
SOCIEDADE BRASILEIRA DE MATEMÁTICA ENSAIOS MATEMÁTICOS
2016, Volume 30, 246–262

https://doi.org/10.21711/217504322016/em304

Contents

1 Introduction . 248
2 Background information . 249
3 Calculating the Seifert matrix from a braid representation . 254
4 Other things we can make the program do 259
5 Questions old and new . 259
Appendix . 261
Bibliography . 261

247

248 Julia Collins

1 Introduction

For every link L ⊂ S3 there exists a compact orientable surface Σ ⊂ S3

with L as its boundary. This result is due to Frankl and Pontrjagin, who
proved it in 1930 ([4]), but the most well-known proof is due to Herbert
Seifert in 1935 ([9]). He constructed an explicit algorithm for finding such
a surface from a knot diagram, and subsequently any such surface became
known as a Seifert surface.

Given a link L and a connected Seifert surface Σ, we can find a set of
generators for the first homology group of Σ and work out the pairwise
linking numbers for these. This defines an integer matrix which is called a
Seifert matrix. Being in such a convenient algebraic format makes it easy
to define powerful invariants from it, such as the Alexander polynomial,
and it is also easily generalisable to higher dimensional knots.

The program SeifertView, created by Jarke J. van Wijk and Arjeh M.
Cohen ([10]), was designed to help people visualise Seifert surfaces of knots
and links. Every link has a representation as a closed braid, and the braid
notation is a very convenient format in which to put the link as an input to
the computer. SeifertView takes a braid as an input and applies Seifert’s
algorithm to it to obtain a Seifert surface for each knot and link. But
although this is an excellent program for visualising these 3D surfaces, the
user is not provided with any technical information about the surface they
are looking at.

This paper describes an algorithm called Seifert for finding the
Seifert matrix of the Seifert surface and homology generators determined
algorithmically from a braid representation of a knot or link. From this
we can find simple invariants such as the determinant of the knot or
the genus of the surface, as well as more complicated invariants like the
Alexander polynomial. As with SeifertView, an extended program which
can cope with pretzel notation is developed, as this is a more concise way
of encoding a link in a braid-like representation and produces surfaces of
lower genus than that produced by the original program. This notation
allows for Seifert matrices which contain any integer value, whereas the
original Seifert program produces matrices containing only ±1s and zeros.

Section 2 provides the necessary background on Seifert matrices and
braids. Section 3 describes the main idea behind the program and the
details of how to find a Seifert matrix for a braid. Finally, in Section 4 we
discuss extensions which could be made to the program and directions for
further research.

A website accompanying this algorithm can be found at http://www.
maths.ed.ac.uk/~jcollins/SeifertMatrix.

http://www.maths.ed.ac.uk/~jcollins/SeifertMatrix
http://www.maths.ed.ac.uk/~jcollins/SeifertMatrix

An algorithm for computing the Seifert matrix 249

Program summary
This algorithm has been implemented in Matlab, C++ and Javascript.
Input: The user has two equivalent choices of how to input a braid
representation. (See Section 2.2 to find out what the notation means.)

1. As a numerical vector, e.g., [1 1 1] for the trefoil and [1 -2 1 -2] for
the figure eight knot.

2. As an alphabetical string, e.g. ‘AAA’ for the trefoil and ‘AbAb’ for
the figure eight knot.

Output: The Seifert program outputs the following information:

1. A Seifert matrix M for the canonical Seifert surface associated with
the braid.

2. The genus of the associated surface.

3. The number of disconnected surfaces produced by Seifert’s algorithm
on the braid.

4. A declaration of whether the braid is a knot, and if not, how many
components it has.

5. The coefficients of the Alexander polynomial of the braid.

2 Background information
We start off by reminding the reader of the relevant knot theory definitions.
A knot is an embedding of S1 into S3, and a link is an embedding of a
disjoint union of circles into S3.

2.1 Seifert surfaces and matrices
Definition 2.1. A Seifert surface of an oriented link L ⊂ S3 is a compact
orientable surface whose boundary coincides with that of the link.

Remark 2.2. We will not assume that the Seifert surface must be
connected, although this is sometimes part of the definition in other texts
(e.g. [6] and [8]).

Theorem 2.3. Every oriented link has a Seifert surface.

Proof. (Seifert [9]) (The following method is known as Seifert’s algorithm.)
Fix an oriented projection of the link. At each crossing of the projection
there are two incoming strands and two outgoing strands. Eliminate
the crossings by swapping which incoming strand is connected to which

250 Julia Collins

outgoing strand (see diagram below). The result is a set of non-intersecting
oriented topological circles called Seifert circles, which, if they are nested,
we imagine being at different heights perpendicular to the plane with the z-
coordinate changing linearly with the nesting. Fill in these circles, giving
discs, and connect the discs together by attaching twisted bands where
the crossings used to be. The direction of the twist corresponds to the
direction of the crossing in the link.

This procedure forms a surface which has the link as its boundary, and
it is not hard to see that it is orientable. If we colour the Seifert circles
according to their orientation, e.g. the upward face blue for clockwise and
the upward face red for anticlockwise, then the twists will consistently
continue the colouring to the whole surface. �

Of course, the Seifert surface of a link is not unique in any way, and
even Seifert’s algorithm applied to different link projections will result in
different surfaces. Since the surface itself cannot be an invariant of the
link, we need to look for other information given in the Seifert surface.
The first of these is the genus.

Definition 2.4. The genus of a connected orientable surface with
boundary is the genus of the corresponding surface without boundary
obtained by capping off each boundary component with a disc. The
genus of a disconnected surface Σ made up of k connected components
Σ = Σ1 t · · · t · · · t Σk is the sum g(Σ1) + · · · + g(Σk) of the individual
genera.

Definition 2.5. The genus of a link is the minimal genus of all the Seifert
surfaces of the link.

In practice this is a very difficult invariant to calculate, especially
since, in some cases, there is no projection of the knot for which Seifert’s
algorithm produces a surface of minimal genus ([7]). However, it has some
useful properties, the main one being that it is additive, i.e. g(K1 +K2) =
g(K1) + g(K2). (See [6], pg 17, for a proof.) Also, for alternating knots
(i.e. a knot whose oriented diagram alternates between over and under
crossings as you follow it around), Seifert’s algorithm does indeed provide
a minimal genus surface ([5]).
The genus of a connected Seifert surface produced using Seifert’s

algorithm is easily calculable using the following formula.

An algorithm for computing the Seifert matrix 251

Lemma 2.6. If a connected Seifert surface is produced from the projection
of a link with s Seifert circles, c crossings and n components then it will
have genus

g = 1− s− c+ n

2 . (1)

Proof. Suppose we have a connected Seifert surface with s and c given
as above. We can contract the surface down to a graph which has s
vertices (each Seifert circle contracts to a point) and c edges. The Euler
characteristic χS of this surface is

χS = #vertices−#edges + #faces = s− c+ 0.

The Euler characteristic χC of the corresponding closed surface (without
boundary) is s−c+n. Finally, the genus is calculated from g = 1

2 (2−χC),
which gives us the result. Putting n = 1 gives us the result in the case of
a knot. �

Corollary 2.7. A Seifert surface Σ = Σ1tΣ2t · · ·tΣk with k connected
components, produced using Seifert’s algorithm, has genus

g = k − s− c+ n

2 . (2)

with s, c and n as in Lemma 2.6.

Remark 2.8. If Seifert’s algorithm gives us a disconnected surface which
is a union of connected surfaces Σ1, . . . ,Σk then the genus of this is the
same as the genus of the connected sum:

g(Σ1 t · · · t Σk) = g(Σ1) + · · ·+ g(Σk) = g(Σ1# . . .#Σk).

Although a Seifert surface is not an invariant of a link, it can still provide
us with a lot of information about the structure of the link. One object
which encapsulates this information is called a Seifert matrix.

Definition 2.9. Suppose that D is a regular oriented projection of a two-
component link with components J and K (so that whenever two strands
meet in the projection they do so transversally). Assign each crossing a
sign:

??__

+1 (right-handed)

??__

−1 (left-handed)

252 Julia Collins

The linking number lk(J,K) ∈ Z of J and K is half the sum of the signs
of the crossings at which one strand is from J and the other is from K.
Equivalently we may take the sum of the signs of the crossings in the
diagram at which K crosses J , as the linking number is symmetric.

Definition 2.10. Let L be an oriented link of n components and Σ a
Seifert surface for L. Take a basis {[fi]} for H1(Σ;Z). The orientation of
Σ determines a normal direction, which we will think of as being the ‘top’
of the surface. Now, given any simple oriented curve f on Σ, we can form
the positive push off of f , denoted f+, which runs parallel to f and lies
just above Σ. The Seifert matrix of L is the integer matrixM with (i, j)th

entry
mij = lk(fi, f

+
j).

The Seifert matrix of a knot or link is not an invariant, as it is not unique.
We may get different matrices by choosing different basis curves on our
surface, or by using a different surface altogether. However, the effect of
these changes on the Seifert matrix are well-known ([6], pg 81) and, as
with the Seifert surface, we can therefore construct very good invariants
from it.

Definition 2.11. The Alexander polynomial of a link L with Seifert
matrix M coming from a connected Seifert surface is given by the formula

∆L(t) = det(M − tMT)

whereMT denotes the transpose ofM . For a link which has a disconnected
Seifert surface we define the Alexander polynomial to be zero.

Remark 2.12. Because of the non-uniqueness of the Seifert matrix, the
Alexander polynomial is only well-defined up to multiplication by ±t±n.
However, up to this ambiguity the Alexander polynomial is an invariant
of the knot ([6], pg 82 - this proof is easily adapted from the Conway
polynomial to the Alexander polynomial).

Definition 2.13. The determinant of a knot K is |∆K(−1)|.

Definition 2.14. For a unit modulus complex number ω 6= 1, we define
the ω-signature σω(L) of a link L to be the signature of the Hermitian
matrix (1−ω)M +(1−ω)MT . The signature of a matrix is the number of
positive eigenvalues minus the number of negative eigenvalues. If ω = −1
we call σ−1(L) the signature of L.

2.2 Braid representations
Definition 2.15. A braid consists of m strings travelling directly from
left to right, from one vertical bar to another, with the proviso that they

An algorithm for computing the Seifert matrix 253

1

3

2

1

3

2

1 1 1 2 -1 2[]

Figure 1: The braid representation of the knot 52.

must not loop back on themselves during the journey. If the strings on
the right-hand bar are then joined back to the strings on the left-hand bar
without making any further crossings, then the resulting object is called a
closed braid. A braid is described by enumerating the crossings: we write
j if strand j crosses over j + 1, and write −j if strand j goes under j + 1.

Remark 2.16. 1. The convention of whether j stands for a positive
or negative crossing varies exceedingly, so when looking at tables
of braid representations it is imperative that the user knows which
notation is being used. Sometimes [1 1 1] will be a left-handed trefoil,
and sometimes it will be taken to mean a right-handed trefoil. We
have chosen our notation because it is consistent with the definition
of the linking number, which uses +1 as a positive crossing.

2. An alternative notation is to use letters of the alphabet to denote
crossings instead of numbers. Uppercase letters denote positive
crossings and lowercase letters denote negative crossings. For
example, [1 –2 1 –2] ≡ ‘AbAb’, [1 1 2 –1 –3 2 –3] ≡ ‘AABacBc’.

Definition 2.17. The braid index m is the number of strands in the braid.
The braid length l is the number of crossings in the braid representation;
equivalently, the length of the vector (or word) used to describe it.

Remark 2.18. A braid also defines a permutation σ ∈ Sm as follows:
σ(i) is the position of the ith string when it reaches the right-hand vertical
bar. The number of cycles in σ give the number of components n of the
link that is defined by the closed braid.

Example 2.19. The knot 52 has the braid representation [1 1 1 2 -1 2],
as shown in Figure 1. In this case we have m = 3, l = 6 and σ = (123).

The following theorem gives us a justification for only concentrating on
braids.

254 Julia Collins

Theorem 2.20 (Alexander, 1923). Every knot (and link) has a closed
braid representation.

Proof. A proof will not be given here, but the reader is invited to look at
the original paper of Alexander ([1]) or the book of Burde & Zieschang
([3], page 24). �

The braid representation of a link is by no means unique, but we can try
to find representations which minimise the braid index or the braid length.
Alexander’s original method of producing braids was far from optimal in
this respect but a lot of work has been done since then, most notably by
Vogel ([11]) who described an algorithm for finding braid representations
from knot diagrams which was more efficient than before and also easily
programmed into computers. (An implementation may be found in the
Braid Programme by Andrew Bartholomew [2].)
A braid has a very naturally-induced Seifert surface. If we apply Seifert’s

algorithm to the braid diagram we have drawn, we see that each strand
turns into a Seifert circle. Thus we can calculate the genus of the Seifert
surface induced by the braid representation using Equation (2), which
translates as:

induced genus = k − m− l + n

2 (3)

where k is the number of connected components of the surface, l is the
braid length, m is the braid index and n is the number of components of
the braid.
However, this induced braid genus is sometimes higher than the actual

genus of the knot, even when the braid representation is as ‘small’ as is
possible. For which knots does this happen and why?
Since a braid has a canonical Seifert surface associated with it and this

surface has canonical homology generators, it is a natural next step to
calculate the Seifert matrix. A method for this is described in the next
section.

3 Calculating the Seifert matrix from a braid
representation

Our program will be called Seifert. The user will input a braid
representation into the program, in the form of a numerical vector x =
[x1 x2, . . . , xl]. They may also input an alphabetical version of the braid
representation (see Remark 2.16) which the program will translate into the
appropriate numerical notation.
To find the Seifert matrix of a braid we first we need to tell the computer

how to find a set of homology generators of the corresponding surface
(found from Seifert’s algorithm). Then we need to find all the ways

An algorithm for computing the Seifert matrix 255

in which the generators could interact with each other, and what the
corresponding linking numbers are for these situations.

3.1 Finding the homology generators
To be able to find a Seifert matrix for our surface we need to pick a set of
homology generators with which to work. There is a fairly obvious choice
to make.

Lemma 3.1. Given a braid representation [x1, x2, . . . , xl], there is a
homology generator for the corresponding Seifert surface Σ between each
two adjacent crossings on the same strands, i.e. between each xi and xj

where |xi| = |xj | and |xk| 6= |xi| for all i < k < j. These constitute a basis
for H1(Σ;Z).

Proof. Suppose first that Σ is connected. To find a basis for the first
homology group of Σ, we must first know the rank of H1(Σ;Z). We
know that rkH1(ΣC ;Z) = 2g, where ΣC is the corresponding closed
surface obtained by capping off the boundary components of Σ with
discs, and g the genus of this surface. We also know that rkH1(Σ;Z) =
rkH1(ΣC ;Z)+n−1, where n ≥ 1 is the number of boundary components of
Σ. Combining these pieces of information with Formula (3) (using k = 1)
gives us

rkH1(Σ;Z) = 2g + n− 1 = (2−m+ l − n) + n− 1 = 1−m+ l.

When Σ = Σ1 t · · · t Σk with the Σi connected, then we have

rkH1(Σ;Z) =
k∑

i=1
rkH1(Σi;Z) = k −m+ l. (4)

It is clear that the homology generators given in the lemma are all
linearly independent, so it remains to show that they are a maximal such
set.
Suppose that between strands i and i+ 1 there are li crossings. Lemma

3.1 then gives us li−1 homology generators between those strands. Notice
that li = 0 means that a new connected component of Σ is starting, so
there are k − 1 instances of li = 0. In total, therefore, there are

m−1∑
i=1,li 6=0

(li − 1) = (k − 1) +
m−1∑
i=1

(li − 1)

= (k − 1) + (l1 + · · ·+ lm−1)− (m− 1)
= k + l −m
= rkH1(Σ;Z)

generators. These generators are therefore a basis for rkH1(Σ;Z). �

256 Julia Collins

Our convention will be to number the generators in ascending order
according to the order in which the first crossing of the generator appears
in the braid representation.

Example 3.2. In Figure 2 we can see the homology generators of the
braid representative of the knot 52. On the left they are shown on the
braid diagram of 52, and on the right they are drawn onto SeifertView’s
image of the surface of 52.

1

3

2

1

3

2

1 1 1 2 -1 2[]

1

4

32

2Figure 2: A set of homology generators for the knot 52.

The first part of the Seifert program implements this idea and puts the
information in a vector h. For each i = 1, . . . l − 1, the computer checks
for the next vector entry with the same absolute value as |xi|, say xj , and
then assigns h(i) = j. If there is no such entry to be found then h(i) = 0.
The vector h captures all the information about the homology generators

we need to be able to calculate their linking numbers.

3.2 Diagonal entries

The first task in the Seifert matrix to calculate is how the homology
generators interact with themselves. Each generator goes through two
crossings. If these crossings are of opposite sign, then the linking number
mii is zero. If the crossings are both right handed (i.e. x(i) and h(x(i))
are both positive) then the mii = −1. Similarly, if the crossings are both
left handed (so x(i) and h(x(i)) are both negative) then mii = 1.

An algorithm for computing the Seifert matrix 257

i i

i + i +

i

i +

i

i +

3.3 Non-diagonal entries

The most important part of Seifert is a long ‘if’ loop which tells the
computer how to work out the non-diagonal entries of the matrix. There
are five cases to consider. Let xi and xj be two elements of x, with i < j
and h(i) 6= 0 (so that there is a homology generator at i).

1. If h(i) > h(j) then mij = 0 = mji. This corresponds to the following
situation:

i

j

Note that this also will include the case where h(j) = 0 and j has no
homology generator, so there is no reason to treat that case specially.

2. If h(i) < j then clearly mij = 0 = mji as the two generators cannot
interact.

3. If h(i) = j then there are two cases to consider. The first (top
picture) is when xj is a right handed crossing (so xj > 0) and the
second (bottom picture) is when xj is a left handed crossing (so
xj < 0).

258 Julia Collins

i j

i j

i +

j +

j +

i +

To calculate mij we must push j slightly off the surface and see
how it interacts with i. In the first case we get two disjoint circles,
so mij = 0, and in the second case we have mij = −1 from the

diagram �� j+OO
i . If instead we push i off the first surface we

get mji = 1 from �� jOO
i+ and mji = 0 in the second surface.

After these three cases, we are in the situation where i < j < h(i) <
h(j).

4. If the crossings are separated by more than one strand, then there
will clearly be no linking (e.g. if one crossing is between strands 1
and 2, and another is between strands 3 and 4). For the algorithm,
we write that if

∣∣∣|x(i)| − |x(j)|
∣∣∣ > 1 then mij = 0 = mji.

5. The last situation is where
∣∣∣|x(i)| − |x(j)|

∣∣∣ = 1, which again splits
into two cases:

i

j i

j

j +
i +

In the first case (left-hand picture) we have |x(i)| − |x(j)| = −1. We

find that mij = 1, from the diagram �� j+OO
i , and mji = 0.

An algorithm for computing the Seifert matrix 259

In the second case (right-hand picture) we have |x(i)| − |x(j)| = 1.

We find that mij = 0, and mji = −1 from �� jOO
i+ .

These are all the possible cases which could occur in a braid
representation of a link, so the algorithm is essentially complete. If h(i)
should equal zero, we tell the program to put a row and column of zeros
at position i.

3.4 Tidying up
After the computer has executed this part of the program we will have a
matrix of dimension one less than the braid length. This is clearly not what
we want: we need to delete the rows and columns which have occurred as
a result of h(i) being zero.

4 Other things we can make the program do
There are some immediate things we can calculate from the information
we have gathered. First of all we can find the genus of the surface from
which the Seifert matrix is calculated, using formula (3). It is interesting
to see how much higher this is than the actual genus of the knot (which is
the minimum genus over all possible Seifert surfaces).
Secondly, we can calculate the Alexander polynomial of the knot, as

described in Definition 2.11. This is a good way of checking that the
program is working correctly - it is difficult to check whether the matrix
is correct as there are many Seifert matrices of the same knot, but the
Alexander polynomial is a true invariant and can be looked up in any
book. (Seifert computes the correct Alexander polynomials for all prime
knots up to and including those with 12 crossings.)
We can also calculate the signature of the knot, as described in Definition

2.14. This is an invariant which is able to detect the chirality of the knot
(i.e. whether it is its own reflection), a property which the previous two
invariants do not have. It is also useful for studying slice knots.

5 Questions old and new
A question that was asked in the first section was “Why does the braid
representation of a knot sometimes provide us with a non-minimal genus
surface?”. A tentative answer may be raised to this. It is clear that this
algorithm of finding a Seifert matrix from a braid representation will result
in a matrix containing only 0’s, 1’s and -1’s. However, if we look at a

260 Julia Collins

surface of minimal genus associated with such a ‘degenerate’ knot, then
its Seifert matrix will contain higher numbers on the leading diagonal. For
example, the knot 61 is of genus 1 and has Seifert matrix(

1 0
1 −2

)
whereas the matrix produced by the program from the braid representation
[1 1 2 -1 -3 2 -3] is

−1 1 0 0
0 0 1 0
0 0 −1 1
0 0 0 1

which corresponds to a surface of genus 2. Notice that the sum of the
elements on the leading diagonal is the same in both cases - a 4×4 matrix
is the smallest possible (even-dimensional) matrix consisting of only ±1′s
and 0′s with this property.
However, this vein of reasoning does not fully answer the question, as

the case of 72 shows. Its Seifert matrix has genus 1 and is(
−1 1
0 −3

)
so we may conjecture that our algorithm will produce a matrix of
dimension 4 with all −1′s on the leading diagonal. However, applying
the program gives us

−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 0 1 0 0
0 0 0 −1 1 0
0 0 0 0 0 1
0 0 0 0 0 −1

which has dimension 6. Why is this? If we could identify a pattern in
the matrices of ‘degenerate’ knots then we might be able to apply our
knowledge to knots of higher crossing numbers for which the genus and
Seifert matrix are unknown, and give a good upper bound (or even exact
bound!) on the genus.
A second question would be to devise a program that could tell when

two Seifert matrices corresponded to the same knot. We would need to
know the effect of Markov moves on the matrix, or to be able to identify
when matrices are S-equivalent.
A third question to ask is whether the Seifert matrices generated by

Seifert uniquely determine the knot, and if not, whether there is a class of
links for which this is true.

An algorithm for computing the Seifert matrix 261

Appendix: A review of other programs
• SeifertView by Jarke van Wijk and Arjeh Cohen (http://www.win.

tue.nl/~vanwijk/seifertview) is a program designed to visualise
Seifert surfaces in 3 dimensions. It is an excellent way of seeing how
Seifert’s algorithm creates a Seifert surface from a braid, but gives
no mathematical information about the surface or the braid.

• The Braid Programme by Andrew Bartholomew (http://www.
layer8.co.uk/maths/braids) is a C++ program designed to
calculate invariants, including the Alexander polynomial, for braids
and virtual braids. This is a very powerful tool but it does not
compute Seifert matrices of braids.

• seifert by Morwen Thistlethwaite (http://www.math.utk.edu/
~morwen/seifert) is a C++ program designed to calculate Seifert
matrices of knots, where the knot must be given in its Dowker
notation. A fully functional program which makes use of Seifert’s
algorithm, but has not yet been extended to deal with links. The
code is more complicated than the one given in this paper because of
the limitations of the Dowker notation, so that the program has to
always keep track of what is happening at each crossing of the knot.

• Seifert’s Algorithm, Châtelet Bases and the Alexander Ideals of
Classical Knots by Killian O’Brien (http://www.maths.ed.ac.uk/
~jcollins/killian.pdf) describes an algorithm to compute Seifert
matrices of knots from the Dowker notation. This was implemented
in Maple, but once again the code is quite complicated due to the
limitations of the notation.

Bibliography
[1] Alexander, J. W. A lemma on systems of knotted curves.

Proceedings of the National Academy of Sciences 9, 3 (1923), 93–95.

[2] Bartholomew, A. Braid Programme. http://www.layer8.co.uk/
maths/braids/.

[3] Burde, G., and Zieschang, H. Knots. De Gruyter Studies in
Mathematics 5. W. de Gruyter, 2003.

[4] Frankl, F., and Pontrjagin, L. Ein Knotensatz mit Anwendung
auf die Dimensionstheorie. Mathematische Annalen 102, 1 (1930),
785–789.

http://www.win.tue.nl/~vanwijk/seifertview
http://www.win.tue.nl/~vanwijk/seifertview
http://www.layer8.co.uk/maths/braids
http://www.layer8.co.uk/maths/braids
http://www.math.utk.edu/~morwen/seifert
http://www.math.utk.edu/~morwen/seifert
http://www.maths.ed.ac.uk/~jcollins/killian.pdf
http://www.maths.ed.ac.uk/~jcollins/killian.pdf
http://www.layer8.co.uk/maths/braids/
http://www.layer8.co.uk/maths/braids/

262 Julia Collins

[5] Gabai, D. Genera of the alternating links. Duke Mathematical
Journal 53, 3 (1986), 677–681.

[6] Lickorish, W. B. R. An Introduction to Knot Theory, vol. 175 of
Graduate Texts in Mathematics. Springer-Verlag, New York, 1997.

[7] Moriah, Y. On the free genus of knots. Proceedings of the American
Mathematical Society (1987), 373–379. http://www.math.technion.
ac.il/~ymoriah/papers/Free_genus_Pub.pdf.

[8] Rolfsen, D. Knots and links. Mathematics Lecture Series, Publish
or Perish Inc. (1976).

[9] Seifert, H. Über das Geschlecht von Knoten. Mathematische
Annalen 110, 1 (1935), 571–592.

[10] Van Wijk, J. J., and Cohen, A. M. Visualization of Seifert
surfaces. IEEE Transactions on Visualization and Computer Graphics
12, 4 (2006), 485–496.

[11] Vogel, P. Representation of links by braids: A new algorithm.
Commentarii Mathematici Helvetici 65, 1 (1990), 104–113.

Julia Collins
University of Edinburgh, School of Mathematics
Edinburgh EH9 3FD, UK
Julia.Collins@ed.ac.uk
http://www.maths.ed.ac.uk/~jcollins/

http://www.math.technion.ac.il/~ymoriah/papers/Free_genus_Pub.pdf
http://www.math.technion.ac.il/~ymoriah/papers/Free_genus_Pub.pdf
http://www.maths.ed.ac.uk/~jcollins/

