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Abstract. In this survey paper I will talk about the classification of the
maximal subgroups of the symmetric group of degree n, which can be
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Chapter 1

Introduction

The symmetric group of a set Ω is the group Sym(Ω) consisting of the
bijections Ω → Ω. If Ω = {1, . . . , n} for some positive integer n then the
group Sym(Ω) is commonly denoted by Sn and it is called the symmetric
group of degree n. The purpose of this survey paper is to collect the
essential information that is known about the maximal subgroups of Sn.
A subgroup G of Sn is typically classified according to its action on Ω.
Such action can be of three main types: intransitive, meaning that G
stabilizes a nonempty proper subset of Ω, imprimitive, meaning that G
acts transitively and stabilizes a nontrivial partition of Ω, and primitive,
meaning that G acts transitively and does not stabilize any nontrivial
partition of Ω. We will discuss the proof of the fact that the maximal
intransitive and the maximal imprimitive subgroups of Sn are indeed
maximal subgroups of Sn and we will discuss primitive maximal subgroups
by stating and proving the O’Nan-Scott theorem. The material is taken
from different sources, which are cited throughout the paper and can be
found in the bibliography.
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Chapter 2

Basic notions about group
actions

All group actions we consider are on the right, and this includes our
notation for functions, so that the common expression f(x) will rather be
denoted by (x)f or xf . G acts on X by the rule X × G → X, (x, g) 7→ xg
if and only if the following is a group homomorphism:

γ : G → Sym(X), g 7→ γg, xγg := xg ∀x ∈ X.

The kernel of this homomorphism is the kernel of the action and the action
is called faithful if it has trivial kernel. The (G-)orbits of the action are
the sets

OG(x) = {xg : g ∈ G}, x ∈ X.

The action is called transitive if there is some x ∈ X such that OG(x) = X
(i.e. there is only one orbit). This is equivalent to saying that, for any
x, y ∈ X, there exists g ∈ G with xg = y. The stabilizer of x ∈ X, also
called point stabilizer, is

Gx = StabG(x) = {g ∈ G : xg = x} ≤ G.

Clearly, the kernel of an action equals the intersection of the point
stabilizers.

We list some relevant group actions.

1. The (transitive) action of right multiplication of G on X = G. All
the stabilizers, and therefore the kernel, are trivial.

2. The conjugation action of G on a subset X of G closed under
conjugation. The stabilizer of x ∈ X is its centralizer,

CG(x) = {g ∈ G : gx = xg}.
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Chapter 2. Basic notions about group actions 7

Clearly x ∈ CG(x). If this action is transitive, X is called a conjugacy
class of G. If X = G then the kernel of this action is the center of
G,

Z(G) =
⋂

x∈G

CG(x) = {g ∈ G : xg = gx ∀x ∈ G}.

Also, in this case the image of the homomorphism G → Sym(G) lies
inside Aut(G) and therefore, by the isomorphism theorem, G/Z(G)
is isomorphic to a subgroup of Aut(G).

3. The conjugation action of G on the family H of all subgroups of
G (or any family of subgroups of G closed under conjugation). The
action is (H, g) 7→ Hg := g−1Hg. The stabilizer of H for this action
is denoted by

NG(H) = {g ∈ G : g−1Hg = H}

and it is called the normalizer of H in G. Of course, H ≤ NG(H).

4. The (transitive) action by right multiplication of G on X = {Hg :
g ∈ G}. The stabilizer of Hg is Hg and the kernel of this action is

HG =
⋂

g∈G

Hg.

HG is called the normal core of H in G, hence this action is faithful
if and only if HG = {1}, which we express by saying that H is “core-
free”. The isomorphism theorem applied to G → Sym(X) implies
that G/HG is isomorphic to a subgroup of Sn, where n = |X| =
|G : H|. I will refer to this fact as the generalized Cayley theorem,
because it is a generalization of the classical Cayley theorem saying
that any group G is isomorphic to a subgroup of Sym(G) (choose
H = {1}).

Exercise 2.1. Let G be a finite group and consider the natural action of
Aut(G) on G − {1}. Show that this action is transitive if and only if G
is an elementary abelian group, that is, a group of the type Cp

n for some
prime p and some integer n ≥ 1.

Assume G acts on X and on Y . These two actions are called equivalent
if there exists a bijection f : X → Y which is compatible with the action of
G, in other words (xg)f = (xf)g for every x ∈ X, g ∈ G. Two equivalent
actions are essentially “the same action”.

Counting principle (Orbit-Stabilizer theorem): if G acts
transitively on X and x ∈ X then |X| = |G : StabG(x)|. More precisely,
there is a bijection between the set of right cosets of H = StabG(x) and
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X sending Hg to xg. This bijection is actually an equivalence of actions.
In particular |X| divides |G|.

This means in particular that all the transitive actions of G are
“intrinsic”: they can be completely recovered from a point stabilizer. More
specifically, if G acts transitively on X and α ∈ X then the action of
G on X is equivalent to the action of right multiplication of G on the
set {Hg : g ∈ G} where H = StabG(α) is the stabilizer of α. So
studying the transitive actions of G is equivalent to studying the subgroups
of G, and studying the faithful transitive actions of G is equivalent to
studying the core-free subgroups of G. For example, the trivial subgroup
{1} corresponds to the regular action of G on itself.

Another consequence of the counting principle is that every element
x ∈ G has precisely |G : CG(x)| conjugates in G, and every subgroup
H ≤ G has precisely |G : NG(H)| conjugates in G.

The action of G on X is called semiregular if the point stabilizers are
trivial, and it is called regular if it is semiregular and transitive. By the
counting principle if G acts regularly then |G| = |X|. The typical regular
action is given by a group acting on itself by right multiplication. Another
example of a regular action is that of the Klein 4-group

K = {1, (12)(34), (13)(24), (14)(23)} < S4

acting naturally on {1, 2, 3, 4}. More in general if G is a semidirect product
H ⋉ N then the action of N of right multiplication on the right cosets of
H is regular.

An important example is the following. If G acts faithfully on X and N
is a normal subgroup of G whose induced action on X is transitive then the
centralizer CG(N) acts semiregularly. Indeed if g ∈ CG(N) is such that
xg = x for some x ∈ X then since every element of X has the form xn for
some n ∈ N we have xn = xgn = xng therefore g fixes all the points in
X, so g = 1 because the action of G is faithful.

Exercise 2.2 (Burnside Lemma). Let fg be the number of fixed points of
g ∈ G acting on X. Then the number of orbits of the action is 1

|G|
∑

g∈G fg.
For example, if G acts semiregularly then the number of orbits is |X|/|G|,
since f1 = |X| and fg = 0 for every 1 ̸= g ∈ G. Therefore if the action is
regular (semiregular and transitive) then |G| = |X|.



Chapter 3

The symmetric group

Let Sn be the symmetric group on n letters.
It is well-known that if n ≥ 2 and n ̸= 4 then the alternating group

An is a simple group that has index 2 as a subgroup of Sn. Moreover
An is nonabelian if n ≥ 5. This easily implies that if n ̸= 4 the normal
subgroups of Sn are {1} < An < Sn and the normal subgroups of S4 are
{1} < K < A4 < S4 where K ∼= C2 × C2 is the Klein group.

In particular An is the unique subgroup of Sn of index 2, for every n ≥ 3.
Therefore An is characteristic in Sn, meaning that φ(An) = An for every
φ ∈ Aut(Sn): this follows from the above since |Sn : An| = |Sn : φ(An)|
for every φ ∈ Aut(Sn).

A few words about S4, the symmetric group of degree 4. The normal
subgroups of S4 are {1} < K < A4 < S4 where K is the Klein group,
that is, K = {1, (12)(34), (13)(24), (14)(23)}. The Sylow 2-subgroups of
S4 are dihedral groups of order 8 and they have index 3 in S4. In particular
they are maximal subgroups (any subgroup of prime index is maximal).
Considering the natural action of S4 on {1, 2, 3, 4}, the point stabilizers
StabS4(i) = {g ∈ S4 : ig = i}, are maximal subgroups of S4 of index 4,
isomorphic to S3. The only subgroup of S4 of index 2 is A4. The maximal
subgroups of S4 are precisely the following: the 3 Sylow 2-subgroups, the
point stabilizers and the alternating group A4.

Proposition 3.1. Let n ≥ 3 and let G be Sn or An. If H < G and
H ̸= An then |G : H| ≥ n unless n = 4 and H is a Sylow 2-subgroup of G.
In particular the point stabilizers of G acting naturally on {1, . . . , n} are
maximal subgroups of G.

Proof. Let m = |G : H|. G acts transitively (hence non-trivially) by right
multiplication on X = {Hx : x ∈ G}, which is a set of size m, this gives
a homomorphism φ : Sn → Sm whose image is a transitive subgroup of
Sm. Let K = ker(φ) and note that K ≤ H. Since H ̸= An we have m ≥ 3

9
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so |G : K| = |G : H||H : K| ≥ |G : H| = m ≥ 3. The case n ≤ 4 can be
done by hand. If n ≥ 5 the unique proper nontrivial normal subgroup of
Sn has index 2, so K = {1}. It follows that |Sn| = n! divides |Sm| = m!
hence n ≤ m.

This implies that the point stabilizers are maximal subgroups because
they have index n (by the counting principle, since G acts transitively on
{1, . . . , n}) and if n = 4 the point stabilizers have order 6 hence they are
not contained in any Sylow 2-subgroup.

We will now list some facts about the symmetric group, which are
elementary, in the sense that they can be proved in a few lines in a
self-contained way. Recall that the derived subgroup of a group G is the
subgroup generated by the elements of the form xyx−1y−1 (commutators)
for x, y ∈ G. It is equal to the smallest normal subgroup N of G such that
G/N is abelian. The Frattini subgroup of a group G is the intersection
of the maximal subgroups of G. The cycle structure of a permutation
σ ∈ Sn is the increasing sequence of the lengths of the disjoint cycles
whose product is σ.

1. The center of Sn and the center of An are trivial for n ≥ 4.

2. The derived subgroup of Sn is An.

3. The derived subgroup of An is {1} for n ∈ {2, 3}, it is the Klein
group if n = 4 and it is An if n ≥ 5.

4. The Frattini subgroup of Sn and the Frattini subgroup of An are
trivial.

5. In the symmetric group Sn two elements are conjugate if and only if
they admit the same cycle structure.

Lemma 3.2. Let σ = (1 . . . n) ∈ Sn. The centralizer of σ in Sn is ⟨σ⟩.

Proof. It is clear that ⟨σ⟩ ≤ C = CSn
(σ), so to conclude it is enough to

show that |C| = n. The number of conjugates of σ in Sn is |Sn : C| =
n!/|C|. On the other hand, the conjugates of σ in Sn are precisely the
n-cycles, and their number is (n − 1)!, since when constructing an n-cycle
we may fix the first element and permute the rest in all possible ways (note
that for example (1234) = (2341) = (3412) = (4123)). We deduce that
n!/|C| = (n − 1)! hence |C| = n.

Exercise 3.3. Find CSn(x) where x = (1, 2, . . . , n − 1) and x =
(1, 2)(3, 4, . . . , n). [Proceed as in the lemma: first, find the order of such
centralizer, then deduce its structure.]
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Exercise 3.4. Let x ∈ Sn be a product of b disjoint 3-cycles. Prove that

|CSn
(x)| = 3b · b! · (n − 3b)!.

[Count the conjugates of x and apply the counting principle.]

For the record, if x is the element in the above exercise, the structure
of CSn

(x) is (C3 ≀ Sb) × Sn−3b (for the definition of wreath product see
Section 8). The base Cb

3 is generated by the cycles in the decomposition
of x, the permutational part Sb permutes the 3-cycles around and Sn−3b

contains those permutations whose support is disjoint from the support of
x. This idea can be generalized to any permutation.

Exercise 3.5. Using wreath products (see Section 8), describe the
structure of the centralizer in Sn of any element of Sn in terms of its
cycle structure. More explicitly, prove that, if x ∈ Sn has in the cycle
decomposition ki cycles of length li, i = 1, . . . , t, n =

∑t
i=1 kili, with

l1, . . . , lt pairwise distinct, then

CSn
(x) ∼=

t∏
i=1

Cli
≀ Ski

.

Lemma 3.6. Let n ≥ 5. The alternating group An cannot act nontrivially
on less than n points.

Proof. Assume An acts nontrivially on X, and let m := |X|. Assume
m < n by contradiction, so that m ≤ n − 1. The action of An on X
gives a homomorphism An → Sym(X) ∼= Sm with kernel not equal to An.
Since An is a simple group, such homomorphism is injective, therefore
n!/2 = |An| ≤ | Sym(X)| = m! ≤ (n − 1)!. This implies that n ≤ 2, a
contradiction.

Exercise 3.7. Let n ≥ 5. Prove that if Sn acts nontrivially on m points
and m < n, then the orbits of this action have size 1 or 2.

Exercise 3.8. Prove that if A and B are subgroups of a finite group G
then |AB| = |A| · |B|/|A∩B|. Moreover AB ≤ G if and only if AB = BA.
In particular, if A ≤ NG(B) or B ≤ NG(A), then AB ≤ G.

We will now discuss the subgroups of Sn of index n. The following proof
is inspired by [17, Lemma 2.2].

Theorem 3.9. If n ̸= 6 then the unique subgroups of Sn of index n are
the point stabilizers. Moreover S6 has two conjugacy classes of subgroups
of index 6.
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Proof. In the case n ≤ 10 we will skip the proof. Now assume n ≥ 11. We
first prove that the subgroups of An of index n are precisely the n point
stabilizers.

Let H be a subgroup of An of index n, so that |H| = |An|/n = (n−1)!/2.
First observe that H ∼= An−1. Indeed An acts nontrivially (hence
faithfully, since An is a simple group) on the set X of the n right cosets
of H by right multiplication and this gives an injective homomorphism
φ : An → Sym(X), moreover φ(H) is contained in the stabilizer in Sym(X)
of H, which is isomorphic to Sn−1, however |φ(H)| = |H| = |An−1| hence
φ(H) has index 2 in the stabilizer of H, which is a symmetric group, hence
H ∼= φ(H) ∼= An−1.

Fix an isomorphism f : An−1 → H < Sn.
If x is a 3-cycle in An−1 then f(x) is also a 3-cycle. To prove this, let

K < An−1 be the pointwise stabilizer of the set of points moved by x. Then
K is isomorphic to An−4 and it is centralized by x, so f(K) ∼= An−4 is a
subgroup of Sn centralized by the element y = f(x) of order 3. Assume by
contradiction that y is not a 3-cycle. Note that y is a product of pairwise
disjoint 3-cycles y = c1 . . . cb where 1 < b ≤ n/3. Since f(K) centralizes
y, it acts by conjugation on {c1, . . . , cb} and this action must be trivial
by Lemma 3.6 since f(K) ∼= K ∼= An−4, n − 4 ≥ 5 and b ≤ n/3 < n. It
follows that f(K) centralizes all of the elements c1, . . . , cb, in particular it
centralizes c1c2. By counting the conjugates of c1c2 in Sn and by applying
the counting principle, we see that the centralizer CSn

(c1c2) has order
18(n − 6)!. Since |f(K)| = (n − 4)!/2 and f(K) ≤ CSn

(c1c2), we obtain
that (n − 4)!/2 ≤ 18(n − 6)!. This is a contradiction since n ≥ 11.

If i, j ∈ {1, . . . , n − 1} − {1, 2} then f((12i)), f((12j)) are 3-cycles and

A4 ∼= ⟨(12i), (12j)⟩ ∼= f(⟨(12i), (12j)⟩) = ⟨f((12i)), f((12j))⟩.

We know that f((12i)), f((12j)) are 3-cycles and they generate a group
isomorphic to A4, therefore there exist a, b, x3, . . . , xn−1, pairwise distinct
elements of {1, . . . , n}, such that f((12i)) = (abxi)±1 for i = 3, . . . , n − 1.
Such elements generate the stabilizer of the one element j ∈ {1, . . . , n}
fixed by all of them, therefore f(An−1) = An ∩ StabSn

(j) = StabAn
(j) ∼=

An−1.
Now let H be a subgroup of Sn of index n, in other words |H| = (n−1)!.

If H ≤ An then n = |Sn : H| = |Sn : An| · |An : H| = 2|An : H|,
hence |An : H| = n/2, and this contradicts Lemma 3.6 since An would
act nontrivially by right multiplication on the n/2 right cosets of H.
Therefore H ̸≤ An and, since |Sn : An| = 2, this implies that HAn = Sn.
Therefore n! = |Sn| = |HAn| = |H| · |An|/|H ∩An| and, using the fact that
|H| = (n − 1)!, we find that |An : H ∩ An| = n. By the previous discussion
we deduce that H ∩ An is a point stabilizer in An, say H ∩ An = S ∩ An

where S = StabSn
(j). Let L = ⟨H, S⟩ be the group generated by H and

S. Since L contains S and S is a maximal subgroup of Sn, either L = S or
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L = Sn. If L = S then H ≤ S hence H = S since H and S have the same
order. We are left to show that L ̸= Sn. This follows from the fact that
the intersection H ∩ An = S ∩ An has index 2 in both H and S, therefore
it is a normal subgroup of L.

The group S5 acts by conjugation on the set of its 6 Sylow 5-subgroups
and this action is faithful. This gives an injective homomorphism φ : S5 →
S6 with transitive image H = φ(S5). It follows that H ∼= S5 has index
6!/5! = 6 in S6 and it is not a point stabilizer because it is transitive. It is
possible to show that apart from point stabilizers this is indeed the only
other class of subgroups of index 6.

Observe that if G is any group then the set Aut(G) of automorphisms
of G is a group with composition. We have a natural homomorphism
φ : G → Aut(G) given by g 7→ γg where γg takes x to xg = g−1xg. The
image φ(G) is a normal subgroup of Aut(G) and it is usually denoted
by Inn(G): it is the group of inner automorphisms of G. The quotient
Aut(G)/ Inn(G) is denoted by Out(G) and it is called the group of outer
automorphisms of G. Clearly, ker(φ) = Z(G) is the center of G, therefore
φ(G) ∼= G/Z(G) embeds into Aut(G). In particular, if Z(G) = {1}, then
G embeds into Aut(G); in this particular case we will often think of G as
a subgroup of Aut(G). For instance, the symmetric group Sn of degree
n ≥ 3 embeds into Aut(Sn).

Theorem 3.10. If n ≥ 3 and n ̸= 6 then Aut(Sn) ∼= Sn
∼= Aut(An).

More specifically, every automorphism of An or Sn is given by conjugation
by an element of Sn. Moreover A6 has index 4 in Aut(A6).

Proof. In this proof we assume n ≥ 5, so that An is simple. The smaller
cases can be done by hand.

The group Aut(Sn) acts naturally on the set of subgroups of Sn of
index n, which, being n ̸= 6, are all the n point stabilizers. Since
an automorphism that fixes all point stabilizers must be the identity,
this action is faithful, hence we obtain an injective homomorphism φ :
Aut(Sn) → Sn. On the other hand, being Z(Sn) = {1}, the canonical
conjugation homomorphism Sn → Aut(Sn) is injective, and this implies
that |Sn| ≤ | Aut(Sn)|, therefore φ is a group isomorphism. In other words
every isomorphism Sn → Sn is given by the conjugation by an element of
Sn.

Using the isomorphism A6 ∼= PSL(2, 9), it is possible to find the
structure of Aut(S6).
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Aut(A6)

M10 S6 PGL(2, 9)

A6

Out(A6) = Aut(A6)/ Inn(A6) ∼= C2 × C2.

Exercise 3.11. Prove that An is the unique subgroup of Sn of index 2
without using the fact that An is a simple group for n ≥ 5. [If N is a
subgroup of Sn of index 2 then it must contain Q = {x2 : x ∈ Sn}.]

Exercise 3.12. Let O ⊆ Ω = {1, . . . , n} and let G := Stab(O) = {g ∈
Sn : Og = O}. Prove that G ∼= Sym(O) × Sym(Ω − O).

Exercise 3.13. Prove that, if S is a nonabelian simple group, then
Aut(Aut(S)) ∼= Aut(S). Deduce the structure of Aut(An). [Let N be
the image of S inside G = Aut(S); prove that CG(N) = {1}.]



Chapter 4

The maximal subgroups
of S5

If P is a property of a group action (for example transitive, semiregular,
regular), a subgroup H of G = Sn is called P if its natural action on
Ω = {1, . . . , n} is P . We will use the word “intransitive” to mean “not
transitive”. Observe that if H ≤ Sn is intransitive then it has more than
one orbit on Ω, and letting O be one of them, H is clearly contained in
Stab(O) = {g ∈ G : Og = O} ∼= Sym(O) × Sym(Ω − O). This is called a
“maximal intransitive subgroup” of Sn. Note that a maximal intransitive
subgroup is maximal among the intransitive subgroups. We are not saying
that it is maximal in Sn. As we will see, such a subgroup is indeed maximal
unless |O| = |Ω − O|.

Let G = S5. We want to determine the maximal subgroups of G.
Observe first that the only normal subgroups of G are {1}, A5 and G
(as is the case for all symmetric groups of degree at least 5) and A5 is the
only subgroup of G of index 2. We claim that the only maximal subgroups
of G are A5, the point stabilizers, the intransitive subgroups of type S3×S2
and the normalizers of the Sylow 5-subgroups.

Let M be a maximal subgroup of G. Suppose first that 5 does not divide
|M |. Then M acts intransitively hence it is one of S4, S3 × S2. We may
now assume that 5 divides |M |. M contains a Sylow 5-subgroup P of G.
Suppose 3 divides |M |. Then |G : M | divides 8 hence |G : M | ∈ {2, 4, 8}.
If |G : M | = 4 then the natural action of G on the 4 cosets of M implies
that G is isomorphic to a subgroup of S4, a contradiction, since |S4| < |G|.
If |G : M | = 8 then |M | = 15 and M is cyclic (every group of order 15 is
cyclic), but S5 has no elements of order 15. We deduce that |G : M | = 2
hence M = A5. Now assume 3 does not divide |M |. Then |M | = 5 · 2n

with n ∈ {0, 1, 2, 3}, now by Sylow theorem P ⊴ M so M ≤ NG(P ) hence
M = NG(P ).

15
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Note that what we proved is that if M is a maximal subgroup of S5 then
one of the following occurs: M = A5, M is maximal intransitive, or M is
the normalizer of a Sylow 5-subgroup. Since there are no containments
between any two of these groups, they are precisely all the maximal
subgroups of S5.

The normalizer NG(P ) is a semidirect product C5 ⋊ C4 and it is
isomorphic to AGL(1, 5) = F5 ⋊ GL(F1

5), the affine group of dimension
1 over F5. Observe that Aut(F5) ∼= U(F5) ∼= C4.

Exercise 4.1. Find all the maximal subgroups of S4 and of A5.



Chapter 5

Imprimitivity blocks

Let G be a subgroup of Sn acting on Ω = {1, . . . , n}. The number n
will also be called the degree of G. As we have seen, it may happen that
G stabilizes a non-empty proper subset of Ω, in which case G is called
intransitive. But there are other relevant things that G can stabilize,
namely partitions. A partition of Ω is a family P = {B1, . . . , Bk} of non-
empty proper subsets of Ω such that B1 ∪ . . . ∪ Bk = Ω and Bi ∩ Bj = ∅
whenever i ̸= j. We say that G stabilizes the partition P if Big ∈ P
for every g ∈ G and for every i ∈ {1, . . . , k}. An example of stabilized
partition is given by the G-orbits, and such partition is not {Ω} if G is
intransitive, however we already know this kind of partition. Assume now
that G is transitive and that it stabilizes a partition P = {B1, . . . , Bk}.
Then it is clear that G acts on P, by (Bi, g) 7→ Big, and this action is
transitive: if Bi, Bj ∈ P and x ∈ Bi, y ∈ Bj then there exists g ∈ G
such that xg = y, so y ∈ Big ∩ Bj . But Big and Bj are members of the
partition P, so the fact that Big ∩ Bj ̸= ∅ implies that Big = Bj . Since
the right multiplication by g ∈ G is a bijection Bi → Big, we deduce that
all of the members of P have the same size. Moreover, if B is one of them,
then either B ∩ Bg = ∅ or B = Bg, for every g ∈ G.

An imprimitivity block, or simply block, for the action of G is a non-
empty subset B of Ω with the property that Bg = B or Bg ∩ B = ∅
whenever g ∈ G. In particular any orbit of G is a block. Observe that
Ω is a block, and {ω} is a block for every ω ∈ Ω. The blocks Ω, {ω} are
called trivial blocks. Also, {ω} is an example of block that, in general, is
not an orbit. It is easy to show that if B is a block then Bg is a block
for all g ∈ G. Assume now G acts transitively on Ω. If B is a block for
G then P = {Bg g ∈ G} is a partition of Ω, moreover |B| = |Bg| for all
g ∈ G hence a = |B| divides |Ω| and the partition P consists of b = |Ω|/|B|
blocks. In particular n = |Ω| = ab, so if the block B is nontrivial then n
cannot be a prime number (see for example our discussion of S5 above).

17
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The set of translates {Bg : g ∈ G} is called a block system of G.
The transitive group G is said to be primitive if it does not admit any

nontrivial block, and imprimitive otherwise.
Since the orbits are in particular blocks, in the definition of primitive

group the assumption that G is transitive is not needed unless n = 2, in
which case the trivial group inside S2 does not have any nontrivial blocks
on {1, 2}.

One easy fact we have just proved is that every transitive group of prime
degree is primitive. An easy example of primitive group of prime degree p
is given by ⟨(1 . . . p)⟩ acting on {1, . . . , p}. The dihedral group of degree p
is also primitive (this will be an easy consequence of Proposition 5.2).

Easy example: consider σ = (123456) and G = ⟨σ⟩ < S6, as a
permutation group of degree 6. Since σ2 = (135)(246) and σ3 =
(14)(25)(36), it is clear that G admits precisely two nontrivial block
systems, namely {{1, 3, 5}, {2, 4, 6}} and {{1, 4}, {2, 5}, {3, 6}}. As the
following picture shows, the cycle (123456) acts as a 2-cycle on the first
block system and as a 3-cycle on the second.

1

3

5

2

4

6

1

4

2

5

3

6

Exercise 5.1. Using this idea, observe that the cyclic group ⟨(1 . . . n)⟩
acting on {1, . . . , n} is primitive if and only if n is a prime number.

Note that the maximal imprimitive subgroups of Sn are precisely the
stabilizers of the partitions of {1, . . . , n} such that all the parts have the
same size. Indeed, every imprimitive group is contained in the stabilizer
of the associated block system.

The following proposition shows that whether a group G ≤ Sym(Ω) does
or does not stabilize a nontrivial partition of Ω can be detected looking at
the subgroups of G containing a point stabilizer.

Proposition 5.2. Suppose n > 2 and G ≤ Sn acts transitively on
Ω = {1, . . . , n}. G is primitive if and only if the point stabilizer M = Gα

(for any α ∈ Ω) is a maximal subgroup of G.

In particular, Sn and An in their natural actions are primitive groups.
Using the orbit-stabilizer theorem, this implies that studying the

(faithful) primitive actions of a group G is equivalent to studying its (core-
free) maximal subgroups. This allows to give an abstract definition of
primitive group: see section 9.2.
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Proof of Proposition 5.2. Assume that n > 2 and G ≤ Sn acts transitively
on Ω. If B is a block for G then the setwise stabilizer of B,

G{B} := {g ∈ G : Bg = B},

acts transitively on B. Indeed if α, β are elements of B then, since G acts
transitively on Ω, there exists g ∈ G such that αg = β. In particular
αg ∈ B ∩ Bg. Since B is a block, this implies that Bg = B, which means
that g ∈ G{B}.

Observe that if B is a block containing α then G{B} contains Gα. Indeed
if g ∈ Gα then α ∈ B ∩ Bg hence B = Bg since B is a block.

Assume that M = Gα is maximal in G. Since M = Gα ≤ G{B}, either
G{B} = M or G{B} = G. If G{B} = M = Gα then, since G{B} acts
transitively on B, we deduce that B = {α}. If G{B} = G then, since G
acts transitively on Ω, we deduce that B = Ω. This proves that G acts
primitively.

Conversely, assume that M = Gα is not maximal in G. We prove that
G is not primitive. Since M is not maximal in G, there exists K with
M < K < G. The set

B = {αk : k ∈ K}
is a nontrivial block for G. First, note that if k ∈ K −M then α ̸= αk ∈ B
hence |B| > 1, and if g ∈ G − K then αg ̸∈ B since otherwise we could
write αg = αk for some k ∈ K, equivalently gk−1 ∈ Gα = M < K and
this would imply g ∈ K. Now we prove that B is a block. If g ∈ G and
αk ∈ B ∩ Bg, for some k ∈ K, then there is some t ∈ K with αk = αtg
so tgk−1 ∈ Gα = M , this implies that g ∈ t−1Mk ⊆ K and therefore
Bg = B.

We also record an important property of the normal subgroups of a
primitive group.
Proposition 5.3. Let G ≤ Sn whose natural action on Ω = {1, . . . , n}
is primitive. Let {1} ≠ N ⊴ G. Then the natural action of N on Ω is
transitive.
Proof. Let O = αN ⊆ Ω be the N -orbit of α ∈ Ω. We need to show that
O = Ω. We claim that O is a block for the action of G on Ω. If g ∈ G
and β ∈ O ∩ Og then there exist n1, n2 ∈ N such that β = αn1 = αn2g.
If αn ∈ O then

αn = αn2gn−1
1 n = αn2 · gn−1

1 ng−1 · g ∈ αNg = Og,

this proves that O ⊆ Og hence O = Og. So O is a block for G. Since G
acts primitively, either |O| = 1 or O = Ω. Since N is nontrivial and G acts
faithfully, O = αN contains at least two elements, so O = Ω.

Exercise 5.4. If G acts transitively on Ω with point stabilizer A and B
is a subgroup of G then B acts transitively if and only if AB = G.



Chapter 6

Multiple transitivity and
Jordan’s theorem

The material of this section is taken from Wielandt’s book [16].
Let G act faithfully on a set Ω, in other words G ≤ Sym(Ω). Set n := |Ω|.
Let 1 ≤ k ≤ n. We say that the action of G on Ω (or G itself) is

k-transitive if the natural action of G on the set

Ok(Ω) := {(x1, . . . , xk) ∈ Ωk : xi ̸= xj ∀i ̸= j}

is transitive. G is called sharply k-transitive if the natural action on Ok(Ω)
is regular. For example Sn in its natural action of degree n is sharply n-
transitive and sharply (n − 1)-transitive.

Since |Ωk| = n(n−1) · · · (n−k+1), if G is k-transitive then |G| is divisible
by n(n − 1) · · · (n − k + 1), and it equals such number if G is sharply k-
transitive. In particular the only n-transitive permutation group of degree
n is Sn, the only (n − 1)-transitive permutation group of degree n is Sn

and the only (n−2)-transitive permutation groups of degree n are An and
Sn.

Example: the normalizer in S5 of a Sylow 5-subgroup of S5 is sharply
2-transitive of degree 5.

Clearly, if G is k-transitive for some k ≥ 2 then it is also (k−1)-transitive.

Lemma 6.1. If 2 ≤ k ≤ n and G is k-transitive then it is primitive.

Proof. By the above remark it is enough to prove this for k = 2. Assume
that G is 2-transitive and let B be a block for the action of G such that
2 ≤ |B| < |Ω|. Let α, β ∈ B be distinct. Since B ̸= Ω there exists
γ ∈ Ω−B. Since G is 2-transitive there exists g ∈ G taking the pair (α, β)
to (α, γ), in other words αg = α, βg = γ. Therefore α ∈ B ∩ Bg, however
B ̸= Bg being γ ∈ Bg −B. This contradicts the fact that B is a block.

20



Chapter 6. Multiple transitivity and Jordan’s theorem 21

Exercise 6.2. There exist several primitive groups that are not 2-
transitive. [Consider groups of prime degree.]

Assume G is transitive and let 1 ≤ k ≤ n. Then G is k-transitive if
and only if there exists α ∈ Ω such that the stabilizer StabG(α) is (k − 1)-
transitive on Ω − {α}, and in this case this holds for every α ∈ Ω by the
transitivity of G.

Lemma 6.3. Assume G is transitive on Ω, U ≤ G and ∆ ⊆ Ω is
an U -orbit. Denote by U∆ the image of the natural homomorphism
U → Sym(∆). If U∆ is primitive on ∆ and |Ω| < 2|∆| then G is primitive
on Ω.

Proof. Let α ∈ ∆. Let B be a block for G. We will show that either
|B| = 1 or B = Ω. Since G is transitive, if x ∈ B there exists g ∈ G with
xg = α, therefore α ∈ Bg. Now Bg is a block for G, and if we show that
either |Bg| = 1 or Bg = Ω then we would have that either |B| = 1 or
B = Ω, which is what we want, so we may assume α ∈ B.

We claim that ∆∩B is a block for U . If u ∈ U and β ∈ (∆∩B)∩(∆∩B)u,
then β ∈ B ∩ Bu so, being B a block for G, B = Bu. It follows that
(∆ ∩ B)u = ∆u ∩ Bu = ∆ ∩ B being ∆ a U -orbit.

We deduce that ∆ ∩ B is a block for U∆ as well, being contained in ∆.
Moreover α ∈ ∆ ∩ B. Since U∆ is primitive on ∆, either ∆ ∩ B = ∆ or
∆ ∩ B = {α}. If ∆ ∩ B = ∆ then ∆ ⊆ B, in particular |B| ≥ |∆| > n/2,
but |B| divides |Ω| = n and this implies that |B| = n, in other words
B = Ω.

Assume now that ∆∩B = {α}. If g ∈ G then ∆∩Bg is either empty or
it is a block for U∆. This is proved exactly as in the above proof that ∆∩B
is a block for U . By the primitivity of U∆ on ∆, either |∆ ∩ Bg| ≤ 1 or
∆ ∩ Bg = ∆. In the second case the same argument as before proves that
Bg = Ω = B, so we may assume that |∆ ∩ Bg| ≤ 1 for every g ∈ G. Since⋃

g∈G Bg = Ω, this implies that there are at least |∆| sets of the form Bg,
however the number of such blocks is a divisor of n and |∆| > n/2, hence
there are precisely n such blocks, and this can only happen if |B| = 1.

If ∆ ⊆ Ω and H ≤ G then we will denote by H∆ the intersection⋂
x∈∆ StabH(x), that is, the pointwise stabilizer of ∆ in H.

Corollary 6.4. Assume G is transitive on Ω and let ∆, Γ be subsets of Ω.
Assume G = ⟨C, D⟩ where C ≤ GΩ−Γ acts primitively on Γ, D ≤ GΩ−∆
acts primitively on ∆. Then G is primitive on Ω.

Proof. Since G = ⟨C, D⟩ is transitive and C, D do not move anything
outside Γ ∪ ∆, we deduce that Γ ∪ ∆ = Ω. Similarly, since C stabilizes
Γ and D stabilizes ∆, the fact that G = ⟨C, D⟩ is transitive implies that
Γ ∩ ∆ ̸= ∅. These two facts imply that either |∆| > n/2 or |Γ| > n/2.
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Since C acts primitively on Γ, we have that Γ is a C-orbit, similarly ∆ is
a D-orbit. Therefore G is primitive by Lemma 6.3.

Note that if ∆ is a proper subset of Ω and α ∈ ∆ then
⋂

α∈∆g ∆g is a
block for G. Therefore, if G is primitive, then⋂

∆g∋α

∆g = {α}.

This can be phrased by saying that if α, β ∈ ∆ are distinct then there
exists g ∈ G such that αg ∈ ∆, βg ̸∈ ∆.

A group G acting primitively on Ω is called 2-primitive if the stabilizer
Gα acts primitively on Ω − {α} for every α ∈ Ω.

Also, note that if H ≤ G ≤ Sn and H is primitive, then G is primitive
as well.

Proposition 6.5. Assume G is primitive on Ω and Ω = Γ ∪ ∆ where
Γ ∩ ∆ = ∅, 1 < |Γ| < |Ω|, 1 ≤ |∆| < |Ω|. If G∆ is transitive on Γ,
then G is 2-transitive on Ω. Moreover, if G∆ is primitive on Γ, then G is
2-primitive on Ω.

Proof. Induction on |∆|. The case |∆| = 1 is trivial, since by assumption
G is transitive on Ω and G∆ is transitive on Γ. Now assume |∆| > 1.

Case 1. 2|∆| < |Ω|. Since |∆| > 1, there exist α, β ∈ ∆ with α ̸= β.
Since G is primitive, there exists g ∈ G such that α ∈ ∆g, β ̸∈ ∆g. Since
2|∆| < |Ω| = n, we deduce that |Γ| > n/2 hence Γ ∩ Γg ̸= ∅. Since G∆ is
transitive (resp. primitive) on Γ and g−1G∆g is transitive (resp. primitive)
on Γg, the group H := ⟨G∆, g−1G∆g⟩ is transitive (resp. primitive, by
Corollary 6.4, being g−1G∆g = G∆g) on Γ ∪ Γg. Let ∆ := ∆ ∩ ∆g, the set
of elements of ∆ fixed by H, in particular H ≤ G∆, so G∆ is transitive
(resp. primitive) on Γ ∪ Γg = Ω − ∆. We have 1 ≤ |∆| < |∆| being
α ∈ ∆ and β ̸∈ ∆. We may therefore apply induction and deduce that G
is 2-transitive (resp. 2-primitive).

Case 2. 2|∆| ≥ |Ω|. Since |Γ| > 1, there exist α, β ∈ Γ with α ̸= β. Since
G is primitive, there exists g ∈ G such that α ∈ Γg, β ̸∈ Γg. Then Γ ∩ Γg
is non-empty (it contains α) and again the group H := ⟨G∆, g−1G∆g⟩
is transitive (resp. primitive) on Γ ∪ Γg. Since 2|∆| ≥ |Ω|, we have
2|Γ| ≤ |Ω| and this implies that Γ ∪ Γg ̸= Ω. Moreover, since Γ ̸= Γg, the
set Γ is properly contained in Γ ∪ Γg. Setting ∆ := ∆ ∩ ∆g, we find that
Ω − ∆ = Γ ∪ Γg and 0 < |∆| < |∆|. We may therefore apply induction
and deduce that G is 2-transitive (resp. 2-primitive).

Theorem 6.6 (Jordan). Assume G is primitive on Ω, G∆ is primitive on
Ω − ∆ = Γ and 1 < |Γ| = m < n = |Ω|. Then G is (n − m + 1)-transitive.
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Proof. Induction on |∆| = n − m. The case |∆| = 1 is trivial since by
assumption G∆ is primitive on Γ. Now assume |∆| > 1. Proposition 6.5
implies that G is 2-primitive, hence if δ ∈ ∆ then StabG(δ) acts primitively
on Ω − {δ}. Since Ω − {δ} equals the disjoint union Γ ∪ (∆ − {δ}) we
may apply induction and deduce that StabG(δ) is (n − m)-transitive on
Ω−{δ}. Since this holds for every δ ∈ ∆, we deduce that G is (n−m+1)-
transitive.

Corollary 6.7. Let G ≤ Sn act primitively on Ω = {1, . . . , n}. If G
contains a transposition then G = Sn. If G contains a 3-cycle then G = An

or G = Sn.

Proof. Let g be a 2-cycle or a 3-cycle in Sn and assume g ∈ G. Let Γ be
the set of points moved by g and ∆ = Ω − Γ. Clearly, |Γ| ∈ {2, 3} and G∆
acts primitively on Γ, since g ∈ G∆ and ⟨g⟩ acts primitively on Γ since
|Γ| is a prime number. Theorem 6.6 implies that G is (n − 1)-transitive
if |Γ| = 2, and G is (n − 2)-transitive if |Γ| = 3. In the first case |G| is
divisible by n!, hence G = Sn, in the second case |G| is divisible by n!/2,
hence G = An or G = Sn.

This easily implies that the maximal imprimitive subgroups of Sn are
maximal subgroups of Sn. Indeed a proper subgroup properly containing
them would be primitive and would contain a 2-cycle (moving two elements
of a block).

A similar argument can be used for An using 3-cycles (being the 2-cycles
odd permutations) but it is more tricky since there could be blocks of size
2. Actually, in the case of the alternating group An, the maximality of
the maximal imprimitive subgroups holds for n ̸= 8. The imprimitive
subgroup A8 ∩ (S2 ≀ S4) is properly contained in the affine group AGL3(2):
see [10].

More in general, it is possible to prove the following.

Theorem 6.8. Let G ≤ Sn act primitively on Ω = {1, . . . , n} and assume
G contains a p-cycle for some prime p such that p ≤ n − 3. Then G = An

or G = Sn.

Exercise 6.9. If G is a solvable 4-transitive permutation group then
G ∼= S4. Hint: show that any minimal normal subgroup N is regular
and study the conjugation action of a point stabilizer on N (N is a vector
space over a field with p elements, p prime, and the conjugation action of
the point stabilizer on N − {1} is 3-transitive and linear).
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Maximal intransitive
subgroups

A subgroup of Sn is called maximal intransitive if it is maximal among
the intransitive subgroups of Sn. We saw that the maximal intransitive
subgroups of Sn are of type G = Stab(O) where O is a non-empty proper
subset of Ω = {1, . . . , n}. Such subgroups are of type Sa × Sb where
0 < a = |O| < n, b = n−a = |Ω−O|, a+ b = n. We study the maximality
of G inside Sn. If G is not maximal then it is properly contained in K ≤ Sn

which therefore is transitive on Ω. If K is primitive then it contains a 2-
cycle, moving 2 elements of O or of O := Ω − O, and Jordan’s theorem
implies that K = Sn.

Suppose now that K is imprimitive, let B be a nontrivial block for
K. Then B is a nontrivial block for G, therefore B ∩ O is either empty
or a block for GO and B ∩ O is either empty or a block for GO. Since
GO ∼= Sym(O) is primitive on O and GO ∼= Sym(O) is primitive on O,
we deduce that either |B ∩ O| ≤ 1 or B ∩ O = O, furthermore either
|B ∩ O| ≤ 1 or B ∩ O = O.

Assume B ∩ O = {α}, B ∩ O = {β}, then B = {α, β}. If there exists
γ ∈ O − B then g = (αγ) ∈ G and Bg = {β, γ}, a contradiction, and
similarly O − B = ∅, so Ω = B and n = 2, this contradicts the fact that
B is nontrivial.

Assume B ∩ O = {α}, B ⊇ O. Then B = {α} ∪ O, however this is a
contradiction because, since B is a nontrivial block, there exists β ∈ O−B,
hence there exists g ∈ G such that αg = β (being GO = Sym(O)) so
Bg = {β} ∪ O is not disjoint from B and not equal to B.

We are left with the case in which one of B ∩ O and B ∩ O is empty,
say B ∩ O = ∅. Then B = O. Since K is transitive, there exists k ∈ K
that takes an element of O to an element of O, hence Bk ⊆ O. But then
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Bk = Bk∩O is a block for GO = Sym(O), of size at least 2, hence Bk = O.
This proves that if O is a proper subset of Ω and G = Stab(O) < Sym(Ω)

is not a maximal subgroup then |Ω| > 2 and |O| = |O|. In other words
G has type Sa × Sa with 2a = n. Indeed, such subgroup is not maximal
if n > 2: it is contained in an imprimitive wreath product Sa ≀ S2, the
stabilizer of a partition with two parts of size a, which, as we will see in
the next section, is a maximal subgroup of S2a.



Chapter 8

Maximal imprimitive
subgroups

If H and K are two groups and K ≤ Sn, then HwrK = H ≀ K denotes the
wreath product between H and K, i.e., the semidirect product Hn ⋊ K,
where K acts on Hn by permuting the coordinates. More specifically
π ∈ K acts on Hn by

(x1, . . . , xn)π = (x1π−1 , . . . , xnπ−1).

This may look strange but it is necessary to have a well-defined action on
the right, indeed defining ti = xiπ−1 we have tiτ−1 = xiτ−1π−1 = xi(πτ)−1

hence

((x1, . . . , xn)π)τ = (x1π−1 , . . . , xnπ−1)τ = (x1τ−1π−1 , . . . , xnτ−1π−1)
= (x1(πτ)−1 , . . . , xn(πτ)−1) = (x1, . . . , xn)πτ .

Recall that exponentiating by π means conjugation (π−1gπ).
Note that if K ≤ Sn then |H ≀ K| = |H|n|K|, so for example |Sa ≀ Sb| =

a!bb!.
If a, b > 1 and ab = n, then the full wreath product Sa ≀ Sb embeds

into Sn as an imprimitive subgroup. To see this it is enough to check that
Sa ≀ Sb acts faithfully and imprimitively on the set {1, . . . , a} × {1, . . . , b},
which is a set of size ab = n, by the rule

(i, j)(x1,...,xb)σ := (ixj , jσ).

This is an action since

(i, j)(x1,...,xb)σ·(y1,...,yb)τ = (i, j)(x1y1σ,...,xbybσ)στ = (ixjyjσ, jστ),(
(i, j)(x1,...,xb)σ

)(y1,...,yb)τ

= (ixj , jσ)(y1,...,yb)τ = (ixjyjσ, jστ).

26
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This action is imprimitive admitting Bj = {1, . . . , a} × {j} as a block
system, j = 1, . . . , b. Indeed,

B
(x1,...,xb)σ
j = Bj

σ = Bjσ.

The block system consists of b blocks of size a. Also, it is easy to see that
this action is faithful. Therefore Sa ≀ Sb embeds into Sab as an imprimitive
subgroup.

Actually Sa ≀ Sb is a maximal imprimitive subgroup, meaning that it
is not properly contained in any imprimitive subgroup of Sn. Moreover,
every maximal imprimitive subgroup is of this type. This can be proved
using the following result, which is due to Frobenius.

Theorem 8.1 (Embedding Argument). Let H be a subgroup of the finite
group G, let x1, . . . , xn be a right transversal for H in G, and let ξ be any
homomorphism with domain H, say ξ : H → X. Then the map

f : G → ξ(H) ≀ Sn,

x 7→ (ξ(x1xx−1
1π ), . . . , ξ(xnxx−1

nπ))π,

where π ∈ Sn is the unique permutation that satisfies xix ∈ Hxiπ for
all i = 1, . . . , n, is a well-defined homomorphism with kernel equal to the
normal core of ker ξ in G, in other words ker f = (ker ξ)G.

Proof. Since xi ∈ Hxi the permutation corresponding to the identity is 1
hence f(1) = 1. Now let x, y ∈ G and assume xixx−1

iπ ∈ H, xiyx−1
iτ ∈ H for

all i ∈ I = {1, . . . , n}, then applying the second to iπ we find xiπyx−1
iπτ ∈ H

for all i ∈ I, so xixyx−1
iπτ = (xixx−1

iπ )(x−1
iπ yx−1

iπτ ) ∈ H. It follows that the
permutation corresponding to xy is πτ and

f(xy) = (ξ(xixyx−1
iπτ ))i∈Iπτ = (ξ(xixx−1

iπ )ξ(xiπyx−1
iπτ ))i∈Iπτ

= f(x) · π−1(ξ(xiπyx−1
iπτ ))i∈Iπτ = f(x) · (ξ(xiyx−1

iτ ))i∈Iτ = f(x)f(y).

f(x) = 1 if and only if the permutation π corresponding to x is the identity
and xixx−1

i ∈ ker(ξ) for all i ∈ I, in other words x ∈ x−1
i ker ξxi for all

i ∈ I. Since ker ξ⊴H, the conjugates of ker ξ in G are precisely the groups
x−1

i (ker ξ)xi for i ∈ I. This proves that ker f = (ker ξ)G.

Now assume G ≤ Sn acts transitively and imprimitively on Ω =
{1, . . . , n}. This means that there is a nontrivial imprimitivity block B for
G, let a = |B|. Let H = G{B} = {g ∈ G : Bg = B}, the setwise stabilizer
of B. Observe that G acts transitively on the set of blocks {Bg : g ∈ G}
with H as point stabilizer, so |G : H| equals the number of translates
of B, call it b. Since the translates of B partition Ω we have ab = n.
Of course we have a homomorphism ξ : H → Sym(B) ∼= Sa induced
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by the action of H on B. By Theorem 8.1 we deduce a homomorphism
f : G → ξ(H) ≀ Sb ≤ Sa ≀ Sb with kernel the normal core of ker(ξ) in G.
Observe that if h ∈ ker(ξ) then h fixes B pointwise, and if h ∈ ker(ξ)g then
ghg−1 ∈ ker(ξ) so h fixes Bg pointwise. This implies that (ker(ξ))G = {1}
hence f is injective. This means that G embeds in the wreath product
Sa ≀ Sb, on the other hand such wreath product embeds in Sn as an
imprimitive subgroup with blocks of size a. This proves that the stabilizers
in Sn of the partitions consisting of b blocks of size a (i.e. the maximal
imprimitive subgroups of Sn with blocks of size a) are isomorphic to wreath
products Sa ≀Sb. Similarly, the maximal imprimitive subgroups of An with
b blocks of size a are isomorphic to the intersection between An and the
maximal imprimitive subgroups of Sn with b blocks of size a, in other
words, with abuse of notation, they are of the form An ∩ (Sa ≀ Sb) (and not
Aa ≀ Ab, careful!).

Also, in the previous argument, we may restrict the codomain of f to
ξ(H)≀K where K is the image of the homomorphism G → Sb corresponding
to the transitive action of G on the b blocks. ξ(H) and K could be called
“components” of G. Therefore we can always embed any imprimitive
group G into the wreath product of the so-called “primitive components”
of G. Specifically, we start with a block B whose setwise stabilizer acts
primitively on it (that is, a “minimal block”), meaning that the setwise
stabilizer H := G{B} acts primitively on B, then we apply the above
construction giving G ≤ ξ(H) ≀ K with K ≤ Sb transitive of degree b, and
we repeat the process with K if K is imprimitive, otherwise we stop. This
gives an embedding fo G in the so-called iterated wreath product

G ≤ P1 ≀ P2 ≀ P3 ≀ . . . ≀ Pk,

where the notation is X ≀ Y ≀ Z := X ≀ (Y ≀ Z). The groups P1, . . . , Pk are
primitive groups which are called the primitive components of G.

For example the dihedral group of order 8 (inside S4), D = ⟨(1234), (24)⟩
acts imprimitively on {1, 2, 3, 4} having B = {1, 3} as a block. The above
argument shows that D embeds into C2 ≀ C2 and this actually shows that
D and C2 ≀ C2 are isomorphic (they have the same order).

We will see that if a ≥ 5 then Sa ≀Sb is also a primitive group (abstractly)
with the so-called product action (see section 9.3) but the degree of
primitivity is much larger: ab. This falls into a broader concept which
is the following: the primitive groups of degree n, other than An and Sn,
are “small”: their order is less than 4n, as proved by Praeger and Saxl in
1980 building up on results of Wielandt [12]. More work in this direction
was done by several authors in [5, 8, 13, 11]. The first result of this type
was proved by Bochert in [3].

Note that we are in the position to clearly understand the maximal
subgroups of S6. We have the alternating group A6, the maximal
intransitive subgroups S1 × S5, S2 × S4 and the maximal imprimitive
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subgroups S2 ≀ S3, S3 ≀ S2. We have seen that S5 acts on its 6 Sylow
5-subgroups and this action is primitive because, as we have seen, the
normalizer of a Sylow 5-subgroup of S5 is maximal in S5. Therefore S5
embeds in S6 as a primitive subgroup, which is maximal in S6 because
it has index 6. So S6 has one class of primitive maximal subgroups
isomorphic to S5. This is the list of all the maximal subgroups of S6.

Exercise 8.2. Let n = pk be a prime power. The iterated wreath product
P = Cp ≀Cp ≀. . .≀Cp of k copies of Cp is isomorphic to the Sylow p-subgroups
of Sn.

Exercise 8.3. Let n = mpk with m not divisible by p. Let Ω = {1, . . . , n}
and let P be a Sylow p-subgroup of Sn. Show that

• The action of P on Ω is transitive if and only if m = 1.

• The action of P on Ω is primitive if and only if m = k = 1.
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Primitive maximal
subgroups

9.1 Characteristically simple groups
Recall that if G is a group then a subgroup N of G is called characteristic if
Nφ = N for every φ ∈ Aut(G) and in this case the notation is N ⊴c G. For
every g ∈ G, the map γg : G → G, xγg := xg = g−1xg is an automorphism
of G, therefore if N ⊴c G then N ⊴ G.

Note that if A ⊴c B ⊴ G then A ⊴ G because γg|B ∈ Aut(B) for every
g ∈ G.

G is called characteristically simple if its only characteristic subgroups
are {1} and G. Obviously, every simple group is characteristically simple.

A subgroup N of a group G is called a minimal normal subgroup of G if
N ̸= {1} and whenever L ≤ N , L⊴G, either L = {1} or L = N . Note that
every minimal normal subgroup of G is characteristically simple. Indeed,
if L ⊴c N then, since N ⊴ G, L is normal in G, hence L = {1} or L = N
by minimality of N .

Proposition 9.1. If S is a nonabelian simple group the normal subgroups
of Sn = S × · · · × S are its subproducts, in other words, the subgroups
T1 × · · · × Tn where Ti is either {1} or S, for every i ∈ {1, . . . , n}. In
particular, the minimal normal subgroups of Sn are its factors.

Proof. Let N be a normal subgroup of Sn with a nontrivial element
g = (s1, . . . , sn) and suppose s1 ̸= 1. Then conjugating with (x, 1, 1, . . . , 1)
we find that N contains all the elements gx = (sx

1 , s2, . . . , sn), so that
N ∋ gxg−1 = (tx, 1, 1, . . . , 1) where tx = [x−1, s1] = x−1s1xs−1

1 . Since S
is a nonabelian simple group, its center is trivial, in particular s1 ̸∈ Z(S),
hence there exists x ∈ S such that tx ̸= 1. The conjugacy class of an

30
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element always generates a normal subgroup, so since S is a nonabelian
simple group and tx ̸= 1, the conjugates of tx in S generate S. Since N is
normal in Sn, this implies that N contains S × {1} × . . . × {1}. The same
argument shows that N contains the i-th factor of Sn whenever si ̸= 1,
and proves the claim.

Proposition 9.2. Let G be a finite group. G is characteristically simple
if and only if there exist a (possibly abelian) simple group S and a natural
number n such that G ∼= Sn.

Proof. If S is a simple group and n is a natural number then G = Sn

is characteristically simple. To see this, note that if S is abelian then
S ∼= Cp for some prime p and Aut(G) ∼= GL(n, p), the group of invertible
n × n matrices with coefficients in Fp, where we may see Cp as the
additive group of the field with p elements Fp, being Fp-linearity automatic
from additivity. Since GL(n, p) acts transitively on the nonzero vectors,
Cp

n is characteristically simple. If S is nonabelian, the fact that Sn is
characteristically simple follows from Proposition 9.1 and the fact the
symmetric group of degree n acts as a group of automorphisms of Sn

by permuting the coordinates, so the subproducts are permuted around.
See the exercises.

Now assume G is characteristically simple. If N is a minimal normal
subgroup of G then Nf is a minimal normal subgroup of G for every
f ∈ Aut(G). Since G is characteristically simple,

⟨Nf : f ∈ Aut(G)⟩ = G.

We claim that any subgroup of G which is generated by some number
m of subgroups of type Nf is a direct product of some of them. We
proceed by induction on m. Assume that H ≤ G is generated by m > 1
subgroups of type Nf , say Nf1 , . . . , Nfm , where f1, . . . , fm ∈ Aut(G). Let
K := ⟨Nfi : i ≥ 2⟩. By induction K is a direct product of some Nfi . Since
K ⊴G and Nf1 is a minimal normal subgroup of G, if Nf1 ∩K ̸= {1} then
Nf1 ≤ K hence H = K and the result follows. If instead Nf1 ∩ K = {1}
then H = Nf1 × K and we are done.

We deduce that G is a direct product of some of the Nfi . Since each Nfi

is a minimal normal subgroup of G, they are all simple. Setting S = Nf1

we have Nfi = Sf−1
1 fi ∼= S for all i.

Exercise 9.3. Let M be a maximal subgroup of a finite solvable group.
Prove that M has prime power index (Hint: by induction on |G|; let N be
a minimal normal subgroup of G, if M ≥ N then work in G/N and use
induction, otherwise observe that N is characteristically simple).

Exercise 9.4. Let G be a finite group. If |G| ≥ 3 then Aut(G) ̸= {1}.
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Exercise 9.5. Let G be a finite group. Then G is elementary abelian if
and only if the natural action of Aut(G) on G − {1} is transitive.

Exercise 9.6. Let T be a nonabelian simple group. Prove that

Aut(T n) ∼= Aut(T ) ≀ Sn.

[Use the embedding argument with H = NAut(T n)(R) and ξ : H → Aut(R)
the homomorphism induced by the natural action of H on R, where
R = T × {1} × · · · × {1}. Note that |G : H| = n, where G = Aut(T n),
since G acts transitively on the n factors of T n and H is the stabilizer of
one of the factors.]

9.2 Primitive groups: structure
When studying the structure of primitive groups it is useful to give a
“permutation-free” definition, using Proposition 5.2.

Definition 9.7 (Primitive group - abstract definition). We say that a
finite group G is primitive of degree n if it admits a maximal subgroup M
of index n whose normal core is trivial, i.e. MG = {1}. In other words,
M is a core-free maximal subgroup.

Such a group G can be seen as a permutation group of degree n by
means of its right multiplication action on Ω = {Mx : x ∈ G}. The
corresponding homomorphism γ : G → Sym(Ω) is injective because its
kernel is MG = {1}, and the permutation group γ(G) ∼= G on Ω is primitive
in the sense that it has no nontrivial blocks. Note that this is precisely
the situation we are in when we consider a group G ≤ Sym(Ω) (inclusion
homomorphism, injective) acting primitively on Ω.

Now we will analyze the structure of primitive groups by discussing
Baer’s theorem, which indicates that primitive groups can be divided in
three main types, called type I, type II and type III. We start with the
following very useful fact.

Lemma 9.8 (Dedekind’s modular law). Let A, B, C be subgroups of G
and assume A ≤ B. Then A(B ∩ C) = B ∩ AC.

B AC

A(B ∩ C) = B ∩ AC C

A B ∩ C
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Proof. The inclusion ⊆ is trivial since A ⊆ B and B ∩C ⊆ C ⊆ AC, being
1 ∈ A. Now assume b ∈ B ∩ AC and write b = ac where a ∈ A, c ∈ C.
Then c = a−1b ∈ B since a ∈ A ⊆ B and B is a subgroup, therefore
c ∈ B ∩ C and this implies that b = ac ∈ A(B ∩ C).

Recall that the socle of a finite group G, denoted by soc(G), is the
subgroup of G generated by the minimal normal subgroups of G. Clearly,
if soc(G) is a minimal normal subgroup of G, then it is the unique minimal
normal subgroup of G. A group admitting a unique minimal normal
subgroup is usually called monolithic. Note that there are monolithic
groups that are not primitive, for example the cyclic group C4.

Recall the following important fact.

Proposition 9.9 (Frattini argument). If G is a finite group, N⊴G and P
is a Sylow subgroup of N then NG(P ) · N = G. In particular, the Frattini
subgroup of G is nilpotent.

Proof. If g ∈ G then, being N ⊴ G, we have P g ≤ N hence P g is a
Sylow subgroup of N . By Sylow’s theorem, there exists n ∈ N such that
P g = P n, so that gn−1 ∈ NG(P ), therefore g ∈ NG(P ) · N . This proves
that G = NG(P ) ·N . If N is the Frattini subgroup Φ(G) of G then P must
be normal in G, otherwise NG(P ) · N would be contained in a maximal
subgroup of G. This implies that all Sylow subgroups of N are normal in
N , hence N is nilpotent.

Using this, it is easy to see that a monolithic group G is primitive if
and only if its socle is not contained in the Frattini subgroup of G. In the
following result, primitive groups of type I and II are monolithic, while
primitive groups of type III are not.

Theorem 9.10 (Baer). Let G be a finite group. Then G is primitive if and
only if there exists a proper subgroup U of G such that UN = G whenever
N is a nontrivial normal subgroup of G. Now assume this is the case, and
let M be a core-free maximal subgroup of G. If N is a nontrivial normal
subgroup of G then CG(N) ∩ M = {1}, moreover either CG(N) = {1} or
CG(N) is a minimal normal subgroup of G. Furthermore, precisely one of
the following conditions holds.

1. N = soc(G) is an abelian minimal normal subgroup of G
complemented by M . In this case G is called affine or primitive
of type I.

2. N = soc(G) is a nonabelian minimal normal subgroup of G
supplemented by M . In this case G is called primitive of type II.

3. G admits precisely two minimal normal subgroups A, B and N =
soc(G) = A × B. Moreover A and B are nonabelian, A = CG(B),
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B = CG(A), M complements both A and B in G and A ∼= AB∩M ∼=
B. In this case G is called primitive of type III.

Proof. If G is primitive and M is a core-free maximal subgroup of G
then M does not contain any nontrivial normal subgroup of G and
M < MN ≤ G for all N ⊴ G, therefore MN = G for all {1} ̸= N ⊴ G.
Conversely if G is a finite group and the proper subgroup U of G satisfies
UN = G whenever N is a nontrivial normal subgroup of G then let M
be a maximal subgroup of G containing U . We have MG = {1}, because
otherwise, since MG ⊴G, we would have G = UMG ≤ M , a contradiction.
So G is primitive.

Now let G be primitive and let M be a core-free maximal subgroup of
G.

If N is a nontrivial normal subgroup of G then CG(N) is the kernel
of the conjugation action G → Aut(N), hence CG(N) ⊴ G, therefore
M∩CG(N)⊴M , so M is contained in the normalizer NG(M∩CG(N)). But
N is also contained in such normalizer, hence G = MN ≤ NG(M ∩CG(N))
which implies that M ∩ CG(N) ⊴ G. Since MG = {1}, we deduce that
M ∩ CG(N) = {1}. If CG(N) ̸= {1} then, since G is finite, there exists a
minimal normal subgroup X of G contained in CG(N). Since MG = {1}
we have XM = G. By Dedekind’s law

CG(N) = CG(N) ∩ G = CG(N) ∩ XM = X(CG(N) ∩ M) = X.

This implies that CG(N) is a minimal normal subgroup of G.
If G admits three distinct minimal normal subgroups A, B, C then B,

C are contained in CG(A) being A ∩ B = {1} and A ∩ C = {1} and
this contradicts the fact that CG(A), if nontrivial, is a minimal normal
subgroup of G. This proves that G admits at most two minimal normal
subgroups.

Assume first that G contains only one minimal normal subgroup, call it
N . Since M is a core-free maximal subgroup, MN = G. If N is nonabelian
then G is a primitive group of type II. Assume now that N is abelian. Then
N ≤ CG(N) and, since CG(N) is a minimal normal subgroup of G, we
deduce that CG(N) = N . This implies that M ∩ N = M ∩ CG(N) = {1},
in other words M is a complement for N in G hence G is a primitive group
of type I.

Finally assume that G contains precisely two minimal normal subgroups,
A and B. Clearly N = soc(G) = A×B. The fact that A∩B = {1} implies
that A ≤ CG(B) and B ≤ CG(A), so since CG(A) and CG(B) are minimal
normal subgroups of G, we deduce that A = CG(B) and B = CG(A). In
particular A and B are nonabelian. Moreover M ∩ A = M ∩ CG(B) = {1}
and M ∩ B = M ∩ CG(A) = {1}, so M complements both A and B in G.
By Dedekind’s law,

A(AB ∩ M) = AB ∩ AM = AB ∩ G = AB,
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B(AB ∩ M) = AB ∩ BM = AB ∩ G = AB,

therefore

A ∼= A/A ∩ B ∼= AB/B = B(AB ∩ M)/B ∼= AB ∩ M,

B ∼= B/A ∩ B ∼= AB/A = A(AB ∩ M)/A ∼= AB ∩ M.

It follows that A ∼= AB ∩ M ∼= B.

It is worth noting that the two minimal normal subgroups of a primitive
group G of type III, although isomorphic, are not G-isomorphic, in other
words no isomorphism between them is compatible with the conjugation
action of G. The reason is that G-isomorphic normal subgroups of G must
have the same centralizer.

Exercise 9.11. What are the primitive groups with nontrivial center?

Exercise 9.12. For which values of n is the dihedral group D2n (of order
2n) primitive?

It follows from Baer’s theorem that primitive groups of type I are of the
form Fn

p ⋊ M where M is an irreducible subgroup of GL(Fn
p ). If q is any

prime power, the full affine group Fn
q ⋊GL(Fn

q ) is denoted by AGL(Fn
q ) or

AGL(n, q).
We will now describe the primitive groups of type II.

Proposition 9.13. Let G be a finite group. The following are equivalent.

1. G is primitive of type II.

2. There exists a minimal normal subgroup N of G such that CG(N) =
{1}.

3. There exists a nonabelian minimal normal subgroup N of G such
that, up to isomorphism, N ≤ G ≤ Aut(N), where N is embedded in
Aut(N) via the natural conjugation action N → Aut(N).

Proof. By Baer’s theorem, (1) implies (2). If (2) holds then the conjugation
action G → Aut(N) has kernel CG(N) = {1}, so (3) follows. If (3) holds
then any element of the centralizer CG(N) is an automorphism of N fixing
N pointwise, hence CG(N) = {1} and (2) follows.

We are left to prove that (2) implies (1). The Frattini subgroup of G is
nilpotent, however N is not nilpotent being a direct product of nonabelian
simple groups. Since every subgroup of a nilpotent group is nilpotent,
this implies that there exists a maximal subgroup M of G not containing
N . In particular N is not contained in the normal core MG of M in G.
The intersection N ∩ MG is normal in G and contained in N , so since
N is a minimal normal subgroup, N ∩ MG = {1}. This implies that
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MG ≤ CG(N) = {1}, hence MG = {1}. Moreover, N is the unique
minimal normal subgroup of G since any other minimal normal subgroup
would be contained in CG(N) = {1}. This proves that G is primitive of
type II.

A finite group G is called almost-simple if it is primitive of type II and
its socle is a simple group, which is therefore nonabelian. Equivalently, G
admits a nonabelian simple normal subgroup S such that CG(S) = {1}.
Equivalently, there exists a nonabelian simple group S such that S ≤
G ≤ Aut(S). Of course, every nonabelian simple group is in particular
almost-simple. An easy example of an almost-simple group which is not
simple is the symmetric group Sn for n ≥ 5, its socle being the nonabelian
simple group An. Actually, as we have seen, if n ̸= 6 then Sn is the full
automorphism group of An.

Proposition 9.14. Let G be a finite group. Then the following are
equivalent.

1. G is primitive of type II.

2. There exists an almost-simple group X with socle S and a transitive
group K ≤ Sm such that G is isomorphic to a subgroup of X ≀ K
containing Sm and the restriction of the natural projection G → K
is surjective.

Proof. Assume (2) holds. Let S = soc(X), a nonabelian simple group.
Then N = Sm is a minimal normal subgroup of G since S is simple
and K acts transitively on the components. We are left to check that
CG(N) = {1}. If g ∈ CG(N) then of course the permutational part of
g is trivial since g must fix all the direct factors of N . So g has type
(x1, . . . , xm) and xi is an element of X centralizing S, so since CX(S) = {1}
we deduce that xi = 1 for all i.

Assume (1) holds. Let N = T1×. . .×Tm be the socle of G, where the Ti’s
are pairwise isomorphic nonabelian simple groups. Denote by R the first
factor, R := T1 × {1} × . . . × {1}. Let H := NG(R) and C := CG(R)⊴H.
Note that since R ∼= T1 is a nonabelian simple group, R ∩ C = {1}.
We claim that X := H/C is an almost-simple group with socle RC/C.
Clearly RC/C is a normal subgroup of H/C and RC/C ∼= R/R ∩ C ∼= R
is nonabelian simple. We are left to show that CH/C(RC/C) is trivial.
Assume that h ∈ H is such that hC centralizes RC/C, in other words
hCrC = rChC for all r ∈ R, then h−1r−1hr ∈ R ∩ C = {1} for all r ∈ R
and this implies that h ∈ C, in other words hC = C.

We now apply the embedding argument to the natural homomorphism
ξ : H → Aut(R). Note that ker(ξ) = C, ξ(H) ∼= H/C = X and the
conjugates of C in G are precisely the centralizers of the direct factors of
N , therefore an element belongs to the normal core ker(ξ)G if and only if



Chapter 9. Primitive maximal subgroups 37

it centralizes all of the factors, in other words ker(ξ)G = CG(N) = {1}.
The group K is the image of the homomorphism G → Sm given by the
conjugation action of G on the direct factors of N , which is transitive being
N a minimal normal subgroup of G.

In particular, from this proposition it follows that we have a whole family
of examples of primitive groups of type II which are not almost-simple: all
the wreath products X ≀ K where X is an almost-simple group and K is a
transitive group of permutations of degree at least 2. For example Sn ≀ Sm

is of this type when n ≥ 5, m ≥ 2. Moreover, we deduce that primitive
groups of type II are strongly related to wreath products of this type. An
example of primitive group of type II which is not almost-simple and not a
wreath product is the following, for all m ≥ 2, where X is an almost-simple
group with socle S.

{(x1, . . . , xm)π ∈ X ≀ Sm : x1 ≡ . . . ≡ xm mod S}.

We will now describe the primitive groups of type III.

Proposition 9.15. Let G be a finite group. The following are equivalent.

1. G is primitive of type III.

2. There exist a nonabelian minimal normal subgroup N of G and a
subgroup M ≤ G complementing both N and CG(N).

Proof. (1) implies (2) by Baer’s Theorem. Now assume (2) holds. Since
N ∩ M = {1} we deduce N ∩ MG = {1}, hence MG ≤ CG(N). Since M
complements CG(N), we deduce that MG = {1}. We claim that M is a
maximal subgroup of G. Assume that M ≤ S < G. Then S ∩ N ⊴ S and
S∩N is normalized by CG(N), therefore S∩N⊴CG(N)S ≥ CG(N)M = G,
therefore S ∩ N ⊴ G. Since N is a minimal normal subgroup of G not
contained in S, we deduce that S ∩ N = {1}. Therefore

M ∼= M/M ∩ N ∼= MN/N = G/N = SN/N ∼= S/S ∩ N ∼= S

hence |M | = |S|. Since M and S are finite and M ≤ S, this implies that
M = S. This proves that M is a core-free maximal subgroup of G, so G
is primitive and therefore G is primitive of type III being N a nonabelian
minimal normal subgroup of G with nontrivial centralizer CG(N) ̸= N .

Note that if G ≤ Sym(Ω) is primitive of type III then both minimal
normal subgroups A, B of G act regularly on Ω, in particular |A| = |B| =
|Ω|. Indeed, the fact that G is transitive and AM = G = BM imply that A
and B act transitively, and we have seen that the centralizer of a transitive
normal subgroup is semiregular, hence A = CG(B) and B = CG(A) are
regular.



38 Martino Garonzi

In particular, primitive groups of type I and III admit precisely one
primitivity degree, which equals the order of one of their minimal normal
subgroups.

Let X be a primitive group of type II with socle L. Then

G := {(x, y) ∈ X × X : xL = yL}

is a primitive group of type III. This follows from the above proposition:
L×{1} is a minimal normal subgroup of G and the subgroup M := {(x, x) :
x ∈ X} < G complements both L × {1} and CG(L × {1}) = {1} × L.

Exercise 9.16. Let S be a nonabelian simple group. Prove that S has at
least 2 primitivity degrees.

Exercise 9.17. Let X be an almost-simple group. Prove that X × X is
primitive if and only if X is simple.

9.3 Primitive actions: O’Nan-Scott
See also [1, General remarks and notation 1.1.40], [6, Chapter 4], [17, Pages
26, 27] and [15, Chapter 7]. The notation for this section is the same as
in [1].

We want to study the primitive actions of a primitive group. This
amounts to studying the point stabilizers, in other words, we want to
study the core-free maximal subgroups of a given primitive group and
their indeces, which are precisely the primitivity degrees of G. Note that
a group G may have several primitivity degrees, for example the simple
group A5 has maximal subgroups of index 5 (the point stabilizers) and
maximal subgroups of index 6 (the Sylow 5-subgroup normalizers).

Another example is given by the symmetric group Sn acting naturally
on the set Ω consisting of subsets of {1, . . . , n} of size k, where k is a fixed
number with 1 ≤ k < n. This action is clearly faithful and transitive
of degree |Ω| =

(
n
k

)
. The point stabilizers are precisely the maximal

intransitive subgroups Sk × Sn−k, therefore such action is primitive if
k ̸= n/2.

Before stating the O’Nan-Scott theorem, we need to talk about the
product action. Consider the wreath product G = Sn ≀ Sm. We have seen
that it admits a faithful imprimitive action of degree nm. Consider now
the product action of G, that is, the action of G on {1, . . . , n}m given by

(a1, . . . , am)(σ1,...,σm)π := (a1π−1σ1π−1 , . . . , amπ−1σmπ−1).

It is clear that this is a faithful transitive action. Moreover the stabilizer
of (i, i, . . . , i) is isomorphic to Sn−1 ≀ Sm.

For the following observe that if A, B are subgroups of G such that AB
is a subgroup of G then |AB : A| = |B : A ∩ B|.
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Lemma 9.18. Assume that n ≥ 5 and let Sn act naturally on Γ :=
{1, . . . , n}. Then the product action of G = Sn ≀ Sm on Γm is primitive.
Proof. Since n ≥ 5, Proposition 9.14 implies that G is a primitive group
of type II. We are left to show that M := Sn−1 ≀ Sm is a core-free maximal
subgroup of G. It is clearly core-free because Am

n is the unique minimal
normal subgroup of G and M does not contain it. We need to show that
M is a maximal subgroup of G.

Let K := (Sn−1)m ≤ B := (Sn)m. We claim that M = NG(K). The
inclusion M ≤ NG(K) is clear since K ⊴ M . Now

B ∩ NG(K) = NB(K) = NSm
n

(Sm
n−1) = (NSn

(Sn−1))m = Sm
n−1 = K,

since Sn−1 is maximal and not normal in Sn. It is clear that the
permutational factor Sm is contained in NG(K), therefore G = BSm ≤
B · NG(K) hence G = B · NG(K). Therefore

|G : NG(K)| = |B · NG(K) : NG(K)| = |B : B ∩ NG(K)|
= |B : K| = |B : M ∩ B| = |BM : M | = |G : M |.

Since M ≤ NG(K), it follows that M = NG(K).
Let H be a maximal subgroup of G containing M . We claim that

H = M . This follows if we can show that H ∩ B = K. Indeed, assuming
H ∩B = K, since H ∩B⊴H we have that that H ≤ NG(H ∩B) = NG(K)
and NG(K) ̸= G being K not normal in G. Since H is maximal in G, we
deduce that H = NG(H ∩ B) = NG(K) = M . Therefore it is enough to
show that H ∩ B = K. The inclusion H ∩ B ⊇ K is clear.

We are left to prove that K ⊆ H ∩ B. Write B = B1 × . . . × Bm and

Ri = {1} × . . . × {1} × Bi × {1} × . . . × {1}

for i ∈ {1, . . . , m}. G acts transitively on Γ = {R1, . . . , Rm} by conjugation
with kernel equal to B. Since H ≥ M and G = BM , we have G = BH,
hence H acts transitively on Γ. Let πi : B → Ri be the canonical
projections, i ∈ {1, . . . , m}. Fix i, j ∈ {1, . . . , m} and let h ∈ H be such
that Rh

i = Rj . Composing the conjugation by h, γh : H ∩ B → H ∩ B,
with the canonical projection we find a surjective homomorphism

H ∩ B
γh // H ∩ B

πj |H∩B// πj(H ∩ B)

whose kernel is ker(πi|H∩B). The isomorphism theorem implies that
πi(H ∩ B) ∼= πj(H ∩ B).

Since πi(K) ∼= Sn−1 is a maximal subgroup of Bi
∼= Sn and K ≤ H ∩B,

we have πi(K) ≤ πi(H ∩ B) ≤ Bi therefore either πi(H ∩ B) = πi(K) or
πi(H ∩ B) = Bi. In the first case

|H ∩ B| ≤
m∏

i=1
|πi(H ∩ B)| =

m∏
i=1

|πi(K)| = (n − 1)!m = |K|
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hence H ∩ B = K being H ∩ B ≥ K.
Now assume that πi(H ∩ B) = Bi for all i ∈ {1, . . . , m}.
Let i ∈ {1, . . . , m}. We claim that H ∩ Ri ⊴ Ri. If y ∈ H ∩ Ri then

πj(y) = 1 for every j ̸= i. If r ∈ Ri then, being πi(H ∩ B) = Bi, there
exists x ∈ H ∩ B such that πi(x) = πi(r). Since x, y, r are m-tuples and
y ∈ Ri, the fact that πi(x) = r implies that r−1yr = x−1yx ∈ H. This
proves the claim.

But since H ∩ Ri contains K ∩ Ri
∼= Sn−1, H ∩ Ri is nontrivial and it is

not the alternating group An, hence H ∩ Ri = Ri, in other words Ri ≤ H.
This holds for every i ∈ {1, . . . , m}, hence B ≤ H. This contradicts the
fact that H ̸= HB = G. The proof is completed.

We are now ready to state the O’Nan-Scott theorem. The following
formulation is taken from [17].

Theorem 9.19 (O’Nan-Scott theorem). If G is any proper subgroup of
Sn, other than An, then G is a subgroup of one or more of the following
subgroups.

1. An intransitive group Sk × Sm where n = k + m.

2. An imprimitive group Sk ≀ Sm where n = km.

3. A primitive wreath product Sk ≀ Sm where n = km.

4. An affine group AGLd(p) = Fd
p ⋊ GLd(Fp) where n = pd.

5. A group of shape T m.(Out(T ) × Sm) where T is a non-abelian
simple group, acting on the cosets of a subgroup Aut(T )×Sm, where
n = |T |m−1.

6. An almost-simple group acting on the cosets of a core-free maximal
subgroup of index n.

Note that this theorem does not say that the groups listed are maximal
in Sn. But certainly every maximal subgroup of Sn is of one of the types
listed.

9.4 Proof of the O’Nan-Scott theorem
This proof follows the line of [17], [1] and [9]. Set Ω := {1, . . . , n}, let
α ∈ Ω and let U be the stabilizer of α in G. We know that U is a core-free
maximal subgroup of G.

Let G ≤ Sym(Ω) be a primitive group with socle N and let U be the
stabilizer of a point of Ω, which is a core-free maximal subgroup of G. Set
K := U ∩ N . Then |G : U | = |UN : U | = |N : K|. Moreover K ⊴ U , so U
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is contained in the normalizer NG(K). Since K ⊴U , we have U ≤ NG(K),
and since U is maximal in G, either U = NG(K) or NG(K) = G. In the
latter case K ⊴ G, hence the fact that UG = {1} forces K = {1}. This
implies that either K = {1} or U = NG(K). We know that K = {1} if G
is primitive of type I or III, so we will discuss these cases first.

9.4.1 Primitive groups of type I

If G is primitive of type I then the socle N of G is abelian and it is the
unique minimal normal subgroup of G, moreover N is complemented by
U , in other words G ∼= N ⋊ U . The action of U on N = Fd

p is Fp-linear,
faithful and irreducible, hence U is an irreducible subgroup of GLd(Fp).
This is the affine case. In this case, G can be embedded in AGL(Fd

p) which
is a primitive subgroup of Spd with point stabilizer GLd(Fp).

9.4.2 Primitive groups of type III

If G is primitive of type III then the socle of G is N = A × B where
A, B are the two minimal normal subgroups of G, both nonabelian and
A ∼= AB ∩ U ∼= B. We know that U is a complement of both A and B,
hence A and B act regularly on Ω. The isomorphism A ∼= AB ∩ U ∼= B
is explicited as follows. For every a ∈ A, since G is a semidirect product
B ⋊ U , there is a unique ba ∈ B such that aba ∈ U . The map f : A → B,
a 7→ ba is a group isomorphism since a1a2ba1ba2 = a1ba1a2ba2 ∈ U for
every a1, a2 ∈ A and the inverse f−1 : B → A sends b ∈ B to the unique
ab ∈ A such that abb ∈ U . We can define an element σ ∈ Sym(Ω) as
follows. Fix ω ∈ Ω. Every element of Ω can be uniquely written as ωa
where a ∈ A. Define (ωa)σ := ω(af). We claim that af = σ−1aσ for all
a ∈ A, proving that B = σ−1Aσ. Indeed, if x ∈ Ω, then we can write
x = ω(a∗f) for a unique a∗ ∈ A and, if a ∈ A,

xσ−1aσ = (ω(a∗f))σ−1aσ = (ωa∗)σσ−1aσ = (ωa∗a)σ
= ω((a∗a)f) = ω(a∗f)(af) = x(af).

Therefore A and B are conjugate in Sym(Ω) via σ, hence G is properly
contained in ⟨G, σ⟩ ≤ Sym(Ω) since A is normal in G but it is not
normalized by σ. Moreover Bσ = CG(A)σ = CG(Aσ) = CG(B) = A,
hence σ normalizes A × B, in other words A × B is normal in ⟨G, σ⟩. This
implies that ⟨G, σ⟩ is not equal to Sym(Ω), since the only proper nontrivial
normal subgroup of Sym(Ω) is Alt(Ω) and Alt(Ω) is not a direct product
of two nontrivial subgroups. This implies that the primitive groups of type
III are not maximal in Sym(Ω) hence we may ignore them.
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9.4.3 Primitive groups of type II
Assume now G is primitive of type II with nonabelian socle N = T m =
T1 × . . . × Tm. Set H := NG(T1), C := CG(T1). We know that X := H/C
is an almost-simple group with socle isomorphic to T1 and G embeds in
the wreath product X ≀ K, where K ≤ Sm is the transitive group induced
by the action of G on the m direct factors of N . If m = 1 then T1 = N⊴G,
H = G and C = CG(N) = {1}, therefore G ∼= X is almost-simple and we
are in case (6) of the theorem. Assume now that m > 1. A subgroup of G
is called U -invariant if its normalizer in G contains U . For example, since
U ∩ N is normal in U , it is U -invariant.

Lemma 9.20. U ∩ N is a maximal proper U -invariant subgroup of N .

Proof. It is clear that U ∩ N is a proper U -invariant subgroup of N . Now
assume by contradiction that U ∩ N < L < N where L is U -invariant.
In particular LU is a subgroup of G. We claim that U < LU < G,
contradicting the maximality of U . Indeed, if U = LU then L ≤ U , a
contradiction, and if LU = G then L ⊴ G contradicting the fact that N is
a minimal normal subgroup of G.

We want to show that we are in one of the following cases.

• Twisted wreath product type. This case is defined by the fact that
U ∩ N = {1}, in other words G is a semidirect product N ⋊ U . The
corresponding primitivity degree is |N |.

• Product type. U is a conjugate of NG(Rm) where R is a proper
nontrivial subgroup of T , which is the intersection between T and
a core-free maximal subgroup of X. The corresponding primitivity
degree is |T : R|m.

• Simple diagonal type. U = NG(∆) where ∆ is a diagonal subgroup
of T m, that is, a subgroup of the form

{(x, xϕ2 , . . . , xϕm) : x ∈ T} ≤ N = T m,

where ϕ2, . . . , ϕm are automorphisms of T . The corresponding
primitivity degree is |T |m−1.

• Diagonal type in product action. U = NG(∆1 × . . . × ∆l) where l
divides m, l > 1, lk = m and each ∆i

∼= T is a diagonal subgroup of
T k. The corresponding primitivity degree is |T |l(k−1).

Call π1, . . . , πm the projections πi : T m = T1 × . . . × Tm → Ti. Observe
that since N is a minimal normal subgroup of G and the normalizer
NG(U ∩ N) is a subgroup of G containing U , either U complements N
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in G or NG(U ∩ N) = U . Define Ui := πi(U ∩ N) for i = 1, . . . , m.
The same argument used in the proof of Lemma 9.18 shows that Ui

∼= Uj

for every i, j ∈ {1, . . . , m}. If U1 ̸= T1 then, since U ∩ N is contained in
U1 ×. . .×Um and the latter is a proper U -invariant subgroup of N , Lemma
9.20 implies that U ∩ N = U1 × . . . × Um.

There are three possibilities for U1. In the following discussion we will
use Proposition 9.14.

Case 1. U1 = {1}.
This implies that Ui = {1} for every i, so U ∩ N = {1}. In other

words U complements N , so G = N ⋊ U and the primitivity degree is
n = |N | = |T |m. This is the so-called twisted wreath product type. We
know that G embeds in X ≀Sm where X = NG(T1)/CG(T1) is almost-simple
with socle isomorphic to T , in particular X embeds in Aut(T ) ≤ Sym(T ).
Setting k = |T | = |T1 : U1|, we obtain that G embeds in Sk ≀ Sm with
product action of degree n = km.

Case 2. {1} < U1 < T1.
This implies that {1} < Ui < Ti for every i. Since U ∩N = U1 × . . .×Um

and the Ui are pairwise isomorphic, the degree of the primitive action of
G is
n = |G : U | = |UN : U | = |N : U ∩N | = |T m : U1 × . . .×Um| = |T1 : U1|m.

Let H := NG(T1), V := H ∩ U = NU (T1) and C := CG(T1).
We claim that U1 is a maximal proper V -invariant subgroup of T1.

Assume by contradiction that U1 < R < T1 and R is V -invariant. Since
UN = G, the group U acts transitively on the m factors of N , hence
for each i ∈ {1, . . . , m} there exists ui ∈ U such that T ui

1 = Ti. Set
R̃ := R × Ru2 × . . . × Rum . Note that U1 = (U ∩ N) ∩ T1 = U ∩ T1 hence

Uui
1 = (U ∩ T1)ui = U ∩ T ui

1 = U ∩ Ti = (U ∩ N) ∩ Ti = Ui.

Therefore Ui = Uui
1 < Rui . This implies that U ∩ N is properly contained

in R̃. Since U ∩ N is a maximal proper U -invariant subgroup of N , in
order to obtain a contradiction it is enough to prove that R̃ is U -invariant.
Let x ∈ U . Fix i ∈ {1, . . . , m} and let j be such that T x

i = Tj . Then
Ruix ≤ Tj = T

uj

1 , therefore Ruixu−1
j ≤ T1. On the other hand uixu−1

j

belongs to U and normalizes T1, therefore it belongs to H ∩ T1 = V . Since
R is V -invariant, we deduce that Ruixu−1

j = R, in other words Ruix = Ruj .
This implies that R̃x = R̃. This holds for every x ∈ U , hence R̃ is U -
invariant.

We have V CT1 = H, since
H ⊇ V CT1 ⊇ V N = (H ∩ U)N = H ∩ UN = H ∩ G = H.

This implies that V C/C is a core-free subgroup of X = H/C. Indeed,
since X is almost-simple, its unique minimal normal subgroup is T1C/C
and this is supplemented by V C/C since V CT1 = H.
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We claim that V C is a maximal subgroup of H, which implies that
V C/C is a core-free maximal subgroup of the almost-simple group X =
H/C, therefore X is a primitive group of degree |X : V C/C|. First, note
that V C ̸= H because if this is not the case then T1 ≤ H = V C = CV ,
therefore, being U1 ̸= {1}, and being T1 a simple group, we have

T1 = ⟨UT1
1 ⟩ ≤ ⟨UCV

1 ⟩ = ⟨UV
1 ⟩ ≤ U,

a contradiction. Assume the group M is such that V C ≤ M < H, then
M ∩ T1 is a V -invariant subgroup of T1 and U1 ≤ M ∩ T1. If T1 ≤ M
then H = V CT1 ≤ M and H = M , contradicting our assumption. Hence
U1 ≤ M ∩ T1 ̸= T1. By maximality of U1 as proper V -invariant subgroup
of T1, we deduce that U1 = M ∩ T1, hence

M = M ∩ H = M ∩ V CT1 = V C(M ∩ T1) = V CU1 = V C,

being U1 ≤ V . This proves the claim.
Since U1 ≤ V C ∩ T1 < T1, U1 is a maximal proper V -invariant

subgroup of T1 and V C ∩T1 is V -invariant, we deduce that equality holds:
U1 = V C ∩ T1. Since H = V CT1, we have

|H/C : V C/C| = |H : V C| = |V CT1 : V C| = |T1 : V C ∩ T1| = |T1 : U1|.

We deduce that X = H/C is primitive of degree k = |T1 : U1| with point
stabilizer V C/C, hence X embeds into Sk. Moreover, U1C/C equals the
intersection between T1C/C and the core-free maximal subgroup V C/C
of H/C. Indeed, it is clear that U1C/C ≤ T1C/C ∩V C/C, however, using
that H = V CT1, we have

|T1C/C ∩ V C/C| = |T1C/C| · |V C/C|
|H/C|

= |T1| · |V C|
|H|

=|T1 ∩ V C| = |U1| = |U1C/C|.

Now, G embeds into X ≀ K where K is a transitive subgroup of Sm

and X embeds into Sk, therefore G embeds into Sk ≀ Sm and looking at
the point stabilizers we deduce that the action of G is equivalent to the
product action of degree km = n induced by Sk ≀ Sm on {1, . . . , k}m.

Case 3. U1 = T1.
This implies that Ui = Ti for every i. For x = (t1, . . . , tm) ∈ N , let the

support of x be the set

supp(x) := {i ∈ {1, . . . , m} : ti ̸= 1} ⊆ {1, . . . , m}.

Let Ω1 be a minimal nonempty subset of {1, . . . , m} such that U ∩ N
contains an element whose support is Ω1. Let

A := AΩ1 = {x ∈ U ∩ N : supp(x) ⊆ Ω1}.
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By minimality of Ω1, if x ∈ A and x ̸= 1 then supp(x) = Ω1. Moreover, it
is clear that A is a normal subgroup of U ∩ N .

Fix i ∈ Ω1. We claim that for every s ∈ T there exists a unique gs,i ∈ A
such that πi(gs,i) = s and that the map fi : T → A defined by fi(s) := gs,i

is a group isomorphism whose inverse is πi|A. The uniqueness follows from
the fact that if g ∈ A is such that πi(g) = s then the element gg−1

s,i belongs
to A and πi(gg−1

s,i ) = 1, hence gg−1
s,i = 1 by minimality of Ω1. To prove

the existence, we need to prove that πi(A) = Ti. Let Li := πi(A) ≤ Ti.
Then Li ̸= {1} by definition of Ω1. Since Ti is a simple group, to show
that Li = Ti it is enough to show that Li is normal in Ti. If t ∈ Ti then,
since Ui = Ti, there exists u ∈ U ∩ N with πi(u) = t. If x ∈ A then,
since u ∈ N , x and xu have the same support, hence xu ∈ A. This implies
that πi(xu) ∈ Li and this exactly says that t−1πi(x)t ∈ Li. Now we prove
that fi is a group isomorphism. If g ∈ A then, letting s := πi(g), it is
clear that fi(s) = g, this proves that fi is surjective. If s, t ∈ T are such
that fi(s) = fi(t) then applying πi we find s = t, this proves injectivity.
Since πi(g1,i) = πi(1) = 1, it follows that fi(1) = g1,i = 1. If s, t ∈ T then
πi(gs,igt,i) = πi(gst,i) = st, it follows that fi(st) = fi(s)fi(t).

We deduce that A is a diagonal subgroup of T Ω1 : indeed, setting
k := |Ω1|,

A = {(s, ϕ2(s), . . . , ϕk(s)) : s ∈ T} ≤ T Ω1 ,

where ϕi = πi|A ◦ f1 ∈ Aut(T ) for i = 1, . . . , k.
The natural action of G on the m direct factors of N gives an action

of G on {1, . . . , m}. We claim that Ω1 is an imprimitivity block for this
action. Assume Ω1 is the support of some x ∈ U ∩ N . If g = nu ∈ G with
n ∈ N , u ∈ U , then Ω2 := Ωg

1 = Ωu
1 is the support of y := xu ∈ U ∩ N .

Assume Ω1 ∩ Ω2 ̸= ∅. We claim that Ω1 = Ω2. Let i ∈ Ω1 ∩ Ω2, so
that πi(x) ̸= 1 ̸= πi(y). Since Ti is simple, the conjugacy class of πi(x)
in Ti generates Ti and Z(Ti) = {1}. Since πi(y) ̸= 1 there exists t ∈ Ti

such that πi(x)t does not commute with πi(y). Since Ui = Ti, there
exists v ∈ U ∩ N such that πi(v) = t, therefore πi(xv) = πi(x)t. Moreover
supp(xv) = supp(x) = Ω1 and πi(xv) ̸= 1 being πi(x) ̸= 1. Up to replacing
x with xv, we may assume that πi(x) and πi(y) do not commute. If
j ∈ Ω1 − Ω2 then πj(x) ̸= 1, πj(y) = 1, and if j ∈ Ω2 − Ω1 then πj(x) = 1,
πj(y) ̸= 1, therefore πj([x, y]) = 1 unless possibly if j ∈ Ω1 ∩ Ω2, where
[x, y] := x−1y−1xy ∈ U ∩ N . This says that supp([x, y]) ⊆ Ω1 ∩ Ω2,
therefore Ω1 = Ω1 ∩ Ω2 by minimality of Ω1, in other words Ω1 ⊆ Ω2.
Since Ω2 = Ωu

1 , |Ω1| = |Ω2|, hence Ω1 = Ω2.
We claim that |Ω1| ≠ 1. If Ω1 has size 1, say Ω1 = {i}, then there exists

an element x ∈ U ∩ N such that πi(x) ̸= 1 and πj(x) = 1 for every j ̸= i.
Since Ui = Ti, for every t ∈ Ti there exists u ∈ U ∩ N with πi(u) = t,
hence U ∩N contains the whole conjugacy class of x, so it contains the i-th
factor, being T a simple group. Since U acts transitively on the factors, U
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contains N , a contradiction.
Assume the block system consists of l blocks Ω1, . . . , Ωl, each of size

k > 1. We have N = T kl. We may consider the normal subgroups
AΩj

⊴U ∩ N , j = 1, . . . , l, defined in the same way as for AΩ1 above. Note
that the group they generate is a direct product AΩ1 × . . . × AΩl

∼= T l.
Moreover this product equals U ∩ N . To prove this, fix g ∈ U ∩ N and, for
every j ∈ {1, . . . , l}, let xj ∈ AΩj be such that there exists i = i(j) ∈ Ωj

with the property that πi(g) = πi(xj). We claim that g = x1 . . . xl.
We need to show that πr(g) = πr(x1 . . . xl) for all r = 1, . . . , m = kl.
Fix r ∈ {1, . . . , m} and let j ∈ {1, . . . , l} be such that r ∈ Ωj . By
definition of xj , there exists i ∈ Ωj with πi(g) = πi(xj), in other words
πi(h) = 1 where h = g−1xj ∈ U ∩ N . If x is any element of AΩj

then
πi(h−1xh) = πi(x), therefore h−1xh = x being AΩj ⊴U ∩ N and being the
restriction πi|AΩj

: AΩj → T injective. This implies that h ∈ CU∩N (AΩj ),
therefore πr(h) = 1, hence πr(g) = πr(xj) = πr(x1 . . . xl).

We deduce that U ∩ N = AΩ1 × . . . × AΩl
, in particular U ∩ N ∼= T l.

Therefore

n = |G : U | = |UN : U | = |N : U ∩ N | = |T |(k−1)l.

Now consider

Y := T Ω1 =
∏

i∈Ω1
Ti, H := NG(Y ), ξ : H → Aut(Y ), C := ker(ξ) = CG(Y ).

Observe that H is precisely the setwise stabilizer of the block Ω1, in
particular H acts transitively on Ω1 (see the proof of Proposition 5.2),
therefore Y C/C is a minimal normal subgroup of H/C.

Let A := AΩ1 , V := U ∩ H. Note that since Y is a direct power of a
nonabelian simple group and A is a full diagonal subgroup of Y , we have
⟨AY ⟩ = Y . Now, the argument used in the proof of the case 1 < U1 < T1
with U1 replaced by A, T1 replaced by Y proves that V CY = H,
Y ∩ V C = A, Y C/C is the unique minimal normal subgroup of H/C and
ξ(H) ∼= H/C is a primitive group of type II with point stabilizer the core-
free maximal subgroup V C/C. Moreover V C/C ∩ Y C/C = AC/C ∼= A,
therefore H/C is a primitive group of simple diagonal type. Now an
application of the embedding argument gives that G lies inside a wreath
product H/C ≀ Sl ≤ Sr ≀ Sl where r = |T |k−1 and we are in case (3) of the
theorem.

Now assume there is only one block, l = 1. Then m = k > 1 and
U ∩ N ∼= S, N ∼= T m. In this case n = |T |m−1. Without loss of generality,
∆ := U ∩ N = {(s, . . . , s) : s ∈ T}. G is a subgroup of X ≀ Sm and
U = NG(∆). Note that (x1, . . . , xm)π ∈ X ≀ Sm normalizes ∆ if and only
if

(s, . . . , s)(x1,...,xm)π ∈ ∆ ∀s ∈ T,
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and this means sx1 = . . . = sxm for all s ∈ T . This implies that
sxix−1

j = s for all s ∈ T and for all i, j ∈ {1, . . . , m} and, since the xi

are automorphisms of T , we deduce the necessary and sufficient condition
x1 = . . . = xm. This implies that

U = NG(∆) ≤ {(a, a, . . . , a)π : a ∈ Aut(T ), π ∈ Sm} ∼= Aut(T ) × Sm

hence G = N · NG(∆) is contained in the group

{(a1, . . . , am)π ∈ Aut(T ) ≀ Sm : ai ≡ aj mod Inn(T ) ∀i, j},

which is an extension T m.(Out(T ) × Sm) with point stabilizer isomorphic
to Aut(T ) × Sm. We are in case (5) of the theorem, the simple diagonal
type.

One should be careful about going “backwards” in this reasoning: for
example, if G is a primitive group of type II with socle N and ∆ is a
diagonal subgroup of N , the normalizer NG(∆) does not need to be a
core-free maximal subgroup of G.

Exercise 9.21. Why is 602 not a primitivity degree for A5 ≀ S2? Why is
60 not a primitivity degree for S5 ≀ S2?
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Not only symmetric
groups

Many properties of a group can be detected by looking at primitive
quotients. Here we use the abstract definition of primitive group: a finite
group G is called primitive if it admits a core-free maximal subgroup.
Observe that if G is any finite group and M is a maximal subgroup of G
then G/MG is a primitive group, since the normal core of M/MG in G/MG

is (M/MG)G/MG
= MG/MG.

Let Φ(G) denote the Frattini subgroup of G, that is, the intersection of
the maximal subgroups of G. The well-known Frattini argument implies
that the Frattini subgroup of any finite group is nilpotent.

Recall that a chief factor of a group G is a quotient H/K where K ⊴ G
and H/K is a minimal normal subgroup of G/K. The chief factor H/K is
called central if H/K ≤ Z(G/K), it is called Frattini if H/K ≤ Φ(G/K),
it is called non-Frattini if H/K ̸≤ Φ(G/K). A chief factor H/K is non-
Frattini if and only if it admits a supplement in G, that is, there exists
M/K < G/K such that HM = G. If H/K is an abelian chief factor of G
then it is non-Frattini if and only if it is complemented.

Let G be a finite group. Then we have the following: G is nilpotent if
and only if every non-Frattini chief factor is central, G is supersolvable if
and only if every non-Frattini chief factor has prime order, G is solvable
if and only if every non-Frattini chief factor is abelian. Other properties
that can be detected similarly looking at chief factors are p-solvability,
p-supersolvability, p-nilpotency, where p is a prime number.

A subdirect product of a family of groups {X1, . . . , Xn} is a subgroup
H of X1 × . . . × Xn such that the restrictions to H of the projections πi :
X → Xi are surjective. Observe that if N is a family of normal subgroups
of G with trivial intersection then the canonical map G →

∏
N∈N G/N is

injective hence G is a subdirect product of the family {G/N : N ∈ N }

48
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and every chief factor of G is G-isomorphic to a chief factor of some G/N
where N ∈ N .

Recall that two groups A, B on which G acts are said to be G-isomorphic,
notation A ∼=G B, if there is an isomorphism A → B compatible with the
action of G. For example if A and B are normal subgroups of G and G acts
on A and B by conjugation then endowing A/A ∩ B with the canonical
conjugation action of G, we have AB/B ∼=G A/A ∩ B. Since G acts by
conjugation on every chief factor of G, it makes sense to talk about G-
isomorphic chief factors.

Proposition 10.1. Let G be a finite group. Then we have the following.

1. If H/K is a non-Frattini chief factor of G then there exists a
primitive quotient of G whose socle is G-isomorphic to H/K.

2. G/Φ(G) is a subdirect product of
∏

M∈M G/MG where M is the
family of maximal subgroups of G.

3. The prime divisors of |G| are precisely the prime divisors of the
orders of the primitive quotients of G.

In particular, parts (1) and (2) imply that properties like solvability,
nilpotency and supersolvability are recognizable looking at primitive
quotients, in the sense that they are properties P such that G satisfies
property P if and only if every primitive quotient of G satisfies property
P . This is because, since Φ(G) is nilpotent, if P is any of these properties
then G satisfies P if and only if G/Φ(G) does.

Proof of proposition 10.1. H/K has the type Sn where S is a simple group.
If S is nonabelian then G/CG(H/K) is a primitive group of type II with
socle G-isomorphic to H/K. If S is abelian then, since H/K is non-
Frattini and abelian, there exists a complement T/K of H/K in G/K.
Set C/K := CT/K(H/K). Then C ⊴ G and G/C is a primitive group of
type I with socle G-isomorphic to H/K.

Part (2). Since Φ(G) is the intersection of the maximal subgroups of
G, it is also equal to the intersection of the normal cores of the maximal
subgroups of G. Therefore the canonical map G →

∏
M∈M G/MG has

kernel equal to Φ(G). The conclusion follows by the isomorphism theorem.
Part (3) follows from part (2) if we can show that every prime divisor of

|G| divides |G/Φ(G)|. If there exists a prime divisor p of |G| which does
not divide |G/Φ(G)| then Φ(G) contains a Sylow p-subgroup P of G, and
since Φ(G) is nilpotent and P is characteristic in Φ(G), P is normal in G,
so by the Schur-Zassenhaus theorem P admits a complement H in G. Let
M be a maximal subgroup of G containing H, then M does not contain
P , so M does not contain Φ(G), a contradiction.
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