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Chapter 1

Introduction

A constructive approach to integrability is based upon the study of
hidden and rich algebraic or analytic structures associated with integrable
equations. In this survey algebraic structures associated with integrable
ODEs and PDEs with two independent variables are considered. Some
of them are related to Lax representations for differential equations.
Furthermore, the bi-Hamiltonian formalism and the AKS factorization
method are considered. Structures relevant to Yang-Baxter r-matrix are
not discussed since many nice books have been written on the subject (see,
for example [18, 63]).
The statements are formulated in the simplest form but usually possible

ways for generalization are pointed out. In the proofs only essential
points are mentioned while for technical details references are given. The
text contains many carefully selected examples, which give a sense of the
subject. A number of open problems are suggested.
The author is not a scrabble in original references. Instead, some

references to reviews, where an information of pioneer works can be found,
are given.
The survey is addressed to both experts in algebra and in classical

integrable systems. It is accessible to PhD students and can serve
as an introduction to classical integrability for scientists with algebraic
inclinations.
The exposition is based on a series of lectures delivered by the author

in USP (Sao Paulo, 2015).
The contribution of my collaborators I. Golubchik, V. Drinfeld, and A.

Odesskii to results presented in this survey is difficult to overestimate.
The author is thankful to the first readers of the survey A. Zobnin and

S. Carpentier who made many suggestions and found a lot of misprints,
contributing to the improvement of the text.
The author is grateful to V. Kac, I. Shestakov and V. Futorny for their
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attention and to FAPESP for the financial support (grants 2014/00246-
2 and 2016/07265-8) of my visits to Brazil, where the survey has been
written.

1.1 List of basic notation

1.1.1 Constants, vectors and matrices
Henceforth, the field of constants is C; u stands for N -dimensional
vector, namely u = (u1, . . . , uN ). Moreover, the standard scalar product∑N
i=1 u

i vi is denoted by 〈u, v〉.
The associative algebra of order “m” square matrices is denoted by

Matm; the matrix {uij} ∈ Matm is denoted by U. The unity matrix is
denoted by 1 or 1m. The notation Ut stands for the matrix transpose of
U.
For the set of n×m matrices we use the notation Matn,m.

1.1.2 Derivations and differential operators
For ODEs the independent variable is denoted by t, whereas for PDEs we
have two independent variables t and x. Notation ut stands for the partial
derivative of u with respect to t. For the x-partial derivatives of u the
notation ux = u1, uxx = u2, etc, is used.
The operator d

dx is often denoted by D. For the differential operator
L =

∑k
i=0 aiD

i we define the operator L+ as

L+ =
k∑
i=0

(−1)iDi ◦ ai,

where ◦ means that, in this formula, ai is the operator of multiplication
by ai. By Lt we denote

Lt =
k∑
i=0

(ai)tDi.

1.1.3 Differential algebra
We denote by F a differential field. For our main considerations one
can assume that elements of F are rational functions of a finite number
of independent variables ui. However, very often we find some functions
solving overdetermined systems of PDEs. In such a case we have to extend
the basic field F . We will avoid any formal description of such extensions
hoping that in any particular case it will be clear what we really need from
F .
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The principle derivation

D
def= ∂

∂x
+
∞∑
i=0

ui+1
∂

∂ui
, (1.1)

generates all independent variables ui starting from u0 = u.
When we speak of solutions (or common solutions) of ODEs and PDEs,

we mean local solutions with generic initial date.

1.1.4 Algebra
We denote by A(◦) an N -dimensional algebra A over C with an operation
◦. A basis of A is denoted by e1, . . . , eN , and corresponding structural
constants by Cijk:

ej ◦ ek = Cijk ei.

In what follows we assume that the summation is carried out over repeated
indices. We will use the following notation:

As(X,Y, Z) = (X ◦ Y ) ◦ Z −X ◦ (Y ◦ Z), (1.2)
[X,Y, Z] = As(X,Y, Z)−As(Y,X,Z). (1.3)

By G and A we usually denote a Lie and an associative algebra,
respectively.
The algebra of Laurent series of the form

S =
∞∑

i=−n
ciλ

i, ci ∈ C, n ∈ Z

is denoted by C((λ)), for the subalgebra of Taylor series we use C[[λ]] and
C[λ] stands for polynomials in λ. By S+ and S− we denote

S+ =
∞∑
i=0

ciλ
i, and S− =

−1∑
i=−n

ciλ
i,

respectively. We use a similar notation for the commutative and non-
commutative Laurent series with coefficients from Lie and associative
algebras.

1.2 Lax pairs
The modern theory of integrable systems was inspired by the discovery of
the inverse transform method [54], [1, Chapter 1]. The main ingredient
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of this method is a Lax representation for a differential equation under
investigation.
A Lax representation for a given differential equation is a relation of the

form
Lt = [A, L], (1.4)

where L and A are some operators, which is equivalent to the differential
equation. To apply the technique of the inverse scattering method the
operators L and A should depend on an additional (complex) parameter
λ.

ODE case

A Lax representation for a differential equation

ut = F(u), u = (u1, . . . ,uN), (1.5)

is a relation of the form (1.4), where L = L(u, λ), A = A(u, λ) are some
matrices.

Lemma 1.1. i) If L1 and L2 satisfy (1.4), then L = L1L2
satisfies (1.4);

ii) L̄ = Ln satisfies (1.4) for any n ∈ N;

iii) trLn is an integral of motion for (1.5);

iv) the coefficients of the characteristic polynomial Det (L − µ1) are
integrals of motion.

Proof. Item i). We have

Lt = (L1)tL2 + L1(L2)t = [A, L1]L2 + L1[A, L2] = AL− LA.

Item ii) follows from Item i). Item iii): if we apply the trace functional to
both sides of the identity (Ln)t = [A, Ln], we get (trLn)t = 0. Item iv)
follows from Item ii) and from the formula

Det(L− µ1) = exp (tr (log (L− µ1))).

Example 1.1. [46] Let U(t) be an m×m-matrix,

L = aλ+ U, A = U2

λ
,

where a = diag(a1, . . . , am). Then (1.4) is equivalent to the ODE

Ut = [U2, a]. (1.6)
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If

U =

 0 u1 u2
−u1 0 u3
−u2 −u3 0

 , a =

 a3 0 0
0 a2 0
0 0 a1

 ,

where ai are arbitrary parameters, then (1.6) is equivalent to the Euler
top

(u1)t = (a3−a2)u2u3, (u2)t = (a1−a3)u1u3, (u3)t = (a2−a1)u1u2.

The characteristic polynomial Det (L− µ1) is given by

(µ− a1λ)(µ− a2λ)(µ− a3λ) + (u2
1 + u2

2 + u2
3)µ+ (a1u

2
1 + a2u

2
2 + a3u

2
3)λ.

The coefficients of the monomials in λ and µ provide two non-trivial first
integrals for the Euler top. The corresponding characteristic curve

Det (L− µ1) = 0

is elliptic. The eigenfunction Ψ(λ, µ, t) satisfying

LΨ = µΨ (1.7)

defines a vector bundle over this curve. The dependence Ψ on t is described
by the linear equation

Ψt = AΨ. (1.8)
Using (1.7) and (1.8), one can construct Ψ(t) and after that find the
corresponding solution U(t).
The assumption that L and A in (1.4) are functions of t and λ with

values in a finite-dimensional Lie algebra G is a remarkable specification
in the case of generic matrices L and A, which reduces the number of
unknown functions in the corresponding non-linear system of ODEs.

Remark 1.1. We may assume also that in (1.4) the A-operator belongs
to G while L belongs to a module over G (see, for example, [28]).

Lax pairs for evolution PDEs

Example 1.2. The Lax pair (1.4) for the KdV equation

ut = uxxx + 6uux (1.9)

found by P. Lax in [43] is given by

L = D2 + u+ λ, A = 4D3 + 6uD + 3ux, D = d

dx
.

In contrast with Example 1.1, here L and A are differential operators. The
relations (1.7), (1.8) allow to construct Ψ(x, t) by the inverse scattering
method and, as a result, to find the corresponding solution u(x, t) for the
KdV equation.
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Example 1.3. The Lax representation for the nonlinear Schrödinger (NLS)
equation written as a system of two equations

ut = −uxx + 2u2v, vt = vxx − 2v2u (1.10)

has been found by V. Zakharov and A. Shabat [88]. The Lax L-operator
is defined by

L = D + λ

(
1 0
0 −1

)
+
(

0 u
v 0

)
.

The operator A is a polynomial in λ with matrix coefficients which depend
on u, v, ux, vx, uxx, vxx, . . . (see Section 2.2).
In this example the L-operator has the form L = D − B, where B is

a matrix depending on unknown functions and the spectral parameter λ.
For this special case equation (1.4) can be written as

Ax −Bt = [A, B]. (1.11)

Relation (1.11) is called a zero-curvature representation.
In contrast with the ODE case (see Remark 1.1) we may additionally

assume only that A and B in (1.11) are functions of x, t, λ with values in
a finite-dimensional Lie algebra G. In the NLS case we have G = sl2.

1.3 Hamiltonian structures
Let y1, . . . , ym be coordinate functions. Any Poisson bracket between
functions f(y1, . . . , ym) and g(y1, . . . , ym) is given by

{f, g} =
∑
i,j

Pi,j(y1, . . . , ym) ∂f
∂yi

∂g

∂yj
, (1.12)

where Pi,j = {yi, yj}. The functions Pij are not arbitrary since by
definition

{f, g} = −{g, f}, (1.13)

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0. (1.14)

Formula (1.12) can be rewritten as

{f, g} = 〈grad f, H(grad g)〉, (1.15)

where H = {Pi,j} and 〈·, ·〉 is the standard scalar product. H is called a
Hamiltonian operator or a Poisson tensor.
Definition 1.1. The Poisson bracket is called degenerate if DetH = 0.
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The Hamiltonian dynamics is defined by

dyi
dt

= {H, yi}, i = 1, . . . ,m, (1.16)

where H is a Hamiltonian function. If {K, H} = 0, then K is an integral
of motion for the dynamical system. In this case the dynamical system

dyi
dτ

= {K, yi}

is an infinitesimal symmetry for (1.16) [60].
If {J, f} = 0 for any f , then J is called a Casimir function of the

Poisson bracket. The Casimir functions exist iff the bracket is degenerate.
For the symplectic manifold the coordinates are denoted by qi and pi,

i = 1, . . . N . The standard constant Poisson bracket is given by

{pi, pj} = {qi, qj} = 0, {pi, qj} = δi,j , (1.17)

where δ is the Kronecker symbol. The corresponding dynamical system
has the usual Hamiltonian form

dpi
dt

= −∂H
∂qi

,
dqi
dt

= ∂H

∂pi
.

For linear Poisson brackets we have

Pij =
∑
k

bkijxk, i, j, k = 1, . . . , N.

It is well-known that this formula defines a Poisson bracket iff bkij are
structure constants of a Lie algebra. Very often the title of this Lie algebra
is also used for the corresponding linear Poisson bracket.
For the spinning top-like systems [6, 4] the Hamiltonian structure is

defined by linear Poisson brackets.

Example 1.4. For the models of rigid body dynamics [6] the Poisson bracket
is given by

{Mi,Mj} = εijkMk, {Mi, γj} = εijk γk, {γi, γj} = 0.

Here Mi and γi are components of 3-dimensional vectors M and Γ, εijk
is the totally skew-symmetric tensor. The corresponding Lie algebra e(3)
is the Lie algebra of the group of motions in R3. This bracket has two
Casimir functions

J1 = 〈M,Γ〉, J2 = |Γ|2.
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The class of quadratic Poisson brackets

{xi, xj} =
∑
p,q

rp,qi,j xpxq, i, j = 1, . . . , N, (1.18)

is of a great importance for the modern mathematical physics.
As for evolution PDEs of the form

ut = F (u, ux, uxx, . . . , un), ui = ∂iu

∂xi
, (1.19)

the Poisson brackets are also defined by formula (1.15). However, we
should take the variational derivative instead of the gradient. Furthermore,
the Hamiltonian operator H is not a matrix but a differential (or even
pseudo-differential) operator.

1.4 Bi-Hamiltonian formalism
Definition 1.2. [44] Two Poisson brackets {·, ·}1 and {·, ·}2 are said to be
compatible if

{·, ·}λ = {·, ·}1 + λ{·, ·}2

is a Poisson bracket for any λ.
General results on the structure of the Hamiltonian pencil {·, ·}λ can be

found in [45, 24]. In particular, if the bracket {·, ·}λ is degenerate, then a
set of commuting integrals can be constructed as follows.
Theorem 1.1. [44] Let

C(λ) = C0 + λC1 + λ2C2 + · · ·
be a Casimir function for the bracket {·, ·}λ. Then the coefficients Ci
commute with each other with respect to both brackets {·, ·}1 and {·, ·}2.
It follows from Theorem 1.1 that

{Ck+1, y}1 = −{Ck, y}2

for any function y and any k. Let us take Ck+1 for a Hamiltonian H. Then
the dynamical system (1.16) can be written in two different ways:

dyi
dt

= {Ck+1, yi}1 = −{Ck, yi}2.

All functions Cj are integrals of motion for this system.
We see that the same dynamical system can be represented in

two different Hamiltonian forms, with different compatible Hamiltonian
structures and different Hamiltonians Ck+1 and −Ck. In this case we say
that this system possesses a bi-Hamiltonian representation [44].
The spinning top-like systems usually are bi-Hamiltonian with respect

to two compatible linear Poisson brackets. The corresponding algebraic
object is a pair of compatible Lie algebras (see Section 3.2).
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1.4.1 Shift argument method
Here is a standard way of constructing compatible Poisson brackets.
Let a = (a1, . . . , aN ) be a constant vector. Then any linear Poisson

bracket produces a constant bracket compatible with the initial linear one
by the transformation xi → xi + λai (see [46, 52]).
Consider now quadratic Poisson brackets (1.18). The shift xi 7→ xi+λai

leads to a Poisson bracket of the form {·, ·}λ = {·, ·}+λ{·, ·}1 +λ2{·, ·}2. If
the coefficient of λ2 equals zero, then this formula defines a linear Poisson
bracket {·, ·}1 compatible with (1.18).
Thus, in the case of quadratic brackets the shift vector a = (a1, . . . , aN )

is not arbitrary. Its components have to satisfy the overdetermined system
of algebraic equations∑

p,q

rp,qi,j apaq = 0, i, j = 1, . . . , N. (1.20)

Such a vector a is called admissible. The admissible vectors are nothing
but 0-dimensional symplectic leafs for the Poisson bracket (1.18).
Any p-dimensional vector space of admissible vectors generates p

pairwise compatible linear Poisson brackets. Each of them is compatible
with the initial quadratic bracket (1.18).
Many interesting integrable models can be obtained [38, 56, 74] by the

shift argument method from the elliptic quadratic Poisson brackets [20].

Theorem 1.2. For the quadratic Poisson bracket qmn2,kmn−1(τ) (for the
definition of these brackets see [20]), the set of admissible vectors is a union
of n2 components which are m-dimensional vector spaces. The space of
generators of the algebra is the direct sum of these spaces.

Open problem 1.1. Find integrable systems generated by the shift
argument method from the elliptic Poisson brackets qmn2, kmn−1(τ) .

1.4.2 Bi-Hamiltonian form for KdV equation
Most of known integrable equations (1.19) can be written in a Hamiltonian
form

ut = H
(
δρ

δu

)
,

where H is a Hamiltonian operator. The corresponding Poisson bracket is
given by

{f, g} = δf

δu
H
( δg
δu

)
, (1.21)

where
δ

δu
=
∑
k

(−1)kDk ◦ ∂

∂uk
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is the Euler operator or the variational derivative.
Definition 1.3. Two functions ρ1, ρ2 are called equivalent ρ1 ∼ ρ2 if
ρ1 − ρ2 ∈ ImD.

Remark 1.2. For functions u(x) which are rapidly decreasing at x →
±∞, two equivalent polynomial conserved densities ρ1 and ρ2 with zero
constant terms define the same functional∫ +∞

−∞
ρ(u, ux, . . . ) dx.

Proposition 1.1. If a ∈ ImD, then

δa

δu
= 0

and therefore the variational derivative is well defined on the equivalent
classes.

By definition the Poisson bracket (1.21) is defined on the vector space
of equivalence classes and satisfies (1.13), (1.14). The finite-dimensional
bracket (1.12) satisfies also the Leibniz rule

{f, g h} = {f, g}h+ g {f, h}.

For brackets (1.21) the Leibniz rule has no sense since the product of
equivalence classes is not defined.
We don’t discuss here the bi-Hamiltonian formalism for evolution

equations of the form (1.19) in general. Notice only that KdV
equation (1.9) is a bi-Hamiltonian system [44]. Two compatible Poisson
brackets are given by the formula (1.21), where the Hamiltonian operators
Hi are differential ones:

H1 = D, H2 = D3 + 4uD + 2ux.

Notice that H1 can be obtained from H2 by the argument shift u→ u+λ.
The KdV equation can be written in the bi-Hamiltonian form:

ut = H1
δρ1

δu
= H2

δρ2

δu
,

where
ρ1 = −u

2
x

2 + u3, ρ2 = u2

2 .



Chapter 2

Factorization of Lie
algebras and Lax pairs

In this chapter we discuss different types of Lax representations for
integrable PDEs and some constructions that allow one to find higher
symmetries and conservation laws using Lax pairs. For Hamiltonian
structures related to Lax operators see, for example, the books [18, 63]
and the original papers [12, 41].

2.1 Scalar Lax pairs for evolution equations
In this section the Lax L-operators are linear differential operators or
ratios of linear differential operators. The corresponding A-operators are
constructed by the use of formal non-commutative “pseudo-differential”
series.
For our purporses the language of differential algebra [36] is the most

adequate one.
Consider evolution equations of the form (1.19). Suppose that the right

hand side of (1.19) as well as other functions in u, ux, uxx, . . . belong to a
differential field F . For main considerations one can assume that elements
of F are rational functions of finite number of independent variables

ui = ∂iu

∂xi
.

In order to integrate a function with respect to one of its arguments or to
take one of its roots, we sometimes have to extend the basic field F . that
in any particular case it is clear (to the reader) how to construct them.
As usual in differential algebra, we have a principle derivation (1.1),

which generates all independent variables ui starting from u0 = u. This

15
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derivation is a formalization of the total x-derivative, which acts on
functions of the form g(x, u(x), ∂u∂x , . . . ).
The variable t in the local algebraic theory of evolution equations plays

the role of a parameter.
A higher (or generalized) infinitesimal symmetry (or a commuting flow)

for (1.19) is an evolution equation

uτ = G(u, ux, uxx, . . . , um), m > 1 (2.1)

which is compatible with (1.19). Compatibility means that

∂

∂t

∂u

∂τ
= ∂

∂τ

∂u

∂t
,

where the partial derivatives are calculated in virtue of (1.19) and (2.1).
In other words, for any initial value u0(x) there exists a common solution
u(x, t, τ) of equations (1.19) and (2.1) such that u(x, 0, 0) = u0(x).
Example 2.1. The simplest higher symmetry for the Korteweg–de Vries
equation (1.9) has the following form

uτ = u5 + 10uu3 + 20u1u2 + 30u2u1. (2.2)

The infinite-dimensional vector field

DF = F
∂

∂u0
+D(F ) ∂

∂u1
+D2(F ) ∂

∂u2
+ · · · (2.3)

is associated with evolution equation (1.19). This vector field commutes
with D. We shall call vector fields of the form (2.3) evolutionary. The
function F is called generator of that evolutionary vector field. Sometimes
we will call (2.3) total t-derivative with respect to (1.19) and denote it by
Dt. The set of all evolutionary vector fields form a Lie algebra over C:
[DG, DH ] = DK , where

K = DG(H)−DH(G) = H∗(G)−G∗(H). (2.4)

Here and in the sequel we use the following notation:
Definition 2.1. For any element a ∈ F the Fréchet derivative a∗ is a linear
differential operator defined by

a∗
def=
∑
k

∂a

∂uk
Dk .

We defined a generalized symmetry of equation (1.19) as an evolution
equation (2.1) that is compatible with (1.19). By definition, the
compatibility means that [DF , DG] = 0. It can also be written in the
form

G∗(F )− F∗(G) = Dt(G)− F∗(G) = 0.
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Formula (2.4) defines a Lie bracket on our differential field F . The
integrable hierarchy is nothing but an infinite-dimensional commutative
subalgebra of this Lie algebra.
A local conservation law for equation (1.19) is a pair of functions

ρ(u, ux, ...) and σ(u, ux, ...) such that

Dt

(
ρ(u, ux, . . . , up)

)
= D

(
σ(u, ux, . . . , uq)

)
(2.5)

for any solution u(x, t) of equation (1.19). The functions ρ and σ are
called density and flux of the conservation law (2.5). It is easy to see that
q = p+ n− 1, where n is the order of equation (1.19).
Example 2.2. Functions

ρ1 = u, ρ2 = u2, ρ3 = −u2
x + 2u3

are conserved densities of the Korteweg–de Vries equation (1.9). Indeed,

Dt

(
u
)

= D
(
u2 + 3u2

)
,

Dt

(
u2
)

= D
(

2uuxx − u2
x + 4u3

)
,

Dt

(
− u2

x + 2u3
)

= D
(

9u4 + 6u2uxx + u2
xx − 12uu2

x − 2uxu3

)
.

For solitonic type solutions u(x, t) of (1.19), which are decreasing at
x→ ±∞, it follows from (2.5) that

∂

∂t

∫ +∞

−∞
ρ dx = 0.

This justifies the name conserved density for the function ρ. Analogously,
if u is a function periodic in space with period L, then the value of the
functional I(u) =

∫ L
0 ρ dx does not depend on time and therefore it is a

constant of motion.
Suppose that functions ρ and σ satisfy (2.5). Then for any function

s(u, ux, . . . ) the functions ρ̄ = ρ+D(s) and σ̄ = σ+Dt(s) satisfy (2.5) as
well. We call the conserved densities ρ and ρ̄ equivalent. It is clear that
equivalent densities define the same functional.

2.1.1 Pseudo-differential series
Consider a skew field of (non-commutative) formal series of the form

S = smD
m+ sm−1D

m−1 + · · ·+ s0 + s−1D
−1 + s−2D

−2 + · · · sk ∈ F .
(2.6)
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The number m ∈ Z is called the order of S and is denoted by ordS. If
si = 0 for i < 0 that S is called a differential operator.
The product of two formal series is defined by the formula

Dk ◦ sDm = sDm+k + C1
kD(s)Dk+m−1 + C2

kD
2(s)Dk+m−2 + · · · ,

where k,m ∈ Z and Cjn is the binomial coefficient

Cjn = n(n− 1)(n− 2) · · · (n− j + 1)
j! , n ∈ Z.

Remark 2.1. For any series S and T we have ord(S ◦ T − T ◦ S) ≤
ordS + ordT − 1.

The formally conjugated formal series S+ is defined as

S+ = (−1)mDm◦ sm+(−1)m−1Dm−1◦ sm−1+· · ·+s0−D−1◦ s−1+D−2◦ s−2+· · · .

Example 2.3. Let

R = uD2 + u1D, S = −u1D
3, T = uD−1;

then

R+ = D2 ◦ u−D ◦ u1 = R,

S+ = D3 ◦ u1 = u1D
3 + 3u2D

2 + 3u3D + u4,

T+ = −D−1u = −uD−1 + u1D
−2 − u2D

−3 + · · · .

For any series (2.6) one can uniquely find the inverse series

T = t−mD
−m + t−m−1D

−m−1 + · · · , tk ∈ F

such that S ◦ T = T ◦ S = 1. Indeed, multiplying S and T and equating
the result to 1, we find that smt−m = 1, i. e., t−m = 1/sm. Comparing
the coefficients of D−1, we get

msmD(t−m) + sm t−m−1 + sm−1 t−m = 0

and therefore
t−m−1 = −sm−1

s2
m

−mD
( 1
sm

)
, etc.

Furthermore, we can find the m-th root of the series S, i. e., a series

R = r1D + r0 + r−1D
−1 + r−2D

−2 + · · ·

such that Rm = S. This root is unique up to any number factor ε such
that εm = 1.
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Example 2.4. Let S = D2 + u. Assuming

R = r1D + r0 + r−1D
−1 + r−2D

−2 + · · · ,

we compute

R2 = R◦R = r2
1D

2+(r1D(r1)+r1r0+r0r1)D+r1D(r0)+r2
0 +r1r−1+r−1r1+· · · ,

and compare the result with S. From the coefficients of D2 we find r2
1 = 1

or r1 = ±1. Let r1 = 1. Comparing coefficients of D, we get 2r0 = 0, i. e.,
r0 = 0. From D0 we obtain 2r−1 = u, terms of D−1 r−2 = −u1/4, etc.,
i. e.

R = S1/2 = D + u

2D
−1 − u1

4 D
−2 + · · · .

Definition 2.2. The residue of a formal series (2.6) by definition is the
coefficient of D−1:

res (S) def= s−1 .

The logarithmic residue of S is defined as

res logS def= sn−1

sn
.

We will use the following important

Theorem 2.1. [2] For any two formal series S, T the residue of the
commutator belongs to ImD:

res[S, T ] = D(σ(S, T )),

where

σ(S, T ) =
i+j+1>0∑

i≤ord(T ), j≤ord(S)

Ci+j+1
j ×

i+j∑
k=0

(−1)kDk(sj)Di+j−k(tj) .

2.1.2 Korteweg–de Vries hierarchy
For the KdV equation (1.9) the Lax pair is defined by

L = D2 + u, A = 4
(
D3 + 3

2uD + 3
4ux

)
. (2.7)

Using these L and A operators, we are going to demonstrate how a scalar
differential Lax pair generates higher symmetries, conservation laws and
explicit solutions of the solitonic type.
One can easily verify that the commutator [A,L] is equal to the right

hand side of (1.9). Since Lt = ut the relation (1.4) is equivalent to (1.9).
In particular, the commutator [A,L] does not contain any powers of D,
i. e., it is a differential operator of zero order.
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Problem 2.1. How to describe all differential operators

Pn = Dn +
n−1∑
i=0

piD
i

such that [Pn, L] is a differential operator of zero order?
It is clear that for such an operator Pn the relation Lt = [Pn, L] is

equivalent to an evolution equation of the form (1.19).
Definition 2.3. For any series

P =
k∑

i=−∞
piD

i

we denote

P+ =
k∑
i=0

piD
i, P− =

−1∑
i=−∞

piD
i.

Remark 2.2. We consider a vector space decomposition of the associative
algebra of all pseudo-differential series into a direct sum of the subalgebra
of differential operators and the subalgebra of series of negative orders.
The subscripts + and − symbolize the projections onto these subalgebras.

Lemma 2.1. Let P be a formal series such that [L,P ] = 0; then

[P+, L] = f, f ∈ F . (2.8)

Proof. Since [L, P+ + P−] = 0, we have

[P+, L] = −[P−, L].

The left hand side of this identity is a differential operator while according
to Remark 2.1 the order of the right hand side is not positive.

Lemma 2.2. The following relation holds:

[L, L 1
2 ] = 0.

Proof. Let
[L, L 1

2 ] = σDp + · · ·

Then (see Example 2.4) we have

0 = [L, L] = [L, L 1
2 ]L 1

2 + L
1
2 [L, L 1

2 ] = 2σDp+1 · · · ,

and therefore s = 0.
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Corollary 2.1. It follows from Lemmas 2.1 and 2.2 that for any n ∈ Z+

the differential operator P = L
n
2
+ satisfies the relation

[P, L] = fP , fP ∈ F (2.9)

for some fP . If n is even, then fP = 0.

It is clear that the set of all differential operators that satisfy (2.9) is a
vector space over C.

Lemma 2.3. The differential operators L
n
2
+ , n ∈ Z+, form a basis of this

vector space.

Proof. Suppose that P = σDp + · · · satisfies (2.9). Equating the
coefficients of Dp+1, we get D(σ) = 0 and therefore σ = const. Since
the operator σL

p
2
+ has the same leading coefficient as P , the operator

P − σL
p
2
+ has strictly lower order than P . The induction over p completes

the proof.

Let
[L

n
2
+ , L] = fn.

For even n we have fn = 0 and the evolution equation ut = fn that is
equivalent to

Lt = [L
n
2
+ , L] (2.10)

is trivial. Denote
An = L

2n+1
2

+ .

It can be easily verified that A = 4A1, where A is defined by (2.7). The
evolution equation corresponding to n = 0 is just ut = ux.

Theorem 2.2. For any n,m ∈ N the evolution equations uτ = f2m+1 and
ut = f2n+1 are compatible1.

Proof. Let us rewrite these equations in the Lax form:

Lt = [An, L], Lτ = [Am, L].

We have

(Lt)τ − (Lτ )t = [(An)τ , L]− [(Am)t, L] + [An, [Am, L]]− [Am, [An, L]].

Due to the Jacobi identity it suffices to prove that

(An)τ − (Am)t + [An, Am] = 0.
1In other words, the first equation is a higher symmetry for the second one and vice

versa
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Since (Lp)t = [An, Lp] and (Lp)τ = [Am, Lp] for any p, we get

(An)τ =
(

[Am, L
2n+1

2 ]
)

+
, (Am)t =

(
[An, L

2m+1
2 ]
)

+
.

Therefore, we need to verify that(
[Am, L

2n+1
2 ]− [An, L

2m+1
2 ] + [An, Am]

)
+

= 0.

Substituting
An = L

2n+1
2 −

(
L

2n+1
2

)
−

and
Am = L

2m+1
2 −

(
L

2m+1
2

)
−

to the latter identity, we obtain[(
L

2n+1
2

)
−
,
(
L

2m+1
2

)
−

]
+

= 0,

which is obviously true.

Corollary 2.2. Any two evolution equations defined by (1.4) with different
A-operators of the form

A =
∑
i≥0

ciL
2i+1

2
+ , ci ∈ C,

are compatible.

This infinite-dimensional vector space of compatible evolution equations
is called the KdV hierarchy [22]. Any two equations of the hierarchy are
higher symmetries for each other.
Thus, the symmetries of the KdV equation are generated by the same

L-operator but by different A-operators.

Recursion operator for KdV equation

Now we are going to find [35, Section 2A] a recursion relation between
f2n+1 and f2n+3. A similar method was applied for the first time in [75]
to find a recursion operator for the Krichever-Novikov equation.
Since L 2n+3

2 = LL
2n+1

2 , we have

An+1 = (LL
2n+1

2 )+ = L (L
2n+1

2 )+ + (L (L
2n+1

2 )−)+,

or
An+1 = LAn +Rn,
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where Rn = anD + bn is a differential operator of first order. Hence

f2n+3 = [An+1, L] = L ◦ f2n+1 + [Rn, L].

Now if we equate to zero coefficients of D2, D and D0 in the above
equation, we obtain

an = 1
2D
−1(f2n+1), bn = 3

4f2n+1

and
f2n+3 =

(1
4D

2 + u+ 1
2uxD

−1
)
f2n+1,

which gives the standard recursion operator

R = 1
4D

2 + u+ 1
2uxD

−1 (2.11)

for the KdV equation

ut = 1
4

(
uxxx + 6uux

)
. (2.12)

The factor 1/4 appears due to the fact that we take for A-operator L
3
2
+

instead of 4L
3
2
+. Of course, this coefficient can be removed by the scaling

t→ 4 t.
As it was shown in [35] this method for finding a recursion operator can

be generalized to Lax pairs of different type.
Exercise 2.1. Check that the recursion operator (2.11) satisfies the
operator identity

Rt = [F∗, R],

where
F∗ = 1

4
(
D3 + 6uD + 6ux

)
is the Frechét derivative of the right hand side of the KdV equation (2.12).
Exercise 2.2. (see [35, Appendix A]) Find the recursion operator for the
Boussinesq system

ut = vx, vt = −1
3(uxxx + 8uux).

A Lax pair for this system is given by

L = D3 + 2uD + ux + v, A =
(
L

2
3

)
+
.
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Conservation laws

Proposition 2.1. For any n ∈ N the function

ρn = res (L
2n−1

2 ), (2.13)

where L is defined by (2.7), is a conserved density for the KdV equation.

Proof. It is easy to prove (cf. Lemma 1.1) that

(L
2n−1

2 )t = [A, (L
2n−1

2 )].

Finding residue of both sides of this identity and taking into account
Theorem 2.1, we arrive at the statement of the proposition.

It can be verified that formula (2.13) with n = 1, 2, 3 produces conserved
densities equivalent to the ones presented in Example 2.2.

Darboux transformation

The Darboux transformation for the KdV equation is defined by the
following relation

L̃ = TLT−1, (2.14)

where
T = Dn + an−1D

n−1 + · · ·+ a0

is a differential operator. In the generic case L̃ is a pseudo-differential
series, but for special T this series could be a differential operator of the
form L̃ = D2 + ũ. In this case we have

(Dn+an−1D
n−1+· · ·+a0)(D2+u) = (D2+ũ)(Dn+an−1D

n−1+· · ·+a0).
(2.15)

Comparing the coefficients of Dn, we get

ũ = u− 2 ∂

∂x
an−1.

This formula allows us to construct a new solution ũ of the KdV equation
starting from a given solution u.
It follows from (2.15) that

L(KerT ) ⊂ KerT. (2.16)

The existence of the Euclidean algorithm in the ring of differential
operators [61] guarantees that (2.16) is a sufficient condition for L̃ to be a
differential operator.
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Suppose that the Jordan form of the operator L acting on the finite-
dimensional space KerT is diagonal. Then a basis of KerT is given by
some functions Ψ1, . . . ,Ψn, such that

∂2

∂x2 Ψi + uΨi = λ2
iΨi. (2.17)

If the functions Ψ1, . . . ,Ψn are fixed, then, up to a left factor, the equation
T (Y ) = 0 is given by the formula

W(Ψ1, . . . ,Ψn, Y ) = 0,

where W is the Wronskian. This implies

an−1 = − ∂

∂x
log W(Ψ1, . . . ,Ψn).

and therefore the Darboux transformation has the following form:

ũ = u+ 2 ∂2

∂x2 log W(Ψ1, . . . ,Ψn). (2.18)

As usual, the t-dynamics of Ψi is defined by the A-operator:
∂

∂t
(Ψi) = A(Ψi) ≡

∂3

∂x3 Ψi + 3
2u

∂

∂x
(Ψi) + 3

4uxΨi. (2.19)

Theorem 2.3. Let u(x, t) be any solution of the KdV equation (2.12). If
functions Ψi satisfy (2.17) and (2.19), then the function ũ(x, t) defined by
(2.18) satisfies the KdV equation.
Proof. The Lax equation (1.4) can be rewritten in the commutator form
[ ∂∂t−A, L] = 0. This implies [ ∂∂t−Ã, L̃] = 0, where the differential operator
L̃ is defined by (2.14) and

Ã = TAT−1 + TtT
−1. (2.20)

It suffices to check that the ratio of differential operators TA + Tt and T
is a differential operator. This is equivalent to the fact that

TA(Ψi) + Tt(Ψi) = 0 (2.21)

for any i. We have 0 = (TΨi)t = TtΨi +T (Ψi)t. Substituting −T (Ψi)t for
Tt(Ψi) into (2.21) and using (2.19), we complete the proof.

Remark 2.3. The numbers λi from (2.17) are arbitrary parameters in the
solution (2.18).
Exercise 2.3. Prove that for any Jordan form of the operator L acting on
the finite-dimensional space KerT the condition( ∂

∂t
−A

)
KerT ⊂ KerT (2.22)

provides the fact that Ã, defined by (2.20), is a differential operator.
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Solitons and rational solutions for KdV equation

Let us start from the trivial solution u(x, t) = 0 of the KdV equation. In
this case condition (2.16) means that KerT is any finite-dimensional vector
space V of functions invariant with respect to the differential operator ∂2

∂x2 .
The t-dynamics of V is defined by the condition( ∂

∂t
− ∂3

∂x3

)
V ⊂ V.

In the generic case, when the Jordan form of the operator ∂2

∂x2 is diagonal,
a basis of such a vector space is given by

Ψi(x, t) = exp (ηi) + ci exp (−ηi),

where
ηi = λi x+ λ3

i t, i = 1, . . . , n.

The function
ũ = 2 ∂2

∂x2 log W(Ψ1, . . . ,Ψn)

is called n-soliton solution of the KdV equation.
Example 2.5. If n = 1, we have

ũ(x, t) = 8c1λ
2
1

(eλ1 x+λ3
1 t + c1e−λ1 x−λ3

1 t)2

Example 2.6. The 2-soliton solution for the KdV equation is given by

ũ(x, t) = (λ2
2 − λ2

1)

8c1λ
2
1

(eη1 + c1e−η1)2 −
8c2λ

2
2

(eη2 + c2e−η2)2(
λ1
c1 − e2η1

c1 + e2η1
− λ2

c2 − e2η2

c2 + e2η2

)2 .

If the vector space V consists of polynomials in x, we get rational
solutions of the KdV equation. In the simplest case dim V = 1 we have
Ψ1 = x and formula (2.18) produces a stationary rational solution

ũ(x, t) = − 2
x2 .

2.1.3 Gelfand-Dikii hierarchy and generalizations
Let

L = Dn +
n−2∑
i=0

uiD
i, A =

m∑
i=0

ciL
i
n
+ , ci ∈ C. (2.23)
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In the same way as in Lemmas 2.1 and 2.3 it can be proved that the Lax
equation (1.4) is equivalent to a system of n − 1 evolution equations for
unknown functions un−2, . . . , u0. Moreover, the systems generated by the
same L-operator and A-operators of the form (2.23) with different m and
ci are higher symmetries for each other. This infinite set of compatible
evolution systems is called the Gelfand-Dikii hierarchy [23]. If n = 2, we
get the KdV hierarchy described above.

Factorization of L-operator

Relations between factorization of scalar differential Lax operators, Miura-
type transformations and modified KdV-type systems were discussed, for
example, in [77, 21, 12]. We are concerned here with the case of two factors
only.
Consider the following system of the Lax type equations

Mt = AN −MB, Nt = BN −NA, (2.24)

where

M = Dr + wDr−1 +
∑r−2
i=0 uiD

i, N = Ds − wDs−1 +
∑s−2
i=0 viD

i,

A =
∑m
i=0 ci

(
(MN)

i
r+s

)
+
, B = (M−1AM)+.

System (2.24) is related to Lax equation (1.4). Namely, if M and N
satisfy (2.24), then L = MN satisfies (1.4).

Proposition 2.2. Relations (2.24) are equivalent to a system of r+ s− 1
evolution equations in w, ui, vi.

Reductions in differential L-operators

Let us introduce the following notation:

Q1(n) def= D2n+1 +
n−1∑
i=0

uiD
2i+1 +D2i+1ui,

Q2(n) def= D2n +
n−1∑
i=0

uiD
2i +D2iui,

Q3(n) def= D2n−1 +
n−1∑
i=1

uiD
2i−1 +D2i−1ui + u0D

−1u0.

We call un−1, . . . , u0 functional parameters of Qi(n). By definition, we put

Q1(0) def= D, Q2(0) def= 1, Q3(0) def= D−1.
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Notice that the operators Q1(n) and Q3(n) are skew-symmetric: Q1(n)+ =
−Q1(n) and Q3(n)+ = −Q3(n). The operators Q2(n) are symmetric:
Q2(n)+ = Q2(n).
There are deep relations between such operators and classical simple

Lie algebras [12, Section 7]. The algebra Bn corresponds to an operator
of Q1(n)-type, while the algebras Cn and Dn correspond to operators of
types Q2(n) and Q3(n).

Theorem 2.4. (see [12, Section 7], [13]) Suppose the operators M =
Qi(r) and N = Qj(s), where i, j ∈ {1, 2, 3}, have functional parameters
ur−1, . . . , u0 and vs−1, . . . , v0, respectively. Then relations (2.24), where

A =
m∑
i=0

ci

(
L

2i+1
n

)
+
, B =

(
M−1AM

)
+
,

L = MN and n = ordL, are equivalent to a system of r + s evolution
equations in ur−1, . . . , u0, vs−1, . . . , v0.

Here we present several examples [13] with r+s ≤ 2, where the operator
A has a minimal possible order. In the corresponding differential equations
we perform some scalings of independent variables and unknown functions
to reduce equations to a simple form. If any different transformations were
applied, then we point out their form up to constants, which can be easily
reconstructed by reader.
Example 2.7. In the cases

a) L = D2 + u, A =
(
L

3
2

)
+
,

b) L = (D2 + u)D−1, A =
(
L3
)

+
,

c) L = (D3 + 2uD + ux)D−1, A =
(
L

3
2

)
+
,

d) L = (D3 + 2uD + ux)D, A =
(
L

3
4

)
+

we get the KdV equation (1.9).
Example 2.8. The cases

a) L = D + uD−1u, A =
(
L3
)

+
,

b) L = (D + uD−1u)D, A =
(
L

3
2

)
+

give rise to the modified KdV equation

ut = uxxx + 6u2ux.
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Example 2.9. The operators

L = (D2 + u)D, A =
(
L

5
3

)
+

produce the Savada-Kotera equation [66]

ut = u5 + 5uu3 + 5u1u2 + 5u2u1.

Example 2.10. In the case

L = D3 + 2uD + ux, A =
(
L

5
3

)
+

we obtain the Kaup-Kupershmidt equation [37]

ut = u5 + 10uu3 + 25u1u2 + 20u2u1.

Example 2.11. The system

ut = vvx, vt = vxxx + 2uvx + vux

corresponds to

L = D3 + 2uD + ux + vD−1v, A = L+.

Example 2.12. The operators

L = (D4 + uD2 +D2u+ v)D−1, A = L+

yield
ut = wx, wt = wxxx + wux + uwx,

where w = v + α vxx for some constant α.
Example 2.13. For

L = (D5 + uD3 +D3u+ vD +Dv)D−1, A =
(
L

3
4

)
+

we obtain

ut = −uxxx + wx − uux, wt = 2wxxx + uwx,

where w = v + βuxx for some constant β.
Example 2.14. The operators

L = (D3 + 2uD + uxu+ vD−1v)D, A =
(
L

3
4

)
+

correspond to

ut = uxxx + uux − vvx, vt = −2vxxx − uvx.

Several more examples can be found in [12, 13].
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2.2 Matrix Lax pairs

2.2.1 The NLS hierarchy
The nonlinear Schrödinger equation (NLS equation) has the form Zt =
iZxx + |Z|2 Z. After a (complex) scaling of t and Z the equation can be
written as a system of two equations

ut = 1
2
(
uxx − 2u2 v

)
, vt = 1

2
(
−vxx + 2 v2 u

)
, (2.25)

where u = Z, v = Z̄. The Lax representation (1.4) for (2.25) is defined
[88] by

L = D +
(

1 0
0 −1

)
λ+

(
0 u
v 0

)
,

A =
(

1 0
0 −1

)
λ2 +

(
0 u
v 0

)
λ+ 1

2

(
−uv −ux
vx uv

)
.

Notice that all matrix coefficients of L and A belong to the Lie algebra
sl2.
One can verify that the matrix A obeys the following properties:

a) The commutator [A, L] does not depend on λ;

b) It has the following matrix structure:

[A, L] =
(

0 ∗
∗ 0

)
.

It is clear that if these properties hold for a matrix polynomial

An =
n∑
i=0

aiλ
i, ai ∈ sl2, (2.26)

then the Lax equation Lt = [An, L] is equivalent to a system of two
evolution equations for u and v.
Problem 2.2. How to describe all matrix polynomials (2.26) that satisfy
the above two properties?

Formal diagonalization

Theorem 2.5. [12, Section 1]. There exists a unique series

T = 1 +
(

0 α1
β1 0

)
1
λ

+
(

0 α2
β2 0

)
1
λ2 + · · ·



Chapter 2. Factorization of Lie algebras and Lax pairs 31

such that
T−1LT = L0,

where

L0 =D +
(

1 0
0 −1

)
λ+

(
ρ0 0
0 −ρ0

)
+
(
ρ1 0
0 −ρ1

)
1
λ

+
(
ρ2 0
0 −ρ2

)
1
λ2 + · · ·

Proof. Equating the coefficients of λ0 in LT = TL0, we get[(
1 0
0 −1

)
,

(
0 α1
β1 0

)]
−
(
ρ0 0
0 −ρ0

)
=
(

0 u
v 0

)
.

Hence ρ0 = 0, α1 = 1
2u and β1 = − 1

2v. At each step we have a similar
relation of the form[(

1 0
0 −1

)
,

(
0 αk
βk 0

)]
−
(
ρk−1 0

0 −ρk−1

)
= Pk,

where Pk ∈ sl2 is a already known matrix. The functions αk, βk, ρk−1 are
thus uniquely defined.

Proposition 2.3. Let

Bn = T

(
1 0
0 −1

)
T−1 λn, (2.27)

An = (Bn)+, (2.28)

where, by definition,(
m∑

i=−∞
aiλ

i

)
+

def=
m∑
i=0

aiλ
i,

(
m∑

i=−∞
aiλ

i

)
−

def=
−1∑

i=−∞
aiλ

i.

Then An satisfies properties a) and b).
Proof. Since [L, Bn] = 0, we have

[An, L] = −[(Bn)− , L].

The left hand side is a polynomial in λ whereas the right hand side has
the form (

0 ∗
∗ 0

)
+

−1∑
i=−∞

biλ
i.

Hence
[An, L] =

(
0 fn
gn 0

)
. (2.29)
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Proposition 2.4. For any n and m the system of equations

uτ = fm, vτ = gm,

where fi and gi are defined by (2.29), is a higher symmetry for the system
ut = fn, vt = gn.

The proof is similar to the proof of Theorem 2.2 for the KdV hierarchy.
Exercise 2.4. Prove the proposition.
The A-operator for the NLS equation is given by (2.28) with n = 2.

Formulas (2.27), (2.28) for arbitrary n define the NLS hierarchy. The next
member of the NLS hierarchy

ut = −1
4uxxx + 3

2vuux, vt = −1
4vxxx + 3

2uvvx

corresponds to

A3 = A2λ+ 1
4

(
vux − uvx uxx − 2u2v
vxx − 2v2u uvx − vux

)
.

The reduction v = u leads to the modified Korteweg-de Vries equation

ut = −1
4uxxx + 3

2u
2ux.

Recursion operator for NLS equation

In this section we follow the paper [35, Section 3A]. Since

Bn+1 = λBn,

we have
An+1 = (λBn)+ = λ (Bn)+ + (λ (Bn)−)+.

The latter formula shows that

An+1 = λAn +Rn,

where Rn does not depend on λ. Substituting this into the Lax equation
Ltn+1 = [An+1, L], we get

Ltn+1 = λLtn + [Rn, L].

If
Rn =

(
an bn
cn −an

)
,
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then we find that

bn = 1
2 fn, cn = −1

2 gn, an = 1
2 D

−1 (vfn + ugn).

Therefore the recursion operator

R
(

fn
gn

)
=
(

fn+1
gn+1

)
,

(
f1
g1

)
=
(
ux
vx

)
is given by

R =
(
− 1

2 D + uD−1v uD−1u
−v D−1v 1

2 D − v D
−1u

)
.

The operator R2 gives rise to a recursion operator for the mKdV
equation by the reduction v = u.

2.2.2 Generalizations
Consider the operator

L = D + λa+ q(x, t), (2.30)

where q and a belong to a Lie algebra G and λ is the spectral parameter.
The constant element a is supposed to be such that

G = Ker (ada)⊕ Im (ada).

Theorem 2.6. There exist unique series

u = u−1 λ
−1 + u−2 λ

−2 + · · · , ui ∈ Im (ada),

h = h0 + h−1 λ
−1 + h−2 λ

−2 + · · · , hi ∈ Ker (ada),

such that

eadu (L) def= L+ [u, L] + 1
2 [u, [u, L]] + · · · = Dx + aλ+ h.

Let b be a constant element of G such that

[b, Ker (ada)] = {0}.

Since
[b λn, Dx + aλ+ h] = 0,

we have [Bb,n, L] = 0, where

Bb,n = e−adu (b λn).
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Then the corresponding A-operator of the form

Ab,n = b λn + an−1 λ
n−1 + · · ·+ a0

is defined by the formula

Ab,n = (Bb,n)+. (2.31)

For the Lie algebra G = sl2 and a = diag (1,−1) we get the NLS
hierarchy.
Example 2.15. Let G = glm, the L-operator has the form (2.30), where

a =
(

1m−1 0
0 −1

)
, q =

(
0 u
vt 0

)
.

Here u and v are column vectors. In this case

Ker (ada) =
{( S 0

0 s

)}
, Im (ada) =

{( 0 u1
ut2 0

)}
,

where S is an (m − 1) × (m − 1)-matrix, s is a scalar and ui are column
vectors. Following the above diagonalization procedure, we find that the
coefficients of the operator

Aa,2 = aλ2 + s1λ+ s2

are given by

s1 =
(

0 u
vt 0

)
, s2 = 1

2

(
−uvt −ux
vtx 〈u,v〉

)
.

If m = 2 the Lax pair coincides with the Lax pair for the NLS equation
from Section 2.2.1. The corresponding non-linear integrable system is (up
to scalings of t,u,v) the vector NLS equation [47]

ut = uxx + 2〈u,v〉u, vt = −vxx − 2〈v,u〉v. (2.32)

Example 2.16. Let G = glm, a = diag (a1, . . . , am), b = diag (b1, . . . , bm),
where ai 6= aj for i 6= j. The equation corresponding to A1 given by (2.31)
is called m-wave equation. It has the form

Qt = Px + [Q, P], (2.33)

where Q and P are m×m-matrices whose entries are related by

pij = bi − bj
aj − ai

qij .

Solutions of (2.33) that do not depend on x describe the dynamics of
an m-dimensional rigid body [46].
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Relations between scalar to matrix Lax pairs

The Gelfand-Dikii hierarchy (see Section 2.1.3) is defined by a scalar linear
differential operator of order n. Of course, it is not difficult to replace this
operator by a matrix first order differential operator of the form

L = D + Λ + q, (2.34)

where

Λ =



0 · · · 0 λ
1 0

0
. . . . . .

...
. . . . . .

...
0 · · · 0 1 0

 , q =


0 0 · · · u1
0 0 · · · u2
0 0 · · · u3
...

...
...

0 0 · · · un

 . (2.35)

Let us consider operators (2.34), where q is an arbitrary upper-diagonal
matrix. Any gauge transformation L̄ = NLN−1, where N is a function
with values in the group of upper triangular matrices with ones on the
diagonal, preserves the class of such operators. It turns out that the matrix
q defined by (2.35) is one of the possible canonical forms with respect to
this gauge action.
The approach [12, Section 6] based on this observation allows one to

construct an analog of the Gelfand-Dikii hierarchy for any Kac-Moody
algebra G.
Let ei, fi, hi, where i = 0, . . . , r, be the canonical generators of a Kac-

Moody algebra G with the commutator relations

[hi, hj ] = 0, [ei, fj ] = δij hi, [hi, ej ] = Aij ej , [hi, fj ] = −Aij fj ,

where A is the Cartan matrix of the algebra G.
Let us take

∑r
i=0 ei for the element Λ in (2.34). The potential q depends

on a choice of a vertex cm for the Dynkin diagram of G. We consider the
gradation G = ⊕Gi such that em ∈ G1, fm ∈ G−1 and the remaining
canonical generators belong to G0. It is well-known that G = G0 is a semi-
simple finite-dimensional Lie algebra. The potential q is a generic element
of the Borel subalgebra B ⊂ G generated by fi, hi, where i 6= m.
If L is an operator of the form (2.34) and S belongs to the corresponding

nilpotent subalgebra N ⊂ B, then the operator

L̄ = eadS(L)

has the same form (2.34) (with different q). This follows from the fact that
[N ,B] ⊂ N , [N , em] = {0}, [N , ei] ⊂ B.
Any canonical form under these gauge transformations gives rise to a

system of r evolution equations. The systems corresponding to different
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canonical forms are related by invertible polynomial transformations of
unknown functions.
Moreover, any L-operator (2.34) generates a commutative hierarchy of

integrable systems. The corresponding A-operators can be constructed
by a formal diagonalization procedure, which generalizes the construction
from Theorem 2.6.
It was proved in [12] that the systems related to L-operators of the form

(2.34) include the systems from Theorem 2.4.
For further generalizations see [10, 31, 11].

2.3 Decomposition of loop algeras and Lax
pairs

In all classes of Lax representations described above, L-operators are
polynomials in the spectral parameter λ. However, there exist important
examples, where λ is a parameter on an elliptic curve or on its
degenerations [69, 87].
An algebraic curve of genus g > 1 appears in the following

Example 2.17. [32] Consider the vector equation

ut =
(
uxx + 3

2 〈ux, ux〉u
)
x

+ 3
2 〈u, R u〉ux, |u| = 1, (2.36)

where u = (u1, . . . , uN ), R = diag (r1, . . . , rN ), and 〈·, ·〉 is the standard
scalar product. In the case N = 3 this equation is a higher symmetry of
the famous integrable Landau-Lifshitz equation.

ut = u× uxx + R u× u, |u| = 1. (2.37)

Here × stands for the cross product. It is interesting that for N 6= 3 all
symmetries of equation (2.36) have odd orders. In particular, the equation
has no symmetry of order 2.
Equation (2.36) possesses a Lax representation with

L = D +
(

0 Λu
uTΛ 0

)
, (2.38)

Here
Λ = diag(λ1, λ2, · · · , λN )

is a matrix defined by
Λ2 = 1

λ2 −R.

It is clear that

λ2
1 + r1 = λ2

2 + r2 = · · · = λ2
N + rN .
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For generic λi, ri this algebraic curve has genus g = 1 + (N − 3) 2N−2. In
the case N = 3 such a form of the elliptic spectral curve has been used in
[69, 18].
A class of Lax operators related to algebraic curves of genus g > 1 was

introduced in [40, 42].

Factoring subalgebras

If we don’t want to fix a priori the λ-dependence in Lax operators, we may
assume that L is a Laurent series in λ with coefficients being elements of
a finite-dimensional Lie algebra G.
The Lie algebra G((λ)) of formal series of the form

G((λ)) =
{ ∞∑
i=−n

giλ
i | gi ∈ G, n ∈ Z

}
is called the (extended) loop algebra over G.
If G is semi-simple, then the formula

〈X(λ), Y (λ)〉 = res
(
X(λ), Y (λ)

)
, X(λ), Y (λ) ∈ G((λ)) (2.39)

defines an invariant non-degenerate bi-linear form on G((λ)). Here (·, ·)
is the non-degenerate invariant Killing form on G, resP stands for the
coefficient of λ−1 in a (scalar) Laurent series P . The invariance of the
form means that

〈[a, b], c〉 = −〈b, [a, c]〉
for any a, b, c ∈ G((λ)).
If we assume that L and A in Lax equation (1.4) are elements of G((λ)),

then (1.4) is equivalent to an infinite set of evolution equations. To get
a finite system of PDEs we need some additional assumptions on the
structure of L and A.
The basic ingredient for constructing of Lax pairs in G((λ)) is a vector

space decomposition (see [7, 70])

G((λ)) = G[[λ]]⊕ U , (2.40)

where G[[λ]] is the subalgebra of all Taylor series and U is a so called
factoring, or complementary, Lie subalgebra. Obviously, the subalgebra
G[[λ]] is isotropic with respect to the form (2.39).
Let us denote by π+ and π− the projection operators onto U and G[[λ]],

respectively.
The following statement is evident:

Lemma 2.4. Let U be a factoring subalgera. Than for any principle part
P =

∑−1
i=−n giλ

i, where gi ∈ G, there exists a unique element P̄ ∈ U of the
form P̄ = P +O(1).
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Example 2.18. The simplest factoring subalgebra is given by

Ust =
{ n∑
i=1

giλ
−i | gi ∈ G, n ∈ N

}
. (2.41)

This subalgebra is called standard.
Two factoring subalgebras are called equivalent if they are related by a

transformation of the parameter λ of the form

λ→ λ+ k2λ
2 + k3λ

3 + · · · , ki ∈ C, (2.42)

or by an automorphism of the form

exp (adg1λ+g2λ2+···), gi ∈ G. (2.43)

It is clear the (2.42) and (2.43) preserve the subalgebra G[[λ]].
Suppose that r-dimensional Lie algebra G is semi-simple. Let e1, . . . , er

be a basis in G. According Lemma 2.4 for any i there exists a unique
element Ei ∈ U such that

Ei = ei
λ

+O(1). (2.44)

Proposition 2.5. The elements Ei generate U .

Proof. We have to show that for any i, k an element Eik of the form

Eik = ei
λk

+O(−k + 1)

can be obtained as a commutator of length k of the elements Ej , where
j = 1, . . . , r. The proof is by induction on k. The induction step
follows from the well-known property of the semi-simple Lie algebras:
[G, G] = G.

If we take generic elements of the form (2.44), the Lie subalgebra they
generate will contain Taylor series. All of them should be equal to zero.
This imposes strong restrictions on generators (2.44).

Lemma 2.5. A subalgebra U is factoring iff for any k the dimension dk
of the vector space Vk of all elements from U of the form

∞∑
i=−n

giλ
i, n ≤ k

is the same as for the standard subalgebra (2.41).
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Proof. Let Fij , where i ≤ r, j ≤ k, be elements of U such that

Fij = ei
λj

+O(1).

It is clear that Fij form a basis of Vk.

Conjecture 2.1. Let G be a simple Lie algebra not isomorphic to sl2.
Then elements Ei ∈ G((λ)) of the form (2.44) generate a factoring
subalgebra iff the dimension of the vector space spanned by [Ej , Ek] and
Ei is equal to 2 dimG.

When the factoring subalgebra U is isotropic with respect to (2.39), the
description of factoring subalgebras is closely related to a classification of
the Yang-Baxter r-matrices [5]. Without this assumption the problem has
not been deeply considered yet. In Subsection 2.3.1 we solve it for G = so3
[76].

Multiplicands

Definition 2.4. A (scalar) Laurent series

m =
∞∑

i=−n
ciλ

i, ci ∈ C,

is called a multiplicand of U if mU ⊂ U . The number n is called the order
of the multiplicand m. If U admits a multiplicand m of order n = 1, then
U is called homogeneous.
Let G be a simple Lie algebra. The following construction allows us to

associate an algebraic curve with any factoring subalgebra U .

Theorem 2.7. [62] For any factoring subalgebra the following statements
are fulfilled:

i) multiplicands of negative orders do not exist;

ii) the complement of the set of all multiplicand orders with respect to
the set of natural numbers is finite.

It follows from the statement ii) that any two multiplicands are related
by an algebraic relation. So, the set of all multiplicands is isomorphic to
a coordinate ring of some algebraic curve. Examples are given in Section
2.3.1.
This canonical relation between factoring subalgebras and algebraic

curves allows one to use methods of algebraic geometry for the investigation
of factoring subalgebras.
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2.3.1 Factoring subalgebras for G = so3

In this section we follow the paper [76].
Consider the standard basis

e1 =

 0 1 0
−1 0 0
0 0 0

 , e2 =

 0 0 1
0 0 0
−1 0 0

 , e3 =

 0 0 0
0 0 1
0 −1 0


in so3. Let U be a factoring subalgebra. Define elements Ei ∈ U by (2.44).
Automorphisms (2.43) are orthogonal transformations, which are Taylor

series in λ. The functions

|E1|2, |E2|2, |E3|2, (E1, E2), (E1, E3), (E2, E3),

where ∑
i

xiei,
∑
j

yjej

 =
∑
i

xiyi,

are invariants for the transformations (2.43).

Proposition 2.6. For any factoring subalgebra the following relations
hold: (

[E1, [E2, E3]]
[E3, [E1, E2]]
[E2, [E3, E1]]

)
= A

(
[E3, E1]
[E1, E2]
[E2, E3]

)
+ B

(
E2
E3
E1

)
,

(
[E3, [E2, E3]] + [E1, [E1, E2]]
[E1, [E3, E1]] + [E2, [E2, E3]]
[E2, [E1, E2]] + [E3, [E3, E1]]

)
= C

(
[E3, E1]
[E1, E2]
[E2, E3]

)
+ D

(
E2
E3
E1

)
,

(2.45)

where

A =

 −u w 0
u 0 −v
0 −w v

 , B =

 −α β 0
α 0 −γ
0 −β γ

 ,

C =

 x v −w
−v y u
w −u z

 , D =

 ε γ −β
−γ τ α
β −α δ


(2.46)

are constant matrices. Moreover tr C = tr D = 0 and

c1A + c2B = 0, c1C + c2D = 0 (2.47)

for some constants c1, c2.
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Proof. The coefficients of λ−3 in the expressions from the left hand side
of (2.45) are equal to zero. Therefore, the expressions should be linear
combinations of

E1, E2, E3, [E1, E2], [E3, E1], [E2, E3].

The relations between the coefficients of these linear combinations follow
from Lemma 2.4.

Remark 2.4. Proposition 2.6 means that d3 = 9 (see Lemma 2.5).

Example 2.19. For the standard factoring subalgebra (2.41) conditions
(2.45) are fulfilled with A = B = C = D = 0. In this case,

Ei = ei
λ
, i = 1, 2, 3.

It is clear that the algebra of multiplicands is generated by x = 1
λ and

therefore the corresponding algebraic curve is a straight line.
Example 2.20. Suppose that

(E3,E1) = −α, (E1,E2) = −β, (E2,E3) = −γ,

|E3|2 − |E1|2 = ε, |E1|2 − |E2|2 = τ, |E2|2 − |E3|2 = δ, (2.48)

where α, β, γ, δ, ε, τ are fixed constants such that ε+ τ + δ = 0. It follows
from (2.48) that we may implement the spectral parameter λ by formulas

|E1| =
√

1− pλ2

λ
, |E2| =

√
1− qλ2

λ
, |E3| =

√
1− rλ2

λ
,

where ε = p− r, τ = q − p, δ = r − q. The elements Ei of the form

E1 = c1e1, E2 = c2e1 + c3e2, E3 = c4e1 + c5e2 + c6e3, ci ∈ C((λ)),

can be easily reconstructed.
One can verify that such elements Ei satisfy (2.45), (2.46) with A =

C = 0 and generate a factoring subalgebra. This factoring subalgebra is
isotropic with respect to the form (2.39).
The expressions Xi(λ) = |Ei| are functions on the elliptic curve

X2
1 + p = X2

2 + q = X2
3 + r. (2.49)

The functions

x = 1
λ2 , y =

√
(1− pλ2)(1− qλ2)(1− rλ2)

λ3
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are multiplicands of U of order 2 and 3, respectively. For example, in the
special case α = β = γ = 0 we have

E1 =
√

1− pλ2

λ
e1,

E2 =
√

1− qλ2

λ
e2,

E3 =
√

1− rλ2

λ
e3,

(2.50)

and

xE2 = [[E1,E2], E1] + pE2, yE2 = [[E2,E3], [E1,E2]]

and so on. The corresponding algebraic curve is elliptic:

y2 = (x− p)(x− q)(x− r).

Example 2.21. Let

|E1|2 = (µ− r)(µ− q)− u2, |E2|2 = (µ− r)(µ− p)− v2,

|E3|2 = (µ− q)(µ− p)− w2, (E1, E2) = w(µ− r) + uv,

(E1, E3) = v(µ− q) + uw, (E2, E3) = u(µ− p) + vw,

(2.51)

where µ = λ−1, p, q, r, u, v, w are arbitrary parameters. The elements
Ei, i = 1, 2, 3 satisfy (2.45), (2.46) with x = p − r, y = q − p, z = r − q,
B = D = 0 and generate a factoring subalgebra.
If u = v = w = 0, then Ei are given by

E1 =
√

(1− rλ)(1− qλ)
λ

e1,

E2 =
√

(1− rλ)(1− pλ)
λ

e2,

E3 =
√

(1− qλ)(1− pλ)
λ

e3 .

(2.52)

At first glance, we deal with the functions

X1 =
√

(1− rλ)
λ

, X2 =
√

(1− qλ)
λ

, X3 =
√

(1− pλ)
λ

on the elliptic curve (2.49), but in fact Ei depend on the products

Z1 = X2X3, Z2 = X1X3, Z3 = X1X2
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only. The corresponding algebraic curve can be written as
Z1Z2

Z3
+ p = Z1Z3

Z2
+ q = Z2Z3

Z1
+ r.

This curve is rational. Indeed, substituting

Z3 = (q − r)Z2Z1

Z2
2 − Z2

1

into the curve, we get

(Z2
2 − Z2

1 )2 + a2Z2
2 − b2Z2

1 = 0,

where a2 = (r − q)(q − p), b2 = (r − p)(q − p). The latter curve admits
the rational parameterization

Z1 = a(t3 + St)
t4 +Kt2 + S2 , Z2 = b(t3 − St)

t4 +Kt2 + S2 ,

where
S = (a2 − b2)2

4a2b2 , K = a4 − b4

2a2b2 .

The algebra of multiplicands of the factoring subalgebra is generated by
x = 1

λ . For example,
xE1 = [E3, E2] + pE1.

Example 2.22. Let

Ei = ei
λ

+ ν [V, ei] + 1
2 [V, [V, ei]],

where
V = v1e1 + v2e2 + v3e3,

ν and vi are parameters. The constants in (2.45)– (2.47) are given by

u = v1v3, v = v2v3, w = v1v2, x = v2
1−v2

3 , y = v2
2−v2

1 , z = v2
3−v2

2 ,

c1 = −1, c2 = ν2 + ∆
4 , ∆ = v2

1 + v2
2 + v2

3 .

The elements Ei generate a factoring subalgebra. The multiplicands of
second and third order are given by

x = 1
λ2 −

∆
λ
, y = 1

λ3 + ∆(4ν2 − 3∆)
4λ .

Exercise 2.5. Verify that x and y are related by a degenerate elliptic curve
with canonical form

ȳ2 = 4(x̄− a)(x̄− b)2,

where
a = 2

3ν
2∆, b = −1

3ν
2∆.
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Theorem 2.8. Any factoring subalgebra for G = so3 is equivalent to one
from Examples 2.19–2.22.

Proof. For a proof see [76].

A classification of factoring subalgebras for the semi-simple Lie algebra
G = so4 is important for applications. A class of factoring subalgebras was
constructed in [15].

Open problem 2.1. Describe all factoring subalgebras for G = so4.

2.3.2 Integrable top-like systems
As it was mentioned in Remark 1.1, one may assume that the A-operator
in (1.4) belongs to G while L belongs to a module over G. In this section
we assume that G is semi-simple.
For integrable top-like systems the A-operator in (1.4) belongs to U and

L belongs to the orthogonal complement U⊥ with respect to the scalar
product (2.39). It follows from its invariance that U⊥ is a module over U .
Exercise 2.6. Prove that U⊥ does not contain non-zero Taylor series.
It was shown in [28, Theorem 2.3] that in this case natural Hamiltonian

structures arise.
We say that an L-operator has order k if L ∈ Ok

def= λ−kG[[λ]]
⋂
U⊥.

To construct A-operators we generalize the scheme of Sections 2.1.2, 2.2.1.
Namely, we find elements of G((λ)) that commute with L and project them
onto U .
For the sake of simplicity we assume that G is embedded into a matrix

algebra. Suppose that Bij = λiLj belongs to G((λ)).

Proposition 2.7. Suppose that L ∈ Ok. Then

i) [π+(Bij), L] ∈ Ok,

ii) for any i, j, p, q the Lax equations

Lt = [π+(Bij), L]

and
Lτ = [π+(Bpq), L]

are infinitesimal symmetries for each other.

Here we denote by π+ the projection operator onto U parallel to G[[λ]].

Exercise 2.7. Prove the proposition (see proof of Theorem 2.2).
A general theory of Lax pairs of such kind and of the corresponding

Hamiltonian structures for any semi-simple Lie algebra G was presented
in [28]. Below we consider the case G = so3.
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2.3.3 so3 classical spinning tops
In this section we demonstrate [28, Section 4] that the factoring
subalgebras in so3 described in Section 2.3.1 are in one-to-one
correspondence with classical integrable cases for the Kirchhoff problem
of the motion of a rigid body in an ideal fluid [6]. The equations of motion
are given by

dΓ
dt

= Γ× ∂H

∂M ,
dM
dt

= M× ∂H

∂M + Γ× ∂H

∂Γ , (2.53)

where M = (M1,M2,M3) is the total angular momentum, Γ = (γ1, γ2, γ3)
is the gravitational vector, × stands for the cross product,

∂H

∂M =
( ∂H
∂M1

,
∂H

∂M2
,
∂H

∂M3

)
,

∂H

∂Γ =
(∂H
∂γ1

,
∂H

∂γ2
,
∂H

∂γ3

)
,

and the quadratic form H(M,Γ) is a Hamiltonian.

Structure of the orthogonal complement to U

Proposition 2.8. The orthogonal complement to U can be described as
follows:

i) There exist unique elements Ri ∈ U⊥ of the form

Ri = ei
λ

+O(1), i = 1, 2, 3. (2.54)

They generate U⊥ as a U-module.

ii) The following commutator relations hold: [E1,R1]
[E3,R3]
[E2,R2]

 = A

 R2
R3
R1

 ,

 [E3, R1] + [E1, R3]
[E1, R2] + [E2, R1]
[E2, R3] + [E3, R2]

 = C

 R2
R3
R1

 ,

where A and C are matrices defined by (2.45), (2.46).

Remark 2.5. Elements Ri ∈ so3((λ)) of the form (2.54) are determined
by the commutator relations up to a summand of the form S(λ) ei, where
S is a scalar Taylor series.
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Open problem 2.2. Prove that for any S(λ) the U-module generated by
Ri, i = 1, 2, 3 is the orthogonal complement to U with respect to the form

〈X(λ), Y (λ)〉P = resP (λ)
(
X(λ), Y (λ)

)
, X(λ), Y (λ) ∈ so3((λ))

with a proper scalar Taylor series P .

The simplest option L ∈ O1, A = π+(L) corresponds to integrable
models of Euler type. In this case we have

L = M1R1 +M2R2 +M3R3, A = M1E1 +M2E2 +M3E3, (2.55)

The Lax pairs for integrable Kirchhoff type systems have the following
form:

L = γ1[R3, E2] + γ2[R1, E3] + γ3[R2, E1] +m1R1 +m2R2 +m3R3,

A = π+

(
λL
)

= γ1E1 + γ2E2 + γ3E3,
(2.56)

wheremi = Mi+ciγi for some constants ci. It follows from Proposition 2.8
that L is a generic element of O2. A unique non-trivial higher symmetry
for the corresponding ODE system corresponds to A = π+(L).

Clebsch integrable case

The factoring subalgebra U from Example 2.20 generated by elements
(2.50) is isotropic and therefore Ri = Ei, i = 1, 2, 3. The Lax equation
(1.4), (2.56), where and mi = Mi, is equivalent to (2.53), where

H = −1
2

(
M2

1 +M2
2 +M2

3 − (q + r)γ2
1 − (p+ r)γ2

2 − (p+ q)γ2
3

)
.

This coincides with the Clebsch integrable case in the Kirchhoff problem
of the motion of a rigid body in an ideal fluid.
Since the subalgebra U is isotropic, the Lax pair (2.55) gives nothing.

Euler and Steklov–Lyapunov cases

For the factoring subalgebra from Example 2.21 generated by (2.52) we
have

R1 = e1
1√

(1− rλ)(1− qλ)λ
, R2 = e2

1√
(1− rλ)(1− pλ)λ

,

R3 = e3
1√

(1− qλ)(1− pλ)λ
.
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The Lax pair (2.55) yields the Euler equation (see also Example 1.1)

Mt = M×VM,

where V = diag (p, q, r). This Lax pair differs from the one considered in
Example 1.1.
The Lax equation (1.4), (2.56) is equivalent to (2.53), where

H =− 1
2

(
M2

1 +M2
2 +M2

3 + (r + q)M1γ1 + (r + p)M2γ2 + (q + p)M3γ3

)
− 1

8

(
(r − q)2γ2

1 + (p− r)2γ2
2 + (q − p)2γ2

3

)
,

and

m1 = M1 + r − q
2 γ1, m2 = M2 + p− r

2 γ2, m3 = M3 + q − p
2 γ3.

This is just the integrable Steklov–Lyapunov case.

Kirchhoff integrable case

For the factoring subalgebra described in Example 2.22 the elements

Ri = ei
λ

+ ν [V, ei]−
1
2 [V, [V, ei]] + (V, V) ei, i = 1, 2, 3

satisfy the commutator relations from Proposition 2.8 and therefore
generate a U-module that does not contain non-zero Taylor series. Any
such module can be used to construct Lax pairs.

Remark 2.6. This module is not U⊥ (see Remark 2.5).

Exercise 2.8. Find the system of ODEs that corresponds to Lax pair (2.55).
Exercise 2.9. Check that the Lax pair (2.56) gives rise to the Kirchhoff
integrable case (see [28]).

Open problem 2.3. Find the elements Ri for U⊥.

2.3.4 Generalization of Euler and Steklov–Lyapunov
cases to the son-case

The factorizing subalgebra from Example 2.21 can be described by the
formula

U = (1 + λV)1/2 Ust (1 + λV)1/2, (2.57)

where V = diag (p, q, r),

(1 + λV)1/2 = 1 + 1
2Vλ− 1

8V2 λ2 + · · · ,
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and Ust is defined by (2.41). According to Lemma 2.5 the formula (2.57),
where V is arbitrary diagonal matrix, defines a factorizing subalgebra for
G = son as well. The orthogonal complement to U is given by

U⊥ = (1 + λV)−1/2 Ust (1 + λV)−1/2.

The simplest possibility L ∈ O1, A = π+(L) corresponds to

L = (1 + λV)−1/2 M
λ

(1 + λV)−1/2,

A = (1 + λV)1/2 M
λ

(1 + λV)1/2,

where M ∈ son. This Lax pair produces the Euler equation on son:

Mt = [V, M2].

The system of equations

Mt = [V, M2] + [M, Γ], Γt = VMΓ− ΓMV, M,Γ ∈ son

possesses the Lax pair

L =(1 + λV)−1/2
(

M
λ2 + Γ

λ

)
(1 + λV)−1/2,

A =(1 + λV)1/2 M
λ

(1 + λV)1/2,

corresponding to the orbit O2. One can regard this equation as an son-
generalization of the Steklov–Lyapunov top [28].

2.3.5 Factoring subalgebras for Kac–Moody algebras
The Clebsch, Steklov–Lyapunov and Kirchhoff 2 cases possess additional
integrals of second degree. To get trickier examples like Kowalevsky top,
one can consider a decomposition problem for Kac-Moody algebras (see
[28]).
Let G be a semi-simple Lie algebra and φ be an automorphism of G of a

finite order k. Let

Gi = {a ∈ G | φ(a) = εi a}λi, i ∈ Z,

where ε is a primitive root of 1 of degree k. In this case, the Lie algebra

G((λ, φ)) =
{ ∞∑
i=−n

gi | gi ∈ Gi, n ∈ Z
}

2For the Kirchhoff case there exists also an integral of first degree.
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is Z-graded. It is called an (extended) twisted loop algebra or a Kac-Moody
algebra.
Several interesting integrable systems are related to the following Kac-

Moody algebra. Let

G = {A ∈ Matn+m |At = −SAS},

where
S =

(
1n 0
0 −1m

)
.

It is clear that the Lie algebra G is isomorphic over C to son+m.
Consider the subalgebra A of the loop algebra over G consisting of

Laurent series such that the coefficients of even (respectively, odd) powers
of λ belong to G1 (respectively, G−1). Here by G±1 we denote the
eigenspaces of the inner second order automorphism φ : G → SGS−1,
corresponding to eigenvalues ±1. Actually, this means that the coefficients
of even powers of λ have the following block structure(

v1 0
0 v2

)
,

where v1 ∈ son, v2 ∈ som, and the coefficients of odd powers are of the
form (

0 w
wt 0

)
,

where w ∈ Matn,m.
We choose res(λ−1tr(X Y )) for the non-degenerate invariant form on A.

Note that in this case the form res(tr(X Y )) is degenerate.
Let T be the set of all Taylor series from A,

U = (1 + λr)1/2 Ust (1 + λr)1/2,

where Ust is the set of polynomials in λ−1 from A and r is arbitrary
constant matrix of the form

r =
(

0 r1
−rt1 0

)
, r1 ∈ Matn,m.

According to Lemma 2.5, U is a factoring subalgebra and the sum A =
T + U is direct. The subalgebra U is a natural generalization of (2.57) to
the case when the structure of coefficients of series from U are defined by
an additional automorphism of second order. The orthogonal complement
to U with respect of the form

〈X, Y 〉 = resλ−1tr (XY )
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is given by
U⊥ = (1 + λr)−1/2Ust(1 + λr)−1/2.

The Lax equation Lt = [π+(L), L] corresponding to

L = (1 + λr)−1/2(λ−1w + v + λu)(1 + λr)−1/2

is equivalent to the following system of equations

wt = [w, wr + rw − v],

vt = [u, w] + vwr − rwv,

ut = uwr − rwu.

(2.58)

It is easy to see that this system admits the reduction

u =
(

0 r1
rt1 0

)
,

which leads to the model found in [79]. In the case n = 3,m = 2 under
further reductions we arrive at the Lax representation for the integrable
case in the Kirchhoff problem [71] with the Hamiltonian

H = 1
2 |u|

2|M|2 + 1
2

(
u, M

)2
+
(
u× v, M× Γ

)
,

where u and v are arbitrary constant vectors such that (u,v) = 0. The
additional integral of motion in this case is of degree four.

2.3.6 Integrable PDEs of the Landau-Lifshitz type
Landau-Lifshitz equations related to so3

Any factoring subalgebra U for so3 yields the following Lax pair

L = d

dx
+ U, U =

3∑
i=1

si Ei, s2
1 + s2

2 + s2
3 = 1,

A =
∑

si [Ej , Ek] +
∑

ti Ei

for an integrable PDE of the Landau-Lifshitz type. In this case the Lax
equation has the form

Ut −Ax + [U, A] = 0. (2.59)

The Laurent expansion of the left hand side of (2.59) contains terms with
λk, where k ≥ −2. If coefficients at λ−2 and at λ−1 vanish, then the left
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hand side of (2.59) identically equals zero. Indeed, the subalgebra U does
not contain any non-zero Taylor series.
To find the corresponding non-linear system of the form st =

~F (s, sx, sxx), where s = (s1, s2, s3), one can use the following
straightforward computation. Comparing the coefficients of λ−2, we
express ti in terms of s, sx. Equating the coefficients of λ−1, we get an
evolution system for s. Using the symmetry approach to integrability [50]
these systems were found in [49].
A standard way of finding all A-operators of the hierarchy defined by a

given L-operator of the Landau-Lifshitz type based on a diagonalization
procedure (cf. with Theorem 2.6) was proposed in [29]. Here we don’t
discuss it.
Consider the case of Example 2.20. Equating the coefficients of λ−2 in

(2.59) to zero, we get sx = s×t, where t = (t1, t2, t3). Since s2 = 1 we find
t = sx× s+µ s. Comparing the coefficients of λ−1, we get st = tx− s×Vs
or

st = sxx × s + µx s + µ sx − s×Vs,

where V = diag (p, q, r). Since the scalar product (s, st) has to be zero,
we find that µ = const. The resulting equation coincides with (2.37) up
to the involution t → −t, the additional term of the form const sx and a
change of notation.
The factoring subalgebra from Example 2.21 yields the equation

st = s× sxx + (s, V s) sx + 2s× (s×V sx).

The subalgebra from Example 2.22 corresponds to equation

st = s× sxx + (s, Z s) sx + 2s× (s× Z sx) + c s× Z s,

where

Z =

 r2
1 r1r2 r1r3

r1r2 r2
2 r2r3

r1r3 r2r3 r2
3

 , c = ν2 + r2
1 + r2

2 + r2
3

4 .

In this equation Z is an arbitrary symmetric matrix of rank one and c is
an arbitrary constant.

Perelomov model and vector Landau-Lifshitz equation

Consider a special case n = N,m = 1 of the Kac-Moody algebra from
Section 2.3.5. Let us take

U =
{ 0∑
i=−n

λ2i
(

ΛAiΛ Λui
utiΛ 0

)
, n ∈ N

}



52 Vladimir Sokolov

for the factoring subalgebra. Here

Λ = 1
λ

√
1− λ2R = 1

λ
− R

2 λ−
R2

8 λ3 + · · · ,

R = diag (r1, . . . , rN ), Ai are skew-symmetric N × N -matrices, and ui
are column vectors. The orthogonal complement to U with respect to the
form res(λ−1(X, Y )) has the form

U⊥ =
{ −1∑
i=−n

λ2i
(

Λ−1AiΛ−1 Λ−1ui
utiΛ−1 0

)
, n ∈ N

}
. (2.60)

The simplest L-operator

L = 1
λ2

(
Λ−1VΛ−1 Λ−1u

utΛ−1 0

)
corresponds to n = 1 in (2.60). The Lax equation (1.4) with

A = π+(λ−2L) = 1
λ2

(
0 Λu

utΛ 0

)
+
(

ΛVΛ ΛRu
utRΛ 0

)
gives rise to Perelomov’s soN generalization

Vt = [V2, R] + [uut, R2], ut + (VR + RV) u = 0

of the Clebsch top system.
For the Landau-Lifshitz equation (2.36) the L-operator is given by (2.38)

and
A = 1

λ2

(
0 Λu

uTΛ 0

)
+
(

ΛVΛ Λy
ytΛ 0

)
,

where the entries of V are given by vi,j = ui(uj)x − uj(ui)x and

y = uxx +
(3

2 〈ux,ux〉+ 1
2 〈u,Ru〉

)
u.

2.3.7 Hyperbolic models of chiral type
A class of factoring subalgebras for G = so4 and their relations with
integrable so4 spinning tops were investigated in [15]. These subalgebras
also generate [26, 16] integrable hyperbolic PDEs of the form

uξ = Av× u, vη = Ā u× v,

where
A = diag(a1, a2, a3), Ā = diag(ā1, ā2, ā3),
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u,v are three-dimensional s, and the constants ai, āj obey the following
relations.

a1ā1(a2
3 − a2

2) + a2ā2(a2
1 − a2

3) + a3ā3(a2
2 − a2

1) = 0,

a1ā1(ā2
3 − ā2

2) + a2ā2(ā2
1 − ā2

3) + a3ā3(ā2
2 − ā2

1) = 0.
The Cherednik model [8] corresponds to ai = āi, i = 1, 2, 3. For the
Golubchik-Sokolov case [26] we have ai = ā−1

i , i = 1, 2, 3.
The case when a1 = a2 and then ā1 = ā2, a3, ā3 are arbitrary, was found

in [16].

Resume

The description of factoring subalgebras is a fundamental problem of the
theory. Each factoring subalgebra generates several different integrable
PDEs and ODEs.

2.4 Factorization method and non-associative
algebras

Let A be an N -dimensional algebra with a multiplication operation ◦
defined by the structural constants Cijk.We associate to A a top-like ODE-
system of the form

uit =
∑
j,k

Cijk u
juk, i, j, k = 1, ..., N. (2.61)

Let e1, . . . , eN be a basis in A and

U =
N∑
i=1

uiei.

The system (2.61) can be written in a short form

Ut = U ◦ U. (2.62)

The system (2.62) is called the A-top.
Definition 2.5. Algebras with the identity [X,Y, Z] = 0 are called left-
symmetric [84].
Hereinafter we use the notation (1.2) and (1.3).

Definition 2.6. Algebras with the identity

[V,X, Y ◦ Z]− [V,X, Y ] ◦ Z − Y ◦ [V,X,Z] = 0. (2.63)

are called SS-algebras [78, 34].
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Remark 2.7. It follows from (2.63) that for any SS-algebra A the
operator

KY Z = [LY , LZ ]− LY ◦Z + LZ◦Y

is a derivation of A for any Y,Z. As usual, LX denotes the operator of
left multiplication by X.

Definition 2.7. An algebra with identities

[X,Y, Z] + [Y,Z,X] + [Z,X, Y ] = 0, (2.64)

and

V ◦ [X,Y, Z] = [V ◦X,Y, Z] + [X,V ◦ Y, Z] + [X,Y, V ◦ Z] (2.65)

is called G-algebra [30].

Remark 2.8. Identity (2.64) means that the operation X ◦ Y − Y ◦X is
a Lie bracket.

2.4.1 Factorization method
The factorization method (or, the same, AKS-scheme [39]) is a finite–
dimensional analog of the Riemann-Hilbert problem [89], which can be
used as a basis for the inverse scattering method.
Similarly to Section 2.3, we deal with a vector space decomposition of a

Lie algebra into a direct sum of its subalgebras.
Let G be a finite-dimensional Lie algebra, G+ and G− be subalgebras in
G such that

G = G+ ⊕ G−. (2.66)

The simplest example is the Gauss decomposition of the matrix algebra
into the sum of upper and law triangular matrices.
The standard factorization method is used to integrate the following

very special systems of the form (2.61):

Xt = [π+(X), X], X(0) = x0. (2.67)

Here X(t) ∈ G, π+ is the projector onto G+ parallel to G−. Very often we
denote by X+ and X− the projections of X onto G+ and G−, respectively.
For simplicity we assume that G is embedded into a matrix algebra.

Remark 2.9. It follows from Lemma 1.1 that for any k the function trXk

is an integral of motion for (2.67).

Proposition 2.9. The solution of Cauchy problem (2.67) is given by the
formula

X(t) = A(t)x0 A
−1(t), (2.68)



Chapter 2. Factorization of Lie algebras and Lax pairs 55

where function A(t) is defined as a solution of the following factorization
problem

A−1 B = exp (−x0 t), A ∈ G+, B ∈ G−, (2.69)
where G+ and G− are the Lie groups of G+ and G−, respectively.

Proof. Differentiating (2.68), we obtain

Xt = Atx0A
−1 −Ax0A

−1AtA
−1 = [AtA−1, X].

It follows from (2.69) that

−A−1AtA
−1B +A−1Bt = −x0A

−1B.

The latter relation is equivalent to

−AtA−1 +BtB
−1 = −Ax0A

−1.

Projecting it onto G+, we get AtA−1 = X+ which proves (2.67).

If the groups G+ and G− are algebraic, then the conditions

A ∈ G+, A exp(−x0 t) ∈ G−

are equivalent to a system of algebraic equations from which (for small t)
the matrix A(t) is uniquely determined.
The factorization problem (2.69) can also be reduced to a system of

linear differential equations with variable coefficients for A(t). Define a
linear operator L(t) : G+ → G+ by the formula

L(t)(v) =
(

exp(x0 t) v exp(−x0 t)
)

+
.

Since L(0) is the identity operator, L(t) is invertible for small t.

Proposition 2.10. Let A(t) be the solution of the initial problem

At = AL(t)−1
(

(x0)+

)
, A(0) = I.

Define B by the formula B = A exp(−x0 t). Then the pair (A, B) is the
solution of the factorization problem (2.69).

Proof. Since A−1 At ∈ G+ and A(0) = I, we have A ∈ G+. It suffices to
verify that B−1Bt ∈ G−. We have

B−1Bt = exp(x0 t)A−1
(
Atexp(−x0 t)−Ax0 exp(−x0 t)

)
=

exp(x0 t)
(
L(t)−1(x0)+

)
exp(−x0 t)− x0.

Projecting this identity onto G+ and using the definition of the operator
L(t), we obtain (B−1Bt)+ = 0.
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2.4.2 Reductions
It follows from (2.68) that if the initial data x0 for (2.67) belongs to a
G+-moduleM, then X(t) ∈ M for any t. Such a specialization of (2.67)
can be written as

Mt = [π+(M), M ], M ∈M. (2.70)

Introducing the product

M1 ◦M2 = [π+(M1), M2], Mi ∈M, (2.71)

we equipM with a structure of algebra. The system (2.70) is calledM-
reduction and the operation (2.71) is calledM-product.
Some classes of modules M correspond to interesting non-associative

algebras defined by (2.71).

Reductions for Z2–graded Lie algebras

Let
G = G0 ⊕ G1 (2.72)

be a Z2-graded Lie algebra:

[G0,G0] ⊂ G0, [G0,G1] ⊂ G1, [G1,G1] ⊂ G0.

Suppose that we have a decomposition (2.66), where G+ = G0. Let us
consider the G1-reduction.
Example 2.23. Let G0 = G+, G1 = M, G−, and G be the sets of skew-
symmetric, symmetric, upper-triangular and all matrices, respectively.
Then the formula (2.71) defines the structure of a G-algebra on the set
of symmetric matrices.
It is clear that

G− = {m−R(m) |m ∈ G1}, (2.73)

where R = π+ is the projection onto G+ = G0 parallel to G−.

Theorem 2.9. [30] The vector space in (2.73) is a Lie subalgebra in G iff
R : G1 → G0 satisfies the modified Yang-Baxter equation

R
(

[R(X), Y ]− [R(Y ), X]
)
− [R(X), R(Y )]− [X, Y ] = 0, X, Y ∈ G1.

Remark 2.10. It is important to note that in our case R is an operator
defined on G1 and acting from G1 to G0, whereas usually (see [68]) R is
assumed to be an operator on G.

Proposition 2.11. If [G1, G1] = {0}, then G1 is a left-symmetric algebra
with respect to the product (2.71).
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Proof. Let X,Y, Z ∈ G1. Let us verify that

[X, Y, Z] = [[X,Y ], Z], (2.74)

where the left hand side is defined by (1.3). According to (2.71), it has the
form

[[X+, Y ]+, Z]− [[Y+, X]+, Z] + [Y+, [X+, Z]]− [X+, [Y+, Z]].

We have

[[X+, Y ]+, Z]−[[Y+, X]+, Z] = [[X, Y ]+, Z]−[[X−, Y ]+, Z]+[[X,Y+]+, Z] =

[[X, Y ], Z] + [[X+, Y+]+, Z] = [[X, Y ], Z] + [[X+, Y+], Z].

Now (2.74) follows from the Jacobi identity for X+, Y+, Z. Since [G1, G1] =
{0} the proposition statement is a consequence of (2.74).

In the general case we arrive at G-algebras.

Theorem 2.10. i) The vector space G1 is a G-algebra with respect to
the operation (2.71).

ii) Any G-algebra can be obtained from a suitable Z2-graded Lie algebra
by the above construction.

Proof. To prove identity (2.64) it suffices to project the Jacobi identity for
X−, Y−, Z− onto G1. Rewriting (2.65) in terms of the G-bracket with the
help of (2.74), we see that (2.65) follows from the Jacobi identity for G.
It remains to prove the second part of the theorem. Let G1 be a

G-algebra. Define G by formula (2.72), where G0 is the Lie algebra
generated by all operators of left multiplication of G1. Recall that the
left multiplication operator LX is defined as follows: LX(Y ) = X ◦Y . The
bracket on G is defined by

[(A,X), (B, Y )] =
(

[A,B]− [LX , LY ] + LX◦Y − LY ◦X , A(Y )−B(X)
)
.

(2.75)
The skew-symmetry is obvious. One can easily verify that the identities
(2.64), (2.65) are equivalent to the Jacobi identity for (2.75). It follows
from (2.75) that the decomposition (2.72) defines a Z2-gradation. To define
a decomposition (2.66) we take for G− the set {(−LX , X)} and G0 for G+.
Formula (2.75) implies that G− is a subalgebra in G. For G± thus defined,
(2.71) has the form (0, X) ◦ (0, Y ) = [(LX , 0), (0, Y )]. This relation is
fulfilled according to (2.75).

The part i) of the theorem means that any G-top (2.61) is integrable by
the factorization method.
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Example 2.24. Putting

G+ =


a c 0
d b 0
0 0 −a− b

 , G1 =


0 0 P

0 0 Q
R S 0

 ,

we take sl3 for G. Let us choose a complementary subalgebra G− as follows:

G− =


 −Y +X + αU X Y −X
−Z + (2− 3α)U (1− 2α)U Z + (3α− 2)U

−Y X Y −X + (α− 1)U

 ,

where α is a parameter.
The operation (2.71) turns the vector space M = G1 into a G-algebra.

The correspondingM-top is the following system of differential equations
Pt = P 2 −RP −QS,
Qt = (β − 2)RQ+ βPQ,

Rt = R2 −RP −QS,
St = (3− β)RS + (1− β)PS,

(2.76)

where β = 3α, for the entries of the matrix

M =

0 0 P
0 0 Q
R S 0

 .

From (2.70) it follows that I1 = tr M2 = RP + QS is a first integral for
the system. Other integrals of the form tr Mk are trivial. Nevertheless
it is not hard to integrate (2.76) by quadratures. The auxiliary two first
integrals are of the form

I2 = P −R
QS

, I3 = Q1−βS−β(R2 −RP −QS).

For generic β the integral I3 is a multi-valued function. It shows that
(2.76) is not integrable from the view-point of the Painlevé approach (see
for example, [53]).

2.4.3 Generalized factorization method
Suppose that

G = V1 ⊕ V2, (2.77)

where the Vi are vector spaces. Let

H = [V1, V1]− + [V2, V2]+. (2.78)
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Here + and − symbolize the projections onto V1 and V2, respectively.
Assume that V1 and V2 satisfy the following conditions

[H, V1] ⊂ V1, [H, V2] ⊂ V2. (2.79)

If Vi are subalgebras, then H = {0} and conditions (2.79) are trivial.
It turns out [33] that equation (2.67), where π+ is the projection onto

V1 parallel to V2, can be reduced to solving a system of linear equations
with variable coefficients (cf. Proposition 2.10).

Remark 2.11. If conditions (2.79) hold, then H, G+ = V1 +[V1, V1]− and
G− = V2 + [V2, V2]+ are Lie subalgebras in G. Moreover, H = G+

⋂
G−

Theorem 2.11. i) Let G = G0 ⊕ G1 be a Z2-graded Lie algebra, such
that [G1, G1] = 0. Given a vector space decomposition (2.77) with
V1 = G0 and a vector space V2 satisfying conditions (2.79), we equip
V2 with an algebraic structure by formula (2.71). Then V2 is a SS-
algebra with respect to the operation ◦.

ii) Any SS-algebra A can be obtained from a suitable Z2-graded Lie
algebra by the above construction

Proof. The first part can be proved in the same manner as the first part of
Theorem 2.10. We explain only how to construct G,G+, V2. for a given SS-
algebra. We take for G+ the Lie algebra EndA of all linear endomorphisms
of A . The vector space

G = (EndA)⊕A

becomes a Z2-graded Lie algebra if we define the bracket by

[(A,X), (B, Y )] =
(

[A, B], A(Y )−B(X)
)
.

It is not difficult to show that (2.63) implies that a) the vector space H
generated by all elements of the form(

[LY , LZ ]− LY ◦Z + LZ◦Y , 0
)

is a Lie subalgebra in G, and b) the vector spaces V2 = {(−LX , X)},
V1 = G+ and the subalgebra H satisfy conditions (2.78) and (2.79).

Example 2.25. Let us take

G =



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 0
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for Z2-graded Lie algebra. It is clear that G = G0 ⊕ G1, where

G0 =



∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 0


 , G1 =




0 0 0 P
0 0 0 Q
0 0 0 R
0 0 0 0


 .

Let G+ = G0 and

G− =




c λc a a
−λc c b b
a b c c
0 0 0 0


 ,

where λ is a parameter. Since G− is not a subalgebra, we have to find the
vector space H using (2.78). A simple calculation shows that

H =




0 −d 0 0
d 0 0 0
0 0 0 0
0 0 0 0




and that the conditions (2.79) are fulfilled. The corresponding SS-top (up
to a scaling) is given by

Pt = 2PR+ λQR,

Qt = 2QR− λPR,
Rt = P 2 +Q2 +R2.



Chapter 3

Algebraic structures in
bi-Hamiltonian approach

3.1 Polynomial forms for elliptic Calogero-
Moser systems

3.1.1 Calogero-Moser Hamiltonians
Consider quantum integrable Hamiltonians of the form

H = −∆ + U(x1, ..., xn), where ∆ =
n∑
i=1

∂2

∂x2
i

(3.1)

related to simple Lie algebras [59]. For such Hamiltonians the potential U
is a rational, trigonometric or elliptic function.

Observation 3.1. (A.Turbiner). For many of these Hamiltonians there
exists a change of variables and a gauge transformation that bring the
Hamiltonian to a differential operator with polynomial coefficients.

The elliptic Calogero-Moser Hamiltonian is given by

HN = −∆ + β(β − 1)
N+1∑
i 6=j

℘(xi − xj). (3.2)

Here β is a parameter, and ℘(x) is the Weierstrass ℘-function with the
invariants g2, g3, i.e., a solution of the ODE ℘′(x)2 = 4℘(x)3−g2℘(x)−g3.
In the coordinates

X = 1
N + 1

N+1∑
i=1

xi, yi = xi −X.

61
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the operator (3.2) takes the form

HN = − 1
N + 1

∂2

∂X2 +HN (y1, y2, . . . yN ) ,

where

HN = − N

N + 1

N∑
i=1

∂2

∂y2
i

+ 1
N + 1

N∑
i 6=j

∂2

∂yi∂yj
+β(β−1)

N+1∑
i 6=j

℘(yi−yj). (3.3)

In the last term we have to substitute −
∑N
i=1 yi for yN+1.

In [48] the following transformation (y1, . . . , yN )→ (u1, . . . , uN ) defined
by 

℘(y1) ℘′(y1) . . . ℘(N−2)(y1) ℘(N−1)(y1)
℘(y2) ℘′(y2) . . . ℘(N−2)(y2) ℘(N−1)(y2)

...
... . . .

...
...

℘(yN ) ℘′(yN ) . . . ℘(N−2)(yN ) ℘(N−1)(yN )



u1
u2
...
uN

 =


1
1
...
1


(3.4)

was considered. Denote by DN (y1, . . . , yN ) the Jacobian of the
transformation (3.4).

Conjecture 3.1. The gauge transform HN → D
− β2
N HND

β
2
N and

subsequent change of variables (3.4) bring (3.3) to a differential operator
PN with polynomial coefficients.

In the case N = 2 the transformation (3.4) coincides with the
transformation

u1 = ℘′(y2)− ℘′(y1)
℘(y1)℘′(y2)− ℘(y2)℘′(y1) , u2 = ℘(y1)− ℘(y2)

℘(y1)℘′(y2)− ℘(y2)℘′(y1) ,

found in [80]. In addition to explicit form of P2, in this paper a polynomial
form for the elliptic G2-model was found. Polynomial forms for rational
and trigonometric Calogero-Moser Hamiltonians in the case of arbitrary
N were described in [65].

Remark 3.1. Obviously, for any polynomial form P of Hamiltonian (3.1)

1: the contravariant metric g defining by the symbol of P is flat;

2: P can be reduced to a self-adjoint operator by a gauge transformation
P → fPf−1, where f is a function.

Besides evident properties 1,2 we have in mind the following
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Observation 3.2. (A. Turbiner). For all known integrable cases the
polynomial form P preserves some nontrivial finite-dimensional vector
space of polynomials.

For Hamiltonians (3.3) the situation can be described as follows.
Consider the differential operators ei,j = Ei−1,j−1, where

Eij = yi
∂

∂yj
, E0i = ∂

∂yi
,

E00 = −
N∑
j=1

yj
∂

∂yj
+ β (N + 1), Ei0 = yiE00.

(3.5)

It is easy to verify that they satisfy the commutator relations

eijekl − ekleij = δj,keil − δi,lekj , i, j = 1, . . . , N + 1, (3.6)

and, therefore, define representations of the Lie algebra glN+1 and of the
universal enveloping algebra U(glN+1). The latter representation is not
exact.

Conjecture 3.2. The differential operator PN from Conjecture 3.1 can be
written as a linear combination of anti-commutators of the operators Eij.

The conjectures 3.1 and 3.2 have been verified in [48] for N = 2, 3.
Moreover, differential operators with polynomial coefficients that commute
with P2 and with P3 were found. These operators can also be written as
non-commutative polynomials in the Eij .

Remark 3.2. If k = −β(N + 1) is a positive integer, then the operators
(3.5) preserve the vector space of all polynomials in y1, . . . , yN , whose
degrees are not greater than k [65].

3.1.2 Quasi-solvable differential operators
Definition 3.1. A linear differential operator

Q =
∑

i1+···+iN≤m
ai1,...,iN∂

i1
y1
· · · ∂iNyN (3.7)

of order m with polynomial coefficients is called quasi-solvable if it
preserves the vector space of all polynomials in y1, ..., yN of degree ≤ k
for some k ≥ m.

Theorem 3.1. [72] For any quasi-solvable differential operator (3.7)

deg (ai1,...,iN ) ≤ m+ i1 + · · ·+ iN .
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Open problem 3.1. Prove that any quasi-solvable operator can be
represented as a (non-commutative) polynomial in the variables (3.5),
where k = −β(N + 1).

Remark 3.3. Such a representation is not unique.

ODE case

Consider the case N = 1.

Lemma 3.1. Any quasi-solvable operator P of second order has the
following structure:

P = (a4x
4+a3x

3+a2x
2+a1x+a0) d

2

dx2 +(b3x
3+b2x

2+b1x+b0) d
dx

+c2x
2+c1x+c0,

where the coefficients are related by the following identities

b3 = 2(1− k) a4, c2 = k(k − 1) a4, c1 = k(a3 − ka3 − b2).

The transformation group GL2 acts on the nine-dimensional vector space
of such operators as

x→ s1x+ s2

s3x+ s4
, P → (s3x+ s4)−kP (s3x+ s4)k. (3.8)

The coefficient a(x) of the second derivative is a fourth order polynomial,
which transforms as follows

a(x)→ (s3x+ s4)4a
(s1x+ s2

s3x+ s4

)
.

If a(x) has four distinct roots, we call the operator P elliptic. In the elliptic
case using transformations (3.8), we may reduce a to

a(x) = 4x(x− 1)(x− κ),

where κ is the elliptic parameter.
Define parameters n1, ..., n5 by the following identities:

b0 = 2(1 + 2n1),

b1 = −4
(

(κ+ 1)(n1 + 1) + κn2 + n3

)
,

b2 = −2 (3 + 2n1 + 2n2 + 2n3),

k = −1
2(n1 + n2 + n3 + n4),

n5 = c0 + n2(1− n2) + κn3(1− n3) + (n1 + n3)2 + κ(n1 + n2)2.
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Then the operator H = hPh−1, where

h = x
n1
2 (x− 1)

n2
2 (x− κ)

n3
2 ,

has the form

H =a(x) d
2

dx2 + a′(x)
2

d

dx
+ n5 + n4(1− n4)x+ n1(1− n1)κ

x

+ n2(1− n2)(1− κ)
x− 1 + n3(1− n3)κ(κ− 1)

x− κ
.

Now after the transformation y = f(x), where

f ′2 = 4f(f − 1)(f − κ)

we arrive at

H = d2

dy2 + n5 + n4(1− n4) f + n1(1− n1)κ
f

+ n2(1− n2)(1− κ)
f − 1

+ n3(1− n3)κ(κ− 1)
f − κ

.

In general here ni are arbitrary parameters.
Another form of this Hamiltonian (up to a constant) is given by

H = d2

dy2 + n4(1− n4)℘(y) + n1(1− n1)℘(y + ω1) + n2(1− n2)℘(y + ω2)

+ n3(1− n3)℘(y + ω1 + ω2),

where ωi are half-periods of the Weierstrass function ℘(x). If n1 = n2 =
n3 = 0, we get the Lame operator. In general, it is the Darboux-Treibich-
Verdier operator [83].
When

k = −1
2(n1 + n2 + n3 + n4)

is a natural number, this operatorH preserves the finite-dimensional vector
space of elliptic functions, which corresponds to polynomials for the initial
operator P.

Two-dimensional operators

Consider second order differential operators of the form

P = a(x, y) ∂
2

∂x2 + 2b(x, y) ∂2

∂x∂y
+ c(x, y) ∂

2

∂y2

+d(x, y) ∂
∂x

+ e(x, y) ∂
∂y

+ f(x, y)
(3.9)
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with polynomial coefficients. Denote by D(x, y) the determinant
a(x, y)c(x, y)− b(x, y)2. We assume that D 6= 0.

Lemma 3.2. The operator (3.9) is quasi-solvable iff the coefficients have
the following structure

a =q1x
4 + q2x

3y + q3x
2y2 + z1x

3 + z2x
2y + z3xy

2 + a1x
2 + a2xy + a3y

2

+ a4x+ a5y + a6;

b =q1x
3y + q2x

2y2 + q3xy
3 + 1

2

(
z4x

3 + (z1 + z5)x2y + (z2 + z6)xy2 + z3y
3
)

+ b1x
2 + b2xy + b3y

2 + b4x+ b5y + b6;
c =q1x

2y2 + q2xy
3 + q3y

4 + z4x
2y + z5xy

2 + z6y
3 + c1x

2 + c2xy + c3y
2

+ c4x+ c5y + c6;

d =(1− k)
(

2(q1x
3 + q2x

2y + q3xy
2) + z7x

2 + (z2 + z8 − z6)xy + z3y
2
)

+ d1x+ d2y + d3;

e =(1− k)
(

2(q1x
2y + q2xy

2 + q3y
3) + z4x

2 + (z5 + z7 − z1)xy + z8y
2
)

+ e1x+ e2y + e3;

f =k(k − 1)
(
q1x

2 + q2xy + q3y
2 + (z7 − z1)x+ (z8 − z6)y

)
+ f1.

The dimension of the vector space of such operators equals 36. The
group GL3 acts on this vector space in a projective way by transformations

x̃ = a1x+ a2y + a3

c1x+ c2y + c3
, ȳ = b1x+ b2y + b3

c1x+ c2y + c3
,

P̃ = (c1x+ c2y + c3)−kP ◦ (c1x+ c2y + c3)k.

(3.10)

This transformation corresponds to the matrixa1 a2 a3
b1 b2 b3
c1 c2 c3

 ∈ GL3.

The representation is a sum of irreducible representations W1, W2 and W3
of dimensions 27, 8 and 1, correspondingly. A basis of W2 is given by

x1 = 5z7 − z5 − 7z1, x2 = 5z8 − z2 − 7z6,
x3 = 5d1 + 2(k − 1)(2a1 + b2), x4 = 5e1 + 2(k − 1)(2b1 + c2),
x5 = 5d2 + 2(k − 1)(2b3 + a2), x6 = 5e2 + 2(k − 1)(2c3 + b2),
x7 = 5d3 + 2(k − 1)(a4 + b5), x8 = 5e3 + 2(k − 1)(b4 + c5).

The generic orbit of the group action on W2 has dimension 6. There are
two polynomial invariants of the action:

I1 = x2
3 − x3x6 + x2

6 + 3x4x5 + 3(k − 1)(x1x7 + x2x8),
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and
I2 = 2x3

3 − 3x2
3x6 − 3x3x

2
6 + 2x3

6 + 9x4x5(x3 + x6)+

9(k − 1)(x1x3x7 + x2x6x8 − 2x1x6x7 − 2x2x3x8 + 3x2x4x7 + 3x1x5x8).

Flat polynomial metrics

According to Remark 3.1, the contravariant metric

g1,1 = a , g1,2 = g2,1 = b , g2,2 = c ,

defined by the coefficients a, b, c of the operator (3.9) is flat (i.e. R1,2,1,2 =
0) for any polynomial form P .

Open problem 3.2. Describe all flat contravariant metrics defined by
the polynomials a, b, c from Lemma 3.2 up to transformations (3.10).

Some particular results were obtained in [72].
Example 3.1. For any constant κ the metric g with

a = (x2 − 1)(x2 − κ) + (x2 + κ) y2, b = xy (x2 + y2 + 1− 2κ),

c = (κ− 1)(x2 − 1) + (x2 + 2− κ) y2 + y4

is flat. Moreover, this is a linear pencil of polynomial contravariant flat
metrics with respect to the parameter κ [14]. The metric is related to a
polynomial form [81] for the so called Inozemtsev BC2 Hamiltonian

H = ∆+2m(m−1)(℘(x+y)+℘(x−y))+
3∑
i=0

ni(ni−1)(℘(x+ωi)+℘(y+ωi)),

where ω0 = 0, ω3 = ω1 + ω2 and ω1, ω2 are the half-periods of the
Weierstrass function ℘(x).

3.1.3 Commutative subalgebras in U(glN+1) and
quantum Calogero-Moser Hamiltonians

A class of commutative subalgebras in U(gln) was constructed in [86].
These subalgebras are quantizations of commutative Poisson subalgebras
generated by compatible constant and linear gln-Poisson brackets. The
quantization recipe is very simple: any product

∏k
1 xi of commuting

generators should be replaced by 1
k!
∑
σ∈Sk

∏
yσ(i), where yi are non-

commutative generators.
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The universal enveloping algebra U(glN+1) is an associative algebra
generated by elements eij and relations (3.6). Consider the case N = 2.
It turns out that the element of the universal enveloping algebra U(gl3)

H = H0 +H1g2 +H2g
2
2 +H3g3,

where

H0 = 12e12e11 − 12e32e13 − 12e33e12 − e2
23,

H1 = −e21 + 2e21e11 − e22e21 − e31e23 − 12e2
32 − e33e21,

H2 = −e2
31,

H3 = 36e32e31 + 3e2
21,

commutes with two third order elements of the form

K = K0 +K1g2 +K2g3,

M = M0 +M1g2 +M2g3 +M3g
2
2 +M4g2g3 +M5g

2
3 +M6g

3
2 .

Here g2 and g3 are arbitrary parameters and

K0 =− e23 + 2e21e13 − e23e22 − 36e32e12 + e33e23 − e21e13e11

− e22e21e13 + e23e
2
11 + 2e23e21e12 − e23e22e11 + 12e31e

2
12

− e31e23e13 − 12e32e12e11 − e32e
2
23 − 12e2

32e13 + 2e33e21e13

− e33e23e11 + e33e23e22 + 12e33e32e12,

K1 =3e31e11 − 3e31e22 − 2e32e21 + e31e21e12 + e31e22e11

− e31e
2
22 + e2

31e13 − 2e32e21e11 + e32e22e21 − 2e32e31e23

− e33e31e11 + e33e31e22 + e33e32e21,

K2 = 3 (2e31e21 + e31e22e21 + e2
31e23 − e32e

2
21 − e33e31e21);

M0 = 2
(

12e13e11 − 6e22e13 − 6e33e13 − 12e13e
2
11 − 6e22e13e11

+ 6e2
22e13 + 18e23e12e11 − 18e23e22e12 + e3

23 − 216e32e
2
12

+ 18e32e23e13 + 30e33e13e11 − 6e33e22e13 − 12e2
33e13

)
,
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M1 = −3
(

2e23e21 − 36e31e12 + 20e32e11 − 28e32e22 + 8e33e32 − 4e23e21e11

+ 2e23e22e21 − 12e31e12e11 − e31e
2
23 + 8e32e

2
11 + 36e32e21e12

+ 4e32e22e11 − 4e32e
2
22 − 24e32e31e13 − 12e2

32e23 + 2e33e23e21

+ 12e33e31e12 − 20e33e32e11 + 4e33e32e22 + 8e2
33e32

)
,

M2 = −18
(

4e31e11 − 2e31e22 − 2e33e31 − e23e
2
21 − 2e31e

2
11

− 6e31e21e12 + 2e31e22e11 − 2e31e
2
22 + 6e2

31e13 + 6e32e22e21

+ 24e3
32 + 2e33e31e11 + 2e33e31e22 − 6e33e32e21 − 2e2

33e31

)
,

M3 = −3
(

2e31e21 − 2e31e21e11 + e31e22e21 + e2
31e23 − 24e2

32e31 + e33e31e21

)
,

M4 = 9
(
e31e

2
21 − 12e32e

2
31

)
, M5 = 108e3

31, M6 = −2e3
31.

One can verify that [K,M ] = 0. Thus, we get a commutative subalgebra
in U(gl3) generated by the elements H,K,M and by the three central
elements of U(gl3) of order 1,2, and 3.
This subalgebra generates “integrable” operators1 by different

representations of U(gl3) by differential, difference and q-difference
operators.
In particular, the substitution of differential operators (3.5) with two

independent variables for eij maps the element H to a polynomial form P2
for the elliptic Calogero-Moser Hamiltonian (3.3) with N = 2, the element
M to a third order differential operator that commutes with P2, and the
element K to zero. The parameters g2 and g3 coincide with the invariants
of the Weierstrass function ℘(x) from (3.3).

Remark 3.4. The representation of U(gl3) by the matrix unities in Mat3
maps H,K and M to zero.

The representation defined by

eij → zi
∂

∂zj

1This means that there exist “rather many” operators commuting with them.
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maps H to a homogeneous differential operator with 3 independent
variables of the form H =

∑
i≥j aij

∂2

∂zi∂zj
, where

a11 = −2g2z1z2 − 3g3z
2
2 + g2

2z
2
3 , a22 = 12g2z

2
3 , a33 = z2

2 ,

a21 = −12z2
1 + g2z

2
2 − 36g3z

2
3 , a31 = 2 g2z2z3, a32 = 24 z1z3,

and M to an operatorM =
∑
i≥j≥k

bijk
∂3

∂zi∂zj∂zk
that commutes with H.

It is interesting that the lower order terms are absent in both H and in
M.
A similar commutative subalgebra in U(gl4) [48] yields a polynomial

form for the elliptic Calogero-Moser Hamiltonian (3.3) with N = 3

3.1.4 Bi-Hamiltonian origin of classical elliptic
Calogero-Moser models

Consider the following limit procedure. Any element f ∈ U(gln) is
a polynomial in the non-commutative variables eij , which satisfy the
commutator relation (3.6). Taking all the terms of highest degree in f
and replacing there eij by commutative variables xij , we get a polynomial
that we call symbol(f).
It is known that for any elements f and g of U(gln)

symbol([f, g]) = {symbol(f), symbol(g)},

where {, } is the linear Poisson bracket defined by

{xij , xkl} = δj,k xil − δi,l xkj , i, j = 1, . . . , n, (3.11)

which corresponds to the Lie algebra gln. In particular, if [f, g] = 0, then

{symbol(f), symbol(g)} = 0.

Consider polynomials in the commutative variables xij . We will regard
xij as the entries of a matrix X. Applying the limit procedure to the
generators of the commutative subalgebra in U(gl3) described in Section
3.1.3, we get the polynomials

c1 = trX, c2 = trX2, c3 = trX3,

h = h0 + h1g2 + h2g
2
2 + h3g3, k = k0 + k1g2 + k2g3,

m = m0 +m1g2 +m2g3 +m3g
2
2 +m4g2g3 +m5g

2
3 +m6g

3
2 ,

(3.12)
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where

h0 = 12x12x11 − 12x32x13 − 12x33x12 − x2
23,

h1 = 2x21x11 − x22x21 − x31x23 − 12x2
32 − x33x21,

h2 = −x2
31, h3 = 36x32x31 + 3x2

21,

k0 =− x21x13x11 − x22x21x13 + x23x
2
11 + 2x23x21x12 − x23x22x11

+ 12x31x
2
12 − x31x23x13 − 12x32x12x11 − x32x

2
23 − 12x2

32x13

+ 2x33x21x13 − x33x23x11 + x33x23x22 + 12x33x32x12,

k1 =x31x21x12 + x31x22x11 − x31x
2
22 + x2

31x13 − 2x32x21x11

+ x32x22x21 − 2x32x31x23 − x33x31x11 + x33x31x22 + x33x32x21,

k2 = 3 (x31x22x21 + x2
31x23 − x32x

2
21 − x33x31x21);

m0 = 2
(
− 12x13x

2
11 − 6x22x13x11 + 6x2

22x13 + 18x23x12x11

− 18x23x22x12 + x3
23 − 216x32x

2
12 + 18x32x23x13

+ 30x33x13x11 − 6x33x22x13 − 12x2
33x13

)
,

m1 = −3
(
− 4x23x21x11 + 2x23x22x21 − 12x31x12x11 − x31x

2
23 + 8x32x

2
11

+ 36x32x21x12 + 4x32x22x11 − 4x32x
2
22 − 24x32x31x13

− 12x2
32x23 + 2x33x23x21 + 12x33x31x12

− 20x33x32x11 + 4x33x32x22 + 8x2
33x32

)
,

m2 = −18
(
− x23x

2
21 − 2x31x

2
11 − 6x31x21x12 + 2x31x22x11 − 2x31x

2
22

+ 6x2
31x13 + 6x32x22x21 + 24x3

32 + 2x33x31x11

+ 2x33x31x22 − 6x33x32x21 − 2x2
33x31

)
,
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m3 = −3
(
− 2x31x21x11 + x31x22x21 + x2

31x23 − 24x2
32x31 + x33x31x21

)
,

m4 = 9
(
x31x

2
21 − 12x32x

2
31

)
, m5 = 108x3

31, m6 = −2x3
31.

These six polynomials commute with each other with respect to the linear
gl3-Poisson bracket (3.11).
It can be verified that elements of the universal enveloping algebra can be

reconstructed from the polynomials (3.12) by the quantization procedure
described at the beginning of Section 3.1.3.

Quadratic Poisson bracket

Consider the following quadratic bracket

{f, g}2 = {f, g}a + κ{f, g}b + κ2{f, g}c, (3.13)

where κ is an arbitrary parameter,

{f, g}a = −3 tr(X) {f, g}1, {f, g}c = Z1(f)Z2(g)− Z1(g)Z2(f).

Here the bracket {, }1 is defined by (3.11). The above vector fields Zi are
defined as follows:

Z1(f) =
3∑
i=1

∂f

∂xii
, Z2(f) = {h, f}1,

and
{f, g}b = Z3({f, g}1)− {Z3(f), g}1 − {f, Z3(g)}1,

where

Z3(f) =
3∑

i,j=1
Gi,j

∂f

∂xij
.

Here {·, ·}1 denotes the linear bracket (3.11). The coefficients of the vector
field Z3 are given by

G1,1 =(−2x11x23 + x22x23 + 36x12x32 + x23x33)
+ x31(x11 − 2x22 + x33) g2 + 9x21x31 g3,

G2,2 = −G1,1, G3,3 = 0,

G1,2 =(x11x13 + x13x22 − 3x12x23 − 2x13x33)
+ (3x12x31 + 5x11x32 − 4x22x32 − x32x33) g2

− 3(2x11x31 − x22x31 − 3x21x32 − x31x33) g3,
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G1,3 = 3x13x23−(x11−x22)(x11 +x22−2x33) g2−3x21(x11 +x22−2x33) g3,

G2,1 = −3(x21x23 + 12x12x31 + 4x11x32− 8x22x32 + 4x32x33)− 6x21x31 g2,

G2,3 = 3(4x11x12 + 4x12x22 + x2
23 − 8x12x33) + x21(x11 + x22 − 2x33) g2,

G3,1 = 2(x11x21 + x21x22 + 18x2
32 − 2x21x33)− 3x2

31 g2,

G3,2 = −(x11 − x22)(x11 + x22 − 2x33) + 6x31x32 g2 − 9x2
31 g3.

Theorem 3.2. i) Formula (3.13) defines a Poisson bracket;

ii) This quadratic bracket is compatible (see Section 1.4) with the linear
gl3-Poisson bracket (3.11);

iii) The Casimir function of the pencil of these two brackets generates
(see Theorem 1.1) the commutative Poisson subalgebra described in
Section 3.1.4;

Conjecture 3.3. The Poisson bracket (3.13) is the elliptic Poisson
bracket of the type q9,2 (see [20]) written in an unusual basis.

To get the classical elliptic Calogero-Moser Hamiltonian, one should use
the following classical limit of formulas (3.5):

xi+1,j+1 = qi pj , x1,i+1 = pi,

x1,1 = −
N∑
j=1

qjpj + β(N + 1), xi+1,1 = qi x1,1,
(3.14)

where pi and qi are canonical variables for the standard constant Poisson
bracket (1.17). One can verify that pi, qi are Darboux coordinates on the
minimal symplectic leaf of the glN+1-Poisson bracket. This leaf is the orbit
of the diagonal matrix diag(β(N + 1), 0, 0, ..., 0).
In the caseN = 2 after substitution (3.14) into (3.12) we get polynomials

in the canonical variables pi, qi commuting with respect to (1.17). The
element h becomes the Calogero-Moser Hamiltonian written in unusual
coordinates, the element k vanishes, the elementm converts to the integral
of third degree in momenta that commutes with the Hamiltonian h, and
the Casimir functions ci become constants.
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To bring the Hamiltonian and the cubic integral to the standard
Calogero-Moser form

hN = −
N+1∑
i=1

p2
i + β(β − 1)

N+1∑
i6=j

℘(qi − qj). (3.15)

one has to apply a canonical transformation, where the transformation
rule for the coordinates is given by (3.4).
In the case N = 3 a quadratic bracket exists. This bracket is compatible

with the linear gl4-Poisson bracket and generates the corresponding
classical elliptic Calogero-Moser Hamiltonian in the same way as forN = 2.

Conjecture 3.4. For any N the classical elliptic Calogero-Moser
Hamiltonian (3.15) can be obtained from the elliptic Poisson bracket of
the q(N+1)2,N -type by the above procedure.

Open problem 3.3. For the elliptic bracket {, } of the q(N+1)2,N -type
find a basis such that the linear bracket {, }1 compatible with {, } has the
canonical form (3.11).

3.2 Bi-Hamiltonian formalism and compati-
ble algebras

3.2.1 Compatible Lie algebras
Suppose that two linear finite-dimensional Poisson brackets are
compatible. As it was mentioned in the introduction, each of these brackets
corresponds to a Lie algebra. Denote by [·, ·]1 and [·, ·]2 the operations of
these algebras. It is clear that the Poisson brackets are compatible iff the
operation λ1[·, ·]1 + λ2[·, ·]2 is a Lie bracket for any λi. Without loss of
generality we may put λ1 = 1.

Definition 3.2. Two Lie brackets [·, ·] and [·, ·]1 defined on the same vector
space V are called compatible if the operation

[·, ·]λ = [·, ·] + λ[·, ·]1 (3.16)

is a Lie bracket for any λ.

Suppose that [·, ·] corresponds to a semi-simple Lie algebra G. The
following classification problem arises:

Open problem 3.4. Describe all possible Lie brackets [·, ·]1 compatible
with a given semi-simple Lie bracket [·, ·].
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The Lie algebra with bracket (3.16) can be regarded as a linear
deformation of the algebra G. Since any semi-simple Lie algebra is rigid
(i.e., the cohomology H2[G,G] of the Lie algebra G vanishes), the bracket
(3.16) is isomorphic to [·, ·]. This means that there exists a formal series
of the form

Aλ = I +R λ+ S λ2 + · · · ,
where the coefficients R,S, . . . are constant linear operators on G and I is
the identity operator, such that

A−1
λ [Aλ(X), Aλ(Y )] = [X, Y ] + λ [X, Y ]1. (3.17)

It follows from (3.17) that

[X, Y ]1 = [R(X), Y ] + [X, R(Y )]−R([X, Y ]), (3.18)

where R is the corresponding coefficient of Aλ.

Lemma 3.3. The bracket [·, ·]1 is a Lie bracket iff there exists a linear
operator S : G → G such that

R
(
[R(X), Y ]− [R(Y ), X]

)
− [R(X), R(Y )]−R2([X, Y ])

= [S(X), Y ]− [S(Y ), X]− S([X, Y ]).

In the special case S = 0 the relation from Lemma 3.3 takes the form

R
(
[R(X), Y ]− [R(Y ), X]

)
− [R(X), R(Y )]−R2([X, Y ]) = 0. (3.19)

We present below examples [26] of compatible Lie brackets with the
corresponding operators Aλ and R.
Example 3.2. Let G be the Lie algebra associated with an associative
algebra A, then we can take for R the operator of left multiplication by
any element r. In this case

[X, Y ]1 = XrY − Y rX, Aλ : g → g + λrg.

Example 3.3. Let A be an associative algebra with an involution ∗, G
be the Lie algebra of all skew-symmetric elements of A, r be an element
symmetric with respect to ∗. In this case the operator

Aλ : g →
√

1 + rλ g
√

1 + rλ,

can be taken as Aλ, R(X) = 1
2 (rX +Xr) and [X, Y ]1 = XrY − Y rX.

Example 3.4. Let ϕ be an automorphism of order n of a Lie algebra G, Gi
be the eigenspace of the operator ϕ corresponding to eigenvalue εi, where
εn = 1. Then the vector space G0 is a Lie subalgebra. Suppose that

G0 = G+ ⊕ G−
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with vector spaces G+ and G− being subalgebras of G0. Consider the
operator Aλ acting on G+, G−, and Gi, i > 0, by means of multiplication
by

1 + αλ, 1 + βλ, n
√

(1 + αλ)i(1 + βλ)n−i,

respectively. The operator R is given by

R(g) = α g+ + β g− +
n−1∑
i=1

(
i

n
α+ n− i

n
β

)
gi,

where g± mean the projections of g onto G±.
Example 3.5. This class of compatible brackets is related to finite
dimensional Z2 × Z2-graded Lie algebras. Recall the definition. Let ϕ
and ψ be two automorphisms of G commuting with each other and such
that ϕ2 = ψ2 = Id. The decomposition G = ⊕Gij , i, j = ±1 into a direct
sum of the following four invariant vector spaces

Gij = {g ∈ G |ϕ(g) = i g, ψ(g) = j g}

is called the Z2 × Z2-gradation.
Define an operator Aλ on the homogeneous components by the formulas

Aλ(g1,1) = (1 + γλ) g1,1, Aλ(g−1,1) =
√

(1 + βλ)(1 + γλ) g−1,1,

Aλ(g1,−1) =
√

(1 + αλ)(1 + γλ) g1,−1,

Aλ(g−1,−1) =
√

(1 + αλ)(1 + βλ) g−1,−1 + λ
√

(γ − α)(γ − β) ρ(g−1,−1).

Here α, β, and γ are arbitrary constants and the operator ρ : G−1,−1 →
G1,1 is any solution of the modified Yang-Baxter equation

ρ
(
[ρ(X), Y ]− [ρ(Y ), X]

)
− [ρ(X), ρ(Y )]− [X, Y ] = 0.

In other words, the Lie algebra G1,1⊕G−1,−1 is assumed to be decomposed
into a direct sum of G1,1 and some complementary subalgebra B and r
denotes the projection onto G1,1 parallel to B.
The operator R is defined by

R(g) =γ g1,1 + 1
2(α+ γ) g1,−1 + 1

2(β + γ) g−1,1

+ 1
2(α+ β) g−1,−1 +

√
(γ − α)(γ − β) ρ(g−1,−1).

Remark 3.5. The operator Aλ in Example 3.5 can be parametrized by
points of the elliptic curve

λ2
1 − α = λ2

2 − β = λ2
3 − γ = 1

λ
.
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Remark 3.6. A wide class of Z2 × Z2-graded Lie algebras can be
constructed as follows. Let G = ⊕Gi be Z-graded Lie algebra that possesses
an involution ψ such that ψ(Gi) = G−i. In particular, such an involution
exists for any standard gradation of a simple Lie algebra. Taking for ϕ the
involution ϕ(X) = (−1)iX, where X ∈ Gi, we define on G a structure of
Z2 × Z2-graded algebra.

Applications

For applications the operator Aλ has to be written in a closed form, i.e.
as an analytic operator-valued function in λ. In known examples the λ-
dependence is rational, trigonometric or elliptic.
Very often a Lax pair for the corresponding bi-Hamiltonian model can

be written in terms of Aλ [28, 25].
Application 3.1. Consider the following system of ODEs:

wt = [w, v] + w ∗ w, vt = [w, u] + w ∗ v, ut = w ∗ u,

where
X ∗ Y = [R(X), Y ]− [X, R∗(Y )] +R∗([X,Y ]),

and R∗ stands for the operator adjoint to R with respect to the Killing
form. Then the operators

L = (A−1
λ )∗(λu+ v + λ−1w), A = λ−1 Aλ(w) (3.20)

form a Lax pair for this system. As usual, the integrals of motion are given
by trLk, k = 1, 2...
In the case of Example 3.2 the first bracket [·, ·] is a standard matrix

commutator, the second bracket is given by [x, y]1 = xry − yrx and
X ∗ Y = rXY − Y Xr, where r is an arbitrary matrix. We have

R(w) = rw, Aλ(w) = (I + λr)w, (A−1
λ )∗(w) = w (I + λr)−1

If u = v = 0, then

L = w(I + λr)−1, A = λ−1(I + λr)w.

The Lax equation is equivalent (up to t → −t) to equation (1.6), where
U = x, a = r. For the Lax pair (3.20) we arrive at (2.58), where u, v and
w are generic matrices.
Application 3.2. Consider the system of equations

ux = [u, v], vy = [v, u]1, (3.21)

where u and v belong to a vector space V equipped with two Lie brackets
[·, ·] and [·, ·]1. For the well-known integrable principle chiral model

ux = [u, v], vy = [u, v]

the brackets [·, ·] and [·, ·]1 are identical up to sign.
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Theorem 3.3. If the Lie brackets [·, ·] and [·, ·]1 are compatible, then the
hyperbolic system (3.21) possesses the following Lax pair

L = d

dy
+ 1
λ
Aλ(u), A = d

dx
+Aλ(v).

Compatible Lie algebras and the corresponding operator Aλ are closely
related to different kinds of the Yang-Baxter equation [27, 58].
Application 3.3. Consider the classical Yang-Baxter equation

[r1,2(λ, µ), r1,3(λ, ν)] + [r1,2(λ, µ), r2,3(µ, ν)] + [r1,3(λ, ν), r2,3(µ, ν)] = 0,

where
r(x, y) =

∑
i

ai(x, y)⊗ bi(x, y)

is a function of two complex variables with values in glN ⊗ glN and ri,j ,
where 1 ≤ i, j ≤ 3, i 6= j, are the following functions

r1,2(λ, µ) =
∑
i

ai(λ, µ)⊗ bi(λ, µ)⊗ 1,

r1,3(λ, ν) =
∑
i

ai(λ, ν)⊗ 1⊗ bi(λ, ν),

r2,3(µ, ν) =
∑
i

1⊗ ai(µ, ν)⊗ bi(µ, ν)

with values in glN ⊗ glN ⊗ glN . We suppose, as usual, that the unitary
condition

r1,2(λ, µ) = −r2,1(µ, λ)

holds, where
r2,1(µ, λ) =

∑
i

bi(µ, λ)⊗ ai(µ, λ)⊗ 1.

Theorem 3.4. Let [·, ·]1 and [·, ·]2 be two compatible Lie brackets on a N -
dimensional vector space V. Suppose that there exists a non-degenerate
symmetric form ω(X,Y ) on V invariant with respect to both brackets
[·, ·]1,2. Let e1, . . . , eN be a basis orthonormalized with respect to ω. Then

r(x, y) =
N∑
i=1

(x ad1ei + ad2ei)⊗ (y ad1ei + ad2ei)
x− y

satisfies the classical Yang-Baxter equation. Here adiq are linear operators
defined by

adiq(p) = [q, p]i, i = 1, 2.
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Application 3.4. The operator form of the classical Yang-Baxter equation
[68] is given by

[r(u,w)x, r(u, v)y] = r(u, v)[r(v, w)x, y] + r(u,w)[x, r(w, v)y].

Here r(u, v) ∈ End(G). The solution is called unitary if 〈x, r(u, v)y〉 =
−〈r(v, u)x, y〉 for the Killing form of G.

Theorem 3.5. If Aλ satisfies (3.17); then

r(u, v) = 1
u− v

AuA
−1
v (3.22)

satisfies the Yang-Baxter equation.

Remark 3.7. The r-matrix (3.22) is unitary with respect to the form 〈·, ·〉
if the operator Aλ is orthogonal. In this case the formula (3.17) implies
that the form 〈·, ·〉 is invariant also with respect to the bracket [·, ·]1.

Application 3.5. It is known that decompositions (2.40) of the loop algebra
over a Lie algebra G into a sum of the Lie algebra of all Taylor series
and a factoring subalgebra U gives rise to Lax representations for diverse
integrable models (see Section 2.3).
A factoring subalgebra U is said to be homogeneous if it has the

multiplicand λ−1. This means that

1
λ
U ⊂ U .

It turns out [25] that for any semi-simple Lie algebra G with a bracket
[·, ·] there exists a one-to-one correspondence between the homogeneous
subalgebras and brackets [·, ·]1 compatible with [·, ·].

3.2.2 Compatible associative algebras
While Problem 3.4 for Lie algebras seems to be very difficult, a similar
problem for associative algebras is more treatable [58, 57, 55].
Definition 3.3. Two associative algebras with multiplications ? and ◦
defined on the same finite dimensional vector space V are said to be
compatible if the multiplication

a • b = a ? b+ λ a ◦ b

is associative for any constant λ.

Remark 3.8. For compatible associative algebras with multiplications ?
and ◦ the Lie algebras with the brackets [X, Y ]1 = X ? Y − Y ? X and
[X, Y ]2 = X ◦ Y − Y ◦X are compatible.
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Example 3.6. Let V be the vector space of polynomials of degree ≤ k−1 in
one variable, µ1 and µ2 be polynomials of degree k without common roots.
Any polynomial Z, where degZ ≤ 2k − 1, can be uniquely represented in
the form Z = µ1P + µ2Q, where P,Q ∈ V. Define multiplications ◦ and
? on V by the formula

X Y = µ1(X ◦ Y ) + µ2(X ? Y ), X, Y ∈ V.

It can be verified that associative algebras with products ◦ and ? are
compatible.
Example 3.7. Let e1, . . . , em be a basis of V and let the multiplication ?
be given by

ei ? ej = δijei.

Let
rii = q0 −

∑
k 6=i

rki, rij = qiλi
λj − λi

, i 6= j,

where λi, qj are arbitrary constants. Then the product defined by the
formula

ei ◦ ej = rijej + rjiei − δij
m∑
k=1

rikek

is associative and compatible with ?. Since this product is linear with
respect to the parameters qi, we have constructed a family ofm+1 pairwise
compatible associative multiplications.
Suppose that the associative algebra A with multiplication ? is semi-

simple. Since such algebras are rigid, the associative algebra with the
multiplication • is isomorphic to the algebra A for almost all values of the
parameter λ. Hence there exists a linear operator Sλ on V such that

Sλ(X) ? Sλ(Y ) = Sλ

(
X ? Y + λ X ◦ Y

)
.

If
Sλ = 1 +R λ+O(λ2),

then the multiplication ◦ is given by

X ◦ Y = R(X) ? Y +X ? R(Y )−R(X ? Y ). (3.23)

Consider the case when the associative algebra with multiplication ?
coincides with Matm. Then R : Matm → Matm is a linear operator on
the space of m×m-matrices. We will omit the sign ?. In other words, we
investigate associative linear deformations of the matrix product.
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Example 3.8. (see Example 3.2). Let c be an element of Matm and
R : X → cX be the operator of left multiplication by c . Then the
corresponding multiplication X ◦ Y = X cY is associative and compatible
with the standard matrix product in Matm.
Example 3.9. Suppose that a, b ∈ Mat2; then the product

X ◦ Y = (aX −Xa) (bY − Y b) (3.24)

is compatible with the standard product in Mat2 . The corresponding
operator R is given by

R(X) = a (Xb− bX).

Proposition 3.1. In the case of Mat2 any linear deformation of the
matrix product is given by one of these two examples.

Remark 3.9. If a, b ∈ Matm, m > 2, we need the additional assumption
a2 = b2 = 1 for (3.24) to be compatible with the product in Matm.

In the matrix case the operator R is defined up to the transformation

R→ R+ ads, (3.25)

where s ∈ Matm. For any s this transformation does not change the
multiplication (3.23).
It is easy to see that any operator R : Matm → Matm can be written in

the form
R(x) = a1 xb1 + ...+ ap+1 xbp+1,

where ai,bi ∈ Matm. We will assume that p is as small as possible. In
this case the matrices a1, . . . ,ap+1 as well as b1, . . . ,bp+1 are linearly
independent. Using (3.25), we can represent R(x) in the following form:

R(x) = a1 xb1 + ...+ ap xbp + cx. (3.26)

Integrable matrix ODEs related to R-operator

Let R : Matm → Matm be a linear operator such that the product (3.23)
is associative. Consider [28, 57] the following matrix differential equation:

dx

dt
= [x, R(x) +R∗(x)], x(t) ∈ Matm, (3.27)

and R∗ stands for the operator adjoint to R with respect to the bi-linear
form 〈x, y〉 = tr (x y). For an operator written in the form (3.26) we have

R∗(x) = b1 xa1 + ...+ bp xap + x c.
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Theorem 3.6. Equation (3.27) possesses the following Lax pair:

L =
(
S−1
λ

)∗
(x), A = 1

λ
Sλ(x).

Open problem 3.5. Show that equation (3.27) is bi-Hamiltonian with
the Hamiltonian operators

H1 = adx, H2 = ad 1
x ,

where ad 1
x is defined by the multiplication (3.23).

Example 3.10. In the case of Example 3.8 we get
dx

dt
= [x, xc+ cx] = x2 c− c x2

for m × m-matrix x and any constant matrix c. Under the reductions
xT = −x, cT = c the equation is a generalized symmetry for the n-
dimensional Euler top.
Example 3.11. In the case of Remark 3.9 we have [57]

xt = [x, bxa+ axb+ xba+ bax], x, a, b ∈ Matm, (3.28)

where a2 = b2 = 1m. Equation (3.28) admits the following skew-
symmetric reduction

xT = −x, b = aT .

Different integrable som-models provided by this reduction are in one-to-
one correspondence with equivalence classes of m×m matrices a such that
a2 = 1 with respect to the SOm gauge action. For the real matrix a, a
canonical form for such equivalence class can be chosen as

a =
(

1p T

0 1m−p

)
Here 1s stands for the unity s×s-matrix and T = {tij}, where tij = δijαi.
This canonical form is defined by the discrete natural parameter p and
continuous parameters α1, . . . , αr, where p ≤ m/2, r = min(p,m− p).
For example, in the case m = 4 the equivalence classes with p = 2

and p = 1 give rise to the so4 Steklov and Poincaré integrable models,
respectively.
Thus, whereas Example 3.10 leads to the matrix version of the so4

Schottky-Manakov top, the tops corresponding to Example 3.11 with
p = [m/2] and p = 1 can be regarded as generalizations for the so4 Steklov
and Poincaré models.
For Example 3.8 the operator R is given by R(x) = c x. In the case

of Remark 3.9 we have R(x) = axb + bax. Both of the R-operators are
written in the form (3.26).
Several classes of integrable equations (3.27) can be constructed using

results of the next section.
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Algebraic structure associated with R-operator

Consider an operator R of the form (3.26) that defines an associative
product (3.23). Our aim is to study [58, 55] the structure of the associative
algebraM generated by ai,bi, c and 1. Denote by L the 2p+2 dimensional
vector space spanned by these matrices.

Lemma 3.4. If the product (3.23) is associative, then

aiaj =
∑
k

φki,jak + µi,j1, bibj =
∑
k

ψi,jk bk + λi,j1

for some tensors φki,j , µi,j , ψ
i,j
k , λi,j .

This means that the vector spaces spanned by 1,a1, . . .ap and
1,b1, . . .bp are associative algebras. We denote them by A and B,
respectively. These algebras should be in some sense compatible with
each other. The simplest example of such compatibility can be described
as follows.
Example 3.12. Let A and B be associative algebras with basis A1, . . . , Ap
and B1, . . . , Bp and structural constants φij,k and ψα,βγ . Suppose that the
structural constants satisfy the following identities:

φsj,kψ
l,i
s = φls,kψ

s,i
j + φij,sψ

l,s
k , 1 ≤ i, j, k, l ≤ p.

Here and below we assume that the summation is carried out over repeated
indices. Then the algebra M of dimension 2p + p2 with the basis
Ai, B

j , AiB
j and relations

BiAj = ψk,ij Ak + φij,kB
k

is associative. This structure is called an associative bi-algebra [3].
In general case the compatibility of A and B is described by

Lemma 3.5. If (3.23) is associative, then

φsj,kψ
l,i
s = φls,kψ

s,i
j + φij,sψ

l,s
k + δlkt

i
j − δijtlk − δijφls,rψ

r,s
k ,

and
biaj = ψk,ij ak + φij,k bk + tij1 + δij c, (3.29)

for some tensor tij.

The remaining matrix c obeys the following relations:

Lemma 3.6. If (3.23) is associative, then

bi c = λk,iak − tik bk − φik,lψl,ks bs − φik,lλl,k 1, (3.30)
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c aj = µj,k bk − tkj ak − φsk,lψ
l,k
j as − µk,lψl,kj 1, (3.31)

where

φsj,kt
i
s = ψs,ij µs,k+φij,stsk−δijψ

s,r
k µr,s, ψk,is tsj = φij,sλ

k,s+ψs,ij tks−δijφks,rλr,s.

Relations (3.29)-(3.31) mean that the vector space L is a left B-module
and a right A-module.

Invariant description

In this section we forget that the generators of L are matrices and give a
purely algebraic description of the structure appeared above.
Definition 3.4. By weak M-structure on a linear space L we mean a
collection of the following data:

• Two subspaces A ⊂ L and B ⊂ L and a distinguished element
1 ∈ A ∩ B.

• A non-degenerate symmetric scalar product (·, ·) on the space L.

• Two associative products A×A → A and B × B → B with a unity
1.

• A left action B×L → L of the algebra B and a right action L×A → L
of the algebra A on the space L, which commute with each other.

This data should satisfy the following properties:

1. dimA ∩ B = dimL/(A+ B) = 1. The intersection of A and B is a
one dimensional space spanned by the unity 1.

2. The restriction of the action B × L → L to the subspace B ⊂ L is
the product in B. The restriction of the action L × A → L to the
subspace A ⊂ L is the product in A.

3. (A1, A2) = (B1, B2) = 0 and

(B1B2, v) = (B1, B2v), (v, A1A2) = (vA1, A2)

for any A1, A2 ∈ A, B1, B2 ∈ B and v ∈ L.

Remark 3.10. It follows from these properties that (·, ·) gives a non-
degenerate pairing between the quotient spaces A/C1 and B/C1, so
dimA = dimB and dimL = 2 dimA.

For a given weakM-structure we can define an algebra generated by L
with natural compatibility and universality conditions.
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Definition 3.5. By weak M-algebra associated with a weak M-structure
on L we mean an associative algebra U(L) with the following properties:

1. L ⊂ U(L) and the actions B × L → L, L ×A → L are restrictions
of the product in U(L).

2. For any algebra X with the property 1 there exists a unique
homomorphism of algebras X → U(L) that is identical on L.

Explicit formulas for U(L)

Let {Ā1, ..., Āp} be a basis of A/C1 and {B̄1, ..., B̄p} be a dual basis of
B/C1. This means that (Āi, B̄j) = δji . It is clear, that 1, A1, ..., Ap and
1, B1, ...Bp, where Ai ∈ Āi, Bi ∈ B̄i, are bases in A and B, respectively.
The element C ∈ L does not belong to the sum of A and B. Since (·, ·)
is non-degenerate, we have (1, C) 6= 0. Without loss of generality we may
assume that (1, C) = 1, (C,C) = (C,Ai) = (C,Bj) = 0. Given basis of A
and B, such an element C is uniquely determined.

Proposition 3.2. The algebra U(L) is defined by the following relations

AiAj = φki,jAk + µi,j 1, BiBj = ψi,jk Bk + λi,j 1

BiAj = ψk,ij Ak + φij,kB
k + tij 1 + δijC,

BiC = λk,iAk + uikB
k + pi 1, CAj = µj,kB

k + ukjAk + qi 1

for certain tensors φki,j , ψ
i,j
k , µi,j , λ

i,j , uik, p
i, qi.

Let us define an element K ∈ U(L) by the formula

K = AiB
i + C.

Definition 3.6. A weak M-structure on L is called M-structure if K ∈
U(L) is a central element of the algebra U(L).

Theorem 3.7. (cf. Example 3.12). For any M-structure the algebra
U(L) is spanned by the elements Ks, AiK

s, BjK
s, AiB

jKs, where i, j =
1, ..., p, and s = 0, 1, 2, ...

Theorem 3.8. For any representation U(L)→ Matm given by

A1 → a1, ..., Ap → ap, B1 → b1, ..., Bp → bp, C → c

the formula
X ◦ Y = R(X)Y +XR(Y )−R(XY ),

where
R(x) = a1 xb1 + ...+ ap xbp + cx,

defines an associative product on Matm compatible with the usual matrix
product.
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Example 3.13. Suppose that A and B are generated by elements A ∈ A
and B ∈ B such that Ap+1 = Bp+1 = 1. Assume that (Bi, A−i) = εi − 1,
(1, C) = 1 and other scalar products are equal to zero. Here ε is a primitive
root of unity of order p. Let

BiAj = ε−j − 1
ε−i−j − 1A

i+j + εi − 1
εi+j − 1B

i+j

for i+ j 6= 0 modulo p and

BiA−i = 1 + (εi − 1)C,

CAi = 1
1−εiA

i + 1
εi−1B

i,

BiC = 1
ε−i−1A

i + 1
1−ε−iB

i

for i 6= 0 modulo p. These formulas define anM-structure.
The central element has the following form

K = C +
∑

0<i<p

1
εi − 1A

−iBi.

Let a, t be linear operators on some vector space. Assume that ap+1 = 1,
at = ε ta and that the operator t− 1 is invertible. It is easy to check that
the formulas

A→ a, B → εt− 1
t− 1 a, C → t

t− 1

define a representation of the algebra U(L).

Case of semi-simple A and B

Proposition 3.3. Suppose that for a weak M-structure the algebra A is
semi-simple:

A = ⊕1≤i≤r End(Vi), dimVi = mi.

Then L as a right A-module is isomorphic to ⊕1≤i≤r (V ∗i )2mi .

Proof. Since any right A-module has the form ⊕1≤i≤r (V ∗i )li for some
l1, . . . , lr ≥ 0, we have L = ⊕1≤i≤r Li, where Li = (V ∗i )li . Note that
A ⊂ L and, moreover, End(Vi) ⊂ Li for i = 1, . . . , r. Besides, End(Vi) ⊥
Lj for i 6= j. Indeed, we have (v, a) = (v, Idi a) = (v Idi, a) = 0 for
v ∈ Lj and a ∈ End(Vi), where Idi is the unity of the subalgebra End(Vi).
Since (·, ·) is non-degenerate and End(Vi) ⊥ End(Vi) by Property 3 of weak
M-structure, we have dimLi ≥ 2dim End(Vi). But

∑
i dimLi = dimL =

2 dimA =
∑
i 2dim End(Vi) and we obtain dimLi = 2dim End(Vi) for each

i = 1, . . . , r which is equivalent to the statement of the proposition.
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Theorem 3.9. Suppose that a vector space L is equipped with a weak
M-structure such that the associative algebras A and B are semi-simple:

A = ⊕1≤i≤rEnd(Vi), B = ⊕1≤j≤sEnd(Wj), (3.32)

dimVi = mi, dimWj = nj .

Then L as an A⊗ B-module is given by the formula

L = ⊕1≤i≤r,1≤j≤s(V ?i ⊗Wj)ai,j (3.33)

for some integers ai,j ≥ 0, and

s∑
j=1

ai,j nj = 2mi,

r∑
i=1

ai,jmi = 2nj . (3.34)

Proof. It is known that any A⊗ B-module has the form (3.33). Applying
Proposition 3.3, we obtain dimLi = 2m2

i , where Li = ⊕1≤j≤s(V ∗i ⊗Wj)ai,j
. This gives the first equation from (3.34). The second equation can be
obtained similarly.

Remark 3.11. Since the dimensions of A and B coincide we have

r∑
i=1

m2
i =

s∑
i=1

n2
i .

Definition 3.7. The r × s-matrix A = {ai,j} from Theorem 3.9 is called
the matrix of multiplicities of the weakM-structure.
Definition 3.8. The r × s-matrix A is called decomposable if there exist
partitions {1, . . . , r} = I ∪ I ′ and {1, . . . , s} = J ∪J ′ such that ai,j = 0 for
(i, j) ∈ I × J ′ or for (i, j) ∈ I ′ × J .

Lemma 3.7. The matrix of multiplicities A is indecomposable.

Consider (3.34) as a system of linear equations for the vector
(m1, . . . ,mr, n1, . . . , ns). The matrix of the system has the form Q =(

2 −A
−At 2

)
. According to the result by E. Vinberg [85], if the kernel of

an indecomposable matrix Q contains an integer positive vector, them Q
is the Cartan matrix of an affine Dynkin diagram. Moreover, it follows
from the structure of Q that this is a simple laced affine Dynkin diagram
with a partition of the set of vertices into two subsets (white and black
vertices on the pictures below) such that vertices of the same subset are
not connected.
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Theorem 3.10. Let A be an r × s-matrix of multiplicities for an
indecomposable weakM-structure. Then, after a permutation of rows and
columns and up to transposition, the matrix A is equal to one from the
following list:
1. A = (2). Here r = s = 1, n1 = m1 = m. The corresponding Dynkin

diagram is of the type Ã1.

2. ai,i = ai,i+1 = 1 and ai,j = 0 for other pairs i, j. Here r = s = k ≥ 2,
the indices are taken modulo k, and ni = mi = m. The corresponding
Dynkin diagram is Ã2k−1.

euue
W1V2VkWk

"
"
"
"
"
"
""

b
b

b
b

b
b

bb
u
V1

Ã2k−1

e uV1 W1

Ã1

3. A =

 1 1 0 0
1 0 1 0
1 0 0 1

. Here r = 3, s = 4 and n1 = 3m, n2 = n3 =

n4 = m, m1 = m2 = m3 = 2m. The Dynkin diagram is Ẽ6 :

eueue
u
e

W4V3W1V1W2

V2

W3 Ẽ6

4. A =

 1 1 0 0 0
0 1 1 1 0
0 0 0 1 1

. Here r = 3, s = 5 and n1 =

m, n2 = 3m, n3 = 2m, n4 = 3m, n5 = m, m1 = 2m, m2 =
4m, m3 = 2m. The Dynkin diagram is Ẽ7 :
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eueuu ee
e

W5V3W4V2W2V1W1

W3 Ẽ7

5. A =


1 0 0 0 0
1 1 1 0 0
0 0 1 1 0
0 0 0 1 1

. Here r = 4, s = 5 and

n1 = 4m, n2 = 3m, n3 = 5m, n4 = 3m, n5 = m, m1 =
2m, m2 = 6m, m3 = 4m, m4 = 2m. The Dynkin diagram is Ẽ8 :

eueuu ee
e

u
W5

V4W4V3W3V2W1

W2

V1

Ẽ8

W5

6. A = (1, 1, 1, 1). Here r = 1, s = 4 and n1 = n2 = n3 = n4 =
m, m1 = 2m. The corresponding Dynkin diagram is D̃4.
7. a1,1 = a1,2 = a1,3 = 1, a2,3 = a2,4 = a3,4 = a3,5 = · · · = ak−2,k−1 =

ak−2,k = 1, ak−1,k = ak−1,k+1 = ak−1,k+2 = 1, and ai,j = 0 for other
(i, j).
Here we have r = k − 1, s = k + 2 and n1 = n2 = nk+1 = nk+2 =

m, n3 = · · · = nk = 2m, m1 = · · · = ml = 2m. The corresponding
Dynkin diagram is D̃2k, where k ≥ 3.

ueeu Vk−1

WkW3

V1
�

�
��

@
@
@@

e

e

W1

W2

@
@
@@

�
�
��

e

e

Wk+2

Wk+1
D̃2k
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8. a1,1 = a1,2 = a1,3 = 1, a2,3 = a2,4 = a3,4 = a3,5 = · · · = ak−2,k−1 =
ak−2,k = 1, ak−1,k = ak,k = 1, and ai,j = 0 for other (i, j).
Here we have r = s = k ≥ 3, n1 = n2 = m, n3 = · · · = nk = 2m, m1 =
· · · = mk−2 = 2m, mk−1 = mk = m. The corresponding Dynkin diagram
is D̃2k−1 :

eueu Wk

Vk−2W3

V1
�
�

��

@
@

@@

e

e

W1

W2

@
@
@@

�
�
��

u

u

Vk

Vk−1
D̃2k−1

Note that if k = 3, then a1,1 = a1,2 = a1,3 = 1, a2,3 = a3,3 = 1.

Resume

Suppose that L is an indecomposable M-structure with semi-simple
algebras (3.32); then there exists an affine Dynkin diagram of the type
A, D, or E such that:
1. There is a one-to-one correspondence between the set of vertices and

the set of vector spaces {V1, ..., Vr, W1, ...,Ws}.
2. For any i, j the spaces Vi, Vj are not connected by edges as well as

Wi, Wj .
3. The vector

(dimV1, ...,dimVr,dimW1, ...,dimWs)

is equal to mJ, where J is the minimal imaginary positive root of the
Dynkin diagram.

Remark 3.12. It can be proved that for indecomposable M-structures
m = 1.

Given an affine Dynkin diagram of the A, D, or E-type, to define the
correspondingM-structure it remains to construct an embedding A → L,
B → L and a scalar product (·, ·) on the vector space L.
If we fix an element 1 ∈ L, then we can define the embedding A → L,
B → L by the formula a→ 1a, b→ b1 for a ∈ A, b ∈ B. We may assume
that 1 is a generic element of L.
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Thus to study M-structures corresponding to a Dynkin diagram,
one should take a generic element in L = ⊕1≤i≤r,1≤j≤s(V ?i ⊗ Wj)ai,j ,
find its simplest canonical form by choosing basis in the vector spaces
V1, ..., Vr,W1, ...,Ws, calculate the embedding A → L, B → L and the
scalar product (·, ·) on the vector space L.
The classification of generic elements 1 ∈ L up to choice of

basis in the vector spaces V1, ..., Vr,W1, ...,Ws is equivalent to the
classification of irreducible representations of the quivers corresponding to
our affine Dynkin diagrams and we can apply known results about these
representations.

3.3 Non-abelian Hamiltonian formalism and
trace Poisson brackets

A Poisson structure on a commutative algebra A is a Lie algebra structure
on A given by a Lie bracket

{·, ·} : A×A 7→ A,

which satisfies the Leibniz rule

{a, b c} = {a, b} c+ b {a, c}, a, b, c ∈ A,

with the right (and, hence, also with the left) argument.
It is well-known that a naive translation of this definition to the case of

a non-commutative associative algebra A is not very interesting because
of lack of examples different from the usual commutator (for prime rings
it was shown in [19]).

3.3.1 Non-abelian Poisson brackets on free associative
algebras

Here we consider a version of the Hamiltonian formalism for free associative
algebra proposed in [51].
Let A be free associative algebra C[x1, . . . , xN ] with the product ◦. For

any a ∈ A we denote by La (resp. Ra) the operators of left (resp. right)
multiplication by a:

La(X) = aX, Ra(X) = X a, X ∈ A.

The associativity of A is equivalent to the identity [La, Rb] = 0 for any a
and b. Moreover,

Lab = La Lb, Rab = RbRa, La+b = La + Lb, Ra+b = Ra +Rb.
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Definition 3.9. We denote by O the associative algebra generated by all
operators of left and right multiplication by elements xi. This algebra is
called the algebra of local operators.
To introduce the concept of first integrals, we need an analog of trace,

which is not yet defined in the algebra A. As a matter of fact, in our
calculations we use only two properties of the trace, namely linearity and
the possibility to perform cyclic permutations in monomials. Let us define
an equivalence relation for elements of A in a standard way.
Definition 3.10. Two elements f1 and f2 of A are said to be equivalent,
which we denote f1 ∼ f2, iff f1 can be obtained from f2 by cyclic
permutations of generators in its monomials. We denote by tr f the
equivalence class of the element f .
We are going to define a class of Poisson brackets on the functionals

tr f (see Definition 3.10). It is easy to see that the vector space of such
functionals can be identified with the quotient vector space T = A/[A, A]
and the Poisson brackets have to be defined on T [9].
Let a(x) ∈ A, where x = (x1, . . . , xN ) and δx = (δx1, . . . , δxN ),

δxi ∈ A. Then gradx(a) ∈ AN is a vector

gradx (a) =
(

gradx1(a), . . . , gradxN (a)
)

uniquely defined by the formula

d

dε
a(x + ε δx)|ε=0 ∼ 〈δx, gradx

(
a(x)

)
〉 ,

where 〈(p1, . . . , pN ), (q1, . . . , qN )〉 = p1 ◦ q1 + · · ·+ pN ◦ qN .

Lemma 3.8. If f ∼ g, then gradx(f) = gradx(g).

It follows from the lemma that the map gradx : T → AN is well-defined.
The Poisson brackets on T are defined by the formula

{f, g} = 〈gradx f, Θ(gradx g)〉, f, g ∈ T , (3.35)

where

{f, g}+ {g, f} ∼ 0, {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} ∼ 0 (3.36)

for any elements f, g, h ∈ T . Here a skew-symmetric Hamiltonian operator
Θ is supposed to be an element of O ⊗ glN .

Remark 3.13. Actually, the right hand side of (3.35) is a well-defined
element of A and we take its equivalence class for the left hand side. The
left hand sides of (3.36) are regarded as elements of A.
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It is easy to show that (3.36) is equivalent to

Θ? = −Θ

i.e. Θ is a skew–symmetric operator with respect to the involution defined
by

L?a = Ra, R?a = La.

Definition 3.11. Brackets (3.35) are called non-abelian Poisson brackets.
Any Hamiltonian system of equations on A has the form

dx
d t

= Θ
(
gradxH

)
, (3.37)

whereH(x) ∈ A/[A, A] is a Hamiltonian and Θ is a Hamiltonian operator.
The ODE system (3.37) has the form

dxα
dt

= Fα(x), x = (x1, ..., xN ), (3.38)

where Fα are (non-commutative) polynomials with scalar constant
coefficients. Formula (3.38) does not mean that the generators xi of the
algebra A evolve in t. This formula defines a derivation DF of A such
that DF (xi) = Fi. However, if we replace the generators xi by m × m
matrices xi, then (3.38) becomes a usual system of ODEs for the entries
of the matrices xi.

Non-abelian Hamiltonian operators

Consider linear Hamiltonian operators. It means that the entries of the
Hamiltonian operator Θ are given by

Θij = bkij Rxk + b̄kij Lxk . (3.39)

The skew-symmetry of Θ implies

b̄kij = −bkji. (3.40)

Proposition 3.4. An operator Θ given by (3.39), (3.40) is Hamiltonian
iff bkij are the structural constant of an associative algebra.

Corollary 3.1. Any pair of compatible associative algebras (see Section
3.2.2) generates a pair of compatible linear non-abelian Poisson brackets.

Example 3.14. Let N = 2. Consider the following compatible associative
products:

x1 ? x1 = x1, x1 ? x2 = x2 ? x1 = x2 ? x2 = 0
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and
x1 ◦ x1 = x2, x1 ◦ x2 = x2 ◦ x1 = x2 ◦ x2 = 0.

The corresponding Poisson brackets {·, ·}i have the Hamiltonian operators

Θi =
(
Rxi − Lxi 0

0 0

)
, i = 1, 2.

The pencil {·, ·}1 + λ{·, ·}2 has a Casimir function C = tr (x1 + λx2)3,
which produces the Hamiltonians H1 = −tr (x2

1x2) and H2 = 1
3 tr (x3

1)
commuting with respect to both brackets (see Theorem 1.1). The formula

dx
d t

= Θ1

(
gradxH1

)
= Θ2

(
gradxH2

)
gives us a bi-Hamiltonian representation for the system

d x1

d t
= x2

1x2 − x2x
2
1,

d x2

d t
= 0

already mentioned in Examples 1.1, 3.10 and in Application 3.1.

For quadratic Poisson brackets the general form of the Hamiltonian
operator is given by

Θi,j = apqij LxpLxq − a
qp
jiRxpRxq + rpqij LxpRxq , (3.41)

where apqij and rpqij are some (complex) constants, rpqij = −rqpji , p, q, i, j =
1, ..., N, and the summation over repeated indices is assumed.

Proposition 3.5. Formula (3.41) define a Poisson bracket iff the
following relations hold:

rσεαβ = −rεσβα, (3.42)

rλσαβr
µν
στ + rµσβτ r

νλ
σα + rνσταr

λµ
σβ = 0, (3.43)

aσλαβa
µν
τσ = aµσταa

νλ
σβ , (3.44)

aσλαβa
µν
στ = aµσαβr

λν
τσ + aµνασr

σλ
βτ . (3.45)

and
aλσαβa

µν
τσ = aσναβr

λµ
στ + aµνσβr

σλ
τα. (3.46)

Remark 3.14. Conditions (3.42) and (3.43) mean that the tensor r
satisfies the associative Yang-Baxter (or Rota-Baxter) equation [64, 3].
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3.3.2 Trace Poisson brackets
The non-abelian brackets are defined between traces only. But if x1, ..., xN
are m×m-matrices, we can extend these brackets to the matrix entries.
We consider Nm2-dimensional Poisson brackets defined on functions

in entries xji,α of m × m-matrices xα. Here and in the sequel, we use
Latin indices ranging from 1 to m for the matrix entries and Greek indices
ranging from 1 to N to label the matrices.
Definition 3.12. Such a bracket is called trace Poisson bracket iff

• the bracket is GL(m)-invariant;

• for any two matrix polynomials Pi(x1, ..., xN ), i = 1, 2 with
coefficients in C the bracket between its traces is the trace of some
matrix polynomial P3.

Theorem 3.11. Any constant trace Poisson bracket has the form

{xji,α, x
j′

i′,β} = δji′δ
j′

i cαβ ; (3.47)

Any linear trace Poisson bracket has the form

{xji,α, x
j′

i′,β} = bγα,βx
j′

i,γδ
j
i′ − b

γ
β,αx

j
i′,γδ

j′

i ; (3.48)

Any quadratic trace Poisson bracket is given by

{xji,α, x
j′

i′,β} = rγεαβx
j′

i,γx
j
i′,ε + aγεαβx

k
i,γx

j′

k,εδ
j
i′ − a

γε
βαx

k
i′,γx

j
k,εδ

j′

i . (3.49)

Moreover
1) Formula (3.47) defines a Poisson bracket iff

cαβ = −cβα;

2) Formula (3.48) defines a Poisson bracket iff

bµαβb
σ
µγ = bσαµb

µ
βγ ; (3.50)

3) Formula (3.49) defines a Poisson brackets iff conditions (3.42)–(3.46)
hold.

Remark 3.15. Formula (3.50) means that bσαβ are the structure constants
of an associative algebra A. A straightforward verification shows that
(3.48) is nothing but the Lie-Kirillov-Kostant bracket defined by the Lie
algebra corresponding to the associative algebra Matm ⊗A.

Lemma 3.9. For any Hamiltonian of the form H = trP, where P is a
matrix polynomial, the equations of motion can be written in the matrix
form (3.38).
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Under a linear transformation of the matrices xi → gji xj the constants
in (3.49) are transformed in a standard way:

rklij → gαi g
β
j h

k
γh

l
ε r
γ,ε
α,β , aklij → gαi g

β
j h

k
γh

l
ε a

γ,ε
α,β . (3.51)

Here gji hkj = δki .
Definition 3.13. Two brackets of the form (3.49) related by (3.51) are called
equivalent.
A relation between non-abelian and trace Poisson brackets can be

established via the formula

xji,α = tr(eijxα), xj
′

i′,β = tr(ei
′

j′xβ),

where eij stand for the matrix unities. For instance, consider the
Hamiltonian operator (3.41). Applying formula (3.35) and using the
definition of the gradient, we arrive at (3.49).
Identities (3.42)–(3.46) can be rewritten in a tensor form. Let V be a

linear space with a basis ei, i = 1, ..., N . Define linear operators R and A
on the space V ⊗V by R ei ⊗ ej = rpqij ep ⊗ eq, A ei ⊗ ej = apqij ep ⊗ eq.
Then identities (3.42) - (3.46) are equivalent to

R12 = −R21,

R23R12 +R31R23 +R12R31 = 0,

A12A31 = A31A12,

σ23A13A12 = A12R23 −R23A12,

A32A12 = R13A12 −A32R13.

Here all operators act on V⊗V⊗V, by σij we mean transposition of i-th
and j-th components of the tensor product and Aij , Rij mean operators
A, R acting on the tensor product of the i-th and j-th components.
The equivalence transformation (3.51) corresponds toA→ GAG−1, R→

GRG−1, where G = g ⊗ g and g ∈ End(V).
Definition 3.14. (cf.(1.20)) A vector Λ = (λ1, ..., λN ) is said to be
admissible for (3.49) if for any i, j

(apqij − a
qp
ji + rpqij )λpλq = 0.

Lemma 3.10. For any admissible vector the argument shift xi → xi+λi Id
in (3.49) yields a linear Poisson bracket (3.48), where

bpij = (aqpij + apqij + rpqij )λq,

compatible with (3.49).
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Case a = 0 and anti-Frobenius algebras

There is a subclass of brackets (3.49) that corresponds to the case when
the tensor a is equal to 0. Relations (3.42), (3.43) mean that the tensor
r is a constant solution of the associative Yang-Baxter equation ([3],[67]).
Such solutions can be constructed in the following algebraic way.
Definition 3.15. An anti-Frobenius algebra is an associative algebra A (not
necessarily with unity) with non-degenerate anti-symmetric bilinear form
( , ) satisfying the following relation

(x, y ◦ z) + (y, z ◦ x) + (z, x ◦ y) = 0 (3.52)

for all x, y, z ∈ A. In other words the form ( , ) defines an 1-cocycle on A.

Theorem 3.12. There exists a one-to-one correspondence between
solutions of (3.42), (3.43) up to equivalence and exact representations of
anti-Frobenius algebras up to isomorphism.

Proof. The tensor r can be written as rijkl =
∑p
α,β=1 g

αβyik,αy
j
l,β , where

gαβ = −gβα, the matrix G = (gαβ) is non-degenerate and p is the smallest
possible. Substituting this expression into (3.42), (3.43), we obtain that
there exists a tensor φγαβ such that yik,αykj,β = φγαβy

i
j,γ . Let A be an

associative algebra with basis y1, ..., yp and product yα ◦ yβ = φγαβ yγ .
Define the anti-symmetric bilinear form by (yα, yβ) = gαβ , where {gαβ} =
G−1. Then (3.42), (3.43) are equivalent to the anti-Frobenius property
(3.52).

Example 3.15. (cf. [17]). Let A be the associative algebra of N × N -
matrices with zero N -th row. For a generic element l of A∗; the bilinear
form (x, y) = l([x, y]) is a non-degenerate anti-symmetric form, which
satisfies (3.52). It can be written as (x, y) = tr([x, y] kT ), where k ∈ A.
Let us choose kij = 0, i 6= j, kii = µi, where i, j = 1, ..., N − 1, and
kiN = 1, i = 1, ..., N − 1. The corresponding bracket (3.49) is given by
the following tensor r:

riiNi = −riiiN = 1, rijij = rjiij = riiji = −riiij = 1
µi − µj

, (3.53)

where i 6= j, i, j = 1, ..., N − 1. The remaining elements of the tensor r
and all elements of the tensor a are supposed to be zero. It can be verified
that (3.53) is equivalent to the bracket given by

rαβαβ = rβααβ = rααβα = −rαααβ = 1
λα − λβ

, α 6= β, α, β = 1, . . . , N.

(3.54)
Here λ1, . . . , λN are arbitrary pairwise distinct parameters. Formula (3.49)
with zero tensor a defines the corresponding trace Poisson bracket for
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entries of matrices x1, . . . , xN of arbitrary size m. For m = 1 we have the
scalar Poisson bracket

{xα, xβ} = (xα − xβ)2

λβ − λα
, α 6= β, α, β = 1, ..., N.

If N is even, then the trace Poisson structure (3.54) is non-degenerate,
i.e. the rank of the Poisson tensor Π is equal to Nm2. In the odd case
rank Π = (N − 1)m2.

Remark 3.16. Bracket (3.54) can be directly obtained from the anti-
Frobenius algebra

AN,1 = {A ∈ MatN |
∑
i

aij = 0 ∀ j = 1, . . . , N}

equipped with the bilinear form

(x, y) = tr ([x, y] · diag (λ1, . . . , λN )) . (3.55)

In [90] the algebra AN,1 was generalized. Let M be a proper divisor of
N . We consider N(N −M)-dimensional algebra

AN,M = {A ∈ MatN |
∑

i≡r (mod M)

aij = 0 ∀ r = 1, . . . ,M, ∀ j = 1, . . . , N}

equipped with the bilinear form (3.55). Suppose that λi are pairwise
distinct. One can check that in this case the form (x, y) is non-degenerate
[17]. The components of the tensor r corresponding to the algebra AN,M
are given by

rαβγδ = 0, if α 6≡ δ or β 6≡ γ,

rααεα = −rαααε = 1
λα − λε

, when α 6= ε,

rααγδ = 0, if γ 6= α or δ 6= α,

rαββα = 1
λα − λβ


∏

β′≡β, β′ 6=β
(λα − λβ′)

∏
α′≡α, α′ 6=α

(λβ − λα′)∏
α′≡α, α′ 6=α

(λα − λα′)
∏

β′≡β, β′ 6=β
(λβ − λβ′)

− 1

 , if α 6= β,

rαβγδ = 1
λα − λβ

·

∏
γ′≡γ, γ′ 6=γ

(λα − λγ′)
∏

δ′≡δ, δ′ 6=δ
(λβ − λδ′)∏

α′≡α, α′ 6=α
(λα − λα′)

∏
β′≡β, β′ 6=β

(λβ − λβ′)
otherwise.

Here x ≡ y means that x = y (mod M).
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With these formulas one can construct corresponding quadratic Poisson
brackets. For example, in the case N = 2M and m = 1 the corresponding
scalar Poisson bracket has the form

{xα, xβ} = (xα − xα′)(xβ − xβ′)(λα′ − λβ′)
(λα − λα′)(λβ − λβ′)

,

where for any γ the positive integer γ′ is uniquely defined by the condition
|γ′ − γ| = M .

Open problem 3.6. Describe all anti-Frobenius algebras A of the form

A = S ⊕M,

where S is a semi-simple associative algebra and M is a S-module such
thatM2 = {0}.

Classification of trace quadratic brackets for N = 2

Consider the case N = 2.

Theorem 3.13. Any Poisson bracket (3.49) up to transformations (3.51)
and to the proportionality is one of the following brackets. Here we present
non-zero components of the tensors a and r only.

• r22
12 = 1, r22

21 = −1;

• r21
11 = 1, r12

11 = −1, a22
21 = a12

11 = −1;

• r21
11 = −1, r12

11 = 1, a22
12 = a21

11 = 1;

• r22
12 = 1, r22

21 = −1, a12
11 = a22

21 = 1;

• r22
21 = 1, r22

12 = −1, a21
11 = a22

12 = 1;

• a22
11 = 1;

• r21
11 = 1, r12

11 = −1.

For a classification in the case N = 3, a = 0 see [73].

Open problem 3.7. Describe all trace Poisson brackets (3.49) for N = 3.

3.3.3 Double Poisson brackets on free associative
algebra

In the previous subsections we observed that identities (3.42)–(3.46)
describe both non-abelian and trace quadratic Poisson brackets. Here we
show that this is also true for the quadratic double Poisson brackets on
the free associative algebra with generators x1, ..., xN .
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Definition 3.16. [82]. A double Poisson bracket on an associative algebra A
is a C-linear map {{, }} : A⊗A→ A⊗A satisfying the following conditions:

{{u, v}} = −{{v, u}}◦,

{{u, {{v, w}}}}+ σ{{v, {{w, u}}}}+ σ2{{w, {{u, v}}}} = 0,

and
{{u, vw}} = (v ⊗ 1){{u,w}}+ {{u, v}}(1⊗ w).

Here (u ⊗ v)◦ def= v ⊗ u; {{v1, v2 ⊗ v3}} := {{v1, v2}} ⊗ v3 and
σ(v1 ⊗ v2 ⊗ v3) := v3 ⊗ v1 ⊗ v2.
Denote by µ the multiplication map µ : A⊗A→ A given by µ(u⊗ v) =

uv. We define a C-bilinear bracket operation on A by {·, ·} def= µ({{·, ·}}).

Proposition 3.6. Let {{·, ·}} be a double Poisson bracket on A. Then
{·, ·} is a trace bracket on A/[A,A], which is defined as

{ā, b̄} = µ({{a, b}}),

where ā means the image of a ∈ A under the natural projection A →
A/[A,A].

Let A = C[x1, . . . , xN ] be the free associative algebra. If the double
brackets {{xi, xj}} between all generators xi are fixed, then the bracket
between two arbitrary elements of A is uniquely determined. Constant,
linear, and quadratic double brackets are defined by

{{xi, xj}} = cij1⊗ 1, ci,j = −cj,i,

{{xi, xj}} = bkijxk ⊗ 1− bkji1⊗ xk,

and
{{xα, xβ}} = ruvαβ xu ⊗ xv + avuαβ xuxv ⊗ 1− auvβα 1⊗ xvxu,

respectively.

Proposition 3.7. These formulas define double Poisson brackets iff the
constants cij , bkij , r

pq
ij , a

pq
ij satisfy the identities of Theorem 3.11.
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