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1 Introduction

The Global Regularity Problem (GRP) for the incompressible Navier-
Stokes equations in R3, i.e., whether there are smooth solutions that be-
come singular in a finite time, is still open (see, e.g., [19]), although it
dates back to the pioneering work of J. Leray [12] in 1934, and in spite of
the extensive literature devoted to it. In recent times, results of discrete
dyadic models of the Euler and NS equations which preserve the energy
conservation, introduced by Katz and Pavlovic in [6], [10], seem to indicate
that there are singular solutions at finite times (blow-up). Also, T. Tao
[18] proved a blow-up for a continuous NS model obtained by modifying
the bilinear term in such a way that the energy conservation is preserved.

The existence of singularities is not just a fact of theoretical importance.
We know that if the solution becomes singular the total enstrophy diverges
in an integrable way (in time) and the solution becomes infinite at some
points [17], and clearly the solutions near the blow-up time would provide
a description of a new type of “extreme” phenomena occurring in fluid
motion.

In a paper appeared in 2008 [13], Li and Sinai proposed a new approach
to the problem, consisting in the explicit construction of singular solutions.
They write the 3D NS equations as an integral equation in Fourier k-space
and consider a class of initial data with essential support in a sphere of
radius r at some distance from the origin, centered around some point k0

with |k0| > r. By the convolution mechanism, due to the nonlinear term,
the support of the solution undergoes a rapid extension to the region of
high |k| values, along the direction k0, with a corresponding increase of
the total enstrophy. The solution can then be represented by a series of
p-fold convolutions g(p) with support in a region around the point pk0,
and the authors show that as p → ∞ there are fixed points of a suitable
renormalization map g(p) → g(p+1), identified as solutions of a fixed point
equation. They choose a particularly simple fixed point and construct a set
of initial data for which the asymptotics of the renormalized functions g(p)

leads to the chosen fixed point and to a finite-time blow-up. The proofs
are based on Renormalization Group Techniques and are rather lengthy
and involved.

The results of the paper [13] are important, but they are not a solu-
tion of the GRP, because solutions with support in k-space as described
above correspond to complex solutions in the physical x-space. They are
also unphysical, in that the total energy diverges together with the total
enstrophy.

The simplest way to obtain real (physical) solutions which share with
the complex solutions a rapid extension of the support in the direction of
the high |k| region, is that of antisymmetrizing the initial data of Li and
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Sinai. That is, we take initial data of the type v0(k) − v0(−k), where
v0 are data leading to a blow up in the complex case, so that the initial
data for the real flow are supported in two symmetric regions around the
points ±k0. As in the one-sided (complex) case, the convolutions extend
the support in the directions ±k0, but there is a damping interference of
the terms coming from the two supports.

The theoretical difficulties of the real case are harder than in the com-
plex case and really daunting. It is natural in such cases to resort to
computer simulations for a better understanding of the behavior of the so-
lutions, and for a guideline of theoretical research. And indeed computer
simulations for the Global Regularity Problem were done in the past (see,
e.g., [9]), but the evidence is inconclusive.

In fact, a theoretical guide-line is needed in order to control the dif-
ficulties arising in computing solutions of the three-dimensional Navier-
Stokes equations for high values of the velocity and the vorticity. In our
case it is of great help that the support of the solution in Fourier space is
concentrated along an axis, which makes the computer simulations much
easier.

We first performed computer simulations for the complex case consid-
ered by Li and Sinai [3], with the help of a new computer program for
simulations of the NS equations represented as an integral equation in
Fourier space. The results showed that for a rather wide range of the pa-
rameters it is possible to follow the solutions up to times very close to the
blow-up. It was also possible to obtain good estimates of the critical time
τ , thanks to the fact that, as predicted by the Li-Sinai theory, the log of
the marginal distribution of the energy along the axis k0 behaves linearly
with a slope proportional to τ − t.

In the past few years we also performed simulations for the real case
obtained by antisymmetrizing the initial data of the case in [13]. The
results [4], [5] show that in some range of the parameters the solutions
behave initially as the complex ones, showing a rapid increase of the total
enstrophy and of the maximal velocity, with concentration of the energy in
a small region. Then, after some time there is a relaxation with decrease
of the total energy. It should be noted that for such solutions a blow-up is
not expected, as they are axial symmetric, with no swirl, or close to that
(see [11]).

In this paper we present results from recent computer simulations per-
formed at the TGCC Joliot Curie, partition irene-knl, within the frame-
work of the European PRACE Project 2021240097.

We performed simulations both for complex solutions and for real ones.
For the complex solutions the aim was to understand whether initial data
related to the solutions of the Li-Sinai fixed point equations are necessary
for a blow-up. The results indicate that the blow-up for complex solutions
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with initial support in k space as described above is a much more general
phenomenon.

We also show results of simulations for real flows with initial support
in Fourier space concentrated in relative small regions around some points
±k0, as described above, but otherwise unrelated to the Li-Sinai fixed
points. For a particular such solution, which is axial symmetric with
nonzero swirl, we found that the initial enstrophy increases by a factor
about 20, 10 times more than for the case in [4], [5]. We also report other
interesting features of the simulations.

The problem whether real solutions with support in k-space extending
along an axis can exhibit a finite-time blow-up remains open. We did
not have enough computer time to study simulations for cases with an
expansion along two different axes, which could also be feasible with the
present-day supercomputers.

The plan of our paper is as follows. In §2 we sketch the outline of the
results of Li and Sinai, then in §3 we report recent results of the blow-up
of complex solutions unrelated to the fixed point solutions, and finally §4
is devoted to the discussion of results for real flows of the Li-Sinai type.

Acknowledgements. The computer simulations were performed at the
TGCC Joliot Curie, partition irene-knl, within the framework of the Eu-
ropean PRACE Project 2021240097.

2 The Li-Sinai approach

We consider the NS equations in the whole space R3

∂u

∂t
+

3∑
j=1

uj
∂

∂xj
u = ∆u−∇p, x = (x1, x2, x3) ∈ R3. (2.1)

∇ · u =
∑
j

∂

∂xj
uj = 0, u(·, 0) = u0. (2.2)

The value of the viscosity is ν = 1, which is not restrictive, as it can always
be obtained by rescaling. The pressure p ensures incompressibility and is
obtained in terms of the velocity field u by solving the Poisson equation

∇ ·
3∑

j=1

uj
∂

∂xj
u = −∆p. (2.3)
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In the formulation of Li and Sinai we consider the modified Fourier
transform

v(k, t) =
i

(2π)3

∫
R3

u(x, t)e−i⟨k,x⟩dx, k = (k1, k2, k3) ∈ R3, (2.4)

where ⟨·, ·⟩ denotes the scalar product. Taking into account the solenoidal-
ity condition ⟨k,v(k, t)⟩ = 0, the equation for v(k, t) takes the form

∂v(k, t)

∂t
+ k2v(k, t) =

∫
R3

⟨v(k− k′, t),k⟩Pkv(k
′, t)dk′ (2.5)

where Pkv = v − ⟨v,k⟩
k2 k is the projection orthogonal to k, and the initial

condition is v(k, 0) = v0(k), and v0 is the transform of u0.
Li and Sinai assume that v is a real function, which, by the inverse

formula

u(x, t) = −i

∫
R3

ei⟨k,x⟩v(k, t)dk, (2.6)

implies that u(x, t) is in general a complex function, and describes a real
flow only if v(k, t) is antisymmetric in k, which implies that u(x, t) is also
antisymmetric in x.

By a Duhamel formula the incompressible Navier-Stokes equations take
the form of a single integral equation

v(k, t) = e−tk2

v0(k) +

∫ t

0

e−(t−s)|k|2
∫
R3

⟨v(k − k′, s),k⟩Pkv(k
′, s)dk′ds.

(2.7)
For the analysis that follows it is convenient to multiply the initial data
by a real number A, so that, iterating the Duhamel formula, the solution
of the equation (2.5) is represented as a power series

v(k, t) = Ag(1)(k, t) +

∞∑
p=2

Ap

∫ t

0

e−k2(t−s)g(p)(k, s)ds, (2.8)

where g(1)(k, s) = e−sk2

v0(k), and the following terms are convolutions:

g(2)(k, s) =

∫
R3

〈
g(1)(k− k′, s),k

〉
Pkg

(1)(k′, s)dk′, (2.9)

g(p)(k, s) =

=

∫ s

0

ds2

∫
R3

⟨v0(k− k′),k⟩Pkg
(p−1)(k

′
, s2)e

−s(k−k′)2−(s−s2)(k
′
)2dk

′
+

+
∑

p1+p2=p
p1,p2>1

∫ s

0

ds1

∫ s

0

ds2

∫
R3

〈
g(p1)(k− k′, s1),k

〉
·
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·Pkg
(p2)(k′, s2)e

−(s−s1)(k−k′)2−(s−s2)(k
′)2dk′+ (2.10)

+

∫ s

0

ds1

∫
R3

〈
g(p−1)(k− k′, s1),k

〉
Pkv0(k

′)e−(s−s1)(k−k′)2−s(k′)2dk′.

Proposition 2.1. If v0 ∈ L∞(R3) ∩ L1(R3) the series (2.8) converges

absolutely if |At 1
2 | is small enough.

Proof. Let ϕ0(k) = |v(0)(k)|. Then if p ≥ 2 the following inequality holds∣∣∣g(p)(k, s)
∣∣∣ ≤ Kp−1 √

ps
p−3
2 ϕ

(p)
0 (k), (2.11)

where K is a positive constant and ϕ
(p)
0 (k) = (ϕ0∗ . . .∗ϕ0)(k) is a repeated

convolution.
In fact, clearly |g(1)(k)| ≤ ϕ0(k). As for g(2), we can replace k by k′

in the scalar product (2.9), by solenoidality, so that∣∣∣g(2)(k, s)
∣∣∣ ≤ ∫

R3

ϕ0(k− k′)|k′|e−s|k′|2ϕ0(k
′)dk ≤ c1√

s
ϕ
(2)
0 (k), (2.12)

where c1 =: max |x|e−x2

= (2e)−
1
2 . For p > 2 we proceed by induction.

We write (2.10) as

g(p)(k, s) =
∑

p1+p2=p

g(p1,p2)(k, s),

g(p1,p2)(k, s) =

∫ s

0

ds1

∫ s

0

ds2g
(p1,p2)(s; s1, s2), (2.13)

g(p1,p2)(s; s1, s2) =

=

∫
R3

〈
g(p1)(k− k′, s1),k

〉
Pkg

(p2)(k′, s2)e
−(s−s1)(k−k′)2−(s−s2)(k

′)2dk′,

and consider the case p1, p2 > 1. Again replacing k by k′ and proceeding
as before, we get by the Ansatz (2.11)∫ s

0

ds1

∫ s

0

ds2

∣∣∣g(p1,p2)(s; s1, s2)
∣∣∣ ≤

≤ c1

∫ s

0

ds1

∫ s

0

ds2√
s− s2

∫
R3

|g(p1)(k− k′, s1)||g(p2)(k′, s2)|dk′ ≤

≤ c1K
p−2√p1p2

∫ s

0

s
p1−3

2
1 ds1

∫ s

0

s
p2−3

2
2√
s− s2

ds2 ϕ
(p)
0 (k). (2.14)
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Integrating in s1 and setting in the second integral s2 = su the coeffi-

cient of ϕ
(p)
0 is

2c1
p1 − 1

√
p1p2K

p−2s
p−3
2

∫ 1

0

u
p2−3

2

√
1− u

du. (2.15)

The change of variable u = sin2 θ gives∫ 1

0

u
p2−3

2

√
1− u

du = 2

∫ π
2

0

(sin θ)p2−2dθ =: 2Jp2−2.

We see that J0 = π
2 , J1 = 1 and the recurrence relation Jn+1 =

n
n+1Jn−1holds, so that

J2n =
(2n− 1)!!

(2n)!!

π

2
, J2n+1 =

(2n)!!

(2n+ 1)!!
. (2.16)

As J2nJ2n+1 = π
2(2n+1) we have Jp ≤ c2√

p+1
, c2 > 0. Hence the quantity

(2.15) is smaller than

s
p−3
2

4c1c2 Kp−2

(p1 − 1)
√
p2 − 1

√
p1p2.

Moreover there is a constant c3 > 0 such that∑
p1+p2=p
p1,p2>1

√
p1p2

(p1 − 1)
√
p2 − 1

≤ c3
√
p.

It is easy to see that the boundary terms (p1, p2) = (1, p − 1) and
(p1, p2) = (p−1, 1) give a contribution which is bounded in absolute value

by c4K
p−2ϕ

(p)
0 (k).

Hence (2.11) is proved for any K > 4c1c2c3 + c4.

If now v0 ∈ L∞ ∩L1 we have ϕ0(k) = Nϕ̂0(k) where N =
∫
R3 ϕ0(k)dk

and ϕ̂0(k) is a probability density on R3. Hence the convolution is ϕ̂
(p)
0 (k) =

N−pϕ
(p)
0 (k) is also a probability density. Therefore

ϕ
(p)
0 (k) ≤ Np∥ϕ̂0∥∞∥ϕ̂(p−1)∥1 = Np∥ϕ̂0∥∞.

The proposition is proved.

We choose initial data with support C = supp v0, in a sphere of center
k0 of radius R << |k0|. It is not restrictive to take k0 = (0, 0, a), a > 0,
so that by iteration of the convolution, the support C + . . .+ C︸ ︷︷ ︸

p times

of g(p) ex-

tends along the k3-axis around pk(0). By analogy with probability theory,
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for large p the main contribution to g(p) is concentrated in a region with
transversal dimensions of the order

√
p.

Moreover for large p the terms of the sum for which max{p1, p2} ≤ p
1
2

can be neglected, and the Gaussian densities give a significant contribution
to the integrals only for s1, s2 near the endpoint s. Therefore it is natural
to introduce new variables and functions

k = pk(0) +
√
pY, h(p)(Y, s) = g(p)(pk(0) +

√
pY, s),

sj = s

(
1− θj

p2j

)
, j = 1, 2.

Integrating over θj , j = 1, 2, setting γ = p1

p and e3 = (0, 0, 1), we get

h(p)(Y, s) = p
5
2

∑
p1+p2=p
p1,p2>

√
p

1

p21p
2
2

∫
R3

Pe3+
Y√
p
h(p2)

(
Y′

√
1− γ

, s

)
· (2.17)

·
〈
h(p1)

(
Y −Y′
√
γ

, s

)
, e3 +

Y
√
p

〉
dY′ (1 + o(1)) ,

As h(p) is orthogonal to k = (
√
pY1,

√
pY2, pa+

√
pY3), by incompress-

ibility, we also set

h(p)(Y, s) =

(
H

(p)
1 (Y, s), H

(p)
2 (Y, s),

F (p)(Y, s)
√
p a

)
, (2.18)

and F (p)(Y, s) is of finite order:

Y1H
(p)
1 (Y, s) + Y2H

(p)
2 (Y, s) + F (p)(Y, s) = O(p−

1
2 a−1). (2.19)

Therefore h(p)(Y, s) is essentially transversal to the k3-axis, and as p → ∞,
Pe3+

Y√
p
h(p2) → h(p2), i.e., the solenoidal projector in (2.17) tends to the

identity.
The fundamental Ansatz of Li and Sinai is that for some set of initial

data v0, for p large and s in some interval of time, the recursive relation
(2.17) has a solution which is asymptotically of the form

h(p)(Y, s) = Z p Λp(s)

3∏
j=1

gσj
(Yj)

(
H(Y) + δ(p)(Y, s)

)
, (2.20)

where δ(p)(Y, s) → 0 as p → ∞. Here Z is a suitable constant, Λp(s) is

a positive function, gσ(x) =
e−

x2

2σ√
2πσ

denotes the centered Gaussian density
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on R, σ1, σ2, σ3 are positive constants, H = (H1(Y), H2(Y), 0) is a vector
function independent of time depending only on Y1, Y2. By rescaling it is
not restrictive to set σi = 1, i = 1, 2, 3.

Inserting (2.20) into (2.17), treating γ as a continuous variable, ne-
glecting the remainders, choosing the constant Z in a suitable way, and
integrating over Y3, one can see that H(Y) is a solution of the integral
fixed point equation

g1(Y)H(Y) =

∫ 1

0

dγ

∫
R2

gγ(Y−Y′)g1−γ(Y
′) ·

· L(H; γ,Y,Y′)H

(
Y′

√
1− γ

)
dY′

(2.21)

where, by abuse of notation, we write Y = (Y1, Y2), gσ(Y) = e−
Y 2
1 +Y 2

2
2σ

2πσ ,
and set

L(H; γ,Y,Y′) = (1−γ)
3
2

〈
Y −Y′
√
γ

,H

(
Y −Y′
√
γ

)〉
+

+ γ
1
2 (1− γ)

〈
Y′

√
1− γ

,H

(
Y′

√
1− γ

)〉
.

The solutions, or “fixed points”, of the functional equation (2.21) are
found by expanding the components of H in Hermite polynomials Hek, k =
0, 1, . . ..

Hj(Y) =

∞∑
m1,m2=0

h(j)
m1m2

Hem1(Y1) Hem2(Y2), j = 1, 2. (2.22)

One gets an infinite system of equations for the components h
(j)
m,n, which

has infinitely many solutions depending on a small number of arbitrary

parameters (see [13]). For one particularly simple solution, namely h
(1)
1,0 =

h
(2)
0,1 = −2 and h

(j)
n,m = 0 otherwise, corresponding to the fixed point

H(k1, k2) = H0(k1, k2) := −2 (k1, k2) , (2.23)

Li and Sinai prove in [13] the following result:

Theorem 2.2. For the fixed point (2.23) one can find an interval S =
[s−, s+], s+ > s−, and a 10-parameter family of initial conditions such
that for s ∈ S the Ansatz (2.20) holds with Λp(s) = (Λ(s))p where Λ(s) is

a strictly increasing differentiable function with min
s∈S

Λ
′
(s) ≥ B > 0, and

sup
Y

|δ(p)(Y, s)| → 0 as p → ∞.
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The proof is based on a renormalization group method, with a rather
involved linearized stability analysis around the fixed point.

If now the initial data are chosen as stated in the above theorem, then
the asymptotics (2.20) holds for H = H0 and if we set A = ±(Λ(τ))−1,
for τ ∈ S, in the expansion (2.8), there is a blow-up at the time t = τ . As
shown in the paper [5], if there are cancellations between terms of the series
(2.8) with neighboring p, which for the fixed point H0 holds for positive

A, the total enstrophy diverges at the blow-up time as const(τ − t)−
5
2 , and

for negative A as const(τ − t)−3. Another easy result shown in [3], [5], is
that the solution v(k, t) tends pointwise to a finite limit as t ↑ τ .

3 Computer simulations for the complex
blow-up with and without fixed points

Our mesh for the computer simulations of the solution of equation (2.7) is
always a regular lattice centered at the origin with step δ = 1, i.e., a subset
of the unitary lattice Z3 in k-space, with maximal configuration [−L1, L1]×
[−L1, L1]× [−9, L], where L1 is of the order of the hundreds and L of the
order of the thousands. The velocity field v(k, t) is therefore represented by
an array of about 3×L2

1×L real numbers, close to the maximal capacity of
modern supercomputers. The flow in x-space is confined to a small region
inside the cube (−π, π)3.

The mesh with step δ = 1, is reliable for our choice of the initial data:
we checked that by taking a smaller δ there is no significant change in
the behavior of the total energy, the total enstrophy and their marginal
distributions.

As we mentioned above, the real solutions associated to the Li-Sinai
complex solution with fixed point (2.23) are close to axial symmetric with
zero swirl, and a blow-up is therefore excluded [11]. It is natural to look
for other complex solutions that blow up and are such that the associated
real solutions have a significant swirl.

We looked for indications from computer simulations for solutions re-
lated to solutions of the fixed point equation (2.21) different from (2.23),
among which there are flows that are not axial symmetric, as well as ax-
ial symmetric flows with swirl. We also simulated solutions with initial
data concentrated in a small region at some distance from the origin, as
explained above, but unrelated to fixed points.

We need a brief discussion on some solutions of the fixed point equation
that are not reported in [13]. As shown in that paper, the fixed point
equation for the coefficients of the expansion in Hermite polynomials (2.22)
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has the form

h(j)
m,n =

∑
m1+n1=m
m2+n2=n

2∑
ℓ=1

(
J
(1)
m1+m2,n1+n2

(Bℓh
(ℓ))m1,m2

h(j)
n1,n2

+

+ J
(2)
m1+m2,n1+n2

h(ℓ)
m1,m2

(Bℓh
(j))n1,n2

)
. (3.1)

where we assume h
(j)
0,0 = 0, j = 1, 2 and we set

(B1h
(j))m,n = h

(j)
m−1,n + (m+ 1)h

(j)
m+1,n,

(B2h
(j))m,n = h

(j)
m,n−1 + (n+ 1)h

(j)
m,n+1, j = 1, 2., (3.2)

The coefficients are

J (1)
m,n = −Im,n+3, J (2)

m,n = Im+1,n+2,

Im,n =

∫ 1

0

γ
m
2 (1− γ)

n
2 dγ =

Γ(m2 + 1)Γ(n2 + 1)

Γ(m+n
2 + 2)

, (3.3)

where Γ is the Euler Gamma function.
The equation (3.1) has the following structure. The equations for m+

n ≤ N , for N = 1, 2, . . . are closed so that the equation can be solved by

an iteration method, i.e,, the equations for {h(j)
n,m : n+m = N}, N = 2, . . .

are a set of 2N+2 linear equations with coefficients and known terms given

by the solutions of the equations for {h(j)
n,m : n+m = M} with M < N .

For N = 1 we have a nonlinear homogeneous system for the variables

{h(1)
1,0, h

(1)
0,1, h

(2)
1,0, h

(2)
0,1}. In addition to the trivial solution, we have a family

of two-parameter solutions, which, taking as parameters h
(1)
0,1 = w, h

(2)
1,0 = y,

are real for wy ≤ 9 and can be written as(
−3±

√
9− wy, w, y, −3∓

√
9− wy

)
. (3.4)

There is also an additional separate solution (−2, 0, 0,−2).
For any choice of the solution for N = 1, the linear set of equations for

N = 2 is homogeneous with nonzero determinant, so that there is only the
trivial solution. The same happens for all sets of equations with N even,

so that h
(j)
m,n = 0, j = 1, 2, whenever m+ n is even.

ForN = 3 the system is also homogeneous, but has nontrivial solutions,
depending on the solutions for N = 1. By taking the trivial solutions for
N = 3 all the following orders are homogeneous, so that the solutions for
N = 1 are full solutions of the fixed point equation. In particular the
separate solution (−2, 0, 0,−2) corresponds to the choice (2.23) in [13].
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A more detailed discussion shows that the equations for N = 3 have
a 3-parameter family of nontrivial solutions if we take the solution (2.23)
for N = 1, and in general a 4-parameter one if we take one of the solutions
(3.4). In [13] it is shown that taking the solution (2.23) for N = 1, and the
parameters of the nontrivial solution for N = 3 small enough, the infinite
series of the full solution that follows converges absolutely.

We performed computer simulations for initial data corresponding to
one solution of the fixed point equations of the type (3.4), and also for
initial data unrelated to fixed points. We always choose the center of
the support on the positive k3-axis, i.e., we take k0 = (0, 0, a), a > 0.
Following the indications of [13], the initial data corresponding to a fixed
point H are taken of the following type(
H̃1(k1, k2), H̃2(k1, k2),−

k1H̃1(k1, k2) + k2H̃2(k1, k2)

k3

)
·

· gσ(k1)gσ(k2)gσ(k3−a)χη(k3−a), (3.5)

where 0 < σ < η < a and χη(x) = 1 for |x| < η and χη(x) = 0 otherwise.

Moreover H̃j(k1, k2) = Hj(k1, k2)+ δj(k1, k2), with δj(k1, k2), j = 1, 2, are
small perturbations.

As it was found out in previous simulation [3], the perturbation terms
δj have no influence on the blow-up, except that they can considerably
increase the time when the blow-up sets in. The behavior of the solu-
tion near the critical time τ is remarkably stable with respect to the per-
turbation terms. Therefore in order to save computer time we assumed
δj(k1, k2) = 0, j = 1, 2.

Computations were also performed with initial data of the type (3.5),
but with a function H which is not a fixed point, in particular with the
function

Hα(k1, k2) = −2 (k1 − αk2, k2 + αk1) , α ≥ 1. (3.6)

This choice was made in view of the fact that the real flow obtained by
antisymmetrizing the initial data (3.6) is axial symmetric with a swirl
depending on α.

The main indication from our simulations for the complex case is that
all the initial data described above lead to a blowup in a range of values
of the parameters which are more or less the same in all cases. Also
the divergence rates of the total energy and enstrophy seem to be the
same. Therefore it appears that the blow-up is a more general feature
than convergence to a fixed point, although it is unclear whether it is a
general consequence of the choice of the initial support. We hope that it
will be possible to get some rigorous result on this point.
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We studied in particular the case with initial data given by (3.5), (3.6)
with δj = 0, which are not related to solutions of the fixed point equation.
The simulations show that the blow up occurs in a way remarkably similar
to that of the solutions related to the Li-Sinai case (2.23). As in that
case, the marginal distributions of the energy and the enstrophy along the
k3-axis, i.e.,

E3(k3) =
1
2

∫
R2 |v(k1, k2, k3, t)|2dk1dk2,

S3(k3) =
∫
R2 |k|2|v(k1, k2, k3, t)|2dk1dk2

(3.7)

show that the support is concentrated around the planes k3 ≈ pa, for
p = 1, 2, . . . (Fig. 1).

Moreover, as we approach the blow-up, the fall-off for large p of the
contributions to E3(k3) at k3 ≈ pa looks exponential with a coefficient
that near the blow-up is proportional to τ − t (Fig. 2), where the critical
time τ is estimated by the intersection of the linear plot of logE3(k3) with
the horizontal axis (Fig. 3). For the function S3 there is a power law
correction O(p2), which spoils linearity near the critical time.

200 400 600 800 1000 1200
k3

5000

10000

15000

S3 (k3)

Figure 1: Plot of the marginal enstrophy density S3(k3, t) at the time
t× 107 = 2850.
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t x 107 = 2900

t x 107 = 1600

600 800 1000 1200
k3
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log[E3 ]

Figure 2: Plots of the peak values of logE3(k3, t) at two different times.

2600 2700 2800 2900
t x 107

-0.016

-0.014

-0.012

-0.010

Figure 3: Plot of the slope (peak values) of logE3(k3, t) in time.

The results suggest that the contributions for k3 ≈ pa have, for large p,

as in the Ansatz (2.20) for the Li-Sinai case, a factor of the type ( Λ(t)
Λ(τ) )

p, t <

τ , where Λ(t) is an increasing differentiable function. If this happens, the
exponential rate of decay near the blow-up time is related to the derivative
Λ′(τ) by the Taylor formula

log

[
Λ(t)

Λ(τ)

]p
= p

[
log 1− (τ − t)

Λ′(τ)

Λ(τ)
(1 + o(1))

]
≈ −p

Λ′(τ)

Λ(τ)
(τ − t).

(3.8)

The power laws of the blow-up for the total energy E(t) ≍ CE(τ−t)−
1
2

and the total enstrophy S(t) ≍ CE(τ−t)−
5
2 predicted for the Li-Sinai case,
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seem to hold in this case as well (Fig. 4)

30.799+2.63375 x

R2 =0.998401

-6.7 -6.6 -6.5 -6.4 -6.3 -6.2 -6.1
log(

1

3302 - 107 t
)

13.5

14.0

14.5

15.0

log(S(t))

Figure 4: Plot of logS(t) versus log( 1
3302−107t ).

The main difference with the Li-Sinai case is however that there is
no convergence to a fixed point for the vector field around the points
pk(0) = (0, 0, pa) for large p. We have instead what looks like some kind
of periodic behavior on the planes k3 ≈ pa, alternating situations in which
the projection of the velocity field v(k1, k2, k3) is essentially radial and
situations with a large angular component.

The divergence rate of the total energy and enstrophy at the critical
time are compatible with the corresponding values for the Li-Sinai case as
reported in [5], i.e.. E(t) ≍ CE(τ − t)−

1
2 and S(t) ≍ CS(τ − t)−

5
2 (Fig. 4)

4 Computer simulations for an axial sym-
metric flow with swirl

In a previous paper [4] we reported results on a real flow with initial data
obtained by antisymmetrizing the initial data (3.5) with the Li-Sinai fixed
point (2.23). The flow is axial symmetric with no swirl if the correction
δj , j = 1, 2 in (3.5) is set equal to zero, and we know (see [11]) that a
blow-up is excluded for flows close to axial symmetric flows with no swirl.

Nevertheless the computer simulations reported in [4] show that the
real flows related to the Li-Sinai solution share with their complex counter-
part some important features, such as a rapid extension of the support to
high values of |k| by the convolution mechanism, and an exponential decay
of the energy along the k3-axis with a decay rate which decreases in time
in absolute value. The total enstrophy undergoes a rapid increase: for the
choice of the initial energy and of the parameter a in [4] it grows by a factor
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2. The maximal value of the velocity in physical space maxx∈R3 |u(x, t)|
also grows, and there is a remarkable concentration of energy and vorticity
in a small volume. After some time however the exponential decay rate
stops at some nonzero value and relaxation occurs with a decrease of the
total enstrophy.

In our recent simulations we considered initial data with swirl related
to solutions of the fixed point equation, and also initial data obtained by
antisymmetrizing the expression (3.5) where H = Hα is given by (3.6),
with a = 20, for which, as we showed above, there is a complex blow-up
similar to that obtained with Li-Sinai initial data (2.23), although it is not
related to a solution of the fixed point equation. We only report results
for the latter case which, up to now, looks more promising for the Global
Regularity Problem.

Neglecting the perturbation δj , j = 1, 2, and a positive factor which
fixes the initial energy, the initial data are

v0(k1, k2, k3) =

(
k1 − αk2, k2 + αk1,−

k21 + k22
k3

)
·

·gσ(k1)gσ(k2) [gσ(k3 − a)χb(k3 − a) + gσ(k3 + a)χb(k3 + a)] . (4.1)

The vector field (4.1) differs from the corresponding initial data related
to the Li-Sinai solution only for an angular component proportional to
α. It is easy to see that the initial condition in the physical x-space,
obtained by the inverse formula (2.6), is axial symmetric with a nonzero
swirl proportional to α. As a consequence, the solution u(x, t), t ≥ 0
following from the initial data (4.1) is also axial symmetric with nonzero
swirl.

We performed simulations with the initial data (4.1) for a = 20, α =
1, 2, 5, and for various values of the initial energy. We obtained a large
amount of data which are still under study. The simulations show that by
adding a swirl the growth of the enstrophy is greatly increased, and other
interesting features also appear. We report here the first most relevant
results concerning the initial data (4.1) with α = 2, which produces the
largest relative growth of the total enstrophy.

The mesh for the computer simulations is as in the previous section,
except that it was doubled by adding the symmetric mesh in the half-
space k3 ≤ 0. Significant results are obtained for a time step smaller than
in the complex case and much higher initial energies. The time unit is
δt = 1.562× 10−8.

The simulations show (Fig. 5) that we have, as for the complex case,
a significant extension of the support along the k3-axis, which causes the
increase of the total enstrophy, while the energy goes down.
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Figure 5: Results for the initial data (4.1) with α = 2. Initial energy
E0 = 500000. Time T is in units δt = 1.562× 10−8. Plot of the marginal
energy density E3(k3, t) at different times.
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Figure 6: Results for the initial data (4.1) with α = 2. Time T is in units
δt = 1.562 × 10−8. Plots of the total enstrophy ratio S(t)/S(0) for three
values of the initial energy.
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In Fig. 6 we report the relative growth of the total enstrophy for α = 2
and different values of the initial energy E0. It is much higher than for the
case α = 0 reported in [4] with equal initial energy E0 = 250 × 103, and
the growth with the initial energy is also considerable. This result has to
be taken with some caution, as we still need to estimate the contribution
of the spurious production of enstrophy on the boundary, but we do not
expect that it will produce a qualitative change of the picture.

The occurrence of a finite-time blowup for higher values of the initial
energy and/or of the parameter a cannot be excluded, and it seems possible
to obtain a better picture with more computer resources.

The results obtained from the simulations of the real flows are still un-
der study. We will analyze in particular the evolution of the distribution in
space and time of the local energy and rotation, for a comparison with the
recent theoretical results on the regularity of the Navier-Stokes solutions
as discussed in [1], [2], [7], [8], [16].

5 Concluding remarks

We report some preliminary results of computer simulations of the incom-
pressible Navier-Stokes equations in 3D in Fourier k space, in absence of
boundary conditions and forcing, with support of the type introduced by
Li and Sinai [13]. Although the full analysis of the results is still under
way, we can already draw some important indications.

For the complex solutions, the results show that a blow-up of the type
described in the rigorous results of Li and Sinai [13] occurs, with similar
features, for a wide class of initial data, both related and unrelated to the
solutions of the fixed point equation (2.21).

We also present results of real flows obtained from complex flows that
blow up by antisymmetrizing the initial data. The simulations show that
for axial symmetric initial data the presence of a swirl of size comparable
to that of the radial component produces a much larger increase of the
total enstrophy for the same initial energy. Moreover the relative increase
of the enstrophy grows as we increase the initial energy in a significant
way.

The data from the simulations are however insufficient for a reasonable
statement on the possibility of obtaining a blow-up by increasing the initial
energy or the distance a of the support center from the origin. It is however
reasonable to guess that more simulations could shed some light on this
point.
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