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Chapter 1

Introduction

The aim of these lectures is to explain how to apply controlled path
ideas [12] to solve basic problems in singular stochastic parabolic equations.
The hope is that the insight gained by doing so can inspire new applications
or the construction of other more powerful tools to analyze a wider class
of problems.
To understand the origin of such singular equations, we have chosen to

present the example of a homogenization problem for a singular potential
in a linear parabolic equation. This point of view has the added benefit
that it allows us to track back the renormalization needed to handle the
singularities as effects living on other scales than those of interest. The
basic problem is that of having to handle effects of the microscopic scales
and their interaction through non–linearities on the macroscopic behaviour
of the solution.
Mathematically, this problem translates into the attempt of making

Schwartz’s theory of distributions coexist with non–linear operations which
are notoriously not continuous in the usual topologies on distributions.
This is a very old problem of analysis and has been widely studied. The
additional input which is not present in the usual approaches is that the
singularities which force us to treat the problem in the setting of Schwartz’s
distributions are of a stochastic nature. So we dispose of two handles on
the problem: the analytical one and the probabilistic one. The right mix
of the two will provide an effective solution to a wide class of problems.
A first and deep understanding of these problems has been obtained

starting from the late ’90s by T. Lyons [25], who introduced a theory of
rough paths in order to settle the conflict of topology and non–linearity
in the context of driven differential equations, or more generally in the
context of the non–linear analysis of time–varying signals. Nowadays there
are many expositions of this theory [27, 9, 26, 8] and we refer the reader
to the literature for more details.
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6 M. Gubinelli and N. Perkowski

In [12, 13], the notion of controlled paths has been introduced in order
to extend the applicability of the rough path ideas to a larger class of
problems that are not necessarily related to the integration of ODEs but
which still retain the one–dimensional nature of the directions in which the
irregularity manifests itself. The controlled path approach has been used
to make sense of the evolution of irregular objects such as vortex filaments
and certain SPDEs. Later Hairer understood how to apply these ideas to
the long standing problem of the Kardar–Parisi–Zhang equation [18], and
his insights prompted the researchers to try more ambitious approaches to
extend rough paths to a multidimensional setting.
In [14], in collaboration with P. Imkeller, we introduced a notion of

paracontrolled distributions which is suitable to handle a wide class of
SPDEs which were well out of reach with previously known methods.
Paracontrolled distributions can be understood as an extension of
controlled paths to a multidimensional setting, and they are based on
new combinations of basic tools from harmonic analysis.
At the same time, Hairer managed to devise a vast generalization of

the basic construction of controlled rough paths in the multidimensional
and distributional setting, which he called the theory of regularity
structures [19] and which subsumes standard analysis based on Hölder
spaces and controlled rough path theory but goes well beyond that. Just
a few days after the lectures in Mambucaba took place, it was announced
that Martin Hairer was awarded a Fields Medal for his work on SPDEs
and in particular for his theory of regularity structures [19] as a tool for
dealing with singular SPDEs. This prize witnesses the exciting period we
are experiencing: we now understand sound lines of attack to long standing
problems, and there are countless opportunities to apply similar ideas to
new problems.
The plan of the lectures is the following. We start by discussing energy

solutions [10, 11, 15] of the stationary stochastic Burgers equation (one
of the avatars of the Kardar–Parisi–Zhang equation).1 Energy solutions
have the advantage of being relatively easy to handle and of being based on
tools that are familiar to probabilists. On the other side, they only apply
in the specific example of the stochastic Burgers equation in equilibrium,
and here we will only focus on the existence but not on the uniqueness
of energy solutions. Starting our lectures in this way will allow us to
introduce the reader to SPDEs in a progressive manner, and also to
introduce Gaussian tools on the way (Wick products, hypercontractivity)
and to present some of the basic phenomena that appear when dealing with
singular SPDEs. Next we set up the analytical tools we need in the rest
of the lectures: Besov spaces and some basic harmonic analysis based on

1The paper [11] is the revised published version of [10]. We would like to cite them
together to acknowledge that the notion of energy solutions historically predates that
of Hairer in [18].
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the Littlewood–Paley decomposition of distributions. In order to motivate
the reader and to provide a physical ground for the intuition to stand
on, we then discuss a homogenization problem for the linear heat equation
with random potential which describes diffusion in a random environment.
This will allow us to derive the need for the weak topologies we shall
use and for irregular objects like the white noise from first principles and
“concrete” applications. The homogenization problem also allows us to
see that there are naturally appearing renormalization effects and to keep
track of their mathematical meaning. Starting from these problems we
introduce the two–dimensional parabolic Anderson model, the simplest
SPDE in which most of the features of more difficult problems are already
present, and we explain how to use paraproducts and the paracontrolled
ansatz in order to keep the non–linear effect of the singular data under
control. Then we return to the stochastic Burgers equation and show
how to apply paracontrolled distributions in order to obtain the existence
and uniqueness of solutions also in the non–stationary case. effect of the
singular data under control. Then we return to the stochastic Burgers
equation and show how to apply paracontrolled distributions in order to
obtain the existence and uniqueness of solutions also in the non–stationary
case. effect of the singular data under control. Then we return to
the stochastic Burgers equation and show how to apply paracontrolled
distributions in order to obtain the existence and uniqueness of solutions
also in the non–stationary case.

Acknowledgements. The authors would like to thank the two
anonymous referees for the careful reading and the manifold suggestions
which helped up to greatly improve the manuscript. We would also like
to thank the organizers of the Brazilian Summer Schools in Probability
for the invitation and the researchers who attended the meeting for the
wonderful atmosphere.
The main part of the research was carried out while N. P. was

employed by Université Paris Dauphine. N. P. was supported by the
Fondation Sciences Mathématiques de Paris (FSMP) and by a public grant
overseen by the French National Research Agency (ANR) as part of the
“Investissements d’Avenir” program (reference: ANR-10-LABX-0098).

Conventions and notations. We write a . b if there exists a constant
C > 0, independent of the variables under consideration, such that a 6 Cb.
Similarly we define &. We write a ' b if a . b and b . a. If we
want to emphasize the dependence of C on the variable x, then we write
a(x) .x b(x).
If a is a complex number, we write a∗ for its complex conjugate.
If i and j are index variables of Littlewood–Paley blocks (to be defined

below), then i . j is to be interpreted as 2i . 2j , and similarly for ' and
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.. In other words, i . j means i 6 j +N for some fixed N ∈ N that does
not depend on i or j.
We use standard multi-index notation: for µ ∈ Nd0 we write |µ| =

µ1 + . . . + µd and ∂µ = ∂|µ|/∂µ1
x1
. . . ∂µdxd , as well as xµ = xµ1

1 · . . . · x
µd
d

for x ∈ Rd.
For α > 0 we write Cαb for the bounded functions F : R→ R which are
bαc times continuously differentiable with bounded and (α− bαc)–Hölder
continuous derivatives of order bαc, equipped with the norm

‖F‖Cα
b

= sup
µ:0≤|µ|≤bαc

‖∂µF‖L∞ + sup
µ:|µ|=bαc

sup
x 6=y

|∂µF (x)− ∂µF (y)|
|x− y|α−bαc

.

If we write u ∈ C α−, then that means that u is in C α−ε for all ε > 0.
The C α spaces will be defined below.
If X is a Banach space with norm ‖ · ‖X and if T > 0, then we define CX

and CTX as the spaces of continuous functions from [0,∞) respectively
[0, T ] to X, and CTX is equipped with the supremum norm ‖ · ‖CTX. If
α ∈ (0, 1) then we write CαX for the functions in CX that are α–Hölder
continuous on every interval [0, T ], and we write

‖f‖Cα
T
X = sup

06s<t6T

‖f(t)− f(s)‖
|t− s|α

.



Chapter 2

Energy solutions

The first issue one encounters when dealing with singular SPDEs is the
ill–posed character of the equation, even in a weak sense. Typically, the
equation features some non–linearity that does not make sense in the
natural spaces where solutions live and one has to provide a suitable
smaller space in which it is possible to give an appropriate interpretation
to “ambiguous quantities” that appear in the equation.

Energy solutions [11, 15] are a relatively simple tool in order to come up
with well–defined non–linearities. Moreover, proving existence of energy
solutions or even convergence to energy solutions is usually a quite simple
problem, at least compared to the other approaches like paracontrolled
solutions or regularity structures, where already existence requires quite
a large amount of computations but where uniqueness can be established
quite easily afterwards. The main drawback is that we lack of general
uniqueness results for energy solutions. Only very recently, after the
completion of these notes, we were able to prove that energy solutions
for the stationary stochastic Burgers equation are unique. This topic will
not be touched upon here. The interested reader can find the details in
the preprint [17].

2.1 Distributions

We will need to use distributions defined on the d-dimensional torus Td
where T = R/(2πZ). We collect here some basic results and definitions.
The space of distributions S ′ = S ′(Td) is the set of linear maps f from
S = C∞(Td,C) to C, such that there exist k ∈ N and C > 0 with

|〈f, ϕ〉| := |f(ϕ)| 6 C sup
|µ|6k

‖∂µϕ‖L∞(Td)

9
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for all ϕ ∈ S .
Example 1. Clearly Lp = Lp(Td) ⊂ S ′ for all p > 1, and more generally
the space of finite signed measures on (Td,B(Td)) is contained in S ′.
Another example of a distribution is ϕ 7→ ∂µϕ(x) for µ ∈ Nd0 and x ∈ T.
In particular, the Fourier transform Ff : Zd → C,

Ff(k) = f̂(k) = 〈f, ek〉,

with ek = e−i〈k,·〉/(2π)d/2, is defined for all f ∈ S ′, and it satisfies
|Ff(k)| 6 |P (k)| for a suitable polynomial P . Conversely, if (g(k))k∈Zd is
at most of polynomial growth, then its inverse Fourier transform

F−1g =
∑
k∈Zd

g(k)e∗k

defines a distribution (here e∗k = ei〈k,·〉/(2π)d/2 is the complex conjugate
of ek).
Exercise 1. Show that the Fourier transform of ϕ ∈ S decays faster than
any rational function (we say that it is of rapid decay). Combine this with
the fact that F defines a bijection from L2(Td) to `2(Zd) with inverse F−1

to show that F−1Ff = f for all f ∈ S ′ and FF−1g = g for all g of
polynomial growth. Extend the Parseval formula

〈f, ϕ∗〉L2(Td) =
∫
Td
f(x)ϕ(x)∗dx =

∑
k

f̂(k)ϕ̂(k)∗

from f, ϕ ∈ L2(Td) to f ∈ S ′ and ϕ ∈ S .
Exercise 2. Fix a complete probability space (Ω,F ,P). On that space let
ξ be a spatial white noise on Td, i.e. ξ is a centered Gaussian process
indexed by L2(Td), with covariance

E[ξ(f)ξ(g)] =
∫
Td
f(x)g(x)dx.

Show that there exists ξ̃ with P(ξ̃(f) = ξ(f)) = 1 for all f ∈ L2, such that
ξ̃(ω) ∈ S ′ for all ω ∈ Ω.

Hint: Show that E[
∑
k∈Zd exp(λ|ξ(ek)|2)/(1 + |k|d+1)] < ∞ for some

suitable λ > 0.
Linear maps on S ′ can be defined by duality: if A : S → S

is such that for all k ∈ N there exists n ∈ N and C > 0 with
sup|µ|6k ‖∂µ(Aϕ)‖L∞ 6 C sup|µ|6n ‖∂µϕ‖L∞ , then we set 〈tAf, ϕ〉 =
〈f,Aϕ〉. Differential operators are defined by 〈∂µf, ϕ〉 = (−1)|µ|〈f, ∂µϕ〉.
If ϕ : Zd → C grows at most polynomially, then it defines a Fourier
multiplier

ϕ(D) : S ′ → S ′, ϕ(D)f = F−1(ϕFf).
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Exercise 3. Use the Fourier inversion formula of Exercise 1 to show that
for f ∈ S ′, ϕ ∈ S and for u, v : Zd → C with u of polynomial growth and
v of rapid decay

F (fϕ)(k) = (2π)−d/2
∑
`

f̂(k − `)ϕ̂(`)

and
F−1(uv)(x) = (2π)d/2〈F−1u, (F−1v)(x− ·)〉.

2.2 The Stochastic Burgers equation
Our aim here is to motivate the ideas at the base of the notion of energy
solutions. We will not insist on a detailed formulation of all the available
results. The reader can always refer to the original paper [15] for missing
details. Applications to the large scale behavior of particle systems are
studied in [11].

We will study the case of the stochastic Burgers equation on the torus
T. The solution of the stochastic Burgers equation is the derivative of the
solution of the Kardar–Parisi–Zhang equation, a universal model for the
fluctuations in random interface growth which has been at the center of
several spectacular results of the past years. Excellent surveys on the KPZ
equation and related areas are [6, 28, 29].
The unknown u : R+ × T→ R should satisfy

∂tu = ∆u+ ∂xu
2 + ∂xξ,

where ξ : R+ × T → R is a space–time white noise defined on a given
probability space (Ω,F ,P) fixed once and for all. That is, ξ is a centered
Gaussian process indexed by L2(R+ × T) with covariance

E[ξ(f)ξ(g)] =
∫
R+×T

f(t, x)g(t, x)dtdx.

The equation has to be understood as a relation for processes which
are distributions in space with sufficiently regular time dependence. In
particular, if we test the above relation with ϕ ∈ S := S (T) := C∞(T),
denote with ut(ϕ) the pairing of the distribution u(t, ·) with ϕ, and
integrate in time over the interval [0, t], we formally get

ut(ϕ) = u0(ϕ) +
∫ t

0
us(∆ϕ)ds−

∫ t

0
〈u2
s, ∂xϕ〉ds−

∫ t

0
ξs(∂xϕ)ds.
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Let us discuss the various terms in this equation. In order to make sense
of ut(ϕ) and

∫ t
0 us(∆ϕ)ds, it is enough to assume that for all ϕ ∈ S

the mapping (t, ω) 7→ ut(ϕ)(ω) is a stochastic process with continuous
trajectories. Next, if we denote Mt(ϕ) = −

∫ t
0 ξs(∂xϕ)ds then, at least by

a formal computation, we have that (Mt(ϕ))t>0,ϕ∈S is a Gaussian random
field with covariance

E[Mt(ϕ)Ms(ψ)] = (t ∧ s)〈∂xϕ, ∂xψ〉L2(T).

In particular, for every ϕ ∈ S the stochastic process (Mt(ϕ))t>0 is a
Brownian motion with covariance

‖ϕ‖2H1(T) := 〈∂xϕ, ∂xϕ〉L2(T).

We will use this fact to have a rigorous interpretation of the white noise
ξ appearing in the equation. Here we used the notation M in order to
stress the fact that Mt(ϕ) is a martingale in its natural filtration and
more generally in the filtration Ft = σ(Ms(ϕ) : s 6 t, ϕ ∈ H1(T)), t > 0.

The most difficult term is of course the nonlinear one:
∫ t

0 〈u
2
s, ∂xϕ〉ds.

In order to define it, we need to square the distribution ut, an operation
which in general can be quite dangerous. A natural approach would be to
define it as the limit of some regularizations. For example, if ρ : R→ R+
is a compactly supported C∞ function such that

∫
R ρ(x)dx = 1, and we

set ρε(·) = ρ(·/ε)/ε, then we can set Nt,ε(u)(x) =
∫ t

0 ((ρε ∗us)(x))2ds and
define Nt(u) = limε→0Nt,ε(u) whenever the limit exists in S ′ := S ′(T),
the space of distributions on T. Then the question arises which properties
u should have for this convergence to occur.

2.3 The Ornstein–Uhlenbeck process

Let us simplify the problem and start by studying the linearized equation
obtained by neglecting the non–linear term. Let X be a solution to

Xt(ϕ) = X0(ϕ) +
∫ t

0
Xs(∆ϕ)ds+Mt(ϕ) (2.1)

for all t > 0 and ϕ ∈ S . This equation has at most one solution (for
fixed X0). Indeed, the difference D between two solutions should satisfy
Dt(ϕ) =

∫ t
0 Ds(∆ϕ)ds, which means that D is a distributional solution to

the heat equation. Taking ϕ(x) = ek(x), where

ek(x) := exp(−ikx)/
√

2π, k ∈ Z,
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we get Dt(ek) = −k2 ∫ t
0 Ds(ek)ds and then by Gronwall’s inequality

Dt(ek) = 0 for all t > 0. This easily implies that Dt = 0 in S ′ for
all t > 0.
To obtain the existence of a solution, observe that

Xt(ek) = X0(ek)− k2
∫ t

0
Xs(ek)ds+Mt(ek)

and thatMt(e0) = 0, while for all k 6= 0 the process βt(k) = Mt(ek)/(−ik)
is a complex valued Brownian motion (i.e. real and imaginary part are
independent Brownian motions with the same variance). The covariance
of β is given by

E[βt(k)βs(m)] = (t ∧ s)δk+m=0

and moreover βt(k)∗ = βt(−k) for all k 6= 0 (where ·∗ denotes complex
conjugation), as well as βt(0) = 0. In other words, (Xt(ek)) is a complex–
valued Ornstein–Uhlenbeck process ([23], Example 5.6.8) which solves a
linear one–dimensional SDE and has an explicit representation given by
the variation of constants formula

Xt(ek) = e−k
2tX0(ek)− ik

∫ t

0
e−k

2(t−s)dsβs(k).

This is enough to determine Xt(ϕ) for all t > 0 and ϕ ∈ S .

Exercise 4. Show that (Xt(ek) : t ∈ R+, k ∈ Z) is a complex Gaussian
random field, that is for all n ∈ N, for all t1, . . . , tn ∈ R+, k1, . . . , kn ∈ Z,
the vector

(Re(Xt1(ek1)), . . . ,Re(Xtn(ekn)), Im(Xt1(ek1)), . . . , Im(Xtn(ekn)))

is multivariate Gaussian. Show that X has mean E[Xt(ek)] = e−k
2tX0(ek)

and covariance

E[(Xt(ek)−E[Xt(ek)])(Xs(em)−E[Xs(em)])] = k2δk+m=0

∫ t∧s

0
e−k

2(t−r)−k2(s−r)dr

as well as

E[(Xt(ek)−E[Xt(ek)])(Xs(em)−E[Xs(em)])∗] = k2δk=m

∫ t∧s

0
e−k

2(t−r)−k2(s−r)dr.

In particular,

E[|Xt(ek)− E[Xt(ek)]|2] = 1− e−2k2t

2 .

Next we examine the Sobolev regularity of X. For this purpose, we need
the following definition.
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Definition 1. Let α ∈ R. Then the Sobolev space Hα is defined as

Hα := Hα(T) :=
{
ρ ∈ S ′ : ‖ρ‖2Hα :=

∑
k∈Z

(1 + |k|2)α|ρ(ek)|2 <∞
}
.

We also write CHα for the space of continuous functions from R+ to Hα.

Lemma 1. Let γ 6 −1/2 and assume that X0 ∈ Hγ . Then almost surely
X ∈ CHγ−.

Proof. Let α = γ − ε and consider

‖Xt −Xs‖2Hα =
∑
k∈Z

(1 + |k|2)α|Xt(ek)−Xs(ek)|2.

Let us estimate the L2p(Ω) norm of this quantity for p ∈ N by writing

E‖Xt −Xs‖2pHα =
∑

k1,...,kp∈Z

p∏
i=1

(1 + |ki|2)αE
p∏
i=1
|Xt(eki)−Xs(eki)|2.

By Hölder’s inequality, we get

E‖Xt −Xs‖2pHα .
∑

k1,...,kp∈Z

p∏
i=1

(1 + |ki|2)α
p∏
i=1

(E|Xt(eki)−Xs(eki)|2p)1/p.

Note now that Xt(eki) − Xs(eki) is a Gaussian random variable, so that
there exists a universal constant Cp for which

E|Xt(eki)−Xs(eki)|2p 6 Cp(E|Xt(eki)−Xs(eki)|2)p.

Moreover,

Xt(ek)−Xs(ek) = (e−k
2(t−s) − 1)Xs(ek) + ik

∫ t

s

e−k
2(t−r)drβr(k),

leading to

E|Xt(ek)−Xs(ek)|2

=(e−k
2(t−s) − 1)2E|Xs(ek)|2 + k2

∫ t

s

e−2k2(t−r)dr

=(e−k
2(t−s) − 1)2e−2k2s|X0(ek)|2 + (e−k

2(t−s) − 1)2k2
∫ s

0
e−2k2(s−r)dr

+ k2
∫ t

s

e−2k2(t−r)dr

=(e−k
2t − e−k

2s)2|X0(ek)|2 + 1
2(e−k

2(t−s) − 1)2(1− e−2k2s)

+ 1
2(1− e−2k2(t−s)).
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For any κ ∈ [0, 1] and k 6= 0, we thus have

E|Xt(ek)−Xs(ek)|2 . (k2(t− s))κ(|X0(ek)|2 + 1),

while for k = 0 we have E|Xt(e0) − Xs(e0)|2 = 0. Let us introduce the
notation Z0 = Z \ {0}. Therefore,

E‖Xt −Xs‖2pHα .
∑

k1,...,kp∈Z0

p∏
i=1

(1 + |ki|2)α
p∏
i=1

E|Xt(eki)−Xs(eki)|2

. (t− s)κp
∑

k1,...,kp∈Z0

p∏
i=1

(1 + |ki|2)α(k2
i )κ(|X0(eki)|2 + 1)

. (t− s)κp
[ ∑
k∈Z0

(1 + |k|2)α(k2)κ(|X0(ek)|2 + 1)
]p

. (t− s)κp
(
‖X0‖2pHα+κ(T) +

[ ∑
k∈Z0

(1 + |k|2)α(k2)κ
]p)

.

If α < −1/2−κ, the sum on the right hand side is finite and we obtain an
estimation for the modulus of continuity of t 7→ Xt in L2p(Ω;Hα):

E‖Xt −Xs‖2pHα . (t− s)κp[1 + ‖X0‖2pHα+κ ].

Now Kolmogorov’s continuity criterion allows us to conclude that almost
surely X ∈ CHα whenever X0 ∈ Hα+κ. �
Now note that the regularity of the Ornstein–Uhlenbeck process does

not allow us to form the quantity X2
t point–wise in time since by Fourier

inversion Xt =
∑
kXt(ek)e∗k, and therefore we should have

X2
t (ek) = (2π)−1/2

∑
`+m=k

Xt(e`)Xt(em).

Of course, at the moment this expression is purely formal since we cannot
guarantee that the infinite sum converges. A reasonable thing to try is to
approximate the square by regularizing the distribution, taking the square,
and then trying to remove the regularization. Let ΠN be the projector of
a distribution onto a finite number of Fourier modes:

(ΠNρ)(x) =
∑
|k|6N

ρ(ek)e∗k(x).

Then ΠNXt(x) is a smooth function of x and we can consider (ΠNXt)2

which satisfies

(ΠNXt)2(ek) = (2π)−1/2
∑

`+m=k
I|`|6N,|m|6NXt(e`)Xt(em).
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We would then like to take the limit N → +∞. For convenience, we will
perform the computations below in the limit N = +∞, but one has to
come back to the case of finite N in order to make it rigorous.
Then

E[X2
t (ek)] =(2π)−1/2δk=0

∑
m∈Z0

E[Xt(e−m)Xt(em)]

=(2π)−1/2δk=0
∑
m∈Z0

e−2m2t|X0(em)|2

+ (2π)−1/2δk=0
∑
m∈Z0

m2
∫ t

0
e−2m2(t−s)ds

and ∑
m∈Z0

m2
∫ t

0
e−2m2(t−s)ds = 1

2
∑
m∈Z0

(1− e−2m2t) = +∞.

This is not really a problem since in Burgers’ equation only components of
u2
t (ek) with k 6= 0 appear (due to the presence of the derivative). However,
X2
t (ek) is not even a well–defined random variable. For the remainder of

this subsection let us assume that X0 = 0, which will slightly simplify the
computation. If k 6= 0, we have

E[|X2
t (ek)|2] =E[X2

t (ek)X2
t (e−k)]

=(2π)−1
∑

`+m=k

∑
`′+m′=−k

E[Xt(e`)Xt(em)Xt(e`′)Xt(em′)].

By Wick’s theorem (see [22], Theorem 1.28), the expectation can be
computed in terms of the covariances of all possible pairings of the four
Gaussian random variables (3 possible combinations):

E[Xt(e`)Xt(em)Xt(e`′)Xt(em′)] = E[Xt(e`)Xt(em)]E[Xt(e`′)Xt(em′)]
+ E[Xt(e`)Xt(e`′)]E[Xt(em)Xt(em′)]
+ E[Xt(e`)Xt(em′)]E[Xt(em)Xt(e`′)].

Since k 6= 0, we have `+m 6= 0 and `′+m′ 6= 0 which allows us to neglect
the first term since it is zero. By symmetry of the summations, the two
other terms give the same contribution and we remain with

E[|X2
t (ek)|2] = 1

π

∑
`+m=k

∑
`′+m′=−k

E[Xt(e`)Xt(e`′)]E[Xt(em)Xt(em′)]

(2.2)

= 1
π

∑
`+m=k

E[Xt(e`)Xt(e−`)]E[Xt(em)Xt(e−m)]

= 1
4π

∑
`+m=k

(1− e−2`2t)(1− e−2m2t) = +∞.
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This shows that even when tested against smooth test functions, X2
t is not

in L2(Ω). This indicates that there are problems with X2
t and indeed one

can show that X2
t (ek) does not make sense as a random variable.

To understand this better, observe that the Ornstein–Uhlenbeck process
can be decomposed as

Xt(ek) = ik

∫ t

−∞
e−k

2(t−s)dβs(k)− ike−k
2t

∫ 0

−∞
ek

2sdβs(k),

where we extended the Brownian motions (βs(k))s>0 to two sided complex
Brownian motions by considering independent copies. The interest in this
decomposition is in the fact that it is not difficult to show that the second
term gives rise to a smooth function if t > 0, so all the irregularity of Xt

is described by the first term which we call Yt(ek) and which is stationary
in time. Note that Yt(ek) ∼ NC(0, 1/2) for all k ∈ Z0 and t ∈ R, where we
write

U ∼ NC(0, σ2)

if U = V + iW , where V and W are independent random variables
with distribution N (0, σ2/2). The random distribution Yt then satisfies
Yt(ϕ) ∼ N (0, ‖ϕ‖2L2(T)/2), and moreover it is (1/

√
2 times) the white noise

on T. It is also possible to deduce that the white noise on T is indeed the
invariant measure of the Ornstein–Uhlenbeck process, that it is the only
one, and that it is approached quite fast [23].

So we should expect that, at fixed time, the regularity of the Ornstein–
Uhlenbeck process is like that of the space white noise and this is a way
of understanding our difficulties in defining X2

t since this will be, modulo
smooth terms, the square of the space white noise.

A different matter is to make sense of the time–integral of ∂xX2
t . Let

us give it a name and call it Jt(ϕ) =
∫ t

0 ∂xX
2
s (ϕ)ds. For Jt(ek), the

computation of its variance gives a quite different result.

Lemma 2. Almost surely, J ∈ C1/2−H−1/2−.

Proof. Proceeding as in (2.2), we have now

E[|Jt(ek)|2] = 1
π
k2
∫ t

0

∫ t

0

∑
`+m=k

E[Xs(e`)Xs′(e−`)]E[Xs(em)Xs′(e−m)]dsds′.

If s > s′, we have

E[Xs(e`)Xs′(e−`)] = 1
2e
−`2(s−s′)(1− e−2`2s′),
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and therefore

E[|Jt(ek)|2] = k2

4π

∫ t

0

∫ t

0

∑
`+m=k

e−(`2+m2)|s−s′|(1− e−2`2(s′∧s))(1− e−2m2(s′∧s))dsds′

6
k2

4π

∫ t

0

∫ t

0

∑
`+m=k

e−(`2+m2)|s−s′|dsds′

6
1

2π k
2t
∑

`+m=k

∫ ∞
0

e−(`2+m2)rdr

= 1
2π k

2t
∑

`+m=k

1
`2 +m2 .

Now for k 6= 0 ∑
`+m=k

1
`2 +m2 .

∫
R

dx
x2 + (k − x)2 .

1
|k|
.

So finally E[|Jt(ek)|2] . |k|t. From which is easy to conclude that at fixed
t the random field Jt belongs almost surely to H−1/2−. Redoing a similar
computation in the case Jt(ek)− Js(ek), we obtain E[|Jt(ek)− Js(ek)|2] .
|k| × |t − s|. To go from this estimate to a path–wise regularity result of
the distribution (Jt)t, following the line of reasoning of Lemma 1, we need
to estimate the p-th moment of Jt(ek) − Js(ek). We already used in the
proof of Lemma 1 that all moments of a Gaussian random variable are
comparable. By Gaussian hypercontractivity (see Theorem 3.50 of [22])
this also holds for polynomials of Gaussian random variables, so that

E[|Jt(ek)− Js(ek)|2p] .p (E[|Jt(ek)− Js(ek)|2])p.

From here we easily derive that almost surely J ∈ C1/2−H−1/2− which is
the space of 1/2−Hölder continuous functions with values in H−1/2−. �
This shows that ∂xX

2
t exists as a space–time distribution but not

as a continuous function of time with values in distributions in space.
The key point in the proof of Lemma 2 is the fact that the correlation
E[Xs(e`)Xs′(e−`)] of the Ornstein–Uhlenbeck process decays quite rapidly
in time.

The construction of the process J does not solve our problem of
constructing

∫ t
0 ∂xu

2
sds since we need similar properties for the full solution

u of the non–linear dynamics (or for some approximations thereof), and
all we have done so far relies on explicit computations and the specific
Gaussian features of the Ornstein–Uhlenbeck process. But at least this
give us a hint that indeed there could exist a way of making sense of the
term ∂xu(t, x)2, even if only as a space–time distribution, and that in doing
so we should exploit some decorrelation properties of the dynamics.
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So when dealing with the full solution u, we need a replacement for the
Gaussian computations based on the explicit distribution of X that we
used above. This will be provided, in the current setting, by stochastic
calculus along the time direction. Indeed, note that for each ϕ ∈ S the
process (Xt(ϕ))t>0 is a semimartingale in the filtration (Ft)t>0.

Before proceeding with these computations, we need to develop some
tools to describe the Itô formula for functions of the Ornstein–Uhlenbeck
process. This will also serve us as an opportunity to set up some analysis
on Gaussian spaces.

2.4 Gaussian computations
For cylindrical functions F : S ′ → R of the form F (ρ) =
f(ρ(ϕ1), . . . , ρ(ϕn)) with ϕ1, . . . , ϕn ∈ S and f : Rn → R at least C2

b ,
we have by Itô’s formula

dtF (Xt) =
n∑
i=1

Fi(Xt)dXt(ϕi) + 1
2

n∑
i,j=1

Fi,j(Xt)d〈X(ϕi), X(ϕj)〉t,

where 〈〉t denotes the quadratic covariation of two continuous
semimartingales and where Fi(ρ) = ∂if(ρ(ϕ1), . . . , ρ(ϕn)) and Fi,j(ρ) =
∂2
i,jf(ρ(ϕ1), . . . , ρ(ϕn)), with ∂i denoting the derivative with respect to

the i-th argument. Now recall that dXt(ϕi) = Xt(∆ϕi)dt + dMt(ϕi) is a
continuous semimartingale, and therefore

d〈X(ϕi), X(ϕj)〉t = d〈M(ϕi),M(ϕj)〉t = 〈∂xϕi, ∂xϕj〉L2(T)dt,

and then

dtF (Xt) =
n∑
i=1

Fi(Xt)dMt(ϕi) + L0F (Xt)dt,

where L0 is the second–order differential operator defined on cylindrical
functions F as

L0F (ρ) =
n∑
i=1

Fi(ρ)ρ(∆ϕi) +
n∑

i,j=1

1
2Fi,j(ρ)〈∂xϕi, ∂xϕj〉L2(T). (2.3)

Another way to describe the generator L0 is to give its value on the
functions ρ 7→ exp(ρ(ψ)) for ψ ∈ S , which is

L0e
ρ(ψ) = eρ(ψ)(ρ(∆ψ)− 1

2 〈ψ,∆ψ〉L
2(T)).
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If F,G are two cylindrical functions (which we can take of the form
F (ρ) = f(ρ(ϕ1), . . . , ρ(ϕn)) and G(ρ) = g(ρ(ϕ1), . . . , ρ(ϕn)) for the same
ϕ1, . . . , ϕn ∈ S ), we can check that

L0(FG) = (L0F )G+ F (L0G) + E(F,G), (2.4)

where the quadratic form E is given by

E(F,G)(ρ) =
∑
i,j

Fi(ρ)Gj(ρ)〈∂xϕi, ∂xϕj〉L2(T). (2.5)

In particular, the quadratic variation of the martingale obtained in the Itô
formula for F is given by

d
〈∫ ·

0

n∑
i=1

Fi(Xs)dMs(ϕi)
〉
t

= E(F, F )(Xt)dt.

Lemma 3. (Gaussian integration by parts) Let (Zi)i=1,...,M be
an M -dimensional Gaussian vector with zero mean and covariance
(Ci,j)i,j=1,...,M . Then for all g ∈ C1

b (RM ) we have

E[Zkg(Z)] =
∑
`

Ck,`E
[
∂g(Z)
∂Z`

]
.

Proof. Use that E[ei〈Z,λ〉] = e−〈λ,Cλ〉/2 and moreover that

E[Zkei〈Z,λ〉] = (−i) ∂

∂λk
E[ei〈Z,λ〉] = (−i) ∂

∂λk
e−〈λ,Cλ〉/2 = i(Cλ)ke−〈λ,Cλ〉/2

= i
∑
`

Ck,`λ`E[ei〈Z,λ〉] =
∑
`

Ck,`E[ ∂

∂Z`
ei〈Z,λ〉].

The relation is true for trigonometric functions and taking Fourier
transforms we see that it holds for all g ∈ S . Is then a matter of taking
limits to show that we can extend it to any g ∈ C1

b (RM ). �
As a first application of this formula let us show that E[L0F (η)] = 0 for

every cylindrical function, where η is a space white noise with mean zero,
i.e. η(ϕ) ∼ N (0, ‖ϕ‖2L2(T)/2) for all ϕ ∈ L2

0(T), and η(1) = 0. Here we
write L2

0(T) for the subspace of all ϕ ∈ L2(T) with
∫
T ϕdx = 0. Indeed,

note that by polarization E[η(ϕi)η(∆ϕj)] = 1
2 〈ϕi,∆ϕj〉L2(T), leading to

E
n∑

i,j=1

1
2Fi,j(η)〈∂xϕi, ∂xϕj〉L2(T) = −E

n∑
i,j=1

1
2Fi,j(η)〈ϕi,∆ϕj〉L2(T)

= −1
2

n∑
i,j=1
〈ϕi,∆ϕj〉L2(T)E

∂

∂η(ϕi)
Fj(η)

= −
n∑
j=1

E[η(∆ϕj)Fj(η)],
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so that E[L0F (η)] = 0 (here we interpreted ∂jf as a function of n + 1
variables, with trivial dependence on the (n+ 1)-th one). In combination
with Itô’s formula, this indicates that the white noise law should indeed
be a stationary distribution for X (convince yourself of it!). From now on
we fix the initial distribution X0 ∼ η, which means that Xt ∼ η for all
t > 0.
As another application of the Gaussian integration by parts formula, we

get
1
2E[E(F,G)(η)] = −1

2
∑
i,j

E[Fi(η)Gj(η)]〈ϕi,∆ϕj〉L2(T).

= −1
2
∑
i,j

E[(F (η)Gj(η))i]〈ϕi,∆ϕj〉L2(T)

+ 1
2
∑
i,j

E[F (η)Gij(η)]〈ϕi,∆ϕj〉L2(T)

= −
∑
j

E[F (η)Gj(η)η(∆ϕj)]

+ 1
2
∑
i,j

E[F (η)Gij(η)]〈ϕi,∆ϕj〉L2(T)

= −E[(FL0G)(η)].

Combining this with (2.4) and with E[L0(FG)(η)] = 0, we obtain
E[(FL0G)(η)] = E[(GL0F )(η)]. That is, L0 is a symmetric operator with
respect to the law of η.

Consider now the operator D, defined on cylindrical functions F by

DF (ρ) =
∑
i

Fi(ρ)ϕi (2.6)

so that DF takes values in S ′, the continuous linear functionals on S .

Exercise 5. Show that D is independent of the specific representation of
F , that is if

F (ρ) = f(ρ(ϕ1), . . . , ρ(ϕn)) = g(ρ(ψ1), . . . , ρ(ψm))

for all ρ ∈ S ′, then∑
i

∂if(ρ(ϕ1), . . . , ρ(ϕn))ϕi =
∑
j

∂jg(ρ(ψ1), . . . , ρ(ψm))ψm.

Hint: One possible strategy is to show that for all θ ∈ S ,

〈DF (ρ), θ〉 = d
dεF (ρ+ εθ)|ε=0.
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By Gaussian integration by parts we get

E[F (η)〈ψ,DG(η)〉] + E[G(η)〈ψ,DF (η)〉] =
∑
i

E[(FG)i(η)〈ψ,ϕi〉]

=2E[η(ψ)(FG)(η)],

and therefore

E[F (η)〈ψ,DG(η)〉] = E[G(η)〈ψ,−DF (η) + 2ρF (η)〉].

So if we consider the space L2(law(η)) with inner product E[F (η)G(η)],
then the adjoint of D is given by D∗F (ρ) = −DF (ρ) + 2ρF (ρ). Let
DψF (ρ) = 〈ψ,DF (ρ)〉 and similarly for D∗ψF (ρ) = −DψF (ρ)+2ρ(ψ)F (ρ).

Exercise 6. Let (en)n>1 be an orthonormal basis of L2(T). Show that

L0 = 1
2
∑
n

D∗enD∆en .

Recall that the commutator between two operators A and B is defined
as [A,B] := AB −BA. In our case we have

[Dθ,D∗ψ]F (ρ) = (DθD∗ψ −D∗ψDθ)F (ρ) = 2〈ψ, θ〉L2(T)F (ρ),

whereas [D∗θ,D∗ψ] = 0. Therefore,

[L0,D∗ψ] =1
2
∑
n

[D∗enD∆en ,D∗ψ]

=1
2
∑
n

D∗en [D∆en ,D∗ψ] + 1
2
∑
n

[D∗en ,D
∗
ψ]D∆en

=
∑
n

D∗en〈ψ,∆en〉L2(T) = D∗∆ψ.

So if ψ is an eigenvector of ∆ with eigenvalue λ, then [L0, D
∗
ψ] = λD∗ψ.

Let now (ψn)n∈N be an orthonormal eigenbasis for ∆ with eigenvalues
∆ψn = λnψn and consider the functions

H(ψi1 , . . . , ψin) : S ′ → R, H(ψi1 , . . . , ψin)(ρ) = (D∗ψi1 · · ·D
∗
ψin

1)(ρ).

Then

L0H(ψi1 , . . . , ψin) = L0D∗ψi1 · · ·D
∗
ψin

1

= D∗ψi1L0D∗ψi2 · · ·D
∗
ψin

1 + λi1D∗ψi1 · · ·D
∗
ψin

1 (2.7)

= · · · = (λi1 + · · ·+ λin)H(ψi1 , . . . , ψin),
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where we used that L01 = 0. So these functions are eigenfunctions for L0
and the eigenvalues are all the possible combinations of λi1 + · · ·+ λin for
i1, . . . , in ∈ N. We have immediately that for different n these functions
are orthogonal in L2(law(η)). They are actually orthogonal as soon as
the indices i differ since in that case there is an index j which is in one
but not in the other and using the fact that D∗ψj is adjoint to Dψj and
that DψjG = 0 if G does not depend on ψj we get the orthogonality.
The functions H(ψi1 , . . . , ψin) are polynomials and they are called Wick
polynomials.

Lemma 4. For all ψ ∈ S , almost surely

(eD∗ψ1)(η) = e2η(ψ)−‖ψ‖2
.

Proof. If F is a cylindrical function of the form F (ρ) =
f(ρ(ϕ1), . . . , ρ(ϕm)) with f ∈ S (Rm), then

E[F (η)(eD∗ψ1)(η)] = E[eDψF (η)] = E[F (η + ψ)] = E[F (η)e2η(ψ)−‖ψ‖2
],

where the second step follows from the fact that if we note Ψt(η) =
F (η+ tψ) (note that every ψ ∈ S can be interpreted as an element of S ′)
we have ∂tΨt(η) = DψΨt(η) and Ψ0(η) = F (η) so that Ψt(η) = (etDψF )(η)
for all t > 0 and in particular for t = 1. The last step is simply a Gaussian
change of variables. Indeed if we take ϕ1 = ψ and ϕk⊥ψ for k > 2 we have

E[F (η + ψ)] = E[f(η(ψ) + 〈ψ,ψ〉, η(ϕ2), . . . , η(ϕm))]

since (η+ψ)(ϕk) = η(ϕk) for k > 2. Now observe that η(ψ) is independent
of (η(ϕ2), . . . , η(ϕm)) so that

E[f(η(ψ) + 〈ψ,ψ〉, η(ϕ2), . . . , η(ϕm))]

=
∫
R

e−z
2/‖ψ‖2√
π‖ψ‖2

E[f(z + 〈ψ,ψ〉, η(ϕ2), . . . , η(ϕm))]

=
∫
R

e−z
2/‖ψ‖2√
π‖ψ‖2

e2z−‖ψ‖2
E[f(z, η(ϕ2), . . . , η(ϕm))]

=E[F (η)e2η(ψ)−‖ψ‖2
].

To conclude the proof, it suffices to note that E[F (η)(eD∗ψ1)(η)] =
E[F (η)e2η(ψ)−‖ψ‖2 ] for all cylindrical functions F implies that (eD∗ψ1)(η) =
e2η(ψ)−‖ψ‖2 . �

Theorem 1. The Wick polynomials {H(ψi1 , . . . , ψin)(η) : n >
0, i1, . . . , in ∈ N} form an orthogonal basis of L2(law(η)).
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Proof. Taking ψ =
∑
i σiψi in Lemma 4, we get

e2
∑

i
σiη(ψi)−

∑
i
σ2
i ‖ψi‖

2
= (eD∗ψ1)(η) =

∑
n>0

((D∗ψ)n1)(η)
n!

=
∑
n>0

∑
i1,...,in

σi1 · · ·σin
n! H(ψi1 , . . . , ψin︸ ︷︷ ︸

n times

)(η),

which is enough to show that any random variable in L2 can be expanded
in a series of Wick polynomials showing that the Wick polynomials are an
orthogonal basis of L2(law(η)) (but they are still not normalized). Indeed
assume that Z ∈ L2(law(η)) but Z⊥H(ψi1 , . . . , ψin)(η) for all n > 0,
i1, . . . , in ∈ N, then

0 =e
∑

i
σ2
i ‖ψi‖

2
E[Z(eD∗ψ1)(η)]

=e
∑

i
σ2
i ‖ψi‖

2
E[Ze2

∑
i
σiη(ψi)−

∑
i
σ2
i ‖ψi‖

2
]

=E[Ze2
∑

i
σiη(ψi)].

Since the σi are arbitrary, this means that Z is orthogonal to any
polynomial in η (consider the derivatives in σ ≡ 0) and then that it is
orthogonal also to exp(i

∑
i σiη(ψi)). So let f ∈ S (RM ) and σi = 0 for

i > m, and observe that

0 =(2π)−m/2
∫

dσ1 · · · dσmFf(σ1, . . . , σm)E[Zei
∑

i
σiη(ψi)]

=E[Zf(η(ψ1), . . . , η(ψM ))],

which means that Z is orthogonal to all the random variables in L2 which
are measurable with respect to the σ–field generated by (η(ψn))n>0. This
implies Z = 0. That is, Wick polynomials form a basis for L2(law(η)). �

Example 2. The first few (un–normalized) Wick polynomials are

H(ψi)(ρ) = D∗ψi1(ρ) = 2ρ(ψi),

H(ψi, ψj)(ρ) = D∗ψiD
∗
ψj1 = 2D∗ψiρ(ψj) = −2δi=j + 4ρ(ψi)ρ(ψj),

and

H(ψi, ψj , ψk)(ρ) = D∗ψi(−2δj=k + 4ρ(ψj)ρ(ψk))
= −4δj=kρ(ψi)− 4δi=jρ(ψk)− 4δi=kρ(ψj)

+ 8ρ(ψi)ρ(ψj)ρ(ψk).
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Some other properties of Wick polynomials can be derived using the
commutation relation between D and D∗. By linearity D∗ϕ+ψ = D∗ϕ + D∗ψ,
so that using the symmetry of H we get

Hn(ϕ+ ψ) := H (ϕ+ ψ, . . . , ϕ+ ψ)︸ ︷︷ ︸
n

=
∑

06k6n

(
n

k

)
H(ϕ, . . . , ϕ︸ ︷︷ ︸

k

, ψ, . . . , ψ︸ ︷︷ ︸
n−k

).

Then note that by Lemma 4 we have

(eD∗ϕ1)(η)(eD∗ψ1)(η) = e2η(ϕ)−‖ϕ‖2
e2η(ψ)−‖ψ‖2

= e2η(ϕ+ψ)−‖ϕ+ψ‖2+2〈ϕ,ψ〉

= (eD∗ϕ+ψ1)(η)e2〈ϕ,ψ〉.

Expanding the exponentials,∑
m,n

Hm(ϕ)
m!

Hn(ψ)
n! =

∑
r,`

Hr(ϕ+ ψ)
r!

(2〈ϕ,ψ〉)`

`!

=
∑
p,q,`

H(
p︷ ︸︸ ︷

ϕ, . . . , ϕ,

q︷ ︸︸ ︷
ψ, . . . , ψ)

p!q!
(2〈ϕ,ψ〉)`

`! ,

and identifying the terms of the same homogeneity in ϕ and ψ respectively
we get

Hm(ϕ)Hn(ψ) =
∑

p+`=m

∑
q+`=n

m!n!
p!q!`!H(

p︷ ︸︸ ︷
ϕ, . . . , ϕ,

q︷ ︸︸ ︷
ψ, . . . , ψ) (2〈ϕ,ψ〉)` .

(2.8)
This gives a general formula for such products. By polarization of this
multilinear form, we can also get a general formula for the products
of general Wick polynomials. Indeed taking ϕ =

∑m
i=1 κiϕi and ψ =∑n

j=1 λjψj for arbitrary real coefficients κ1, . . . , κm and λ1, . . . , λn, we
have

Hm(
m∑
i=1

κiϕi)Hn(
n∑
j=1

λjψj)

=
∑

i1,...,im

∑
j1,...,jn

κi1 · · ·κimλj1 · · ·λjmH(ϕi1 , . . . , ϕim)H(ψj1 , . . . , ψjn).

Deriving this with respect to all the κ, λ parameters and setting them to
zero, we single out the term∑

σ∈Sm,ω∈Sn

H(ϕσ(1), . . . , ϕσ(m))H(ψω(1), . . . , ψω(n))

= m!n!H(ϕ1, . . . , ϕm)H(ψ1, . . . , ψn),



26 M. Gubinelli and N. Perkowski

where Sk denotes the symmetric group on {1, . . . , k}, and where we used
the symmetry of the Wick polynomials. Doing the same also for the right
hand side of (2.8) we get

H(ϕ1, . . . , ϕm)H(ψ1, . . . , ψn)

=
∑

p+`=m

∑
q+`=n

1
p!q!`!

∑
i,j

H(
p︷ ︸︸ ︷

ϕi1 , . . . , ϕip ,

q︷ ︸︸ ︷
ψj1 , . . . , ψjq )

∏̀
r=1

(2〈ϕip+r , ψjq+r 〉),

where the sum over i, j runs over i1, . . . , im permutation of 1, . . . ,m and
similarly for j1, . . . , jn. Since H(ϕi1 , . . . , ϕip , ψj1 , . . . , ψjq )(η) is orthogonal
to 1 whenever p+ q > 0, we obtain in particular

E[H(ψ1, . . . , ψn)(η)H(ψ1, . . . , ψn)(η)] = 1
n!
∑
i,j

n∏
r=1

(2〈ψir , ψjr 〉)

=
∑
σ∈Sn

n∏
r=1

(2〈ψr, ψσ(r)〉).

In conclusion, we have shown that the family

{( ∑
σ∈Sn

n∏
r=1

(2〈ψr, ψσ(r)〉)
)−1/2

H(ψi1 , . . . , ψin)(η) : n > 0, i1, . . . , in ∈ N
}

is an orthonormal basis of L2(law(η)).

Remark 1. In our problem it will be convenient to take the Fourier
basis as basis in the above computations. Let ek(x) = exp(ikx)/

√
2π =

ak(x)+ibk(x) where (
√

2ak)k∈N and (
√

2bk)k∈N form together a real valued
orthonormal basis for L2(T). Then ρ(ek)∗ = ρ(e−k) whenever ρ is real
valued, and we will denote Dk = Dek = Dak + iDbk and similarly for
D∗k = D∗ak − iD∗bk = −D−k + 2ρ(e−k). In this way, D∗k is the adjoint
of Dk with respect to the Hermitian scalar product on L2(Ω;C) and the
Ornstein–Uhlenbeck generator takes the form

L0 =
∑
k∈N

(D∗∂xakD∂xak + D∗∂xbkD∂xbk) = 1
2
∑
k∈Z

k2D∗kDk (2.9)

(convince yourself of the last identity by observing that D∗kDk+D∗−kD−k =
2(D∗akDak + D∗bkDbk)!). Similarly,

E(F,G) =
∑
k∈Z

k2(DkF )∗(DkG). (2.10)
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2.5 The Itô trick
We are ready now to start our computations. Recall that we want to
analyse Jt(ϕ) =

∫ t
0 ∂xX

2
s (ϕ)ds using Itô calculus with respect to the

Ornstein–Uhlenbeck process. We want to understand Jt as a correction
term in Itô’s formula: if we can find a function G such that L0G(Xt) =
∂xX

2
t , then we get from Itô’s formula∫ t

0
∂xX

2
sds = G(Xt)−G(X0)−MG,t,

where MG is a martingale depending on G. Of course, G will not be
a cylindrical function but we only defined L0 on cylindrical functions.
So to make the following calculations rigorous we would again have to
replace ∂xX2

t by ∂xΠnX
2
t and then pass to the limit, see the paper [15]

for details. As before we will perform the calculations already in the
limit N = +∞, in order to simplify the computations and not to obscure
the ideas through technicalities. The next problem is that the pointwise
evaluation

∫ t
0 ∂xX

2
s (x)ds does not make any sense because the integral will

only be defined as a space distribution. So we will consider

G : S ′ → S ′

instead of G : S ′ → C. Note however that we can reduce every such G to
a function from S ′ to C by considering ρ 7→ G(ρ)(ek) for all k.
Now for a fixed k, we have

∂xX
2
t (ek) = ik√

2

∑
`+m=k

Xt(e`)Xt(em) = ik√
2

∑
`+m=k

H`,m(Xt), (2.11)

where H`,m(ρ) = 1
4 (D∗−`D∗−m1)(ρ) = ρ(e`)ρ(em) − 1

2δ`+m=0 is a second
order Wick polynomial so that L0H`,m = −(`2 + m2)H`,m by (2.7).
Therefore, it is enough to take

G(Xt)(ek) = −ik
∑

`+m=k

H`,m(Xt)
`2 +m2 . (2.12)

This corresponds to the distribution G(Xt)(ϕ) = −
∫∞

0 ∂x(es∆Xt)2(ϕ)ds
(check it!). Then

G(Xt)(ϕ) = G(X0)(ϕ) +MG,t(ϕ) + Jt(ϕ),

where MG,t(ϕ) is a martingale with quadratic variation

d〈MG,∗(ϕ),MG,∗(ϕ)〉t = E(G(∗)(ϕ), G(∗)(ϕ))(Xt)dt.
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We can estimate

E[|Jt(ϕ)−Js(ϕ)|2p] .p E[|MG,t(ϕ)−MG,s(ϕ)|2p] +E[|G(Xt)(ϕ)−G(Xs)(ϕ)|2p].

To bound the martingale expectation, we will use the following Burkholder
inequality:

Lemma 5. Let m be a continuous local martingale with m0 = 0. Then
for all T > 0 and p > 1,

E[sup
t6T
|mt|2p] 6 CpE[〈m〉pT ].

Proof. Start by assuming that m and 〈m〉 are bounded. Itô’s formula
yields

d|mt|2p = (2p)|mt|2p−1dmt + 1
2(2p)(2p− 1)|mt|2p−2d〈m〉t,

and therefore

E[|mT |2p] = CpE
[ ∫ T

0
|ms|2p−2d〈m〉s

]
6 CpE[sup

t6T
|mt|2p−2〈m〉T ].

By the Cauchy–Schwarz inequality we get

E[|mT |2p] 6 CpE[sup
t6T
|mt|2p](2p−2)/2pE[〈m〉pT ]1/p.

But now Doob’s Lp inequality yields E[supt6T |mt|2p] 6 C ′pE[|mT |2p], and
this implies the claim in the bounded case. The unbounded case can be
treated with a localization argument. �
Applying Burkholder’s inequality, we obtain

E[|Jt(ϕ)− Js(ϕ)|2p] .p E
[∣∣∣ ∫ t

s

E(G(∗)(ϕ), G(∗)(ϕ))(Xr)dr
∣∣∣p]

+ E[|G(Xt)(ϕ)−G(Xs)(ϕ)|2p]

6 (t− s)p−1
∫ t

s

E[|E(G(∗)(ϕ), G(∗)(ϕ))(Xr)|p]dr

+ E[|G(Xt)(ϕ)−G(Xs)(ϕ)|2p]
= (t− s)pE[|E(G(∗)(ϕ), G(∗)(ϕ))(η)|p]

+ E[|G(Xt)(ϕ)−G(Xs)(ϕ)|2p],

using that Xr ∼ η. Now

DmG(ρ)(ek) = −2ik ρ(ek−m)
(k −m)2 +m2 ,
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and therefore

E(G(∗)(ek), G(∗)(ek))(ρ) =
∑
m

m2D−mG(ρ)(e−k)DmG(ρ)(ek)

= 4k2
∑

`+m=k
m2 |ρ(e`)|2

(`2 +m2)2

. k2
∑

`+m=k

|ρ(e`)|2

`2 +m2 ,

which implies that

E[|E(G(∗)(ek), G(∗)(ek))(η)|] . k2E
∑

`+m=k

|η(e`)|2

`2 +m2

. k2
∑

`+m=k

1
`2 +m2

. |k|.

A similar computation gives also that

E[|E(G(∗)(ek), G(∗)(ek))(η)|p] . |k|p.

Further, we have

E[|G(Xt)(ek)−G(Xs)(ek)|2] . k2
∑

`+m=k
E
[ |H`,m(Xt)−H`,m(Xs))2

(`2 +m2|2
]

. k2|t− s|
∑

`+m=k

m2

(`2 +m2)2 . |k||t− s|.

And finally, since G is a second order polynomial of a Gaussian process we
can apply once more Gaussian hypercontractivity to obtain

E[|Jt(ek)− Js(ek)|2p] .p (t− s)p|k|p.

The advantage of the Itô trick with respect to the explicit Gaussian
computation is that it goes over to the non–Gaussian case. Indeed note
that while the boundary term G(Xt)(ϕ) − G(Xs)(ϕ) has been estimated
using a lot of the Gaussian information about X, we used only the law at
a fixed time to handle the term

∫ t
s
E(G(∗)(ϕ), G(∗)(ϕ))(Xr)dr.

In order to carry over these computation to the solution of the non–linear
dynamics u, we need to replace the generator of X with that of u and to
have a way to handle the boundary terms. The idea is now to reverse the
Markov process u in time, which will allow us to kill the antisymmetric
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part of the generator and at the same time kill the boundary terms. Indeed
observe that if u solves the stochastic Burgers equation, then formally we
have the Itô formula

dtF (ut) =
n∑
i=1

Fi(ut)dMt(ϕi) + LF (ut)dt,

where L is now the full generator of the non–linear dynamics, given by

LF (ρ) = L0F (ρ) +
∑
i

Fi(ρ)〈∂xρ2, ϕi〉 = L0F (ρ) +BF (ρ),

where
BF (ρ) =

∑
k

(∂xρ2)(ek)DkF (ρ).

Formally, the non–linear term is antisymmetric with respect to the
invariant measure of L0. Indeed since B is a first order operator

E[(BF (η))G(η)] = E[(B(FG)(η))]− E[F (η)(BG(η))] = −E[F (η)(BG(η))]
(2.13)

provided E[BF (η)] = 0 for any cylinder function F . Let us show this. We
have

E[BF (η)] =
∑
k

E[(∂xη2)(ek)DkF (η)]

= −
∑
k

E[(Dk(∂xη2)(ek))F (η)] +
∑
k

E[Dk[(∂xη2)(ek)F (η)]].

But now we get from (2.11)

Dk(∂xη2)(ek) =
√

2ikη(e0) = π−1/2ik〈η, 1〉 = 0,

where we used that 〈η, 1〉 = 0. Gaussian integration by parts then formally
gives

E[BF (η)] =
∑
k

E[Dk[(∂xη2)(ek)F (η)]] =
∑
k

E[η(ek)(∂xη2)(ek)F (η)]

= E[〈η, ∂xη2〉F (η)] = 1
3E[〈1, ∂xη3〉F (η)] = 0

since 〈1, ∂xη3〉 = −〈∂x1, η3〉 = 0 (but of course 〈η, ∂xη2〉 is not well
defined).
The dynamics of u backwards in time has a Markovian description which

is the subject of the next exercise.
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Exercise 7. Let (yt)t>0 be a stationary Markov process on a Polish space,
with semigroup (Pt)t>0 and stationary distribution µ. Show that if P ∗t
is the adjoint of Pt in L2(µ), then (P ∗t ) is a semigroup of operators on
L2(µ) (that is P ∗0 = id and P ∗s+t = P ∗s P

∗
t as operators on L2(µ)). Show

that if y0 ∼ µ, then for all T > 0 the process ŷt = yT−t, t ∈ [0, T ], is
also Markov, with semigroup (P ∗t )t∈[0,T ], and that µ is also an invariant
distribution for (P ∗t ). Show also that if (Pt) has generator L then (P ∗t )
has generator L∗ which is the adjoint of L with respect to L2(µ).

Now if we reverse the process in time letting ût = uT−t, we have by
stationarity

E[F (ût)G(û0)] = E[F (uT−t)G(uT )] = E[F (u0)G(ut)].

So if we denote by L̂ the generator of û:

E[L̂F (û0)G(û0)] = d
dt

∣∣∣∣
t=0

E[F (ût)G(û0)]

= d
dt

∣∣∣∣
t=0

E[F (u0)G(ut)]

=E[LG(u0)F (u0)],

which means that L̂ is the adjoint of L, that is

L̂F (ρ) = L0F (ρ)−BF (ρ) = L0F (ρ)−
∑
k

(∂xρ2)(ek)DkF (ρ).

In other words, the reversed process solves

ût(ϕ) = û0(ϕ) +
∫ t

0
ûs(∆ϕ)ds+

∫ t

0
〈û2
s, ∂xϕ〉ds−

∫ t

0
ξ̂s(∂xϕ)ds

for a different space-time white noise ξ̂. Then Itô’s formula for û gives

dtF (ût) =
n∑
i=1

Fi(ût)dM̂t(ϕi) + L̂F (ût)dt,

where for all test functions ϕ, the process M̂(ϕ) is a martingale in the
filtration of û with covariance

d〈M̂(ϕ), M̂(ψ)〉t = 〈∂xϕ, ∂xψ〉L2(T)dt.

Combining the Itô formulas for u and û, we get

F (uT )(ϕ) = F (u0)(ϕ) +MF,T (ϕ) +
∫ T

0
LF (us)(ϕ)ds
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and

F (u0)(ϕ) = F (ûT )(ϕ) = F (û0)(ϕ) + M̂F,T (ϕ) +
∫ T

0
L̂F (ûs)(ϕ)ds

= F (uT )(ϕ) + M̂F,T (ϕ) +
∫ T

0
L̂F (us)(ϕ)ds,

and summing up these two equalities gives

0 = MF,T (ϕ) + M̂F,T (ϕ) +
∫ T

0
(L̂+ L)F (us)(ϕ)ds,

that is

2
∫ T

0
L0F (us)(ϕ)ds = −MF,T (ϕ)− M̂F,T (ϕ).

An added benefit of this forward–backward representation is that the only
term which required quite a lot of informations about X, that is the
boundary term F (Xt)(ϕ) − F (Xs)(ϕ) does not appear at all now. As
above if 2L0F (ρ) = ∂xρ

2, we end up with∫ T

0
∂xu

2
s(ϕ)ds = −MF,T (ϕ)− M̂F,T (ϕ). (2.14)

Exercise 8. Perform a similar formal calculation as in (2.13) to see that
E[LF (η)] = 0 for all cylindrical functions F , so that η should also be
invariant for the stochastic Burgers equation. Combine this with (2.14) to
show that setting NN

t (ϕ) =
∫ t

0 ∂x(ΠNus)2(ϕ)ds we have

E[|NN
t (ek)−NN

s (ek)|2p] .p (t− s)p|k|p

and letting NN,M
t = NN

t −NM
t we get

E[|NN,M
t (ek)−NN,M

s (ek)|2p] .p (|k|/N)εp(t− s)p|k|p

for all 1 6 N 6M . Use this to derive that

(E[‖NN,M
t −NN,M

s ‖2pHα ])1/2p .p,α N
−ε/2(t− s)1/2

for all α < −1 − ε, and realize that this estimate allows you to prove
compactness of the approximations NN and then convergence to a limit N
in L2p(Ω;C1/2−H−1−).
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2.6 Controlled distributions
Let us cook up a definition which will allow us to rigorously perform the
formal computations above in a general setting.

Definition 2. Let u,A : R+ × T→ S ′(T) be a couple of generalized (i.e.
distribution-valued) processes such that

i. For all ϕ ∈ S (T) the process t 7→ ut(ϕ) is a continuous
semimartingale satisfying

ut(ϕ) = u0(ϕ) +
∫ t

0
us(∆ϕ)ds+At(ϕ) +Mt(ϕ),

where t 7→ Mt(ϕ) is a martingale with quadratic variation
〈M(ϕ),M(ψ)〉t = 〈∂xϕ, ∂xψ〉L2(T)t and t 7→ At(ϕ) is a finite variation
process with A0(ϕ) = 0.

ii. For all t > 0 the random distribution ϕ 7→ ut(ϕ) is a zero mean space
white noise with variance ‖ϕ‖2

L2
0
/2.

iii. For any T > 0 the reversed process ût = uT−t has again properties
i, ii with martingale M̂ and finite variation part Â such that Ât(ϕ) =
−(AT (ϕ)−AT−t(ϕ)).

Any pair of processes (u,A) satisfying these condition will be called
controlled by the Ornstein–Uhlenbeck process and we will denote the set
of all such processes with Qou.

Theorem 2 ([15], Lemma 1). Assume that (u,A) ∈ Qou and for any
N > 1, t > 0, ϕ ∈ S let

NN
t (ϕ) =

∫ t

0
∂x(ΠNus)2(ϕ)ds

Then for any p > 1 (NN )N>1 converges in Lp(Ω) to a space–time
distribution N ∈ C1/2−H−1−.

We are now at a point where we can give a meaning to our original
equation.

Definition 3. A pair of random distribution (u,A) ∈ Qou is an energy
solution to the stochastic Burgers equation if it satisfies

ut(ϕ) = u0(ϕ) +
∫ t

0
us(∆ϕ)ds+Nt(ϕ) +Mt(ϕ)

for all t > 0 and ϕ ∈ S . That is if A = N .
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Now we are in a relatively standard setting of needing to prove existence
and uniqueness of such energy solutions. Note that in general the solutions
are pairs of processes (u,A).

Remark 2. The notion of energy solution has been introduced (in a slightly
different way) in the work of Gonçalves and Jara [11] on macroscopic
universal fluctuations of weakly asymmetric interacting particle systems.

2.7 Existence of solutions
For the existence, the way to proceed is quite standard. We approximate
the equation, construct approximate solutions and then try to have enough
compactness to have limiting points which then naturally will satisfy the
requirements for energy solutions. For any N > 1 consider solutions uN
to

∂tu
N = ∆uN + ∂xΠN (ΠNu

N )2 + ∂xξ

These are generalized functions such that

duNt (ek) = −k2uNt (ek)dt+ [∂xΠN (ΠNu
N )2](ek)dt+ ikdβt(k)

for k ∈ Z and t > 0. We take u0 to be the white noise with covariance
u0(ϕ) ∼ N (0, ‖ϕ‖2/2). The point of our choice of the non–linearity is
that this (infinite–dimensional) system of equations decomposes into a
finite dimensional system for (vN (k) = ΠNu

N (ek))k:|k|6N and an infinite
number of one–dimensional equations for each uN (ek) with |k| > N .
Indeed if |k| > N we have [∂xΠN (ΠNu

N )2](ek) = 0 so ut(ek) = Xt(ek) the
Ornstein–Uhlenbeck process with initial condition X0(ek) = u0(ek) which
renders it stationary in time (check it). The equation for (vN (k))|k|6N
reads

dvNt (k) = −k2vNt (k)dt+ bk(vNt )dt+ ikdβt(k), |k| 6 N, t > 0

where
bk(vNt ) = ik

∑
`+m=k

I|`|,|k|,|m|6NvNt (`)vNt (m).

This is a standard finite–dimensional ODE having global solutions for all
initial conditions which gives rise to a nice Markov process. The fact that
solutions do not blow up even if the interaction is quadratic can be seen
by computing the evolution of the norm

At =
∑
|k|6N

|vNt (k)|2
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and by showing that

dAt =2
∑
|k|6N

vNt (−k)dvNt (k)

=− 2
∑
|k|≤N

k2|vNt (k)|2dt+ 2
∑
|k|6N

vNt (−k)bk(vNt )dt

+ 2ik
∑
|k|6N

vNt (−k)dβt(k).

Since A is nonnegative, we increase its absolute value by omitting the first
contribution. But now∑
|k|6N

vNt (−k)bk(vNt ) = 2i
∑

k,`,m:`+m=k
I|`|,|k|,|m|6NkvNt (`)vNt (m)vNt (−k)

= −2i
∑

k,`,m:`+m+k=0
I|`|,|k|,|m|6N (k)vNt (`)vNt (m)vNt (k)

and by symmetry of this expression it is equal to

−2
3 i

∑
k,`,m:`+m+k=0

I|`|,|k|,|m|6N (k + `+m)vNt (`)vNt (m)vNt (k) = 0,

so |At| ≤ |A0 +Mt| where dMt = 2
∑
|k|6N I|k|6N (ik)vNt (−k)dβt(k). Now

E[M2
T ] .

∫ T

0

∑
|k|6N

k2|vNt (k)|2dt . N2
∫ T

0
Atdt

and then by martingales inequalities

E[ sup
t∈[0,T ]

(At)2] 6 2E[A2
0] + 2E[ sup

t∈[0,T ]
(Mt)2] 6 2E[A2

0] + 8E[M2
T ]

6 2E[A2
0] + CN2

∫ T

0
E(At)dt.

Now Gronwall’s inequality gives

E[ sup
t∈[0,T ]

(At)2] . eCN
2TE[A2

0],

from where we can deduce (by a continuation argument) that almost surely
there is no blowup at finite time for the dynamics. The generator LN for
the Galerkin dynamics is given by

LNF (ρ) = L0F (ρ) +BNF (ρ),
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where
BNF (ρ) =

∑
k

I|k|6N (∂xρ2)(ek)DkF (ρ).

And again the non–linear drift BN is antisymmetric with respect to the
invariant measure of L0 by a computation similar to that for the full drift
B. Next, using Echeverría’s criterion [7] we can obtain the invariance of
the white noise from its infinitesimal invariance which can be checked at
the level of the generator LN . Finally it is also possible to rigorously show
that the reversed process is a Markov process with generator

L̂NF (ρ) = L0F (ρ)−BNF (ρ),

thus proving that the reversed non-linear drift is the opposite of the
forward one. Taking

ANt (ek) =
∫ t

0
bk(vNs )ds

we obtain that (vN ,AN ) ∈ Qou. Note that this result depends on the fact
that we kept the full linear part L0 of the generator. A more standard
Galerkin truncation would have lead us to a process which is controlled by
the Galerkin–truncated OU process. Estimates would have resulted in a
similar way but our setup is simpler.
Given that (vN ,AN ) is controlled by the OU process, the Itô trick

applied to AN provides enough compactness in order to pass to the limit as
N →∞ and build an energy solution to the Stochastic Burgers equation.
See [15] for additional details on the limiting procedure and [30] for details
on how to implement the Itô trick on the level of diffusions.

Remark 3. There is however one small catch: For a controlled
distribution (u,A) we required A(ϕ) to be of finite variation for every test
function ϕ. The solution (vN ,AN ) to the truncated equation will satisfy
this, but in the limit A(ϕ) will only have vanishing quadratic variation
and it will not be of finite variation (in other words u(ϕ) is a Dirichlet
process and not a semimartingale). Luckily in this setting it is still possible
to derive an Itô formula and everything goes through as described above,
see [15] for details.



Chapter 3

Besov spaces

Here we collect some classical results from harmonic analysis which we will
need in the following. We concentrate on distributions and SPDEs on the
torus, but everything in this Section applies mutatis mutandis on the full
space Rd, see [14]. The only problem is that then the stochastic terms will
no longer be in the Besov spaces C α which we encounter below but rather
in weighted Besov spaces. Handling SPDEs in weighted function spaces is
more delicate and we prefer here to concentrate on the simpler situation
of the torus.
We will use Littlewood–Paley blocks to obtain a decomposition of

distributions into an infinite series of smooth functions. Of course, we have
already such a decomposition at our disposal: f =

∑
k f̂(k)e∗k. But it turns

out to be convenient not to consider each Fourier coefficient separately, but
to work with projections on dyadic Fourier blocks.

Definition 4. A dyadic partition of unity (χ, ρ) consists of two
nonnegative radial functions χ, ρ ∈ C∞(Rd,R), where χ is supported in
a ball B = {|x| 6 c} and ρ is supported in an annulus A = {a 6 |x| 6 b}
for suitable a, b, c > 0, such that

1. χ+
∑
j>0 ρ(2−j ·) ≡ 1 and

2. supp(χ) ∩ supp(ρ(2−j ·)) = ∅ for j > 1 and supp(ρ(2−i·)) ∩
supp(ρ(2−j ·)) = ∅ for all i, j > 0 with |i− j| > 1.

We will often write ρ−1 = χ and ρj = ρ(2−j ·) for j > 0.

Dyadic partitions of unity exist, see [1]. From now on we fix a dyadic
partition of unity (χ, ρ) and define the dyadic blocks

∆jf = ρj(D)f = F−1(ρj f̂), j > −1,

37
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where here and in the following we use that every function on Rd can be
naturally interpreted as a function on Zd. We also use the notation

Sjf =
∑
i6j−1

∆if

as well as Ki = (2π)d/2F−1ρi so that

Ki ∗ f = F−1(ρiFf) = ∆if.

From this representation we can also see the reason for considering smooth
partitions rather than indicator functions: From Young’s inequality we
get only ‖I[2j ,2j+1)(|D|)f‖L∞ ≤ ‖F−1I[2j ,2j+1)‖L1‖f‖L∞ . j‖f‖L∞ for
f ∈ L∞, whereas ‖ρj(D)f‖L∞ . ‖f‖L∞ uniformly in j.
Every dyadic block has a compactly supported Fourier transform and is

therefore in S . It is easy to see that f =
∑
j>−1 ∆jf = limj→∞ Sjf for

all f ∈ S ′.
For α ∈ R, the Hölder–Besov space C α is given by C α = Bα∞,∞(Td,R),

where for p, q ∈ [1,∞] we define

Bαp,q = Bαp,q(Td,R) =
{
f ∈ S ′ : ‖f‖Bαp,q =

( ∑
j>−1

(2jα‖∆jf‖Lp)q
)1/q

<∞
}
,

with the usual interpretation as `∞ norm if q =∞. Then Bαp,q is a Banach
space and while the norm ‖·‖Bαp,q depends on (χ, ρ), the space Bαp,q does not
and any other dyadic partition of unity corresponds to an equivalent norm
(for (p, q) = (∞,∞) this follows from Lemma 10 below, for the general
case see [1], Lemma 2.69). We write ‖·‖α instead of ‖·‖Bα∞,∞ .

Exercise 9. Let δ0 denote the Dirac delta in 0. Show that δ0 ∈ C−d.

If α ∈ (0,∞) \ N, then C α is the space of bαc times differentiable
functions whose partial derivatives of order bαc are (α − bαc)–Hölder
continuous (see page 99 of [1]). Note however, that for k ∈ N the space C k

is strictly larger than Ck, the space of k times continuously differentiable
functions. Below we will give the proof for α ∈ (0, 1), but before we still
need some tools.
Recall that Schwartz functions on Rd are functions f ∈ C∞(Rd) such

that for every multiindex µ and all n ≥ 0 we have

sup
x∈Rd

(1 + |x|)n|∂µf(x)| <∞.

Lemma 6. (Poisson summation) Let ϕ : Rd → C be a Schwartz function.
Then

F−1ϕ(x) =
∑
k∈Zd

F−1
Rd ϕ(x+ 2πk),

for all x ∈ Td, where F−1
Rd ϕ(x) = (2π)−d/2

∫
Rd ϕ(y)ei〈x,y〉dy.
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Proof. Let g(x) =
∑
k∈Zd F−1

Rd ϕ(x + 2πk). The function F−1
Rd ϕ is of

rapid decay since ϕ ∈ S so the sum converges absolutely and defines a
continuous function g : Rd → R which is periodic of period 2π in every
direction. The Fourier transform over the torus Td of this function is

Fg(y) =
∫
Td
e−i〈x,y〉g(x) dx

(2π)d/2

=
∫
Td

∑
k∈Zd

F−1
Rd ϕ(x+ 2πk)e−i〈x+2πk,y〉 dx

(2π)d/2

since e−i〈2πk,y〉 = 1 for all y ∈ Zd. By dominated convergence the sum
and the integral can be combined in an overall integration over Rd:

Fg(y) =
∫
Rd

F−1
Rd ϕ(x)e−i〈x,y〉 dx

(2π)d/2
= FRdF

−1
Rd ϕ(y) = ϕ(y),

where FRdf(x) = F−1
Rd f(−x). So we deduce that g(x) = F−1ϕ(x). �

Exercise 10. Show that ‖·‖α 6 ‖·‖β for α 6 β, that ‖·‖L∞ . ‖·‖α for
α > 0, that ‖·‖α . ‖·‖L∞ for α 6 0, and that ‖Sj · ‖L∞ . 2jα‖ · ‖α for
α < 0. These inequalities will be very important for us in the following
and we will often use them without mentioning it specifically.

Hint: When proving ‖·‖α . ‖·‖L∞ for α 6 0, you might need Poisson’s
summation formula.

The following Bernstein inequality is extremely useful when dealing with
functions with compactly supported Fourier transform.

Lemma 7. (Bernstein inequality) Let B be a ball and k ∈ N0. For any
λ > 1, 1 6 p 6 q 6∞, and f ∈ Lp with supp(Ff) ⊆ λB we have

max
µ∈Nd:|µ|=k

‖∂µf‖Lq .k,B λk+d( 1
p−

1
q )‖f‖Lp .

Proof. Let ψ be a compactly supported C∞ function on Rd such that
ψ ≡ 1 on B and write ψλ(x) = ψ(λ−1x). Then

∂µf(x) = ∂µF−1(ψλFf)(x) = (2π)d/2〈f, ∂µ(F−1ψλ)(x− ·)〉
= (2π)d/2(f ∗ ∂µ(F−1ψλ))(x).

By Young’s inequality, we get

‖∂µf‖Lq . ‖f‖Lp‖∂µ(F−1ψλ)‖Lr ,

where 1 + 1/q = 1/p + 1/r. Now it is a short exercise to verify
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‖ · ‖Lr 6 ‖ · ‖1/rL1 ‖ · ‖1−1/r
L∞ , and

∥∥∂µ (F−1ψλ
)∥∥
L1 =

∫
Td

∣∣∣∑
k

∂µ
(
F−1

Rd ψλ
)

(x+ 2πk)
∣∣∣dx

6
∫
Rd
|∂µ(F−1

Rd ψλ)(x)|dx

= λ|µ|
∫
Rd
λd|(∂µF−1

Rd ψ)(λx)|dx

' λ|µ|,

whereas

sup
x∈Td

∣∣∣∑
k

∂µ(F−1
Rd ψλ)(x+ 2πk)

∣∣∣ = λd+|µ| sup
x∈Td

∣∣∣∑
k

(∂µF−1
Rd ψ)(λ(x+ 2πk))

∣∣∣
. λd+|µ| sup

x∈Td

∑
k

(1 + λ|x+ 2πk|)−2d

. λd+|µ| sup
x∈Td

∑
k

(1 + |x+ 2πk|)−2d

. λd+|µ|.

We end up with

‖∂µf‖Lq . ‖f‖Lp‖∂µ(F−1ψλ)‖Lr

. ‖f‖Lpλ|µ|/rλ(d+|µ|)(1−1/r)

= ‖f‖Lpλ|µ|+d(1/p−1/q).

�
It then follows immediately that for α ∈ R, f ∈ C α, µ ∈ Nd0, we have

∂µf ∈ C α−|µ|. Another simple application of the Bernstein inequalities is
the Besov embedding theorem, the proof of which we leave as an exercise.

Lemma 8. (Besov embedding) Let 1 6 p1 6 p2 6 ∞ and 1 6 q1 6
q2 6 ∞, and let α ∈ R. Then Bαp1,q1

is continuously embedded into
B
α−d(1/p1−1/p2)
p2,q2 .

Exercise 11. In the setting of Exercise 2, use Besov embedding to show
that E[‖ξ̃‖p−d/2−ε] <∞ for all p > 1 and ε > 0 (in particular ξ̃ ∈ C−d/2−

almost surely).
Hint: Estimate E[‖ξ̃‖2pBα2p,2p ] using Gaussian hypercontractivity

(equivalence of moments).

As another application of the Bernstein inequality, let us show that
C α = Cα for α ∈ (0, 1).
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Lemma 9. For α ∈ (0, 1) we have C α = Cα, the space of α−Hölder
continuous functions, and

‖f‖α ' ‖f‖Cα = ‖f‖L∞ + sup
x 6=y

|f(x)− f(y)|
dTd(x, y)α ,

where dTd(x, y) denotes the canonical distance on Td.

Proof. Start by noting that for f ∈ C α we have ‖f‖L∞ 6
∑
j ‖∆jf‖L∞ 6∑

j 2−jα‖f‖α . ‖f‖α. Let now x 6= y ∈ Td and choose j0 with
2−j0 ' dTd(x, y). For j 6 j0 we use Bernstein’s inequality to obtain

|∆jf(x)−∆jf(y)| . ‖D∆jf‖L∞dTd(x, y)
. 2j‖∆jf‖L∞dTd(x, y)
6 2j(1−α)‖f‖αdTd(x, y),

whereas for j > j0 we simply estimate

|∆jf(x)−∆jf(y)| . ‖∆jf‖L∞ . 2−jα‖f‖α.

Summing over j, we get

|f(x)− f(y)| 6
∑
j6j0

2j(1−α)‖f‖αdTd(x, y) +
∑
j>j0

2−jα‖f‖α

' ‖f‖α(2j0(1−α)dTd(x, y) + 2−j0α) ' ‖f‖αdTd(x, y)α.

Conversely, if f ∈ Cα, then we estimate ‖∆−1f‖L∞ . ‖f‖L∞ . For j > 0,
the function ρj satisfies

∫
(F−1ρj)(x)dx = 0, and therefore

|∆jf(x)| =
∣∣∣ ∫

Td
F−1ρj(x− y)(f(y)− f(x))dy

∣∣∣
=
∣∣∣ ∫

Td

∑
k

F−1
Rd ρj(x− y + 2πk)(f(y)− f(x))dy

∣∣∣
=
∣∣∣ ∫

Rd
F−1

Rd ρj(x− y)(f(y)− f(x))dy
∣∣∣.

Now |f(y) − f(x)| 6 ‖f‖CαdTd(x, y)α 6 ‖f‖Cα |x − y|α, and thus we end
up with

|∆jf(x)| 6 ‖f‖Cα
∣∣∣2jd ∫

Rd
|(F−1

Rd ρ)(2j(x− y))||x− y|αdy
∣∣∣

= ‖f‖Cα2−jα
∣∣∣2jd ∫

Rd
|(F−1

Rd ρ)(2j(x− y))||2j(x− y)|αdy
∣∣∣

. ‖f‖Cα2−jα.

�
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The following lemma, a characterization of Besov regularity for functions
that can be decomposed into pieces which are localized in Fourier space,
will be immensely useful in what follows.

Lemma 10.

1. Let A be an annulus, let α ∈ R, and let (uj) be a sequence of
smooth functions such that Fuj has its support in 2jA , and such that
‖uj‖L∞ . 2−jα for all j. Then

u =
∑
j>−1

uj ∈ C α and ‖u‖α . sup
j>−1

{2jα‖uj‖L∞}.

2. Let B be a ball, let α > 0, and let (uj) be a sequence of smooth functions
such that Fuj has its support in 2jB, and such that ‖uj‖L∞ . 2−jα
for all j. Then

u =
∑
j>−1

uj ∈ C α and ‖u‖α . sup
j>−1

{2jα‖uj‖L∞}.

Proof. If Fuj is supported in 2jA , then ∆iuj 6= 0 only for i ∼ j. Hence,
we obtain

‖∆iu‖L∞ 6
∑
j:j∼i

‖∆iuj‖L∞

6 sup
k>−1

{2kα‖uk‖L∞}
∑
j:j∼i

2−jα

' sup
k>−1

{2kα‖uk‖L∞}2−iα.

If Fuj is supported in 2jB, then ∆iuj 6= 0 only for i . j. Therefore,

‖∆iu‖L∞ 6
∑
j:j&i

‖∆iuj‖L∞

6 sup
k>−1

{2kα‖uk‖L∞}
∑
j:j&i

2−jα

. sup
k>−1

{2kα‖uk‖L∞}2−iα,

using α > 0 in the last step. �
When solving SPDEs, we will need the smoothing properties of the heat

semigroup. We define L α = CC α ∩Cα/2L∞ for α ∈ (0, 2). For T > 0 we
set L α

T = CTC α ∩ Cα/2T L∞ and we equip L α
T with the norm

‖ · ‖Lα
T

= max{‖ · ‖CTCα , ‖ · ‖
C
α/2
T

L∞
}.
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The notation L α is chosen to be reminiscent of the operator L = ∂t −∆
and indeed the parabolic spaces L α are adapted to L in the sense that
the temporal regularity “counts twice”, which is due to the fact that L
contains a first order temporal but a second order spatial derivative. If we
would replace ∆ by a fractional Laplacian −(−∆)σ, then we would have
to consider the space CC α ∩ Cα/(2σ)L∞ instead of L α.
We have the following Schauder estimate on the scale of (L α)α spaces:

Lemma 11. Let α ∈ (0, 2) and let (Pt)t>0 be the semigroup generated by
the periodic Laplacian, F (Ptf)(k) = e−t|k|

2
Ff(k). For f ∈ CC α−2 define

Jf(t) =
∫ t

0 Pt−sfsds. Then Jf is the solution to L Jf = f , Jf(0) = 0,
and we have

‖Jf‖Lα
T
. (1 + T )‖f‖CTCα−2

for all T > 0. If u ∈ C α, then t 7→ Ptu is the solution to LP·u = 0,
P0u = u, and we have

‖t 7→ Ptu‖Lα
T
. ‖u‖α.

Bibliographic notes. For a gentle introduction to Littlewood–Paley
theory and Besov spaces see the recent monograph [1], where most of our
results are taken from. There the case of tempered distributions on Rd is
considered. The theory on the torus is developed in [31]. The Schauder
estimates for the heat semigroup are classical and can be found in [14, 16].



Chapter 4

Diffusion in a random
environment

Let us consider the following d-dimensional homogenization problem. Fix
ε > 0 and let uε : R+ × Td → R be the solution to the Cauchy problem

∂tu
ε(t, x) = ∆uε(t, x) + ε−αV (x/ε)uε(t, x), uε(0) = u0, (4.1)

where V : Tdε → R is a random field defined on the rescaled torus
Tdε = (R/(2πε−1Z))d. This model describes the diffusion of particles in
a random medium (replacing ∂t by i∂t gives the Schrödinger equation of a
quantum particle evolving in a random potential). For a review of related
results the reader can give a look at the recent paper of Bal and Gu [2].
The limit ε → 0 corresponds to looking at the large scale behavior of the
model since (4.1) can be understood as the equation for the macroscopic
density uε(t, x) = u(t/ε2, x/ε) which corresponds to a microscopic density
u : R+ × Tdε → R evolving according to the parabolic equation

∂tu(t, x) = ∆u(t, x) + ε2−αV (x)u(t, x), u(0, ·) = u0(ε·).

Slightly abusing notation, we do not index u or V by ε despite the fact
that they of course depend on it. We assume that V : Tdε → R is Gaussian
and has mean zero and homogeneous correlation function Cε given by

Cε(x− y) = E[V (x)V (y)] = (ε/
√

2π)d
∑
k∈εZd

ei〈x−y,k〉R(k).

On R : Rd → R+ we make the following hypothesis: for some β ∈ (0, d]
we have R(k) = |k|β−dR̃(k) where R̃ ∈ S (Rd) is a smooth radial function
of rapid decay. For β < d it would be equivalent to require that spatial
correlations (in the limit ε→ 0) decay as |x|−β . For β = d this hypothesis

44
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means that spatial correlations are of rapid decay. Indeed by dominated
convergence

lim
ε→0

Cε(x) =
∫
Rd

dk
(2π)d/2

ei〈x,k〉R(k) =
∫
Rd

dk
(2π)d/2

ei〈x,k〉|k|β−dR̃(k)

= (2π)d/2
(
F−1

Rd (| · |β−d) ∗F−1
Rd (R̃)

)
(x).

Here we applied the formula of Exercise 3, which also holds for the Fourier
transform on Rd. Now F−1

Rd (R̃) ∈ S (Rd) and F−1
Rd (| · |β−d)(x) ' |x|−β if

0 < β < d (see for example Proposition 1.29 of [1]), so limε→0 |Cε(x)| .
|x|−β for |x| → +∞.

Let us write Vε(x) = ε−αV (x/ε) so that (4.1) can be rewritten as
∂tu

ε = ∆uε + Vεu
ε, and let us compute the variance of the Littlewood–

Paley blocks of Vε.
In order to perform more easily some computations we can introduce a

family of centered complex Gaussian random variables {g(k)}k∈εZ0 such
that g(k)∗ = g(−k) and E[g(k)g(k′)] = δk+k′=0 and represent Vε(x) as

Vε(x) = εd/2−α

(
√

2π)d/2
∑
k∈εZd

ei〈x,k/ε〉
√
R(k)g(k).

Lemma 12. Assume β − 2α > 0.We have for any ε > 0 and i > 0 and
any 0 6 κ 6 β − 2α:

E[|∆iVε(x)|2] . 2(2α+κ)iεκ.

This estimate implies that if β > 2α, then for all δ > 0 we have Vε → 0
in L2(Ω;B−α−δ2,2 (Td)) as ε→ 0.

Proof. A spectral computation gives

∆iVε(x) = εd/2−α

(
√

2π)d/2
∑
k∈εZd

ei〈x,k/ε〉ρi(k/ε)
√
R(k)g(k)

so

E[|∆iVε(x)|2] = εd(
√

2π)−dε−2α∑
k∈εZd ρi(k/ε)2R(k)

= (
√

2π)−dεd−2α∑
k∈εZd ρ(k/(ε2i))2R(k)

. εd−2α2id supk∈ε2iA R(k),
(4.2)

where A is the annulus in which ρ is supported. Now recall that β ≤ d
so that (ε2i)β−d ≥ 1 whenever ε2i 6 1, which leads to E[|∆iVε(x)|2] .
2idεd−2α(ε2i)β−d = εβ−2α2iβ in that case. The assumption β − 2α > 0
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then implies E[|∆iVε(x)|2] . 2(2α+κ)iεκ for any 0 6 κ 6 β − 2α. In the
case ε2i > 1 we use that

∫
Rd R(k)dk < +∞ to estimate

εd
∑
k∈εZd

ρ(k/(ε2i))2R(k) 6 εd
∑
k∈Zd

R(εk) .
∫
Rd
R(k)dk < +∞,

and then E[|∆iVε(x)|2] . ε−2α . 22αi(ε2i)κ for any small κ > 0. �

Remark 4. Using Gaussian hypercontractivity, we get from Lemma 12
that

E[|∆iVε(x)|2p] . E[|∆iVε(x)|2]p . 2(2α+κ)piεκp

whenever p ≥ 1, and therefore

lim
ε→0

E[‖Vε‖2pB−α−δ2p,2p
] = lim

ε→0

∑
i≥−1

2i(−α−δ)2p
∫
T
E[|∆iVε(x)|2p]dx = 0

whenever δ > 0. By the Besov embedding theorem, this shows that for all
p, δ > 0

lim
ε→0

E[‖Vε‖pC−α−δ ] = 0.

Slightly improving the computation carried out in equation (4.2) we
can also see that if β − 2α < 0, then essentially Vε does not converge
in any reasonable sense since the variance of the Littlewood–Paley blocks
explodes.

Remark 5. The same calculation as in (4.2) shows that

E[∆iVε(x)∆jVε(x)] = 0

whenever |i− j| > 1, because in that case ρiρj ≡ 0.

The previous analysis shows that it is reasonable to take α 6 β/2 in
order to have some hope of obtaining a well defined limit as ε→ 0. In this
case Vε stays bounded in probability (at least) in spaces of distributions
of regularity −α−. This brings us to the problem of obtaining estimates
for the parabolic PDE

L uε(t, x) = (∂t −∆)uε(t, x) = Vε(x)uε(t, x), (t, x) ∈ [0, T ]× Td,

depending only on negative regularity norms of Vε. On one side the
regularity of uε is then limited by the regularity of the right hand side
which cannot be better than that of Vε. On the other side the product
of Vε with uε can cause problems since we try to multiply an (a priori)
irregular object with one of limited regularity.
Assume that Vε converges to zero in C γ−2 for γ > 0. It is then

reasonable to assume that also Vεuε ∈ CTC γ−2, uniformly in ε > 0, and
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that uε ∈ CTC γ as a consequence of the regularizing effect of the heat
operator (Lemma 11). We will see in Section 5.1 below that the product
Vεu

ε is under control only if γ + γ − 2 > 0, that is if γ > 1. If Vε → 0 in
C−1+, it is not difficult to show that uε converges as ε→ 0 to the solution
u of the linear equation L u = 0 (for example this will follow from our
analysis below, but in fact it is much simpler to show). In this case the
random potential will not have any effect in the limit.
The interesting situation then is when γ 6 1. To understand what could

happen in this case let us use a simple transformation of the solution. Write
uε = exp(Xε)vε where Xε satisfies the equation LXε = Vε with initial
condition Xε(0, ·) = 0. Then

L uε = exp(Xε)
(
vεLXε + L vε − vε(∂xXε)2 − 2〈∂xXε, ∂xv

ε〉Rd
)

= exp(Xε)vεVε.

Since exp(Xε) > 0 on [0, T ]× Td, this implies that vε satisfies

L vε − vε|∂xXε|2 − 2〈∂xXε, ∂xv
ε〉Rd = 0, (t, x) ∈ [0, T ]× Td.

Our Schauder estimates imply that Xε = JVε ∈ CTC γ with uniform
bounds in ε > 0, so that the problematic term is |∂xXε|2 for which this
estimate does not guarantee existence.
Note that J(ei〈·,k〉)(t, x) = ei〈x,k〉(1− e−t|k|2)/|k|2, which yields

∂xX
ε(t, x) = εd/2−α

(
√

2π)d/2
∑
k∈εZd0

ei〈x,k/ε〉Gε(t, k)g(k) (4.3)

where Zd0 = Zd\{0} and where

Gε(t, k) = i
k

ε

[1− e−t|k/ε|2 ]
|k/ε|2

√
R(k).

Lemma 13. Assume that

σ2 = (
√

2π)d
∫
Rd

R(k)
k2 dk < +∞.

Then if α = 1 and t > 0 we have

lim
ε→0

E[|∂xXε|2(t, x)] = σ2,

and if α < 1 and t > 0

lim
ε→0

E[(|∂xXε|)2(t, x)] = 0.

Moreover

Var[∆q(|∂xXε|2)(t, x)] . ε4−4α min(σ4, (ε2q)β−2‖R̃‖∞σ2).



48 M. Gubinelli and N. Perkowski

Proof. A computation similar to that leading to equation (4.2) gives

E[|∂xXε|2(t, x)] = εd(
√

2π)dε−2α
∑
k∈εZd0

|k/ε|2
[ ∫ t

0
e−(t−s)|k/ε|2ds

]2
R(k)

= εd(
√

2π)dε2−2α
∑
k∈εZd0

[1− e−t(k/ε)2 ]2

k2 R(k),

which for ε→ 0, t > 0, and α ≤ 1 tends to

lim
ε→0

E[|∂xXε|2(t, x)] = Iα=1(
√

2π)d
∫
Rd

R(k)
k2 dk = Iα=1σ

2.

Let us now study the variance of |∂xXε|2(t, x). Using equation (4.3) we
have

∆q(|∂xXε|2)(t, x)

= εd−2α

(2π)d/2
∑

k1,k2∈εZd0

ei〈k1+k2,x/ε〉ρq((k1 + k2)/ε)Gε(t, k1)Gε(t, k2)g(k1)g(k2).

By Wick’s theorem ([22], Theorem 1.28)

Cov(g(k1)g(k2), g(k′1)g(k′2)) =E[g(k1)g(k′1)]E[g(k2)g(k′2)]
+ E[g(k1)g(k′2)]E[g(k2)g(k′1)]

=Ik1+k′1=k2+k′2=0 + Ik1+k′2=k2+k′1=0,

which implies

Var[∆q(|∂xXε|2)(t, x)] = 2ε
2d−4α

(2π)d
∑

k1,k2∈εZd0

(ρq((k1+k2)/ε))2|Gε(t, k1)|2|Gε(t, k2)|2.

For any q > 0 (the case q = −1 is left to the reader), the variables k1 and
k2 are bounded away from 0 and we have

Var[∆q(|∂xXε|2)(t, x)] . ε2d+4−4α
∑

k1,k2∈εZd0

(ρq((k1+k2)/ε))2 |R(k1)||R(k2)|
|k1|2|k2|2

.

A first estimate is obtained by just dropping the factor ρq((k1 +k2)/ε) and
results in the bound

Var[∆q(|∂xXε|2)(t, x)] . ε2d+4−4α
∑

k1,k2∈εZd0

|R(k1)||R(k2)|
|k1|2|k2|2

. ε4−4ασ4.
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Another estimate proceeds by taking into account the constraint given by
the support of ρq((k1 + k2)/ε). In order to satisfy k1 + k2 ∼ ε2q we must
have k2 . k1 ∼ ε2q or ε2q . k1 ∼ k2. In the first case

ε2d+4−4α
∑

k1,k2∈εZd0

Ik2.k1∼ε2q
|R(k1)||R(k2)|
|k1|2|k2|2

.2q(β−2)εd+β+2−4α‖R̃‖∞
∑

k2∈εZd0

Ik2.ε2q
|R(k2)|
|k2|2

.(ε2q)β−2‖R̃‖∞
∫

dk |R(k)|
|k|2

.(ε2q)β−2ε4−4α‖R̃‖∞σ2

since |R(k1)|/|k1|2 . ‖R̃‖∞(ε2q)β−d−2. If ε2q . k1 ∼ k2 we similarly have

ε2d+4−4α
∑

k1,k2∈εZd0

Iε2q.k1∼k2

|R(k1)||R(k2)|
|k1|2|k2|2

.2q(β−2)εd+β+2−4α‖R̃‖∞
∑

k2∈εZd0

Iε2q.k2

|R(k2)|
|k2|2

.(ε2q)β−2ε4−4α‖R̃‖∞
∫

dk |R(k)|
|k|2

.(ε2q)β−2ε4−4α‖R̃‖∞σ2.

�
This lemma shows that the interesting situation is α = 1. Then,

provided σ2 < +∞ and β > 2 we have |∂xXε|2(t)→ σ2 in L2(Ω; C 0−) for
all t > 0, and in fact the convergence is uniform for t ∈ [c, C] whenever
0 < c < C. Since all the operations that appear in the equation for vε are
continuous, it is then easy to see that vε converges to the solution of the
PDE

L v = σ2v (4.4)
and since Xε is a continuous linear functional of Vε, we have Xε → 0 in
CTC γ and thus we finally obtain the convergence of (uε)ε>0 to the same
v.
Thus, we have (modulo technical details) shown the following theorem:

Theorem 3. Let β ∈ (0, d] and let R = | · |β−dR̃, where R̃ ∈ S (Rd)
is a smooth radial function of rapid decay, and assume that σ2 =
(
√

2π)d
∫
Rd R(k)/k2dk < ∞. Let V : Tdε → R be a continuous Gaussian

function with mean zero and correlation

E[V (x)V (y)] = Cε(x− y) = (ε/
√

2π)d
∑
k∈εZd

ei〈x−y,k〉R(k).
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Consider the solution uε : R+ × Td → R to the Cauchy problem

∂tu
ε(t, x) = ∆uε(t, x) + ε−αV (x/ε)uε(t, x), uε(0) = u0,

where u0 ∈ C∞(Td). If α ∈ (0, 1 ∧ β/2), then uε converges to the solution
u of

∂tu(t, x) = ∆u(t, x), u(0) = u0.

However, if 1 = α < β/2, then uε converges to the solution v of

∂tv(t, x) = ∆v(t, x) + σ2v(t, x), v(0) = u0.

4.1 The 2d generalized parabolic Anderson
model

The case α = 1 and β = 2 remains open in the previous analysis. When
β = 2 we cannot expect σ2 to be finite and moreover from the above
computations we see that the variance of |∂xXε|2 remains finite and does
not go to zero, so the limiting object should satisfy a stochastic PDE rather
than a deterministic one. If we let σ2

ε(t) = E[|∂xXε|2(t, x)] (which depends
on time but which is easily shown to be independent of x ∈ T2), then we
expect that solving the renormalized equation

L ũε = Vεũ
ε − σ2

ε ũ
ε

should give rise in the limit to a well defined random field ũ satisfying
ũ = eX ṽ, where

L ṽ = ṽζ + 2〈∂xX, ∂xṽ〉Rd

and where X is the limit of Xε as ε → 0 while ζ is the limit of
(∂xXε)2−σ2

ε . The relation of uε with ũε is ũε(t, x) = e
−
∫ t

0
σ2
ε(s)ds

uε(t, x).
The renormalization procedure is therefore equivalent to a time–dependent
rescaling of the solution to the initial problem. Without renormalization,
the solution will simply drift of to +∞, so in order to see a nontrivial
behavior, we have to put ourselves in a different reference frame by
multiplying with e

−
∫ t

0
σ2
ε(s)ds. One familiar situation where such a need

for renormalization arises is in the central limit theorem: If (Yn) is a
sequence of i.i.d. random variables with unit variance and mean µ > 0,
then (n−1/2∑n

k=1 Yk) diverges to +∞, but once we subtract the diverging
constants n1/2µ we get that (n−1/2∑n

k=1 Yk −n1/2µ) converges weakly to
a standard Gaussian distribution.
We will study the renormalization and convergence problem for a more

general equation of the form

L uε = F (uε)Vε, (4.5)
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where F : R → R is a sufficiently smooth function, in general non–linear.
One possible motivation is that if zε solves the linear PDE L zε = zεVε
and we set uε = ϕ(zε) for some invertible ϕ : R → R such that ϕ′ > 0,
then

L uε = ϕ′(zε)L zε−ϕ′′(zε)|∂xzε|2 = ϕ′(zε)zεVε−ϕ′′(zε)(ϕ′(zε))−2|∂xuε|2

and thus uε satisfies the PDE

L uε = F1(uε)Vε + F2(uε)(∂xuε)2

where

F1(x) = ϕ′(ϕ−1(x))ϕ−1(x) and F2(x) = −ϕ′′(ϕ−1(x))(ϕ′(ϕ−1(x)))−2.

In the situation we are interested in, the second term in the right hand side
is simpler to treat than the first term. So, for the time being, we will drop
it and we will concentrate on the equation (4.5) in d = 2 with α = 1 and
short ranged (β = d) potential V which we refer to as generalized parabolic
Anderson model (gpam).
Under these conditions, Vε converges to the white noise in space which

we usually denote with ξ and our aim will be to set up a theory in which
the operations involved in the definition of the dynamics of the gpam are
well defined, including the possibility of the renormalization which already
appears in the linear case as hinted above.
While the reader should always have in mind a limiting procedure from a

well defined model like the ones we were considering so far, in the following
we will mostly discuss the limiting equation. The specific phenomena
appearing when trying to track the oscillations of the term F (uε)Vε as
ε → 0 will be described by a renormalized product F (u) � ξ and so we
write the gpam as

L u(t, x) = F (u(t, x)) � ξ(x), u(0) = u0. (4.6)

In the linear case F (u) = u, the problem of the renormalization can be
solved along the lines suggested above. Another possible line of attack
comes from the theory of Gaussian spaces and in particular from Wick
products, see for example [21]. However, the definition of the Wick product
relies on the concrete chaos expansion of its factors, and since nonlinear
functions change the chaos expansion in a complicated way, there is little
hope of directly extending the Wick product approach to the nonlinear
case and moreover using these non–local (in the probability space) objects
can deliver solutions which are not physically acceptable [5].
Equation (4.6) is structurally very similar to the stochastic differential

equation
∂tv(t) = F (v(t))∂tBH(t), v(0) = v0, (4.7)
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where BH denotes a fractional Brownian motion with Hurst index H ∈
(0, 1). There are many ways to solve (4.7) in the Brownian case. Since we
are interested in a way that might extend to (4.6) where the irregularity
appears along the two–dimensional spatial variable x, we should exclude
all approaches based on information, filtrations, and a direction of time; in
particular, any approach that works for H 6= 1/2 might seem promising.
But Lyons’ theory of rough paths [25] equips us exactly with the techniques
we need to solve (4.7) for general H. More precisely, if for H > 1/3 we are
given

∫ ·
0 B

H
s dBHs , then we can use the controlled rough path integral [12] to

make sense of
∫ ·

0 fsdB
H
s for any f which “looks like” BH , and this allows us

to solve (4.7). So the main ingredients required for controlled rough paths
are the integral

∫ ·
0 B

H
s dBHs for the reference path BH , and the fact that

we can describe paths which look like BH . It is worthwhile to note that
while we need probability theory to construct

∫ ·
0 B

H
s dBHs , the construction

of
∫ ·

0 fsdB
H
s is achieved using pathwise arguments and it is given as a

continuous map of f and (BH ,
∫ ·

0 B
H
s dBHs ). As a consequence, the solution

to the SDE (4.7) depends pathwise continuously on (BH ,
∫ ·

0 B
H
s dBH).

By the structural similarity of (4.6) and (4.7), we might hope to extend
the rough path approach to (4.6). The equivalent of BH is given by the
solution ϑ to L ϑ = ξ, ϑ(0) = 0, and the equivalent of

∫ ·
0 B

H
s dBHs turns

out to be the renormalized product ϑ � ξ. Then we might hope that given
ϑ � ξ we are able to define f � ξ for all f that “look like ϑ”, however this is
to be interpreted. Of course, rough paths can only be applied to functions
of a one–dimensional index variable, while for (4.6) the problem lies in the
irregularity of ξ in the spatial variable x ∈ T2.
In the following we combine the ideas from controlled rough paths with

Bony’s paraproduct, a tool from functional analysis that allows us to
extend rough paths to functions of a multidimensional parameter. Using
the paraproduct, we are able to make precise in a simple way what we
mean by “distributions looking like a reference distribution”. We can then
define products of suitable distributions and solve (4.6) as well as many
other interesting singular SPDEs.

4.2 More singular problems
Keeping the homogenization problem as leitmotiv for these lectures,
we could consider also space–time varying environments Vε(t, x) =
ε−αV (t/ε2, x/ε). The scaling of the temporal variable is chosen so that
it is compatible with the diffusive scaling from a microscopic description,
where V (t, x) has typical variation in space and time in scales of order
1. Assume that d = 1, then when the random field V is Gaussian, zero
mean, and with short–range space–time correlations, the natural choice
for the magnitude of the macroscopic fluctuations is α = 3/2. In this
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case Vε converges as ε→ 0 to a space–time white noise ξ. Understanding
the limit dynamics as ε → 0 of the solution uε to the linear equation
L uε = Vεu

ε represents now a more difficult problem than in the time
independent situation. A Gaussian computation shows that the random
field Xε, solution to LXε = Vε (e.g. with zero initial condition), stays
bounded in CTC 1/2− as ε→ 0. Since L is a second order operator (if we
use an appropriate parabolic weighting of the time and space regularities),
ξ is expected to live in a space of distributions of regularity −3/2−. This
is to be compared with the −1− of the space white noise which had to
be dealt with in the gpam. Renormalization effects are then expected to
be stronger in this setting and the limiting object, which we denote with
w, should satisfy a (suitably renormalized) linear stochastic heat equation
with multiplicative noise (she)

Lw(t, x) = w(t, x) � ξ(t, x), w(0) = w0. (4.8)

As indicated by the computations in the more regular case, it is useful
to consider the change of variables w = eh which is called Cole–Hopf
transformation. Here h : [0,∞)×T→ R is a new unknown which satisfies
now the Kardar–Parisi–Zhang (kpz) equation:

L h(t, x) = (∂xh(t, x)) � 2 + ξ(t, x), h(0) = h0 (4.9)

where the difficulty comes now from the squaring of the derivative but
which has the nice feature to be additively perturbed by the space–time
white noise, a feature which simplifies many considerations. Another
relevant model in applications is obtained by taking the space derivative
of kpz and letting u(t, x) = ∂xh(t, x) in order to obtain the stochastic
conservation law

L u(t, x) = ∂x(u(t, x)) � 2 + ∂xξ(t, x), u(0) = u0, (4.10)

which we will refer to as the stochastic Burgers equation (sbe). In all these
cases, � denotes a suitably renormalized product.
The kpz equation was derived by Kardar–Parisi–Zhang in 1986 as a

universal model for the random growth of an interface [24]. For a long
time it could not be solved due to the fact that there was no way to make
sense of the nonlinearity (∂xh) � 2 in (4.9). The only way to make sense
of kpz was to apply the Cole-Hopf transform [3]: solve she (4.8) (which
is accessible to Itô integration) and set h = logw. But there was no
intrinsic interpretation of what it means to solve (4.9). Finally, in 2011
Hairer [18] used rough paths to give a meaning to the equation and to
obtain solutions directly at the kpz level. In Section 6 we will sketch
how to recover his solution in the paracontrolled setting. Applications
of the techniques used by Hairer to solve the kpz problem to a more
general homogenization problem with ergodic potentials (not necessarily
Gaussian) have been studied in [20].
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4.3 Hairer’s regularity structures
In [19], Hairer introduces a theory of regularity structures which can also
be considered a generalization of the theory of controlled rough paths
to functions of a multidimensional index variable. Hairer fundamentally
rethinks the notion of regularity. Usually a function is called smooth if
it can be approximated around every point by a polynomial of a given
degree (the Taylor polynomial). Naturally, the solution to an SPDE
driven by –say– Gaussian space-time white noise is not smooth in that
sense. So in Hairer’s theory, a function is called smooth if locally it can be
approximated by the noise (and higher order terms constructed from the
noise). This induces a natural topology in which the solutions to semilinear
SPDEs depend continuously on the driving signal.
At this date it seems that the theory of regularity structures has a wider

range of applicability than the paracontrolled approach described in [14],
but also at the expense of a very deep conceptual sophistication. There
are problems (like the one–dimensional heat equation with multiplicative
noise and general nonlinearity) that cannot be solved using paracontrolled
distributions, but these problems seem also quite difficult (even if doable
and there is work in progress) to tackle with regularity structures.
Moreover, equations of a more general kind, say dispersive equations
or wave equations, are still poorly (or not at all) understood in both
approaches.



Chapter 5

The paracontrolled PAM

As we have tried to motivate in the previous sections we are looking for a
theory for pam which describes the possible limits of the equation

L u = F (u)η (5.1)

driven by sufficiently regular η but as η is converging to the space white
noise ξ. From this point of view we are looking for a priori estimates on
the solution u to (5.1) which depend only on distributional norms of η.
So in the following we will assume that we have at hand only a uniform
control of η in CTC γ−2 for some γ > 0. For the application to the 2d
space white noise we could take γ = 1−, but we will not use this specific
information in order to probe the range of applicability of our approach
and we will only assume that the exponent γ is such that 3γ − 2 > 0.

Assume for a moment that we are in the simpler situation γ > 1 and
u0 ∈ C γ and let us try to solve equation (5.1) via Picard iterations (un)n>0
starting from u0 ≡ u0. Since F preserves the CC γ-regularity (which can
be seen by identifying CC γ with the classical space of bounded Hölder–
continuous functions of space), the product F (u0(t))η is well defined as an
element of C γ−2 for all t > 0 since 2γ − 2 > 0 and we are in condition
to apply Corollary 1 below on the product of elements in Hölder–Besov
spaces. Now by Lemma 11, the heat semigroup generated by the Laplacian
gains two degrees of regularity so that the solution u1 to L u1 = F (u0)η,
u1(0) = u0, is in CC γ . From here we obtain a contraction on CTC γ for
some small T > 0 whose value does not depend on u0, which gives us
global in time existence and uniqueness of solutions. Note that in one
dimension the space white noise has regularity C−1/2− (see Exercise 11)
so taking γ = 3/2− we have determined that the one–dimensional pam
can be solved globally in time with standard techniques.

55
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When the condition 2γ − 2 > 0 is not satisfied we still have that
if η ∈ CTC γ−2 then u ∈ L γ = CTC γ−2 ∩ Cγ/2T L∞ by the standard
parabolic estimates of Lemma 11. However with the regularities at hand we
cannot use Corollary 1 anymore to guarantee the continuity of the operator
(u, η) 7→ F (u)η. Moreover, as already seen in the simpler homogenization
problems of Theorem 3 above, this is not a technical difficulty but a real
issue of the regime γ 6 1. We expect that controlling the model in this
regime can be quite tricky since limits exists when η → 0 but the limiting
solution still feels residual order one effects from the vanishing driving
signal η. This situation cannot be improved from the point of view of
standard analytic considerations. What is needed is a finer control of the
solution u which allows to analyse in more detail the possible resonances
between the fluctuations of u and those of η.

Before going on we will revise the problem of multiplication of
distributions in the scale of Hölder–Besov spaces, introducing the basic
tool of our general analysis: Bony’s paraproduct.

5.1 The paraproduct and the resonant term

Paraproducts are bilinear operations introduced by Bony [4] to linearize
a class of nonlinear hyperbolic PDEs in order to analyse the regularity of
their solutions. In terms of Littlewood–Paley blocks, a general product fg
of two distributions can be (at least formally) decomposed as

fg =
∑
j>−1

∑
i>−1

∆if∆jg = f ≺ g + f � g + f ◦ g.

Here f ≺ g is the part of the double sum with i < j − 1, f � g is the part
with i > j + 1, and f ◦ g is the “diagonal” part, where |i − j| 6 1. More
precisely, we define

f ≺ g = g� f =
∑
j>−1

j−2∑
i=−1

∆if∆jg and f ◦ g =
∑
|i−j|61

∆if∆jg.

Of course, the decomposition depends on the dyadic partition of unity used
to define the blocks ∆j , and also on the particular choice of the pairs (i, j)
in the diagonal part. The choice of taking all (i, j) with |i − j| 6 1 into
the diagonal part corresponds to the fact that the partition of unity can
be chosen such that supp F (∆if∆jg) ⊆ 2jA if i < j − 1, where A is a
suitable annulus. If |i−j| 6 1, the only apriori information on the spectral
support of the various term in the double sum is supp F (∆if∆jg) ⊆ 2jB,
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that is they are supported in balls and in particular they can have non–
zero contributions to very low wave vectors. We call f ≺ g and f � g
paraproducts, and f ◦ g the resonant term.
Bony’s crucial observation is that f ≺ g (and thus f � g) is always a well-

defined distribution. Heuristically, f ≺ g behaves at large frequencies like
g (and thus retains the same regularity), and f provides only a frequency
modulation of g. The only difficulty in constructing fg for arbitrary
distributions lies in handling the diagonal term f ◦ g. The basic result
about these bilinear operations is given by the following estimates.

Theorem 4. (Paraproduct estimates) For any β ∈ R and f, g ∈ S ′ we
have

‖f ≺ g‖β .β ‖f‖L∞‖g‖β , (5.2)

and for α < 0 furthermore

‖f ≺ g‖α+β .α,β ‖f‖α‖g‖β . (5.3)

For α+ β > 0 we have

‖f ◦ g‖α+β .α,β ‖f‖α‖g‖β . (5.4)

Proof. There exists an annulus A such that Sj−1f∆jg has Fourier
transform supported in 2jA , and for f ∈ L∞ we have

‖Sj−1f∆jg‖L∞ 6 ‖Sj−1f‖L∞‖∆jg‖L∞ . ‖f‖L∞2−jβ‖g‖β .

By Lemma 10, we thus obtain (5.2). The proof of (5.3) and (5.4) works in
the same way, where for estimating f ◦ g we need α + β > 0 because the
terms of the series are supported in a ball and not in an annulus. �
In combination with Exercise 10 above, we deduce the following simple

corollary:

Corollary 1. Let f ∈ C α and g ∈ C β with α + β > 0, then the product
(f, g) 7→ fg is a bounded bilinear map from C α × C β to C α∧β. While
f ≺ g, f � g, and f ◦ g depend on the specific dyadic partition of unity, the
product fg does not.

The independence of the product from the dyadic partition of unity
easily follows by taking smooth approximations.

The ill–posedness of f ◦ g for α+β 6 0 can be interpreted as a resonance
effect since f ◦ g contains exactly those part of the double series where f
and g are in the same frequency range. The paraproduct f ≺ g can be
interpreted as frequency modulation of g, which should become more clear
in the following example.
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Example 3. In Figure 5.1 we see a slowly oscillating positive function u,
while Figure 5.2 depicts a fast sine curve v. The product uv, which here
equals the paraproduct u≺ v since u has no rapidly oscillating components,
is shown in Figure 5.3. We see that the local fluctuations of uv are due to
v, and that uv is essentially oscillating with the same speed as v.

Figure 5.1: The function u Figure 5.2: The function v

Figure 5.3: The function u≺ v

Example 4. If f ∈ C γ(T) and g ∈ C δ(T) with γ + δ > 1, then we
can define

∫
fdg :=

∫
(f∂tg), which is well defined since ∂tg ∈ C δ−1 and

γ+δ−1 > 0, and since integration is a linear map. In this way we recover
the Young integral [32].

Example 5. Let BH be a fractional Brownian bridge on T (or simply a
fractional Brownian motion on [0, π], reflected on [π, 2π]) and assume that
H > 1/2. We have ϕ(BH) ∈ CH− for all Lipschitz continuous ϕ, and
∂tB

H ∈ C (H−1)−, and in particular ϕ(BH)∂tBH is well-defined. This can
be used to solve SDEs driven by BH in a pathwise sense.

The condition α + β > 0 is essentially sharp, at least at this level of
generality, see [32] for counterexamples. It excludes of course the Brownian
case: if B is a Brownian motion, then almost surely B ∈ C α

loc for all
α < 1/2 (meaning that ϕB ∈ C α whenever ϕ is a smooth compactly
supported function), so that ∂tB ∈ C α−1

loc and thus B ◦ ∂tB fails to be well
defined. See also [26], Proposition 1.29 for an instructive example which
shows that this is not a shortcoming of our description of regularity, but
that it is indeed impossible to define the product B∂tB as a continuous
bilinear operation on distribution spaces.

Other counterexamples are given by our discussion of the homogeniza-
tion problem in Theorem 3 above. More simply, one can consider the
following situation.

Example 6. Consider the sequence of functions fn : T → C given
byfn(x) = ein

2x/n. Then it is easy to show that ‖fn‖γ → 0 for all γ < 1/2.
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However let

gn(x) = Re fn(x) Im ∂xfn(x) = (cos(n2x))2 = cos(2n2x) + 1
2

Then gn → 1/2 in C 0− which shows that the map f 7→ (Re f)(∂x Im f)
cannot be continuous in C γ if γ < 1/2. Pictorially the situation is
summarized in Figure 5.4, where we sketched the three dimensional curve
given by x 7→ (Re fn(x), Im fn(x),

∫ x
0 gn(y)dy) for various values of n and

in the limit.

Figure 5.4: Resonances give macroscopic effects

5.2 Commutator estimates and paralin-
earization

The product F (u)η appearing in the right hand side of pam can be
decomposed via the paraproduct ≺ as a sum of three terms

F (u)η = F (u)≺ η + F (u) ◦ η + F (u)� η.

The first and the last of these terms are continuous in any topology we will
choose for F (u) and η. The resonant term F (u) ◦ η however is problematic.
It gathers the products of the oscillations of F (u) and η on comparable
dyadic scales and these products can contribute to all larger scales in
such a way that microscopic oscillations might build up to a macroscopic
effect which does not disappear in the limit (as we have already seen in
Theorem 3). If the function F is smooth enough, then we expect the
resonances between F (u) and η to correspond to the resonances between
u and η, and as we will see this is justified.

The expected regularity of the different terms is

F (u)≺ η︸ ︷︷ ︸
γ−2

+F (u) ◦ η︸ ︷︷ ︸
2γ−2

+F (u)� η︸ ︷︷ ︸
2γ−2

, (5.5)

but unless 2γ − 2 > 0 the resonant term F (u) ◦ η cannot be controlled
using only the CC γ–norm of u and the CC γ−2–norm of η. If F is at least
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C2, we can use a paralinearization result (stated precisely in Lemma 16
below) to rewrite this term as

F (u) ◦ η = F ′(u)(u ◦ η) + ΠF (u, η), (5.6)

with a remainder ΠF (u, η) ∈ C 2γ−2 provided 3γ − 2 > 0. The difficulty is
now localized in the linearized resonant product u ◦ η. In order to control
this term, we would like to exploit the fact that the function u is not a
generic element of CC γ but that it has a specific structure, since L u has
to match the paraproduct decomposition given in (5.5) where the least
regular term is expected to be F (u)≺ η ∈ CC γ−2.
In order to do so, we postulate that the solution u is given by the

following paracontrolled ansatz:

u = uX ≺X + u],

for functions uX , X, u] such that uX , X ∈ CC γ and the remainder
u] ∈ CC 2γ . This decomposition allows for a finer analysis of the resonant
term u ◦ η: indeed, we have

u ◦ η = (uX ≺X) ◦ η + u] ◦ η = uX(X ◦ η) + C(uX , X, η) + u] ◦ η, (5.7)

where the commutator is defined by C(uX , X, η) = (uX ≺X) ◦ η −
uX(X ◦ η). Observe now that the term u] ◦ η does not pose any further
problem, as it can be controlled in CC 3γ−2. The key point is now that the
commutator is a bounded multilinear function of its arguments as long as
the sum of their regularities is strictly positive, see Lemma 14 below. By
assumption, we have 3γ − 2 > 0, and therefore C(uX , X, η) ∈ CC 2γ−2.
The only problematic term which remains to be handled is thus the

bilinear functional of the noise given by X ◦ η. Here we need to make
the assumption that X ◦ η ∈ CC 2γ−2 in order for the product uX(X ◦ η)
to be well defined. This assumption is not guaranteed by the analytical
estimates at hand, and it has to be added as a further requirement to our
construction.
Granting this last step, we have obtained that the right hand

side of equation (5.1) is well defined and a continuous function of
(u, uX , u], X, η,X ◦ η) ∈ CC γ ×CC γ ×CC 2γ ×CC γ ×CC γ−2×CC 2γ−2.

It remains to check that the paracontrolled ansatz is coherent with the
equation satisfied by solutions to pam. Let us first consider the linear
example F (u) = u. Here we saw that the solution is of the form u = eXv
with

L v = v|∂xX|2 + 2〈∂xv, ∂xX〉R2 ,

where |∂xX|2 ∈ CC 2γ−2 by Lemma 13 and ∂xX ∈ CC γ−1 and therefore
v ∈ CC 2γ by the Bony and Schauder estimates. Note that here we have a
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clash of notation, because a priori the X that we defined in Section 4 does
not have to be equal to the paracontrolling distribution X. But of course,
as the notation suggests, we will see momentarily that we can choose them
to be the same. In the setting of Section 4, we have in particular

u = eXv = v≺ eX + CC 2γ = v≺ (eX ≺X) + CC 2γ ,

where the notation u = v≺ eX + CC 2γ means that u − v≺ eX ∈ CC 2γ ,
and where we used a paralinearization result in last step (see Lemma 15
below). Now the double paraproduct f ≺ (g≺h) satisfies

‖f ≺ (g≺h)− (fg)≺h‖α+β . ‖f‖α‖g‖α‖h‖β ,

see [4], and therefore u = (veX)≺X+CC 2γ = u≺X+CC 2γ which shows
that the paracontrolled ansatz is at least justified in the linear case and
indeed we can choose the paracontrolling distribution to be X.

In the nonlinear case, the paracontrolled ansatz and the Leibniz rule for
the paraproduct imply that (5.1) can be rewritten as

L u = L (uX ≺X + u])
= uX ≺LX + [L , uX ≺ ]X + L u]

= F (u)≺ η + F (u) ◦ η + F (u)� η,

where we recall that [L , uX ≺ ]X = L (uX ≺X)− uX ≺LX denotes the
commutator. If we choose X such that LX = η and we set uX = F (u),
then we can use (5.6) and (5.7) to obtain the following equation for the
remainder u]:

L u] = F ′(u)F (u)(X ◦ η) + F (u)� η − [L , F (u)≺ ]X
+F ′(u)C(F (u), X, η) + F ′(u)(u] ◦ η) + ΠF (u, η). (5.8)

Lemma 18 below ensures that J [L , F (u)≺ ]X ∈ CC 2γ whenever
F (u) ∈ L γ (which easily follows from u ∈ L γ by using the increment
characterization of C γ regularity), and combining the paraproduct
estimates with the estimates for C and ΠF that we discussed above,
we see that all the other terms on the right hand side are in CC 2γ−2.
So the Schauder estimate Lemma 11 allows us to control u] in CC 2γ .
Together with u = F (u)≺X + u], equation (5.8) gives an equivalent
description of the solution, because we only rewrote the original problem.
This allows us to obtain a priori estimates on u and u] in terms of
(u0, ‖η‖γ−2, ‖X ◦ η‖2γ−2), see Chapter 5 of [14] for details. It is now
straightforward to show that if F ∈ C3

b , then u depends continuously
on the data (u0, η,X ◦ η), so that we have a robust strategy to pass to the
limit in (4.5) and to make sense of the solution to (5.1) also for irregular
η ∈ CC γ−2 as long as γ > 2/3.
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In the remainder of this section we will prove the results
(paralinearization and various key commutators) which we used in the
discussion above, before going on to gather the consequences of our analysis
in the next section. When the time dependence does not play any role we
state the results for distributions depending only on the space variable as
the extension to time varying functions will not add further difficulty.

Lemma 14. Assume that α, β, γ ∈ R are such that α + β + γ > 0 and
β + γ 6= 0. Then for f, g, h ∈ C∞ the trilinear operator

C(f, g, h) = ((f ≺ g) ◦h)− f(g ◦h)

satisfies
‖C(f, g, h)‖β+γ . ‖f‖α‖g‖β‖h‖γ , (5.9)

and can thus be uniquely extended to a bounded trilinear operator from
C α×C β×C α to C β+γ .

Proof. For β + γ > 0 this follows from the paraproduct estimates, so let
β + γ < 0. By definition

C(f, g, h) =
∑
i,j,k,`

∆i(∆jf∆kg)∆`h(Ij<k−1I|i−`|61 − I|k−`|61)

=
∑
i,j,k,`

∆i(∆jf∆kg)∆`h(Ij<k−1I|i−`|61I|k−`|6N − I|k−`|61),

where we used that F (Sk−1f∆kg) has support in an annulus 2kA , so
that ∆i(Sk−1f∆kg) 6= 0 only if |i − k| 6 N − 1 for some fixed N ∈ N,
which in combination with |i − `| 6 1 yields |k − `| 6 N . Now the
assumptions on our partition of unity guarantee that for fixed k, the
term

∑
` I26|k−`|6N∆kg∆`h is spectrally supported in an annulus 2kA ,

so that
∑
k,` I26|k−`|6N∆kg∆`h ∈ C β+γ and we may add and subtract

f
∑
k,` I26|k−`|6N∆kg∆`h to C(f, g, h) while maintaining the bound (5.9).

It remains to treat∑
i,j,k,`

∆i(∆jf∆kg)∆`hI|k−`|6N (Ij<k−1I|i−`|61 − 1)

=−
∑
i,j,k,`

∆i(∆jf∆kg)∆`hI|k−`|6N (Ij>k−1 + Ij<k−1I|i−`|>1). (5.10)

We estimate both terms on the right hand side separately. For m > −1
we have (recall that for indices of Littlewood–Paley blocks, i . j is to be
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read as 2i . 2j , that is i ≤ j + c for some fixed c):∥∥∥∆m

( ∑
i,j,k,`

∆i(∆jf∆kg)∆`hI|k−`|6N Ij>k−1

)∥∥∥
L∞

6
∑
j,k,`

I|k−`|6N Ij>k−1‖∆m(∆jf∆kg∆`h)‖L∞

.
∑
j&m

∑
k.j

2−jα‖f‖α2−kβ‖g‖β2−kγ‖h‖γ

.
∑
j&m

2−j(α+β+γ)‖f‖α‖g‖β‖h‖γ . 2−m(α+β+γ)‖f‖α‖g‖β‖h‖γ ,

using β+γ < 0 to get
∑
k.j 2k(β+γ) . 2j(α+β). It remains to estimate the

second term in (5.10). For |i− `| > 1 and i ∼ k ∼ `, any term of the form
∆i(·)∆`(·) is spectrally supported in an annulus 2`A , and therefore∥∥∥∆m

( ∑
i,j,k,`

∆i(∆jf∆kg)∆`hI|k−`|6N Ij<k−1I|i−`|>1

)∥∥∥
L∞

.
∑
i,j,k,`

Ij<k−1Ii∼k∼`∼m‖∆i(∆jf∆kg)∆`h‖L∞

.
∑
j.m

2−jα‖f‖α2−mβ‖g‖β2−mγ‖h‖γ . 2−m(β+γ)‖f‖α‖g‖β‖h‖γ .

�

Remark 6. For β + γ = 0 we can apply the commutator estimate with
γ′ < γ, as long as α+ β + γ′ > 0.

Our next result is a simple paralinearization lemma for non–linear
operators.

Lemma 15 (see also [1], Theorem 2.92). Let α ∈ (0, 1), β ∈ (0, α],
and let F ∈ C1+β/α

b . There exists a locally bounded map RF : C α → C α+β

such that
F (f) = F ′(f)≺ f +RF (f) (5.11)

for all f ∈ C α. More precisely, we have

‖RF (f)‖α+β . ‖F‖C1+β/α
b

(1 + ‖f‖1+β/α
α ).

If F ∈ C2+β/α
b , then RF is locally Lipschitz continuous:

‖RF (f)−RF (g)‖α+β . ‖F‖C2+β/α
b

(1 + ‖f‖α + ‖g‖α)1+β/α‖f − g‖α.
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Remark 7. Since every element of C α is bounded, the result immediately
extends to unbounded F ∈ C1+β/α: Simply replace F by an element of
C

1+β/α
b which agrees with F on the image of f .

Proof. [Proof of Lemma 15] The difference F (f)− F ′(f)≺ f is given by

RF (f) = F (f)− F ′(f)≺ f =
∑
i>−1

[∆iF (f)− Si−1F
′(f)∆if ] =

∑
i>−1

ui,

and every ui is spectrally supported in a ball 2iB. For i < 1, we simply
estimate ‖ui‖L∞ . ‖F‖C1

b
(1 + ‖f‖α). For i > 1 we use the fact that

f is a bounded function to write the Littlewood–Paley projections as
convolutions and obtain

ui(x)

=
∫
Ki(x− y)K<i−1(x− z)[F (f(y))− F ′(f(z))f(y)]dydz

=
∫
Ki(x− y)K<i−1(x− z)[F (f(y))− F (f(z))− F ′(f(z))(f(y)− f(z))]dydz,

where Ki = F−1ρi, K<i−1 =
∑
j<i−1Kj , and where we used that∫

Ki(y)dy = ρi(0) = 0 for i > 0 and
∫
K<i−1(z)dz = 1 for i > 1. Now

we can apply a first order Taylor expansion to F and use the β/α–Hölder
continuity of F ′ in combination with the α–Hölder continuity of f , to
deduce

|ui(x)|

.‖F‖
C

1+β/α
b

‖f‖1+β/α
α

∫
|Ki(x− y)K<0(x− z)| × |z − y|α+βdydz

=‖F‖
C

1+β/α
b

‖f‖1+β/α
α 2−(i−1)(α+β)

×
∫
|2(i−1)dK1(2i−1(x− y))2(i−1)dK<0(2i−1(x− z))| × |2i−1(z − y)|α+βdydz

.‖F‖
C

1+β/α
b

‖f‖1+β/α
α 2−i(α+β).

Therefore, the estimate for RF (f) follows from Lemma 10. The estimate
for RF (f)−RF (g) is shown in the same way. �
Let g be a distribution belonging to C β for some β < 0. Then the map

f 7→ f ◦ g behaves, modulo smoother correction terms, like a derivative
operator:

Lemma 16. Let α ∈ (0, 1), β ∈ (0, α], γ ∈ R be such that α + β + γ > 0
and α+ γ 6= 0. Let F ∈ C1+β/α

b . Then there exists a locally bounded map
ΠF : C α × C γ → C α+γ such that

F (f) ◦ g = F ′(f)(f ◦ g) + ΠF (f, g) (5.12)
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for all f ∈ C α and all smooth g. More precisely, we have

‖ΠF (f, g)‖α+γ . ‖F‖C1+β/α
b

(1 + ‖f‖1+β/α
α )‖g‖γ .

If F ∈ C2+β/α
b , then ΠF is locally Lipschitz continuous:

‖ΠF (f, g)−ΠF (u, v)‖α+γ

.‖F‖
C

2+β/α
b

(1 + ‖f‖α + ‖u‖α)1+β/α(1 + ‖v‖γ)(‖f − u‖α + ‖g − v‖γ).

Proof. Use the paralinearization and commutator lemmas above to
deduce that

ΠF (f, g) = F (f) ◦ g − F ′(f)(f ◦ g)
= RF (f) ◦ g + (F ′(f)≺ f) ◦ g − F ′(f)(f ◦ g)
= RF (f) ◦ g + C(F ′(f), f, g),

so that the claimed bounds easily follow from Lemma 14 and Lemma 15.
�

Besides this sort of chain rule, we also have a Leibniz rule for f 7→ f ◦ g:

Lemma 17. Let α ∈ (0, 1) and γ < 0 be such that 2α+γ > 0 and α+γ 6= 0.
Then there exists a bounded trilinear operator Π× : C α×C α×C γ → C α+γ ,
such that

(fu) ◦ g = f(u ◦ g) + u(f ◦ g) + Π×(f, u, g)
for all f, u ∈ C α(R) and all smooth g.

Proof. It suffices to note that fu = f ≺u+ f �u+ f ◦u, which leads to

Π×(f, u, g) = (fu) ◦ g−f(u ◦ g)−u(f ◦ g) = C(f, u, g)+C(u, f, g)+(f ◦u) ◦ g.

�

Lemma 18. Let β < 1, α ∈ R, and let f ∈ L β and G ∈ CC α with
LG ∈ CC α−2. There exists H = H(f,G) such that LH = [L , f ≺ ]G
and H(0) = 0. Moreover H ∈ CC α+β ∩ C(α∧β)/2L∞ and for all T > 0

‖H‖
C

(α∧β)/2
T

L∞
+ ‖H‖CTCα+β . ‖f‖L β

T
(‖G‖CTCα + ‖LG‖CTCα−2).

Proof. Let T > 0 and let fε be a time mollification of f such that
‖∂tfε‖CTL∞ . εβ/2−1‖f‖L β

T
and ‖fε−f‖CTL∞ . εβ/2‖f‖L β for all ε > 0.

For example we can take fε = ρε ∗ f with ρε(t) = ρ(t/ε)/ε and ρ : R→ R
compactly supported, smooth, and of unit integral. For i > −1 we have

L ∆iH = ∆iLH

= ∆i [L ((f − fε)≺G)− (f − fε)≺LG] + ∆i [L (fε≺G)− fε≺LG] ,
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so that

L ∆i(H − (f − fε)≺G) = −∆i [(f − fε)≺LG] + ∆i [L (fε≺G)− fε≺LG]
= ∆i [(fε − f)≺LG] + ∆i [L fε≺G− 2∂xfε≺ ∂xG] ,

with initial condition ∆i(H − (f − fε)≺G)(0) = −(∆i(f − fε)≺G)(0).
The Schauder estimates for L (Lemma 11) give

‖∆i(H + (f − fε)≺G)‖Lα+β
T

. ‖∆i [(f − fε)≺LG] + ∆i [(L fε) ≺G− 2∂xfε≺ ∂xG]‖CTCα+β−2

+ ‖(∆i(f − fε)≺G)(0)‖α+β .

Choosing ε = 2−2i, we have

‖∆i((f − fε)≺G)‖CTCα+β . 2βi‖∆i((f − fε)≺G)‖CTCα

. 2βi‖f − fε‖CTL∞‖G‖CTCα

. ‖f‖L β
T
‖G‖CTCα

and exactly the same argument also gives

‖∆i [(f − fε)≺LG]‖CTCα+β−2 . ‖f‖L β
T
‖LG‖CTCα−2 .

Since β < 1, we further get

‖∆i [L fε≺G+ ∂xfε≺ ∂xG]‖CTCα+β−2

.2i(β−2)‖∂tfε‖CTL∞‖G‖CTCα + ‖fε‖CTCβ‖G‖CTCα

.‖f‖L β
T
‖G‖CTCα + ‖f‖CTCβ‖G‖CTCα .

Combining everything, we end up with

‖∆iH‖CTCα+β . ‖f‖L β
T

(‖G‖CTCα + ‖LG‖CTCα−2),

which gives the estimate for the space regularity of H since ‖∆iH‖CTL∞ .
2−(α+β)i‖∆iH‖CTCα+β . The time regularity of H can be controlled
similarly by noting that (f − fε)≺G ∈ C(α∧β)/2

T L∞, uniformly in ε. �

5.3 Paracontrolled distributions
Here we build a calculus of distributions satisfying a paracontrolled ansatz.
We start by defining a suitable space of such objects.

Definition 5. Let α > 0 and β ∈ (0, α] be such that α + β ∈ (0, 2),
and let u ∈ L α. A pair of distributions (f, fu) ∈ L α × L β is called
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paracontrolled by u if f ] = f − fu≺u ∈ CC α+β ∩L β. In that case we
write f ∈ Dβ = Dβ(u), and for all T > 0 we define the norm

‖f‖Dβ
T

= ‖f‖
C
α/2
T

+ ‖fu‖L β
T

+ ‖f ]‖CTCα+β + ‖f ]‖
C
β/2
T

L∞
.

If ũ ∈ L α and (f̃ , f̃ ũ) ∈ Dβ(ũ), then we also write

dDβ
T

(f, f̃) = ‖fu − f̃ ũ‖L β
T

+ ‖f ] − f̃ ]‖CTCα+β + ‖f ] − f̃ ]‖
C
β/2
T

L∞
.

Note that in general f and f̃ do not live on the same space, so dDβ
T
is not

a distance.

Of course we should really write (f, fu) ∈ Dβ since given f and u, the
derivative fu is usually not uniquely determined. But in the applications
there will always be an obvious candidate for the derivative, and no
confusion will arise.

Remark 8. The space Dβ does not depend on the specific dyadic
partition of unity. Indeed, Bony [4] has shown that if ≺̃ is the
paraproduct constructed from another partition of unity, then ‖fu≺u −
fu ≺̃u‖CTCα+β . ‖fu‖CTCβ‖u‖CTCα .

Nonlinear operations As an immediate consequence of Lemma 14 we
can multiply any distribution that is paracontrolled by u with a given v,
provided that we know how to multiply u with v (of course always under
suitable regularity assumptions):

Theorem 5 (also see Theorem 3.7 of [14]). Let α, β ∈ R, γ < 0, with
α+β+γ > 0 and α+γ 6= 0. Let u ∈ CC α, v ∈ CC γ , and let ζ ∈ CC α+γ .
Then

Dβ(u) 3 f 7→ f · v := f ≺ v + f � v + f ] ◦ v + C(fu, u, v) + fuζ ∈ CC γ

defines a bounded linear operator and for all T > 0 we have the bound

‖(fv)]‖CTCα+γ := ‖f · v − f ≺ v‖CTCα+γ

. ‖f‖Dβ
T

(‖v‖CTCγ + ‖u‖CTCα‖v‖CTCγ + ‖ζ‖CTCα+γ ) .

If there exist sequences of smooth functions (un) and (vn) converging to u
and v in CC α and CC γ respectively for which (un ◦ vn) converges to ζ in
CC α+γ , then f · v does not depend on the dyadic partition of unity used
to construct it.
Furthermore, there exists a quadratic polynomial P so that if ũ, ṽ, ζ̃

satisfy the same assumptions as u, v, ζ respectively, if f̃ ∈ Dβ(ũ), and
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if

M = max
{
‖u‖CTCα , ‖v‖CTCγ , ‖ζ‖CTCα+γ , ‖ũ‖CTCα , ‖ṽ‖CTCγ ,

‖ζ̃‖CTCα+γ , ‖f‖Dβ
T

(u), ‖f̃‖Dβ
T

(ũ)

}
,

then

‖(fv)] − (f̃ ṽ)]‖CTCα+γ

6P (M)
(
dDβ (f, f̃) + ‖u− ũ‖CTCα + ‖v − ṽ‖CTCγ + ‖ζ − ζ̃‖CTCα+γ

)
.

Proof. Given Lemma 14 (and the paraproduct estimates Theorem 4),
the proof is straightforward and we leave most of it as an exercise. Let us
only comment on the independence of the partition of unity: let (un, vn)
be as announced and define fn := fu≺un + f ]. Then

lim
n→∞

fnvn = lim
n→∞

(
fn≺ vn + fn� vn + f ] ◦ vn + C(fu, un, vn) + fu(un ◦ vn)

)
= f ≺ v + f � v + f ] ◦ v + C(fu, u, v) + fuζ = f · v.

Since the pointwise product fnvn does not depend on the partition of unity,
also the limit must be independent.
The bound on the difference is obtained by using the boundedness and

multilinearity of all operators involved. �

From now on we will assume that there exist smooth functions (un) and
(vn) converging to u and v respectively for which (un ◦ vn) converges to ζ,
so that the product does not depend on the partition of unity, and we will
usually write fv rather than f ·v. Later we will see that the resonant term
(un ◦ vn) must often be renormalized by subtracting a large constant, but
this will not affect the independence of the product from the partition of
unity.
To solve equations involving general nonlinear functions, we need

to examine the stability of paracontrolled distributions under smooth
functions.

Theorem 6. Let α ∈ (0, 1) and β ∈ (0, α]. Let u ∈ L α, f ∈ Dα(u), and
F ∈ C1+β/α

b . Then F (f) ∈ Dβ with derivative (F (f))u = F ′(f)fu, and
for all T > 0

‖F (f)‖Dβ
T
. ‖F‖

C
1+β/α
b

(1 + ‖f‖2Dα
T

)(1 + ‖u‖2Lα
T

).

Moreover, there exists a polynomial P which satisfies, for all F ∈ C2+β/α
b ,

ũ ∈ L α, f̃ ∈ Dα(ũ), and

M := max
{
‖u‖Lα

T
, ‖ũ‖Lα

T
, ‖f‖Dα

T
(u), ‖f̃‖Dα

T
(ũ)

}
,
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the bound

dDβ
T

(F (f), F (f̃)) 6 P (M)‖F‖
C

2+β/α
T

(dDα
T

(f, f̃) + ‖u− ũ‖Lα
T

).

The proof is not very complicated but rather lengthy, and we do not
present it here. The reader can find it in [14].

Schauder estimate for paracontrolled distributions The Schauder
estimate Lemma 11 is not quite sufficient: we also need to understand how
the heat kernel acts on the paracontrolled structure.

Theorem 7. Let α ∈ (0, 1) and β ∈ (0, α]. Let u ∈ CC α−2 and LU = u
with U(0) = 0. Let fu ∈ L β, f ] ∈ CC α+β−2, and g0 ∈ C α+β. Then
(g, fu) ∈ Dβ(U), where g solves

L g = fu≺u+ f ], g(0) = g0,

and we have the bound

‖g‖Dβ
T

(U) . ‖g0‖α+β + (1 + T )(‖fu‖L β
T

(1 + ‖u‖CTCα−2) + ‖f ]‖CTCα+β−2)

for all T > 0. If furthermore ũ, Ũ , f̃ ũ, f̃ ], g̃0, g̃ satisfy the
same assumptions as u, U, fu, f ], g0, g respectively, and if M =
max{‖fu‖L β

T
, ‖ũ‖CTCα−2 , 1}, then

d
Dβ
T

(g, g̃) .‖g0 − g̃0‖α+β

+ (1 + T )M(‖fu − f̃ ũ‖
Lβ
T

+ ‖u− ũ‖CTCα−2 + ‖f ] − f̃ ]‖CTCα+β−2 ).

Proof. Let us derive an equation for the remainder g]. We have

L g] = L g −L (f ′≺U)
= [fu≺u+ f ]]− fu≺LU − [L (fu≺U)− fu≺LU ]
= f ] − [L , fu≺ ]U.

Since α ∧ β = β we can now apply Lemma 18 to see that there exists
H ∈ CC α+β ∩ Cβ/2L∞ such that LH = [L , fu≺ ]U , so we can apply
the standard Schauder estimates of Lemma 11 to L (g] +H) = f ] to get

‖g]‖CTCα+β + ‖g]‖
C

(α∧β)/2
T

L∞
.‖fu‖L β

T
(‖U‖CTCα + ‖LU‖CTCα−2)

+ ‖f ]‖CTCα+β−2 .

The estimate for g] − g̃] can be derived in the same way. �
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Bibliographic notes. Paraproducts were introduced in [4]. For a nice
introduction see [1]. The commutator estimate Lemma 14 is from [14],
but the proof here is new and the statement is slightly different. In [14],
we require the additional assumption α ∈ (0, 1) under which C maps
C α×C β ×C γ to C α+β+γ and not only to C β+γ . Theorem 6 is from [14].
Theorem 7 is new, but it is implicitly used in [14]. The estimates

presented here will only allow us to consider regular initial conditions.
More general situations can be covered by working on spaces allowing for
a singularity at 0, such as{

f ∈ C ((0,∞),C α) : sup
t∈(0,T ]

‖t−γf(t)‖Cα <∞ for allT > 0
}

and similar for the temporal regularity. This is also done in [14].
Of course it is easily possible to replace the Laplacian by more general

pseudo-differential operators. We only used two properties of ∆: the fact
that ∆(f ′≺U) − f ′≺ (∆U) is relatively regular, and that the semigroup
generated by ∆ has a sufficiently strong regularization effect. This is also
true for the fractional Laplace operator and more generally for a wide
range of pseudo-differential operators.

5.4 Fixpoint
Let us now give the details for the solution to pam in the space of
paracontrolled distributions. Assume that F : R → R is in C1+ε

b for
some ε > 0 such that (2 + ε)γ > 2.
Let Y ∈ CC γ and let u ∈ Dγ(Y ). We will see below how to choose

Y , for the moment it is an arbitrary CC γ function. From Theorem 6 we
know that F (u) ∈ Dεγ(Y ):

Dγ(Y ) u7→F (u)−−−−−→ Dεγ(Y ). (5.13)

Assume now that Y ◦ η ∈ CC 2γ−2 is given – note that for the regularity
assumptions we made, Y ◦ η is not a continuous functional of Y and η
but must be controlled using other means, say stochastic computations!
Under this assumption, Theorem 5 applied with u = Y , v = η, and
ζ = Y ◦ η shows that for all f ∈ Dεγ(Y ) we have fη = (fη)] + f ≺ η with
(fη)] ∈ CC 2γ−2 – it is here that we use (2 + ε)γ > 2. Integrating against
the heat kernel and assuming that u0 ∈ C 2γ , we obtain from Theorem 7
(with u = η, fu = f , f ] = (fη)]) that the solution (J(fη)(t) + Ptu0)t>0
to L (J(fη) + P·u0) = fη, J(fη)(0) + P0u0 = u0, is in Dγ(X), where X
solves LX = η and X(0) = 0. In other words, we have a map

Dεγ(Y ) f 7→P·u0+J(fη)−−−−−−−−−−→ Dγ(X), (5.14)
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and combining (5.13) and (5.14) we get

Dγ(Y ) u 7→F (u)−−−−−→ Dεγ(Y ) F (u)7→P·u0+J(F (u)η)−−−−−−−−−−−−−−→ Dγ(X),

so that for all T > 0 we can define

ΓT : Dγ
T (Y )→ Dγ

T (X), ΓT (u) = (P·u0 + J(F (u)η))|[0,T ].

To set up a Picard iteration domain and image space should coincide which
means we should take Y = X. Refining the analysis, we obtain a scaling
factor T δ when estimating the Dγ

T (X)–norm of ΓT (u). This allows us to
show that for small T > 0, the map ΓT leaves suitable balls in Dγ

T (X)
invariant, and therefore we obtain the (local in time) existence of solutions
to the equation under the assumption X ◦ η ∈ CC 2γ−2.
To obtain uniqueness we need to suppose that F ∈ C2+ε

b . In that
case Theorem 6 gives the local Lipschitz continuity of the map u 7→ F (u)
from Dγ

T (X) to Dεγ
T (X), while Theorem 5 and Theorem 7 show that

f 7→ u0 + J(fη) defines a Lipschitz continuous map from Dεγ
T (X) to

Dγ
T (X). Again we can obtain a scaling factor T δ, so that ΓT defines a

contraction on a suitable ball of Dγ
T (X) for some small T > 0.

Even better, ΓT not only depends locally Lipschitz continuously on u,
but also on the extended data (u0, η,X ◦ η), and therefore the solution
to (5.1) depends locally Lipschitz continuously on (u0, η,X ◦ η).

5.5 Renormalization
So far we argued under the assumption thatX ◦ η exists and has a sufficient
regularity. This should be understood via approximations as the existence
of a sequence of smooth functions (ηn) that converges to η, such that
(Xn ◦ ηn) converges toX ◦ η. However, as we will see below, this hypothesis
is questionable and actually not satisfied at all in the problem we are
interested in. More concretely, recall that we would like to take η = ξ to
be the two–dimensional space white noise. If then ϕ is a Schwartz function
on R2 and if ϕn = nϕ(n·) and

ηn(x) = ϕn ∗ ξ(x) =
∫
R2
ϕn(x− y)ξ(y)dy =

∑
k∈Z2

〈ξ, ϕn(x+ 2πk − ·)〉,

then we will see below that there exist constants (cn) with limn cn = ∞,
such that (Xn ◦ ηn − cn) converges in CTC 2γ−2 for all T > 0.

This is not a problem with our specific approximation. The
homogenization setting shows that even for η → 0 there are cases where
the limiting equation is nontrivial. In the paracontrolled setting we have
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a continuous dependence of the solution on the data (η,X ◦ η), so this
non–triviality of the limit can only mean that it is X ◦ η which does not
converge to zero.

Another way to see that there is a problem is to consider the following
representation of the resonant term: use LX = η to write

X ◦ η = X ◦LX

= 1
2L (X ◦X) + ∂xX ◦ ∂xX

= |∂xX|2 + 1
2L (X ◦X)− 2∂xX ≺ ∂xX.

Integrating this equation over the torus and over t ∈ [0, T ], we get∫ T

0

∫
T2
X ◦ ηdxdt =

∫ T

0

∫
T2
|∂xX|2dxdt+ 1

2

∫ T

0

∫
T2

L (X ◦X)dx

− 2
∫ T

0

∫
T2

(∂xX ≺ ∂xX)dxdt.

Writing L = ∂t −∆ and using that X(0) = 0 and
∫
T2 ∆ψdx = 0 for all ψ

(which can be seen using integration by parts and pulling the operator ∆
on the constant function 1), we thus get∫ T

0

∫
T2
X ◦ ηdxdt =

∫ T

0

∫
T2
|∂xX|2dxdt+ 1

2

∫
T2

(X(T ) ◦X(T ))dx

− 2
∫ T

0

∫
T2

(∂xX ≺ ∂xX)dxdt.

So if X ◦ η ∈ CTC 2γ−2 and X ∈ CTC γ , then all the terms should be
well defined and finite (the integral over T2 corresponds to testing a
distribution against to constant test function 1). This would mean that∫ T

0
∫
T2 |∂xX|2dxdt < +∞, but on the other side a direct computation

shows that ∫
T2
|∂xX(t, ·)|2dx = +∞

for any t > 0 almost surely if η is the space white noise. Note also that
the problematic term |∂xX|2 is exactly the correction term appearing in
the analysis of the linear homogenization problem in Section 4.

In order to prove the convergence of the smooth solutions in general,
we should introduce corrections to the equation to remove the divergent
constant cn. Let us see where the resonant product X ◦ η appears. We
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have

(F (u)η)] = F (u)� η + (F (u))] ◦ η + C((F (u))X , X, η) + (F (u))X(X ◦ η).
(5.15)

Now (F (u))X = F ′(u)uX by Theorem 6, and if u solves the equation
L u = F (u)η = F (u)≺ η + (F (u)η)], then Theorem 7 with u = η, X = U
shows that uX = F (u). So we should really consider the renormalized
equation

L un = F (un) � ηn := F (un)ξn − F ′(un)F (un)cn,

where we recall that (cn) are the diverging constants for which (Xn ◦ ηn−
cn) converges. In that case we have

L un =F (un)≺ ηn + F (un)� ηn + (F (un))] ◦ ηn
+ C(F ′(un)F (un), Xn, ηn) + F ′(un)F (un)(Xn ◦ ηn − cn),

and now all the terms on the right hand side are under control and we can
safely pass to the limit, for which we obtain the equation

L u = F (u) � η := (F (u) � η)] + F (u)≺ η, (5.16)

where (F (u) � η)] is calculated using X � η = limn(Xn ◦ ηn − cn) in the
place of X ◦ η in (5.15). Formally, we also denote this product by

F (u) � η = F (u)η − F ′(u)F (u) · ∞,

so that the solution u will satisfy

L u = F (u)− F ′(u)F (u) · ∞.

Note that the correction term has exactly the same form as the
Itô/Stratonovich corrector for SDEs. For the reader familiar with rough
paths this will not come as a surprise: Changing the iterated integrals of
a rough path B from some given

∫ ·
0 BsdBs to

∫ ·
0 BsdBs + ϕ introduces

a correction term +F ′(y)F (y)∂tϕ in the ODE ∂ty = F (y)∂tB. In our
setting the resonant term takes the role of the iterated integrals, and since
the structure of the ODE and gpam is very similar changing the resonant
term has a similar effect as changing the iterated integrals in the ODE
example.

Remark 9. The convergence properties of (Xn ◦ ηn) are in stark contrast
to the ODE setting: if we consider the equation ∂tu = F (u)ζ rather than
pam, then we should replace X by Z with ∂tZ = ζ. But then we have in
one dimension Z ◦ ζ = 1/2∂t(Z ◦Z), so that the convergence of (Zn ◦ ζn)
to Z ◦ ζ comes for free with the convergence of (Zn) to Z. Indeed, ∂t is a
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bounded linear operator from C γ to C γ−1 whenever γ ∈ R, and Z 7→ Z ◦Z
is continuous from C γ to C 2γ whenever γ > 0. So if (Zn) converges to
Z in a Hölder space of positive regularity, then (∂t(Zn ◦ Zn)) converges
to ∂t(Z ◦ Z). This specific representation of Z ◦ ζ comes from the Leibniz
rule for ∂t and it is the reason why rough path theory is trivial in one
dimension, at least as long as one considers those rough paths which are
limit of smooth paths. Of course, the argument breaks down as soon as Z
has at least two components. As we have discussed, for the second order
differential operator L we have different rules and obtain

(X ◦ η) = (X ◦LX) = 1
2L (X ◦X) + (∂xX ◦ ∂xX),

so that in our setting the nontrivial term is ∂xX ◦ ∂xX.

These considerations lead naturally to the following definition.

Definition 6. (pam–enhancement) Let γ ∈ (2/3, 1) and let

X γpam ⊆ C γ−2 × CC 2γ−2

be the closure of the image of the map

Θpam : C∞ × C([0,∞),R)→ X γpam,

given by
Θpam(θ, f) = (θ,Φ � θ) := (θ,Φ ◦ θ − f), (5.17)

where Φ = Jθ, that is L Φ = θ and Φ(0) = 0. We will call Θpam(θ, f) the
renormalized pam–enhancement of the driving distribution θ. For T > 0
we define X γpam(T ) = X γpam|[0,T ] and we write ‖X‖Xγpam(T ) for the norm of
X ∈ X γpam(T ) in the Banach space C γ−2×CTC 2γ−2. Moreover, we define
the distance dXγpam(T )(X, X̃) = ‖X− X̃‖Xγpam(T ).

Remark 10. In the homogenization example of Section 4 we would take
θ = Vε and Φ = Xε.

Remark 11. It would be more elegant to renormalize Φ ◦ θ with a constant
and not with a time-dependent function, as we discussed above. Indeed this
is possible, see Chapter 5 of [14]. But since here we chose Φ(0) = 0, we
have Φ(0) ◦ θ = 0 and therefore (Φn(0) ◦ θn−cn) diverges for any diverging
sequence of constants (cn). A simple way of avoiding this problem is to
consider the stationary version Φ̃ given by

Φ̃(x) =
∫ ∞

0
PtΠ 6=0θ(x)dt,

where Π 6=0 denotes the projection on the non-zero Fourier modes, Π 6=0u =
u − (2π)−d/2û(0). But then Φ̃ does not depend on time and in particular
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Φ̃(0) 6= 0, so that we have to consider irregular initial conditions in the
paracontrolled approach which complicates the presentation. Alternatively,
we could observe that in the white noise case there exist constants (cn) so
that (Xn(t) ◦ ξn−cn) converges for all t > 0, and while the limit (X(t) � ξ)
diverges as t → 0, it can be integrated against the heat kernel. Again,
this would complicate the presentation and here we choose the simple (and
cheap) solution of taking a time-dependent renormalization.
Theorem 8. Let γ ∈ (2/3, 1) and ε > 0 be such that (2 + ε)γ > 2. Let
X = (η,X � η) ∈ X γpam, F ∈ C2+ε

b , and u0 ∈ C 2γ . Then there exists a
unique solution u ∈ Dγ(X) to the equation

L u = F (u) � η, u(0) = u0,

up to the (possibly finite) explosion time τ = τ(u) = inf{t > 0 : ‖u‖Dγ
t

=
∞} > 0.
Moreover, u depends on (u0,X) ∈ C 2γ × X γpam in a locally Lipschitz

continuous way: if M,T > 0 are such that for all (u0,X) with ‖u0‖2γ ∨
‖X‖Xγpam(T ) 6M , the solution u to the equation driven by (u0,X) satisfies
τ(u) > T , and if (ũ0, X̃) is another set of data bounded in the above sense
by M , then there exists C(F,M) > 0 for which

dDγ
T

(u, ũ) 6 C(F,M)(‖u0 − ũ0‖2γ + dXγpam(T )(X, X̃)).
Proof. We only have to turn the formal discussion of Section 5.4 into
rigorous mathematics. The small factor T δ on page 71 is obtained from
a scaling argument and while this does not require any new insights it is
somewhat lengthy and we refer to [14, 16] for details.
Let us just indicate how to iterate the construction to obtain the

existence of solutions up to the explosion time τ . Let us assume that
we constructed the paracontrolled solution (u, uX) (with uX = F (u)) on
[0, T0] for some T0 > 0. Now we no longer have X(T0) = 0, and also the
initial condition u(T0) is no longer in C 2γ . But we only used X(0) = 0
to see that the initial condition for u] is u](0) = u0, and we only used
u0 ∈ C 2γ to obtain a C 2γ initial condition for u]. On the next interval,
the initial condition for u] is u](T0) = u(T0)− F (u(T0))≺X(T0) which is
in C 2γ by construction, since we already know that u] ∈ C([0, T0],C 2γ).
As for the continuity in (u0,X), let (ũ0, X̃) be another set of data also

bounded by M . Then the solutions u and ũ both are bounded in Dγ
T

by some constant c = c(F,M) > 0. So by the continuity properties of
the paracontrolled product (and the other operations involved), we can
estimate

dDγ
T

(u, ũ) 6 P (c)
(
‖u0 − ũ0‖2γ + dXγpam(T )(X, X̃) + T δdDγ

T
(u, ũ)

)
for a polynomial P . The local Lipschitz continuity on [0, T ] immediately
follows if we choose T > 0 small enough. This can be iterated to obtain
the local Lipschitz continuity on “macroscopic” intervals. �
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Remark 12. For the local in time existence it is not necessary to assume
F ∈ C2+ε

b . It suffices to have F ∈ C2+ε. This can be seen by considering a
ball containing u0(x) for all x ∈ Td, a function F̃ ∈ C2+ε

b which coincides
with F on this ball, and by stopping u upon exiting the ball.
In the linear case F (u) = u we have global in time solutions:

in general we only get local in time solutions because we pick up a
superlinear (polynomial) estimate when applying the paralinearization
result Theorem 6. This step is not necessary if F is linear, and all the
other estimates are linear in u.

5.6 Construction of the extended data

In order to apply Theorem 8 to equation (5.1) with white noise
perturbation, it remains to show that if ξ is a spatial white noise on T2,
then (ξ,X � ξ) defines an element of X γpam whenever γ ∈ (2/3, 1). In other
words, we need to construct X � ξ and control its regularity.
Since Ptξ is a smooth function for every t > 0, the resonant term

Ptξ ◦ ξ is a smooth function, and therefore we could formally set X(t) ◦ ξ =∫ t
0 (Psξ ◦ ξ)ds. But we will see that this expression does not make sense.
Recall that (ξ̂(k))k∈Z2 is a complex valued, centered Gaussian process

with covariance
E[ξ̂(k)ξ̂(k′)] = δk+k′=0, (5.18)

and such that ξ̂(k)∗ = ξ̂(−k).

Lemma 19. For any x ∈ T2 and t > 0 we have

gt = E[(Ptξ)(x)ξ(x)] = E[(Ptξ ◦ ξ)(x)] = E[∆−1(Ptξ ◦ ξ)(x)] = (2π)−2
∑
k∈Z2

e−t|k|
2
.

In particular, gt does not depend on the partition of unity used to define
the ◦ operator, and

∫ t
0 gsds =∞ for all t > 0.

Proof. Let x ∈ T2, t > 0, and ` ≥ −1. Then

E[∆`(Ptξ ◦ ξ)(x)] =
∑
|i−j|61

E[∆`(∆i(Ptξ)∆jξ)(x)],

where exchanging summation and expectation is justified because it can
be easily verified that the partial sums of ∆`(Ptξ ◦ ξ)(x) are uniformly
Lp–bounded for any p ≥ 1. Now Pt = e−t|·|

2(D), and therefore we get
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from (5.18)

E[∆`(∆i(Ptξ)∆jξ)(x)]

=(2π)−1
∑

k,k′∈Z2

e∗k+k′(x)ρ`(k + k′)ρi(k)e−t|k|
2
ρj(k′)E[ξ̂(k)ξ̂(k′)]

=(2π)−2
∑
k∈Z2

ρ`(0)ρi(k)e−t|k|
2
ρj(k) = δ`=−1(2π)−2

∑
k∈Z2

ρi(k)ρj(k)e−t|k|
2
.

For |i− j| > 1 we have ρi(k)ρj(k) = 0 and therefore

gt = E[(Ptξ ◦ ξ)(x)]
= E[(Ptξ)(x)ξ(x)]

= (2π)−2
∑
k∈Z2

∑
i,j

ρi(k)ρj(k)e−t|k|
2

= (2π)−2
∑
k∈Z2

e−t|k|
2
,

while E[(Ptξ ◦ ξ)(x)−∆−1(Ptξ ◦ ξ))(x)] = 0. �

Exercise 12. Let ϕ be a Schwartz function on R2 and set

ξn(x) = ((n2ϕ(n·)) ∗ ξ)(x)

=
∫
R2
n2ϕ(n(x− y))ξ(y)dy

=
∑
k∈Z2

〈ξ, n2ϕ(n(x+ 2πk − ·))〉

for x ∈ T2. Write FR2ϕ(z) =
∫
R2 e
−i〈z,x〉ϕ(x)dx. Show that

E[(Ptξn ◦ ξn)(x)] = E[∆−1(Ptξn ◦ ξn)(x)] = (2π)−2
∑
k∈Z2

e−t|k|
2
|FR2ϕ(k/n)|2.

Hint: Use Poisson summation.

The diverging time integral motivates us to study the renormalized
product X ◦ ξ −

∫ ·
0 gsds, where

∫ ·
0 gsds is an “infinite function”:

Lemma 20. Set

(X � ξ)(t) =
∫ t

0
(Psξ ◦ ξ − gs)ds.

Then E[‖X � ξ‖pCTC 2γ−2(T2)] < ∞ for all γ < 1, p ≥ 1, T > 0. Moreover,
if ϕ is a Schwartz function on R2 with

∫
ϕ(x)dx = 1, if ξn = ϕn ∗ ξ with

ϕn = n2ϕ(n·) for n ∈ N, and Xn(t) =
∫ t

0 Psξnds, then

lim
n→∞

E[‖X � ξ − (Xn ◦ ξn − fn)‖pCTC 2γ−2(T2)] = 0
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for all p ≥ 1, where for all x ∈ T2

fn(t) = E[Xn(t, x)ξn(x)] = E[(Xn(t) ◦ ξn)(x)]

= (2π)−2
∑

k∈Z2\{0}

|FR2ϕ(k/n)|2

|k|2
(1− e−t|k|

2
) + (2π)−2t.

Proof. To lighten the notation, we will only show that
E[‖X � ξ‖pCTC 2γ−2 ] < ∞. The convergence of (Xn ◦ ξn − fn) to X � ξ
is shown by applying dominated convergence, and we leave it as an
exercise. Let t > 0 and define Ξt = Ptξ ◦ ξ − gt. Let us start by
estimating E[|∆`Ξt(x)|2] for ` > −1 and x ∈ T2. Lemma 19 yields
∆`gt = 0 = E[∆`(Ptξ ◦ ξ)(x)] for ` ≥ 0 and x ∈ T2, and ∆−1gt = gt =
E[∆−1(Ptξ ◦ ξ)(x)], so that E[|∆`Ξt(x)|2] = Var(∆`(Ptξ ◦ ξ)(x)). But

∆`(Ptξ ◦ ξ)(x)

=
∑
k∈Z2

e∗k(x)ρ`(k)F (Ptξ ◦ ξ))(k)

=(2π)−1
∑

k1,k2∈Z2

∑
|i−j|61

e∗k1+k2
(x)ρ`(k1 + k2)ρi(k1)e−t|k1|2 ξ̂(k1)ρj(k2)ξ̂(k2),

and therefore

Var(∆`(Ptξ ◦ ξ)(x))

=(2π)−2
∑
k1,k2

∑
k′1,k

′
2

∑
|i−j|61

∑
|i′−j′|61

e∗k1+k2
(x)ρ`(k1 + k2)ρi(k1)e−t|k1|2ρj(k2)

× e∗k′1+k′2
(x)ρ`(k′1 + k′2)ρi′(k′1)e−t|k

′
1|

2
ρj′(k′2) Cov(ξ̂(k1)ξ̂(k2), ξ̂(k′1)ξ̂(k′2)),

where exchanging summation and expectation can be justified a posteriori
by the uniform Lp–boundedness of the partial sums. Now Wick’s theorem
([22], Theorem 1.28) gives

Cov(ξ̂(k1)ξ̂(k2), ξ̂(k′1)ξ̂(k′2))
=E[ξ̂(k1)ξ̂(k2)ξ̂(k′1)ξ̂(k′2)]− E[ξ̂(k1)ξ̂(k2)]E[ξ̂(k′1)ξ̂(k′2)]
=E[ξ̂(k1)ξ̂(k2)]E[ξ̂(k′1)ξ̂(k′2)] + E[ξ̂(k1)ξ̂(k′1)]E[ξ̂(k2)ξ̂(k′2)]

+ E[ξ̂(k1)ξ̂(k′2)]E[ξ̂(k2)ξ̂(k′1)]− E[ξ̂(k1)ξ̂(k2)]E[ξ̂(k′1)ξ̂(k′2)]
=(δk1+k′1=0δk2+k′2=0 + δk1+k′2=0δk2+k′1=0),

which leads to

Var(∆`(Ptξ ◦ ξ)(x)) =(2π)−4
∑
k1,k2

∑
|i−j|61

∑
|i′−j′|61

I`.iI`.i′ρ2
`(k1 + k2)ρi(k1)ρj(k2)

× [ρi′(k1)ρj′(k2)e−2t|k1|2 + ρi′(k2)ρj′(k1)e−t|k1|2−t|k2|2 ].
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Observe that there exists c > 0 such that e−2t|k|2 . e−tc2
2i for all

k ∈ supp(ρi) ∪ supp(ρj) with i, j ≥ −1 and |i− j| 6 1. Thus

Var(∆`(Ptξ ◦ ξ)(x))

.
∑

i,j,i′,j′

I`.iIi∼j∼i′∼j′
∑
k1,k2

Isupp(ρ`)(k1 + k2)Isupp(ρi)(k1)Isupp(ρj)(k2)e−2tc22i

.
∑
i:i&`

22i22`e−tc2
2i
.

22`

t

∑
i:i&`

e−tc
′22i
.

22`

t
e−tc

′22`
,

where in the third step we used that t22i . et(c−c
′)22i for all 0 < c′ < c.

Consider now X � ξ(t) =
∫ t

0 Ξsds. We have for all 0 6 s < t

E[‖X � ξ(t)−X � ξ(s)‖2p
B2γ−2

2p,2p
]

=
∑
`

22p`(2γ−2)
∫
T2

E[|∆`(X � ξ(t)−X � ξ(s))(x)|2p]dx.

Since the random variable ∆`(X � ξ(t) − X � ξ(s))(x) lives in the second
non-homogeneous chaos generated by the Gaussian white noise ξ, we may
use Gaussian hypercontractivity ([22], Theorem 3.50) to bound

E[|∆`(X � ξ(t)−X � ξ(s))(x)|2p] . E[|∆`(X � ξ(t)−X � ξ(s))(x)|]2p

6
(∫ t

s

E[|∆`Ξr(x)|]dr
)2p

.

But we just showed that

E[|∆`Ξr(x)|] 6 E[|∆`Ξr(x)|2]1/2 = (Var(∆`(Prξ ◦ ξ)(x)))1/2

. r−1/22`e− 1
2 rc
′22`

= r−1/22`e−rc
′′22`

for c′′ = c′/2 > 0, and therefore(
E
[
‖X � ξ(t)−X � ξ(s)‖2p

B2γ−2
2p,2p

])1/2p

.
(∑

`

(
2`(2γ−2)

∫ t

s

r−1/22`e−rc
′′22`

dr
)2p)1/2p

6
∑
`

2`(2γ−1)
∫ t

s

r−1/2e−rc
′′22`

dr

.
∫ t

s

r−1/2
∫ ∞
−1

(2x)2γ−1e−rc
′′22x

dxdr.

The change of variable y =
√
r2x leads to(

E
[
‖X � ξ(t)−X � ξ(s)‖2p

B
2γ−2
2p,2p

])1/2p
.

∫ t

s

r−1/2r−(2γ−1)/2
∫ ∞

0
y2γ−2e−c

′′y2
dydr.
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For γ > 1/2, the integral in y is finite and we end up with(
E
[
‖X � ξ(t)−X � ξ(s)‖2p

B2γ−2
2p,2p

])1/2p
.
∫ t

s

r−γdr . |t− s|1−γ

provided that γ ∈ (1/2, 1). So for large enough p we can use Kolmogorov’s
continuity criterion to deduce that (modulo taking a modification of X �ξ)
we have E[‖X � ξ‖2p

CTB
2γ−2
2p,2p

] < ∞ for all T > 0. Since this holds for all
γ < 1, the claim now follows from the Besov embedding theorem, Lemma 8.

�
Combining Theorem 8 and Lemma 20, we are finally able to solve (5.1)

driven by a space white noise.

Corollary 2. Let ε > 0 and let F ∈ C2+ε
b and assume that u0 is a random

variable that almost surely takes its values in C 2γ for some γ ∈ (2/3, 1)
with (2 + ε)γ > 2. Let ξ be a spatial white noise on T2. Then there exists
a unique solution u to

L u = F (u) � ξ, u(0) = u0,

up to the (possibly finite) explosion time τ = τ(u) = inf{t > 0 : ‖u‖Dγ
t

=
∞} which is almost surely strictly positive.
If (ϕn) and (ξn) are as described in Lemma 20, and if (u0,n) converges

in probability in C 2γ to u0, then u is the limit in probability of the solutions
un to

L un = F (un) � ξn, un(0) = u0,n.

Remark 13. We even have a stronger result: We can fix a null set outside
of which X � ξ is regular enough, and once we dispose of that null set we
can solve all equations for any regular enough u0 and F simultaneously,
without ever having to worry about null sets again. This is for example
interesting when studying stochastic flows or when studying equations with
random u0 and F .
The pathwise continuous dependence on the signal is also powerful

in several other applications, for example support theorems and large
deviations. For examples in the theory of rough paths see [9].



Chapter 6

The stochastic Burgers
equation

Let us now return to the stochastic Burgers equation sbe

L u = ∂xu
2 + ∂xξ, u(0) = u0, (6.1)

where u : [0,∞)×T→ R, ξ is a space-time white noise, and ∂x denotes the
spatial derivative. As we argued before, the solution u cannot be expected
to behave better than the Ornstein–Uhlenbeck process X, the solution of
the linear equation LX = ∂xξ, and as we saw in Section 2 X(t) is for all
t > 0 a smooth function of the space variable plus a space white noise. By
Exercise 11, the white noise in dimension 1 has regularity C−1/2−. Thus
X ∈ CC−1/2−, and in particular u2 is the square of a distribution and a
priori not well defined.

What raises some hope is that in Lemma 2 we were able to show that
∂xX

2 exists as a space–time distribution. So as in the previous examples
there are stochastic cancellations going into ∂xX2. The energy solution
approach was designed to take those cancellations into account in the full
solution u, but while it allowed us to work under rather weak assumptions
which easily gave us existence of solutions, it did not give us sufficient
control to have uniqueness of solutions. On the other side, a suitable
paracontrolled ansatz for the solution u will allow us to transfer the
cancellation properties of X to u and it will allow us to construct ∂xu2 as a
continuous bilinear map, from where existence and uniqueness of solutions
easily follows.

81
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6.1 Structure of the solution
In this discussion we consider the case of zero initial condition and smooth
noise ξ, and we analyze the structure of the solution. Let us expand u
around the Ornstein–Uhlenbeck process X with LX = ∂xξ, X(0) = 0.
Setting u = X + u>1, we have

L u>1 = ∂x(u2) = ∂x(X2) + 2∂x(Xu>1) + ∂x((u>1)2).

Let us define the bilinear map

B(f, g) = J∂x(fg) =
∫ ·

0
P·−s∂x(f(s)g(s))ds.

Then we can proceed by performing a further change of variables in order
to remove the term ∂x(X2) from the equation by setting

u = X +B(X,X) + u>2. (6.2)

Now u>2 satisfies
L u>2 = 2∂x(XB(X,X)) + ∂x(B(X,X)B(X,X))

+2∂x(Xu>2) + 2∂x(B(X,X)u>2) + ∂x((u>2)2). (6.3)

We can imagine to make a similar change of variables to get rid of the
term

2∂x(XB(X,X)) = L 2B(X,B(X,X)).
As we proceed in this inductive expansion, we generate a number of explicit
terms, obtained by various combinations of X and B. Since we will have
to deal explicitly with at least some of these terms, it is convenient to
represent them with a compact notation involving binary trees. A binary
tree τ ∈ T is either the root • or the combination of two smaller binary
trees τ = (τ1τ2), where the two edges of the root of τ are attached to τ1
and τ2 respectively. For example

(••) = , ( •) = , ( •) = , ( ) = , . . .

Then we define recursively

X• = X, X(τ1τ2) = B(Xτ1 , Xτ2),

giving

X = B(X,X), X = B(X ,X), X = B(X ,X), X = B(X ,X ),

and so on. In this notation the expansion (6.2)–(6.3) reads

u = X +X + u>2, (6.4)

u>2 = 2X +X + 2B(X,u>2) + 2B(X ,u>2) +B(u>2, u>2). (6.5)
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Remark 14. We observe that formally the solution u of sbe can be
expanded as an infinite sum of terms labelled by binary trees:

u =
∑
τ∈T

c(τ)Xτ ,

where c(τ) is a combinatorial factor counting the number of planar
trees which are isomorphic (as graphs) to τ . For example c(•) =

1, c( ) = 1, c( ) = 2, c( ) = 4, c( ) = 1 and in general
c(τ) =

∑
τ1,τ2∈T I(τ1τ2)=τ c(τ1)c(τ2). Alternatively, we may truncate the

summation at trees of degree at most n and set

u =
∑

τ∈T ,d(τ)<n

c(τ)Xτ + u>n,

where we denote by d(τ) ∈ N0 the degree of the tree τ , given by d(•) = 0
and then inductively d((τ1τ2)) = 1 + d(τ1) + d(τ2). For example d( ) = 1,

d( ) = 2, d( ) = 3, d( ) = 3. We then obtain for the remainder

u>n =
∑

τ1, τ2 : d(τ1) < n, d(τ2) < n
d((τ1τ2)) > n

c(τ1)c(τ2)X(τ1τ2)

+
∑

τ :d(τ)<n

c(τ)B(Xτ , u>n) +B(u>n, u>n). (6.6)

Our aim is to control the truncated expansion under the natural
regularity assumptions in the white noise case, X ∈ CC−1/2−. Since (6.6)
contains the term B(X,u>n) which in turn contains the paraproduct
J∂x(u>n≺X), the remainder u>n will be at best in CC 1/2−. But then the
sum of the regularities of X and u>n is negative, and the term B(X,u>n)
is not well defined. We therefore continue the expansion up to the point
(turning out to be u>3) where we can set up a paracontrolled ansatz for
the remainder, which will allow us to make sense of ∂x(X ◦u>n) and thus
of B(X,u>n).

6.2 Paracontrolled solution
Inspired by the partial tree series expansion of u we set up a paracontrolled
ansatz of the form

u = X +X + 2X + uQ, uQ = u′≺Q+ u], (6.7)

where the functions u′, Q and u] are for the moment arbitrary, but
we assume u′, Q ∈ L γ and u] ∈ L 2γ , where from now on we fix
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γ ∈ (1/3, 1/2). For such u, the nonlinear term takes the form

∂xu
2 = ∂x(X2 + 2X X + (X )2 + 4X X) + 2∂x(uQX)

+ 2∂x(X (uQ + 2X )) + ∂x((uQ + 2X )2), (6.8)

which gives us an equation for uQ:

L uQ

=∂x((X )2 + 4X X) + 2∂x(uQX) + 2∂x(X (uQ + 2X )) + ∂x((uQ + 2X )2)

=LX + 4LX + 2∂x(uQX) + 2∂x(X (uQ + 2X )) + ∂x((uQ + 2X )2).
(6.9)

In Lemma 1 we showed thatX ∈ CH−1/2−. But now we understand Besov
spaces and Gaussian hypercontractivity well enough so that we can return
to the proof and modify the argumentation in order to show that X ∈
CC−1/2−. If we then formally apply the paraproduct estimate Theorem 4
(which is of course not possible since the regularity requirements for
the resonant term are not satisfied), we obtain X2 ∈ CC−1− and then
∂xX

2 ∈ CC−2−. Therefore, X = J(∂xX2) should be in CC 0−. Note
that Lemma 11 does not apply here, because −2− is not in (−2, 0). But
we only needed this requirement to control the temporal regularity in L∞
of the image of J . For arbitrary α ∈ R we have Ju ∈ CC α whenever
u ∈ CC α−2, see for example Lemma A.9 in [14]. Similarly we derive
the formal regularities of the remaining driving terms: X ∈ L 1/2−,
X ∈ L 1/2−, and X ∈ L 1−. In terms of γ, we can encode this as

X ∈ CC γ−1, X ∈ CC 2γ−1, X ∈ L γ , X ∈ L γ , X ∈ L 2γ .

Under these regularity assumptions the term 2∂x(X (uQ+X ))+∂x((uQ+
X )2) is well defined and the only problematic term in (6.9) is ∂x(uQX).
Using the paracontrolled structure of uQ, we can make sense of ∂x(uQX)
as a bounded operator provided that Q ◦X ∈ CC 2γ−1 is given. In
other words, the right hand side of (6.9) is well defined for paracontrolled
distributions.
Next, we should specify how to choose Q and which form u′ will take

for the solution uQ. We have formally

L uQ

=LX + 4LX + 2∂x(uQX) + 2∂x(X (uQ + 2X )) + ∂x((uQ + 2X )2)

=4∂x(X X) + 2∂x(uQX) + CC 2γ−2

=4X ≺ ∂xX + 2uQ≺ ∂xX + CC 2γ−2,
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where we assumed that not only LX ∈ CC γ−2, but that ∂x(X ◦X) ∈
CC 2γ−1 (which implies LX ∈ CC γ−2, but also the stronger statement
LX − X ≺ ∂xX ∈ CC 2γ−2). By Theorem 7, uQ is paracontrolled by
J(∂xX), and in other words we should set Q = J(∂xX). The derivative u′

of the solution uQ will then be given by u′ = 4X + 2uQ.
Unlike for pam, here we do not need to introduce a renormalization.

This is due to the fact that we differentiate after taking the square: to
construct u2, we would have to subtract an infinite constant and formally
consider u � 2 = u2 −∞, or at the level of the approximation u2

n − cn. But
then

∂xu
� 2 = lim

n→∞
∂x(u2

n − cn) = lim
n→∞

∂xu
2
n = ∂xu

2.

So we obtain the following description of the driving data for the stochastic
Burgers equation.

Definition 7. (sbe–enhancement) Let γ ∈ (1/3, 1/2) and let

Xsbe ⊆ CC γ−1 × CC 2γ−1 ×L γ ×L 2γ × CC 2γ−1 × CC 2γ−1

be the closure of the image of the map Θsbe : C(R+, C
∞(T))→ Xsbe given

by

Θsbe(θ) = (X(θ), X (θ), X (θ), X (θ), (X ◦X)(θ), (Q ◦X)(θ)),
(6.10)

where
X(θ) = J(∂xθ),
X (θ) = B(X(θ), X(θ)),
X (θ) = B(X (θ), X(θ)),
X (θ) = B(X (θ), X (θ)),
Q(θ) = J(∂xX(θ)).

(6.11)

We will call Θsbe(θ) the sbe–enhancement of the driving distribution θ.
For T > 0 we define Xsbe(T ) = Xsbe|[0,T ] and we write ‖X‖Xsbe(T ) for
the norm of X in the Banach space CTC γ−1 × CTC 2γ−1 ×L γ

T ×L 2γ
T ×

CTC 2γ−1 × CTC 2γ−1. Moreover, we define the distance dXsbe(T )(X, X̃) =
‖X− X̃‖Xsbe(T ).

For every X ∈ Xsbe, there is an associated space of paracontrolled
distributions:

Definition 8. Let X ∈ Xsbe. Then the space of paracontrolled distributions
Dγ(X) is defined as the set of all (u, u′) ∈ CC γ−1 ×L γ with

u = X +X + 2X + u′≺Q+ u],
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where u] ∈ L 2γ . For T > 0 we define

‖u‖Dγ
T

= ‖u′‖L γ
T

+ ‖u]‖CTC 2γ .

If X̃ ∈ Xsbe and (ũ, ũ′) ∈ Dγ(X̃), then we also write

dDγ
T

(u, ũ) = ‖u′ − ũ′‖L γ
T

+ ‖u] − ũ]‖CTC 2γ
T
.

We now have everything in place to solve sbe driven by X ∈ Xsbe.

Theorem 9. Let γ ∈ (1/3, 1/2). Let X ∈ Xsbe, write ∂xθ = LX, and let
u0 ∈ C 2γ . Then there exists a unique solution u ∈ Dγ(X) to the equation

L u = ∂xu
2 + ∂xθ, u(0) = u0, (6.12)

up to the (possibly finite) explosion time τ = τ(u) = inf{t > 0 : ‖u‖Dγ
t

=
∞} > 0.
Moreover, u depends on (u0,X) ∈ C 2γ × Xsbe in a locally Lipschitz

continuous way: if M,T > 0 are such that for all (u0,X) with ‖u0‖2γ ∨
‖X‖Xsbe(T ) 6 M , the solution u to the equation driven by (u0,X) satisfies
τ(u) > T , and if (ũ0, X̃) is another set of data bounded in the above sense
by M , then there exists C(M) > 0 for which

dDγ
T

(u, ũ) 6 C(M)(‖u0 − ũ0‖2γ + dXsbe(T )(X, X̃)).

Proof. By definition of the term ∂xu
2, the distribution u ∈ Dγ(X)

solves (6.12) if and only if uQ = u−X −X − 2X solves

L uQ = LX +4∂x(X X)+2∂x(uQX)+2∂x(X (uQ+2X ))+∂x((uQ+2X )2)

with initial condition uQ(0) = u0. This equation is structurally very
similar to pam (5.1) and can be solved using the same arguments, which
we do not reproduce here. �
For this result to be of any use we still have to show that if ξ is the space-

time white noise, then there is almost surely an element of Xsbe associated
to ∂xξ. While for pam we needed to construct only one term, here we have
to construct five terms: X ,X ,X ,X ◦X,Q ◦X. For details we refer
to [16]. Alternatively we can simply differentiate the extended data which
Hairer constructed for the KPZ equation in Chapter 5 of [18].
The same approach allows us to solve the KPZ equation L h =

(∂xh) � 2 + ξ, and if we are careful how to interpret the product w � ξ,
then also the linear heat equation Lw = w � ξ. In both cases the solution
depends continuously on some suitably extended data that is constructed
from ξ in a similar way as described in Definition 7. Moreover, the formal
links between the three equations that we discussed in Section 4.2 can be
made rigorous. These results are included in [16].
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