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Introduction

Given a (real or complex) vector bundle E over a manifoldM , a basic point
is to know how trivial the bundle is. This is equivalent to asking how many
sections E admits that are linearly independent everywhere (over R or C).
Of course this all makes sense also in the holomorphic category.

For instance, it is known that every continuous vector field on S2 must
have singularities and therefore, in particular, the tangent bundle TS2

is not trivial. From Poincaré-Hopf’s theorem one may deduce that every
odd-dimensional sphere does admit a vector field with no singularities, i.e.,
a trivial 1-dimensional subbundle.

Chern classes of complex vector bundles can be defined in various ways
and they are obstructions for constructing linearly independent sections.
These are powerful invariants with plenty of applications in topology and
in differential and algebraic geometry. In fact these are now fundamen-
tal concepts for instance in string theory, Chern–Simons theory and Gro-
mov–Witten invariants.

The theory of Chern classes for singular varieties, initiated by M. H.
Schwartz [50], D. P. Sullivan [54], R. MacPherson [29], and continued
by J. P. Brasselet (see for instance [8]), W. Fulton [20] and others, keeps
growing fastly and it is now a rich theory that can be regarded from several
points of view and has deep connections with several areas of mathematics.
There are various notions extending to the singular case the classical Chern
classes of complex manifolds, having each its own properties and interest.

The classes introduced by M. H. Schwartz are an extension for stratified
singular varieties of the usual Chern classes regarded as obstructions for
constructing linearly independent sections of vector bundles. The classes
introduced by MacPherson proved affirmatively a conjecture stated by
Deligne with ideas by Grothendieck, somehow motivated by Sullivan’s
work for the Stiefel-Whitney classes. MacPherson’s construction actu-
ally assigns a “theory of homology Chern classes" to each constructible
function on a compact complex algebraic variety X; these classes are
natural. Then Brasselet and Schwartz showed in [11] that Schwartz’
and MacPherson’s construction for the constructible function 1X actu-
ally coincide up to Alexander duality isomorphism; hence these are named
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6 M. Morgado and J. Seade

Schwartz-MacPherson classes, that we denote cSM
∗ . On the other hand the

Fulton classes cFu
∗ are defined using the classical Segre classes in algebraic

geometry. All of these can be regarded in the singular homology or in the
Chow group in the algebraic case (see [4]).

In the 1990s P. Aluffi, studying which schemes can arise as singular
schemes of hypersurfaces in complex manifolds, realized that it was impor-
tant to compare the Schwartz-MacPherson and the Fulton classes. This
same issue, comparing the cSM

∗ and cFu
∗ classes, also arose at almost the

same time and by different reasons in the work of Parusiński-Pragacz,
Yokura and Brasselet-Lehmann-Seade-Suwa. In [40, 41, 42, 43] this ap-
pears in relation with the generalized Milnor number and the topology
of degeneracy loci of sections of vector bundles. In Yokura’s work this
appeared in [62, 61] while looking at Chern classes in bivariant theory
(cf. Brasselet’s work [6]), searching for a Verdier-Riemann-Roch type
theorem for the MacPherson classes of singular varieties. On the other
hand this comparison of the cSM

∗ and cFu
∗ classes was a natural contin-

uation of Brasselet-Schwartz’ theorem showing that the MacPherson and
the Schwartz classes coincide (up to Alexander duality). Seade and Suwa
proved [52, 55] that in the case of compact local complete intersections
with only isolated singularities, the difference cSM

∗ −cFu
∗ is, up to sign, the

sum of certain numerical invariants called Milnor numbers, that spring
from the local study of the geometry and topology of the critical points
holomorphic map-germs. Then, looking for an extension of Parusinski’s
generalized Milnor number to the case of complete intersections naturally
led the authors of [10] to comparing the Schwartz-MacPherson and the
Fulton classes.

The Milnor Fibration of holomorphic maps introduced in [36] is a fun-
damental object for the study of the local topology of complex hypersur-
faces. When the map-germ has an isolated critical point one has the as-
sociated Milnor number, which is the most important numerical invariant
associated to an isolated complex hypersurface singularity. This invariant
was extended by Hamm [23] to isolated complete intersection singularities.
The literature about the Milnor number is vast and we refer for instance
to [27, 51] for recent accounts of the subject. It is a topological invari-
ant, easily computable and it determines the homeomorphism type of the
Milnor fiber.

When considering non-isolated complex hypersurface singularities there
are two important viewpoints extending the Milnor number: one is local
and mostly due to work by Lê D. T., B. Teissier and D. Massey, who in-
troduced in [30, 32] the notions of Lê cycles and Lê numbers. These spring
from the theory of polar varieties developed by Lê and Teissier, with roots
in ideas by René Thom. There is a Lê cycle (and number) in each complex
dimension from 0 to that of the singular set; these encode deep information
about the singularity germ and they determine the homeomorphism type
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of the local Milnor fiber (see for instance [32, 33]). The other viewpoint is
global and is due to A. Parusińsky who introduced in [39] the notion of a
generalized Milnor number: this is an integer associated to each connected
component of the singular set of a complex hypersurface in a compact
complex manifold. There are several interpretations of that invariant by
Parusińsky-Pragacz and by other authors.

If X is a complete intersection in a compact complex manifold M , then
the difference cSM

∗ − cFu
∗ between the total Schwartz-MacPherson and the

Fulton class has support at the singular set Xsing. Hence, when Xsing

consists of isolated points, these classes coincide in all dimensions greater
than 0, and as mentioned before, in dimension 0 the difference is the sum
of the local Milnor numbers. It is thus natural to call cSM

∗ − cFu
∗ the total

Milnor class of X. There is one Milnor class in each dimension, from 0
to that of Xsing, and in dimension 0, for hypersurfaces this coincides with
Parusinsky’s generalized Milnor number.

Milnor classes are interesting invariants, which are defined globally but
have support at the singular set. What information these classes encode
is not yet understood and little is known about their geometry.

In this work we present and review all these concepts and survey our
work and contributions with Roberto Callejas-Bedregal, our dear friend
and co-author who passed away in April 2021. So this article is dedicated
to his memory. Chapters 5 and 6 concern our articles [14, 15]. We also
refer to [16] that was being written by the three of us when Roberto passed
away.

We begin this article by presenting some concepts about complex vector
bundles over manifolds, highlighting the role of the tangent and cotangent
bundle and the local Poincaré-Hopf index theorem, which is the paradigm
of Chern classes (see [12] for a thorough account on the subject and [8] for
a recent expository article that includes an interesting account on the birth
of Chern classes; see [16] for an account on the relations with the Milnor
number). The next chapter defines the Chern classes of vector bundles
as elements in the cohomology of the base space, using first algebraic
topology. Then, following Fulton’s book [20], we use algebraic geometry
tools to describe these classes as elements in the Chow group.

Chern classes of complex manifolds are associated to their tangent
bundle, and in chapter 3 we present different notions extending these con-
cepts to singular varieties. We highlight the Schwartz classes, MacPherson
classes and Fulton classes, and following an important observation that we
learned from J.-P. Brasselet, we notice that each of these is associated to a
way of extending the tangent bundle over the singular set. In chapter 4 we
describe Milnor classes and their basic properties. In chapter 5 we plunge
into the geometry of these classes, focusing on our articles with Callejas-
Bedregal; we present the concept of global Lê cycles and their relationship
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with local Lê cycles, introduced by D. Massey, and study their relations
with Milnor classes, following [14, 15].

In [14] we use work by Schürmann and Tibăr for affine varieties [49],
to show that Massey’s concept of Lê cycles can be globalized to projective
hypersurfaces and, surprisingly, the information encoded in those classes
is equivalent to the information encoded in the Milnor classes, since the
global Lê classes determine the Milnor classes and conversely.

In [15], somehow inspired by [46], we first get Verdier-Riemann–Roch
type formulae for the total classes cSM

∗ (X) and cFu
∗ (X), and use these

to prove a surprisingly simple formula for the total Milnor class when X
is defined by a finite number of local complete intersection X1, . . . , Xr

in a complex manifold, satisfying certain transversality conditions. As
applications, we obtain a Parusinski–Pragacz type formula and an Aluffi
type formula for the Milnor class, and a description of the Milnor classes
of X in terms of the global Lê classes of the Xi.

Most of the work on Milnor classes in the literature is for hypersurfaces,
the complete intersection case being much harder (cf. [10, 34]). The case
of varieties which are not complete intersection is far more difficult and it
is not even clear what the definition of Milnor classes should be, since there
are several possible candidates that coincide for complete intersections.



Chapter 1

Preliminaries on complex
vector bundles

Let (M, τ) be a topological space and {Ui}i∈J be a family of non-empty
open subsets of M , where the Ui are an open covering of the space M . Let
also be given a collection of maps ∀ i ∈ J , ϕi : Ui →Wi ⊂ Rn, where ϕi is
a homeomorphism. Hence all Wi are open in Rn and the transition maps

ψji := ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj) ⊂ Rn → ϕj(Uj ∩ Ui) ⊂ Rn

are also homeomorphisms.

Definition 1.1. A pair (Ui, ϕi) is called a coordinate chart of M and a
collection (Ui, ϕi)i∈J is called an atlas of M . Since the transition maps ψji

are all continuous, one says that M is a topological manifold (of dimension
n). A topological manifold M is called a (real) differentiable manifold if
the transition maps ψji are differentiable. Since ψ−1

ji = ψij , this implies
that the transition functions are diffeomorphisms.

Let (M,U) be a real differentiable manifold with atlas U = (Ui, ϕi)i∈J

of (real) dimension 2n and assume that M is connected (as topological
space):

ψi : Ui →Wi ⊂ R2n, ψji : ϕi(Ui ∩ Uj) ⊂ R2n → ϕj(Ui ∩ Uj) ⊂ R2n,

where Wi ⊂ R2n is open and ψji is differentiable. We identify Cn with
R2n using the standard identification:

(z1, . . . , zn) → (Re(z1), Im(z1), . . . , Re(zn), Im(zn)).

Denote Uji := ϕi(Ui ∩Uj). Then ψji : Uji ⊂ Cn → Cn becomes a complex
map on the open set Uji ⊂ Cn.

9



10 M. Morgado and J. Seade

Definition 1.2. The above real differentiable manifold (M,U) is called a
complex manifold if the maps ψji are biholomorphic ∀ i, j ∈ J .

Definition 1.3. Let M be a complex manifold of dimension n and N ⊂M
be closed. N is called a complex submanifold of M if ∀ y ∈ N , there is
a coordinate chart (U, ϕ) of M with ϕ : U → W ⊂ Cn, W open, y ∈ U
such that ϕ(U ∩N) ∼=W ∩ (Ck ×{0}), for some 0 ≤ k ≤ n, where k is the
dimension of N .

Using the Implicit Function Theorem and the Constant Rank Theorem,
one can show that:

A subset N in a complex manifold M of dimension n is a complex
submanifold of dimension k if and only if it can locally be written as the
zero set of locally holomorphic functions for which the Jacobian matrix
has maximal rank. Hence for all y ∈ N , there is an open neighborhood U
of y in M (we may choose U sufficiently small such that (U, ϕ) is a chart
at y) and there are holomorphic functions fi : U → C, i = 1, . . . , n − k
such that

U ∩N =

n−k⋂
i=1

f−1
i ({0})

and

rank

(
∂(fi ◦ ϕ−1)

∂zj
(z)

)
i,j

= n− k, ∀ z ∈ U ∩N. (1.1)

Let X in Cn be defined by p holomorphic functions g1, . . . , gp. A point
z0 ∈ X is called a singular point of X if the rank of the Jacobian matrix
of the gi at z0 is not maximal and X is called regular if it does not contain
singular points.

Let f : Cn → C be a holomorphic function and consider its vanishing
set V (f) = f−1(0). Note that f being holomorphic, thus continuous, V (f)
is closed in Cn, but until now it is not yet a submanifold of Cn. This occurs
if and only if

grad f(z) =

(
∂f

∂z1
(z), . . . ,

∂f

∂zn
(z)

)
̸= 0, ∀ z ∈ V (f).

In fact, since f is globally defined and V (f) is the zero set of the
holomorphic function f , we can take U = Cn, thus V (f) ∩ Cn = f−1(0).
So by (1.1) it is necessary and sufficient to show that the Jacobian matrix
associated to f has maximal rank on the set V (f). But there is only one
(globally defined) function, so n− k = 1 and

rank J(f)(z) = 1 ⇔ J(f)(z) ̸= 0 ⇔ grad f(z) ̸= 0,∀ ∈ z ∈ V (f).

Hence if V (f) is a submanifold of Cn, then V (f) is smooth.
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Let M and E be complex manifolds and let π : E →M be a surjective
differentiable map that is a family of vector spaces (over C), i.e., π−1(m)
is a vector space over C for all m ∈M .

Definition 1.4. A triple (π,E,M) as above is called a complex vector
bundle if there is a differentiable atlas for M with open covering {Ui}i∈J

such that for all i ∈ J , one has that π|π−1(Ui) : π
−1(Ui) → Ui is isomorphic

(as a family of vector spaces) to the standard trivial family p1 : Ui ×
Cr → Ui (first projection), where r is said to be the rank of this vector
bundle. If E and M actually are complex manifolds, the above atlas for
M is holomorphic and the projection p is holomorphic, then we say that
(π,E,M) is a holomorphic vector bundle.

The concept of a vector bundle can also be described in the context of
schemes (see [20, B.5.5]).

For short, we say that E is a vector bundle over M if we mean that
π : E →M is a vector bundle.
Example 1.5. Let M be a complex manifold of dimension n, p ∈ M and
let (U, ϕ) be a chart at p in M . The tangent space of M at p is defined
by TpM := dϕ(p)ϕ

−1(Cn). It is easy to see that this definition does not
depend on the chart at p. We know that TpM is a n-complex dimen-

sional vector space and a basis is given by
{

∂

∂z1
|p, . . . ,

∂

∂zn
|p
}

(partial

derivatives evaluated at p).
The cotangent space of M at p, T ∗

pM , is the dual space of the tangent
space of M at p.

The tangent bundle TM :=
⊔
p∈M

TpM with projection-map π : TpM →

M , π(vp) = p, is a vector bundle of rank n.
In a similar way we have the cotangent bundle T ∗M .

Definition 1.6. Let E be a vector bundle over M. A holomorphic map
s :M → E is called a (global) section of E if π ◦ s = idE .

Example 1.7. Sections of the tangent bundle TM of a complex manifold
M are nothing but holomorphic vector fields on M : ξ :M → TM , ξ(m) =
vm ∈ TmM . Similarly the sections of the cotangent bundle T ∗M are the
differential 1-forms.

Definition 1.8. A vector bundle E over a manifold M is trivial if it is
isomorphic to a product M × Ck where k ≥ 1.

Notice that this is equivalent to saying that E admits k sections that
are lineraly independent everywhere.
Example 1.9. For instance, the spheres S1 and S3, and more generally
every Lie group G has trivial tangent bundle. To show this just take a basis
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of the tangent spaces of G at the identity and translate it using the group
multiplication. Similarly, every complex Lie group has holomorphically
trivial tangent bundle.

As an introduction to the next chapters, we now define the Euler class
of a manifold using the Poincaré-Hopf index: this is the paradigm to follow.
Consider a real m-dimensional compact smooth oriented manifold M with
no boundary, and a vector field v on M regarded as a section of its tangent
bundle TM . Assume v has a finite number of isolated singularities (zeros),
and let these be x1, . . . , xr. We use this information to construct from it
a canonical cohomology class Eu(M) ∈ Hm(M ;Z), called the Euler class
of M , whose Poincaré dual is the homology class of the cycle∑

xi

IndPH(v, xi){xi},

where IndPH(v, xi) is the Poincaré-Hopf index of v at xi, and this is
the Euler characteristic χ(M), by Poincaré-Hopf’s theorem. We remark
that the cohomology class Eu(M) is independent of v, but the cochain we
construct to represent it does depend on the choice of v.

Let (K) be a triangulation of M such that the singularities of v are
vertices, (i.e., they are in the 0-skeleton). Now take the barycentric sub-
division of (K), denote it (K̂). We use this to construct a cell decom-
position dual of (K) that we denote (DK): to each simplex σ in (K) we
associate a cell d(σ) which is the union of all simplexes in (K̂) whose closure
meets σ exactly at its barycenter σ̂. For a vertex xi ∈ K(0) its dual cell has
dimension m and it is the union of all simplexes in (K̂) that have xi in its
closure. Now define an m-cochain as follows: to each m-cell in (DK) which
is dual to a singularity xi of v, we associate the local Poincaré-Hopf index
IndPH(v, xi) of v at xi; to all other m-cells we associate 0, and we extend
this to m-chains by linearity. We get a cochain with integer coefficients,
which actually is a cocycle, because there is no m+1 chain. By definition,
its cohomology class is the Euler class of M , Eu(M). The Poincaré duality
says that χ(M) is the evaluation of the class Eu(M) on the fundamental
class [M ], i.e., Hm(M ;Z) ∩M→ H0(M ;Z), Eu(M) ∩ [M ] = χ(M).

Clearly this class is the Poincaré dual of χ(M), the Euler characteristic
regarded as an element inH0(M ;Z) ∼= Z, since χ(M) equals the total index
of v.



Chapter 2

Chern classes of vector
bundles

Chern classes of vector bundles play a central role in geometry and topol-
ogy. In the case of (almost) complex manifolds, by definition their Chern
classes are those of its tangent bundle.

There are several alternative ways to define the Chern classes of vector
bundles; see for instance [17, 36, 53, 20, 12] for accounts on the subject.

2.1 Algebraic Topology viewpoint
Now we define the Chern classes of a complex vector bundle E over a
compact space K that is the geometric realization of a simplicial complex,
also denoted K, of real dimension 2m. We remark that everything we say
in this context works similarly if we replace K by a CW-complex with a
cell decomposition. We assume the complex dimension of the fibers of E
is k. The topological definition is the one given by N. Steenrod [53], using
obstruction theory.

Definition 2.1. A complex r-field for E, r ≤ k, on a subcomplex L of
K is a set v(r) = {v1, . . . , vr} of r continuous sections of E defined at all
points in L. A singular point of v(r) is a point where the vectors (vi) fail to
be linearly independent. A non-singular r-field is also called an r-frame.

The Chern class cq(E) ∈ H2q(K), where q = k−r+1, is the first possi-
bly non-zero obstruction for constructing an r-frame of E. Let us explain
this. Let Wr,k be the Stiefel manifold of complex unitary r-frames in Ck.
Notice that we will use complex r-frames which are not necessarily unitary,
but this does not change the results, because every frame is homotopic to
a unitary one. We know (see [53, §25.7.]) that Wr,k is (2k−2r)-connected

13
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and its first non-zero homotopy group is π2k−2r+1(Wr,k) ∼= Z. The bundle
of complex r-frames on E, denoted by Wr(E), is the bundle associated
with E whose fiber over x ∈ K is the set of all complex r-frames in the
fiber Ex over x (it is diffeomorphic to Wr,k). In the following, we fix the
notation q = k − r + 1.

We use the standard stepwise process in obstruction theory to construct
this class, similarly to the way we constructed the Euler class of a manifold.
Recall that a map X → Y between topological spaces extends to the cone
of X if and only if it is nulhomotopic; and a p-simplex σ is homeomorphic
to the cone over ∂σ.

Let σ be a p-simplex in K. If the section v(r) of Wr(E) is already
defined over its boundary ∂σ, it defines a map :

∂σ ≃ Sp−1 v(r)

−→Wr(E)|U ≃ U ×Wr,k
pr2−→Wr,k,

thus an element of πp−1(Wr,k). If p ≤ 2k− 2r+1, this homotopy group is
zero and therefore the section v(r) can be extended to σ without singularity.
This means that we can always construct a section v(r) of Wr(E) without
singularity over the (2q − 1)-skeleton K(2q−1).

If p = 2(k − r + 1) = 2q, we meet a possible obstruction. The r-
frame on the boundary of each 2q-simplex σ defines an element, denoted
by IndPH(v

(r), σ), in the homotopy group π2q−1(Wr,k) ∼= Z. The inte-
ger IndPH(v

(r), σ) is the (Poincaré-Hopf) index of the r-frame v(r) on σ.
Similarly to the above case of the Euler class, this defines a cochain

γ ∈ C2q(K;π2q−1(Wr,k)) ,

by setting γ(σ) = IndPH(v
(r), σ) for each 2q-simplex σ and then by ex-

tending it linearly. This cochain is actually a cocycle ([53, §41.4.]).

Definition 2.2. The cohomology class of the obtained cocycle is the q-th
Chern class of the bundle E, cq(E) ∈ H2q(K;Z).

Given a complex vector bundle E over K, of fiber dimension k, and its
Chern classes defined as above, the total Chern class of E is:

c∗(E) = 1 + c1(E) + · · ·+ ck(E)

This is an element in the cohomology ring H∗(K,Z), and actually this is
a unit, which therefore has an inverse. This will be used in the sequel.

The class one gets in this way is independent of the various choices
involved in its definition.
Example 2.3. Note that if K is a simplicial complex whose geometric re-
alization is a manifold M of complex dimension m and if E is its tangent
bundle TM , then the top Chern class cm(TM) coincides with the Eu-
ler class of the underlying real tangent bundle TRM , so Chern classes
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are a natural generalization of the Euler class. That is, cm(TM) is the
primary obstruction to constructing a never-zero tangent complex vector
field on M , where primary means the first possibly non-zero obstruction.
Then cm−1(TM) is the primary obstruction to constructing two tangent
C-linearly independent vector fields on M and so on; see for instance [36].

We notice also that if the manifold M is compact and has no boundary,
then the Poincaré duality isomorphism carries the Chern classes into the
homology of M . These are the homology Chern classes, which will also be
used in the sequel.

2.2 Algebraic Geometry viewpoint

In this section we follow Fulton’s book [20] and define Chern classes of
vector bundles over algebraic varieties as operators in the Chow group. In
order to do so, we first introduce some necessary background from algebraic
geometry, giving references to specific concepts. We refer to Griffiths and
Harris book [22] for a different approach.

Let X be a variety (over C) of dimension n, with OX the structure
sheaf, and denote by OV,X the local ring of X along a subvariety V . Let
R(X) be its field of rational functions and R(X)∗ the multiplicative sub-
group of its non-zero elements. See [20, B.1.1 and B.1.2.].

For a (k + 1)-dimensional subvariety W of X and a rational function
r ∈ R(W )∗, the divisor of r is the k-cycle on X denoted [div(r)] and
defined by:

[div(r)] =
∑

ordV (r)[V ] ,

where the sum runs over all codimension one subvarieties V of W and
ordV is the order of vanishing of r. If we write r = a/b with a, b ∈ OV,X ,
then ordV (r) = ordV (a)−ordV (b), where ordV (a) and ordV (b) denote the
lengths of the OV,X -modules OV,X

(a) and OV,X

(b) , respectively.

Definition 2.4. A k-cycle on X is a finite formal sum
∑
ni[Vi] where

the ni are integers and the Vi are k-dimensional subvarieties of X. The
group of k-cycles in X, ZkX, is the free abelian group generated by the
k-dimensional subvarieties of X; to a subvariety V of X corresponds [V ] ∈
ZkX. A Weil divisor on X is an (n−1)-cycle on X; the Weil divisors form
the group Zn−1X.

A k-cycle α is rationally equivalent to zero, written α ∼ 0, if it is
the divisor of a rational function. That is, if there are a finite number of
(k + 1)-dimensional subvarieties Wi of X, and ri ∈ R(Wi)

∗ such that:

α =
∑

[div(ri)] .
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The cycles rationally equivalent to zero form a subgroup RatkX of ZkX.
The Chow group AkX is the group of k-cycles in X modulo rational equiv-
alence:

AkX = ZkX/RatkX .

For each affine open set U of X, let K(U) be the total quotient ring
of the coordinate ring A(U). This determines a presheaf on X, whose
associated sheaf is denoted K. Let K∗ denote the (multiplicative) sheaf
of invertible elements in K and O∗ the sheaf of invertible elements in
O = OX . A Cartier divisor D on X is a section of the sheaf K∗/O∗. A
Cartier divisor is determined by a collection of affine open sets Ui which
cover X, and elements fi ∈ K(Ui), such that fi/fj is a section of O∗ over
Ui ∩ Uj (see [20, B.4.1.]).

Consider now a line bundle L over an algebraic variety X. For any
k-dimensional subvariety V of X, the restriction of L to V , L|V , is isomor-
phic to OV (C) for some Cartier divisor C on V , determined up to linear
equivalence [20, §2.2]. The divisor [C] determines an element in the Chow
group Ak−1(V ), which we denote by c1(L) ∩ [V ]. That is:

c1(L) ∩ [V ] = [C] .

This is extended by linearity to algebraic cycles by α 7→ c1(L) ∩ α, and
defines a homomorphism:

c1∩ −: Zk(X) → Ak−1(X) .

In fact one has (see [20, 2.5.(a)]) that if α is rationally equivalent to zero
on X, then c1(L) ∩ α = 0. Hence one has a well-defined homomorphism:

c1∩ −: Ak(X) → Ak−1(X) .

This defines the Chern class of the line bundle L. In fact if V is non-
singular, c1 is the usual Chern class, defined before by other means, re-
garded in homology via cap product with the fundamental cycle.

Remark 2.5. The Chern class so defined satisfies various important prop-
erties (see [20, Proposition 2.5]), in particular:

1. (Commutativity) If L,L′ are line bundles on X, and α is in Zk(X),
then, one has in Ak−2(X):

c1(L) ∩ (c1(L
′) ∩ α) = c1(L

′) ∩ (c1(L) ∩ α).

2. (Additivity) If L,L′ are line bundles on X, and α is in Zk(X), then,
in Ak−1(X) one has:

c1(L⊗ L′) ∩ α = c1(L) ∩ α+ c1(L
′) ∩ α ,
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and
c1(L

∨) ∩ α = −c1(L) ∩ α ,

where L∨ is the dual bundle.

It follows that if L1, . . . , Ln are line bundles on X, then arbitrary polyno-
mials in their Chern classes act on A∗X. If P is a homogeneous polynomial
of degree d in n variables, then

P
(
c1(L1), . . . , c1(Ln)

)
∩ α

is defined inductively in Ak−d(X). In particular, and this will be used
in the sequel, for a line bundle L on X and α ∈ Ak(X), c1(L)d ∩ α is an
element in Ak−d(X) defined inductively by c1(L)d∩α = c1(L)∩

(
c1(L)

d−1∩
α
)
.

A morphism f : X → Y is proper if it is separated, and universally
closed, i.e., for all Y ′ → Y , the induced morphism from X ×Y Y ′ takes
closed sets to closed sets. (see [20, B.2.4.])

If f : X → Y is a proper morphism of algebraic varieties, then for any
subvariety V of X, its image f(V ) is a closed subvariety of Y , and one has
an induced embedding of the field of rational functions R(f(V )) into R(V ).
As noticed in [20, Appendix B.2.2], this is a finite field extension if V and
f(V ) have the same dimension; in this case we denote by [R(V ) : R(f(V )]
the degree of that field extension. Set:

deg(V/f(V )) =

{
[R(V ) : R(f(V )] if dimV = dim f(V ),

0 if dimV > dim f(V ).

We then define the push-forward of V by f as:

f∗[V ] = deg(V/f(V ))[f(V )] .

This extends linearly to the push-forward homomorphism of cycles (see for
instance [20, 1.4]):

f∗ = ZkX → ZkY .

Now recall that a homomorphism A→ B of rings is flat if every exact
sequence of A-modules remains exact after tensoring over A with B. And
a morphism f : X → Y between algebraic varieties is flat if for every p ∈ X
the induced map in the local rings

fp : OY,f(p) → OX,p ,

is flat. Flatness is an open generic condition, and its failure occurs where
the map exhibits a type of “discontinuity”. For instance, performing a
blow up at a point exhibits a fiber where the dimension “jumps” and we
have no flatness there. A flat morphism f : X → Y always has a relative
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fiber dimension, say n. In fact if Y is non-singular and X is Cohen-
Macaulay, then flatness is equivalent to saying that the fibers have constant
dimension.

Given any subvariety V of Y , set:

f∗[V ] = [f−1(V )] .

Notice that f−1(V ) is a subvariety of X of pure dimension dimY +n. This
extends by linearity to the pull-back homomorphism of cycles:

f∗ : ZkY → Zk+nX .

We now have all the ingredients we need to define the Segre classes,
and therefore Chern classes, which are their inverses.

Let E p→ X be a holomorphic vector bundle of rank r over a complex
variety X. Let P = P (E) be the projective bundle of lines in E, and let
O(1) = OE(1) be the canonical line bundle on P (E). For each i, define a
homomorphism in the Chow group of X by:

si(E)∩ −: AkX → Ak−iX , k ≥ i ,

by the formula

si(E) ∩ α = p∗
(
c1(O(1)r+i) ∩ p∗α

)
,

where p∗ is the flat pull back from AkX to Ak+rP . Then (c1(O(1)r+i) ∩
p∗α) is the iterated first Chern class homomorphism fromAk+rP toAk−iP ,
and p∗ is the push-forward from Ak−iP to Ak−iX.

Here the si(E) are regarded as endomorphisms of the Chow group A∗X,
with products being compositions that commute, so there is no ambiguity.

The total Segre class of the vector bundle E over X is:

s(E) = 1 + s1(E) + s2(E) + . . . .

Consider the formal power series

st(E) =
∑
i≥0

si(E)ti = 1 + s1(E)t+ s2(E)t2 + . . . ,

define the Chern polynomial ct(E) =
∑
i≥0

ci(E)ti = 1+c1(E)t+c2(E)t2+. . .

to be the inverse power series. Explicitly,

c1(E) = −s1(E), c2(E) = s1(E)2 − s2(E), . . . ,

ck(E) = −s1(E)ck−1(E)− s2(E)ck−2(E)− . . .− sk(E) .

Then the total Chern class of E is:

c(E) = 1 + c1(E) + c2(E) + . . .+ cr(E),

where ck(E) = 0, for all k > r.
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Remark 2.6. Each k-dimensional complex variety V has a cycle class
cl(V ) ∈ H2k(V ), where H∗ denotes homology with locally finite supports
(Borel-Moore homology). If V is a subvariety of an n-dimensional complex
manifold X, then H2k(V ) ∼= H2n−2k(X,X − V ), by Alexander duality.

For a (cellular) tube T around V in X, i.e., the union of (closed) cells
(D) which are dual of (K)-simplexes situated in V (see [8, Section 5.4.2]),
the Alexander isomorphism is the resulting composition:

H2k(V ) ∼= H2n−2k(T , ∂T ) ∼= H2n−2k(T , T \V ) ∼= H2n−2k(X,X\V ).

Alexander duality is a duality theory initiated by J. W. Alexander in
1915. It applies, in particular, to studying the homology of the complement
of a subspace in a manifold. This follows, for instance, by a standard
combination of Poincaré duality and excision. We refer to the literature
for its definition; in particular the reader may look for it in [5].

The resulting homomorphism from cycles to homology passes to alge-
braic equivalence. This yields a cycle map

cl : A∗(X) → H∗(X)

for complex schemes X, which is covariant for proper morphisms, and
compatible with Chern classes of vector bundles.
Example 2.7. Let X be a singular variety in a complex manifold M . Then
one has the Nash blow up X̃

ν→ X that we briefly describe in section
3.2, and the corresponding Nash bundle T̃ → X̃. The corresponding to-
tal Chern class c∗(T̃ ) is an element in the cohomology of X̃. This is a
pseudomanifold that has a fundamental cycle [X̃] (see [5]). Then taking
the cap product of c∗(T̃ ) with [X] we get elements in the homology of X,
which can be pushed forward by ν∗, the induced homomorphism, to the
homology of X. These are by definition the Mather classes of X, that will
appear in the sequel.
Example 2.8. If X is a non-singular submanifold of a complex manifold
M defined by a regular section s of a holomorphic bundle E over M , then
the restriction E|X is isomorphic to the normal bundle of X and by the
usual properties of Chern classes, the total Chern class of X is:

c∗(TX) = c∗(TM |X) · c∗(E|X)−1 .

If we now consider a holomorphic bundle E over M and a regular section
s which defines a singular complete intersection X, then we no longer have
a tangent bundle TX, but we can still define cohomology classes by:

c∗vir(X) = c∗(TM |X) · c∗(E|X)−1 .

Taking the cap product of these classes with the fundamental cycle [X] we
get the Fulton classes mentioned below.
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Chern classes for singular
varieties

When looking at singular varieties, there is no longer a tangent bundle.
A point for defining Chern classes is what plays the role of the tangent
bundle at the singular set. There are several candidates, as for instance
(in the sequel we say more about each of these):

• One may consider a singular variety X embedded in a complex man-
ifold M equipped with a Whitney stratification adapted to X and
consider stratified vector fields. This leads to the Chern-Schwartz
classes.

• One has the Nash bundle T̃ that somehow extends over the singular
set the tangent bundle of the regular part of X. This leads to the
Mather classes. And considering the Mather classes with “appro-
priate weights” given by the local Euler obstruction one arrives to
the MacPherson classes. These satisfy the important functoriality
properties predicted by a conjecture of Deligne and Grothendieck.

• If X is defined by a regular section of a complex vector bundle E over
M , then one has its virtual tangent bundle ofX, TX := TM |X−E|X
and its total Chern class is determined by the Chern classes of TM |X
and E|X . This leads to the Fulton and the Fulton-Johnson classes
of X. These classes actually are defined for every algebraic variety
in a complex manifold by means of the Segre class.

So there are different notions of Chern classes extending to singular
varieties the classical notion for complex manifolds.

20
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3.1 Schwartz classes
The first generalization of Chern classes to singular varieties is due to M.-H.
Schwartz [50]. These classes are the primary obstructions for constructing
stratified frames on a singular variety X in a complex manifold (cf. [12]).
Let us recall this.

We consider a compact complex analytic n-dimensional variety X em-
bedded in a complex m-manifold M endowed with a complex analytic
Whitney stratification {Xα} adapted to X (see for instance [58, 59, 60]).

Adding the stratum M \ X we obtain a Whitney stratification of M .
Let us denote by TM |X the restriction to X of the tangent bundle of M .
A stratified vector field v on X means a continuous section of TM |X such
that if x ∈ Xα then v(x) ∈ Tx(Xα).

Definition 3.1. Let L be a subspace of M which is a union of strata. A
stratified r-field (or frame) v(r) = {v1, . . . , vr} on L is an r-field (or frame)
on M , defined at the points in L, consisting of stratified vector fields.

A basic ingredient in the work of M. H. Schwartz is what she called
“radial extension”. The idea is simple though there are technical difficul-
ties that we shall omit. See [12] for a more detailed exposition of this
construction. First we describe the local process, then we say a few words
about the global process.

Let vα be a vector field in a neighborhood of a point x ∈ Xα with
possibly a singularity at x. By the local topological triviality of Whitney
stratifications (see [57, 21]), there is a product neighborhood W ∼= ∆×Uα

of x in the ambient space, where Uα is a neighborhood of x in Xα, ∆ is a
small disc in the ambient manifold, transversal to Xα at x and V ∩W is
a product (∆ ∩X)×Uα . We may assume that x is the only one possible
singularity of vα in Uα. Denoting by p1 : W → ∆ and p2 : W → Uα the
projections on the two factors of the product, we have a decomposition

TW = p∗1T∆⊕ p∗2TUα.

On the one hand, the pull-back p∗2vα is a continuous vector field on W ,
which is “parallel” to vα. It is stratified, since it is tangent to the fibers of
p1. On the other hand, let ∆ be equipped with the induced stratification
and let v∆ be a stratified vector field on ∆, which is singular at x and it
is radial in the usual sense, (i.e., pointing outwards in all directions of ∆).
Then p∗1v∆ is a stratified vector field on W since it is tangent to the fibers
of p2 and v∆ is stratified. It is thus radial in each slice ∆ × {q} for q in
Uα. The local radial extension of vα in W is the following:

Definition 3.2. The local radial extension of vα, denoted by v, is the
stratified vector field defined on the neighborhood W as the sum:

v = p∗1v∆ + p∗2vα.
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A fundamental property of the local radial extension is that v has no
singularity along the boundary of W , it is pointing outward W along its
boundary, and if vα has a singularity at x with index IndPH(vα, x;Xα),
then the local radial extension v of vα has x as unique singular point in
W , and one has

IndPH(v, x;W ) = IndPH(vα, x;Xα). (3.1)

Recall that if Sε is a small sphere in W around x, then the (local)
Poincaré-Hopf index of v at x, here denoted IndPH(v, x;W ), is the degree
of the Gauss map v/∥v∥ from Sε into the unit sphere in Rm.

Definition 3.3. (cf. [25, 52, 19]) The radial (or Schwartz) index of v at
x ∈W is:

Indrad(v, x;W ) = 1 + IndPH(v, x;W ) .

The local radial extension allows to define the global radial extension.
For this we filter X by the dimension of the strata as follows:

X = Xreg = Xn ⊃ Xn−1 ⊃ · · · ⊃ Xαj
⊃ · · · ⊃ Xα2

⊃ Xα1
⊃ Xα0

where Xαj
are the (not necessarily connected) strata and Xα0

is the lowest
dimensional stratum. The radial extension is defined by induction on the
dimension of the strata, starting with Xα0 . In the first step one considers a
vector field vα0 with isolated singularities on Xα0 , which is compact. One
performs the local radial extension around Xα0

in a tube T (Xα0
), union

of neighborhoods W as above (see [5] for the construction of these tubes).
The vector field v is pointing outward T (Xα0

) along its boundary and the
singularities of v in T (Xα0) are exactly those of vα0 in Xα0 . The vector
field v extends to the next element in the above filtration since the Xα are
complex manifolds. We iterate this process and we arrive to the following
theorem of M. H. Schwartz (see [12] for details):

Theorem 3.4. ([12, Thm 2.3.1]) Let X be a complex analytic variety in
a complex manifold M , and let (Xα)α∈A be a complex analytic Whitney
stratification of M adapted to X. Then there exist stratified vector fields
on a neighborhood of X in M constructed by radial extension as above,
and every such vector field v satisfies:

(1) Given any stratum (Xα), the total Poincaré-Hopf index of v on the
tube T (Xα) is χ(Xα).

(2) v is transverse, outwards pointing, to the boundary of some suitable
small regular neighborhood of X in M .

(3) The Poincaré-Hopf index of v at each singularity x is the same if we
regard v as a vector field on the stratum that contains x or as a vector field
in a neighborhood of x in M . Hence the total Schwartz (or radial) index
of v on X is χ(X).
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Now we are ready to define the Schwartz classes of the compact com-
plex analytic singular variety X in a complex manifold M . Let n,m be
the complex dimensions of X and M , respectively. We endow M with
a Whitney stratification adapted to X and consider a triangulation (K)
of M compatible with the stratification, i.e., that each open simplex is
located in one and only one stratum. We denote by (D) a cellular decom-
position of M dual to (K). If a 2q-cell of (D) meets X, then it intersects
X transversally. To define the Schwartz classes one considers particular
stratified r-frames v(r). A key-step is:

Theorem 3.5. ([12, §10.3, p.175]) Let n,m be, respectively, the complex
dimensions of X and M , and we equip M with a complex analytic Whitney
stratification adapted to X, a triangulation K for which every stratum is
a union of open simplexes, and its dual cell decomposition (D) in M . Let
U be a compact regular neighborhood of X in M obtained as a union of all
cells in (D) which intersect V . Then, for every r = 1, . . . , n, there exist
stratified r-fields v(r) on the skeleton (D)(2q) ∩ U , q = (m − r + 1), such
that:

• If we write v(r) = (v(r−1), vr), where v(r−1) denotes the (r − 1)-field
consisting of the first (r− 1) vector fields in v(r), then v(r−1) is non-
singular on (D)(2q) and it is constructed by parallel translation of a
non-singular r-frame on (D)(2q−1) (using Whitney (a)-property).

• The last vector field vr is constructed by radial extension and the
singularities of v(r) are the singularities vr.

• v(r) has only isolated singularities on (D)(2q), and these are all in X;

Given U and v(r), with r = 2m−2q+1, a neighborhood of X in M and
a frame as in Theorem 3.5, we have that the only singularities of v(r) are
the singularities of vr. These are all contained in X. One has a Poincaré-
Hopf type local index for the frame at each singularity, which is the index
of vr. This can also be regarded as an element in the homotopy group of
the Stiefel-Manifold π2q−1(Wr,m) ∼= Z. We then get an integer associated
to each 2q in U , given by the local index of the frame. By linearity this
gives rise to a 2q-cochain which actually is a cocycle that represents a class
in H2q(U,U \X).

Definition 3.6. The Chern-Schwartz class, or simply the Schwartz class,
cqSc(X) of X is class in H2q(U,U\) ∼= H2q(M,M \X) determined as above
(by an r-frame as in Theorem 3.5). We have Schwartz classes from dimen-
sions m (for r = 1) to m− n+ 1 (for r = n).

It is known that the classes so obtained depend only on X and not on
the stratification, nor on the triangulation.
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Notice that the usual Chern classes are defined using arbitrary frames
and here we are using stratified frames obtained by radial extension, which
is the original way of defining these classes. Yet, we know from [12] that
one can use arbitrary stratified frames. The key point is defining an ap-
propriate index, a way of counting the contribution of each singularity of
an arbitrary stratified field. Let us recall this.

We have the following definitions 10.1.3 and 10.1.4 from [12]:

Definition 3.7. We say that v(r) is normally radial at aσ if for each
stratum Xβ having aσ in its closure and for each sufficiently small tube
Tε(Xα) around Xα in M , one has that each component v1, . . . , vr of v(r)
is transverse (pointing outwards) to the intersection Xβ ∩Tε(Xα). We say
that v(r) is actually radial at aσ if it is normally radial and it is also radial
in its stratum.

So the framings constructed by radial extension are homotopic to nor-
mally radial frames but they may not be radial.

We need to define the local Schwartz index for arbitrary (stratified)
frames; this is similar to the definition of the radial index in (3.3). Let v(r)
be an r-frame defined on the boundary of a (D)-simplex σ of dimension
2m− 2r+2, whose barycenter is a point aσ ∈ Xα ⊂ X. We extend v(r) to
a stratified frame on all of σ \ {aσ}. By construction, the simplex σ meets
transversally all the Whitney strata Xβ containing Xα in their closure.
Let v(r)rad be a stratified radial frame around aσ. We define the difference
between v(r) and v(r)rad at aσ as follows. Consider sufficiently small spheres
Sε, Sε′ in M , ε > ε′ > 0, centered at aσ, and consider the frame v(r) on
Sε ∩σ∩X and v(r)rad on Sε′ ∩σ∩X. We use again the Schwartz’s technique
of radial extension to get a stratified r-frame w(r) on the intersection of σ
with the cylinder

C = [(X ∩ Bε) \ (X∩
◦
Bε′)]

in X bounded by Kε = Sε ∩X and Kε′ = Sε′ ∩X, having finitely many
singularities in the interior of C. At each of these singular points its index
in the stratum, IndPH(w

(r), C ∩ σ), equals its index in the ambient space
M . The difference of v(r) and v(r)rad is defined as:

d(v(r), v
(r)
rad) =

∑
IndPH(w

(r), C ∩ σ) ,

where the sum on the right runs over the singular points of w(r) in C
and each singularity is being counted with the local index of w(r) in the
corresponding stratum. As in the work of M.-H. Schwartz, we can check
that this integer does not depend on the choice of w(r).

Definition 3.8. The Schwartz (radial) index of a stratified r-field v(r) at
aσ ∈ X is:

IndSch
(
v(r), aσ;X

)
= 1 + d(v(r), v

(r)
rad) .
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As before, a stratified r-frame v(r), r ≥ 1, which is non-singular on
(D)(2m−2r+1) and has isolated singularities on (D)2m−2r+2, defines a co-
chain in the obvious way, and this cochain is actually a cocycle. One
obtains a relative class

cq(U, ∂U ; v(r)) ∈ H2q(U,U \X) ∼= H2q(M,M \X) , (3.2)

where U is a regular neighborhood of X in M . One has [12, Theorem
2.14]:

Theorem 3.9. Given X ⊂ M as before, equipped with a Whitney strat-
ification adapted to X and a compatible triangulation (K), let (D) be its
dual cellular decomposition and denote (D)j the union of all cells of di-
mension j. If v(r) is a stratified r-frame, r ≥ 1, which is non-singular
on (D)(2m−2r+1) and has isolated singularities on (D)2m−2r+2, then the
Schwartz indices of v(r), defined as in 3.8, determine a class cq(X; v(r)) ∈
H2q(M,M \ X), 2q = 2m − 2r + 2, and this cocycle represents the cor-
responding Schwartz class of X, independently of the choice of the frame
v(r) obtained by the Schwartz’s radial extension procedure.

The proof is immediate from the definitions and properties of Schwartz
index.
Remark 3.10. In short, this theorem is telling us that the Schwartz class
cqSc(X) of a singular variety X of dimension n in a complex manifold M
is the primary obstruction for constructing a stratified r-frame of TM |X .
Unlike the classical case, now the cell decomposition must be dual to a
triangulation of X compatible with a Whitney stratification adapted to X.

3.2 MacPherson’s classes
In his paper [54] in the famous 1969 Liverpool singularities symposium,
D. P. Sullivan discusses the existence of homology Stiefel classes for real
analytic varieties. In the last page he explains that Deligne outlined a
general conjectural theory of Chern classes for singular varieties based on
ideas of Grothendieck and Hironaka’s theorem about resolution of singu-
larities. Nowadays this is known as the Deligne-Grothendieck conjecture,
and it was proved by MacPherson in [29] by a different way. Let us say a
few words about this.

A constructible set in a complex analytic variety X is a set obtained
from its subvarieties by finitely many of the usual set-theoretic operations:
unions, intersections and differences. A Z-valued constructible function
on X is a function ϕ : X → Z for which X has a finite partition into
constructible sets so that ϕ is constant on each set. Or equivalently, there
exists a complex analytic Whitney stratification of X such that ϕ is con-
stant on each stratum. One has [29, Proposition 1]:
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Proposition 3.11. There is a unique covariant functor F from the cat-
egory V of compact complex algebraic varieties to the category of abelian
groups Ab, whose value on a variety X is the group F (X) of constructible
functions ϕ : X → Z on X such that for every map f : X → Y the function
f∗ : F (X) → F (Y ) satisfies :

f∗(1W )(p) := χ(f−1(p) ∩W ) ,

where 1W is the characteristic function of subsets W ⊂ X, defined by
1W (x) = 1 for x ∈W and 1W (x) = 0 for x /∈W , and χ denotes the usual
Euler characteristic.

MacPherson then proves the Deligne-Grothendieck conjecture:

Theorem 3.12. There exists a natural transformation from the functor
F to homology, which for manifolds assigns to the constant function 1 the
Poincaré dual of the total Chern class.

Explicitly, to any constructible function α on a compact complex alge-
braic variety X we can assign an element c∗(α) in H∗(X) satisfying:

1. f∗c∗(α) = c∗f∗(α);

2. c∗(α+ β) = c∗(α) + c∗(β);

3. IfX is non-singular of complex dimension n, then c∗(1X)=cn−∗(X)∩
[X] where cn−∗(X) is the total cohomology Chern class of TX and
[X] the fundamental class of X.

Definition 3.13. The total Chern-MacPherson class cMP
∗ (X) of any com-

pact complex algebraic variety X is c∗ applied to the constant function 1

on X. More generally, for a constructible function α on X, the homology
class c∗(α) is the total Chern-MacPherson class of the constructible func-
tion. For simplicity, we shall often call this the MacPherson class of the
constructible function α; and call c∗(1X) the MacPherson class of X.

MacPherson’s proof of Theorem 3.12 uses three important ingredients;
one of these is the local Euler obstruction EuX of an complex variety
(cf. [29]).

Let (V, 0) be a reduced, pure-dimensional complex analytic singularity
germ of dimension n in an open set U ⊂ Cm. Let G(n,m) denote the
Grassmanian of complex n-planes in Cm. On the regular part Vreg of V
there is a map σ : Vreg → U × G(n,m) defined by σ(x) = (x, Tx(Vreg)).
The Nash transformation Ṽ of V is the closure of Im(σ) in U × G(n,m).
It is a complex analytic space endowed with an analytic projection map

ν : Ṽ −→ V

which is a biholomorphism away from ν−1(Vsing) .
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Now consider the tautological bundle over G(n,m), the bundle where
the fiber at point P ∈ G(n,m), is the set of vectors v in the n-plane P
and denote by T the corresponding product extension bundle over U ×
G(n,m). We denote by π the projection map of this bundle and let T̃ be
the restriction of T to Ṽ , with projection map π.

We notice that given such a variety X, its Nash transform X̃ is defined
in the obvious way, that springs from the local definition. Similarly one
has a bundle T̃ over X̃ defined as above.

Definition 3.14. The bundle T̃ over the Nash transform X̃ of X is called
the Nash bundle of X (both, in the local and global cases).

Given (V, 0) as before, an element of T̃ is written (x, P, v) where x ∈ U ,
P is an n-plane in Cm based at x and v is a vector in P . So we have maps:

T̃
π−→ Ṽ

ν−→ V .

Notice that ν is a biholomorphism over the regular part Vreg := V \Vsing
and the Nash bundle over ν−1(Vreg) is isomorphic to the tangent bundle.

Let us consider a complex analytic Whitney stratification (Vα) of V
(see for instance [58]). Adding the stratum U \ V we obtain a Whitney
stratification of U . Let us denote by TU |V the restriction to V of the
tangent bundle of U . A stratified vector field v on V means a continuous
section of TU |V such that if x ∈ Vα ∩ V then v(x) ∈ Tx(Vα). By Whitney
condition (a) one has the following lemma in [11]:

Lemma 3.15. Every stratified vector field v on a subset A ⊂ V has a
canonical lifting to a section ṽ of the Nash bundle T̃ over ν−1(A) ⊂ Ṽ .

Now consider a stratified radial vector field v(x) in a neighborhood of
0 in V , i.e., there is ε0 such that for every 0 < ε ≤ ε0, v(x) is pointing
outwards the ball open ball in Cm centered at 0 of radius ε, Bε, over the
boundary Sε := ∂Bε.

The following interpretation of the Euler obstruction is given in [11].
We refer to [29] for the original definition using 1-forms.

Definition 3.16. Let v be a radial vector field on V ∩Sε and ṽ the lifting
of v on ν−1(V ∩ Sε) to a section of the Nash bundle. The local Euler
obstruction (or simply the Euler obstruction) EuV (0) is defined to be the
obstruction to extending ṽ as a nowhere zero section of T̃ over ν−1(V ∩Bε).
This is an integer, actually a class in H2n

(
ν−1(V ∩Bε), ν

−1(V ∩Sε)
) ∼= Z.

The second ingredient used by MacPherson is the Mather class that we
now introduce; the third is the so-called graph construction in the algebraic
context. We remark that the analyticity of the graph construction was
proved by M. Kwieciński [26] and therefore MacPherson’s theorem and
proof work in the complex analytic category.
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Let X be a complex analytic variety of dimension n, let X̃ ν→ X be its
Nash transformation and let T̃ → X̃ be the Nash bundle. Then one has the
usual Chern classes of T̃ defined as above, ci(T̃ ) ∈ H∗(X̃). The variety X̃
is singular in general, but since it is complex analytic, it is automatically a
pseudomanifold (see for instance [5]) and therefore there is a fundamental
class [X̃] ∈ H2n(X̃) and a Poincaré homomorphism H∗(X̃) → H2n−∗(X̃).
Composing this with the homomorphism in homology induced by the pro-
jection ν, we get classes in the homology of X: these are the Mather
classes, introduced in [29] (see Example 2.7):

Definition 3.17. The Mather classes of X, cMa
j (X), are the Chern classes

of the Nash bundle of X, carried to the homology of the Nash transform
X̃ by the Poincaré homomorphism, and then pushed forward to the ho-
mology of X by the homomorphism induced by the projection. The total
Mather class is cMa(X) = ν∗(c(T̃ )∩ [X̃]). More generally, to any algebraic
cycle

∑
njVj in X, where the nj are integers and the Vj are irreducible

subvarieties of X, we can associate its Mather class:

cMa
(∑

njVj

)
=
∑

njιj∗c
Ma(Vj) ,

where ιj is the inclusion of Vj in X.

MacPherson’s next step is writing a formula that expresses c∗(α) as
the Mather class of an associated algebraic cycle. For this he proves [29,
Lemma 2]:

Lemma 3.18. There exists an isomorphism T from the group of algebraic
cycles in X to the group of constructible functions on X defined by:

T
(∑

njVj

)
(p) =

∑
njEuVj

(p) ,

where EuVj
(p) is the local Euler obstruction of Vj at the point p ∈ X.

Then MacPherson proves ([29, Theorem 2] and [20, Example 19.1.7]):

Theorem 3.19. c∗ := cMaT−1 satisfies the requirements for c∗ in Theo-
rem 3.12.

Then cMaT−1(1X) is the (total) MacPherson class of X that we denote
by cMP

∗ (X). Notice that one actually has a total MacPherson class cMP (α)
for every constructible function α on X, and we know from [29] that one
has:

cMa(X) = cMP (EuX) , (3.3)

where EuX is the local Euler obstruction of X, which is a constructible
function.
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Recall that in the previous section we defined the Schwartz classes
of a singular analytic variety X of dimension n embedded in a complex
manifold M of dimension m. Brasselet and Schwartz proved in [11] that
these classes coincide with MacPherson’s classes c∗(1X) via Alexander
duality isomorphism Hm−∗(M,M \X) → H∗(X).

In fact the theorem in [11] makes this statement precise and gives an
explicit cycle representing the MacPherson class. Let us recall this.

We endow M with a Whitney stratification adapted to X and consider
a triangulation (K) of M compatible with the stratification. We denote
by (D) a cellular decomposition of M dual to (K). Recall that if a 2q-
cell dα of (D) meets X, then it is dual to a 2(m − q)-simplex σα of (K)
contained in X. We recall too that to define the Schwartz classes one
considers particular stratified r-frames v(r). These have no singularity on
the (2q − 1)-skeleton of (D), where q = m− r + 1, and (at most) isolated
singularities on the 2q-cells dα. At each such cell, the frame v(r) has a
Poincaré-Hopf type index at the corresponding singularity σ̂α which is the
barycenter of σα, also barycenter of dα, that we may denote by I(v(r), σ̂α);
of course this index is 0 if there is no singularity of v(r) in that cell. Then
we have the following theorem of Brasselet and Schwartz:

Theorem 3.20. The Alexander duality isomorphism Hm−∗(M,M \X) →
H∗(X) carries the Schwartz class c∗Sc(X) ∈ H∗(M,M \X) to the Chern-
MacPherson class cMP

∗ (X) ∈ H∗(X). In fact, the MacPherson class
cMP
r−1(X) is represented in H2(r−1)(X) by the cycle:∑

σα⊂X

I(v(r), σ̂α) · σα ,

where the sum runs over all the simplexes σα of dimension 2(r− 1) which
are contained in X, and I(v(r), σ̂α) is the (Poincaré-Hopf) index in the
dual cell of each such simplex σα of a stratified vector field v(r) constructed
by radial extension.

Hence, from now on we denote the classes so obtained in homology by
cSM
∗ (X) and call them the Chern-Schwartz-MacPherson classes of X, or

simply Schwartz-MacPherson classes.
Remark 3.21. Brylinski, Dubson and Kashiwara [13] showed that the
MacPherson classes of a singular variety can be studied by means of D-
modules. In fact the micro-local viewpoint, through the theory of La-
grangian cycles, has proved to be very important and fruitful to study
these characteristic classes (see for instance [45, 47]).
Remark 3.22. In this section we defined the Mather and MacPherson’s
classes of singular varieties X as elements in the homology of X. We
remark however that the construction of Chern classes of vector bundles
as the inverse of the Segre classes, shows that if X is algebraic, then the
Mather and the MacPherson classes actually live in the Chow group of X.
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3.3 Fulton classes
Consider first the case where the singular variety X is a complete inter-
section in some complex manifold M , defined by the zero set of a regular
section of some holomorphic complex vector bundle E over M .

In this case, there is a morphism i : X → M that is local complete
intersection, as in [20, B.7.6.]. If M = CPn, X is a complete intersection
if the number of generators of the ideal of X is exactly the codimension
of X.

Then E plays the role of a normal bundle NXM (see [20, B.7.1.]) and
one has the virtual tangent bundle:

τX := TM |X − E|X
an element in the Grothendieck group of complex vector bundles on X.
The total Chern class of τX is well-defined and this is:

c∗(τX) := c∗(TM |X) · c∗(E|X)−1 .

The equivalence between these and the usual Chern classes is discussed in
[20, Ch. 19].

Cap product with the fundamental class [X] carries these Chern coho-
mology classes into the homology of X: in this particular case, these are
the Fulton classes of X.

This definition works in general, for varieties that may not be complete
intersection, using the Segre class, which for bundles is the inverse of the
Chern class.

The Segre classes extend to the more general setting of (algebraic)
cones over an algebraic variety (or scheme). This includes several familiar
examples, including all vector bundles. And it also includes many other
important families. One of these is the normal cone C = CXY of a closed
subvariety X in a variety Y . Let us say a few words about this.

As a motivation, recall first that in algebraic geometry one studies
algebraic sets, i.e., subsets of Kn, where K is an algebraically closed field,
that here we take to be the complex numbers K = C. The algebraic sets
are by definition the common zeros of a set of polynomials in n variables.
If X is such an algebraic set, one considers the commutative ring R of all
polynomial functions X → C. Since K = C is algebraically closed, the
maximal ideals of R correspond to the points of X, and the prime ideals
of R correspond to the irreducible subvarieties of X.

Let us now forget this information for a moment and consider an arbi-
trary commutative ring R, and define its spectrum, denoted Spec(R), to
be the set of all prime ideals. For any ideal I of R, define VI to be the set
of all prime ideals that contain I, and we equip Spec(R) with the Zariski
topology by defining the closed sets to be{

VI | I is an ideal of R
}
.
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Coming back to the previous example where R is the ring of polynomial
functions X → C, the spectrum of R consists of the points of X together
with elements corresponding to all subvarieties of X. The points of X
are closed in the spectrum, while the elements corresponding to subvari-
eties of positive dimension have a closure consisting of all their points and
subvarieties.

Therefore the topological space Spec(R) somehow is a refinement of the
algebraic space X with its Zariski topology. By studying spectra of rings
instead of algebraic sets, one can generalize concepts of algebraic geometry
to non-algebraically closed fields and beyond, eventually arriving to the
concept of schemes, due to A. Grothendieck.

There is a relative version of this concept (actually a functor) called the
relative or global spectrum. If X is an algebraic variety and we are given a
quasi-coherent sheaf A of OX -algebras, there is a scheme SpecX(A) and a
morphism f : SpecX(A) → X satisfying certain important properties (see
[24, §5]). This allows us, among other things, to define key concepts for
this presentation: The normal cone and the Segre class of a subvariety X
in a variety Y .

Definition 3.23. The normal cone to X in Y , C = CXY is defined by:

C = Spec
( ∞∑

n=0

In/In+1
)

where I is the ideal sheaf defining X in Y (see [20, B.6.1.]).

When X and Y are non-singular, this corresponds to the usual normal
bundle. More generally, if the embedding of X in Y is regular, the normal
cone is the vector bundle on X corresponding to the dual of the sheaf I/I2,
and it is also called the normal bundle of X (see [20, B.7.1.]).

Definition 3.24. The (total) Segre class of X in Y , denoted s(X,Y ), is:

s(X,Y ) =
∑
i≥0

p∗
(
c1(O(1))i ∩ [P (CXY )]

)
∈ A∗X,

where P (CXY ) is the projectivized normal cone, p the projection from
P (CXY ) to X and O(1) is the dual tautological bundle of CXY ⊕ 1 (see
[20, B.6.3.]).

In case X is regularly embedded in Y , then the normal cone is a vector
bundle and [20, Proposition 4.1] implies that the Segre class s(X,Y ) is
the cap product of the total inverse Chern class of the normal bundle with
[X]. By Poincaré homomorphism, that is:

s(X,Y ) = c(NXY )−1 ∩ [X] . (3.4)
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The following result [20, Corollary 4.2.2] gives a beautiful and useful
characterization of the Segre class. This could be taken as a definition
of the Segre class of X in Y with no need of introducing the previous
concepts:

Proposition 3.25. Let X be a subvariety of a compact variety Y , and let
Ỹ be the blow-up of Y along X. Let X̃ ⊂ Ỹ be the exceptional divisor and
η : X̃ → X the projection. Then the total Segre class of X in Y is:

s(X,Y ) =
∑
i≥0

η∗
(
c1(O(1))i ∩ [X̃]

)
.

We remark that all terms in this formula make sense in the complex
analytic category, so we can take this as the definition of the Segre class
in that setting.

Observe that if X is a complex submanifold (i.e., non-singular) of a
complex manifold M , then one has a C∞ splitting of the tangent bundle
of M restricted to X:

TM |X = TX ⊕NXM

where the latter is the normal bundle. By general properties of Chern
classes (see for instance [36]) this implies:

c∗(TM |X) = c∗(TX) · c∗(NXM)

regarded in the cohomology of X. Notice too that TM |X , TX and NXM
are all complex vector bundles and in the Grothendieck group K(X) of
vector bundles on X we have:

[TX] = TM |X −NXM .

Now following Fulton [20, 4.2.6], let X be an algebraic variety embed-
ded in a compact algebraic manifold M , and consider the class:

cFu
∗ (X) := c∗(TM |X) ∩ s(X,M) ∈ A∗(X) .

This class is independent of the choice of embedding, and if X is a local
complete intersection in M , then one has the virtual tangent bundle of X:

TvirX := TM |X −NXM

a well-defined element in the corresponding Grothendieck group K(X),
and one has:

cFu
∗ (X) = c∗(TM |X) c(NXM)−1 ∩ [X] = c∗(TvirX) ∩ [X] ∈ A∗(X) .



Chapter 3. Chern classes for singular varieties 33

Definition 3.26. Let X be an n-dimensional complex algebraic variety
embedded in a compact algebraic manifold M . Then the class:

cFu
∗ (X) := c∗(TM |X) ∩ s(X,M) ∈ A∗(X) ,

is called the total Fulton class of X.

By the above comments, if X is a local complete intersection in M ,
this is the cap product of the Chern class of the virtual tangent bundle
with [X]. By definition:

cFu
∗ (X) = 1 + cFu

1 (X) + . . .+ cFu
n (X) ,

with cFu
i (X) ∈ Ai(X). The various cFu

i (X) are called the Fulton classes
of X.

If X and M are complex analytic, not necessarily algebraic, the above
definitions hold in the homology of X.

Remark 3.27. If X is regularly embedded in M the Fulton class coincides
with another class called the Fulton-Johnson class denoted by cFJ

∗ (X),
which uses the conormal sheaf NXM of X in M , i.e., if I is as in Definition
3.23, NXM = I/I2.
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Milnor classes

So far we have discussed the Schwartz-MacPherson and the Fulton classes
of singular varieties. It is natural to ask how these are related, and that is
the topic we explore in this chapter.

Let X be an n-dimensional complex variety embedded in a compact
manifold M.

Definition 4.1. The total Milnor class of X is, up to sign, the difference
between the total Schwartz-MacPherson and Fulton classes:

M(X) := (−1)n
(
cFu(X)− cSM (X)

)
. (4.1)

This is the sum of the corresponding Milnor classes Mr(X) in all (even)
dimensions. Milnor classes are defined globally on X, yet one has (see
[43, 10, 55, 3]) that these classes have support in the singular set Xsing

and therefore they vanish in dimensions higher than that of Xsing.

Milnor classes appeared first implicitly in [1, 2] and [41]. The actual
name of Milnor classes was coined by various authors at about the same
time (see [9, 10, 62, 43]).

The genesis of the name is related to an important invariant associated
with germs of holomorphic functions.

Consider a holomorphic function f : (Cn+1, 0) → (C, 0) with a critical
point at 0. Let Bε be an open ball in Cn+1 centered at 0 of radius ε > 0
sufficiently small and let N(ε, δ) = f−1(∂Dδ) ∩ Bε for 0 < δ ≪ ε, where
∂Dδ is the boundary of the disc in C of radius δ > 0 and centered at 0.
Then,

f : N(ε, δ) −→ ∂Dδ
∼= S1

is a locally trivial fibration. The fiber Ft = f−1(t) ∩ Bε with t ∈ ∂Dδ is
called the Milnor fiber of f and denoted by Ff .

One knows from [35] that Ff has the homotopy type of a CW -complex
of middle dimension n. Furthermore, if f has an isolated critical point at 0

34
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then Ff actually has the homotopy type of a bouquet of spheres of middle
dimension n, Ff ≃

∨
µ S

n. One has:

Definition 4.2. If the map f has an isolated critical point, say at 0, then
the number µ above is the Milnor number of f at 0.

Example 4.3. Let f be the complex polynomial:

f(z0, ..., zn) = z20 + · · · z2n .

Then f has a unique critical point at 0 and it is an exercise to show that
the Milnor fiber is diffeomorphic to the total space of the unit tangent
bundle of the n-sphere Sn. Hence the Milnor number is 1.

In general one has (see [35, Theorem 7.2] that if f has an isolated
critical point, then its Milnor number equals the multiplicity:

µ(f) = dimC
On+1,0(

∂f
∂z0

, · · · , ∂f
∂zn

) .
Thus, for instance, if f is the Pham-Brieskorn polynomial za0

0 + · · · za0
n ,

ai ≥ 2, then (see [35, Thm. 9.1]):

µ(f) = (a0 − 1) · (a1 − 1) · . . . · (an − 1).

It is well-known (see, e. g., [12, 3.2.1]) that if f has an isolated critical
point at 0, so that V = f−1(0) is a hypersurface with an isolated singular-
ity, and v is a vector field on V with an isolated singularity at 0, then the
Milnor number of f is, up to sign, the difference between the radial and
the GSV indices of v, which are two invariants extending for singular vari-
eties the classical Poincaré-Hopf index. This is at the core of the following
theorem [52, Theorem 2.4] and its corollary below.

Theorem 4.4. Let X be the zero locus of a regular section s of a holomor-
phic complex vector bundle E of rank k ≥ 1 over a compact complex mani-
fold M of dimension n+k; assume the singular set of X consists of isolated
points, say x1, . . . , xr. Then the Fulton and the Schwartz-MacPherson
classes in H0(X) differ by the sum of the local Milnor numbers:

cFu
0 (X) = cSM

0 (X) + (−1)n−1
r∑

i=1

µi .

The proof of Theorem 4.4 is via Chern-Weil theory, using the virtual
index of vector fields, which is a localization of the top Fulton class (cf [56]).
It was first proved by Suwa in [55] that the Milnor classes are localized at
the singular set, and therefore the theorem above yields:
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Corollary 4.5. With the hypotheses of Theorem 4.4, the total Milnor class
of X is the sum of the local Milnor numbers:

M(X) =

r∑
i=1

µi .

So Milnor classes are a generalization of the classical Milnor number
to compact varieties X with arbitrary singular set.

This led Parusiński to extending the notion of Milnor number to non-
isolated hypersurface singularities. We refer to [39] for details on the orig-
inal definition.

We now recall another way to view this invariant, given in [40], which
is responsible for an important characterization of the Milnor classes of
hypersurfaces.

We first call to mind the classical Gauss-Bonnet theorem. This says
that if M is a compact m-dimensional complex manifold with tangent
bundle TM , then its topological Euler characteristic can be expressed as:

χ(M) =

∫
M

Ω

where Ω is an m− form representing the top cohomology Chern class.
As pointed out in [40, Section 5], if L is a holomorphic line vector

bundle over M and s is a section transverse to the zero section, so its
zero set Z is a non-singular hypersurface in M and its normal bundle is
isomorphic to L|Z , then the Gauss-Bonnet theorem yields:

χ(Z) =

∫
M

c1(L) · c(M) · c(L)−1 ,

where c( ) denotes the total cohomology Chern class. If we now drop the
hypothesis of s being transversal to the zero section, then its divisor Z is a
hypersurface in M with singular set the points of non-transversality with
the zero section. In this setting, Parusiński’s generalized Milnor number
can be regarded as being (up to sign) the correction term coming from the
singular set in the above formula:

µ(Z) := (−1)n
(
χ(Z)−

∫
M

c1(L) · c(M) · c(L)−1
)
.

If Z has only isolated singularities then the formula above implies that
µ(Z) is the sum of the usual Milnor numbers at the singularities of Z.

In [42] the authors give a formula for the invariant µ(Z) in the vein of
[41], describing the generalized Milnor number in terms of a local invariants
of the singularities of Z and Chern-Schwartz-MacPherson’s classes. For
this, consider a complex analytic Whitney stratification S = {S} of Z
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with connected strata, such that Zsing is union of strata; let γS be the
function defined on each stratum S as follows. For each x ∈ S, let Fx be
a local Milnor fibre, and let χ(Fx) be its Euler characteristic. Then

µ(x;Z) := (−1)n (χ(Fx)− 1) ,

is the local Milnor number of Z at x. This number is constant on each
Whitney stratum, so we denote it by µS . Then γS is defined inductively
(starting with the strata S of largest dimension) by:

γS = µS −
∑

S′ ̸=S, S′⊃S

γS′ . (4.2)

Then [42, Theorem 4] says:

Theorem 4.6.

µ(Z) =
∑
S∈S

γS

∫
S

(
c(L|S )

−1 ∩ cSM (S)
)
.

Yokura conjectured (unpublished; cf. [62]) that Theorem 4.6 could be
extended to a theorem concerning all Milnor classes. This was proved by
Parusiński and Pragacz in [43]:

Theorem 4.7. If M is an n-dimensional compact complex manifold, and
Z is a hypersurface in M , then its total Milnor class can be expressed as:

M(Z) :=
∑
S∈S

γS

(
c(L|Z )

−1 ∩ (iS,Z)∗c
SM (S)

)
,

where iS,Z : S ↪→ Z is the inclusion.
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Lê classes

Lê cycles are analytic cycles encoding deep information about singularity
germs f : (CN , 0) → (C, 0) and allow describing the topology and diffeo-
morphism type of the local Milnor fibres. These were introduced by D.
Massey in [32].

In the affine context, we have the description by Schürmann and Tibăr
in [49] about the Schwartz-MacPherson classes of a complex algebraic
proper subset X ⊂ CN using algebraic cycles. Motivated by this de-
scription the definition of affine Lê cycles appears and they are a global
extension of Massey’s local Lê cycles. These are generalized to the com-
pact projective setting via projective Lê cycles. The explanation of the
relationship between the affine and projective Lê cycles can be seen in
[37].

Then, we consider the class of Lê cycles globalized to projective hy-
persurfaces and we show that the information encoded in those classes
is equivalent to the information encoded in the Milnor classes, since the
global Lê classes determine the Milnor classes and conversely.

5.1 Local Lê cycles

Let us recall first the definition of Lê cycles and Lê numbers of germs of
complex analytic functions introduced by D. Massey in [30] (see also [32]).

Let U be an open subset of Cn+1 containing the origin, h : (U, 0) →
(C, 0) the germ of an analytic function, z = (z0, · · · , zn) a linear choice of
coordinates in Cn+1 and Σ(h) = V

(
∂h
∂z0

, . . . , ∂h
∂zn

)
the critical set of h. To

define the Lê cycles we need to define the relative polar cycles first, which
are associated to the relative polar varieties:

38
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Definition 5.1. For each k with 0 ≤ k ≤ n, the k-th local polar variety
Γk
h,z is the analytic space V

(
∂h
∂zk

, . . . , ∂h
∂zn

)
/Σ(h).

Hence the analytic structure of Γk
h,z does not depend on the structure

of Σ(h) as a scheme, but only as an analytic set. At the level of ideals, Γk
h,z

consists of those components of V
(

∂h
∂zk

, . . . , ∂h
∂zn

)
which are not contained

in the set Σ(h). Massey denotes by
[
Γk
h,z

]
the cycle associated with the

space Γk
h,z (see [32, p. 9]).

Definition 5.2. For each 0 ≤ k ≤ n, the k-th local Lê cycle Λk
h,z of h with

respect to the coordinate system z is the cycle:

Λk
h,z :=

[
Γk+1
h,z ∩ V

(
∂h

∂zk

)]
−
[
Γk
h,z

]
.

If a point p = (p0, · · · , pn) ∈ U is an isolated point of the intersection
of Λk

h,z with the cycle of V (z0 − p0, · · · , zk−1 − pk−1), then the k-th Lê
number λkh,z(p) is the intersection number at p :

λkh,z(p) :=
(
Λk
h,z · V (z0 − p0, . . . , zk−1 − pk−1)

)
p
.

It is proved in [31, Theorem 7.5] (see also [32, Theorem 10.18]) that
for a generic choice of linear coordinates, all the Lê numbers of h at p are
defined and they are independent of the coordinates choice. Hence, these
are called the generic Lê numbers of h at p and they are denoted simply
by λkh(p).

Furthermore, the generic Lê numbers of h are constant along the strata
of any Whitney stratification of V (h) (see [32, Thm 10.19]).

An important feature of the generic Lê numbers is that they allow to
describe a handle decomposition of the Milnor fiber Fh,p of h at p. In fact,
Massey proved in [32, Theorem 3.3; Theorem 10.3] the following:

Theorem 5.3. Let U be an open subset of Cn+1, let h : (U, 0) → (C, 0)
be a germ of an analytic function, let s denote dim0 Σ(h), and let z =
(z0, · · · , zn) be a generic choice of linear coordinates in Cn+1. Then the
local Lê cycles are a collection of analytic cycle germs Λi

h,z in Σ(h) at the
origin such that each Λi

h,z is purely i-dimensional and properly intersects
V (z0, . . . , zi−1) at the origin, and for all p ∈ Σ(h) near 0 we have that

1. If s ≤ n− 2, then Fh,p is obtained up to diffeomorphism from a real
2n-ball by successively attaching λn−k

h,z (p) k-handles, where n − s ≤
k ≤ n;

2. If s = n− 1, then Fh,p is obtained up to diffeomorphism from a real
2n-manifold with a homotopy-type of a bouquet λn−1

h,z (p) circles by
successively attaching λn−k

h,z (p) k-handles, where 2 ≤ k ≤ n.
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3. The reduced Euler characteristic of the Milnor fiber of h at p is given
by

χ̃ (Fh,p) := χ (Fh,p)− 1 =

n∑
i=0

(−1)n−iλih,z(p).

Massey gives an alternative characterization of the local Lê cycles of a
hypersurface singularity, which leads to a generalization of the Lê numbers
that can be applied to any constructible complex of sheaves. From this
more general viewpoint, the case of the Lê numbers of a function h is
just the case where the underlying constructible complex of sheaves is the
sheaf of vanishing cycles along h. Let us explain this. We assume some
basic knowledge on derived categories, hypercohomology and sheaves of
vanishing cycles as described in [18].

If X is a complex analytic space then Db
c(X) denotes the derived cat-

egory of bounded, constructible complexes of sheaves of C-vector spaces
on X. We denote the objects of Db

c(X) by a notation of the form F •.
The shifted complex F •[l] is defined by (F •[l])

k
= F l+k and its differen-

tial is dk[l] = (−1)ldk+l. The constant sheaf CX on X induces an object
C•

X ∈ Db
c(X) by letting C0

X = CX and Ck
X = 0 for k ̸= 0.

If h : X → C is an analytic map and F • ∈ Db
c(X) then we denote the

sheaf of vanishing cycles of F • with respect to h by ϕhF •.
For F • ∈ Db

c(X) and p ∈ X, we denote by H∗ (F •)p the stalk coho-
mology of F • at p, and by χ (F •)p its Euler characteristic. That is

χ (F •)p =
∑
k

(−1)k dimC Hk (F •)p .

We also denote by χ (X,F •) the Euler characteristic of X with coeffi-
cients in F •, i.e.,

χ (X,F •) =
∑
k

(−1)k dimC Hk (X,F •) ,

where H∗ (X,F •) denotes the hypercohomology groups of X with coeffi-
cients in F •.

When F • ∈ Db
c(X) is S-constructible, where S is a Whitney stratifica-

tion of X, we denote it by F • ∈ Db
S(X). We would like to point out the

following result which appears in [18, Theorem 4.1.22]:

χ (X,F •) =
∑
S∈S

χ (F •
S)χ(S),

where χ (F •
S) = χ (F •)p for an arbitrary point p ∈ S.

Let M be a complex manifold. For a complex analytic subspace X of
M , we denote its conormal space by T ∗

XM. That is

T ∗
XM := closure

{
(p, θ) ∈ T ∗M | p ∈ Xreg and θ |TpXreg

≡ 0
}
,
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where T ∗M is the cotangent bundle of M and Xreg is the regular part of
X. The following definition is standard in the literature:

Definition 5.4. Let X be an analytic subspace of a complex manifold M ,
{Sα} a Whitney stratification of M adapted to X and p ∈ Sα a point in X.
Consider g : (M,p) → (C, 0) a germ of holomorphic function such that dpg
is a non-degenerate covector at p with respect to the fixed stratification,
that is, dpg ∈ T ∗

Sα
M and dpg /∈ T ∗

S′M , for all stratum S′ ̸= Sα. And let N
be a germ of a closed complex submanifold of M which is transversal to
Sα, with N ∩ Sα = {p}. Define the complex link lSα

of Sα by:

lSα := X ∩N ∩Bδ(p) ∩ {g = w}

for 0 < |w| ≪ δ ≪ 1 and Bδ(p) is the ball is with center p and radius δ.
The normal Morse datum of Sα is defined by:

NMD (Sα) := (X ∩N ∩Bδ(p), lSα
) ,

and the normal Morse index η (Sα, F
•) of the stratum is:

η (Sα, F
•) := χ (NMD (Sα) , F

•) ,

where the right-hand-side means the Euler characteristic of the relative
hypercohomology.

By the result of M. Goresky and R. MacPherson in [21, Theorem 2.3] we
get that the number η (Sα, F

•) does not depend on the choices of p ∈ Sα, g
and N . Notice that by [18, Remark 2.4.5(ii)], it follows that

η (Sα, F
•) = χ (X ∩N ∩Bδ(p), F

•)− χ (lSα
, F •) .

Lemma 5.5. Let F • ∈ Db
S(X) with S = {Sα} a Whitney stratifica-

tion of X. Let p ∈ Sα and g : (M,p) → (C, 0) be a holomorphic func-
tion germ such that dpg is a non-degenerate covector at p ∈ Sα with re-
spect to the fixed stratification. Set d = dimX, dα = dimSα and mα :=

(−1)d−dα−1χ
(
ϕg |N

F •
|N

)
p
, where ϕg |N

F •
|N

is the sheaf of vanishing cycles

of F •
|N

with respect to g |N , p ∈ Sα and N is a germ of a closed complex
submanifold which is transversal to Sα with N ∩ Sα = {p}. Then

mα = (−1)d−dαη (Sα, F
•) .

Proof. By [18, Equation (4.1), p. 106] we have that
Hi (ϕgF

•)p ≃ Hi+1
(
Bϵ(p) ∩X,Bϵ(p) ∩X ∩ g−1(ς), F •), for 0 < |ς| ≪

ϵ≪ 1. Hence

χ
(
ϕg |N

F •
|N

)
p
= −χ

(
Bϵ(p) ∩X ∩N,Bϵ(p) ∩X ∩N ∩ g−1(ς), F •) ,

and therefore mα = (−1)d−dαη (Sα, F
•).
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Remark 5.6. Everything we have defined so far for a constructible com-
plex of sheaves is defined by J. Schürmann and M. Tibăr in [49] for con-
structible functions, and the two are equivalent constructions. In fact,
given F • ∈ Db

c(X), we have naturally associated the constructible func-
tion on X given by

β(p) = χ (F •)p .

Moreover, the converse also holds (see [48]), i.e., given any constructible
function β on X there is F • ∈ Db

c(X) such that

β(p) = χ (F •)p .

In particular, for any constructible function β on X we have that

η (Sα, β) = χ (X ∩N ∩Bδ(x), β)− χ (lSα , β) . (5.1)

LetX be an analytic germ of an d-dimensional space which is embedded
in some affine space, M := Cn+1, so that the origin is a point of X.
Consider a bounded, constructible sheaf F • on X or M .

For a generic choice of linear coordinates z = (z0, . . . , zn) for Cn+1,
Massey in [31, Proposition 0.1] proves that there exists analytic cycles
Λi
F•,z in X which are purely i-dimensional, such that Λi

F•,z and
V (z0 − p0, . . . , zi−1 − pi−1) intersect properly at each point p=(p0, . . . , pn)
∈ X near the origin, and such that

χ (F •)p =

d∑
i=0

(−1)d−i
(
Λi
F•,z · V (z0 − p0, . . . , zi−1 − pi−1)

)
p
.

Moreover, whenever such analytic cycles Λi
F•,z exist, they are unique.

Massey also sets λiF•,z(p) =
(
Λi
F•,z · V (z0 − p0, . . . , zi−1 − pi−1)

)
p

and
calls it the i-th characteristic polar multiplicity F •. When β(p) = χ (F •)p
we also denote Λi

F•,z by Λi
β,z.

In [32, Corollary 10.15] was proved that for a generic choice of lin-
ear coordinates z = (z0, . . . , zn), if we let Li be the i-dimensional linear
subspace V (z0, . . . , zn−i) then,

Λk
F•,z =

∑
α

mαPk

(
Sα

)
=
∑
α

(−1)d−dαη (Sα, F
•)Pk

(
Sα

)
. (5.2)

where Pk

(
Sα

)
is the absolute affine k-dimensional polar variety, with re-

spect to the flag given by the Li above, as defined by Lê and Teissier in
[28]. We are going to define these affine polar varieties later on.
Remark 5.7. By [32, Remark 10.5, Remark 10.7] it follows that if we have
h : (U, 0) → (C, 0) with U an open neighborhood of the origin in Cn+1, if
X = Σ(h) is the critical set of h, with d = dim0X and if we let

P • = (ϕhC•
U ) |Σ(h)

[n− d],



Chapter 5. Lê classes 43

then for generic linear coordinates z, for all i and for all p ∈ X near the
origin, we have Λi

P•,z = Λi
h,z and λiP•,z = λih,z(p). Also

mα = (−1)d−dαη (Sα, P
•) = (−1)d−dαη (Sα, w) ,

where w is the constructible function defined by w(p) = χ (P •)p = χ (Fh,p)−
1 with Fh,p being the Milnor fiber of h at p. Hence, by equation (5.2) we
have that

Λi
h,z =

∑
α

(−1)d−dαη (Sα, w)Pi

(
Sα

)
.

This is the description of the local Lê cycles in terms of local polar varieties
we need in order to define the global Lê cycles for compact projective
varieties.

5.2 Affine Lê cycles

In the affine context, Schürmann and Tibăr in [49] describe the Schwartz-
MacPherson classes of a complex algebraic proper subset X ⊂ CN using
algebraic cycles, which were called MacPherson cycles. In this construction
a key role is played by the affine polar varieties, which we now describe
(see [28]).

Definition 5.8. For each 0 ≤ i ≤ N , let Li be a linear subvariety of CN

of codimension i. If X is of pure dimension d < N , the k-th affine polar
variety of X, with 0 ≤ k ≤ d, is the following algebraic set

Pk (X,Lk+1) := {x ∈ Xreg | dim (TxXreg ∩ Lk+1) ≥ d− k}.

For Lk+1 sufficiently general, the polar variety Pk (X,Lk+1) has pure di-
mension k. We have Pd(X) := X and we set Pk(X) := ∅ for k > d.

We fix an Whitney stratification {Sα} of X with connected strata. In
this context X does not need to be pure dimensional and we only assume
d = dimX < N . Let β be a constructible function on X with respect to
this Whitney stratification.

Schürmann and Tibăr make the following definition.

Definition 5.9. The k-th MacPherson cycle of β (0 ≤ k ≤ d) is:

MPk (β, Lk+1) :=
∑
α

(−1)dαη (Sα, β)Pk

(
Sα, Lk+1

)
,

where dα = dimSα and Pk

(
Sα, Lk+1

)
is the k-th global affine polar variety

of the algebraic closure Sα ⊂ CN of the stratum Sα.
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The main result of [49] is that, for generic Lk+1, the cycle
MPk (β, Lk+1) represents the k-th dual Schwartz-MacPherson class c̆SM

k (β)
in the Chow group Ak(X), where čSM

k (β) = (−1)kcSM
k (β). That is, Schür-

mann and Tibăr describe the Schwartz-MacPherson classes via affine polar
varieties:

cSM
k (β) = (−1)k [MPk(β)]

= (−1)k
∑
α

(−1)dαη (Sα, β)
[
Pk

(
Sα

)]
. (5.3)

Definition 5.10. We define the k-th affine Lê cycle of β by

ΛA
k (β, Lk+1) :=

∑
α

(−1)d−dαη (Sα, β)Pk

(
Sα, Lk+1

)
.

Notice that

ΛA
k (β, Lk+1) = (−1)dMPk (β, Lk+1) .

Hence, by equation (5.3) we have that

cSM
k (β) = (−1)k+d

[
ΛA
k (β)

]
= (−1)k+d

∑
α

(−1)d−dαη (Sα, β)
[
Pk

(
Sα

)]
. (5.4)

An interesting feature of these affine Lê cycles of X is that they are a
global extension of the Lê cycles defined by Massey:

Proposition 5.11. Let X be a closed subvariety of CN and let β be a
constructible function on X with respect to a Whitney stratification {Sα}
of X. Let x ∈ X and let U ⊆ CN be an open neighborhood of x. Let
{x} = LN ⊂ LN−1 ⊂ · · · ⊂ L1 ⊂ L0 = CN be a generic flag of linear
subvarieties of CN with Li being of codimension i and such that Li ∩U =
V (z0, . . . , zi−1) where z = (z0, . . . , zN−1) are generic linear coordinates
around x. Let ι : U ∩X −→ CN be the inclusion. Then, the flat pull-back
of the affine Lê cycles satisfies the following property

ι∗ΛA
k (β, Lk+1) = Λk

ι∗(β),z.

Proof. In fact,

ι∗ΛA
k (β, Lk+1) = ι∗

(∑
α

(−1)d−dαη (Sα, β)Pk

(
Sα, Lk+1

))
=
∑
α

(−1)d−dαη (Sα, β) ι
∗ (Pk

(
Sα, Lk+1

))
=
∑
α

(−1)d−dαη (Sα ∩ U, ι∗(β))Pk

(
Sα ∩ U

)
= Λk

ι∗(β),z.
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5.3 Projective Lê cycles
Let X be a complex analytic space in CPN of pure dimension d. For each
0 ≤ k ≤ N , let Lk be a linear subspace of CPN of codimension k.

Definition 5.12. The k-th projective polar variety of X, with respect to
Lk+2, is defined by

Pk (X,Lk+2) := {x ∈ Xreg | dim (TxXreg ∩ Lk+2) ≥ d− k − 1},

where TxXreg is the projective tangent space of X at a regular point x.

We observe that for Lk+2 sufficiently general, the dimension of
Pk (X,Lk+2) is equal to k. Thus, we are indexing the polar varieties
by their dimension and not by their codimension, as it is usually done.
Also observe that the class [Pk (X,Lk+2)] of Pk (X,Lk+2) modulo rational
equivalence in the Chow group Ak(X) does not depend on Lk+2 provided
this is sufficiently general. This class is denoted by [Pk(X)] and it is called
the k-th projective polar class of X.
Remark 5.13. For any subvariety Z of CPN we denote by Cone(Z) the cone
in CN+1 induced by Z. Analogously, for any conical subvariety through
the origin V of CN+1 we denote by P(V ) the induced projective variety in
CPN . Let X be a subvariety of CPN and let Lk+2 be a linear subvariety of
CPN of codimension k+2. In this case, Cone (Lk+2) is a linear subspace of
codimension k+2 in CN+1 and Pk+1 (Cone(X) , Cone (Lk+2)) the (k+1)-
th affine polar variety of Cone(X) with respect Cone (Lk+2), that is a
conical subvariety of CN+1 of dimension k + 1. The relationship between
the projective and the affine polar varieties is given by

Pk (X,Lk+2) = P (Pk+1 (Cone(X),Cone (Lk+2)))

Definition 5.14. For any given F • ∈ Db
S(X), where S = {Sα} is a Whitney

stratification of X, define the k-th projective Lê cycle, with respect to
Lk+2, by

ΛP
k (F

•, Lk+2) :=
∑
α

(−1)d−dαη (Sα, F
•)Pk

(
S̄α, Lk+2

)
,

where dα = dimSα.

Hence, the class of this cycle in the Chow group Ak(X) does not depend
on Lk+2 provided this is sufficiently general. This class is denoted by[
ΛP
k (F

•)
]
.

If β is the constructible function associated to F • as in Remark 5.6
we also denote this cycle ΛP

k (F
•, Lk+2) by ΛP

k (β, Lk+2) and the class[
ΛP
k (F

•)
]

by
[
ΛP
k(β)

]
. That is,

ΛP
k (β, Lk+2) :=

∑
α

(−1)d−dαη (Sα, β)Pk

(
S̄α, Lk+2

)
.
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The next result is going to relate the affine and projective Lê cycles
(see [37, Theorem 4.4]).

Theorem 5.15. Let X ⊆ CPN be a d-dimensional projective variety
endowed with a Whitney stratification S = {Sα} with connected strata.
Let Lk+2 be a linear subvariety of CPN of codimension k + 2. Let π :
CN+1\{0} −→ CPN be the natural projection. Let β be a constructible
function on X, with respect to this stratification. Then

1. S ′ :=
{
π−1 (Sα)

}
∪ {{0}} is a Whitney stratification of Cone(X).

2. β induces a constructible function β̃ on Cone(X) with respect to the
Whitney stratification S ′.

3. ΛP
k (β, Lk+2) = P

(
ΛA
k+1

(
β̃,Cone (Lk+2)

))
.

Summarizing we get:

Theorem 5.16. The affine Lê cycles restricted to every point in X give
the local Lê cycles, and the projective Lê cycles are the projectivization of
the affine Lê cycles of the affine cone defined by a projective variety.

5.4 Lê classes and Milnor classes of hypersur-
faces

Lê cycles are originally associated to map-germs Cn+1 → C and determine
the diffeomorphism type of the Milnor fiber. These were extended above
to invariants of projective manifolds. On the other hand Milnor classes are
by definition the difference between two extensions of the classical Chern
classes to the case of singular varieties.

It was proved in [14] that these two concepts are remarkably linked
together in a deep way. In fact the main result in [14] says that the
information encoded in the Milnor classes is essentially equivalent to the
information encoded in the Lê cycles.

Let M be a smooth complex submanifold of CPN of dimension n+ 1,
let Z be the hypersurface in M defined by the set of zeroes of a reduced
holomorphic section s of a line bundle L on M .

Definition 5.17. The k-th Lê class of Z is Λk(Z) := [ΛP
k(ω,Lk+2)], where

ω(x) = χ(Fx)− 1 (Euler characteristic of the Milnor fiber of Z at x) and
Lk+2 is a generic linear subspace of CPN of codimension k + 2.

One has:
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Theorem 5.18. Assume M,L and Z are as above. Set h := c1(OPN (1)|Z)
and denote by Mk(Z) the k-th Milnor class of Z. Then, for each k =
0, . . . , r = dim(Zsing), there are cycles, obtained with respect to the choice
of a linear subspace of CPN , which give rise to well defined classes Λk(Z)
of Z in the Chow group and integral homology group of Z, that we call the
global Lê classes of Z, and these are related to the Milnor classes Mk(Z)
by the formulas:

Mk(Z) =
∑
j≥0

∑
i≥k+j

(−1)i+j

(
i+ 1

k + j + 1

)
c1(L|Z)jhi−k−j ∩ Λi(Z)

and conversely:

Λk(Z)=
∑
j≥0

(−1)k+j

(
k + j + 1
k + 1

)
hj∩(Mk+j(Z) + c1(L|Z)Mk+j+1(Z)).

One gets the corollary below, which extends and strengthens [10, Corol-
lary 5.13] in the hypersurface case:

Corollary 5.19. Assume M,L and Z are as above and equip M with a
Whitney stratification {Zβ} adapted to Z. Let d be the dimension of the
singular set Zsing. Then we have the following equalities of cycles in the
Chow group of Z:

Md(Z) =
∑

Sβ⊂Zsing

λdSβ
[Sβ ] = (−1)dΛd(Z) ,

where the sums run over the strata of dimension d which are contained in
Zsing and λdSβ

is the d-th Lê number of Sβ.

The trail for getting to Theorem 5.18 can be roughly described as
follows. The first step is recalling the main theorem of A. Parusinski and
P. Pragacz in [43], Theorem 4.7 above. This expresses the total Milnor
class as a function of the Schwartz-MacPherson classes of the closure of
the strata of a Whitney stratification:

M(Z) :=
∑
Sα∈S

γSα

(
c(L|Z )

−1 ∩ (iSα,Z)∗c
SM (Sα)

)
. (5.5)

Then one has the aforementioned MacPherson cycles [49], associated to
any constructible function on a complex algebraic proper subset X ⊂ CN

that represent the (dual) Schwartz-MacPherson classes in the Borel-Moore
homology group, and also in the Chow group. We already described above
the analogous result in the projective case. In this construction a key role
is played by the projective polar varieties.
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Next one uses R. Piene characterization in [44] of the Mather classes
via polar varieties to give a formula for the Schwartz-MacPherson classes
in terms of polar varieties and the normal Morse indices (see Definition
5.4). Finally we use the above described characterization of the global Lê
cycles for constructible sheaves via polar varieties. This also answers a
conjecture posed by J.-P. Brasselet in [7], claiming that Milnor classes can
be expressed in terms of polar varieties.
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Milnor classes of complete
intersections

From now on, let M be an n-dimensional compact complex manifold. Set
M (r) :=M × . . .×M , r times. We let E be a holomorphic vector bundle
over M (r) of rank d. Consider ∆ : M → M (r) the diagonal morphism,
which is a regular embedding of codimension nr − n. Let t be a regular
holomorphic section of E. The set of zeros of t is a closed subvariety Z(t)
of M (r) of dimension nr−d. Consider Z(∆∗(t)) the set of zeros of the pull
back section of t by ∆ of dimension n− d.

Following [20, Chapter 6] we have that ∆ induces the refined Gysin
homomorphism

∆! : H2k(Z(t)) → H2(k−nr+n)(Z(∆
∗(t))).

The refined intersection product is defined by:

α1 · . . . · αr := ∆!(α1 × . . .× αr) .

For the usual homology this is defined by duality between homology and
cohomology:

∆!= ∆∗ : H2k(Z(t);Z) ≃ H2(nr−k)(Z(t);Z) →

H2(nr−k)(Z(∆∗(t));Z) ≃ H2(k−nr+n)(Z(∆
∗(t));Z).

In [15, Proposition 1.15, Theorem 1.12, Corollary 1.13] we obtain a
Verdier-Riemann-Roch type theorem for the Fulton-Johnson, Schwartz-
MacPherson and Milnor classes:

Proposition 6.1. Assume that Z(t) admits a Whitney stratification {Tγ}
transversal to ∆(M) such that the strata Tγ ∩∆(M) are connected. The

49
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refined Gysin morphism satisfies:

∆!
(
cFJ(Z(t))

)
= c

((
TM |Z(∆∗t)

)⊕r−1
)
∩ cFJ(Z(∆∗t))

and

∆!
(
cSM (Z(t))

)
= c

((
TM |Z(∆∗t)

)⊕r−1
)
∩ cSM (Z(∆∗t)) .

Therefore,

∆!M(Z(t)) = (−1)nr−nc
((
TM |Z(∆∗t)

)⊕r−1
)
∩M(Z(∆∗t)) .

Now, let {Ei} be a finite collection of holomorphic vector bundles over
M of rank di, 1 ≤ i ≤ r. For each of these bundles, let si be a regular
holomorphic section and Xi the (n − di)-dimensional local complete in-
tersections defined by the zeroes of si. We assume that we can equip the
product X1× . . .×Xr with a Whitney stratification such that the diagonal
embedding ∆ is transversal to all strata. This transversality condition is
necessary for using above proposition.

Let pi :M (r) →M be the ith-projection, then we have the holomorphic
exterior product section

s = s1 ⊕ . . .⊕ sr :M (r) → p∗1E1 ⊕ . . .⊕ p∗rEr,

given by s(x1, . . . , xr) = (s1(x1), . . . , sr(xr)). Then Z(s) = X1 × . . .×Xr

and Z(∆∗(s)) = X1 ∩ . . .∩Xr is a local complete intesection of dimension
n− d1 − · . . . · −dr.

Theorem 6.2. ([16, Prpositions 2.1 and 2.4]) Set X = Z(∆∗(s)). Then:

(i) cSM (X) = c
(
(TM |X)

⊕r−1
)−1

∩
(
cSM (X1) · . . . · cSM (Xr)

)
;

(ii) cFJ(X) = c
(
(TM |X)

⊕r−1
)−1

∩
(
cFJ(X1) · . . . · cFJ(Xr)

)
; and

therefore

(iii) M(X) = (−1)dimX c
(
(TM |X)

⊕r−1
)−1

∩
(
cFJ(X1) · . . . ·cFJ(Xr)−

cSM (X1) · . . . · cSM (Xr)
)
.

Example 6.3. Let Z1 and Z2 be the hypersurfaces of P4 defined by

H(x0, . . . , x4) = x0x1 and G(x0, . . . , x4) = x3 .

The line bundle of Z1 is O(2H), where H = c1(O(1)), so the class of the
virtual tangent bundle of Z1 is:

(1 +H)52H/(1 + 2H) = 2H + 6H2 + 8H3 + 4H4,
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while the Schwartz-MacPherson class is, by the inclusion-exclusion formula
in [1]:

2c(TP3)−c(TP2) = 2((1+H)4H)− (1+H)3H2 = 2H+7H2+9H3+5H4

Therefore the Milnor class of Z1 is H2+H3+H4. On the other hand, since
Z2 is smooth, the Schwartz-MacPherson class and the Fulton-Johnson class
of Z2 are (1 + H)4H = H + 4H2 + 6H3 + 4H4. Therefore, by Theorem
6.2, the Milnor class of Z1 ∩ Z2 is given by

M(Z1 ∩ Z2) = −c(TP4)−1 ∩ cSM (Z2)M(Z1) = −H3.

If we restrict the discussion to the case where the bundles Ei in question
are all line bundles Li, then we obtain some applications:

i) A Parusiński-Pragacz type formula for local complete intersections. This
expresses the Milnor classes using only Schwartz-MacPherson classes, and
it answers positively the expected description given by Ohmoto and Yokura
in [38] for the total Milnor class of a local complete intersection. We
notice that a different generalization of the Parusiński-Pragacz formula
for complete intersections has been given recently in [34].

Corollary 6.4. ([16, Corollary 3.5])

M(X) = (−1)nr−nc
(
(TM |X)

⊕r−1
)−1

∩(∑
αϵ1,...,ϵr
S1,...,Sr

c(L1)
ϵ1 · . . . · c(Lr)

ϵr

c(L1 ⊕ . . .⊕ Lr)
∩ cSM (S1) · . . . · cSM (Sr)

)
,

where the sum runs over all possible choices of the strata provided that
(S1, . . . , Sr) ̸= ((X1)reg, . . . , (Xr)reg), γi is the inductive function obtained
by Milnor fibre of Xi (see (4.2)), αϵ1,...,ϵr

S1,...,Sr
= (−1)(n−1)(ϵ1+...+ϵr)γ1−ϵ1

S1
· . . . ·

γ1−ϵr
Sr

and ϵi =
{

1, if Si ⊆ (Xi)reg
0, if dim(Si) < n− 1

.

ii) A description of the total Milnor class of the local complete intersection
X in the vein of Aluffi’s formula in [2] for hypersurfaces, using Aluffi’s µ-
classes.

For each Xi, the Aluffi’s µ-class of the singular locus is defined by the
formula

µLi(Sing(Xi)) = c(T ∗M ⊗ Li) ∩ s(Sing(Xi),M).

Given a cycle α ∈ H2∗(Xi,Z) and α =
∑

j≥0 α
j , where αj is the codimen-

sion j component of α, then Aluffi introduced the following cycles

α∨ :=
∑
j≥0

(−1)jαj and α⊗ Li :=
∑
j≥0

αj

c(Li)j
.
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Then Aluffi proved in [2] that the total Milnor class M(Xi) can be de-
scribed as follows:

M(Xi) = (−1)n−1c(Li)
n−1 ∩ (µLi

(Sing(Xi))
∨ ⊗ Li). (6.1)

Corollary 6.5. ([16, Corollary 3.3])

M(X) = (−1)n−1c
(
(TM |X)

⊕r−1
)−1

∩(
r∑

i=1

(−1)r−1a1,i · . . . · ar−1,i · c(Li)
n−1 ∩ (µLi

(Sing(Xi) )
∨ ⊗ Li)

)
,

where aj,i =
{
cSM (Xj+1) if i ≤ j
cFJ(Xj) if i > j

.

iii) As seen in the previous section there is a concept of global Lê classes
of a singular hypersurface Z in a smooth complex submanifold M of CPN ,
and a formula relating these with the Milnor classes of Z. It is also possible
to get a description of the Milnor classes of the local complete intersections
X = X1 ∩ . . . ∩ Xr via the Lê classes of each hypersurface Xi (cf. [16,
Remark 3.6]).
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