ(a,b)]−1/4
,

where φ is the unique conformal map from Ω to the unit disk D with
φ(a) = 0 and φ′(a) > 0, and where dΩ is the hyperbolic metric on Ω.

Let us highlight one important aspect of the proof of this theorem (we
also refer to [Hon10b] for another summary of the strategy). For a function
f ∶ δZ2 Ð→ C, let us introduce the following modified discrete gradient

∇̃f(a) = ( f(a + (δ, δ)) − f(a) , f(a + (δ,−δ)) − f(a) ).

For a function f ∶ R2 Ð→ C, we define the equivalent notion in the
continuum ∇̃f(a) = ((∂x + ∂y)f(a), (∂x − ∂y)f(a)), where ∂x and ∂y are
the directional derivatives in the first and second coordinates.

Proposition 9.30. With the same notation and assumptions as in
Theorem 9.28, we find

lim
δ→0

1√
2δ

⎛
⎝
∇̃aδ1 µ

+
βc,Ωδ

(σaδ1σaδ2 . . . σaδn)
µ+βc,Ωδ(σaδ1σaδ2 . . . σaδn)

⎞
⎠
= ∇̃a1 log⟨σa1σa2 . . . σan⟩Ω.

Then, one may integrate the relation to obtain the ratio for correlations
of n points at macroscopic distances from each other. Interestingly,
Proposition 9.30 does not give the result directly since it provides
information on the ratio only. It is therefore necessary to identify
the multiplicative normalization. More formally the result implies the
existence of a sequence (ρn(Ω, δ))n≥1 such that

ρn(Ω, δ) ⋅ µ+βc,Ωδ(σaδ1σaδ2 . . . σaδn)Ð→ ⟨σa1 . . . σan⟩Ω,

and we need to identify ρn(Ω, δ). In order to do so, one uses a result by
McCoy and Wu to conclude. Let us focus on the n = 2 case first. The
RSW theorem for the FK-Ising model easily implies (exercise) that when
a1 and a2 are merged together

ρ2(Ω, δ)⟨σa1σa2⟩Ω ∼ µ+βc,Ωδ(σa1σa2) ∼ µβc,δZ2(σa1σa2) ∼ C2 (
√

2 δ

∣a1 − a2∣
)

1/4

,

where the sign ∼ means that the ratio tends as δ → 0 to a term which
itself tends to 1 as a1 tends to a2. The last ∼ comes from the classical
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computation of the critical two-point Ising function from McCoy and Wu
[MW73]. This gives ρ2(Ω, δ) = C2(

√
2 δ)1/4. Note that the constant C

defined above appears because of this asymptotics. In order to deduce
the general n ≥ 2 cases, observe that the RSW theorem implies that when
sending an to the boundary of Ω,

µ+βc,Ωδ(σa1⋯σan−1σan) ∼ µ+βc,Ωδ(σa1⋯σan−1)µ+βc,Ωδ(σan).

In fact, one may also prove directly that when an tends to the boundary,

⟨σa1⋯σan⟩Ω ∼ ⟨σa1⋯σan−1⟩Ω⟨σan⟩Ω.

This implies that ρn(Ω, δ) ∼ ρ1(Ω, δ)ρn−1(Ω, δ) ∼ ρ1(Ω, δ)n and the result
follows from the computation of ρ2(Ω, δ).

In order to prove Proposition 9.30, Chelkak, Hongler and Izyurov use
fermionic observables once again. Let us focus on the n = 1 case. We will
not go through the whole discussion yet again. Let us simply mention that
the observable considered here is a modification of the standard observable.
Let us define it for completeness.

Let a ∈ Ω⋆. Consider the double cover Ω of the graph Ω with a
ramification at a constructed as follows. Let U2 be the graph U introduced
in Chapter 6 quotiented by the equivalence relation x = (x1, x2, x3) ∼ y =
(y1, y2, y3) if x1 = y1, x2 = y2 and x3 − y3 is even. Then,

Ω = {x = (x1, x2, x3) ∈ (ã +U2) ∶ (x1, x2) ∈ Ω},

where ã is chosen in such a way that the branching point is at a instead
of (− 1

2
,− 1

2
). Each vertex of Ω has a natural projection onto Ω, and every

path on Ω has a natural lift on Ω.

One may consider the high-temperature expansion on Ω. Recall that
ÊΩ(u◇, z◇) denotes the set of loop configurations with one path γ(ω) from
u◇ to z◇. Recall that the decomposition in loops and one path is not
unique.

For ω ∈ ÊΩ(u◇, z◇) and z ∈ Ω one of the two medial-vertices with
projection z◇, define:

� `(ω) to be the number of loops of ω that have a non-trivial lift
on Ω, meaning that when drawn on Ω, they start and end at two
different points (note that these two points necessarily have the same
projection onto Ω);

� s(ω, z) to be 1 if γ(ω) ends on z, and −1 if it ends on the other
medial-vertex of Ω with projection equal to z◇.
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Definition 9.31. Let Ω be a discrete domain with a ∈ Ω⋆. Let u◇ and z◇

two medial vertices of Ω◇. The spinor observable at z (with projection z◇)
is defined by

FΩδ,a,u◇(z) = ∑
ω∈ÊΩ(u◇,z◇)

e−
1
2 iWγ(ω)(u◇,z◇)(−1)`(ω)s(ω, z)(

√
2 − 1)∣ω∣,

where γ(ω) is a non-self-crossing self-avoiding path in ω going from u◇ to
z◇.

Note that the observable changes sign when changing sheet (in this
respect it behaves like

√
z − a). Also observe that while we proved that

e−
1
2 iWγ(ω)(u◇,z◇) does not depend on the choice of γ(ω), it is unclear whether

(−1)`(ω)s(ω, z) also does. We refer to [CI12] for a proof of this fact.
This observable can also be proved to be s-holomorphic on the lattice.

The convergence in the scaling limit follows from considerations of
Riemann-Hilbert BVPs once again.

9.3.3 Magnetization field

The physics approach to scaling limits deals with so-called fields. Let us
describe some of the recent mathematical results in this direction. We
discuss the specific case of the primary field called the magnetization field
(sometimes, it is also called the spin field).

At the discrete level (i.e. on Ωδ), the following field11 encodes the
quantitative information given by the spins

ΦΩδ ∶= δ
15/8 ∑

x∈Ωδ
σxδx,

where δx is the Dirac mass at x. For any δ > 0, the field ΦΩδ can be seen
as a random function. Nevertheless, when δ → 0, this random function
becomes rougher and rougher. Therefore, we prefer to think of ΦΩδ as a
random distribution. The space of distributions will be the Sobolev space
H−3(Ω) with the norm ∥ ⋅ ∥H−3 . For those who were not born close to
Sobolev spaces, we recall the definition of this space and this norm for
Ω = [0,1]2. For any k, ` ∈ N, define

ek,`(x, y) = 2 sin(kπx) sin(`πy).

This family of functions forms an orthogonal basis of C∞([0,1]2,R)
endowed with the L2-norm. Any function f ∈ C∞([0,1]2,R) admits a

11The normalization by δ15/8 is connected to the fact that there are O(1/δ2) vertices
in Ωδ and that the magnetization of each vertex is of order δ1/8 (one should be careful
for vertices close to the boundary, but this technical issue can be easily handled).
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unique decomposition in this basis:

f(x, y) =∑
k,`

ak,` ⋅ ek,`(x, y).

We define H3([0,1]2) as the closure of C∞([0,1]2,R) under the norm

∥f∥H3 =∑
k,`

(k + `)3a2
k,`.

The space H−3([0,1]2) of distributions on [0,1]3 is defined as the dual of
H3. The norm on this space is defined by the operator norm

∥Φ∥H−3 = sup{∣⟨Φ, f⟩∣ ∶ f ∈ C∞([0,1]2,R) such that ∥f∥H3 ≤ 1}.

For general simply connected domains, one may partition the domain into
squares.

The following theorem has been proved in [CGN12, CGN13]. The
convergence in law is in the space of distributions H−3(Ω) with the
topology induced by the norm ∥ ⋅ ∥H−3 .

Theorem 9.32 (Camia, Garban, Newman [CGN12, CGN13]). Let Ω be a
simply connected domain. Consider a sequence of simply connected graphs
Ωδ converging to Ω. The sequence (ΦΩδ) converges (as δ → 0) in law to a
conformally covariant random distribution ΦΩ.

Furthermore, ΦΩ is conformally covariant in the following sense: for
any conformal map ψ ∶ Ω→ C and for any f ∈ C∞(ψ(Ω),R),

⟨ΦΩ ○ ψ−1, f⟩ = ⟨Φψ(Ω), ∣ψ′∣15/8f⟩.

Remark 9.33. The n-point correlations of the spin field are given by
the n-point correlations of Theorem 9.28. The conformal covariance shows
that the model is not Gaussian and is therefore different from the infamous
Gaussian Free Field (see [She07] for instance).



Chapter 10

Crossing probabilities for
the critical FK-Ising
model

This chapter and the next one are more specialized and non-experts may
be willing to skip them. Nevertheless, they are self-contained and can be
read after having followed the previous chapters of this book.

The present chapter is devoted to bounds on crossing probabilities
in topological rectangles in the critical FK-Ising model. We already
encountered slightly weaker bounds for standard rectangles (i.e. of the
form [0, n] × [0,m]) in Chapter 5. In this chapter, we will extend these
bounds to possibly fractal domains and to boundary conditions which are
directly on the boundary of the topological rectangle (in opposition to
the results in Chapter 5 which were restricted to boundary conditions
at “macroscopic distance”). We start by illustrating an approach for
bounding crossing probabilities from above and below which is based on
discrete holomorphicity by gtreating the case of standard rectangles. In a
second time, we will use this approach to derive the improved result for
general topological rectangles. In order to illustrate how useful this last
result is, we will study arm-events in the last section of this chapter.

In this chapter, we fix q = 2 and p = pc(2) and we drop the dependency

on p and q = 2 in the measure. For instance, φξ
pc(2),2,Ω will be denoted by

φξΩ.

263
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10.1 RSW theory via discrete holomorphic-
ity

10.1.1 Statement of the theorem

Recall that a rectangle R is a subgraph of Z2 of the form [0, n] × [0,m]
for n,m > 0, or a translation of one of these graphs. Also recall that the
event that there exists a vertical crossing in R, i.e. an open path from the
bottom side [0, n] × {0} to the top side [0, n] × {m}, is denoted by Cv(R).

Theorem 10.1 (Duminil-Copin, Hongler, Nolin [DCHN11]). Let β ∈
(0,∞). There exists c1 = c1(β) > 0 such that for any rectangle R with
side lengths n and βn and any boundary condition ξ on ∂R,

c1 ≤ φξR(Cv(R)) ≤ 1 − c1.

This theorem is an improvement (for q = 2) of Property P5 of
Corollary 6.16 since boundary conditions are now allowed to be taken
directly on the boundary of the domain. The proof is based on the
fermionic observable which is used to express macroscopic quantities such
as connection probabilities in terms of discrete harmonic measures.

Let (Ω, a, b) be a Dobrushin domain. Recall the construction of (X●
t )t≥0

and (X○
t )t≥0 on Ω̂ from Chapter 8. For B ∈ Ω, let HM●(B) denote the

probability that the random walk X●
t starting from B hits ∂ba before

hitting ∂̂ab. Similarly, for W ∈ Ω⋆, let HM○(W ) denote the probability
that the random walk X○

t starting from W hits ∂⋆ab before hitting ∂̂⋆ba.
Note that there is no extra difficulty in defining these quantities for infinite
discrete domains as well.

For simplicity, we will often refer to ∂ab and ∂ba as being the free and
wired arcs respectively.

Proposition 10.2 (uniform comparability). Let (Ω, a, b) be a discrete
Dobrushin domain. Let B ∈ ∂ab and W ∈ Ω⋆ ∖ ∂⋆ab adjacent to B. Then we
have

√
HM○(W ) ≤ φa,bΩ (B ←→ wired arc) ≤

√
HM●(B). (10.1)

Proof. Let e ∈ ∂◇ab bordering B. Now consider the fermionic observable
F in the domain (Ω, a, b) and the function H associated to it. The study
of its boundary conditions (Lemma 6.11) implies that

∣F (e)∣ = φa,bΩ (B ←→ wired arc).

By definition of H, we have ∣F (e)∣2 = H●(B) and H○(W ) = ∣F (e)∣2 −
∣F (e′)∣2 ≤ ∣F (e)∣2, where e′ is the medial edge between B and
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W : it is therefore sufficient to recall that H●(B) ≤ HM●(B) and
H○(W ) ≥ HM○(W ). ◻

The inequalities (10.1) will allow us to use a second-moment method
on the number of pairs of connected vertices. Before implementing this
second-moment method, we provide bounds on the harmonic measures
HM● and HM○ in specific domains that will be used in the proof of
Theorem 10.1.

10.1.2 Some estimates on the harmonic measures
HM● and HM○

Consider only Dobrushin domains (Ω, a, b) that contain the origin on the
free arc, and are subsets of the medial lattice H◇, where H = {(x1, x2) ∈
Z2, x2 ≥ 0} denotes the upper half plane. In this case, Ω is said to be a
Dobrushin H-domain. For the following estimates on harmonic measures,
the Dobrushin domains that are considered can also be infinite. We are
interested in the harmonic measure of the wired arc seen from the origin.
Let W0 be a dual vertex of Ω⋆ ∖ ∂⋆ab adjacent to the origin. We first prove
a lower bound on the harmonic measure. For that, introduce, for k ∈ Z
and n ≥ 0, the segments

ln(k) = {k} × [0, n] (= {(k, j) ∶ 0 ≤ j ≤ n}).

Lemma 10.3. There exists a constant c2 > 0 such that for any Dobrushin
H-domain (Ω, a, b), we have

HM○(W0) ≥
c2
k
, (10.2)

provided that, in Ω, the segment lk(−k) disconnects the intersection of the
free arc with the upper half-plane from the origin (see Figure 10.1).

Proof. The arc lk(−k) disconnects the origin from the part of the free
arc that lies in the upper half-plane. Let us thus consider the connected
component of Ω ∖ lk(−k) that contains the origin. Boundary conditions
along lk(−k) are free. In this new Dobrushin domain Ω0, the harmonic
measure of the wired arc is smaller than the harmonic measure of the wired
arc in the original domain Ω. On the other hand, the harmonic measure of
the wired arc in Ω0 is larger than the harmonic measure of the wired arc in
the slit domain (H∖ lk(−k), (−k, k),∞), which has respectively wired and
free boundary conditions to the left and to the right of (−k, k) (see Figure
10.1). Estimating this harmonic measure is relatively straightforward and
we leave this task as an exercise. ◻
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Z Z
lk(−k)lk(−k)

Figure 10.1: The two domains involved in the proof of Lemma 10.3.

Upper bounds on the harmonic measures are now derived. Estimates
of two different types will be needed. The first one takes into account
the distance between the origin and the wired arc, while the second one
requires the existence of a segment ln(k) disconnecting the wired arc from
the origin (still inside the domain).

Lemma 10.4. There exist constants c3, c4 > 0 such that for any Dobrushin
H-domain (Ω, a, b),

� if d1(0) denotes the graph distance between the origin and the wired
arc,

HM●(0) ≤
c3

d1(0)
; (10.3)

� and if the segment ln(k) disconnects the wired arc from the origin
inside Ω,

HM●(0) ≤ c4
n

∣k∣2
. (10.4)

Proof. Let us first consider (10.3). For d = d1(0), define the Dobrushin
domain (Bd, (−d,0), (d,0)), where Bd is the set of vertices in H at a graph
distance at most d from the origin (it has a ◇ shape; see Figure 10.2).
The harmonic measure of the wired arc in (Ω, a, b) is smaller than the
harmonic measure of the wired arc in this new domain Bd, and, as before,
this harmonic measure is easy to estimate.

Let us now turn to (10.4). Since ln(k) disconnects the wired arc from the
origin, the harmonic measure of the wired arc is smaller than the harmonic
measure of ln(k) inside Ω, and this harmonic measure is smaller than it is
in the domain H ∖ ln(k) with wired boundary conditions on the left side
of ln(k) – right side if k < 0 (see Figure 10.2). Once again, the estimates
are easy to perform in this domain. ◻

10.1.3 Proof of Theorem 10.1

We now prove Theorem 10.1. The main step is to prove the uniform
lower bound for rectangles of bounded aspect ratio with free boundary
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Figure 10.2: The two different upper bounds (10.3) and (10.4) of Lemma
10.4.

conditions. We then use monotonicity to compare boundary conditions
and obtain the desired result. In the case of free boundary conditions, the
proof relies on a second moment estimate on the number N of pairs of
vertices (x,u), on the top and bottom sides of the rectangle respectively,
that are connected by an open path.

The organization of this section follows the second-moment estimate
strategy. In Proposition 10.5, we first prove a lower bound on the
probability of a connection from a given vertex on the bottom side of
a rectangle to a given vertex on the top side. This estimate gives a lower
bound on the expectation of N . Then, Proposition 10.6 provides an upper
bound on the probability that two vertices on the bottom side of a rectangle
are connected to the top side. This proposition is the core of the proof:
it provides the right bound for the second moment of N . We conclude
this section and the proof of Theorem 10.1 by using the second moment
estimate method.

We start by a lower bound on crossing probabilities. Let us introduce
the definition of Rβn:

Rβn = [−βn,βn] × [0,2n]. (10.5)

Let ∂+R
β
n (resp. ∂−R

β
n) be the top side [−βn,βn] × {2n} (resp. bottom

side [−βn,βn] × {0}) of the rectangle Rβn. We begin with a lower bound
on connection probabilities.

Proposition 10.5 (connection probability for one point on the bottom
side). Let β > 0, there exists a constant c = c(β) > 0 such that for any
n ≥ 1,

φ0
Rβn

(x↔ u) ≥ c

n
(10.6)



268 Hugo Duminil-Copin

for all x = (x1,0) ∈ ∂−Rβn, u = (u1,2n) ∈ ∂+Rβn, satisfying ∣x1∣, ∣u1∣ ≤ βn/2.

Proof. The probability that x and u are connected in the rectangle
with free boundary conditions can be written as the probability that x
is connected to the wired arc in (Rβn, u, u) (where the wired arc consists of

a single vertex). Proposition 10.2 gives that φ0
Rβn

(x↔ u) ≥
√

HM○(Wx).
Since x and u are at distance βn/2 from the left and right sides of Rβn, the
lower bound HM○(Wx) ≥ c1

n2 on the harmonic measure imply the result.
This last estimate follows from standard results on simple random walks
(gambler’s ruin type estimates). We leave this proof as an exercise. ◻

We now study the probability that two boundary points on the bottom
side of Rβn are connected to the top side, with boundary conditions wired
on the top side and free on the other sides.

Proposition 10.6 (connection probability for two points on the bottom
side). There exists a constant c > 0 such that for any rectangle Rβn and any
two points x, y on the bottom side ∂−R

β
n,

φan,bn
Rβn

(x, y ←→ wired arc) ≤ c√
∣x − y∣n

, (10.7)

where an and bn denote respectively the top-left and top-right corners of
the rectangle Rβn.

The proof is based on the following lemma, which is a strong form of
the so-called half-plane one-arm probability estimate. For x on the bottom
side of Rβn and k ≥ 1, denote by Bk(x) the box centered at x of radius k
for the graph distance.

Lemma 10.7. There exists a constant c5 > 0 such that for any box Rβn,
any x on the bottom side ∂−R

β
n and any k ≥ 0,

φan,bn
Rβn

(Bk(x)↔ wired arc) ≤ c5

√
k

n
. (10.8)

Proof. Consider n, k, β > 0, and the box Rβn with one point x ∈ ∂−Rβn.
The inequality (10.8) becomes trivial if k ≥ n, so we can assume that k ≤ n.
For any choice of β′ ≥ β, the monotonicity between boundary conditions
implies that the probability that Bk(x) is connected to the wired arc ∂+R

β
n

in (Rβn, an, bn) is smaller than the probability that Bk(x) is connected to

the wired arc in the Dobrushin domain (Rβ
′

n , cn, dn), where cn and dn are

the bottom-left and bottom-right corners of Rβ
′

n . From now on, replace β
by β + 2, and consider the new domain (Rβn, cn, dn).
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z

Figure 10.3: The Dobrushin domain (Rβn, cn, dn), together with the
exploration path up to time T .

Since we are working in a Dobrushin domain, we may consider the
exploration path, denoted γ, which goes from c◇n to d◇n. Let T denote
the hitting time – for γ naturally parametrized by the number of steps
from c◇n – of the set of medial edges bordering the vertices of Bk(x); set
T = ∞ if the exploration path never reaches this set, so that Bk(x) is
connected to the wired arc if and only if T < ∞. Our goal is to bound
φcn,dn
Rβn

(T <∞) from above.

The right-most vertex of Bk(x) will be denoted by z until the end of
this proof (note that it is in Rβn thanks to the new choice of β). Consider
now the event {z ↔ wired arc}. By conditioning on the curve up to time
T (and on the event {Bk(x)↔ wired arc}), we obtain

φcn,dn
Rβn

(z ↔ wired arc) = φcn,dn
Rβn

[1T<∞ ⋅ φcn,dn
Rβn

(z ↔ wired arc ∣ γ[0, T ])]

= φcn,dn
Rβn

[1T<∞ ⋅ φγ(T ),dn
Rβn∖γ[0,T ]

(z ↔ wired arc)],

where the second inequality used the domain Markov property and the fact
that it is sufficient for z to be connected to the wired arc in the new domain
(since it is then automatically connected to the wired arc of the original
domain). Note that we used the notation for slit domains introduced in
Definition 9.16 when writing Rβn ∖ γ[0, T ].

On the one hand, since z is at a distance at least n from the wired
arc in Rβn (thanks to the new choice of β again), Proposition 10.2 can be
combined with Item (10.3) of Lemma 10.4 to obtain

φcn,dn
Rβn

(z ↔ wired arc) ≤ c3√
n
.

On the other hand, if γ(T ) can be written as γ(T ) = z + (−r, r), with
0 ≤ r ≤ k, then the arc z + lr(−r) disconnects the free arc from z in the
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Figure 10.4: This picture presents the different steps in the proof of
Proposition 10.6: we first (1) condition on γ[0, Tx] and use the uniform
estimate (10.3) of Lemma 10.4, then (2) condition on γ[0, Tk+1] and use
the estimate (10.4) of Lemma 10.4, in order to (3) conclude with Lemma
10.7.

domain Rβn ∖ γ[0, T ], while if γ(T ) = z + (−r,2k − r), with k + 1 ≤ r ≤ 2k,
then the arc z + lr(−r) still disconnects the free arc from z. Using once
again Proposition 10.2, this time with Lemma 10.3, we obtain that a.s.

φ
γ(T ),dn
Rβn∖γ[0,T ]

(z ↔ wired arc) ≥ c4√
r
≥ c4√

2k
.

This estimate being uniform in the realization of γ[0, T ], we obtain

c4√
2k
φcn,dn
Rβn

(T <∞) ≤ φcn,dn
Rβn

(z ↔ wired arc) ≤ c3√
n
,

which implies the desired claim (10.8). ◻

Proof of Proposition 10.6. Let us take two vertices x and y on ∂−R
β
n.

As in the previous proof, the larger the β, the larger the corresponding
probability. Hence, β can be chosen in such a way that there are no
“boundary effects”. In order to prove the estimate, we express the event
considered in terms of the exploration path γ in the Dobrushin domain Rβn
with a being the bottom-left corner and b the bottom-right one. If x and
y are connected to the wired arc, γ must go through two boundary edges
which are adjacent to x and y, which we denote by ex and ey. Notice that
ex has to be discovered by γ before ey is.
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Now, define Tx to be the hitting time of ex, and Tk to be the hitting
time of B2k(y)◇, for k ≤ K = ⌊log2 ∣x − y∣⌋ – where ⌊⋅⌋ is the integer part
of a real number. If the exploration path does not cross this ball before
hitting ex, set Tk =∞. With these definitions, the probability that ex and
ey are both on γ can be expressed as

φan,bn
Rβn

(x, y↔ wired arc) = φan,bn
Rβn

(ex, ey ∈ γ)

=
K

∑
k=0

φan,bn
Rβn

(ey ∈ γ, Tx <∞, Tk+1 < Tk =∞)

=
K

∑
k=0

φan,bn
Rβn

[1Tk+1<Tk=∞ ⋅ 1Tx<∞ ⋅ φan,bn
Rβn

(ey ∈ γ ∣γ[0, Tx])], (10.9)

where the third equality is obtained by conditioning on the exploration
path up to time Tx. Recall that ey belongs to γ if and only if y is connected
to the wired arc. Moreover, if {Tk =∞}, y is at a distance at least 2k from
the wired arc in the slit domain Rβn ∖ γ[0, Tx]. Hence, the domain Markov
property together with (10.3) from Lemma 10.4 and Proposition 10.2 give
that, on {Tk =∞},

φan,bn
Rβn

(ey ∈ γ ∣γ[0, Tx]) = φx,bn
Rβn∖γ[0,Tx]

(y↔ wired arc) ≤ c3√
2k

a.s.

By plugging this uniform estimate into (10.9), and removing the condition
on Tk =∞ in the first indicator, we obtain

φan,bn
Rβn

(ex, ey ∈ γ) ≤
K

∑
k=0

c3√
2k

φan,bn
Rβn

[1Tk+1<∞ ⋅ φan,bn
Rβn

(Tx <∞ ∣γ[0, Tk+1])],

where we conditioned on the path up to time Tk+1. Now, ex belongs to
γ if and only if x is connected to the wired arc. Assuming {Tk+1 < ∞},
the vertical segment connecting γ(Tk+1) to Z – of length at most 2k+1

– disconnects the wired arc from x in the domain Rβn ∖ γ[0, Tk+1]. For
k + 1 < K, this vertical segment is at distance at least 1

2
∣x − y∣ from x.

Applying the domain Markov property and item (10.4) of Lemma 10.4, we
deduce that, for k + 1 <K, on {Tk+1 <∞},

φan,bn
Rβn

(Tx <∞ ∣γ[0, Tk+1]) = φγ(Tk+1),bn
Rβn∖γ[0,Tk+1]

(x↔ wired arc) ≤ 2c4

√
2k+1

∣x − y∣
a.s.
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Making use of this uniform bound, we obtain

φan,bn
Rβn

(x, y↔ wired arc)

≤ 2c3c4
K−2

∑
k=0

√
2k+1

√
2k ∣x − y∣

φan,bn
Rβn

(Tk+1 <∞) + 2c3
φan,bn
Rβn

(Tx <∞)
√

2K−1

≤
√

2c3c4c5
∣x − y∣

√
n

K−2

∑
k=0

√
2k + 2c3c5√

n2K−1

≤ c√
n∣x − y∣

,

using also Lemma 10.7 (twice) for the second inequality. ◻

We are now in a position to prove our result.

Proof of Theorem 10.1. Fix β > 0 and n > 0.

Step 1: lower bound for free boundary conditions. Let Nn be
the number of connected pairs (x,u), with x ∈ ∂−Rβn, and u ∈ ∂+Rβn. The
expected value of this quantity is equal to

φ0
Rβn

[Nn] = ∑
u∈∂+Rβn
x∈∂−Rβn

φ0
Rβn

(x↔ u).

Proposition 10.5 directly provides the following lower bound on the
expectation by summing over the (βn)2 pairs of points (x,u) far enough
from the corners, i.e. satisfying the condition of the proposition:

φ0
Rβn

[Nn] ≥ c6(β)n

for some c6(β) > 0.
On the other hand, if x and u (resp. y and v) are pair-wise connected,

then they are also connected to the horizontal line Z × {n} which is
(vertically) at the middle of Rβn. Moreover, the comparison between
boundary conditions implies that the probability – in Rβn with free
boundary conditions – that x and y are connected to this line is smaller
than the probability of this event in the rectangle of half height with wired
boundary conditions on the top side. In the following, assume without
loss of generality that n is even1 and set m = n/2, so that the previous
rectangle is R2β

m , and define am and bm as before. Using the comparison
between boundary conditions, and also the symmetry of the lattice, we get

φ0
Rβn

(x↔ u, y↔ v) ≤ φam,bm
R2β
m

(x, y↔ wired arc)φam,bm
R2β
m

(ū, v̄↔ wired arc),

1The argument may be adapted to the case of odd integers.
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where ū and v̄ are the projections on the real axis of u and v. Summing
the bound provided by Proposition 10.6 on all vertices x, y ∈ ∂−Rβn and
u, v ∈ ∂+Rβn, we obtain

φ0
Rβn

[N2
n] ≤ c7m2 ≤ c7n2

for some constant c7 > 0. Now, by the Cauchy-Schwarz inequality,

φ0
Rβn

(Cv(Rβn)) = φ0
Rβn

(Nn > 0) = φ0
Rβn

[(1Nn>0)2] ≥
φ0
Rβn

[Nn]2

φ0
Rβn

[N2
n]

≥ c6(β)2/c7

(since φ0
Rβn

[Nn] = φ0
Rβn

[Nn1Nn>0]). We have thus reached the claim.

Step 2: lower and upper bounds for general boundary conditions.
As already shown in Chapter 5, the lower bound that was previously proved
for free boundary conditions actually implies the lower bound for any
boundary conditions ξ by using the ordering between boundary conditions.

For the upper bound, use duality to find that

φξR(Cv(R)) ≤ φ1
R(Cv(R)) = 1 − φ0

R⋆(Ch(R⋆)) ≤ 1 − c1, (10.10)

where the notation C⋆h(R⋆) is used for the existence of a horizontal dual
crossing in the dual rectangle R⋆ is as usual the dual graph of R (note
that the invariance by π/2-rotations was implicitly used). This fact implies
Theorem 10.1 readily.

◻

Remark 10.8. As a by-product of our proofs, one can also obtain the
value of the critical exponent for the boundary magnetization in the Ising
model, near a free horizontal boundary arc, and the corresponding one-arm
half-plane exponent for the FK-Ising model.

Indeed, consider the rectangle Rn = [−n,n] × [0, n]. There exist strictly
positive constants c1 and c2 such that for the boundary conditions dobr
free on the bottom and wired everywhere else, one has

c1n
−1/2 ≤ φdobr

Rn (0↔ wired arc) ≤ c2n−1/2,

uniformly over all n. This translates via the Edwards-Sokal coupling into
the following inequality for the Ising model: for every n ≥ 1,

c1n
−1/2 ≤ µfRn[σ0∣σx = 1,∀x ∈ ∂+Rn] ≤ c2n−1/2.
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10.2 RSW in general topological rectangle

We now extend crossing estimates to a more general class of domains.
Such crossing probabilities bounds, uniform with respect to the boundary
conditions, have been obtained in standard rectangles in Theorem 10.1. In
this section, the crossing bounds are proved to hold in general topological
rectangles with general boundary conditions, and are independent of the
local geometry of the boundary. This generalization is needed when dealing
with domains generated by random interfaces (which usually have fractal
scaling limits).

Definition 10.9. A topological rectangle is given by (Ω, a, b, c, d), where
Ω is a discrete domain and a, b, c and d are four boundary vertices on ∂Ω
found in counterclockwise order. For two points x, y ∈ ∂Ω, we denote by
(xy) ⊂ ∂Ω the counterclockwise arc of ∂Ω from x to y (including x and y).
We will frequently identify x ∈ ∂Ω with the arc (xx).

Before going further, we need an equivalent of the aspect ratio between
the width and the height of a standard rectangle that we could apply for
topological rectangles to measure “how flat they are”. We use the extremal
length defined as follows. Recall that the medial graph Ω◇ of a discrete
domain Ω may be seen as a subdomain of C by adding small patches around
pinched points. Furthermore, a, b, c and d are naturally associated to four
medial vertices a◇, b◇, c◇ and d◇ of ∂Ω◇ (for instance, every vertex is
bordered by two medial-vertices in ∂Ω◇; pick the second one when going
in counterclockwise order. If a = b say, then pick a◇ to be the first of
the two medial-vertices bordering a, and b◇ to be the second one). Let
us denote by `Ω [(ab) , (cd)] the standard extremal length between (a◇b◇)
and (c◇d◇) in Ω◇, i.e.

`Ω [(ab) , (cd)]

∶= sup
ρ

( inf { ∫γ ρ∣dz∣ ∶ γ rectifiable path from (a◇b◇) to (c◇d◇) in Ω◇})
2

∫Ω◇ ρdxdy
,

where the supremum is taken over measurable functions ρ ∶ Ω◇ ↦ R+,
and ∣dz∣ denotes the Euclidean element of length. Informally speaking,
`Ω [(ab) , (cd)] measures the distance between (ab) and (cd) from a
conformal invariance point of view. The notion was introduced by Ahlfors
and Beurling in a more general context and we refer to [Ahl73] for its
basic properties. Also, some reader will have encountered the inverse of
the extremal length which is sometimes called the modulus of the rectangle.

Given a topological rectangle (Ω, a, b, c, d), let {(ab) ↔ (cd)} be the
event that there is an open path in Ω between (ab) and (cd). We are now
in a position to state the theorem.
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Theorem 10.10 (Chelkak, Duminil-Copin, Hongler [CDCH12]). Let
M > 0. There exists c = c(M) > 0 such that for any boundary conditions
ξ and for any topological rectangle (Ω, a, b, c, d) with `Ω [(ab) , (cd)] ∈
[ 1
M
,M] ,

c ≤ φξΩ [(ab)↔ (cd)] ≤ 1 − c.

The condition above is a conformally invariant version of the condition
that the aspect ratio of rectangles remains bounded away from 0 and 1.

In the rest of this chapter, for two functions f and g, f ≍ g means that
cg ≤ f ≤ Cg, where c > 0 and C > 0 are universal constants (we will precise
each time on what they depend).

10.2.1 More involved discrete complex analysis

In the previous section, we use the comparison between discrete harmonic
measures and the probability that a vertex on the free arc is connected
to the wired arc. This relation is not restricted to standard rectangles of
the form [0, n] × [0,m], and we now wish to exploit this comparison for
more general domains. In order to do so, we need a few technical results on
harmonic measures that we list below (this section should be understood as
a toolbox). These results were obtained in [Che11] from discrete complex
analysis considerations.

Before starting, let us change slightly the notation for harmonic
measures to be more coherent with [Che11]. For two vertices x and y of
a discrete domain Ω, let Z●

Ω [x, y] be the partition function of the random
walks (X●

n) (introduced in Chapter 8) on Ω̂ from x to y, killed when
reaching ∂Ω̂ ∪ {y}. In other words,

Z●
Ω [x, y] ∶= P[(X●

n) starting from x hits y before ∂Ω̂] = HM●(x),

where HM●(x) is taken in the Dobrushin domain (Ω, y, y). For two
boundary arcs (ab) and (cd) ⊂ ∂Ω and x ∈ ∂Ω, define Z●

Ω [x, (cd)] ∶=
∑y∈(cd)Z●

Ω [x, y] and Z●
Ω [(ab) , (cd)] ∶= ∑x∈(ab)Z●

Ω [x, (cd)] .

It is time to list several important properties of Z●
Ω. The first one yields

that whenever the extremal length is of order 1, then so are the partition
functions of (X●

n) under consideration.

Theorem 10.11 ([Che11]). Let M > 1. For any topological rectangle
(Ω, a, b, c, d), the following properties are equivalent:

1. `Ω [(ab) , (cd)] ≍ 1,
2. `Ω [(bc) , (da)] ≍ 1,
3. Z●

Ω [(ab) , (cd)] ≍ 1,
4. Z●

Ω [(bc) , (da)] ≍ 1,
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where the constants in ≍ never depend on (Ω, a, b, c, d) but simply on the
constants in other ≍.

We now describe factorization properties of these partition functions
(or equivalently of discrete harmonic measures). While in the continuum
the results below are rather easy to derive (for instance using conformal
invariance and explicit expressions in the upper half-plane), obtaining
them at the discrete level requires a much more delicate analysis.

Theorem 10.12 ([Che11]). For any topological rectangle (Ω, a, b, c, d), we
have

Z●
Ω [a, (bc)] ≍

¿
ÁÁÀZ●

Ω [a, b]Z●
Ω [a, c]

Z●
Ω [b, c]

,

Z●
Ω [(ab) , (cd)] ≍

¿
ÁÁÀZ●

Ω [a, d]Z●
Ω [b, c]

Z●
Ω [a, b]Z●

Ω [c, d]
, if `Ω [(ab) , (cd)] ≤M,

(10.11)

where the constants in ≍ are universal in the first equality, and depend on
M only in the second.

We now focus on the notion of separator. If (Ω, a, b, c, d) is a topological
rectangle, a separating curve between (ab) and (cd) is a self-avoiding
discrete path Γ in Ω separating (ab) from (cd). Let Ω[Γ, (ab)] be the
union of Γ with the connected component of Ω ∖ Γ containing (ab).

Theorem 10.13 ([Che11]). Let M > 1. There exists ε = ε(M) ∈ (0,1) such
that for any topological rectangle (Ω, a, b, c, d) with Z●

Ω [(ab) , (cd)] ≤M and

any κ ∈ [Z
●
Ω[(ab),(cd)]

ε
, ε] , there exists a separating curve Γ ⊂ Ω between (ab)

and (cd) with

Z●
Ω[Γ,(ab)] [(ab) ,Γ] ⋅Z●

Ω[Γ,(cd)] [Γ, (cd)] ≍ Z
●
Ω [(ab) , (cd)] (10.12)

and

Z●
Ω[Γ,(cd)] [Γ, (cd)] ∈ [εκ, κ] , (10.13)

where the constants in ≍ depend on M only.

A separating curve satisfying the first part of (10.12) will be called
a separator. Informally speaking, separators are discrete curves that
separate domains in two pieces in a “good” manner from the harmonic
measure point of view: the product of partition functions of random walks
in the two pieces is of the same order as the partition function of random
walks in the original domain.

We will also need the following corollary, which yields that a topological
rectangle can be split in “fair” shares.
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Corollary 10.14. Let M > 1. For any topological rectangle (Ω, a, b, c, d)
with M−1 ≤ `Ω [(ab) , (cd)] ≤ M , there exists a separating curve Γ ⊂ Ω
between (ab) and (cd) such that

`Ω[Γ,(ab)] [(ab) ,Γ] ≍ `Ω[Γ,(cd)] [(cd) ,Γ] ≍ `Ω [(ab) , (cd)] ,

where the constants in ≍ depend on M only.

Proof. By 1. ⇒ 3. of Theorem 10.11, we have that Z●
Ω [(ab) , (cd)] ≍ 1

(where the constant depends on M only). Applying Theorem 10.13 with
κ = ε = ε(M), we obtain a simple curve Γ separating (ab) from (cd) with

Z●
Ω[Γ,(ab)] [(ab) ,Γ] ≍ ZΩ[Γ,(cd)] [Γ, (cd)] ≍ Z●

Ω [(ab) , (cd)] ,

where the constants in ≍ depend on M only. We then get the result by
applying 3.⇒ 1. of Theorem 10.11 in Ω[Γ, (cd)] and Ω[Γ, (ab)]. ◻

10.2.2 Proof of Theorem 10.10

Before presenting the proof of Theorem 10.10, we need two more lemmata.
Recall from Proposition 10.2 that for a Dobrushin domain (Ω, a, b) and
c ∈ ∂ab,

φa,bΩ (c↔ ∂ba) ≤
√

HM●(c) =
√
Z●

Ω[c, (ba)] (10.14)

(the second equality is just the translation between the notations from
Chapters 6 and 8 and the notations of this section). This fact can be

extended to the following context. Let φ
(ab),(cd)
Ω be the FK-Ising measure

with wired boundary conditions on (ab) and (cd), and free elsewhere. To

avoid confusion, we now use the notation φ
(ab)
Ω for the Dobrushin boundary

conditions in the domain (Ω, a, b) instead of φa,bΩ (this could indeed be

confused with φ
(aa),(bb)
Ω ).

Lemma 10.15. For any M > 0, there exists C1 = C1(M) > 0 such that
for any topological rectangle (Ω, a, b, c, d) with Z●

Ω [(ab) , (cd)] ≤M ,

φ
(ab),(cd)
Ω [(ab)↔ (cd)] ≤ C1

√
Z●

Ω [(ab) , (cd)].

Proof. (sketch) The proof follows the ideas of the proof of [CS12,
Theorem 6.1], where the above crossing probability is computed in the
scaling limit. We only sketch it here and refer to [CDCH12] for precisions.

Fix a topological rectangle (Ω, a, b, c, d) and consider the critical FK-
Ising model with wired boundary conditions on (ab) and (cd) and free
elsewhere. In [CS12, Proof of Theorem 6.1], two discrete holomorphic
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observables F1 and F2 are introduced in this context. Furthermore,
Chelkak and Smirnov showed that there exists a unique linear combination
F of F1 and F2, and a unique κ ∈ R such that a discrete version H of
Im(∫

z
F 2) satisfies the following boundary conditions:

H = 0 on (da) , H = 1 on (cd) and H = κ on (ab)ext ∪ (bc)ext ,

where (ab)ext and (bc)ext denote the set of vertices of ∂Ω̂ adjacent to (ab)
and (bc) respectively.

This discrete function H is ∆●-subharmonic on Ω ∖ ((cd) ∪ (da)).
Furthermore, the constant κ is shown to be in one-to-one correspondence

with the quantity φ
(ab),(cd)
Ω [(ab)↔ (cd)]; from [CS12, Formula 6.6], we

get in particular that

√
κ ≍ φ(ab),(cd)

Ω [(ab)↔ (cd)] , (10.15)

where the constants in ≍ are universal.
By construction of H (see [CS12, Proof of Theorem 6.1]), we have that

H(w) = κ for some dual vertex on the dual arc (ac)⋆ adjacent to the vertex
b. Since H (b) −H(w) = ∣F (e)∣2 ≥ 0, where e is the medial edge bordering
b and w, we find

0 =H(w) − κ ≤H(b) − κ ≤ (1 − κ)Z●
Ω [b, (cd)] − κZ●

Ω [b, (da)] .

In the second equality, we used the fact that H − κ is ∆●-subharmonic on
Ω and the boundary conditions of H − κ. This leads to

κ ≤
Z●

Ω [b, (cd)]
Z●

Ω [b, (da)]
.

Using the factorization result for the harmonic measure (Proposition
10.12), we obtain that

κ ≤
Z●

Ω [b, (cd)]
Z●

Ω [b, (da)]
≍

¿
ÁÁÀZ●

Ω [b, c]Z●
Ω [b, d]Z●

Ω [d, a]
Z●

Ω [c, d]Z●
Ω [b, d]Z●

Ω [b, a]
≍

¿
ÁÁÀZ●

Ω [a, d]Z●
Ω [b, c]

Z●
Ω [a, b]Z●

Ω [c, d]
.

In the second ≍, we use that Z●
Ω [a, b] ≍ Z●

Ω [b, a] for two vertices a and b
on the boundary2. Using the assumption Z●

Ω [(ab) , (cd)] ≤ M , we get by

2Observe that the ratio Z●Ω [a, b] /Z●Ω [b, a] is not equal to 1 but to

GΩ̂∖{b}(a, a)/GΩ̂∖{a}(b, b), where G is the Green function defined in Chapter 8. The

Green function GΩ̂∖{b}(a, a) is equal to the number of visits of a before reaching b for

a random walk starting from a in Ω̂. If a is on the boundary, one may easily see that
this expected number of visits is bounded uniformly in the shape of the domain (every
excursion away from a has positive probability of hitting the boundary before coming
back).
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Theorem 10.12 that

κ ≤

¿
ÁÁÀZ●

Ω [a, d]Z●
Ω [b, c]

Z●
Ω [a, b]Z●

Ω [c, d]
≍ Z●

Ω [(ab) , (cd)] .

Hence, (10.15) implies the existence of C1 = C1(M) <∞ such that

φ
(ab),(cd)
Ω [(ab)↔ (cd)] ≍

√
κ ≤ C1

√
Z●

Ω [(ab) , (cd)].

◻

This leads to the following lemma.

Lemma 10.16. Let M > 1. There exists C2 = C2(M) > 0 such that for
any (Ω, a, b, c, d) with Z●

Ω[(ab), (cd)] ≤M ,

φ
(cd)
Ω (a↔ (cd), b↔ (cd)) ≤ C2

¿
ÁÁÀZ●

Ω[a, (cd)]Z●
Ω[b, (cd)]

Z●
Ω[(ab), (cd)]

.

Proof. Constants in ≍ depend on M only. Note that Z●
Ω[a, (cd)] ≤

Z●
Ω[(ab), (cd)] ≤ M . Fix ε = ε(M) ∈ (0,1/3) as given by Theorem 10.13.

Then we have two cases:

Case 1: Z●
Ω[a, (cd)] > ε2

M
Z●

Ω[(ab), (cd)] or Z●
Ω[b, (cd)] > ε2

M
Z●

Ω[(ab), (cd)].

Suppose we are in the first case (the other case is handled similarly).
Theorem 10.12 and (10.14) imply that

φ
(cd)
Ω (a, b↔ (cd)) ≤ φ(cd)

Ω (b↔ (cd)) ≤
√
Z●

Ω[b, (cd)]

≤

¿
ÁÁÀM

ε2
⋅
Z●

Ω[a, (cd)]Z●
Ω[b, (cd)]

Z●
Ω[(ab), (cd)]

.

Case 2: Z●
Ω[a, (cd)] ≤ ε2

M
Z●

Ω[(ab), (cd)] and Z●
Ω[b, (cd)] ≤ ε2

M
Z●

Ω[(ab), (cd)].

Set κ ∶= ε
M
Z●

Ω [(ab) , (cd)]. Note that κ is smaller than ε and larger
than Z●

Ω[a, (cd)]/ε and Z●
Ω[b, (cd)]/ε. By Theorem 10.13 applied to κ in

(Ω, a, a, c, d), there exists a separator Γa between a and (cd) such that

ε2

M
Z●

Ω[(ab), (cd)] ≤ Z●
Ω[Γa, (cd)] ≤ ε

M
Z●

Ω[(ab), (cd)]. (10.16)

Doing the same in (Ω, b, b, c, d), there exists a separator Γb of b and (cd)
such that

ε2

M
Z●

Ω[(ab), (cd)] ≤ Z●
Ω[Γb, (cd)] ≤ ε

M
Z●

Ω[(ab), (cd)]. (10.17)
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Set Ωa = Ω[a,Γa] and Ωb = Ω[b,Γb]. Note that the two separators do not
intersect otherwise their union would separate the whole arc (ab) from
(cd), which is contradictory since 2ε/M < 1 and

Z●
Ω[Γa ∪ Γb, (cd)] ≤ Z●

Ωa[Γa, (cd)] +Z
●
Ωb

[Γb, (cd)] ≤ 2ε

M
⋅Z●

Ω[(ab), (cd)].

We are thus facing the following topological picture: the two arcs Γa
and Γb are not intersecting and are separating a, b and (cd). Let Γ be the
arc composed of the arcs Γa, Γb and (ab). Wiring Γ, we find:

φ
(cd)
Ω [a, b↔ (cd)] ≤ φΓa

Ωa
[a↔ Γa]φΓb

Ωb
[b↔ Γb]φΓ,(cd)

Ω[Γ,(cd)][Γ↔ (cd)].

Let us deal with the first term on the right-side. Using (10.14) and the
fact that Γa is a separator between a and (cd), we obtain

φΓa
Ωa

[a↔ Γa] ≤
√
Z●

Ω[a,Γa] ≍

¿
ÁÁÀ Z●

Ω[a, (cd)]
Z●

Ω[Γa, (cd)]
≤ C

¿
ÁÁÀ Z●

Ω[a, (cd)]
Z●

Ω[(ab), (cd)]
,

where in the last inequality we used (10.16). Similarly:

φΓb
Ωb

[b↔ Γb] ≤ C

¿
ÁÁÀ Z●

Ω[b, (cd)]
Z●

Ω[(ab), (cd)]
.

For the last term, Proposition 10.15 gives that

φ
Γ,(cd)
Ω[Γ,(cd)][Γ↔ (cd)] ≤

√
Z●

Ω[Γ,(cd)][Γ, (cd)]

≤
√

(1 + 2
3M

)Z●
Ω[(ab), (cd)],

where in the second inequality we used the fact that Γ is included in the
union of (ab), Γa and Γb, and the two inequalities (10.16) and (10.17).
Putting everything together we find

φ
(cd)
Ω [a, b↔ (cd)] ≤ C2

¿
ÁÁÀZ●

Ω[a, (cd)]Z●
Ω[b, (cd)]

Z●
Ω[(ab), (cd)]

.

◻

Proof of Theorem 10.10. Let M > 1. Once again, constants in ≍
depend only on M > 0. Fix a domain (Ω, a, b, c, d) with `Ω[(ab), (cd)] ∈
[M−1,M]. The monotonicity allows us to treat free boundary conditions
in order to get a uniform lower bound. As usual, obtaining an upper
bound for the probability of a crossing (ab)←→ (cd) on Ω is equivalent to
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obtaining a lower bound for the probability of a crossing (bc)⋆ ⋆←→ (da)⋆
for the critical FK-Ising model on Ω⋆ by duality. Indeed, it is enough to

bound from below the probability φ0
Ω⋆[(bc)⋆

⋆←→ (da)⋆] of a crossing from
(bc)⋆ to (da)⋆ in Ω⋆ (by a constant depending on M only). Theorem 10.11
implies that whenever `Ω[(ab), (cd)] is of order 1, `Ω[(bc), (da)] is of order
one, and it is easy to check that `Ω⋆[(ab)⋆, (cd)⋆] is then also of order 1.
In conclusion, the lower bound for the dual model follows from the lower
bound for the primal one, and it implies the upper bound of Theorem 10.10.

We now focus on the proof of the lower bound. In order to do so, we
use a second-moment estimate on the random variable

N ∶= ∑
u∈(ab)

∑
v∈(cd)

φ0
Ω[u↔ v] 1u↔v. (10.18)

Step 1: First moment of N . Proposition 10.2 implies

φ0
Ω[N] = ∑

u∈(ab)
∑

v∈(cd)
φ0

Ω[u↔ v]2 ≥ ∑
w∈(ab)⋆,t∈(cd)⋆

HM○(w, t),

where HM○(w, t) is the ∆○-harmonic measure of w seen from t in Ω⋆ as
defined in Chapter 8.

We now wish to prove that the right-hand side is of order 1. We only
sketch the proof since the details are slightly tedious: one has to switch
between several domains with extremal lengths of order 1.

The quantity HM○(⋅, ⋅) may be seen as HM●(⋅, ⋅) in the dual graph Ω̃⋆

obtained by putting dual-vertices in the middle of every face of Ω (then
the extension of Ω̃⋆ is exactly Ω⋆). We have already mentioned that when
`Ω[(ab), (cd)] is of order 1, so is `Ω⋆[(ab)⋆, (cd)⋆]. It is then easy to check
that the extremal length remains of order 1 in the slightly different dual
graph Ω⋆ mentioned just before. Theorem 10.11 thus implies that

∑
w∈(ab)⋆,t∈(cd)⋆

HM○(w, t) ≍ 1.

In conclusion, we find the existence of c1 = c1(M) > 0 such that

φ0
Ω[N] ≥ c1.

Step 2: Second moment of N . Corollary 10.14 applied in (Ω, a, b, c, d)
gives a separator Γ ⊂ Ω between (ab) and (cd) splitting Ω in two parts of
comparable sizes (in terms of harmonic measure):

Z●
Ω[(ab),Γ] ≍ Z●

Ω[Γ, (cd)] ≍ Z●
Ω[(ab), (cd)] ≍ 1. (10.19)
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We find:

φ0
Ω[N2] = ∑

u,v∈(ab)
∑

u′,v′∈(cd)
φ0

Ω[u↔ v]φ0
Ω[u′ ↔ v′]φ0

Ω[u↔ v, u′ ↔ v′]

≤ ∑
u,v∈(ab)

∑
u′,v′∈(cd)

φ0
Ω[u↔ Γ]φ0

Ω[u′ ↔ Γ]

φ0
Ω[v↔ Γ]φ0

Ω[v′ ↔ Γ]φ0
Ω[u,u′ ↔ Γ, v, v′ ↔ Γ].

Let Ω1 = Ω[Γ, (ab)] and Ω2 = Ω[Γ, (cd)]. Wiring the arc Γ, the right-hand
side factorizes into the product of two terms

SΩ1 = ∑
u,v∈(ab)

φΓ
Ω1

[u↔ Γ]φΓ
Ω1

[v↔ Γ]φΓ
Ω1

[u, v↔ Γ],

SΩ2 = ∑
u′,v′∈(cd)

φΓ
Ω2

[u′ ↔ Γ]φΓ
Ω2

[v′ ↔ Γ]φΓ
Ω1

[u′, v′ ↔ Γ].

Assume for a moment that we possess the bounds

SΩ1 ≤ CZ●
Ω[(ab),Γ]3/2 and SΩ2 ≤ CZ●

Ω[Γ, (cd)]3/2. (10.20)

They imply, thanks to the definition of separators,

φ0
Ω[N2] ≤ (Z●

Ω[(ab),Γ] ⋅Z●
Ω[Γ, (cd)])3/2 ≤ C ′Z●

Ω[(ab), (cd)]3/2 ≤ C ′M3/2.

(10.21)

The last inequality follows from Theorem 10.11. The end of the proof is
split into two steps: in the first one we prove (10.20), and in the last step
we implement the second-moment argument.

Step 3: Let us prove the two estimates in (10.20). We only show the
first one, since the second one is handled similarly. Using (10.14) and then
Lemma 10.16, we find

SΩ1 = ∑
u,v∈(ab)

φΓ
Ω1

[u↔ Γ]φΓ
Ω1

[v↔ Γ]φΓ
Ω1

[u, v↔ Γ]

≤ C ∑
u,v∈(ab)

Z●
Ω(u,Γ)Z●

Ω(v,Γ)
√
Z●

Ω[(uv),Γ]
.

Now, for any sequence of positive real numbers (un)n≥0, and α > 0, a
comparison between series and integral implies

n

∑
k=1

uk
⎛
⎝

k

∑
j=1

uj
⎞
⎠

α−1

≤ 1

α
(
n

∑
k=1

uk)
α

. (10.22)

Say that u ≺ v if u and v are found in this order when going along
the arc (ab) in the counterclockwise order. Recall that Z●

Ω[(uv),Γ] =
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∑x∈(uv)Z●
Ω[x,Γ]. Therefore, (10.22) implies in this case that

∑
u,v∈(ab)

Z●
Ω[u,Γ]Z●

Ω[v,Γ]
√
Z●

Ω[(uv),Γ]
≤ 2 ∑

u≺v∈(ab)

Z●
Ω[u,Γ]Z●

Ω[v,Γ]
√
Z●

Ω[(uv),Γ]

= 2 ∑
v∈(ab)

Z●
Ω[v,Γ] ∑

u∈(av)

Z●
Ω[u,Γ]

√
Z●

Ω[(uv),Γ]

≤ ∑
v∈(ab)

Z●
Ω[v,Γ]

√
Z●

Ω[(av),Γ]

≤ ∑
v∈(ab)

Z●
Ω[v,Γ]

√
Z●

Ω[(ab),Γ]

≤ Z●
Ω[(ab),Γ]

3
2 ,

thus giving (10.20).

Step 4: We finish the proof by implementing the second-moment esti-
mate to obtain a lower bound on crossing probabilities with free boundary
conditions. By the Cauchy-Schwarz inequality,

φ0
Ω((ab)↔ (cd)) = φ0

Ω(N > 0) = φ0
Ω[(1N>0)2] ≥

φ0
Ω[N]2

φ0
Ω[N2]

≥ c,

where we used the two first steps to show the existence of c = c(M) > 0.
This concludes the proof. ◻

10.3 Applications to arm exponents

To quantify connectivity properties at pc, we introduce the notion of arm-
event. In this section, we describe one application to arm-events of the
previous theorem on crossing probabilities.

Below, φ denotes the unique infinite-volume measure at q = 2 and
p = pc(2). Recall that Λn = [−n,n]2 and define Λn(x) ∶= x + Λn. In
this section, Λ⋆

n is seen as the dual graph of discrete domain Λn (dual-
vertices correspond to the centers of faces of Z2 touching Λn, and dual-
edges connect nearest neighbors).

Definition 10.17. An arm crossing the annulus ΛN ∖Λn is either a self-
avoiding path in ΛN ∖Λn−1 from ∂Λn to ∂ΛN or a self-avoiding dual-open
path in Λ⋆

N ∖Λ⋆
n−1 from ∂Λ⋆

n to ∂Λ⋆
N .

Fix a configuration ω. An arm is said to be of type 1 if it is composed
of open edges in ω only. An arm is said to be of type 0 if it is composed of
open dual-edges in ω⋆ only. Note that an arm of type 1 is defined on Z2

while an arm of type 0 is defined on (Z2)⋆.
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Definition 10.18. Fix a sequence σ ∈ {0,1}j and n < N . Let Aσ(n,N) be
the event that j mutually edge-avoiding arms crossing the annulus ΛN ∖Λn
of respective types σ1, . . . , σj can be found in the counterclockwise order.

For instance, A1(n,N) is the one-arm event corresponding to the
existence of an open path from the inner to the outer boundaries of ΛN∖Λn.
For an example of A1010(n,N), see Fig. 10.5.

Proposition 10.19. For any σ, there exist βσ > 0 and γσ > 0 such that

(n/N)βσ ≤ φ[Aσ(n,N)] ≤ (n/N)γσ .

Let us remark that the proof of this proposition applies mutatis mutandis
to any random-cluster model with 1 ≤ q ≤ 4.

Proof. (sketch) The upper bound has been treated in Lemma 5.35 since
Aσ(n,N) is either included in A1(n,N) or A0(n,N), so that one can take
ξ(σ, q) = ξ(1, q) > 0. For the complementary bound, fix σ of length j and
n ≤ N . Consider the cones

Ci = {(r cos(θ), r sin(θ)) ∶ r > 0 and θ ∈ [ 2πi
2j
, 2π(i+1)

2j
]} ,

where 0 ≤ i ≤ 2j. Let Ei be the event that there exists an arm of type σi
crossing ΛN ∖Λn which is included in Ci. Observe that

φ[Ei∣Ei′ ∶ i′ < i] ≥ ( n
N

)
c1

,

where c1 = c1(j) > 0. The existence of c1 is guaranteed by successive
applications of Theorem 10.1 in the following topological rectangles for k
between ⌊log2(n)⌋ and ⌊log2(N)⌋:
� Tk ∶= Ci ∩ (Λ2k+2 ∖Λ2k) are crossed from “inner to outer boundary“

(i.e. from ∂Λ2k to ∂Λ2k+2);
� Sk ∶= Ci ∩ (Λ2k+1 ∖Λ2k) are crossed between the two sides of Sk (the

sides shared with ∂Ci).
At the end, we find

φ[Aσ(n,N)] ≥ φ[⋂
i≤j
Ei] ≥ ( n

N
)
jc1

.

◻

Remark 10.20. Note that the conditioning on Ei′ for i′ < i enforces
boundary conditions on C` for ` < 2i − 1. In particular, these boundary
conditions remain bounded away from Ci, thus allowing us to apply P5
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of Theorem 5.24 instead of Theorem 10.1 for 1 ≤ q ≤ 4. For q = 2, this
requirement is not necessary, since the boundary conditions are allowed
to be right on the boundary of Ei′ . As a consequence, one may simply
consider j cones instead of 2j. We chose to expose the proof like this to
illustrate that the result is not specific to q = 2.

It is natural to predict that there exists ξσ ∈ (0,∞) such that

φ[Aσ(n,N)] = (n/N)ξσ+o(1),

where o(1) is a quantity converging to 0 as n/N goes to 0. The quantity
ξσ is called a critical arm-exponent. Predictions from physics provide us
with exact conjectures for these exponents, but except in special cases,
even the existence of this exponent is unknown mathematically3.

Remark 10.21. Before going further, let us mention that the probability
of arm-events does not really depend on the boundary conditions. Indeed,
Corollary 6.16 together with Theorem 5.45 imply that there exist c,C > 0
such that for any n < N and any boundary conditions on ∂Λ2N ,

cφ[Aσ(n,N)] ≤ φξΛ2N
[Aσ(n,N)] ≤ Cφ[Aσ(n,N)]. (10.23)

From now on, we will state all results in infinite-volume directly.

10.3.1 Quasi-multiplicativity and localization

The following statements yield two important properties of arm-events.
These properties are crucial when working with probabilities of arm-events.
Let us start by the so-called “quasi-multiplicativity property”.

Theorem 10.22 (Quasi-multiplicativity). Fix a sequence σ. There exist
c = c(σ) > 0 and C = C(σ) <∞ such that

cφ[Aσ(n1, n2)]φ[Aσ(n2, n3)] ≤ φ[Aσ(n1, n3)] ≤ Cφ[Aσ(n1, n2)]φ[Aσ(n2, n3)]

for every n1 < n2 < n3.

The second property is the following “localization of arms”. Let δ > 0;
for a sequence σ of length j, consider 2j points x1, x2, . . . , x2j found in
clockwise order on the boundary of Λn, with the additional condition that
∣xk+1 − xk ∣ ≥ δn for any k < 2j and ∣x2j − x1∣ ≥ δn. Similarly, consider 2j
points y1, . . . , y2j found in clockwise order on the boundary of ΛN , with the
additional condition that ∣yk+1−yk ∣ ≥ δN for any k < 2j and ∣y2j −y1∣ ≥ δN .
The sequence of intervals (Ik = [x2k−1, x2k])k≤j and (Jk = [y2k−1, y2k])k≤j
are called δ-well separated landing sequences.

3For q = 2, ξ1 as well as ξ101...1 and ξ101...10 (with respectively 2n− 1 and 2n arms)
can be computed using SLE(16/3).
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Let AI,Jσ (n,N) be the event that Aσ(n,N) occurs but that in addition
to this, the arms can be chosen in such a way that the k-th arm goes from
Ik to Jk.

Theorem 10.23. Let σ be a sequence. For any δ > 0 there exists
C = C(σ) <∞ such that, for any 2n ≤ N and any choice of δ-well-separated
landing sequences I, J at radii n and N ,

φ[AI,Jσ (n,N)] ≤ φ[Aσ(n,N)] ≤ Cφ[AI,Jσ (n,N)].

The theorem asserts that forcing arms to start and finish in some
prescribed areas of the boundary does not cost more than a bounded
multiplicative constant to the probability.

10.3.2 Proofs of Theorems 10.22 and 10.23

In this section we sketch the proof of Theorem 10.22. At the heart of
the proof is the notion of well-separated arms. In words, well-separated
arms are arms whose end-points are at macroscopic distance (we also add
the technical condition that they extend slightly outside the boxes, see
Fig. 10.5). In what is next, let xk and yk be the end-points4 of the arm
γk on the inner and outer boundary respectively. The paths γ1, . . . , γj are
said to be well-separated if
� points yk are at distance larger than 2δN from each others,
� points xk are at distance larger than 2δn from each others,
� for every k, yk is σk-connected to distance δN of ∂ΛN in ΛδN(yk),
� for every k, xk is σk-connected to distance δn of ∂Λn in Λδn(xk).

Let Asep
σ (n,N) be the event that Aσ(n,N) holds true and there exist

arms realizing Aσ(n,N) which are δ-well-separated. Note that while the
notation does not suggest it, the event depends on δ.

Most of this section will be devoted to the following result yielding that
forcing the arm to be well-separated changes the probability by a bounded
multiplicative constant only.

Theorem 10.24. Fix σ and δ > 0 small enough. There exists C = C(σ) > 0
such that for every n < N ,

φ[Asep
σ (n,N)] ≤ φ[Aσ(n,N)] ≤ Cφ[Asep

σ (n,N)].

This theorem is classical in the theory of percolation. It has been proved
several times. Theorem 10.10 will exactly be the tool required to adapt the

4Since an arm is self-avoiding, xk and yk are uniquely defined. Furthermore, xk and
yk are on the primal graph if the path is of type 1, and on the dual graph it is of type
0.
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∂Λn ∂ΛN
∂Λn ∂ΛN

x1

x2

x3 x4

x2 + ∂Λδn

y2y3 y2 + ∂ΛδN

y4

y1

Figure 10.5: On the left, the four-arm event A1010(n,N). On the right,
the event Asep

1010(n,N) with well-separated arms. Note that these arms are
not at macroscopic distance of each other inside the domain, but only at
their end-points.

proofs valid for percolation to the context of the FK-Ising model. Since
the proof for percolation can be found in the literature and since this proof
is a modification of it, we will only sketch it here. In what follows, we keep
the notation ≍ introduced in the previous section.

Before doing so, let us mention that this theorem is extremely useful. For
instance, Theorems 10.22 and 10.23 follow classically from it. We illustrate
this fact by proving Theorem 10.22 (the derivation of Theorem 10.23 is left
to the reader).

Proof of Theorem 10.22 (sketch). There exists c > 0 such that for
n1 ≤ n2 ≤ n3:

φ[Aσ(n1, n3)] = φ[Aσ(n1, n3)∣Aσ(2n2, n3)] ⋅ φ[Aσ(2n2, n3)]
≤ φ[Aσ(n1, n2)∣Aσ(2n2, n3)] ⋅ φ[Aσ(2n2, n3)]
≍ φ[Aσ(n1, n2)] ⋅ φ[Aσ(2n2, n3)]
≍ φ[Aσ(n1, n2)] ⋅ φ[Asep

σ (2n2, n3)]
≤ cφ[Aσ(n1, n2)] ⋅ φ[Aσ(n2, n3)],

where in the third line we used the domain Markov property and (10.23),
in the fourth, Theorem 10.24, and in the fifth, the following claim:
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Claim: There exists c > 0 such that for any n ≤ N ,

φ[Aσ(n,N)] ≥ cφ[Asep
σ (2n,N)].

Proof of the Claim. We only sketch the proof. Condition on the well-
separated arms reaching ∂Λ2n. Let xi be the end-points of the paths and
consider j thin rectangles of length n and width 4nδ, with one of the short
edges centered on xi, for 1 ≤ i ≤ j.

Theorem 10.10 implies that there exists a path of type σi in each of
these rectangles from ∂Λ2n to ∂Λn with positive probability. Furthermore,
the end-points xi are σi-connected to distance 2δn in Λ2n thanks to the
conditioning on Asep

σ (2n,N). The two paths are therefore connected to
the path of type σi from xi to distance 2δn with positive probability, thus
giving the claim. ◇

Now, there exists c > 0 such that

φ[Aσ(n1, n3)] ≥ φ[Asep
σ (n1, n2) ∩Asep

σ (2n2, n3) ∩Aσ(n1, n3)]
≥ c1φ[Asep

σ (n1, n2) ∩Asep
σ (2n2, n3)]

≍ φ[Asep
σ (n1, n2)] ⋅ φ[Asep

σ (2n2, n3)]
≍ φ[Aσ(n1, n2)] ⋅ φ[Aσ(2n2, n3)]
≥ φ[Aσ(n1, n2)] ⋅ φ[Aσ(n2, n3)].

Once again, in the second line, we used the fact that well-separated arms
can be glued together in the annulus Λ2n2∖Λn2 . The proof is similar to the
proof of the claim, where the thin rectangles are replaced by thin disjoint
tubes (of “width” δn2) going around xi to yi for every 1 ≤ i ≤ j. ◻

We now sketch the proof of Theorem 10.24. Let us start with the
following two lemmata.

Lemma 10.25. For any ε > 0, there exists T > 0 such that for any n > 0
and any boundary conditions ξ,

φξΛ2n∖Λn
[there exist T disjoint arms crossing Λ2n ∖Λn] ≤ ε.

Proof. If T arms are crossing from the inner to the outer sides,
then T /4 arms are actually crossing one of the following rectangles:
[−2n,2n] × [n,2n], [−2n,2n] × [−2n,−n], [n,2n] × [−2n,2n] and
[−2n,−n] × [−2n,2n]. It is thus sufficient to show that for ε > 0, there
exists T > 0 such that the probability of T disjoint vertical crossings of
[0,4n]×[0, n] is bounded by ε uniformly in n and the boundary conditions.
In fact, we only need to prove that conditionally on the existence of k
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crossings, the existence of another crossing is bounded from above by some
constant c < 1, since the probability of T crossings is then bounded by cT .

In order to prove this statement, condition on the k-th left-most crossing
γk. Assume without loss of generality that γk is a dual crossing. Construct
a subdomain of [0,4n]× [0, n] by considering the connected component of
[0,4n] × [0, n] ∖ γk containing {4n} × [0, n]. The configuration in Ω is a
random-cluster configuration with boundary conditions ξ on the outside
and free elsewhere (i.e. on the arc bordering the dual arc γk). Now,
Theorem 10.10 implies that Ω is crossed from left to right by a primal and a
dual crossing with probability bounded from below by a universal constant.
Indeed, cut the domain Ω into two domains Ω1 = Ω∩ [0,4n]× [0, n/2] and
Ω2 = Ω ∩ [0,4n] × [n/2, n] and assume Ω1 is horizontally crossed and Ω2

is horizontally dual crossed. This prevents the existence of an additional
vertical crossing or dual crossing, therefore implying the claim. ◻

Remark 10.26. The previous proof harnesses Theorem 10.10 in a crucial
way, the left boundary of Ω being possibly very rough. Crossing estimates
for standard rectangles (even with uniform boundary conditions) would
not have been strong enough.

Let δ > 0 and n ≥ 1. Define Bn to be the event that for some j ≥ 1, the
annulus Λ2n ∖ Λn is crossed by disjoint arms γ1, . . . , γj of type σ1, . . . , σj
but there is no δ-well-separated arms γ̃1, . . . , γ̃j of type σ1, . . . , σj such that
γ̃i is in the σi-cluster of γi for every i ≤ j (σi-cluster means primal cluster
if σi = 1 and dual cluster otherwise).

Lemma 10.27. Let ε > 0. There exists δ > 0 such that φ(Bn) ≤ ε for any
n ≥ 1.

Proof. Consider T large enough so that there exist more than T disjoint
arms of Λ2n ∖ Λn with probability less than ε. From now on, we assume
that there are at most T disjoint arms crossing the annulus.

Fix δ > 0 such that uniformly in any subdomain D ⊂ Λn ∖ Λδn and any
boundary conditions on ∂D, there is no crossing from ∂Λδn to ∂Λn in D
with probability 1 − ε 5. The existence of δ > 0 can be proved easily using
Theorem 10.10.

We may therefore assume that no arm ends at distance less than δn of
a corner of Λ2n ∖ Λn with probability 1 − 8ε. This enables us to restrict
our attention to vertical crossings in the rectangle [−2n,2n] × [n,2n] for
instance.

5Note that this claim is slightly stronger than simply the fact that the annulus is not
crossed. Indeed, even if the crossing is forced to remain in D, the boundary conditions
on ∂D could help the existence of a crossing.
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Ω
γ

y A1A2A3

A4
A5

Figure 10.6: The construction of open and closed paths extending the
crossing and preventing other crossings from finishing close to the path.

Now, condition on the left-most crossing γ of Rn = [−2n,2n]×[n,2n] and
set y to be the ending point of γ on the top. Without loss of generality, let
us assume that the crossing is of type 1. As before, construct the domain
Ω to be the connected component of the right side of Rn in Rn ∖ γ.

For k ≥ 1, let Ak = Λδkn(y)∖Λδk+1n(y). We can assume with probability
1 − ε/T that no vertical crossing lands at distance δ3n of y by making the
following construction:
� Ω ∩A1 contains an open path disconnecting y from the right-side of
Rn;

� Ω∩A2 contains a dual-open path disconnecting y from the right-side
of Rn.

By choosing δ > 0 small enough, Theorem 10.10 shows that the paths in
this construction exist with probability 1 − ε/T > 0 independent of the
shape of Ω.

We may also show that γ can be extended to the top of Aj by
constructing a path in Aj ∖ (Rn ∖Ω) from γ to the top of Aj (this occurs
once again with probability c > 0 independently of Ω and the configuration
outside Aj). Therefore, the probability that there exists 4 ≤ j ≤ k such that
this happens is larger than 1 − (1 − c)k−3. We find that with probability
1−ε/T − (1− c)k−3 the path γ can be modified into a self-avoiding crossing
which is well-separated (on the outside) from any crossing on the right of
it by a distance at least (δ3 − δ4)n and that this crossing is extended to
distance at least δk above its end-point. We may choose k large enough
that the previous probability is larger than 1− 2ε/T . One may also do the
same for the inner boundary. Iterating the construction T times, we find
that φ(Bn) ≤ 12ε with δk as a distance of separation. ◻

Proof of Theorem 10.24 (sketch). The lower bound φ[Asep
σ (n,N)] ≤

φ[Aσ(n,N)] is straightforward. Let L and K be such that 4L−1 < n ≤ 4L
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and 4K+1 ≤ N < 4K+2.
Recall the definition of Bk and choose δ small enough that φ(Bk) ≤ ε

(the existence of such δ is guaranteed by Lemma 10.27). Set B̃k = B2k.
We may decompose the event Aσ(n,N) with respect to the smallest and
largest scales at which the event B̃ck occurs. We find

φ[Aσ(n,N)]

≤ ∑
L≤`≤k≤K

φ[B̃L ∩ ⋅ ⋅ ⋅ ∩ B̃`−1 ∩ B̃c` ∩Aσ(22`,22k+1) ∩ B̃ck ∩ B̃k+1 ∩ ⋅ ⋅ ⋅ ∩ B̃K].

Since the annuli Λ22k ∖Λ22k−1 are separated by macroscopic areas, we can
use (10.23) repeatedly to find the existence of C > 0 such that

φ(Aσ(n,N))

≤ ∑
L≤`≤k≤K

CK−L−(k−`)φ[B̃L]⋯φ[B̃`−1]φ[B̃c` ∩Aσ(22`,22k+1) ∩ B̃ck]φ[B̃k+1]⋯φ[B̃K]

≤ ∑
L≤`≤k≤K

(Cε)N−L−(k−`)φ[B̃c` ∩Aσ(22`,22k+1) ∩ B̃ck].

Now, we see that

B̃c` ∩Aσ(22`,22k+1) ∩ B̃ck ⊂ Asep
σ (22`,22k+1).

Furthermore, the construction used in the proof of Proposition 10.19 can
easily be adapted to show that

φ[Asep
σ (22`,22k+1)] ≤ C1α

K−L−(k−`)φ[Asep
σ (n,N)]

for some universal constant α > 1 and C1 = C1(δ) > 0. Altogether, we find
that

φ[Aσ(n,N)] ≤ φ[Asep
σ (n,N)]C1 ∑

L≤`≤k≤K
(Cεα)N−L−(k−`) ≤ C2φ[Asep

σ (n,N)]

provided that ε > 0 is small enough, which can be guaranteed by taking δ
small enough. The constant C2 depends on δ only. ◻

10.3.3 Universal exponents

Theorem 10.28. For every 1 ≤ n ≤ N ,

φ[A10110(n,N)] ≍ ( n
N

)
2

, φ[AH
10(n,N)] ≍ n

N
, φ[AH

101(n,N)] ≍ ( n
N

)
2

,

where AH
σ(n,N) is the existence of j arms crossing ΛN ∖Λn and contained

in the upper-half plane H = Z ×N.
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Proof. (sketch) We only give a sketch of the proof of the
first statement; the others are derived from similar arguments
(actually the arguments are slightly simpler). By quasi-multiplicativity
(Theorem 10.22), we only need to show that φ[A10110(0,N)] ≍ N−2.

Lower bound. Fix N > 0. Consider the following construction: assume
that there exists a dual-open dual-path crossing [−2N,2N] × [−N,0]
horizontally and an open path crossing [−2N,2N] × [0,N] horizontally.
This happens with probability bounded from below by c1 > 0 not
depending on N . By conditioning on the lowest open self-avoiding
path Γ crossing horizontally, the configuration in the domain Ω above
Γ is a random-cluster configuration with wired boundary conditions on
Γ and undetermined boundary conditions on the other three sides (i.e.
∂Ω ∩ ∂Λ2N ).

Assume that [−N,0] × [−2N,2N] is crossed vertically by an open path
staying in Ω, and that [ 1

2
,N − 1

2
]×[−2N + 1

2
,2N − 1

2
] is crossed vertically by

a dual-open path staying in Ω⋆. The probability of this event is once again
bounded from below uniformly in N and Ω thanks to Theorem 10.10. Here
again, uniform crossing estimates for standard rectangles would not have
been sufficiently strong to imply this result.

Summarizing, all these events occur with probability larger than c2 > 0.
Moreover, the existence of all these crossings implies the existence of a
vertex in ΛN with five arms emanating from it, since one may observe
that [−N,N] × [−2N,2N] is crossed by both a primal and a dual vertical
crossing, and that there exists x on Γ at the interface between two such
crossings. Such an x has five arms emanating from it and going to distance
at least N6. The union bound implies

N2φ[A10110(0,N)] ≥ c2.

Upper bound. Recall that it suffices to show the upper bound for chosen
landing sequences thanks to Theorem 10.23. Consider the event Ax, see
Fig. 10.7, that five mutually edge-avoiding arms γ1, . . . , γ5 of respective
types 10110 are in such a way that

� γ1 starts at x and finishes on {N} × [N
4
, N

2
];

� γ2 starts at x + ( 1
2
, 1

2
) and finishes on [−N

2
− 1

2
, N

2
+ 1

2
] × {N + 1

2
};

� γ3 starts at x and finishes on {−N} × [−N
2
, N

2
];

� γ4 starts at x and finishes on [−N
2
, N

2
] × {−N};

� γ5 starts at x + ( 1
2
, 1

2
) and finishes on {N + 1

2
} × [−N

2
+ 1

2
,−N

4
+ 1

2
].

6The path Γ provides us with two primal paths going from x to the boundary. Since
Γ is the lowest crossing of [−N,0]×[−2N,2N], there is an additional dual crossing below
Γ. Finally, since x is at the interface between a primal and a dual crossing above Γ, we
obtain the two additional paths. Since x is in ΛN and that arms connect x and ∂Λ2N ,
we deduce that these arms extend to distance at least N .
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Figure 10.7: Only one vertex per box can satisfy the following topological
picture.

One may easily show using the same techniques as in the previous section
that φ[Ax] ≍ φ[A10110(0,N)] for every x ∈ ΛN/2. In particular,

N2φ[A10110(0,N)] ≍ ∑
x∈ΛN/2

φ[Ax] ≤ 1.

The last inequality is due to the fact that the events Ax are disjoint
(topologically no two vertices in ΛN can satisfy the events in question). ◻

This result has an interesting corollary.
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Corollary 10.29. There exist α > 0 and c,C > 0 such that for every
0 < n < N ,

φ[A101010(n,N)] ≤ C ( n
N

)
2+α

,

φ[A1010(n,N)] ≥ c( n
N

)
2−α

.

The “six-arm” event A101010(n,N) is related to the property R2 in
Theorem 9.15. The “four-arm event” A1010(n,N) is important for the
existence of so-called pivotal vertices (see Chapter 11).

Proof. (sketch) Fix n < N , we have

φ[A101010(n,N)] ≍ φ[A101010(n,N) ∩ {Λn /←→ [−N,N] × {−N}}].

The fact that no arm finishes on [−N,N] × {−N} enables us to condition
on five arms as follows. Start by conditioning on the two lowest primal
open arms. This discovers two primal arms and one dual arm below them.
Above these primal arms, condition on the two “lowest” dual arms starting
from the origin (meaning the first one discovered when going respectively
clockwise and counter-clockwise). It can be shown that the probability
of the sixth arm in the undiscovered area is smaller than the probability
of φ0

ΛN
[A0(n,N)] uniformly in the five arms on which we conditioned.

Therefore,

φ[A101010(n,N) ∩ {Λn /←→ [−N,N] × {−N}}]
≤ φ0

ΛN
[A0(n,N)]φ[A10101(n,N)].

The result follows from Theorem 10.28. ◻



Chapter 11

The FK-Ising model away
from criticality

Similarly to the previous chapter, this one is devoted to a deeper study of
the FK-Ising model and is aimed at specialists.

It is now time to leave the critical regime of the FK-Ising model to
explore the off-critical regime. More precisely, we discuss two a priori
different notions of “correlation length”. We then study their behavior
when p approaches criticality. After a small detour where we present
a monotone coupling for random-cluster configurations, we discuss the
violation of a classical scaling relation valid for Bernoulli percolation.

In this section, we fix q = 2 and we drop it from the notations.

11.1 Correlation length of the Ising model

Theorem 5.18 implies that correlations decay exponentially when p < pc,
but at which speed? In this section, we answer this question by computing
the correlation length

ξp(x) = −[ lim
n→∞

1
n

logφp(0←→ nx)]
−1

.

Recall that Lemma 5.31 implies that this quantity is well defined.

11.1.1 Short proof of exponential decay of correlations

We start by providing an alternative proof of Theorem 5.18 (in the special
case of q = 2) based on the fermionic observable. Let p < pc.

295
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Consider the FK-Ising model on the strip S` of height ` > 0 with wired
boundary conditions on the bottom and free boundary conditions on the
top. In what follows, F denotes the edge fermionic observable in this
Dobrushin domain. As before, one should not be alerted by the fact
that the domain is infinite. Indeed, one may easily define the fermionic
observable by taking the limit as n → ∞ of the observable in domains
[−n,n] × [0, `] with a = (n,0) and b(−n,0).

Define ek to be medial-edge bordering (0, k) on the north-west side.
Label some of the medial-edges around (0, k) and (0, k + 1) as ek, ek+1, e,
e′, e′′, f and f ′ as shown in Figure 11.1.

(0, k + 1)

(0, k)

e′′ e e′

v2

v1

ek f ′

f
ek+1

Figure 11.1: The labeling of medial-edges around ek and ek+1 used in Step
1.

Proposition 6.10 and Lemma 9.3 have a very important consequence:
around a medial-vertex, the value of the (edge) fermionic observable on
one medial-edge can be expressed in terms of its values on any two other
medial-edges. For instance, (6.2) can be projected around v1 orthogonally
to F (f), so that a relation is obtained between projections of F (e), F (e′)
and F (ek+1). Moreover, the complex argument (modulo π) of F is known
(Lemma 9.3) for each edge so that the relation between projections can be
written as a relation between F (e), F (e′) and F (ek+1) themselves. Doing
the same with v2, we find two relations

e−iπ/4F (e) = cos(π/4 − α)F (ek+1) − cos(π/4 + α)e−iπ/2F (e′), (11.1)

e−iπ/4F (e) = cos(π/4 + α)F (ek) − cos(π/4 − α)e−iπ/2F (e′′). (11.2)

The invariance (in the strip) under horizontal translations gives

F (e′) = F (e′′). (11.3)

Moreover, the symmetry under the orthogonal symmetry with respect to
the imaginary axis implies that

F (e) = eiπ/4F (e′) = e−iπ/4F (e′). (11.4)

(Indeed, if for a configuration ω, e belongs to γ and the winding is equal to
W , in the reflected configuration ω′, e′ belongs to γ(ω′) and the winding
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is equal to π/2 −W .) Plugging (11.3) and (11.4) into (11.1) and (11.2)
leads to

F (ek+1) = e−iπ/4 1 + cos(π/4 + α)
cos(π/4 − α)

F (e)

= [1 + cos(π/4 + α)] cos(π/4 + α)
[1 + cos(π/4 − α)] cos(π/4 − α)

F (ek) = c1F (ek),

where α = α(p) was defined in (6.2) and c1 = c1(p) > 0 is a universal
constant. Remember that α(p) > 0 since p < pc, so that the multiplicative
constant is less than 1. Using Lemma 6.11 and the previous equality
inductively, we find that for every ` > 0,

φdobr
p,S` [(0, `)↔ Z] = ∣F (e`)∣ = c`1∣F (e1)∣ ≤ c`1, (11.5)

where φdobr
p,S` is the FK-Ising measure in S` with Dobrushin boundary

conditions. The last inequality is due to the fact that the observable has
complex modulus less than 1.

The comparison between boundary conditions implies that for any ` ≥ 0
and v ∈ ∂Λ`,

φ0
p,Λ`

(0←→ v) ≤ φdobr
p,S` [(0, `)↔ Z] ≤ exp[−c1`].

We may once again use Lemma 4.23 (more precisely the steps in (6.14))
to conclude the proof.

11.1.2 Correlation length of the FK-Ising model

The computation of the correlation length of the FK-Ising model is known
for a long time thanks to the Ising model. In [MW73], McCoy and Wu
derived a closed formula for the correlation length of the Ising model which
leads to an explicit formula for the correlation length of the FK-Ising model
using the Edwards-Sokal coupling. Nevertheless, in a recent paper [Mes06],
Messikh raised a surprising new connection between the Ising model and
random walks by noticing that this formula is connected to large deviations
estimates for the simple random walk. In the following, we exhibit what
we believe to be the first derivation of the correlation length based on this
connection with the simple random walk.

In order to state the connection between the correlation length of
the FK-Ising model and random walks, we introduce the massive Green
function Gm, defined in the bulk as

Gm(x, y) ∶= Ex[∑
n≥0

mn1Xn=y],

where m < 1 and Ex is the law of a simple random walk starting at x.
This quantity can be interpreted as the expected number of visits to y for
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a random walk starting from x and killed at each step with probability
1−m. It is very convenient to encode the large deviations behavior of the
simple random walk.

We are now in a position to state the main result of this section.

Theorem 11.1 (Beffara, Duminil-Copin [BDC12b]). For p < pc and any
x ∈ Z,

ξp,2(x) = [ lim
n→∞

− 1
n

logGcos[2α(p)](0, nx)]
−1

(11.6)

where α(p) is defined in Lemma 6.10.

The behavior of the simple random walk is very well understood. In
particular, one can compute the right-hand side of (11.6) explicitly (we
refer to standard text books on large deviations). Furthermore, the
Edwards-Sokal coupling together with the previous theorem leads to the
following consequence for the Ising model (we omit the details).

Corollary 11.2. Let β < βc and let µβ denote the (unique) infinite-volume
Ising measure at inverse temperature β; fix a = (a1, a2) ∈ Z2. Then,

τβ(a) = lim
n→∞

− 1
n

ln (µβ[σ(0)σ(na)]) = a1arcsinh sa1 + a2arcsinh sa2,

where s solves the equation

√
1 + (sa1)2 +

√
1 + (sa2)2 = sinh 2β + 1

sinh 2β
.

This result is exactly the formula found by McCoy and Wu. The
quantity τβ(a) is called the inverse correlation length of the Ising model
in direction a and is equal to 1 divided by the so-called correlation length
of the Ising model (which is itself equal to ξp(β)(a) by the Edwards-Sokal
coupling).

The interpretation in terms of random walks has a neat corollary. The
convergence of random walks to Brownian motion and the isotropy of the
latter imply that the Wulff shape (see [DKS92] for details on this beautiful
object)

Wβ ∶= {x ∈ C ∶ ⟨x∣u⟩ ≤ τβ(u), u ∈ U},

of the 2D Ising model becomes (when properly rescaled) a Euclidean ball
when approaching criticality. Indeed, the mass m tends to zero and the
massive Green function thus converges to the Green function itself. This
isotropy (as β ↗ βc) of the Wulff shape can be thought of as a glimpse of
conformal invariance. More precisely, for every a ∈ C, one may expand the
equation defining s in β − βc to find that s ∼ 4∣β − βc∣/∣a∣ as β tends to βc.
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Inserting this asymptotic in the formula for the inverse correlation length
leads to the following result.

Corollary 11.3. For z ∈ C, if τβ(z) denotes the quantity defined in the
previous corollary,

lim
β↗βc

τβ(z)
(βc − β)

= 4∣z∣. (11.7)

Before diving into the actual proof, here is a short outline of the strategy.
Exponential decay in the strip was already shown in the previous section:
it is an essentially one-dimensional computation. We now aim to refine
it into a two-dimensional version for correlations between two points 0
and a in the bulk, and once again the observable is used in a crucial way.
The basic step, namely obtaining local linear relations between the values
of the observable, is the same, although it is complicated by the lack of
translation invariance. The point is that the relations thus obtained will
be interpreted as follows: the observable is also massive harmonic when
p ≠ pc (see Lemma 11.4 below). Since Gm(x, y) is massive harmonic in the
variable x for every x ≠ y, it is possible to compare both quantities.

While the strategy is fairly clear, some technical issues appear very
quickly. The main problem is that we are interested in correlations in the
bulk. The observable can be defined directly in the bulk (see below) but
it only provides us with a lower bound on the correlations. In order to
obtain an upper bound, we have to introduce an “artificial” domain (that
will be T (a) below), which needs to have two features: the observable in
it can be well estimated, and at the same time correlations inside it have
comparable probabilities to correlations in the bulk.

There is a natural recipe to construct such a domain: the second
condition is in fact equivalent to impose that the Wulff shape centered
at 0 and having a on its boundary is contained in the domain in the
neighborhood of a. From convexity, it is then natural to construct T (a)
as the whole plane minus two wedges, one with vertex at 0 and the other
with vertex at a.

The proof is rather tedious since one needs to deal with the behavior
of the observable on the boundary of the domain T (a). This was also an
issue in the proof of conformal invariance (in which case the domains are
even more general). At criticality, the difficulty was overcome by working
with the discrete primitive H of F 2. Unfortunately, there is no nice
equivalent of H to work with away from criticality. The solution is to use a
representation of F in terms of a massive random walk. This representation
extends to the boundary and allows us to control the behavior of F
everywhere.

The proof may be skipped during a first reading.
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Proof. Let p < pc. Without loss of generality, consider a = (a1, a2) ∈ Z2

satisfying a2 ≥ a1 ≥ 0. In this proof, a vertex u ∈ Z will sometimes
be identified with the unique medial-vertex eu pointing north-west and
bordering u. In other words F (u) and {u ∈ γ} should be understood as
F (eu) and {eu ∈ γ}. We will also index the neighbors of U by N , W , S
and E (the indices refer to the cardinal directions).

The lower bound. Consider the observable F in the bulk defined as
follows: for every edge e ≠ e0,

F (e) ∶= φ0
p (e

i
2 Wγ(e,e0)1e∈γ) , (11.8)

where γ is the unique loop passing through e0. The fact that F is defined
even though we are working on an infinite graph is justified by the fact
that p < pc. Note that F is not well defined at e0. Indeed, e0 can be
thought of as the start of the loop γ or its end. In other words, F is
multi-valued at e0, with value 1 or -1. Proposition 6.10 can be extended
to this context following a very similar proof, but taking into account that
F is multi-valued at e0. More precisely, let e0 = [xy]. Around any vertex
v ∉ {x, y} the relation in Proposition 6.10 still holds; besides,

⎧⎪⎪⎨⎪⎪⎩

F (se) + 1 = eiα(p) [F (sw) + F (ne)] if v = y,
F (sw) + F (ne) = eiα(p) [−1 + F (se)] if v = x,

where the ne (resp. se, sw) is the medial-edge at v pointing to the north-
east (resp. south-east, south-west). In other words, the statement of
Proposition 6.10 still formally holds if the convention becomes F (e0) = 1
when considering the relation around x, and F (e0) = −1 when considering
the relation around y.

Let us now show that F is massive harmonic.

Lemma 11.4. Let p < psd and consider the observable F in the bulk. For
any vertex X not equal to 0, we have

∆αF (X) ∶= cos 2α

4
[F (W ) + F (S) + F (E) + F (N)] − F (X) = 0,

where W , S, E and N are the four neighbors of X.

Proof. Consider a vertex X inside the domain and recall that X is
identified with the corresponding medial-edge of the medial lattice pointing
north-west. Index the edges around X in the same way as in Case 1 of
Figure 11.2. By considering the six equations corresponding to vertices
that end one of the edges e1, . . . , e6, the following linear system can be
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obtained:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (X) + F (e7) = eiα [F (e1) + F (e6)],
F (e8) + F (e1) = eiα [F (e2) + F (W )],
F (S) + F (e2) = eiα [F (e9) + F (e3)],
F (e3) + F (e4) = eiα [F (e10) + F (X)],
F (E) + F (e5) = eiα [F (e4) + F (e11)],
F (e6) + F (e12) = eiα [F (e5) + F (N)].

X E

N

S

W W W WX X XE E

S S S

e1 e1 e1 e1

e2 e2 e2 e2e3 e3 e3 e3

e4 e4 e4

e5e6 e6 e6e7 e7 e7

e8 e8 e8 e8

e9 e9 e9 e9

e10

e12

e10 e10

e11

N N

Figure 11.2: Indexation of the edges around vertices in the different cases.

Lemma 9.3 identifies the complex arguments modulo π of F for different
edges (F (e) belongs to e−iπ/8R, eiπ/8R, e3iπ/8R or e5iπ/8R depending on the
direction). For an edge e, set f(e) =

√
eF (e). By projecting orthogonally

to the F (yi), i = 1 . . .6, the system becomes:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(X) = cos(π/4 + α)f(e1) + cos(π/4 − α)f(e6) (1)
f(e1) = cos(π/4 + α)f(e2) + cos(π/4 − α)f(W ) (2)
f(e3) = cos(π/4 − α)f(S) + − cos(π/4 + α)f(e2) (3)
f(X) = cos(π/4 + α)f(e3) + cos(π/4 − α)f(e4) (4)
f(e4) = cos(π/4 + α)f(E) + cos(π/4 − α)f(e5) (5)
f(e6) = − cos(π/4 − α)f(e5) + cos(π/4 + α)f(N) (6)

By adding (2) to (3), (5) to (6) and (1) to (4), we find

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f(e3) + f(e1) = cos(π/4 − α)[f(W ) + f(S)] (7)
f(e6) + f(e4) = cos(π/4 + α)[f(E) + f(N)] (8)

2f(X) = cos(π/4 + α)[f(e3) + f(e1)]
+ cos(π/4 − α)[f(e6) + f(e4)] (9)

Plugging (7) and (8) into (9) leads to

2f(X) = cos(π/4 + α) cos(π/4 − α)[f(W ) + f(S) + f(E) + f(N)].

The edges X, . . . , N are pointing in the same direction so the previous
equality becomes an equality with F in place of f (use Lemma 9.3 one
more time). A simple trigonometric identity then leads to the claim. ◻

Define the Markov process with generator ∆α, which one can see either
as a branching process or as the random walk of a massive particle. We
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choose the latter interpretation and write this process (Xn,mn) where
Xn is a random walk with jump probabilities defined in terms of ∆α

— the proportionality between jump probabilities is the same as the
proportionality between coefficients — and mn is the mass associated to
this random walk. The law of the random walk starting at x is denoted
Px. Note that the mass of the walk decays by a factor cos 2α at each step.

Denote by τ the hitting time of 0. The last lemma translates into the
following formula for any a and any t,

F (a) = Ea[F (Xt∧τ)mt∧τ ]. (11.9)

The sequence (F (Xt)mt)t≤τ is obviously uniformly integrable (it is
bounded deterministically by 1), so that (11.9) can be improved to

F (a) = Ea[F (Xτ)mτ ]. (11.10)

Equation (11.10) together with Lemma 11.5 below gives

φ0
p(0↔ a) ≥ φ0

p(ea ∈ γ) ≥ ∣F (a)∣ ≥ c

∣a∣
Gcos 2α(0, a),

which implies the lower bound.

Lemma 11.5. There exists c > 0 such that, for every a in the upper-right
quadrant,

∣Ea[F (Xτ)mτ ]∣ ≥
c

∣a∣
Gcos 2α(0, a).

Proof. Recall that F (Xτ) is equal to 1 or -1 depending on the last step
taken by the walk before reaching 0. Let us rewrite Ea[F (Xτ)mτ ] as

Ea[mτ ,Xτ−1 ∈ {W,S}] −Ea[mτ ,Xτ−1 ∈ {N,E}].

Now, let d be the line y = −x and let T be the time of the last visit1 of d
by the walk before time τ (set T = ∞ if it does not exist). On the event
that Xτ−1 =W or S, this time is finite, and reflecting the part of the path
between T and τ across ∆α produces a path from a to 0 with Xτ−1 = E
or N . This transformation is one-to-one, so summing over all paths, we
obtain

Ea[mτ1Xτ−1∈{W,S}] −Ea[mτ1Xτ−1∈{N,E}] = −Ea[mτ1Xτ−1∈{N,E}1{T=∞}]

which in turn is equal to −Ea[mτ1{T=∞}]. General arguments of large
deviation theory imply that Ea[mτ1{T=∞}] ≥ c

∣a∣Gcos 2α(0, a) for some

universal constant c. ◻

1It is not a stopping time.
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L+

L− L−

Case 4: vertex w

Case 1: inside vertices

Case 2: horizontal part of L+(w)

Case 3: vertical part of L+(w)

Figure 11.3: The set T (w). The different cases listed in the definition of
the Laplacian are also depicted.

The upper bound. Assume that 0 is connected to a in the bulk. We
first show how to reduce the problem to estimations of correlations for
points on the boundary of domains.

For every u = (u1, u2) and v = (v1, v2) two vertices of Z2, write u ≺ v if
u1 < v1 and u2 < v2. This relation is a partial ordering of Z2. Consider the
following sets

L+(u) = {x ∈ Z2 ∶ u ≺ x} and L− = {x ∈ Z2 ∶ x ≺ 0};

and
T (u) = Z2 ∖ (L+(u) ∪L−).

In the following, L+(u) and L− will denote the boundaries of T (u) near
L+(u) and L− respectively, see Figure 11.3. The measure with wired
boundary conditions on L− and free boundary conditions on L+(u) is
denoted φT (u).

Assume that a is connected to 0 in the bulk. By conditioning on the site
w that maximizes the partial ≺-ordering in the cluster of 0 2, we obtain
the following:

φ0
p(a↔ 0) ≤ ∑

w≻a
φT (w)(w↔ L−) ≤ C3∣a∣ max

w≻a,∣w∣≤c3∣a∣
φT (w)(w↔ L−)

(11.11)
for c3 and C3 two large universal constants. The existence of c3 is given
by the fact that the two-point function decays exponentially fast: a priori
estimates on the correlation length show that the maximum above cannot
be reached at any w which is much further away from the origin than a,

2It is the same reasoning as in Lemma 4.23. Note that w may be non unique, in
such case, we choose one such site, for instance by taking the minimal one for the
lexicographical ordering.
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and even that the sum of the corresponding probabilities is actually of a
smaller order than the remaining terms. Summarizing, it is sufficient to
estimate the probability of the right-hand side of (11.11).

Observe that w is on the free arc of T (w), so that, using Lemma 6.11,
we find

φT (w)(w↔ L−) = ∣F (w)∣, (11.12)

where F is the observable in the infinite Dobrushin domain T (w) (the
winding is fixed in such a way that it equals 0 at ew). Now, similarly to
Lemma 11.4, F satisfies local relations in the domain T (w):

Lemma 11.6. The observable F satisfies ∆αF = 0 for every vertex not
on the wired arc, where the massive Laplacian ∆α on T (w) is defined by
the following relations: for all g ∶ T (w)↦ R, (g +∆αg)(X) is equal to:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos 2α

4
[g(W ) + g(S) + g(E) + g(N)] inside the domain;

cos 2α
2

[g(W ) + g(S)] + cos(π
4
+ α)g(E)

1 + cos(π
4
− α)

on hor. part of L+(w);
cos 2α

2
[g(W ) + g(S)] + cos(π

4
+ α)g(N)

1 + cos(π
4
− α)

on vert. part of L+(w);
cos 2α

2
[g(W ) + g(S)] + cos(π

4
− α)[g(E) + g(N)]

2
at w;

with N , E, S and W being the four neighbors of X.

Proof. When the vertex is inside the domain, the proof is the same as in
Lemma 11.4. For boundary vertices, a similar computation can be done.
For instance, consider Case 2 in Fig. 11.2. Equations (3) and (7) in the
proof of Lemma 11.4 are preserved. Furthermore, Lemma 6.11 implies
that

f(X) = f(e1) = φT (w)(X ↔ L−)
and similarly f(e4) = f(E) (where f is still as defined in the proof of
Lemma 11.4). Plugging all these equations together, we obtain the second
equality. The other cases are handled similarly. ◻

Now, we aim to use a representation with massive random walks similar
to the proof of the lower bound for free boundary conditions. One technical
point is the fact that, if we do it naively, the mass at w is larger than 1.
This could a priori prevent (F (Xt)mt)t from being uniformly integrable.
Therefore, the behavior at w needs to be treated separately. Denote by τ1
the hitting time (for t > 0) of w, and by τ the hitting time of L−. Since
the masses are smaller than 1, except at w, (F (Xt)mt)t≤τ∧τ1 is uniformly
integrable and we can apply the stopping theorem to obtain:

F (w) = Ew[F (Xτ∧τ1)mτ∧τ1] = Ew[F (Xτ1)mτ11τ1<τ ]+Ew[F (Xτ)mτ1τ<τ1].
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Since Xτ1 = w, the previous formula can be rewritten as

F (w) = Ew[F (Xτ)mτ1τ<τ1]
1 −Ew(mτ11τ1<τ)

. (11.13)

When w goes to infinity in a prescribed direction, [1 − Ew(mτ11τ1<τ)]
converges to the analytic function h ∶ [0,1] → R, p ↦ 1 − Ew(mτ1) (since
the function is translation-invariant). The function h is not equal to 0
when p = 0, implying that it is equal to 0 for a discrete set P of points. In
particular, for p ∉ P, the first term in the right hand side stays bounded by
a constant C4 = C4(p) <∞ when w goes to infinity. Recalling that ∣F ∣ ≤ 1
and that the mass is smaller than 1 except at w, (11.13) becomes

∣F (w)∣ ≤ C4∣Ew[F (Xτ)mτ1τ<τ1]∣ ≤ Ew[mτ1τ<τ1]
≤ C4 ∑

w≺x
Ex[(cos 2α)τ1τ<τ11{(Xt) avoids L+(w)}] ≤ C4 ∑

w≺x
Gcos 2α(0, x)

(11.14)

where the last inequality is due to the release of the conditioning on
avoiding L+(w).

Finally, it only remains to bound the right hand side. From (11.14), we
deduce

∣F (w)∣ ≤ C5∣w∣Gcos 2α(0,w), (11.15)

where the existence of C5 is due to the exponential decay of Gcos 2α(⋅, ⋅)
and the fact that Gcos 2α(0, x) ≤ Gcos 2α(0,w) whenever w ≺ x. We deduce
from (11.11), (11.12) and (11.15) that

φp(0↔ a) ≤ C3C5∣a∣2 max
w≺a,∣w∣∞≤c5∣a∣∞

Gm(0,w) ≤ C6∣a∣2Gm(0, a).

Taking the logarithm and passing to the limit, the claim is obtained for
all p < pc not in the discrete set P. The result follows for every p using the
fact that the correlation length is increasing in p. ◻

11.2 Characteristic length of the FK-Ising
model

Beyond the understanding of the critical and non-critical phases (which
was the subject of previous chapters and the previous section respectively),
the principal goal of statistical physics is to study the phase transition
itself, and in particular the behavior of macroscopic properties such as the
density of the infinite-cluster for p > pc near the critical point.

It is usually possible to relate the critical regime to these
thermodynamical properties via the study of the so-called near-critical
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regime. This regime was investigated in [Kes87] in the case of percolation.
Many works followed afterward, culminating in a good understanding of
near-critical phenomena in Bernoulli percolation [GPS10, NW09, GPS13].
The goal of this section is to discuss the near-critical regime in the random-
cluster case, and more precisely in the FK-Ising case.

11.2.1 Definition of the characteristic length

Informally, the near-critical regime is the study of the FK-Ising model of
edge-parameter p in the box of size L when (p,L) goes to (pc,∞). Consider
L = L(p) and let p ↗ pc. Note that, on the one hand, if L(p) goes to ∞
too slowly, the configuration in the box of size L will look critical. On
the other hand, if L(p) goes to ∞ (from above) too quickly, the random-
cluster model will look supercritical. The typical scale L(p) separating
these two regimes is called the characteristic length, also called finite-size
scaling correlation length or simply correlation length (which is unfortunate
since a priori it is not defined as the correlation length introduced in the
previous section).

Let us define the characteristic length more formally. As illustrated
before, the critical regime is often characterized by the fact that crossing
probabilities remain bounded away from 0 and 1 (at least for continuous
phase transitions). It is therefore natural to introduce the following
definition.

Definition 11.7 (Characteristic length). Fix ρ > 0 and ε > 0. Define

Lρ,ε(p) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

inf {n > 0 ∶ φ0
p,Rn

(Cv(Rn)) ≤ ε} if p < pc,

inf {n > 0 ∶ φ1
p,Rn

(Cv(Rn)) ≥ 1 − ε} if p > pc,

where Rn = [0, n] × [0, ρn].

Theorem 10.1 shows that for ε < c1(ρ) (where c1 is given by the theorem),
Lρ,ε(p) tends to infinity as p tends to pc. Furthermore, we have

ε ≤ φξp,Rn(Cv(Rn) ≤ 1 − ε

for any n ≤ Lρ,ε(p) and any boundary conditions ξ on ∂Rn. In some way,
this justifies the fact that the configuration resembles the critical one below
Lρ,ε(p).

Remark 11.8. The notion of characteristic length can be useful for
any random-cluster model with 1 ≤ q ≤ 4. For Bernoulli percolation
(q = 1), Smirnov and Werner [SW01] showed that Lρ,ε(p) was behaving
like ∣p − 1

2
∣−4/3+o(1).
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Remark 11.9. The characteristic length is expected to be roughly the
same for different ε and ρ, in the sense that there should exist universal
constants 0 < c,C <∞ such that

cLρ,ε(p) ≤ Lρ′,ε′(p) ≤ CLρ,ε(p)

uniformly as p tends to pc. This result is known for percolation.

Remark 11.10. One may ask why we chose free boundary conditions
for p < pc, and wired boundary conditions for p > pc. It can in fact
be shown that boundary conditions are not really relevant by harnessing
Theorem 10.1. We omit the proof of this fact here.

11.2.2 Behavior of the FK-Ising characteristic length

Theorem 11.11 (Duminil-Copin, Garban, Pete [DCGP11]). Fix q = 2.
For every ε, ρ > 0, there is a constant c = c(ε, ρ) such that for all p ≠ pc,

c
1

∣p − pc∣
≤ Lρ,ε(p) ≤ c−1 1

∣p − pc∣
log( 1

∣p − pc∣
) .

Remark 11.12. The characteristic length behaves like ∣p − pc∣−1+o(1)

exactly as the correlation length studied in the previous section. This
correspondence between the two notions of correlation length is expected
to be true for most models of planar statistical physics, even though it is
known in a few cases only.

11.2.3 Heuristic of the proof of Theorem 11.11

The proof is very technical and we do not present it here. For more details,
we refer to the original article [DCGP11]. We focus on p < pc. The goal
of the proof is to show that crossing probabilities remain bounded away
from 0 for n ≤ c

∣p−pc∣ and that they tend to 0 for n ≥ C
∣p−pc∣ log 1

∣p−pc∣ .

Recall from (11.5) that

φdobr
p,Sn[(0, n)←→ wired arc] = ([1 + cos(π/4 + α)] cos(π/4 + α)

[1 + cos(π/4 − α)] cos(π/4 − α)
)
n

∣F (e1)∣.

Also note that as p tends to pc, we have that α(p) ≈ pc − p and therefore

φdobr
p,Sn[(0, n)↔ wired arc] ≈ (1 −O( p−pc

pc
))n∣F (e1)∣ ≈ exp ( −O( p−pc

pc
)n)∣F (e1)∣.

Since ∣F (e1)∣ ≤ 1, we immediately obtain that there exist c,C > 0 such that
for n ≥ C

∣p−pc∣ log 1
∣p−pc∣ ,

φdobr
p,Sn[(0, n)←→ wired arc] ≤ n−c.
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The invariance under translation implies that

φdobr
p,Sn[[0, κn] × {n}←→ wired arc] ≤ κn1−c.

Using the comparison between boundary conditions, we get

φdobr
p,Rn[Cv(Rn)] ≤ κn

1−c.

In particular, crossing probabilities tend to zero when the boundary
conditions are free.

Remark 11.13. In particular, in this regime the largest cluster in Rn is
no longer of diameter of order n but rather smaller than

√
n. Therefore,

if we are presented with such a box of size n, the configuration inside the
domain does not look critical anymore. This justifies the fact that above
the critical length, the configuration looks subcritical.

Let us turn ourselves to the lower bound. Recall that Dobrushin
boundary conditions on the strip are wired on the bottom and free on
the top. For n ≤ 1/∣p − pc∣, we find that

φdobr
p,Sn[(0, n)←→ wired arc] ≈ ∣F (e1)∣.

Now, ∣F (e1)∣ is simply the probability that a dual-vertex on the dual-
free arc is connected to the dual-wired arc. Duality and the fact that
this probability decays as C/

√
n at criticality (see Remark 10.8 of last

chapter) imply that there exists a constant c > 0 not depending on p (and
on n ≤ 1/∣p − pc∣) such that

φdobr
p,Sn[(0, n)←→ wired arc] ≥ c/

√
n.

Let us now use a second-moment method on the number N of vertices of
[0, n] × {n} connected to the wired arc. The previous displayed equation
implies that the expectation of N is larger than c

√
n. For the expectation

of N2, we can simply remark that it is smaller than the expectation at
criticality, and therefore use the computation that we did in the last
chapter to find that it is smaller than Cn. As a consequence, we obtain
that there exists a constant c′ > 0 not depending on p (and on n ≤ 1/∣p−pc∣)
such that

φdobr
p,Sn[[0, n] × {n}←→ wired arc] ≥ c′.

We therefore get that the probability of some crossing probabilities remains
bounded away from 0. Getting rid of the specific boundary conditions of
the strip is the tricky point. Modulo this difficulty, we have a proof of the
lower bound.

Let us finish this section by mentioning that getting rid of the
specific boundary conditions is extremely tedious. One needs to use the
representation of the observable in terms of massive random walks in
specific domains, a little bit like in the previous section. We skipped the
details but we hope that the previous paragraphs illustrated the fact that
the characteristic length can be computed using the observable.
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11.3 Monotone coupling for the random
cluster model with q ≥ 1

11.3.1 Definition

It is natural to study the random-cluster model through its phase transition
by constructing a monotone coupling of random-cluster models with fixed
cluster-weight q ≥ 1 and different edge-weights. The Holley criterion
provides us with a monotone coupling of two random-cluster model
measures with the same cluster-weight and different edge-weights, but it
does not construct a coupling of random-cluster measures for all edge-
weights simultaneously. In the case of Bernoulli percolation, such a
monotone coupling simply consists of i.i.d. Uniform[0,1] labels on the
edges, and a percolation configuration ωp of density p is the set of bonds
with labels at most p. For q > 1, the construction is more difficult and we
describe it now (see [Gri95, Gri06, HJL02] for a detailed exposition).

Fix q ≥ 1 and a finite subgraph G of Z2. The goal is to find a measure
µG on [0,1]EG in a such a way that all the projections ωp(Z) ∈ {0,1}EG
with Z ∼ µ, defined by

ωp(Z)(e) ∶= 1Z(e)≤p , p ∈ [0,1], e ∈ E ,

follow the random-cluster probability measures of parameters (p, q) on
{0,1}EG with some given boundary conditions. For simplicity, we will
focus on the free boundary conditions.

The measure µG will be constructed as the invariant measure of a natural
Markov process Zt on the space [0,1]EG constructed as follows. The labels
of edges are updated at exponential rate of mean 1. Once the clock of an
edge e = [xy] rings (let us say at time t), resample the label according to
the law on [0,1] with partition function

P(Ue ≤ p) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

p if p ≥ P (Zt−),
p

p + (1 − p)q
if p < P (Zt−),

(11.16)

where Zt− is the limit of Zs for s↗ t and P is the random variable defined
by

P = P (Zt−) ∶= inf {p ∈ [0,1] s.t. ωp(Zt−) ∈ {x←→ y in EG ∖ {e}}} .

The condition q ≥ 1 implies that this is a valid distribution function, hence
we can simply define Ue to be a sample from this distribution.

Proposition 11.14. Let G be a graph and q ≥ 1. The random-variable
(ωp(Z))0≤p≤1 provides us with an increasing coupling of random-cluster
models with cluster-weight q.
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Proof. The coupling thus obtained is increasing by construction. For a
fixed p, the process (ωp(Zt))t≥0 is a Markov process on {0,1}EG whose
invariant law is ωp(Z). Now, (ωp(Zt))t≥0 is obtained by resampling (the
state of) each edges at exponential rate 1 according to the law

P(Ve = 1) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

p if x←→ y in EG ∖ {e},
p

p + (1 − p)q
otherwise .

One may easily check that φ0
p,q,G is invariant under this Markov process.

It is therefore equal to the law of ωp(Z). ◻

Constructing an infinite-volume version of the previous dynamics is not
straightforward. Nevertheless, one has the following asymptotic statement
from [Gri95, Gri06].

Proposition 11.15 (Infinite Volume Limit [Gri95]). Let ξ be some initial
configuration in [0,1]EZ2 . For q ≥ 1, consider the above dynamics ZΛn

t

on Λn with free boundary conditions, which starts from the initial state
ZΛn

0 ≡ ξ∣Λn . Then:

� As n →∞, the process (ZΛn
t ) weakly converges to a Markov process

(Zfree
t )t≥0 which starts from the initial configuration Zfree

0 = ξ.
� As t → ∞, Zfree

t weakly converges to an invariant measure µ on
[0,1]EZ2 .

� If, in the limiting procedure, one uses wired boundary conditions
instead, one obtains at the limit a Markov process (Zwired

t )t≥0. The
processes Zwired

t and Zfree
t might possibly have different transition

kernels but they both have the same µ as the unique invariant
measure. For Z ∼ µ, the projections ωp(Z) given by (11.3.1) have the
law of a random-cluster model with parameters p and q and boundary
conditions ξ.

11.3.2 Existence of emerging clouds for q > 1

While no two edges appeared simultaneously in the standard monotone
coupling for Bernoulli percolation, several edges may appear at the same
p in monotone couplings for random-cluster models with q > 1. We will
see later that this phenomenon is crucial in order to explain the behavior
of the near-critical regime.

Given a sample Z ∈ [0,1]EG from Grimmett’s monotone coupling µG,
for an edge e ∈ EG, let cloud(e) be the set of edges which appear
simultaneously with e:

cloud(e) ∶= {f ∈ EG such that Z(f) = Z(e)} .
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Proposition 11.16. Fix q > 1. For any N ≥ 1, let (ωp(Z)p∈[0,1] be a
monotone coupling in the box Λn. The probability that clouds of at least
N edges appear simultaneously in ωp(Z) at some p ∈ (0,1) converges to 1
when n tends to +∞.

We will exploit the fact that Ue has an absolutely continuous part plus

a Dirac point mass for q > 1 on P (the smallest p such that x
ωp←→ y in EG),

namely [P − P
P+(1−P )q ]δP .

Proof. Fix N > 0. Let us consider the sets

Ehor = {horizontal edges of [0,1] × [0,N]},
Evert = {vertical edges of [0,1] × [0,N]},
Eext = {edges with exactly one end-point in [0,1] × [0,N]}.

We also set e0 to be the edge between the origin and the vertex (1,0).
Let us sample Zt=0 according to the invariant measure µG, and let us run

the dynamics given by the Markov process for a unit time. With positive
probability, all edges in E ∶= Ehor∪Evert∪Eext are updated and their labels
at time 1 satisfy the following:
� All labels in Evert are smaller than 1/4;
� The label of the edge e0 lies in (1/4,1/2);
� All other labels in Ehor ∪Eext are larger than 3/4.

Under such circumstances, all edges e ∈ Ehor ∖ {e0} are such that
Pe(Zt=1) = Zt=1(e0). It could be that this situation evolves later on, but we
have that, with positive probability, none of the edges in Evert∪Eext∪{e0}
are updated from time 1 to time 2. Knowing this, again with positive
probability, all edges in Evert are updated from time 1 to time 2 and all
of them take exactly the value u ∶= Zt=1(e0) (this is due to the Dirac mass
in the law Ue). Since we started at equilibrium, Zt=2 has the equilibrium
law, and edges in Evert are all open or all closed in the projections of
Zt=2. This shows that with positive probability, at least N edges appear
simultaneously as one raises p.

Now, the previous procedure showed that with probability bounded
away from 0 uniformly in the state of edges outside E, the edges in Evert

are all open or all closed. When G = Λn is getting very large, we can
divide the box into translates of E. Since in each of these boxes will have
positive chance to see edges appearing simultaneously, the result follows.
By changing slightly the argument, one can show that there are such clouds
for any open interval of p ∈ [0,1]. ◻

We end this subsection by a hand-waving argument why these clouds
appear and may play an important role in the understanding of the near-
critical regime. Due to the factor qk(ω) in the partition function, random-
cluster configurations tend to have as many clusters as possible. When
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q > 1 and p is increased, there is a fight between the entropy under the
product measure po(ω)(1 − p)c(ω) pushing to open edges and the energy
corresponding here to −k(ω) log(q) trying to maximize the number of
clusters.

A good strategy for adding many edges without a significant increase
in energy is the following storing mechanism. Say we have two touching
clusters with a certain number of closed edges going from one to the other.
Once one of these edges becomes open, then there is no energy cost to open
other edges. At this point, it is unclear whether this storing mechanism
can happen or not.

Now, Grimmett’s coupling pz→ ωp(Z) is in fact a continuous-time (here
p is the time-parameter) monotone Markov process (we refer to [DCGP11]
for details) and therefore the only way for this storing mechanism to
actually happen is to have some values of p where the system can
simultaneously open several edges. This indeed can happen, due to
the atomic part of the update distribution, as shown in Lemma 11.16,
and the construction there was indeed a simple example of edges
arriving simultaneously between two neighboring large clusters (the two
components of Evert).

It is worth noticing that this heuristic explanation hints that the storing
mechanism should be much stronger near the critical point. Indeed, near
pc(q), there are many neighboring large clusters which makes the storing
mechanism more efficient.

11.4 Violation of Kesten’s scaling relation
for 4 ≥ q > 1

We go back to the random-cluster for a moment. Let q ∈ [1,4]. In this
section, we postulate the existence of the four following exponents:

φpc,q[A1(0, n)] = n−ξ1+o(1) as n→∞,

φpc,q[A1010(0, n)] = n−ξ1010+o(1) as n→∞,

φp,q(0←→∞) = (p − pc)β+o(1) as p↘ pc,

L(p, q) = ∣p − pc∣−ν+o(1) as p↘ pc

(this last definition is similar to the FK-Ising case). In the case of
percolation, Kesten proved that (2 − ξ1010)ν = 1 and β = νξ1 in [Kes87]
(also see [Nol08, NW09, GPS13, GP11]). These relations are very useful
since they allow one to compute the near-critical exponents ν and β
describing the behavior of thermodynamical quantities in terms of the
critical exponents ξ1 and ξ1010 describing fractal properties of the critical
regime (which may be obtained by SLE computations for instance).
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It would be interesting to see if these relations are still valid for other
values of q ∈ [1,4]. Unfortunately, this is not the case as we can see for
the FK-Ising model. Indeed, in this case β = 1

8
, ξ1 = 1

8
(these exponents

were computed by Onsager), ν = 1 (this exponent was computed in the
previous section) and ξ1010 = 24

13
[Gar]. When putting these exponents in

(2 − ξ1010)ν = 1, we see that the equality is not satisfied.
The exact value of the previous exponents enabled us to show that

Kesten’s relation is violated. However, it does not tell us why. We
therefore propose to give a heuristic explanation for this violation now
by first explaining this relation in the case of Bernoulli percolation, and
then explain what is different for random-cluster models with q > 1.

Recall that for p > pc, L(p,1) is roughly the scale at which the
configuration starts to look supercritical. The geometry of the large
clusters in the box depends on the fact that so-called macroscopic pivotal
edges (by macroscopic pivotal edge we informally mean an edge which is
pivotal in the sense of Section 5.2.3 for crossing of some say large rectangle
in the box; we omit the rigorous definition here and keep only an intuitive
approach) are rather open or closed.

Let ωp be the monotone coupling of Bernoulli percolation. Getting from
ωpc to ωp (p > pc) in the box of size n, roughly n2(p − pc) edges are
switched from closed to open. Now, the probability that an edge is pivotal
for the event of being crossed is of order ξ4(n) ∶= φpc,q[A1010(0, n)]. The
expected number of opened edges that were closed macroscopic pivotals
in the initial configuration (preventing macroscopic open paths) is about
n2ξ4(n)(p−pc). Now, if n2ξ4(n)(p−pc) ≫ 1, it is not very hard to show that
many of these initial macroscopic pivotals have become open with good
probability (not only their expected number is large), and this implies that
the window of size n has become well-connected. That is, we have left the
near-critical regime. But this is only a very rough cartoon. Indeed, maybe
many pivotal edges were destroyed during the dynamics, and therefore the
counting argument outlined above is not accurate.

On the other hand, the regime n2ξ4(n)(p − pc) ≪ 1 is more difficult to
understand. The number of initial macroscopic pivotals that have switched
is small and the macroscopic connectivity of the configuration have not
changed. In particular, the crossing probability is still bounded away from
1. Once again, this is only a cartoon. Indeed, even though the number
of macroscopic pivotal edges that switched from closed to open is small,
maybe many new pivotal edges have appeared during the dynamics, which
could have switched then, establishing macroscopic open connections.

Anyway, the following scaling relation holds:

L(p,1)2 ⋅ ξ4(L(p,1)) ⋅ (p − pc) ≍ 1, (11.17)

where ≍ means that the quantity remains bounded away from 0 and ∞
uniformly in p. This relation leads to (2 − ξ1010)ν = 1.
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To our knowledge, it has been widely believed in the community that
basically the same mechanism should hold in the case of random-cluster
models. Namely, once we understand the geometry of the set of pivotal
points at criticality, we may readily deduce information on the near-critical
behavior.

The reason why the relation is violated when q > 1 (and in particular
when q = 2) comes from the intrinsic difference between monotone
couplings for q = 1 and q > 1. Let us explain a little bit.

First, there is a basic phenomenon in the coupling for the random-
cluster models with q ≥ 2 that is very relevant to the above discussion: the
difference between the average densities of edges between pc and p is not
proportional to p−pc, but larger than that, with an exponent given by the
so-called specific heat of the model (see the exponent α in Section 13.2.3).
A first guess could be that the discrepancy in (11.17) for q ≥ 2 is a result
of the fact that p−pc is not the density of the new edges arriving, and this
should have been taken into account in the computation using the pivotal
exponent. However, this is only partially right: the specific heat exponent
itself is not large enough to account for this discrepancy (in fact, for q = 2
it equals 0: there is only a logarithmic blow-up).

The main reason for the discrepancy is that the storing mechanism
mentioned in the previous section kicks in. In standard percolation, new
edges arrive in a “Poissonian” way. If this were true in the Grimmett
coupling for the random-cluster model with q > 1, then an argument similar
to the Bernoulli percolation case could be performed and Kesten’s relation
would be valid. But this is not the case: new edges arrive in a correlated
fashion. It becomes possible for the arriving edges to prefer “strategic”
locations, creating and then opening new pivotal edges at large scales,
thereby speeding up the dynamics compared to what could be guessed
from the number of pivotal edges at criticality. In other words, near pc, the
arriving edges depend in a very sensitive way on the current configuration.
This balance between the current configuration and the conditional law of
the arriving edges is representative of a self-organized mechanism behind
the phenomenology of clouds and the way the configuration passes from
a subcritical state to a supercritical one. Understanding this mechanism
seems to be a very interesting challenge.



Part IV

What’s next?





Chapter 12

What about other graphs
and other models?

This chapter is devoted to the study of the parafermionic observable in
other models. We will not present any detailed proof but we wish to
illustrate the fact that the theory of parafermionic observables is not
restricted to specific planar lattices and to the random-cluster model, the
Ising model and the self-avoiding walk. We expect that new applications
of discrete observables should be found in a broader context.

12.1 A glimpse of universality: statistical
physics on isoradial graphs

When speaking about random-cluster models and the Ising model in this
book, we chose to restrict ourselves to the square lattice Z2. However, one
may ask the same questions for the triangular, the hexagonal or even more
general planar lattices. In this section, we discuss an important class of
graphs, called isoradial graphs, to which most of what has been described
above can be extended.

Definition 12.1. An isoradial graph is a planar graph admitting an
embedding in the plane in such a way that every face is inscribed in a circle
of radius 1, see Fig. 12.1. In such cases, we will say that the embedding is
isoradial.

The triangular, hexagonal and square lattices are isoradial graphs. Each
of these graphs possesses in fact a whole family of isoradial embeddings.
For instance, any distortion of the square lattice, where each square is
stretched into a rectangle, is still an isoradial embedding. We would like
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to point out that isoradial graphs form a rather large family of graphs.
Kenyon and Schlenker [KS05] gave a simple necessary and sufficient
topological condition on planar graphs for the existence of an isoradial
embedding.

e
θe

θe

Figure 12.1: Black vertices and plain lines form the isoradial graph. White
vertices and dashed lines form the dual graph. Dual vertices have been
drawn in such a way that they are the centers of circles of radius 1. On
the top left, an edge e with the angle θe on each sides.

Isoradial graphs were introduced by Duffin [Duf68] who extended the
definition of discrete holomorphic functions to their embeddings. For
these graphs, the Cauchy-Riemann operator admits a nice discretization.
In particular, restrictions of holomorphic functions to such graphs are
discrete holomorphic to higher orders (meaning that they are closer
to discrete holomorphic functions than on other graphs). We refer
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to [Mer01, Ken02, CS11] for an analysis of discrete holomorphicity on
isoradial graphs.

It seems that the first appearance of a related family of graphs in the
probabilistic context was in the work of Baxter [Bax78], where the so-called
eight vertex model and the Ising model were considered on Z-invariant
graphs arising from planar line arrangements1.

When working with isoradial graphs, one does not usually require
invariance under translations but the following condition is classical. Let
e be an edge of an isoradial embedding of a graph G. It subtends an angle
θe ∈ (0, π) at the center of the circle corresponding to any of the two faces
bordered by e; see Fig. 12.1.

Definition 12.2. Fix θ > 0, and let G be an infinite isoradial graph. The
graph is said to satisfy the bounded-angle property if the following condition
holds:

(BAPθ) For any e ∈ EG , θ ≤ θe ≤ π − θ.

12.1.1 Random-cluster model on isoradial graphs

We consider a random-cluster model with edge-weights depending on each
edge. Let G be an infinite isoradial graph and p = (pe)e∈EG a family of
edge-weights pe ∈ [0,1]. For a finite subgraph G of G, the probability of a
configuration is proportional to

∏
e∈EG

pω(e)e (1 − pe)1−ω(e)qk(ω).

In this section, the weighted graph (G, p) will be assumed to be periodic,
in the sense that it will carry an action of the square lattice Z2 with
finitely many orbits. For q ≥ 1, this model can be extended to G where
it exhibits a phase transition. In general, there is no conjecture for the
value of the critical surface, i.e. the set of (pe)e∈EG for which the model is
critical and getting a good understanding of the general case seems very
challenging. For this reason, we restrict our attention to specific random-
cluster measures with cluster-weight q ≥ 4 on G. For β > 0, define the
edge-weight pe(β) ∈ [0,1] for e ∈ EG by the formula

pe(β)
[1 − pe(β)]

√
q
= β

sinh[σ(π−θe)
2

]
sinh[σθe

2
]

,

1These graphs are topologically the same as the isoradial ones, and though they
are embedded differently into the plane in Baxter’s work, by [KS05] they always admit
isoradial embeddings. In [Bax78], Baxter was not considering scaling limits, and so the
actual choice of embedding was immaterial for his results.
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where the spin σ is given by the relation

cosh (σπ
2

) =
√
q

2
.

Note that pe(β) is uniquely defined by this relation, and that the edge-
weight depends both on β and θe (and therefore on the whole rhombic
embedding). Obviously, not every periodic edge-weight (pe)e∈EG can a
priori be written in the form above since it would fix the values of θe and
therefore the embedding which would not always be a rhombic embedding.
Nevertheless, this specific choice of edge-weights (pe(β))e∈EG possesses
very interesting properties as illustrated below.

The infinite-volume measure on G with cluster-weight q ≥ 4, edge-weights
(pe(β))e∈EG and free boundary conditions is denoted by φ0

β,q,G .

Theorem 12.3 (Beffara, Duminil-Copin, Smirnov [BDCS12]). Let q ≥ 4,
θ > 0 and β < 1. There exists c = c(β, q, θ) > 0 such that for any infinite
isoradial graph G satisfying (BAPθ) and for any u, v ∈ G

φ0
β,q,G(u←→ v) ≤ exp[−c∣u − v∣].

The proof is based on a parafermionic observable defined on isoradial
graphs. The integral along discrete contours can be proved to vanish when
β = 1. Furthermore, for β < 1, an adaptation of the proof of Section 6.3
allows one to show that the parafermionic observables decay exponential
fast in the distance to the boundary.

The dual of an isoradial graph G is also an isoradial graph G⋆.
Furthermore, with the choice of edge-weights (pe(β))e∈EG , the edge-
weights of the dual measure on G⋆ are (pe⋆(1/β))e⋆∈EG⋆ (since θe⋆ = π−θe;
see Fig. 12.1). Therefore, the previous theorem implies that there is
exponential decay in the dual graph for β > 1, and therefore there exists
an infinite cluster almost surely2. In conclusion, edge-weights (pe)e∈EG =
(pe(1))e∈EG are critical in the following sense.

Theorem 12.4. Let q ≥ 4, θ > 0. For any periodic isoradial graph G:
1. The infinite-volume measure is unique whenever β ≠ 1. We denote

it by φβ,q,G.
2. For β < 1, there is φβ,q,G-almost surely no infinite-cluster.
3. For β > 1, there is φβ,q,G-almost surely a unique infinite-cluster.

The equivalent of Theorems 12.3 and 12.4 was previously known for two
other choices of q:

2We applied this reasoning in the proof of Theorem 6.18 in Section 6.3: the Borel-
Cantelli lemma shows that there are finitely many dual circuits surrounding the origin
almost surely.
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� When q = 2, the model was studied in [Bax78]; Also see
Theorem 12.6.

� When q = 1 (for percolation), Manolescu and Grimmett [GM13b,
GM13a, GM12] showed the corresponding statements and much
more. We refer to [BDCS12] and [DCM13b] for more details on
these results.

The previous theorem has a nice byproduct. Attribute to each edges of
the square, triangular and hexagonal lattices Z2, T and H an edge-weight
depending only on the orientation of the edge (for instance on Z2, the
edge-weight of vertical edges is p1 and the one of horizontal edges is p2).
The inhomogeneous random-cluster models on the square, the triangular
and the hexagonal lattices can be seen (after some straightforward
computations) as random-cluster models on periodic isoradial graphs (the
isoradial embedding depends on the proportionality between weights).
Thus, Theorem 12.4 provides us with an explicit expression for the critical
surfaces that we mention below.

Corollary 12.5. The inhomogeneous random-cluster model with cluster-
weight q ≥ 4 on the square, triangular and hexagonal lattices have the
following critical surfaces:

on Z2 p1

1 − p1

p2

1 − p2
= q,

on T
p1

1 − p1

p2

1 − p2

p3

1 − p3
+ p1

1 − p1

p2

1 − p2
+ p1

1 − p1

p3

1 − p3
+ p2

1 − p2

p3

1 − p3
= q,

on H
p1

1 − p1

p2

1 − p2

p3

1 − p3
= q p1

1 − p1
+ q p2

1 − p2
+ q p3

1 − p3
+ q2,

where p1, p2 (resp. p1, p2, p3) are the edge-weights of the different
orientations of edges.

For percolation, the previous corollary was predicted in [SE63] and
proved in [Kes80, Section 3.4] for the case of the square lattice and [Gri99,
Section 11.9] for the case of triangular and hexagonal lattices.

Let us also mention that the critical parameter of the so-called
continuum random-cluster model can be computed using the fact that it
is the limit of inhomogeneous random-cluster models on the square lattice
with (p1, p2) → (0,1). We refer to [GOS08] for a precise definition of the
models and their connection to Quantum Potts models. The parameters
of the models are usually referred to as λ, δ > 0, where λ and δ are the
intensities of the Poisson Point Process of so-called births and deaths
respectively. In such case, Theorem 12.4 implies that the critical point
is given by λ/δ = q for q ≥ 1.
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12.1.2 Ising on isoradial graphs

Historically, the weights of Baxter’s models suggested an isoradial
embedding. This led Mercat [Mer01], Boutillier and de Tilière [BdT10,
BdT11] to study the Ising model on isoradial graphs3. Note that since
isoradial graphs are fundamental for both discrete holomorphicity and
random-cluster models, it is not surprising that the Ising model on isoradial
graphs also satisfies very specific integrability properties.

A natural critical model can be defined by taking the following
Hamiltonian:

H f
G = −∑

x∼y
Jxyσxσy,

where

Jxy = 1
2

log(
1 + cos(θ[xy]/2)

sin(θ[xy]/2)
) ,

and θ[xy] is yet again the angle associated to the edge [xy] in the isoradial
embedding. One may observe that the random-cluster representation of
this Ising model is a random-cluster model on G with critical isoradial
weights and therefore the model is critical (it is a simple exercise on
trigonometric functions). In fact, this model is not only critical but it is
also conformally invariant in the following sense. A graph Ωδ will denote
the image by z ↦ θz of an isoradial embedding (in other words it is an
isoradial embedding but with circles of radius δ instead of 1).

Theorem 12.6 (Chelkak, Smirnov [CS12]). Let Ω be a simply connected
domain with two marked points u and v on its boundary such that ∂Ω is flat
near v. Let (Ωδ, uδ, bδ) be a family of discrete approximations of (Ω, u, v)
converging in the Carathéodory sense to (Ω, u, v). We further assume that
the boundary is “flat” near vδ (see [CS12] for a precise definition). Then
the spin fermionic observable on (Ωδ, uδ, vδ) converges in the scaling limit
to the same limit as for the square lattice.

The convergence is in fact uniform in the possible choices of Ωδ (in
particular they can come form different pieces of isoradial graphs). Even
though details were not provided, the techniques exposed in this book
extend to the Ising model on isoradial graphs and lead to the convergence
of interfaces for instance.

The proof of Theorem 12.6 is based on a generalization of the spin
fermionic observable to isoradial graphs. The techniques are similar to the
case of the square lattice and the architecture of the proof is the same
(though additional technicalities arise).

3The dimer model and the uniform spanning tree models on such graphs were also
studied: they share nice properties, see e.g. [Ken02].
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12.2 The Potts models

The Potts model is a model of random coloring of Z2 introduced as
a generalization of the Ising model to more-than-two components spin
systems. In this model, each vertex of Z2 receives a spin among q
possible colors. The energy of a configuration is proportional to the
number of frustrated edges, meaning edges whose endpoints have different
spins. Since its introduction by Potts [Pot52] (after a suggestion of his
adviser Domb), the model has been a laboratory for testing new ideas
and developing far-reaching tools. In two dimensions, it exhibits a rich
panel of possible critical behaviors depending on the number of colors,
and despite the fact that the model is exactly solvable, the mathematical
understanding of its phase transition remains restricted to a few cases
(namely q = 2 and q large). We refer to [Wu82] for a review on this model.

Consider an integer q ≥ 2 and a subgraph G of the square lattice. Let

τ ∈ {1, . . . , q}Z
2

. The q-state Potts model on G with boundary conditions

τ is defined as follows. The space of configurations is Ω = {1, . . . , q}Z
2

.
For a configuration σ = (σx ∶ x ∈ Z2) ∈ Ω, the quantity σx is called the
spin at x (it is sometimes interpreted as being a color). The energy of a
configuration σ ∈ Ω is given by the Hamiltonian

Hτ
q,G(σ) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−2 ∑
x∼y

{x,y}∩G≠∅

δσx,σy if σx = τx for x ∉ G,

∞ otherwise.

Above, δa,b denotes the Kronecker symbol equal to 1 if a = b and 0
otherwise.

For q = 2, we recognize the Ising model (the multiplicative constant 2 in
the Hamiltonian is introduced in such a way that the Ising model and the
2-state Potts model can be identified together).

The spin-configuration is sampled proportionally to its Boltzmann
weight: at an inverse-temperature β, the probability µτβ,q,G of a
configuration σ satisfies

µτβ,q,G[σ] ∶= e−βH
τ
q,G(σ)

Zτβ,q,G
where Zτβ,q,G ∶= ∑

σ∈Ω
e−βH

τ
q,G(σ)

is the so-called partition function defined in such a way that the sum of
the weights over all possible configurations equals 1. By construction,
configurations that do not coincide with τ outside of G have probability 0.

Infinite-volume Gibbs measures can be defined by taking limits, as G
tends to Z2, of finite-volume measures µτβ,q,G. In particular, if (i) ∶= τ
denotes the constant configuration equal to i ∈ {1, . . . , q}, the sequence

of measures µ
(i)
β,q,G can be proved to converge, as G tends to infinity,
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to a Gibbs measure denoted by µ
(i)
β,q (see one possible justification in

Remark 12.10). This measure is called the infinite-volume Gibbs measure
with monochromatic boundary conditions i.

The Potts models undergo a phase transition in infinite volume at a
certain critical inverse-temperature βc(q) ∈ (0,∞) in the following sense

µ
(i)
β,q[σ0 = i] =

⎧⎪⎪⎨⎪⎪⎩

1
q

if β < βc(q),
1
q
+mβ > 1

q
if β > βc(q).

One may ask what is the value of βc(q), and what is happening at
criticality. In [LMR86, LMMS+91, KS82], the Potts model was proved
to undergo a discontinuous phase transition at criticality when q > 25, i.e.

that µ
(i)
βc(q),q[σ0 = i] > 1

q
. The following result provides one of the first

theorems treating small q ≠ 2 values.

Theorem 12.7. For any q ≥ 2 and for any i ∈ {1, . . . , q}, we have (Beffara,
Duminil-Copin [BDC12a])

βc(q) =
1

2
log(1 +√

q).

Furthermore (Duminil-Copin, Sidoravicius, Tassion [DCST13]), if
q ∈ {2,3,4},

µ
(i)
βc(q),q[σ0 = i] = 1

q
.

Before showing this theorem, let us mention that the proof is based
on the random-cluster model (more precisely on Theorem 5.10 and
Corollary 6.16) and a coupling between the random-cluster model with
cluster-weight q and the q-state Potts model. The fact that Corollary 6.16
is based on the parafermionic observable implies that Theorem 12.7 is an
example of application of the parafermionic observable to Potts models.

The value of the critical point was known in the q = 2 case and
for large q. The second property yields the continuity of the phase
transition (in opposition to a discontinuous phase transition for which

µ
(i)
βc(q),q[σ0 = i] > 1

q
). The proof of the continuity of the phase transition

for q equal to 3 or 4 appears to be new (for q = 2, it is known since Onsager
and Yang). Let us mention that Baxter [Bax71, Bax73, Bax78, Bax89]
used a mapping between the Potts model and solid-on-solid ice-models to
compute the free energy at criticality. He was able to predict that the phase
transition was continuous for q ≤ 4 and discontinuous for q ≥ 5. While this
computation gives a good insight on the behavior of the model, it relies
on unproved assumptions which, forty years after their formulation, seem
still very difficult to justify rigorously. Unfortunately, we are currently



Chapter 12. What about other graphs and other models? 325

unable to show rigorously that the phase transition is discontinuous for
every q ≥ 5.

Remark 12.8. In dimension d ≥ 3, the phase transition is expected to
be continuous if and only if q = 2. The best results in this direction are
the following ones. On the one hand, the fact that the phase transition is
continuous for the Ising model (q = 2) is known for any d ≥ 3 [ADCS13] (in
fact, the critical exponents are known to be taking their mean-field value
[AF86] for d ≥ 4). On the other hand, mean-field considerations combined
with Reflection-Positivity enabled [BCC06] to prove that for any q ≥ 3,
the q-state Potts model undergoes a discontinuous phase transition above
some dimension dc(q). Finally, [KS82] used Reflection-Positivity to prove
that for any d ≥ 2, the phase transition is discontinuous provided q is large
enough (the Pirogov-Sinai theory was used in [LMR86] to obtain the same
result).

Theorem 12.7 follows directly from Theorem 5.10 and Corollary 6.16 via
the following extension of the Edwards-Sokal coupling to q-colorings. Let
q ≥ 2 and let G be a finite graph. Assume a configuration ω of open and
closed edges on G is given. One can deduce a q-coloring σ of the graph
G by assigning independently to each cluster of ω a color among the q
possible colors (here again, we mean that we give this color to each spin
on the cluster), each with probability 1/q, except for the cluster of the
boundary which receives color i.

Proposition 12.9. Fix an integer q ≥ 2. Let p ∈ (0,1) and G a finite
graph. If the configuration ω is distributed according to a random-cluster
measure with parameters (p, q) and wired boundary conditions, then the
coloring σ is distributed according to a q-state Potts measure with inverse
temperature β = − 1

2
ln(1 − p) and monochromatic boundary conditions i.

Proof. The proof of the Edwards-Sokal coupling works mutatis mutandis
in this case. ◻

Remark 12.10. The coupling has many other important implications. It
allows us to sample efficiently Potts configurations via algorithms on the
random-cluster model such as Swendsen-Wang [SW87] (see also [Gri06,
Section 8] and references therein). It also leads to additional correlation
inequalities which are not available directly for Potts models: for instance,
the FKG inequality for the random-cluster representation often replaces
the FKG inequality for spins which fails whenever q ≥ 3. To provide yet

another example of applications, let us justify the definition of µ
(i)
β,q. For

q ≥ 2, the existence of the limit of µ+β,2,Λn could follow from the stochastic
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ordering between different measures with + boundary conditions4. For
q ≥ 3, this stochastic ordering does not exist. Nevertheless, one may
look at random-cluster models on Λn with wired boundary conditions,

and use the Edwards-Sokal coupling to sample the measure µ
(i)
β,q,Λn

. It
is then easy to show that the coupling converges in the limit towards
the following coupling: consider the infinite-volume random-cluster model
with wired boundary conditions, and color each finite cluster uniformly
and independently, except for the infinite cluster which is colored in color
i. We therefore obtained the convergence result, and an extension of the
Edwards-Sokal coupling to the infinite volume.

12.3 The spin O(n)-models

12.3.1 Spin O(n)-models

After the introduction of the Ising model by Lenz [Len20], and the
conjecture by Ising that no phase transition was occurring, many physicists
tried to find natural generalizations of the model exhibiting a phase
transition. In [HK34], Heller and Kramers described the classical version
of the celebrated quantum Heisenberg model where spins are vectors of
the three-dimensional sphere S3. Later, Stanley generalized this model
by allowing spins to be on the sphere Sn of radius

√
n in dimension n

[Sta68]. This model is now known as the spin O(n)-model. Therefore, the
O(1)-model is the Ising model, the O(2)-model is the so-called XY-model
(it was introduced in [VL66] two years before the general model), and the
O(3)-model is the classical Heisenberg model. We refer to [DG76] for a
history of the subject.

The spin O(n)-model can be defined on any graph, however, we restrict
ourselves to the hexagonal lattice H. Let G be a finite subgraph of H. The
spin O(n)-model with free boundary conditions is a random assignment
σ ∈ (Sn)VG of spins σx ∈ Sn, where σx denotes the spin at vertex x. The
Hamiltonian of the model is defined by

H f
n,G(σ) ∶= −∑

x∼y
⟨σx∣σy⟩ ,

where the summation is over all pairs of neighboring vertices x, y in G,
and ⟨⋅∣⋅⟩ is the scalar product in dimension n. The partition function of
the model is

Zf
β,n,G ∶= ∫

σ∈(Sn)VG
dσ exp [−βH f

n,G(σ)] , (12.1)

4We did not use this fact to prove the existence of Gibbs measures for the Ising
model in this book.
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where β is the inverse temperature of the model and dσ the tensor product
of ∣VG∣ measures kndx, where dx is the Lebesgue measure on Sn and kn a
normalization factor introduced in such a way that ∫Sn dσ = 1. The spin
O(n)-measure is given by the measure µf

β,n with density

1

Zf
β,n,G

exp [−βH f
n,G(σ)] .

12.3.2 Phase transition in planar O(n)-models

The planar spin O(1)-model being the Ising model, we already discussed
its phase transition extensively5. The phase transition in the spin O(n)-
model when n ≥ 2 is very different from the phase transition in the Ising
model. The case of the O(2)-model is already interesting: the planar
XY -model is never ordered at any temperature. Nevertheless, there is a
qualitative change of behavior in the model:

� At very low inverse-temperature, spin correlations µf
β,n(⟨σa∣σb⟩)

decay exponentially fast in the distance between the vertices [MS77].
� At very high inverse-temperature, spin correlations µf

β,n(⟨σa∣σb⟩)
decay as an inverse power in the distance between the vertices [FS81].

Moreover, there exists a critical inverse-temperature βc separating the
two phases: for β > βc, correlations decay as inverse power laws while
for β < βc, they decay exponentially fast. Several papers are studying
this value βc, and we refer to [Cha98] for a more detailed discussion. A
phase transition of this type is called Berezinsky-Kosterlitz-Thouless (it
is named after Berezinsky and Kosterlitz-Thouless who introduced it non
rigorously for the planar XY -model in two independent papers [Ber72] and
[KT73]). The main differences with phase transitions previously described
in this document is the absence of an ordered phase with global symmetry
breaking. Moreover, the order of the phase transition is infinite (the free
energy is infinitely differentiable but not analytic at the transition).

Other values of n are very different: Polyakov conjectured in 1975
that no phase transition occurs whenever n ≥ 3 [Pol75]. Polyakov’s
conjecture is generally accepted, even so it is not completely unanimous.
We mention that the existence/absence of phase transitions is still an
open mathematical question of great interest even for very large n. The
only known results deal with the n → ∞ limit which corresponds to the
spherical model of Berlin and Kac [BK52]: in [Kup80], the absence of a
phase transition was established when n → ∞ at fixed β/n by using an
asymptotic expansion in 1/n. Note that it does not imply the absence of
a phase transition at any fixed n.

5Most of the book was devoted to the Ising model on the square lattice, however the
last section shows that the same results hold on the hexagonal lattice.
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12.4 Loop O(n)-model on the hexagonal
lattice

12.4.1 Definition

This model, introduced in [DMNS81] on the hexagonal lattice, is a lattice
gas of non-intersecting loops. More precisely, consider configurations of
non-intersecting simple loops on a finite subgraph of the hexagonal lattice
and introduce two parameters: a loop-weight n ≥ 0 (in fact after suitable
modifications, one may work with n ≥ −2) and an edge-weight x > 0, and
ask the probability of a configuration to be proportional to n# loopsx# edges.
From time to time, an interface between two boundary points could be
added: in this case configurations are composed of non-intersecting simple
loops and one self-avoiding interface (avoiding all the loops) from a to b.

Two values of n are of special interest. Since no loop is allowed, the
O(0)-model with an interface is the self-avoiding walk from a to b, as first
mentioned in [DG72]. In the next paragraph, the loop O(1)-model will
be related to the high-temperature expansion of the Ising model on the
hexagonal lattice.

12.4.2 Connection between the spin and loop O(n)-
models

In fact, the loop O(n)-model was introduced as an approximation of the
high-temperature expansion of the spin O(n)-model on the hexagonal
lattice. Instead of the partition function in (12.1), consider the simplified
partition function

Z̃f
x,G ∶= ∫

σ∈(Sn)VG
dσ ∏

[ab]∈EG
(1 + x ⟨σa∣σb⟩ ), (12.2)

where x > 0. Strictly speaking, the partition functions Zf
x,G (here x

replaces β in (12.1)) and Z̃f
x,G coincide only in the limit x approaching

0 yet the two models are expected to belong to the same universality class.
In the Ising case, Zf

β,G is the integral of

∏
[ab]∈EG

(e
β + e−β

2
+ e

β − e−β

2
⟨σa∣σb⟩ ).

Thus,
Zf
β,G ∶= cosh(β)∣EG∣Z̃f

x,G

for x ∶= eβ−e−β
eβ+e−β . In other words, when n = 1, the previous replacement is

not an approximation.
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As in the high-temperature expansion of the Ising model, Z̃x,G can be
expanded in powers of x.

Z̃f
x,G = ∫

σ∈(Sn)VG
dσ ∏

[ab]∈EG
(1 + x ⟨σa∣σb⟩ )

= ∫
σ∈(Sn)VG

dσ ∑
ω⊂EG

∏
[ab]∈ω

x ⟨σa∣σb⟩

= ∑
ω⊂EG

x∣ω∣ ∫
σ∈(Sn)G

dσ ∏
[ab]∈ω

⟨σa∣σb⟩ ,

where ∣ω∣ is the number of edges in ω. Recall that EΩ is the set of even
subgraphs of Ω. In the case of the hexagonal lattice, it is simply the set of
collections of non-intersecting self-avoiding loops. Now,

∫
σ∈(Sn)G

dσ ∏
[ab]∈ω

⟨σa∣σb⟩ =
⎧⎪⎪⎨⎪⎪⎩

n# loops if ω ∈ EΩ
0 otherwise.

(12.3)

In order to see that, first observe that if there exists a vertex x of degree
1 in ω (let us assume that it belongs to the edge [xy] in ω), then

∫
σ∈(Sn)G

dσ ∏
[ab]∈ω

⟨σa∣σb⟩ = ∫
σ∈(Sn)G∖{x}

dσ ∏
[ab]∈ω∖{[xy]}

⟨σa∣σb⟩∫ dσx⟨σx∣σy⟩

= 0

where the last equality is due to the fact that the integral on the right
equals 0 by symmetry of dσx with respect to σx ←→ −σx. This computation
implies that the only configurations for which the integral is non-zero are
the elements of EΩ.

Let us now compute the integral in the case of a configuration composed
of one loop γ only. First, a simple computation leads6 to

∫ dσx⟨σz ∣σx⟩⟨σx∣σy⟩ = ⟨σz ∣σy⟩.

By using this formula iteratively, we deduce that

∫
σ∈(Sn)G

dσ ∏
[ab]∈γ

⟨σa∣σb⟩ = ∫ dσc⟨σc∣σc⟩ = ∫ dσcn = n,

6First observe that the two terms are rotationally invariant so that we may assume
that σz = (√n,0, . . . ,0). Now if σy = (y1, . . . , yn) and σx = (x1, . . . , xn), we get that
⟨σz ∣σx⟩⟨σx∣σy⟩ = x1

√
n(x1y1 + ⋅ ⋅ ⋅ + xnyn). When developing the previous expression

and then integrating with respect to σx, all the terms containing x1 to the power 1
disappear by symmetry and computing the original integral reduces to the computation
of the integral of

√
nx2

1y1 with respect to σx. Now, integrating n = ∥x∥2 = x2
1 + ⋅ ⋅ ⋅ + x2

n

on the sphere gives n thanks to the normalization of the measure. Since the coordinates
of σx play symmetric roles, we get that the integral of x2

1 is 1. Overall, the original
integral equals

√
ny1 = ⟨z∣y⟩.



330 Hugo Duminil-Copin

where c is any vertex on γ. We used that σx belongs to the sphere of radius√
n and the normalization of ∫ dσc = 1. The formula for an arbitrary

loop-configuration follows by integration on each loops. This gives (12.7).
Altogether,

Z̃f
x,G = ∑

ω∈EG
x∣ω∣n# loops

and we thus obtain the partition function of the loop O(n)-model.
We may insert ⟨σc∣σd⟩ in the integral. Doing the same computation

as above, we obtain the correlation functions µ̃f
x,n(⟨σa∣σb⟩) for this new

model:

µ̃f
x,n(⟨σc∣σd⟩) ∶=

∫
σ∈(Sn)VG

dσ ⟨σc∣σd⟩ ∏
[ab]∈EG

(1 + x ⟨σa∣σb⟩ )

∫
σ∈(Sn)VG

dσ ∏
[ab]∈EG

(1 + x ⟨σa∣σb⟩ )

=
∑

ω∈EG(c,d)
x∣ω∣n# loops

∑
ω∈EG

x∣ω∣n# loops
,

where EΩ(c, d) is the set of configurations of loops with one interface from
c to d (this justifies the introduction of configurations with one additional
self-avoiding path).

12.4.3 Parafermionic observable and phase transition

The loop O(n)-model exhibits a greater variety of critical behavior than
the spin O(n)-model, since n is not constrained to be an integer. Similarly
to the spin O(n)-model, the loop O(n)-model is expected to have a
Berezinsky-Kosterlitz-Thouless phase transition for some range of n ≤ nc,
while for n > nc, no phase transition occurs.

In the former case, the definition of the phase transition corresponds to
the existence of xc ∈ (0,∞) such that
� For x < xc, the probability that vertices a and b are on the same loop

decays exponentially fast in the distance between a and b.
� For x > xc, the probability that vertices a and b are on the same loop

decays as an inverse power in the distance between a and b.
Bernard Nienhuis [Nie82, Nie84] suggested that nc = 2 and proposed the
following conjecture, supported by physics arguments.

Conjecture 12.11 (Nienhuis [Nie82, Nie84]). For n ∈ [−2,2], the critical

value is given by xc(n) = 1/
√

2 +
√

2 − n.
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The conjecture is rigorously established in two cases only:
� When n = 1, the critical value is related to the critical temperature

of the Ising model, since the O(1)-model is exactly the high-
temperature expansion of the spin Ising model and the computation
of the critical value for this model gives us that indeed xc(1) = 1/

√
3;

� When n = 0, it was proved in Chapter 2 that
√

2 +
√

2 is the
connective constant of the hexagonal lattice. Remembering the
discussion on the self-avoiding walk model seen as a model of
statistical physics in the introduction, this computation implies that

xc(0) = 1/
√

2 +
√

2.

For other values of n ∈ [0,2], this prediction can be understood using
parafermionic observables. Exactly as in the case of the random-cluster
model, one can extend the definition of the spin fermionic observable, as
shown by Smirnov in [Smi06]. For a discrete domain Ω (see Chapter 3)
with two mid-edges on the boundary u and v, the parafermionic observable
is defined for a mid-edge z in Ω by

F (z) = F (z, u, v, x, n, σ) =
∑

ω∈EΩ(u,z)
e−σiWγ(u,z)x∣ω∣n# loops

∑
ω∈EΩ(u,v)

e−σiWγ(u,v)x∣ω∣n# loops
, (12.4)

where EΩ(u, v) is the set of configurations of loops with one interface from
the mid-edge u to the mid-edge v. It is important to notice that exactly
as for the computation of the connective constant of the hexagonal lattice,
the model is slightly modified: the interface starts and ends at mid-edges
instead of vertices. One can easily prove using the same argument as in
Chapter 2 (see Fig. 12.2) that the observable satisfies local relations similar
to the self-avoiding walk case at the conjectured critical value if σ is chosen
carefully.

Proposition 12.12. Let Ω be a finite domain of H (see Chapter 2)

and a, b two boundary mid-edges. If x = xc(n) = 1/
√

2 +
√

2 − n and
σ = σ(n) = 1 − 3

4π
arccos(−n/2), let F be the parafermionic observable,

then

(p − v)F (p) + (q − v)F (q) + (r − v)F (r) = 0 (12.5)

where p, q and r are the three mid-edges adjacent to a vertex v.

Recall that these relations imply that discrete contour integrals vanish.
They may also be understood as discretizations of the Cauchy-Riemann
equations around vertices of H (unfortunately we have no information
for discretizations of Cauchy-Riemann equations around dual-vertices of
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γ4 γ5

γ1 γ2 γ3

γ6

Figure 12.2: Following the same proof as for self-avoiding walks, one may
associate configurations γ1, γ2 and γ3 (resp. γ4, γ5 and γ6) together to
show that the sum of contributions vanishes in Proposition 12.12 (note the
additional configuration with one self-avoiding walk visiting one mid-edge
around the vertex and a loop facing it). We leave the proof as an exercise.

(Z2)⋆, and therefore F is not (a priori) discrete holomorphic in the classical
sense). In the next chapter, we will come back to this point and discuss
the scaling limit of F .

12.5 O(n)-model on the square lattice

It is tempting to extend the definition of the O(n)-model to the square
lattice in order to obtain a family of models containing self-avoiding
walks and the high-temperature expansion of the Ising model on Z2.
Nevertheless, difficulties arise when dealing with the O(n)-model on
graphs which are not trivalent. Indeed, the indeterminacy when counting
intersecting loops in even subgraphs prevents us from defining the model
as in the previous paragraph. One can still define a model of loops on
G⋆ ⊂ Z2 by distinguishing between possible intersection patterns: faces of
G ⊂ Z2 are filled with one of the nine plaquets in Fig. 12.3. A weight pv
is associated to every face v depending on its plaquet. The probability of
a configuration is then proportional to n# loops ∏

v∈G⋆
pv (we use that faces

of Z2 are in correspondence with vertices of the dual lattice). This model
was studied in [Nie90]. We refer to [IC09] for references and additional
details.

Remark 12.13. Several special cases are noteworthy:

� u1 = u2 = v = x, t = 1 and w1 = w2 = n = 0 corresponds to vertex
self-avoiding walks on the square lattice.
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t u1 u2 v w1 w2

Figure 12.3: Different possible plaquets with their associated weights.

� u1 = u2 = v =
√
w1 =

√
w2 = x and n = t = 1 corresponds to the high-

temperature expansion of the Ising model at inverse temperature
β = 1

2
log[(1 + x)/(1 − x)].

� t = u1 = u2 = v = 0, w1 = w2 = 1 and n > 0 corresponds to the loop
representation of the random-cluster model at criticality with q = n2.

A parafermionic observable can also be defined on the medial lattice:

F (z) =

∑
ω∈ẼΩ(a,z)

e−iσWγ(a,z) n# loops ∏
v∈Ω⋆

pv

∑
ω∈ẼΩ

n# loops ∏
v∈Ω⋆

pv
(12.6)

where ẼΩ and ẼΩ(a, z) correspond to families of plaquets satisfying that
the configuration is respectively a family of non-intersecting loops and a
family of non-intersecting loops plus a self-avoiding path from a to z.

Let us study the existence of local relations for this observable. We
will allow ourselves an additional geometric degree of freedom: the lattice
can be twisted, meaning that each rhombus is not a square anymore but a
rhombus with inside angle θ (this modifies the winding term); see Fig. 12.4
for an example when θ = π/3.

One can then look for a local relation for F around a vertex v ∈ Ω⋆,
which would be a discrete analogue of the Cauchy-Riemann equation. As
in the case of random-cluster models and the Ising model, one can associate
configurations by small groups, and try to check the equation for each of
these groups, thus leading to a certain number of complex equations. For
each choice of the weights of the model, of the spin σ and of the geometric
parameter θ, one may check these equations.

We present a solution and its parametrization due to Alexander Glazman
(personal communication). Fix n, there exists a solution for σ = 1 + s
satisfying n = −2 cos[ 4π

3
s]. Note that there are a priori four possible choices
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for σ. In general, the unique solution is given by the following weights:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t =
sin[ 2π

3
s]3

sin[π
3
s]

+ sin[(θ − π
3
)s] sin[( 2π

3
− θ)s],

u1 = sin[(π − θ)s] sin[ 2π
3
s],

u2 = sin[θs] sin[ 2π
3
s],

v = sin[θs] sin[(π − θ)s],

w1 = sin[( 2π
3
− θ)s] sin[(π − θ)s],

w2 = sin[(θ − π
3
)s] sin[θs].

(12.7)

Remark 12.14. For θ = π/3, the rhombus can be divided into two
triangles, and the dual of this graph is the hexagonal lattice. Now, the
loop O(n)-model on the hexagonal lattice can be rewritten as a model of
plaquets on the square lattice, see Fig. 12.4, with

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u1/t = x,
u2/t = x2,
v/t = x2,
w1/t = x2,
w2/t = 0.

We therefore deduce that the solution of (12.7) for n ∈ [0,1], θ = π/3 and
σ = 1 − 3

4π
arccos(−n/2) is u1 = txc(n), u2 = v = w1 = txc(n)2, and w2 = 0.

Glazman [Gla13] also observes that for n = 0 and θ ∈ [π/3, π/2],
the weights correspond to a self-repulsive non-self-crossing edge-avoiding
random walk on the square lattice. He uses the observable to determine the
critical point for this model. Even though this model is not the classical
self-avoiding walk (walks of fixed lengths can have different weights), the
result is one of the only generalizations of [DCS12b]. Let us mention
another generalization.

Theorem 12.15 (Jensen, Guttmann [JG98]). The connective constant
µ(L) of the 3.122 lattice (see Fig. 12.4) L is the positive root of

x3 −
√

2 +
√

2 x =
√

2 +
√

2.

In particular, it is algebraic of order 12, and it can be computed explicitly.

Note that the result is anterior to the computation of the connective
constant of the hexagonal lattice. The reason is that [JG98] is a conditional

result which is based on the assumption that µc(H) =
√

2 +
√

2.
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Figure 12.4: Left. A configuration of a loop O(n)-model on the hexagonal
lattice and one associated plaquet when the model is seen as a loop O(n)-
model on the square lattice with θ = π/3. Right. The 3.122 lattice L.

Proof. Set GH for the partition function of self-avoiding walks starting
from mid-edges on the hexagonal lattice. Call a vertex v of a self-avoiding
walk ω in L pivot if it is the center of an edge not in a triangle (in other
words, if it is the center of an edge of H). The sequence of pivots forms a
self-avoiding walk on the mid-edges of the hexagonal lattice. Moreover, the
possibilities between two pivots are limited: the part of the walk is either
composed of two edges forming the geodesic between the two pivots, or it
contains three edges. Therefore, the partition function GL of self-avoiding
walks in L satisfies

GL(z) = GH(z2 + z3)

which implies that µ(L)−3 + µ(L)−2 = µ(H)−1. ◻

12.5.1 Discrete observables and Yang-Baxter’s equa-
tion

The study of parafermionic observables can be generalized to a variety
of lattice models, see the work of Cardy, Ikhlef, Riva, Rajabpour
[RC06, RC07, IC09]. Unfortunately, the observable satisfies only
some of the discrete Cauchy-Riemann equations except for the Ising
case. Interestingly, weights for which there exists a “half-holomorphic”
observable which is not degenerate in the scaling limit always correspond
to weights for which the famous Yang-Baxter relation (we refer to [Bax89]
for details on this relation) holds. A perfect example is the system of
solutions given in the previous section for the O(n)-model on the square
lattice. This Yang-Baxter relation is a crucial tool when computing the
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free energy of a model7. The existence of this link between integrability
and discrete holomorphicity was explored in [IWWZJ13], where the
construction of [BL91] is used to recover the parafermionic observables
from the construction of so-called conserved currents using Quantum
Groups. This approach may lead to new observables in the models
described in this book, as well as new observables in other models.

7When the free energy can be computed explicitly, the model is said to be integrable.



Chapter 13

Many questions and a few
answers

This chapter presents a few open problems in this area. We gathered them
in three categories: open questions related to the Ising model, then to the
random-cluster model, and finally to loop O(n)-models.

13.1 Ising model

13.1.1 Universality of the Ising model with respect to
the lattice

Until now, the Ising model was considered on the square lattice or on
isoradial graphs with critical weights. Nevertheless, the renormalization
group (see the introduction for more details) predicts that the scaling limit
should be universal, meaning that it does not depend on the fine definition
of the model (in particular the graph). In other words, the limit of critical
Ising models on planar graphs should always be the same.

Let us define a large class of lattices for which we would like to prove
universality. We focus on planar locally-finite doubly periodic weighted
graphs (G, J) (here G is the graph and J = (Je)e∈EG is the set of non-
negative weights), i.e. weighted graphs which are invariant under the
action of some lattice Λ ≃ Z ⊕ Z. In such case, G/Λ =∶ G is a finite graph
embedded in the torus T2 = R2/Λ. By convention G will always denote a
doubly periodic graph embedded in the plane, while G will denote a graph
embedded in the torus.

We further assume that G (or equivalently G) is non-degenerate,
i.e. that the complement of the edges is the union of topological discs1.

1It guarantees that G itself is not the union of one-dimensional of graphs but really
a two-dimensional lattice.
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Ising probability measures can be constructed on G as limits of finite
volume probability measures.

Recall that EG is the set of even subgraphs of G, that is, the set of
subgraphs γ of G such that every vertex of G is adjacent to an even number
of edges of γ. Let E0

G denote the set of even subgraphs of G that wind
around each of the two directions of the torus an even number of times.
Set E1

G = EG ∖ E0
G.

Theorem 13.1 (Cimasoni, Duminil-Copin [CDC13], Li [Li12]). The
critical inverse temperature βc for the Ising model on the weighted graph
(G, J) is the unique solution 0 < β <∞ to the equation

∑
γ∈E0

G

x(γ) = ∑
γ∈E1

G

x(γ), (13.1)

where x(γ) =∏
e∈γ

xe and xe = tanh(βJe).

Let us briefly mention that the proof is based on the so-called Kac-
Ward matrix associated to the weighted graph (G,J) and to a pair of
non-vanishing complex numbers (z,w). This matrix is related to s-
holomorphicity and fermionic observables; see [Cim13, Lis13]. Therefore,
this identification of the critical inverse temperature using the Kac-Ward
matrices opens a way for understanding conformal invariance for the Ising
model on arbitrary doubly periodic graphs.

Question 13.2. Prove that there always exists a periodic embedding of G
such that the Ising model on G is conformally invariant.

Remark 13.3. When formulating the previous question, one should be
careful about the way the graph is drawn in the plane. For instance, the
isotropic spin Ising model of Chapter 7, when considered on a stretched
square lattice (every square is replaced by a rectangle with aspect ratio
not equal to 1) is not conformally invariant (it is not invariant under
the rotation by π/2). Isoradial graphs mentioned in Chapter 8 form a
large family of graphs possessing a natural embedding on which a critical
Ising model is expected to be conformally invariant, but for more general
lattices, one may have to apply a non-trivial transformation of the lattice2.

In another direction, universality could also be proved for specific non-
planar lattices which are in some sense a slight modification of a planar

2Let us give a trivial example. The isotropic Ising model on the stretched square
lattice where every face is a rectangle of width 1 and height λ is not conformally
invariant. One needs to apply the transformation (x, y)↦ (x, y/λ) to obtain something
conformally invariant (here the stretched lattice is simply mapped back to the standard
square lattice).
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lattice. There, interfaces do not make sense anymore, but we can focus on
the energy and spin fields. Impressive advances have been achieved in this
direction over the past few years. We propose to describe one of them to
illustrate the possible extensions.

Consider the Ising model on Z2 with Hamiltonian

Hλ(σ) = − ∑
x,y∈Z2∶x∼y

σxσy − λ ∑
x,y∈Z2

v(y − x)σxσy,

where v ∶ Z2 → R+ is invariant under the rotation by an angle π/2, and
v(x) = 0 for ∣x∣ ≥ R, where R is called the range of the interaction.
For β > 0, consider the measure µβ,λ to be the Gibbs measure for this
Ising model. While the case λ = 0 is the nearest neighbor Ising model,
whose free energy was computed by Onsager as mentioned several times
in this book already, the case λ ≠ 0 is not integrable, in the sense
that the free energy cannot be computed explicitly. Nevertheless, for
λ ≪ 1 this Ising model can be studied using a rigorous approach to the
renormalization group. Let us say a few words about this. Pinson and
Spencer [PS00, Spe00] used as a starting point the fact that the partition
function of certain non-integrable Ising models can be expressed in terms
of a non-Gaussian Grassman integral by generalizing a mapping between
the nearest-neighbor Ising model with a fermionic system discovered by
Lieb, Mattis and Schultz [LSM64]. While the nearest-neighbor Ising
model is equivalent to a system of non-interacting fermions, the general
model is equivalent to a system of interacting fermions. Nevertheless,
one may use techniques coming from Quantum Field Theory to relate the
two models when the interaction is weak enough. Using this method,
Pinson and Spencer [PS00] and Spencer [Spe00] showed that the exponent
governing the energy density (see Section 9.3.1) is the same for some
next-to-nearest neighbor interactions (there, they used the fact that the
mappings provide a perturbative expansion of the energy density). Later,
Giuliani, Greenblatt and Mastropietro [GGM12] extended these techniques
in two directions. First, they treated a more general class of interactions,
namely any finite range model with λ small enough, and second, they were
able to show that the scaling limit of n-point correlations of the energy
field in the full plane is the same as for λ = 0. A natural question there is
to do the same analysis for the spin field. One may also ask what happens
in finite volume, even though this problem seems out of reach of today’s
techniques.

Remark 13.4. Note that the question of universality is not restricted to
the Ising case and could be asked for all the models described in this book.
We will not expand on this here.
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13.1.2 Universality of the Ising model in the regime
β < βc

The site percolation on the triangular lattice is critical for p = 1/2 and
is conformally invariant as shown in [Smi01]. Now, the Ising model at
high temperature on the triangular lattice resembles the site percolation
quite a lot (see [BCM10] for more details). Each spin is either +1 or
−1 with probability 1/2 (in this case there is only one infinite-volume
measure, hence the symmetry +1/−1). Moreover, the correlations between
spins decay exponentially fast (the random-cluster representation obtained
via the Edwards-Sokal coupling is subcritical). The scaling-limit of the
interfaces +1/ − 1 should be conformally invariant, and should satisfy
the so-called locality property (see [Law05, Section 6.3] for additional
details). Schramm observed that SLE(6) is the only SLE(κ) satisfying
this property and it is therefore natural to conjecture that interfaces in
the high-temperature Ising model converge to SLE(6). Note that this
model interpolates between critical Ising and percolation on the triangular
lattice, two models for which conformal invariance is known.

Question 13.5. Prove conformal invariance of the Ising model at high-
temperature (β < βc) on the triangular lattice.

An answer to this question would provide another universality result,
namely universality in the parameter β instead of the lattice.

Remark 13.6. One could also consider the Ising model on more general
triangulations (in such case, site percolation is critical for p = 1/2). On
the contrary, interfaces would not be conformally invariant on the square
lattice, since the site percolation on the square lattice is not critical at
p = 1/2.

13.1.3 Full scaling limit of the critical Ising model

It has been proved in [CDCH+13] that the scaling limit of Ising interfaces in
Dobrushin domains is SLE(3). The next question is to understand the full
scaling limit of the interfaces. This question raises interesting technical
problems. Consider the Ising model with free boundary conditions.
Interfaces now form a family of loops. By consistency, each macroscopic
loop should look like a SLE(3). Sheffield and Werner [SW10, SW12]
introduced a one-parameter family of processes of non-intersecting loops
which are conformally invariant – called the Conformal Loop Ensembles
CLE(κ) for κ > 8/3. Not-surprisingly, loops of CLE(κ) are locally similar
to SLE(κ) and these processes are natural candidates for the scaling limits
of planar models of statistical physics.

Question 13.7. Prove that the family of loops in the critical Ising model
on the square lattice converges to CLE(3).
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We believe that the strong form of crossing estimates proved in
Chapter 10 would be useful to study these interfaces. In [HK11], Hongler
and Kytolä made one step towards the complete picture by studying
interfaces with +1/ − 1/free boundary conditions.

13.2 Random-cluster model with cluster-
weight q ≥ 0

We gather some of the conjectures listed below in the phase diagram
Fig. 13.1.

13.2.1 Case q > 4: discontinuity of the phase
transition

As mentioned before, the phase transition is conjectured to be
discontinuous (first order) for q > 4. In particular, the critical random-
cluster model with wired boundary conditions should possess an infinite
cluster almost surely while the critical random-cluster model with free
boundary conditions should not (in this case, the connectivity probabilities
should even decay exponentially fast by P4 of Theorem 5.24). This result
is known only for q ≥ 25.72 (see [Gri06, LMR86, LMMS+91] and references
therein).

Question 13.8. Prove that there exists an infinite cluster for φ1
pc,q

whenever q > 4.

A weaker result was obtained in [DCST13] where it is shown that there
is an infinite cluster on U (see Chapter 6 for the definition of U) for φ1

pc,q,U
when q > 4. Bootstrapping this result from U to Z2 would allow one to
answer Question 13.8.

13.2.2 Conformal invariance for q ≤ 4

The vertex parafermionic observable3 is now used to predict the critical
behavior for general q ≤ 4. For q ≠ 2, this function is not s-holomorphic
or even discrete holomorphic: the relations given in Chapter 6 provide
partial information on Cauchy-Riemann equations, which justifies the
heuristic claim that we possess only half of the information. In particular,
they do not determine the observable from its boundary conditions,
a property which was crucial in the proof of conformal invariance for
q = 2. Nevertheless, the fact that discrete contour integrals vanish

3The vertex parafermionic observable at a medial-vertex not on the boundary is equal
to 1

2
times the sum of the edge parafermionic observable at incident medial-edges.
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(for the edge parafermionic observable), together with the fact that the
complex argument of the edge parafermionic observable is determined on
the boundary suggest that the only possible limit (if any), is given by the
solution to a certain Riemann-Hilbert boundary value problem. In order
to justify this convergence, it could be useful to find complementary local
relations for this observable allowing to prove discrete holomorphicity, but
it is unclear whether such relations exist at the discrete level (the edge-
observable seems to be a divergence free operator whose curl vanishes in
the scaling limit only). In any case, we obtain the following conjecture.

Conjecture 13.9 (Smirnov [Smi06]). Let q < 4 and (Ω, a, b) be a simply
connected domain with two points on its boundary. Consider a family of
Dobrushin domains (Ωδ, aδ, bδ) converging to (Ω, a, b) in the Carathéodory
sense. Then,

1

(2δ)σ
Fδ(z) Ð→ φ′(z)σ

uniformly on every compact subset of Ω, where σ = 2
π

arcsin(√q/2), Fδ
is the vertex-observable at pc(q) in (Ωδ, aδ, bδ) with spin σ, and φ is any
conformal map from Ω to R × (0,1) sending a to −∞ and b to ∞.

For q = 4, a similar conjecture can be formulated using the specific
parafermionic observable available at this point.

Then, one may wish to prove conformal invariance of the exploration
path by implementing the same program as in Chapter 9:

� Prove conformal invariance of the parafermionic observable
(Conjecture 13.9).

� Show that (γδ) is precompact and that any sub-sequential limit of
the exploration path (γδ) is a Loewner chain driven by a random
continuous process Wt.

� Identify Wt using Lévy’s theorem and the martingale argument
presented in Chapter 9.

When 1 ≤ q ≤ 4, the second step follows from Theorem 9.15. The last step
is similar to the q = 2 case, except that the expansion of φ′(z)σ leads to
(we forget the stopping time present in the proof of Proposition 9.20 in
the following computation):

√
π ⋅ E[Mz

t ∣Gs] = E [( 1 − 2t/z2 +O(1/z3)
z −Wt + 2t/z +O(1/z2)

)
σ

∣ Gs]

= 1

zσ
E [1 + σWt/z + (σ(σ + 1)

2
W 2
t − 4σt) /z2 +O (1/z3) ∣ Gs]

= 1

zσ
(1 + σE[Wt∣Gs]/z + E[σ(σ + 1)

2
W 2
t − 4σt ∣Gs]/z2 +O (1/z3)) .
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Taking s = t yields

√
π ⋅Mz

s = 1

zσ
(1 + σWs/z + [σ(σ + 1)

2
W 2
s − 4σs]/z2 +O(1/z3)) .

Therefore, we obtain that for 1 ≤ q ≤ 4, Conjecture 13.9 implies the
following conjecture by Schramm.

Conjecture 13.10 (Schramm [Sch07]). Consider the critical random-
cluster model with cluster-weight q ≤ 4. The exploration path (γδ)δ>0

converges weakly to the Schramm-Loewner Evolution with parameter
κ = 8/(σ + 1) = 4π/[π − arccos(√q/2)].

0 1
edge-weight p

pc(q) =
√
q

1+
√
q

cluster-weight q

subcritical phase

supercritical phase

critical phase: first order

critical phase: SLE
(

4π
arccos(−√q/2)

)

1

2

4

percolation

FK Ising

4-colours Potts model representation

UST

Figure 13.1: The phase diagram of the random-cluster model on the square
lattice.

The conjecture was proved by Lawler, Schramm and Werner [LSW11]
for q = 0, when they showed that the perimeter curve of the uniform
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spanning tree converges to SLE(8). Note that the loop representation
with Dobrushin boundary conditions still makes sense for q = 0 (more
precisely for the model obtained by letting q → 0 and p/q → 0). Then,
configurations have no loops, just a curve running from a to b (which then
necessarily passes through all the edges), with all configurations being
equally probable. The q = 2 case corresponds to Theorem 9.14. All other
cases are open. The q = 1 case is particularly interesting, since it is bond
percolation on the square lattice.

13.2.3 Scaling relations for q ≤ 4

We are ultimately interested in the rigorous computation of critical
exponents for the random-cluster model with q ∈ [0,4]. Let us start by
presenting several critical exponents together with their predicted values.
In the next table, σ is the spin involved in the definition of the observable.
Recall that it is equal to

σ ∶= 2

π
arcsin (

√
q

2
).

Exp. Definition Prediction

α d
dp
φ0
p,q(ω(e) = 1) = ∣p − pc(q)∣−α+o(1) (as p→ pc) α = 2(2σ−1)

3σ
*

β θ(p, q) = (p − pc)β+o(1) (as p↘ pc) β = 2−σ
12

γ χ0(p, q) = (pc − p)−γ+o(1) (as p↗ pc) γ = σ2+2σ+4
6σ

δ φ0
pc,q,h

(0←→ g) = h1/δ+o(1) (as h→ 0) δ = (2+σ)(4+σ)
σ(2−σ)

ν ξ(p, q) = (pc − p)−ν+o(1) (as p↗ pc) ν = 1+σ
3σ

η φ0
pc,q(0←→ x) = ∣x∣−η+o(1) (as ∣x∣→∞) η = σ(2−σ)

2(1+σ)

ξ1 φ0
pc,q(0←→ ∂Λn) = n−ξ1+o(1) (as n→∞) ξ1 = σ(2−σ)

4(1+σ)

ξ1010 φ0
pc,q(A1010(0, n)) = n−ξ1010+o(1) (as n→∞) ξ1010 = 3σ2+10σ+3

4(1+σ)

Let us say a few words on the quantities involved in the previous table:

� The quantity d
dp
φ0
p,q(ω(e) = 1) is the derivative of the energy-density

(the probability of being open). For q ≥ 2, this quantity is related to
the specific heat of the model. The symbol * means that the formula
is valid only for q ≥ 2. For q < 2, this derivative remains of order 1
when approaching criticality. In this context, a critical exponent α
can still be introduced but the definition involves the specific heat
directly (and it is not equal to 0). We do not discuss this subtlety
here.
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� The second, third and fifth lines hardly require any explanation
since the quantities involved are simply the cluster-density, the
susceptibility and the correlation length.

� The fourth line requires a little bit more explanations. Add a vertex
called the ghost vertex g outside Z2 which is connected to each
vertex of Z2 by an edge. The random-cluster measure with edge-
weight pc for edges of Z2 and 1 − e−2h for edges having g as an end-
point is denoted by φ0

pc,q,h
. The probability that 0 is connected to

ghost has an interpretation in terms of spin models with a magnetic
field. For q = 2 for instance, the probability of this event is equal
to the spontaneous magnetization with an external field h. In the
Ising model, the exponent δ is therefore telling us how the critical
spontaneous magnetization behaves with respect to h. A similar
interpretation also holds for the 3-state and 4-state Potts models.

� The last three lines contain critical exponents describing the fractal
properties of the critical phase. The two first quantities are trivial
to interprete. The event A1010(0, n) can be related to the event that
the edge between the origin and (1,0) is pivotal for crossing events.
We already mentioned how useful this quantity is for percolation in
Chapter 11.

The prediction for most of the previous critical exponents can be found,
for example, in [Wu82], except for the exponents ξ1 and ξ1010 which can
be predicted using the (conjectured) convergence towards the Schramm-
Loewner Evolution.

These exponents are not independent of each other: they are related by
scaling and hyperscaling relations. These relations are expected to hold for
different universality classes. Proving such relations reduces drastically the
number of exponents to compute, and therefore would be of great interest.
Let us mention some of them.

R1 η = 2ξ1,

R2 2β = νη,

R3 (2 − η)ν = γ,

R4 α + 2β + γ = 2,

R5 γ = β(δ − 1).

Let us mention that many alternative and equivalent relations can
be found between the different critical exponents. While R1 is
straightforward using property P5 of Corollary 6.16, the other four
relations can be easily derived heuristically but are difficult to prove
rigorously. In the case of percolation, R2, R3 and R5 are known (we
refer to [Gri99]) but R4 is not verified rigorously.
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Figure 13.2: How exponents would follow from ξ1 and ι.

Question 13.11. Prove R2, R3, R4 and R5 for 1 < q ≤ 4.

Since conformal invariance holds true only at criticality, it is convenient
to express all the exponents in terms of quantities which can potentially be
expressed using the critical configuration. In particular, for percolation, a
sixth relation 1 = ν(2 − ξ1010) is useful in order to relate all the exponents
to only two of them (see Fig. 13.2). The main challenge in proving this
relation lies in proving the following stability result: for p < pc(q) and n
below the correlation length, the random-cluster with parameters p and
pc in Λn should “look similar”. Such a statement was proved in [Kes87]
for q = 1. It led to a good understanding of these relations for Bernoulli
percolation.

Anyway, in Chapter 11, this relation was shown to be violated for q = 2.
In fact, the probability of being pivotal should be replaced by the influence
(see Chapter 5). This leads to the relation

R6 1 = ν(2 − ι),

where ι is defined as the exponent governing the derivative of crossing
probabilities, namely,

( d
dp
φ0
pc,q[Ch(Λn)])(pc) = n

2−ι+o(1) as n→∞.

Russo’s formula implies that ι = ξ1010 for q = 1, but for q > 1, the value of
ι is expected to be 1+σ

2−σ , which differs from the conjectured value for ξ1010.
Let us conclude this section by mentioning that it is unclear how ι can

be computed using conformal invariance.

Question 13.12. Assuming conformal invariance, find a way of
computing ι and prove R6 for 1 < q ≤ 4.

13.2.4 Case q < 1: existence of a phase transition

The study of the random-cluster model with q < 1 is very challenging,
due to the fact that the model does not satisfy the Fortuin-Kasteleyn-
Ginibre (FKG) inequality (4.9). In this case, the model is expected to
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be negatively correlated; see [Gri06, Section 3.9]. As a consequence, the
following question is still completely open.

Question 13.13. Fix q < 1. Prove that there exists pc(q) ∈ (0,1) such
that for any infinite-volume random-cluster measure φp,q with edge-weight
p and cluster-weight q, φp,q[0←→∞] > 0 if p > pc(q) and φp,q[0←→∞] = 0
if p < pc(q).

Answering this question would require to develop a theory of negatively
correlated models, whose scope would exceed the theory of percolation
models.

13.3 Loop O(n)-model on the hexagonal
lattice with n ∈ [0,2]

The loop O(n)-model is expected to exhibit one critical behavior at xc(n)
and another on the interval (xc(n),+∞), both being conformally invariant
in the sense that the interface should converge to Schramm-Loewner
Evolutions. In this sense, both regimes are critical yet different since the
parameter κ in the scaling limit is not the same: one regime corresponds
to the so-called “dilute” phase and the other one to the “dense” one (when
in the scaling limit the loops are simple and non-simple correspondingly),
see Fig. 13.3.

It would be of great interest to show that a phase transition indeed
occurs at xc(n). Unfortunately, no obvious monotonicity exists in the
model, and the existence of a critical point separating the two regimes
remains a mystery. Recent progress suggest that for large values of n, a
mathematical proof of the absence of phase transition can be implemented
(this is the analogue of the fact that spin O(n)-models are conjectured not
to have a phase transition for n > 2; see the previous chapter).

Recall the definition of the parafermionic observables from Sec-
tion 12.4.3. The local relation of Proposition 13.17 can be seen as a discrete
version of the Cauchy-Riemann equation on the triangular lattice and the
discrete contour integrals of the observable vanish yet again. Once again,
the relations do not determine the observable for a general n. Nonetheless,
it could possibly be used to determine xc(n), as illustrated by the example
of the self-avoiding walk.

Question 13.14. Prove that the critical point of the loop O(n)-model with

n ∈ [0,2] is 1/
√

2 +
√

2 − n.

Similarly to the random-cluster case, we are led to the following
conjecture.
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Figure 13.3: The phase diagram of the loop O(n)-model on the hexagonal
lattice.

Conjecture 13.15 (Smirnov). Let n ∈ [0,2] and (Ω, a, b) be a simply
connected domain with two points on the boundary. For x = xc(n),

Fδ(z)Ð→ (ψ
′(z)
ψ′(b)

)
σ

(13.2)

uniformly on every compact subset of Ω, where σ = 1− 3
4π

arccos(−n/2), Fδ
is the observable in the discrete domain with spin σ and ψ is any conformal
map from Ω to the upper half plane sending a to ∞ and b to 0.

A conjecture on the scaling limit for the interface from a to b in the
O(n)-model can be deduced from these considerations (using the same
program as for the Ising model).

Conjecture 13.16 (see e.g. Kager, Nienhuis [KN04]). For n ∈ [0,2) and

xc(n) = 1/
√

2 +
√

2 − n, as the lattice step goes to zero, the law of O(n)
interfaces converges to the Schramm-Loewner Evolution with parameter
κ = 4π/(2π − arccos(−n/2)).

This conjecture is only proved in the case n = 1 (simply adapt the
proof of Theorem 9.21 to the hexagonal lattice). The other cases are
open. The case n = 0 is especially interesting since it corresponds to self-
avoiding walks. Proving the conjecture in this case would pave the way
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to a deep understanding of geometric properties of the self-avoiding walk
(for instance, one could compute the mean-square displacement exponent
mentioned in the introduction), see [LSW04] for further details on this
problem. Note that up to now, almost nothing is rigorously known on
the geometric properties of the two-dimensional self-avoiding walk (see
[DCH13, DCGHM13] for very partial results).

The phase x < xc(n) is subcritical and not conformally invariant (the
interface converges to the shortest curve between a and b). The critical
phase x ∈ (xc(n),∞) should be conformally invariant, and universality is
predicted: the interfaces are expected to converge to the same Schramm-

Loewner Evolution. The edge-weight x̃c(n) = 1/
√

2 −
√

2 − n, which
appears in Nienhuis’s works [Nie82, Nie84], seems to play a specific role
in this phase. Interestingly, a parafermionic observable with a well-chosen
spin σ̃(n) ≠ σ(n) satisfies local relations at x̃c(n).

Proposition 13.17. If x = x̃c(n), let F be the parafermionic observable
with spin σ̃ = σ̃(n) = − 1

2
− 3

4π
arccos(−n/2), then

(p − v)F (p) + (q − v)F (q) + (r − v)F (r) = 0 (13.3)

where p, q and r are the three mid-edges adjacent to a vertex v.

A convergence statement corresponding to Conjecture 13.15 for the
observable with spin σ̃ enables us to predict the value of κ for x̃c(n),
and thus for every x > xc(n) thanks to universality.

Conjecture 13.18 (see e.g. Kager, Nienhuis [KN04]). For n ∈ [0,2)
and x ∈ (xc(n),∞), as the lattice step goes to zero, the law of O(n)
interfaces converges to the Schramm-Loewner Evolution with parameter
κ = 4π/arccos(−n/2).

The case n = 1 corresponds to the high-temperature expansion of the
Ising model at low temperature on the hexagonal lattice, which also
corresponds to the low-temperature Ising model on the triangular lattice
via Kramers-Wannier duality. The interfaces should converge to SLE(6).
In the case n = 0, the scaling limit should be SLE(8) which is space-
filling. For both cases, a (slightly different) model is known to converge
to the corresponding SLE (site percolation on the triangular lattice for
SLE(6) [Smi01], and the perimeter curve of the uniform spanning tree for
SLE(8) [LSW11]). Yet, known proofs do not extend to this context. As
mentioned above, proving that the whole critical phase (xc(n),∞) has the
same scaling limit would be an important example of universality (not on
the graph, but on the parameter this time).

Remark 13.19. Let us finish by a remark on the general strategy
presented in this book. The two previous sections presented a program
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to prove convergence of discrete curves towards the Schramm-Loewner
Evolution. It was based on discrete martingales converging to continuous
SLE martingales. One can study directly SLE martingales (i.e. with
respect to the filtration Ft = σ(γ[0, t])). In particular, g′t(z)α[gt(z)−Wt]β
is a martingale for SLE(κ) where κ = 4(α−β)/[β(β − 1)]. All the limits in
these notes are of the previous forms. In other words, the parafermionic
observables are discretizations of very simple SLE martingales. Can
new preholomorphic observables be found by looking at discretizations of
more complicated SLE martingales? Conversely, in [SS05], the harmonic
explorer is constructed in such a way that a natural discretization of a
SLE(4) martingale is a martingale of the discrete curve. This fact implied
the convergence of the harmonic explorer to SLE(4). Can this reverse
engineering be done for other values of κ in order to find discrete models
converging to SLE?

Remark 13.20. It would also be nice to find applications of parafermionic
observables to more general loop O(n)-models. Glazman’s result [Gla13]
provides us with a good example of such an application but one should be
able to find many others.
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[FS81] J. Fröhlich and T. Spencer, The Kosterlitz-Thouless tran-
sition in two-dimensional abelian spin systems and the
Coulomb gas, Comm. Math. Phys. 81 (1981), no. 4, 527–
602. MR 634447 (83b:82029)

[Gar] C. Garban, Critical exponents in FK-Ising percolation, In
preparation.

[Geo11] H.-O. Georgii, Gibbs measures and phase transitions, second
ed., de Gruyter Studies in Mathematics, vol. 9, Walter de
Gruyter & Co., Berlin, 2011. MR 2807681 (2012d:82015)

[GG06] B. T. Graham and G. R. Grimmett, Influence and sharp-
threshold theorems for monotonic measures, Ann. Probab.
34 (2006), no. 5, 1726–1745. MR 2271479 (2007i:60024)

[GG11] B. Graham and G. Grimmett, Sharp thresholds for the
random-cluster and Ising models, Ann. Appl. Probab. 21
(2011), no. 1, 240–265. MR 2759201 (2012e:60255)

[GGM12] A. Giuliani, R. L. Greenblatt, and V. Mastropietro, The
scaling limit of the energy correlations in non-integrable
Ising models, J. Math. Phys. 53 (2012), no. 9, 095214, 48.
MR 2905796

[GK94] A. Gandolfi and H. Kesten, Greedy lattice animals. II.
Linear growth, Ann. Appl. Probab. 4 (1994), no. 1, 76–107.
MR 1258174 (95e:60104)



360 Hugo Duminil-Copin

[Gla13] A. Glazman, Connective constant for a weighted self-
avoiding walk on Z2, Preprint, 2013.

[GM12] G. R. Grimmett and I. Manolescu, Bond percolation on iso-
radial graphs: criticality and universality, arXiv:1204.0505,
2012.

[GM13a] G. R. Grimmett and I. Manolescu, Inhomogeneous bond
percolation on square, triangular, and hexagonal lattices,
Ann. Probab. 41 (2013), no. 4, 2990–3025.

[GM13b] G. R. Grimmett and I. Manolescu, Universality for bond
percolation in two dimensions, Ann. Probab. 41 (2013),
no. 5, 3261–3283.

[GOS08] G. R. Grimmett, T. J. Osborne, and P. F. Scudo,
Entanglement in the quantum Ising model, J. Stat. Phys.
131 (2008), no. 2, 305–339. MR 2386582 (2009f:82003)

[GP11] C. Garban and G. Pete, Dynamics at and near the critical
point in FK percolation, in preparation, 2011.

[GPS10] C. Garban, G. Pete, and O. Schramm, The Fourier
spectrum of critical percolation, Acta Math. 205 (2010),
no. 1, 19–104. MR 2736153 (2011j:60284)

[GPS13] C. Garban, G. Pete, and O. Schramm, Pivotal, cluster, and
interface measures for critical planar percolation, J. Amer.
Math. Soc. 26 (2013), no. 4, 939–1024. MR 3073882

[Gri67] R. B. Griffiths, Correlation in Ising ferromagnets I, II, J.
Math. Phys. 8 (1967), 478–489.

[Gri95] G. Grimmett, The stochastic random-cluster process and
the uniqueness of random-cluster measures, Ann. Probab.
23 (1995), no. 4, 1461–1510. MR 1379156 (97b:60169)

[Gri99] G. Grimmett, Percolation, second ed., Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences], vol. 321, Springer-Verlag, Berlin,
1999. MR 1707339 (2001a:60114)

[Gri06] G. Grimmett, The random-cluster model, Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences], vol. 333, Springer-Verlag, Berlin,
2006. MR 2243761 (2007m:60295)



BIBLIOGRAPHY 361

[Hei28] W. Heisenberg, Zür theorie des ferromagnetismus,
Zeitschrift für Physik A Hadrons and Nuclei 49 (1928),
no. 9, 619–636.

[Hig81] Y. Higuchi, On the absence of non-translation invariant
Gibbs states for the two-dimensional Ising model, Random
fields, Vol. I, II (Esztergom, 1979), Colloq. Math. Soc. János
Bolyai, vol. 27, North-Holland, Amsterdam, 1981, pp. 517–
534. MR 712693 (84m:82020)
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