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Abstract. This paper is a survey on the Mond conjecture, which is an
inequality of type µ ≥ τ for singularities of mappings. We present all
the ingredients necessary to understand the statement of the conjecture,
as well as a proof in the case of surfaces, based on the construction of a
Jacobian module, whose length controls the image Milnor number. We
also include some historical notes with the known cases and some other
inequalities of the same nature and indicate directions for future work.
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Chapter 1

Introduction

The Mond conjecture is an inequality of type µ ≥ τ for singularities of
mappings. It was stated by D. Mond in 1991 [50] as follows:

Mond conjecture: Let f : (Cn, S) → (Cn+1, 0) be a holomorphic map
germ, S ⊂ Cn a finite set, with isolated instability and such that (n, n+1)
are in the range of nice dimensions of Mather (that is, n < 15, see [42]),
then

codimAe
(f) ≤ µI(f),

with equality if f is weighted homogeneous.

The number codimAe
(f), called the extended A -codimension, is the

number of parameters of a miniversal unfolding of f . Hence, it plays the
role of the Tjurina number τ(X, 0) of a hypersurface (X, 0) with isolated
singularity (abbreviated as IHS).

On the other hand, µI(f) is the image Milnor number, analogous to the
classical Milnor number µ(X, 0) in the sense that it encodes the vanishing
topology of the singularity. In fact, Mond showed that the image of a
stable perturbation of f has the homotopy type of a bouquet of n-spheres
and he defined µI(f) as the number of such spheres. The existence of a
stable perturbation is guaranteed only when (n, n+1) are nice dimensions,
so this is a necessary condition.

In the classical case of an IHS, both invariants can be computed alge-
braically in a simple way:

τ(X, 0) = dimC
On+1

J(g) + (g)
, µ(X, 0) = dimC

On+1

J(g)
,

where On+1 is the local ring of holomorphic functions on (Cn+1, 0), the
function g ∈ On+1 is a reduced equation of (X, 0) and J(g) is the Jaco-
bian ideal, generated by the partial derivatives of g. It is obvious that
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Chapter 1. Introduction 63

τ(X, 0) ≤ µ(X, 0). Moreover, when (X, 0) is weighted homogeneous, the
Euler identity implies g ∈ J(g) and we get an equality. The inequal-
ity µ ≥ τ holds for isolated complete intersection singularities (ICIS) of
positive dimension as well, but the proof is much harder. The inequal-
ity was shown by Loojenga and Steenbrick [37]. Before that, Greuel had
shown that the equality holds for weighted homogeneous ICIS [25]. Finally,
Voosegard showed that the equality of the two numbers characterizes the
weighted homogeneity of the ICIS [71].

Per contra, the Mond conjecture is only known to be true for dimensions
n = 1, 2 [50, 15, 51] and, despite plentiful evidence from many examples
and particular cases, the case of dimension n ≥ 3 is still open. Chapter 2
contains a brief account of the known cases where the conjecture holds , as
well as other µ ≥ τ -type inequalities of the same nature. To give a sense
of how the two contexts of these inequalities compare one to another, we
introduce a basic example that can be examined from both angles.
Example 1.1. Consider a cusp

(X, 0) = V (x3 − y2) ⊆ (C2, 0).

We may think of (X, 0) as a germ of hypersurface in C2 or, alternatively, we
may parametrize (X, 0) as the image of the map-germ f : (C, 0) → (C2, 0),
given by

t 7→ (t2, t3).

From one point of view, (X, 0) is a germ of hypersurface with isolated
singularity and, from the other point of view, it is the image of a mapping
f with an isolated instability (this is a misleading aspect of this example
as, for any n > 1, the image of a singular map-germ (Cn, S) → (Cn+1, 0)
fails to have isolated singularities).

When we think of (X, 0) as a hypersurface, the vanishing homology
comes from the Milnor fibre

{x3 + y2 = δ} ∩Bϵ,

with 0 < δ ≪ ϵ ≪ 1, where Bϵ stands for a closed ball of radius ϵ centered
at the origin of C2. This space, represented in the middle of Figure 1.1,
has the homotopy type of a bouquet of two spheres of dimension one.

We can figure this out without thinking about this Milnor fibre topo-
logically, because the number of spheres is the dimension of the Milnor
algebra

µ(X, 0) = dimC
O2

⟨3x2, 2y⟩
= 2.

Similarly, the Tjurina algebra of (X, 0) is

O2

⟨x3 − y2, 3x2, 2y⟩
∼= SpanC{1, x},
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Figure 1.1: A cusp, its Milnor fibre and its disentanglement

from where it follows that the Tjurina number is

τ(X, 0) = 2,

and that a miniversal deformation is

Xs1,s2 = V (x3 − y2 + s1x+ s2).

When we think of the cusp (X, 0) as the image of the map germ f(t) =
(t2, t3), we are not allowed to perturb (X, 0) directly from its equation,
but only by perturbing the parametrization f . The vanishing homology
comes now from what we call the disentanglement of (X, 0), which is the
image in Bϵ of a small enough (with respect to ϵ) stable perturbation fδ
of f . In our example, such perturbation has the form

fδ(t) = (t2, t3 − δt).

One sees easily that fδ identifies the points t = ±
√
δ, and it is one-to-

one away from them. Therefore the image of fδ is a disk with two points
identified, as in the right side of figure 1.1. In particular, the image of fδ
has the homotopy type of a real sphere of dimension 1, hence

µI(f) = 1.

Finally, the Ae-codimension of f (see Definition 3.7) is obtained by com-
puting directly

T 1
Ae

(f) ∼= SpanC{(0, t)}.

This gives us
codimAe(f) = 1

and ensures that a miniversal unfolding of f is given by

F (t, s) = (fs, s) = (t2, t3 + st, s).

We refer to Chapter 3 for the definitions and basic properties about sin-
gular mappings used in this example.
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The main difficulty in the proof of the Mond conjecture is the fact we
do not have an algebra, or more generally, a module, which plays the role
of the Jacobian algebra of an IHS and which controls the image Milnor
number µI(f). In Chapter 6, following the approach of [18], we present
a candidate to Jacobian module, denoted by M(g), associated to each
reduced equation g of the image of f , with the following property:

dimC M(g) = codimAe(f) + dimC K(g),

where K(g) = (J(g)+(g))/J(g). Consequently, the Mond conjecture holds
if we are able to prove that µI(f) = dimC M(g).

There is also a relative version Mrel(G) for r-parameter unfoldings F
which specialises to M(g) when we make the parameters equal to zero.
Moreover, if F is an unfolding whose bifurcation set B(F ) is contained
properly in the parameter space (Cr, 0), then µI(F ) is equal to the Samuel
multiplicity e(mr;Mrel(G)) with respect to the parameter ideal mr. As
a consequence, the equality µI(f) = dimC M(g) is equivalent to the fact
that Mrel(G) is Cohen-Macaulay (see Chapters 7 and 8 for details).

There is another candidate module whose vector space dimension is
conjecturally equal to µI(f), namely the module NKG,ei, where i is a map
inducing f from a stable unfolding F by transverse fibre product, G is the
equation of the image of F and the module NKG,ei is Damon’s normal
extended module of the orbit of i with respect to the KG-action. This is
one of the geometric subgroups of Damon, which is in fact the subgroup
of the contact group K of diffeomorphisms which preserve G (see [11]).
This approach was used by Damon and Mond in [13] to show an inequality
of type µ ≥ τ for map germs f : (Cn, S) → (Cp, 0), with n ≥ p. In such
case, instead of µI(f) we have to consider the discriminant Milnor number
µ∆(f), which is defined analogously but taking the discriminant ∆ of a
stable perturbation of f instead of the image. This is explained with more
detail in Chapter 2, Section 2.8.

In Chapter 9 we present a proof of the Mond conjecture for surfaces
(n = 2), which is different from the ones in [50, 15]. Our proof is based
on an argument due to Pellikaan [64], used to prove that certain modules
given by a quotient of two ideals are Cohen-Macaulay.

Finally, we conclude the paper with Chapter 10, dedicated to some
recent advances on the conjecture, as well as related questions and possible
generalisations. These include the question of whether the equality implies
that f is weighted homogeneous, up to A -equivalence, the extension of the
conjecture to singularities of mappings defined on ICIS, or to singularities
of frontals and about a possible upper bound for the quotient µ/τ .

Acknowledgements. Work partially supported by Grant
PID2021-124577NB-I00 funded by MCIN/AEI/10.13039/501100011033 and
by “ERDF A way of making Europe”.



Chapter 2

Known cases and related
problems

This chapter is an overview of the cases where Mond conjecture is known to
be true, and on some of the ideas behind the proofs. Some basic knowledge
on singularities of mappings is assumed, for which we refer to Chapter s
3, 4 and 5.

Following Mond’s account in [50], the conjectured inequality was first
observed as an empirical fact in [48] and [38]. The first proof for surfaces
was found by de Jong and Pellikaan (unpublished) and the first published
proofs were given by de Jong and Van Straten [15] and Mond [50]. We
will give the proof for surfaces in Chapter 9, as a consequence of a more
general result. The case of dimension one was also known to be true from
the beginning, but the proof was published later [51] and it was not as
simple as the one we give here.

2.1 The one-dimensional case
Quite unsurprisingly, one of the cases where we know the Mond conjecture
to be true is that of germs

f : (C, S) → (C2, 0).

The original proof is found in [51], with an approach similar to that of
higher dimensions, described in Chapter 6 (it is worth mentioning that the
one-dimensional case requires some modifications with respect to higher
dimensional ones. Observe for example that Proposition 6.5 does not ap-
ply, since the codimension of the non-inmersive points is smaller than
required).

Apart from the mere low dimensionality, this case has a unique advan-
tage, which allows us to give an alternative proof for the Mond conjecture:
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the image of an A -finite map germ f ∈ O(1, 2) is an isolated curve sin-
gularity (and conversely, any reduced plane curve can be parameterized,
giving rise to a A -finite mapping). Consequently, taking

(X, 0) = Im f,

we may try to relate the invariants of f to those of (X, 0), in the hope that
the Mond conjecture will follow from the µ ≥ τ inequality. More precisely,
to prove the Mond conjecture, we only need to show the relation

µI(f)− codimAe
(f) = µ(X, 0)− τ(X, 0).

Luckily enough, this equality follows from two equalities which we intro-
duce next. The first one, harder to prove, is as follows [26, Chapter II,
Proposition 2.30]:

Theorem 2.1. Let f : (C, S) → (C2, 0) be an A-finite map germ and
(X, 0) = Im f . Then

τ(X, 0) = codimAe
(f) + δ(X, 0).

The second equality is

µ(X, 0) = µI(f) + δ(X, 0)

and it is easier to understand: consider a stabilisation F = (ft, t) of f , let
Xt = Im ft and take a disentaglement of f ,

Xt ∩Bϵ,

as in Definition 5.2. It follows from conservation of Milnor number [58,
Theorem 4.2] (see also [8]) that

µ(X, 0) = β1(Xt ∩Bϵ) +
∑

x∈SingXt∩Bϵ

µ(Xt, x)

But β1(Xt ∩ Bϵ) = µI(f), because Xt ∩ Bϵ is a disentanglement of f .
Moreover, Xt has just nodes as singularities, because nodes are the only
stable singular multi-germ in these dimensions. Since nodes have Milnor
number 1, the sum of the µ(Xt, x) in Bϵ equals the number of nodes, which
is precisely δ(X, 0). This shows the desired equality.

2.2 Folding maps and a taste of alternating
homology

Beyond the case of surfaces, we have some empirical evidence for Mond
conjecture in higher dimensions, in the form of an infinite family of singu-
larities in all dimensions and a collection of examples in dimensions n = 3, 4
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and 5, for which we know the conjecture to be true. In this chapter we
comment on the infinite family, known as the folding map family, where
the proof of the Mond conjecture still boils down to the inequality µ ≥ τ
for hypersurfaces. Explaining the proof for this family is a good excuse
to introduce the reader to alternating homology and to point them to the
image-computing spectral sequence, a very interesting machinery for the
description of the topology of singular mappings.

Let f : (Cn, S) → (Cn+1, 0) be an A-finite map germ and let k ≤ n be
an integer. The kth multiple-point space of f is

Dk(f) = cl({(x(1), . . . , x(k)) ∈ Cn× k. . . ×Cn | x(i) ̸=x(j), f(x(i))=f(x(j))}),

thought as a germ at S× k. . . ×S and where cl stands for the analytic
closure operator. A more sophisticated version of this definition gives
spaces Dk(f) for all finite maps and map-germs between regular spaces of
all dimensions, without the condition k ≤ n and regardless of A-finiteness
(see, e.g. [59]). We will use the more sophisticated versions, but it is a
good idea for the reader to pretend that they are defined just as the ones
above.

The key aspect of the spaces Dk(f) is that they keep track of how
points in the source of f are glued together to form the image of f . From
this point of view, it seems reasonable that the topology of Im f must be
encoded by the topology of the collection of spaces Dk(f). The mathemat-
ical object that carries this information is the so called image-computing
spectral sequence, introduced in [24] (see [9] for an updated version). The
applications of the spectral sequence reach further than the study of the
image Milnor number, but we cannot cover them here. In fact, we are not
even going to introduce the spectral sequence itself, for which refer the
reader to the original sources cited above. Instead, we introduce only the
objects involved in a result, consequence of the spectral sequence, which
expresses the image Milnor number from the homology of Dk(f) in the
corank one case:

The symmetric group Sk acts on Dk(f) by permutation of the entries
x(j), that is, a permutation σ ∈ Sk acting on (x(1), . . . , x(k)) gives the
point (x(σ(1)), . . . , x(σ(k))). Since the action is continuous, it passes to ho-
mology and we define the jth alternating homology of Dk(f) (with rational
coefficients) as the following subgroup of Hj(D

k(f);Q):

HAlt
j (Dk(f);Q) = {c ∈ Hj(D

k(f);Q) | σc = sign(σ)c}.

These objects are the entries of the first page of the spectral sequence.
As it turns out, if f ∈ O(n, n+1) is A-finite and has corank one, then, for
each k ≤ n + 1, Dk(f) is an isolated complete intersection singularity of
dimension n−k, and if ft is a stable perturbation of f (see Definition 3.6),
then Dk(ft) is a Milnor fibre of Dk(f). This implies the collapse of the
spectral sequence at the first page, from where the following result follows:
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Theorem 2.2. Let f ∈ O(n, n+ 1) be A-finite and of corank one and let
ft be a stable perturbation of f . Then

µI(f) =
∑

j+k=n+1

dimQ HAlt
j (Dk(ft);Q).

(for the definition of stable perturbation, see Definition 3.6).

To go from this result to a proof of the Mond conjecture, one still needs
to have good control of the terms at the right hand side of the equality, and
to relate them to codimAe

(f). As we will see, this is possible for folding
mappings, thanks to their very simple geometry.

A folding map f : (Cn, 0) → (Cn+1, 0) is a map germ of the form

f(x) = (x1, . . . , xn−1, x
2
n, H(x)),

with H ∈ m2
n. It is not difficult to see that a mono-germ f is A -equivalent

to the germ of a folding map if and only if m(f) = 2, where m(f) is the
multiplicity of f , defined as

m(f) = dimC
On

(f1, . . . , fn+1)
,

Clearly, every folding map has multiplicity two. For the converse impli-
cation, assume m(f) = 2. Then, necessarily we have an isomorphism of
C-algebras

On
(f1, . . . , fn+1)

∼=
C{t}
(t2)

.

This means that f can be written, up to A -equivalence, as

f(x) = (x1, . . . , xn−1,K(x), H(x)),

for some K,H ∈ m2
n such that K is regular of order 2 in the variable xn.

The map germ given by the n first coordinates

f̃(x) = (x1, . . . , xn−1,K(x))

is now A -equivalent to the Whitney fold x 7→ (x1, . . . , xn−1, x
2
n). Such

A -equivalence induces in a natural way another one which puts f in the
desired form.

Theorem 2.3. Folding maps satisfy the Mond conjecture.

This was shown by Kevin Houston in [29] (Houston uses a different no-
tation, and proves a more general result about folding maps f : (Cn, 0) →
(Cp, 0), for all dimensions p > n). We do not go into the details of the
proof, but we give a sketch that highlights its dependence on the alternat-
ing homology.
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A folding map may be thought as obtained from the graph of H(x), by
identifying every pair of points of the form (Y1, . . . , Yn−1,±Yn, Yn+1). To
be more precise, let the group Z/2 act on Cn+1 by changing the sign of
the nth coordinate. The quotient map of this group action can be realized
as the (trivially unfolded) Whitney fold ω : Cn+1 → Cn+1, given by

(Y1, . . . , Yn, Yn+1) 7→ (Y1, . . . , Y
2
n , Yn+1).

Now a folding map is just the composition ω ◦ h, where h(x) = (x,H(x))
is the graph embedding of H.

The fact that folding maps factorize through an embedding and such
a simple quotient mapping is the reason behind their previously alluded
very simple geometry. It forces, for instance, the absence of triple and
higher multiplicity points. Moreover, the double point space D of f (This
space is defined in Definition 6.3 but, as a set, it is the projection of
D2(f) ⊆ (Cn, 0)× (Cn, 0) on (Cn, 0)) can be computed just as

D = V (λ),

for the holomorphic function

λ =
H(x1, . . . , xn−1, xn)−H(x1, . . . , xn−1,−xn)

xn
.

It turns out that f is A -finite if and only if D is an isolated hypersurface
singularity, and in that case the space D′ = D ∩ {xn = 0} is an isolated
hypersurface singularity as well. From the absence of higher multiplicity
points and the particularities of the double points of folds, Houston shows
that Theorem 2.2 translates into the formula

µI(f) =
1

2
(µ(D) + µ(D′)).

Furthermore, by direct calculation he shows that for folding mappings one
has

codimAe
(f) ≤ 1

2
(τ(D) + τ(D′)),

with equality in the weighted homogeneous case (this is not exactly how
Houston puts it, but it follows from his Theorem 2.8 and Lemma 2.9 and
his considerations in the proof of Theorem 2.11). This reduces the Mond
conjecture for folding maps to the usual µ ≥ τ inequality.

2.3 Higer dimensional examples
Apart from the folding maps from the previous chapter , there are some
more degenerate germs in certain dimensions for which we know the Mond
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conjecture to be true. These germs are the ones found in Houston and
Kirk’s classification [32], and the collection of A -finite weighted-homoge-
neous germs exhibited by Sharland (née Altıntaş) [2, 68]. These are inter-
esting not only as new evidence for the conjecture, but also because they
force us to find new ways to check the conjecture, not involving a reduction
to the µ ≥ τ inequality. One has to keep in mind that, while the Mond
conjecture for curves and folding maps have been proven via the µ ≥ τ
inequality, there is no obvious way to relate the two inequalities for higher
dimensional more degenerate mappings.

Houston and Kirk classified all simple A -finite mono-germs O(3, 4) of
corank 1, and checked the conjecture for them. They proceeded just by
computing µI and codimAe

(f) for every germ on the classification, then
comparing the numbers. Here, the corank one hypothesis is key because it
forces the multiple point spaces Dk(f) to be complete intersections with
isolated singularities (see [38] for details), and the Milnor numbers of these
complete intersections can be used to compute µI . While the problem of
computing codimAe

(f) is less sensitive to the corank, computing µI for
map germs of corank greater than one is usually much more challenging.

Sharland has been able to produce a collection of A -finite map germs
of coranks 2 and 3, in dimensions 3 ≤ n ≤ 5, and to check the conjecture
for them. Just to give a taste of how these map germs look like, some of
the germs in O(3, 4) for which the conjecture has been proven are

B̂2ℓ+1 : (x, y, z) 7→ (x, y2 + xz, z2 + xy, y2ℓ+1 + y2ℓz + yz2ℓ − z2ℓ+1)

for 2 ≤ ℓ ≤ 5, and

f̂ℓ : (x, y, z) 7→ (x, y2 + xℓz, z2 − xℓy, y3 + y2z + yz2 − z3),

for all ℓ ≥ 1. In O(4, 5), for all ℓ ≥ 1 we have Ĵℓ, mapping (x, y, z, w) to

(x,w, y3 + xz + x4y + w2ℓy2, yz + w5ℓy, z2 + y5).

In O(5, 6), for all ℓ ≥ 1, we have N̂ℓ, mapping (x, y, z, w, v) to

(x, v, w, y3 + xz + x2y + wy, yz + vℓz, z2 + y5 + w2y + v4ℓy + v3ℓy2).

These germs are obtained as special unfoldings of lower dimensional
germs of corank 2, which we call generalized augmentations (Sharland
calls them augmentations, but her construction is more general than the
augmentations of Section 2.7). The Ae-codimension of augmentations can
be computed, thanks to an isomorphism

T 1
Ae

(f) ∼= NKV,eg,

where V and g are related to the augmentation construction (see [2] for
details). Sharland used this method to compute (see [2, Tables 1 and 2
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and Section 3])

codimAe
(B̂3) = 33, codimAe

(B̂5) = 252, codimAe
(B̂7) = 837,

codimAe(B̂9) = 1968, codimAe(B̂11) = 3825,

codimAe(f̂ℓ) = 45ℓ− 12, codimAe(Ĵℓ) = 2144ℓ− 186,

codimAe
(N̂ℓ) = 1759ℓ− 350.

Moreover, one can show that an augmentation satisfies the Mond con-
jecture by showing that certain relative module NKH,e/CG is Cohen-
Macaulay over the parameter space (this is similar to the criterion that
we introduce in Chapter 7 and to the one used by Damon and Mond in
[13]). In fact, the Cohen-Macaulay condition implies that NKH,e/CG is a
free module of rank equal to µI(f). Such rank is also equal to the length
of the tensor product of NKH,e/CG with the parameter ring, which turns
out to be NKV,eg. This is how the conjecture is established for these ex-
amples. However, we notice that the proof of the Cohen-Macaulayness of
NKH,e/CG in [2, page 10] seems incomplete, or, at the very least, hard to
follow.

It is interesting to note that this computes their µI values, but rather
indirectly: given that the examples are weighted homogeneous and sat-
isfy the conjecture, their µI must be equal to the already computed Ae-
codimension.

But there are even more degenerate map germs, like Sharland’s corank
3 map germ

f3 : (C3, 0) → (C4, 0),

given by

(x, y, z) 7→ (y2 + xz, x5 + yz + xy2, x6 + y3 + z2, x13 + x10z + xz4 + y5z).

This germ cannot be an augmentation, since it has rank zero. The way the
conjecture was checked for this and other corank 3 examples in O(3, 4) was
simply to compute µI and the Ae-codimension separately and compare the
numbers [68]. The Ae-codimension was computed with Singular [73] by
means of the formula

codimAe
(f) = dimC

(f∗)−1(J(g) · On)
J(g) + (g)

.

that we introduce in Proposition 6.6 (the formula was independently found
by Sharland [68] and Bobadilla and the authors [18]) and it is

codimAe
(f) = 127295.

The image Milnor number computation is obtained by means of a formula
in terms of weights and degrees, found in Theorem 2.5 in the next section.
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In the same paper [68], Sharland’s gives two more corank 3 examples,
whose extended A -codimensions are 18967 and 41244. These numbers
are so enormous that the coincidence of codimension and image Milnor
number makes these examples convincing evidence for the conjecture.

2.4 The µI formulas for weighted-homogene-
ous mono-germs

To study the Mond conjecture, it is convenient to be able to compute
the image Milnor number of map germs. The problem is that, while the
Milnor number of hypersurfaces is computed as the dimension of the Milnor
algebra, no such result exists for µI , and computing the image Milnor
number directly from its topological definition can be very hard.

For small dimensions, we know well the singularities that the disen-
tanglement is allowed to have, and we can try to use this knowledge to
determine the topology of the disentanglement. For example, the disentan-
glement of a map germ f : (C2, 0) → (C3, 0) can only have double points,
triple points and crosscaps. Thinking about how the Euler characteristic
of the disentanglement relates to these singularities, one concludes that
the following holds:

µI =
1

2

(
µ(D2)− 4T + C − 1

)
,

where T and C are the number of triple points and crosscaps exhibited
by the disentanglement, and D2 is the closure of the set of pairs of point
(x, x′) ∈ C2 × C2 with x ̸= x′, such that f(x) = f(x′) [50].

The right hand side of the equality is more computable because, as
it turns out, µ(D2), T and C can be computed as dimensions of suit-
able C-vector spaces. For weighted homogeneous germs the situation is
even better, because, as Mond realized in [49], one can use the grad-
ing w1, w2, d1, d2, d3 to determine the Hilbert series of the involved vector
spaces. By this procedure, he obtained the following result:

Theorem 2.4. Let f : (C2, 0) → (C3, 0) be an A -finite weighted homoge-
neous mono-germ, with grading (w1, w2, d1, d2, d3). Then,

µI(f) =
1

6w1w2

(
(s0 − ϵ)(s0 + ϵ− 3(w1 + w2)) − (d2d3 + d1d3 + d1d2)

+ (w1 + w2)ϵ+ w1w2

)
,

with ϵ = d1 + d2 + d3 − w1 − w2 and s0 =
d1d2d3
w1w2

.

Trying to reproduce the same idea in higher dimensions becomes much
harder, because the geometry is much more complicated and we do not
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know how to compute some of invariants as dimensions of C-vector spaces.
In fact, a priori it is unclear that these formulas must exist.

With a more sophisticated approach based on the theory of Thom
polynomials, Ohmoto [61] has shown that µI formulas indeed exist for
weighted-homogeneous mono-germs f ∈ O(n, n + 1), for n ≤ 5. The
formula for n = 3 was found by Ohmoto, and the cases n = 4, 5 by
Pallarés and the second author [63]. These formulas are very cumbersome
when written in terms of the weights and degrees, but they become more
tractable if expressed adequately:

First, given weights w = (w1, . . . , wn) and degrees d = (d1, . . . , dn+1),
consider the auxiliary expressions

σk =
∑

1≤j1<...<jk≤n

wj1 · . . . · wjk ,

for k = 1, . . . , n, and

δk =
∑

1≤i1<...<ik≤n+1

di1 · . . . · dik ,

for k = 1, . . . , n+ 1. Then, the µI formulas will be expressed in terms of

s0 =
δn+1

σn
and ck =

∑
0≤i≤k

(−1)k−iδi
∑

|α|=k−i

wα,

with the usual multi-index notation for α. With these at hand, the ex-
pression of µI for n = 2 in Theorem 2.4 can be rewritten as

µI(f) =
1

σ2

( 1
2!
(−s0 + c1)σ1 +

1

3!
(s20 − c21 − c2)

)
.

After showing that the formulas exist, still remains the problem of
finding them. For dimensions 3 and higher, this was not done by relating
µI to easier invariants, but by a purely interpolative method that finds
the coefficients in the formula by studying a big enough number of map
germs. The formula found by Ohmoto [61] is the following one:

Theorem 2.5. Let f : (C3, 0) → (C4, 0) be an A -finite weighted homoge-
neous germ. Then,

µI(f) =− 1

σ3

( 1
2!
(−s0 + c1)σ2 +

1

3!
(s20 − c21 − c2)σ1+

+
1

4!
(−s30 − 2s20c1 + s0c

2
1 + 16s0c2 + 2c31 − 10c1c2)

)
.

Observe the similarity between the expression for n = 2 and the first
terms in the formula for n = 3. This phenomenon would be much less ap-
parent if we would write the formula directly in terms of w and d, indicating
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that s0 and ck carry some meaningful information. Of course, this has to
do with the theory of Thom polynomials, which justifies the existence of
this formulas and their form as rational functions, whose numerator is ob-
tained from the n-th degree truncation of the so called Segre-MacPherson
Thom polynomial tpSM (αimage) series (see [61, Section 6.5] for the original
results and [63, Section 3] for a summary). For our purposes, s0 and the
ck are just convenient expressions. The remaining formulas for the image
Milnor number [63] are as follows:

Theorem 2.6. Let f : (Cn, 0) → (Cn+1, 0) be an A -finite weighted homo-
geneous germ. If n = 4, then

µI(f) =
1

σ4

( 1
2!
(−s0 + c1)σ3 +

1

3!
(s20 − c21 − c2)σ2

+
1

4!
(−s30 − 2s20c1 + s0c

2
1 + 16s0c2 + 2c31 − 10c1c2)σ1

+
1

5!
(s40 + 5s30c1 + 5s20c

2
1 − 50s20c2 − 5s0c

3
1 − 20s0c1c2

+ 60s0c3 − 6c41 + 34c21c2 − 64c1c3 + 108c22 + 4c4)
)
.

If n = 5, then

µI(f) = − 1

σ5

( 1
2!
(−s0 + c1)σ4 +

1

3!
(s20 − c21 − c2)σ3 +

+
1

4!
(−s30 − 2s20c1 + s0c

2
1 + 16s0c2 + 2c31 − 10c1c2)σ2

+
1

5!
(s40 + 5s30c1 + 5s20c

2
1 − 50s20c2 − 5s0c

3
1 − 20s0c1c2

+ 60s0c3 − 6c41 + 34c21c2 − 64c1c3 + 108c22 + 4c4)σ1

+
1

6!
(−s50 − 9s40c1 − 25s30c

2
1 + 110s30c2 − 15s20c

3
1 + 270s20c1c2

−240s20c3+26s0c
4
1+16s0c

2
1c2+24s0c1c3−1138s0c

2
2+336s0c4

+24c51 − 156c31c2 +276c21c3 +108c1c
2
2 − 396c1c4 +600c2c3)

)
.

2.5 Reduction to families of unbounded mul-
tiplicity

In the previous chapter s we have discussed a good number of examples
for which the Mond conjecture is known to hold. One can think that this
does not bring us any closer to proving the conjecture but, as we are going
to explain next, this is not entirely true and, actually, the conjecture must
be true if it holds for a good enough collection of examples.
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Fixed a dimension n, and a subset S ⊆ Cn, consider a collection

{fM}M∈N

of weighted homogeneous A -finite germs fM ∈ OS(n, n+1), such that the
coordinate functions of any branch of fM have no terms of degree smaller
than M . We call such a collection a family of unbounded multiplicity. The
reason why these are interesting is the following:

Theorem 2.7. If the Mond conjecture holds for a family of unbounded
multiplicity, then it holds for every A -finite mono-germ f ∈ O(n, n+ 1).

This was shown in [18] and, in fact, what is shown is that if fM+1 sat-
isfies the Mond conjecture, then the conjecture holds for all M -determined
germs (with same dimensions and number of branches as the ones in the
family). Moreover, the notion of family of unbounded multiplicity can
be adapted, to consider a family of map germs of some corank, and then
checking the conjecture on such a family would prove it only for germs of
that corank.

The problem is that we do not know of any family of unbounded multi-
plicity in dimensions where the Mond conjecture is open. Producing such a
family is easy for f : (C, S) → (C2, 0) but, beyond that, even if we omit the
requirement that the fM must be weighted homogeneous, the only known
family of A -finite map germs where the multiplicities are unbounded is
the family

(x, y) 7→ (xa, yb, (x+ y)c),

with a, b, c pairwise coprime, found in [65]. The obstacle to producing such
families is checking the finite determinacy. At least in the nice dimensions,
it seems reasonable that a generic choice of polynomial coordinate func-
tions, with degrees greater than M , would yield an A -finite map germ but,
even if that is the case, showing it to be A -finite can be quite challenging
when M is big.

Observe that, if a family of unbounded multiplicity is found for di-
mensions n ≤ 5, the image Milnor number of mono-germs fM could be
computed immediately with the formulas of Section 2.4. Hence, proving
the Mond conjecture for mono-germs in such dimension n would amount
to computing the invariant codimAe

(fM ), for all M ∈ N.

2.6 Weak versions of the Mond conjecture
If f ∈ OS(n, n + 1) is stable multi-germ, then µI(f) must vanish. This
is simply because any stabilisation F of f (or any unfolding of f for that
matter) must be trivial. Therefore, the image of a small enough represen-
tative of F will be a trivial fibration X → D and have contractible fibres,
showing the disentanglement of f to be contractible.
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This sort of simple argument does not work in the opposite direction,
and it is not clear a priori that a multi-germ with µI(f) = 0 must be sta-
ble. The fact that the implication goes both ways was shown by Giménez
Conejero and the first author [23] (see [21] for a different proof in the
corank one case), as follows: Let F be a 1-parameter stabilisation (see
Definition 3.6) of an A -finite germ f : (Cn, S) → (Cn+1, 0) and take

(X , 0) = ImF = V (G),

for certain germ of function G ∈ OCn+2 so that V (G) is reduced. To this
data one can associate an ideal FT (π,G) of On+2, whose zero locus is the
germ at the origin of following set of points:

• (0, 0) ∈ Cn+1 × C, if f is unstable.

• (y, t) ∈ Cn+1 × C, if G(y, t) ̸= 0 and y is a critical point of the
function gt ∈ On+1, given by gt(y) = G(y, t).

On one hand, it is showed in [23, Theorem 2.10] that µI(f) is equal to the
Samuel multiplicity of On+2/FT (π,G) considered as a module over the
parameter space. In more geometrical words, µI(f) is equal to the local
intersection number of the complex space V (FT (π,G)) and the hyperplane
t = 0. On the other hand, by [23, Proposition 2.14], dimV (FT (π,G)) = 1
if not empty, which forces that the local intersection number must be at
least 1. This shows the following result:

Theorem 2.8. Let f ∈ O(n, n + 1) be an A -finite multi-germ. Then,
µI(f) = 0 if and only if f is stable.

We may think of this as a weak version of Mond conjecture, stating
that the inequality codimAe(f) ≤ µI(f) holds for those multi-germs having
µI(f) = 0.

As a corollary of this result, we obtain an extension of a result Cooper,
Mond and Wik Atique [10], originally stated for the corank one case only:

Proposition 2.9. Every multigerm f ∈ O(n, n+1) with codimAe(f) = 1
satisfies the Mond conjecture.

Proof. Since codimAe(f) = 1, then f is unstable, which forces µI ̸= 0,
that is µI ≥ 1. Moreover, by Proposition 6.5 and Corollary 8.2,

µI ≤ dimC M(g) = codimAe(f) + dimC K(g) = 1 + dimC K(g),

where g is a reduced equation of the image of f , M(g) is the Jacobian
module (see Definition 6.1) and K(g) = (J(g)+(g))/J(g). If f is weighted
homogeneous, then we can choose g also weighted homogeneous, so K(g) =
0 and µI = 1.
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2.7 Relation to augmentations

Consider an A -finite mono-germ f ∈ O(n, n+1) and assume that it admits
a one-parameter stable unfolding, that is, a germ F ∈ O(n+1, n+2), which
is stable and has the form

F (x, t) = (ft(x), t),

with f0 = f (this is not to be confused with a stabilisation of f , since
here we ask for F to be stable, rather than fϵ). Now take a germ g ∈ Or,
such that the hypersurface V (g) ⊂ (Cr, 0) has an isolated singularity. The
augmentation of f by F and g is the map germ AF,g(f) ∈ O(n+r, n+1+r)
given by

(x, s) 7→ (fg(s)(x), s).

Any map germ A which is A -equivalent to one of the form AF,g(f) is
said to be an augmentation of f . One can show that augmentations are
A -finite [29]. The following series of equalities and inequalities relate the
invariants of the augmentation A to the invariants of f , g and F . The
first one is an equality for µI(A). It is due to Houston in the corank one
case [30, Corollary 6.4]) and was extended to the general case by Giménez
Conejero and the first author in [23, Corollary 2.17].

Theorem 2.10. Let A = AF,g(f) be an augmentation of f . Then,

µI(A) = µ(g) · µI(f).

The second one is a lower bound for codimAe(A) and was also obtained
by Houston [31]:

Theorem 2.11. Let A = AF,g(f) be an augmentation of f . Then,

τ(g) codimAe
(f) ≤ codimAe

(A),

with equality if g is weighted homogeneous.

Finally, the upper bound for codimAe(A) has been recently computed
by Breva and Oset [5, Theorem 3.3]:

Theorem 2.12. Let A = AF,g(f) be an augmentation of f . Then,

codimAe
(A) ≤ µ(g) codimAe

(f)

with equality if g is weighted homogeneous.

Combining these results, Breva and Oset obtain the following conse-
quence (see [5, Theorem 3.7]):
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Corollary 2.13. Assume that f satisfies the Mond conjecture, and let
A = AF,g(f) be an augmentation of f . Then,

µI(A) ≥ codimAe
(A),

and the equality holds if A is A -equivalent to an augmentation AF̃ ,g̃(f),
with F̃ and g̃ weighted-homogeneous.

Observe that this does not solve completely the “equality for weighted
homogeneous” part of the Mond conjecture for the augmentation A be-
cause, a priori, A could be weighted homogeneous without any f and g
so that A = Af,g being weighted homogeneous. We however do not know
any particular example where this is the case.

2.8 The discriminant Milnor number
We finish this overview of the state of the art of the Mond conjecture with
a known case which, even though it is not strictly speaking included in our
statement of the Mond conjecture, it is very much related.

Given a mapping f : (Cn, S) → (Cp, 0), one defines the critical set as
the locus where the differential of f is not surjective, and the discriminant
∆(f) as the image of the critical set (see the lines before Definition 3.3).
One can prove that, for germs with isolated instabilities, the critical locus
is a reduced Cohen-Macaulay space of dimension p − 1, and from this it
follows that, for p ≤ n+ 1, the discriminant is a hypersurface (notice that
in the particular case of p = n+1, the discriminant is just the image of f).
Then, it follows that the discriminant of a stable perturbation is a wedge
of spheres (the proof is similar to that of Theorem 5.4). The number of
spheres is called the discriminant Milnor number, written µ∆(f). This
discriminant Milnor number can then be seen as a generalization, for di-
mensions p ≤ n+1 of the image Milnor number. This calls for the obvious
question: Does the Mond conjecture hold in this context? As it turns out,
the new cases with p ≤ n are much more tractable that the one where
p = n+ 1 and an affirmative answer was given by Damon and Mond [13]:

Theorem 2.14. Let f : (Cn, S) → (Cp, 0) be a germ with isolated insta-
bility, and assume that (n, p) is in the range of nice dimensions and n ≥ p.
Then

codimAe(f) ≤ µ∆(f),

and the equality holds if and only if f is weighted homogeneous.

The result was originally stated for mono-germs in [13], but the same
proof works for multi-germs [53, Theorem 8.10]. The proof is strongly
based on the fact that the discriminant of stable mapping for dimensions
n ≥ p is a free divisor, see [13] for details.
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Singularities of mappings

In this chapter, we provide a overview of the fundamental definitions and
properties related to singularities of mappings, essential for formulating
the Mond conjecture. Main references for this chapter are the recent book
by Mond and the second author [53] and their survey [54].

Some of the results discussed apply to both smooth (i.e., C∞) map-
pings between smooth manifolds and holomorphic mappings between com-
plex manifolds. However, since our primary point of interest is the Mond
conjecture, which is meaningful exclusively in the complex context, we will
discuss only the complex case.

Let S ⊂ Cn be a finite set. We use the notation OS(n, p) to represent
the set of holomorphic map germs f : (Cn, S) → (Cp, 0). When the set
S is evident from the context or when no confusion arises, we simply use
O(n, p).

Our first definition pertains to A -equivalence, also known as right-left
equivalence of germs. Two germs are considered equivalent if they can be
transformed into each other through changes of coordinates in the source
and target.

Definition 3.1. Two germs f, g ∈ OS(n, p) are called A -equivalent if we
have a commutative diagram

(Cn, S) (Cp, 0)

(Cn, S) (Cp, 0)

f

ϕ ψ

g

where the columns are biholomorphisms.

Next, we revisit the concept of stability. In simple terms, a germ is
deemed stable when any perturbation, up to A -equivalence, does not al-
ter it.

80
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Definition 3.2. A d-parameter unfolding of f ∈ OS(n, p) is another holo-
morphic map germ F ∈ OS×{0}(n+d, p+d) of the form F (x, u) = (fu(x), u)
and such that f0 = f .

Two unfoldings F,G of f are called equivalent if we have a commutative
diagram

(Cn × Cd, S × {0}) (Cp × Cd, 0)

(Cn × Cd, S × {0}) (Cp × Cd, 0)

F

Φ Ψ

G

where the columns are biholomorphisms which are also unfoldings of the
identity.

The map germ f is called stable if any unfolding is equivalent to the
constant unfolding f × id : (Cn × Cd, S × {0}) → (Cp × Cd, 0).

It is evident that the property of a map germ being stable remains un-
changed under A -equivalence. Thus, stability can be naturally extended
to holomorphic map germs f : (N,S) → (P, y) between complex manifolds
N and P , simply by taking coordinates.

When dealing with a holomorphic map f : N → P between complex
manifolds N and P, we define the critical set as the subset C(f) ⊆ N
containing points x where the differential dfx is not surjective. The im-
age of this critical set, denoted by ∆(f) = f(C(f)), is referred to as the
discriminant.

Definition 3.3. We say that f : N → P has finite singularity type if the
restriction f : C(f) → P is finite (i.e., closed and finite-to-one). We say
that f is locally stable if, in addition, for any y ∈ ∆(f), the multi-germ of
f at y, denoted by

fy : (N,S) → (P, y),

is stable, where S = C(f) ∩ f−1(y).

The condition that the mapping has finite singularity type implies that
the discriminant is a closed analytic subset of P , by the Remmert finite
mapping theorem (see e.g. [14]).

Definition 3.4. We say that f ∈ OS(n, p) has isolated instability if there
exists a representative f : U → V such that

1. f−1(0) ∩ C(f) ⊆ S and f has finite singularity type.

2. the restriction f : U \ f−1(0) → V \ {0} is locally stable.

Given f ∈ OS(n, p) and an r-parameter unfolding F (x, u) = (fu(x), u),
we can always choose a representative of the form

F : U → V × T, (3.1)
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where U, V and T are open subsets such that S × {0} ⊂ U ⊆ Cn × Cr,
0 ∈ V ⊆ Cp and 0 ∈ T ⊆ Cr. For each u ∈ T we have a mapping
fu : Uu → V , where Uu = {x ∈ Cn | (x, u) ∈ U}.

Definition 3.5. The bifurcation set B(F ) is the set germ in (Cr, 0) of
parameters u ∈ T , such that fu : Uu → V is not locally stable.

Lemma 3.1. [53, Lemma 5.3] If f ∈ OS(n, p) has isolated instability, then
B(F ) is a closed analytic germ in (Cr, 0), for any r-parameter unfolding
F .

Definition 3.6. A stabilisation of f is a 1-parameter unfolding F whose
bifurcation set is B(F ) = {0} in (C, 0). In other words, there exists a
representative as in (3.1), such that for all t ∈ T \ {0}, ft : Ut → V is
locally stable. Such ft is called a stable perturbation of f .

The following theorem is well known, see for instance [53].

Theorem 3.2. Let f ∈ OS(n, p) with isolated instability and assume that
either (n, p) are nice dimensions or f has kernel rank one. Then f admits
a stabilisation F .

The nice dimensions were introduced by Mather [42] in the context
of global smooth (i.e., C∞) mappings between smooth manifolds. They
characterize those pairs (n, p) such that the stable proper mappings are
dense in C∞(N,P ) with the Whitney C∞-topology, for any pair of smooth
manifolds N and P of dimensions n and p, respectively.

Mather also proved that, for any pair (n, p), the topologically stable
proper mappings are always dense in C∞(N,P ) (see [43]). This fact is
based on his construction of the canonical stratification of the jet space.
This can be adapted also to the complex local case in our setting to show
that any map germ with isolated instability admits a “topological stabili-
sation”. However, we will not consider such a construction in this paper.

We recall now the notion of codimension of f ∈ OS(n, p). This gives an
algebraic tool to check whether a germ is stable or has isolated instability.
In order to do that we need to introduce the following notation:

• On is the ring of holomorphic function germs (Cn, S) → C,

• Op is the ring of holomorphic function germs (Cp, 0) → C,

• θn is the On-module of vector fields on (Cn, S),

• θp is the Op-module of vector fields on (Cp, 0),

• θ(f) is the On-module of vector fields along f ,

• tf : θn → θ(f), the morphism ξ 7→ df ◦ ξ,

• ωf : θp → θ(f), the morphism η 7→ η ◦ f .
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Definition 3.7. The Ae-normal space of f ∈ OS(n, p) is defined as

T 1
Ae

(f) =
θ(f)

tf(θn) + ωf(θp)

and the Ae-codimension is

codimAe(f) = dimC T 1
Ae

(f).

The germ f is called infinitesimally stable when codimAe
(f) = 0 and A -

finite when codimAe
(f) < ∞.

It is not difficult to check that stability implies infinitesimal stability.
Mather showed that the converse is also true, although the proof requires
of deeper arguments like the Weierstrass preparation theorem (see [41] or
[53]):

Theorem 3.3 (Mather infinitesimal stability theorem). A germ
f ∈ OS(n, p) is stable if and only if it is infinitesimally stable.

The second result which relates the Ae-codimension with the stability is
due to Mather and Gaffney and it says that isolated instability is equivalent
to A -finiteness. This equivalence is valid only in the complex case, since
it uses the notion of coherent sheaves of modules. A detailed proof can be
found in [72] or [53], we give a short version in Chapter 4.

Theorem 3.4 (Mather-Gaffney geometric criterion). A germ f ∈
OS(n, p) has isolated instability if and only if it is A -finite.

An even more geometric interpretation of the Ae-codimension can be
obtained if we look at versal unfoldings. Roughly speaking, an unfolding
is versal when it contains all possible perturbations of the germ, up to
A -equivalence.

Definition 3.8. Let f ∈ OS(n, p) and let F (x, u) = (fu(x), u) be an r-
parameter unfolding. Given h : (Cs, 0) → (Cr, 0) holomorphic, the induced
unfolding is defined as the s-parameter unfolding G(x, v) = (fh(v)(x), v).

The unfolding F is called versal if every unfolding is equivalent to one
induced from F . A versal unfolding with minimal number of parameters
(among versal unfoldings) is called miniversal.

Given an r-parameter unfolding F (x, u) = (fu(x), u) of f ∈ OS(n, p),
for each i = 1, . . . , r we put

Ḟi =
∂fu
∂ui

∣∣∣∣
u=0

.

The following infinitesimal criterion of versality is due to Martinet (see
[40] or [53] for a proof):
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Theorem 3.5 (Versality theorem). The unfolding F is versal if and
only if the residue classes of Ḟ1, . . . , Ḟr in T 1

Ae
(f) generate it as a C-vector

space. In particular, any A -finite germ always admits a versal unfolding
and codimAe

(f) is the number of parameters of a miniversal unfolding.

The versality theorem shows the analogy between the Ae-codimension
of f and the Tjurina number τ(X, 0) of a hypersurface with isolated sin-
gularity (X, 0). We recall that τ(X, 0) is defined as

τ(X, 0) = dimC
On+1

J(g) + (g)
,

where g ∈ On+1 is a reduced equation of (X, 0) and J(g) is the Jacobian
ideal, generated by the partial derivatives of g. It follows that τ(X, 0) is
the number of parameters of a miniversal deformation of (X, 0) (see for
instance [36]).
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Say it with sheaves

For any vector bundle E on a analytic set X, the sheaf of sections of E is a
locally free OX -module, which we denote by O(E). A most basic example
is the sheaf of vector fields on a manifold N , which is the sheaf of sections
of the tangent bundle TN . We write it

θN = O(TN).

Similarly, for any holomorphic mapping f : N → P , the sheaf of vector
fields along f is

θ(f) = O(f∗TP ),

where f∗TP = TP ×P N is the pullback of the tangent bundle on P . The
fibres of this vector bundle are

(f∗TP )x = Tf(x)P × {x},

they have the C-vector field structure of Tf(x)P , but there is one fibre for
each x ∈ N . The sheaves θN and θ(f) are locally free ON -modules of
ranks dimN and dimP , respectively.

The differential df : TN → TP induces a morphism of ON -modules

θN
tf−→ θ(f),

by taking a section s : U → TN to the section U → TP ×P N given by
x 7→ (dfx(s(x)), x). We write the image of this morphism as tf(θN ) and
let

T 1
Re

f =
θ(f)

tf(θN )
.

Being the cokernel of a morphism between locally free ON -modules, T 1
Re

f
is a coherent ON -module. The support of this sheaf is the set of points
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x ∈ N where the differential dfx fails to be surjective (see the proof of
Proposition 4.8 in [53]), that is,

suppT 1
Re

f = C(f).

In particular, whenever f is of finite singularity type, the restriction of f to
the support of T 1

Re
f is finite and then f∗(T 1

Re
f) is a coherent OP -module.

Similarly, there is a morphism of OP -modules

θP → f∗θ(f),

mapping a section s : V → TP to the section f−1(V ) → f∗TP given by
x 7→ (s ◦ f(x), x). Taking the composition with the morphism f∗θ(f) →
f∗(T 1

Re
f), we obtain a morphism

θP
ωf−−→ f∗(T

1
Re

f).

The cokernel of this morphism is the OP -module

T 1
Ae

f =
f∗T 1

Re
f

ωf(θP )
,

which is coherent, provided that f is of finite type.
Still assuming f to be of finite type, we may associate to each y ∈ P

the multi-germ

fy = (f, S), with S = f−1(y) ∩ C(f).

Then, the stalks of T 1
Ae

f are precisely

(T 1
Ae

f)y = T 1
Ae

(fy).

As we shall see, the sheaf T 1
Ae

f is the right tool to think about the
geometry of instabilities.

Definition 4.1. For any mapping f : N → P of finite singularity type,
the instability locus of f is

Inst(f) = {y ∈ P | fy is unstable}.

Putting together the description of the stalks of T 1
Ae

f , the Infinites-
simal Stability Theorem 3.3 and the coherence of T 1

Ae
f , we obtain the

following result:

Proposition 4.1. For any mapping f : N → P of finite singularity type,

Inst(f) = supp T 1
Ae

f.

In particular, the instability locus is an analytic subset of P .
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Proof of Mather-Gaffney geometric criterion (Theorem 3.4). If f is not of
finite singularity type, then it does not have isolated instability, by defi-
nition. Morever, it also fails to be A -finite (see [53, Lemma 4.3]). As a
consequence, we may assume f ∈ OS(n, p) to be of finite singularity type.

Now the germ f has isolated instability if and only if it admits a rep-
resentative f̃ , such that Inst(f̃) = {0}. By Proposition 4.1, we have that

Inst(f̃) = supp T 1
Ae

f̃ .

Since T 1
Ae

f̃ is coherent and (T 1
Ae

f̃)0 = T 1
Ae

f , the condition that Inst(f̃) =
{0} is equivalent to the condition√

Ann T 1
Ae

f = mn+1,

where mn+1 is the maximal ideal of On+1. This last condition is equivalent
to

dimC T 1
Ae

f < ∞.

To end this chapter, we explain how the same ideas can be used to
define a relative version of the coherent sheaf T 1

Ae
(f), whose support is

the bifurcation set B. This is not strictly necessary for the study of the
Mond conjecture, but the extra work it requires is minimal.

Given a germ f : (Cn, S) → (Cp, 0) of finite singularity type, consider
a representative of an unfolding of f of the form

F : U → Bϵ × T.

The mapping F is of the form F = (ft, t) and is assumed to be of finite
singularity type.

The t coordinates of a point (x, t) ∈ U ⊆ Cn × T are regarded as
deformation parameters and the x coordinates are the spatial coordinates
of the original mapping we are deforming. Therefore, the relative version
of the sheaf of vector fields on U is

θU,rel = O(TCn × T )|U

and the sheaf of relative vector fields along F is

θrel(F ) = O(F ∗(TBϵ × T )).

With the same idea in mind, we consider the relative differential of F , that
is, we only take derivatives with respect to the x coordinates, and define
a subsheaf

tFrel(θU,rel).

We can mimic the rest of the non-relative construction, to define a relative
sheaf of OBϵ×T -modules

T 1
Ae,relF.
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which is coherent, because F is assumed to be of finite singularity type.
The way it is defined, the stalks of the relative version satisfy

(T 1
Ae,relF )(y,t) = T 1

Ae
((ft)y).

In particular, the support of T 1
Ae,rel

F is the set of points (y, t), such that
the multi-germ (ft)y is unstable.

Now assume f to be A -finite and assume that the domain and codomain
of F are small enough that every perturbation ft has at most a finite num-
ber of instabilities. Then, the projection

Bϵ × T
π−→ T

restricts to a finite mapping on the support of T 1
Ae,rel

F , which justifies
that the pushforward

π∗T
1

Ae,relF

is a coherent OT -module. The support of this module is the set of param-
eters t ∈ T for which ft fails to be infinitessimally stable. Hence, we may
define the bifurcation set of F as

B(F ) = suppπ∗T
1

Ae,relF.

This agrees with the definition of bifurcation set we gave in Definition 3.5,
in the sense that the germ at B(F ) at 0 ∈ T is exactly the bifurcation set
of the germ (F, S × {0}). Incidentally, this proves Lemma 3.1.



Chapter 5

The image Milnor number

Here we define the image Milnor number of a germ f ∈ OS(n, n+1). The
starting point is a general fibration theorem due to Lê. Given η > 0, we
write

D∗
η = {t ∈ C | 0 < |t| < η}.

Theorem 5.1. [34] Let (X , 0) be an analytic set germ embedded in some
ambient space CN and let φ : (X , 0) → (C, 0) be a holomorphic function.
For 0 < η ≪ ϵ ≪ 1, the restriction

φ : X ∩Bϵ ∩ φ−1(D∗
η) −→ D∗

η (5.1)

is a locally C0-trivial fibration.

The fibration (5.1) is known as the Milnor-Lê fibration since it was
considered previously by Milnor in his book [46], in the case of X = Cn+1.
The proof of Theorem 5.1 is based on the fact that one can choose a
small enough representative X and an analytic Whitney stratification on
it which also satisfies the Thom condition. This implies that (5.1) is a
proper stratified submersion (with the induced stratification) and hence, a
locally C0-trivial fibration by the Thom-Mather first isotopy lemma [43].

The second result is also due to Lê and says that when (X , 0) is a com-
plete intersection of dimension n + 1 and φ : (X , 0) → (C, 0) has isolated
critical point in the stratified sense, then the fibre of (5.1) has the ho-
motopy type of a bouquet of n-spheres. Again such result is also present
in Milnor’s book [46] when X = Cn+1 and in that case, the number of
such spheres is precisely the classical Milnor number, denoted by µ(φ).
Moreover, µ(φ) can be computed algebraically as

µ(φ) = dimC
On+1

J(φ)
.

We present here a more general version, following Hamm and Lê in [28].

89
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Definition 5.1. An analytic set germ (X , 0) is called a Milnor space germ
if rhd(X , 0) = dim(X , 0), where rhd(X , 0) is the rectified homotopy depth
of (X , 0).

The definition and basic properties of rhd(X , 0) can be found in [28].
For instance, we always have rhd(X , 0) ≤ dim(X , 0), so Milnor space germs
are those with maximal rhd(X , 0). Another well known property is that
any complete intersection (X , 0) is a Milnor space germ (see [28]). The
main result is the following:

Theorem 5.2. [28] Assume that (X , 0) is a Milnor space germ of di-
mension n+1 and that φ : (X , 0) → (C, 0) has isolated critical point in the
stratified sense. Then the fibre of (5.1) has the homotopy type of a bouquet
of spheres of dimension n.

One more ingredient for the recipe of the image Milnor number comes
from Siersma in [69]. Suppose now that (X , 0) be a hypersurface in (Cn+1×
C, 0) and that our function φ is the projection π : (X , 0) → (C, 0) given by
π(x, t) = t. We can see (X, 0) as a family of hypersurfaces Xt = π−1(t)
in Cn+1. In this situation it is more convenient to consider in Cn+1 ×C a
polydisk of the form Bϵ ×D∗

η. Thus, instead of (5.1), we have:

π : X ∩ (Bϵ ×D∗
η) −→ D∗

η, (5.2)

which is also a locally trivial fibration for 0 < η ≪ ϵ ≪ 1 and is equivalent
to (5.1). In particular, if π has isolated critical point in the stratified
sense, the fibre of (5.2) has the homotopy type of a bouquet of n-spheres.
The number of such spheres is exactly the nth Betti number of the fibre,
βn(Xt ∩Bϵ), and is given by the following formula:

Theorem 5.3. [69] With the above notation, suppose that G : (Cn+1 ×
C, 0) → (C, 0) is a reduced equation of (X , 0). Then

βn(Xt ∩Bϵ) =
∑

x∈Bϵ\Xt

µ(gt;x),

where µ(gt;x) is the Milnor number of gt(x) = G(x, t) at x.

Finally, we arrive to the definition of the image Milnor number. Assume
that f ∈ OS(n, n + 1) has isolated instability and that either (n, n + 1)
are nice dimensions or f has corank one. By Theorem 3.2, f admits a
stabilisation F (x, t) = (ft(x), t). We denote by Xt = ft(Ut) the image of
a stable perturbation ft : Ut → V , with t ̸= 0.

Theorem 5.4. [50] With the above notation, for 0 < η ≪ ϵ ≪ 1 and
0 < |t| < η, Xt ∩Bϵ has the homotopy type of a bouquet of n-spheres. The
number of such spheres, βn(Xt ∩ Bϵ), is independent of the choice of ϵ, η
and the stable perturbation ft.
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Definition 5.2. With the notation of Theorem 5.4, Xt ∩Bϵ is called the
disentanglement and βn(Xt ∩ Bϵ) is called the image Milnor number and
is denoted by µI(f).

Sketch of the proof of Theorem 5.4. [50]. The image (X , 0) of the stabil-
isation F has a well defined stratification by stable types. The strata of
such stratification are defined as follows: two points in X belong to the
same stratum A if the corresponding map germs at such points are A -
equivalent. At a point (y, t) ∈ X \{0}, the germ of F is a trivial unfolding
of the stable germ of ft at y, so it is also stable. The stability is used here
to prove three essential facts:

1. that each stratum A is a submanifold,
2. that any pair of strata (A,B) satisfy the Whitney condition,
3. that the projection π(y, t) = t restricted to each stratum A ̸= {0} is

a submersion.

The hypothesis that (n, n + 1) are nice dimensions or f has corank one
implies that the stratification by stable types is locally finite, and hence, it
is in fact a stratification. We conclude that π : (X , 0) → (C, 0) has isolated
critical point in the stratified sense. Hence, we get the first part of Theorem
5.4 from Theorem 5.2. The second part of the theorem follows by using
an argument involving a versal unfolding and the fact that, provided that
(n, n+1) are nice dimensions or f has corank one, the bifurcation set (i.e.,
the subset of parameters u such that fu is not locally stable) is a proper
analytic subset and therefore does not separate its complement in the base
space of the unfolding.

In order to state the Mond conjecture we need one more definition,
namely, the notion of weighted homogeneous mapping.

Definition 5.3. Let w1, . . . , wn and d be positive integers. A function
f : Cn → C is weighted homogeneous of type (w1, . . . , wn; d) if it is a poly-
nomial of the form

f =
∑

α1w1+···+αnwn=d

aαx
α,

where we are using the multi-index notation xα = xα1
1 . . . xαn

n for each
α = (α1, . . . , αn). The numbers w1, . . . , wn are called the weights and d is
called the degree of f .

A mapping f = (f1, . . . , fp) : Cn → Cp is called weighted homogeneous
if all the components fi, with i = 1, . . . , p, are weighted homogeneous with
the same weights w1, . . . , wn but possibly different degrees d1, . . . , dp.

Finally, a map germ f ∈ OS(n, p) at S = {x(1), . . . , x(r)}, is called
weighted homogeneous if all the branches f |Cn,x(j) , with j = 1, . . . , r, are
weighted homogeneous with the same degrees d1, . . . , dp but possibly dif-
ferent weights wj1, . . . , w

j
n.
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When f ∈ OS(n, n+ 1) is weighted homogeneous and finite, its image
(X, 0) is a weighted homogenous hypersurface in (Cn+1, 0), that is, (X, 0)
admits a reduced equation g ∈ On+1 which is also weighted homogeneous.
It follows from Euler’s identity that

g =
1

k

(
d1y1

∂g

∂y1
+ · · ·+ dn+1yn+1

∂g

∂yn+1

)
,

where d1, . . . , dn+1 are the weights and k is the degree of g. In particular,
g ∈ J(g).

Now we have all the ingredients to state the Mond conjecture. As we
mention in the introduction, this conjecture appeared in the paper [50]
together with a proof of it in the case n = 2.

Conjecture 5.5 (Mond conjecture [50]). Let f ∈ OS(n, n+1) be with
isolated instability and suppose that either (n, n + 1) are nice dimensions
or f has corank one. Then,

codimAe
(f) ≤ µI(f),

with equality if f is weighted homogeneous.

We give next a couple of examples which have been used frequently by
Mond to illustrate the conjecture:

Example 5.6 (The Reidemeister moves). The only plane curve singular-
ity which is stable is the node or transverse double point A1 (in Arnold’s
terminology). Looking at singularities of Ae-codimension 1, we find three
types which are called the cusp A2, the tacnode A3 and the triple point
D4 (see e.g. [51]). The stabilisations of these three singularities are usu-
ally represented by the three Reidemeister moves, as in Figure 5.1. The
Reidemeister moves are well known in knot theory, since they are used to
recognize when two generic plane projections of space curves belong to the
same knot class.

The pictures in Figure 5.1 show the real part of the image of the stable
perturbation ft for t < 0 (left) and t > 0 (right) and of the unstable germ
f0 (center). We observe that, for t > 0, the three images present one, two
or three nodes, respectively. This is equal to the δ-invariant of the curves
and coincides precisely with the number of complex nodes. Moreover, all
the images have one 1-cycle, which is also the number of vanishing cycles
of their complex images. Observe that the three singularities are weighted
homogeneous and hence, µI(f) = 1. The three map germs are examples of
singularities with real good perturbations in the sense of [39]. This means
f admits a stable perturbation ft given by real polynomials and such that,
at least for one of the two values t < 0 or t > 0, the real image of ft has
the same homology as its complex version.
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Figure 5.1: The three Reidemeister moves

Example 5.7 (The H2 singularity). The map germ f : (C2, 0) → (C3, 0),
given by f(x, y) = (x, y3, xy + y5), is the H2 singularity in the Mond list
of simple singularities [47] and has Ae-codimension 2. According to [39],
a stabilisation of f can be obtained as follows:

ft(x, y) = (x, y3 − ty, xy + y5 − ty3).

Again this is an example of a real good perturbation, since the real pro-
jection of the image has the same homology as the complex one. We can
see in Figure 5.2 a real picture for t > 0, in which one appreciates that ft
presents one triple point and two Whitney umbrellas. These are equal to
the number of complex triple points and Whitney umbrellas, respectively.
The image of ft has the homotopy type of a bouquet of two 2-spheres (one
of them is showed explicitly in the picture and the other one is hidden in
the other side). As in the previous example, f is weighted homogeneous
and hence, has image Milnor number µI(f) = 2.
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Figure 5.2: Image of the disentanglement of the H2 singularity

We conclude this section with Table 5.1, which serves as a dictionary
between the languages of singularities of hypersurfaces with isolated sin-
gularity and images of mappings from Cn to Cn+1 with isolated instability.

Table 5.1: Dictionary between singularities of hypersurfaces and mappings

Hypersurface (X, 0) Map germ f ∈ OS(n, n+ 1)

biholomorphism A -equivalence

smooth stable

isolated singularity isolated instability

smoothing stabilisation

τ(X, 0) codimAe(f)

versal deformation versal unfolding
On+1

J(g) + (g)
T 1

Ae
(f)

Milnor fibre disentanglement

µ(X, 0) µI(f)

On+1

J(g)
???
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We remark that in the right-hand column, corresponding to singularities
of mappings, there is a gap in the last row for the analog of the Jaco-
bian algebra, On+1/J(g), whose vector dimension is the Milnor number.
In Section 6 we will introduce the Jacobian module M(g), following the
approach of [18], whose vector dimension would be equal the image Milnor
number, at least in the cases where the Mond conjecture in known to be
true.



Chapter 6

The Jacobian module

Assume f ∈ OS(n, n + 1) is a finite map germ. By the finite mapping
theorem (see e.g. [14]), f has a well defined image (X, 0) which is a hy-
persurface in (Cn+1, 0). Let g ∈ On+1 be a reduced equation for (X, 0) in
(Cn+1, 0). The Jacobian ideal J(g) is the ideal in On+1 generated by the
partial derivatives ∂g/∂yi of g, i = 1, . . . , n+ 1.

Since On has an On+1-module structure via the induced ring morphism
f∗ : On+1 → On, we can consider J(g) ·On, which is nothing but the ideal
in On generated by ∂g/∂yi ◦ f . Now its inverse image (f∗)−1(J(g) ·On) is
an ideal in On+1 containing J(g). Therefore, it makes sense to make the
following definition:

Definition 6.1. We define the Jacobian module as

M(g) =
(f∗)−1(J(g) · On)

J(g)
.

Although this is not the original definition of the Jacobian module
M(g) given in [18, Definition 3.2], we will see later in Proposition 6.4 that
in fact both definitions coincide (see also [18, Proposition 5.1]). In order to
see this, we need to introduce the double point spaces of f . We start with
the multiple point spaces in the target of f with the analytic structure
given by Fitting ideals, following Mond and Pellikaan [55].

We recall that a presentation of an R-module M is an exact sequence

Rp Rq M 0.λ

The morphism λ is given by a matrix λ = (λij) of size q × p and with
entries in R. The k’th Fitting ideal of M , denoted by FRk (M), is the ideal
of R generated by the (q − k) × (q − k) minors of λ. This makes sense if
1 ≤ q−k ≤ min{p, q}. By convention, we put FRk (M) = R when q−k ≤ 0
or FRk (M) = 0 when q−k > min{p, q}. We refer to [27] for basic properties

96
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of Fitting ideals, for instance, the fact that they are independent of the
choice of the presentation.

If f ∈ OS(n, n + 1) is finite, then On is finitely generated as On+1-
module, by the Weierstrass preparation theorem (see e.g. [14]). Since
On+1 is Noetherian, any finitely generated module admits a presentation.
In particular, On has well defined Fitting ideals as On+1-module.

Definition 6.2. The k’th Fitting ideal of f is defined as the k’th Fitting
ideal of On as On+1-module:

Fk(f) = F
On+1

k (On).

We also define the k’th target multiple point space as the complex subspace
germ of (Cn+1, 0) given by Mk(f) = V (Fk−1(f)), with local ring OMk(f) =
On+1/Fk−1(f).

The name for Mk(f) comes from the fact that the underlying set germ
of Mk(f) is the set germ in (Cn+1, 0) of points with at least k preimages,
counted with multiplicity. More precisely, we have (see [55, Proposition
1.5]):

Proposition 6.1. As a set germ, Mk(f) is given by the points y in a
neighbourhood of 0 in Cn+1 such that∑

f(x)=y

dimC
OCn,x

f∗mCn+1,y
≥ k.

In particular, M1(f) coincides with (X, 0), the image of f .

When f is generically one-to-one, then M1(f) is reduced, so we have the
equality M1(f) = (X, 0) also as complex space germs (see [55, Proposition
3.1]). The double point space M2(f) is usually denoted by f(D(f)) and
coincides, as a set germ, with the singular locus of the image (X, 0). In fact,
f(D(f)) is given by the points y in a neighbourhood of 0 in Cn+1 such that
either y = f(x) and x is a non-immersive point of f or y = f(x) = f(x′),
with x ̸= x′.

We also have a double point space in the source, with analytic structure
given by the conductor ideal. The restriction f : (Cn, S) → (X, 0) is the
normalization map, hence the induced morphism f

∗
: OX,0 → On is a

monomorphism and we may regard OX,0 as a subring of On.

Definition 6.3. We denote the conductor of OX,0 in On by C(f), that is,

C(f) = {h ∈ OX,0 | h · On ⊆ OX,0}.

The source double point space is the the complex subspace germ of (Cn, S)
given by D(f) = V (C(f)), with semi-local ring OD(f) = On/C(f).
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We recall that the conductor C(f) has the property that it is the largest
ideal of OX,0 which is also an ideal in On. The conductor C(f) can be
computed easily by means of the following result due to Piene [66] (see
also Bruce and Marar [6]):

Proposition 6.2. Suppose f ∈ OS(n, n+1) is finite and generically one-
to-one. There exists a unique λ ∈ On such that

∂g

∂yi
◦ f = (−1)iλ det(df1, . . . , dfi−1, dfi+1, . . . , dfn+1), i = 1, . . . , n+ 1.

Moreover, C(f) is generated in On by λ.

The relationship between the ideals C(f) and F1(f) is given in the
following proposition due to Mond and Pellikaan [55, Proposition 3.5]:

Proposition 6.3. With the assumptions of Proposition 6.2,

C(f) = F1(f) · OX,0.

It follows that, as complex space germs, D(f) is the inverse image of
f(D(f)) by f . In particular, the underlying set germ of D(f) is given
by points x in a neighbourhood of S in Cn such that either f is non-
immersive at x or f(x) = f(x′) for some x′ ̸= x. Moreover, it is also clear
from Propositions 6.2 and 6.3 that f∗ induces an epimorphism

F1(f)

J(g)

C(f)

J(g) · On

whose kernel is precisely M(g) as defined in Definition 6.1. This is in fact
the original definition given for M(g) in [18, Definition 3.2]. This can be
also expressed by means of an exact sequence as follows:

Proposition 6.4. With the assumptions of Proposition 6.2, we have an
exact sequence of On+1-modules:

0 M(g)
F1(f)

J(g)

C(f)

J(g) · On
0. (6.1)

Another important step for the geometrical interpretation of the Jaco-
bian module is given in a second exact sequence, which involves the module
T 1

Ae
f that controls the Ae-codimension.

Proposition 6.5. Suppose f ∈ OS(n, n+ 1) is finite, generically one-to-
one and the set of non-immersive points has codimension ≥ 2. There is
an exact sequence of On+1-modules:

0 K(g) M(g) T 1
Ae

f 0,
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where K(g) = (J(g) + (g))/J(g). In particular, if dimC M(g) < ∞, then
f is A -finite and

dimC M(g) = codimAe
(f) + dimC K(g).

Proof. We use [50, Proposition 2.1]. A priori we need the hypothesis is that
f is A -finite and n ≥ 2, but a careful revision of the proof shows that the
only necessary assumptions are that f ∈ OS(n, n+ 1) is finite, generically
one-to-one and the set of non-immersive points has codimension ≥ 2. Of
course, such conditions are satisfied when f is A -finite and n ≥ 2. Thus,
by [50, Proposition 2.1] we have an isomorphism

T 1
Ae

f
J(g) · On
J(g) · OX,0

,

induced by the evaluation of vector fields ξ 7→ ξ(g). The exact sequence is
now given in [18, Proposition 3.3] in the following way:

0 K(g) M(g)
J(g) · On
J(g) · OX,0

0.

The following corollary is a direct consequence of Definition 6.1 and
Proposition 6.5 and gives an easy procedure to compute the Ae-codimen-
sion of a map germ by using a computer algebra system, such as Singular
[73].

Corollary 6.6. With the assumptions of Proposition 6.5, we have

codimAe
(f) = dimC

(f∗)−1(J(g) · On)
J(g) + (g)

.

Another important consequence is that the relationship between the
stability and the Jacobian module can be strengthened a little more when
either (n, n+ 1) are nice dimensions or f has corank one. In fact, in both
cases any stable singularity is weighted homogeneous, up to A -equivalence.
The case of corank one is easy, since any stable singularity of corank one
is A -equivalent to the generalised Whitney umbrella, which is weighted
homogeneous. The fact that the stable singularities in the range of the
nice dimensions (n, p) are weighted homogeneous, up to A -equivalence,
comes from Mather’s classification of contact algebras. We refer to [53,
Theorem 7.6] for a detailed and organised account of the proof of this fact.
As a consequence, we get:

Corollary 6.7. With the assumptions of Proposition 6.5, suppose that
either (n, n+ 1) are nice dimensions or f has corank one. Then:

1. f is stable if and only if M(g) = 0,

2. f is A -finite if and only if dimC M(g) < ∞.



Chapter 7

The relative Jacobian
module

The next step is to define a relative version of the Jacobian module for
unfoldings which specialises to M(g) when we make the parameters u = 0.
In other words, we look for a module Mrel(G) associated to the defining
equation G of the image of an unfolding, with the property that

Mrel(G)

I ·Mrel(G)
∼= M(g), (7.1)

where I = (u1, . . . , ur) is the ideal in On+1+r generated by the parame-
ters. We can consider Mrel(G) as Or-module via the morphism π∗ : Or →
On+1+r induced by the projection π : Cn+1 ×Cr → Cr, (y, u) → u. Then,
we can see the left hand side of (7.1) as a tensor product

Mrel(G)

I ·Mrel(G)
∼= Mrel(G)⊗ Or

mr
.

Let F (x, u) = (fu(x), u) be an r-parameter unfolding of a finite germ
f ∈ OS(n, n+ 1). Since F is also finite, it has a well defined image which
is a hypersurface (X , 0) in (Cn+1 × Cr, 0). We choose G ∈ On+1+r, such
that G(y, u) = 0 is a reduced equation for (X , 0).

The relative Jacobian ideal is the ideal Jrel(G) in On+1+r generated by
∂G/∂yi, i = 1, . . . , n+ 1. So,

Jrel(G) · On+1 = J(g),

where g(y) = G(y, 0). Here, On+1 is considered as On+1+r-module via
the morphism j∗ : On+1+r → On+1 induced by the standard inclusion
j : Cn+1 → Cn+1 × Cr, y 7→ (y, 0). Now the definition of Mrel(G) is
analogous to that of M(g) in Definition 6.1:
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Definition 7.1. The relative Jacobian module is

Mrel(G) =
(F ∗)−1(Jrel(G) · On+r)

Jrel(G)
.

As it happened with M(g), this is not the original definition given in
[18, Definition 4.1], but the equivalence between the two definitions is given
in the next proposition, which is obvious from Proposition 6.3.

Proposition 7.1. Let f ∈ OS(n, n + 1) be finite and generically one-to-
one. We have an exact sequence of On+1+r-modules:

0 Mrel(G)
F1(F )

Jrel(G)

C(F )

Jrel(G) · On+r
0. (7.2)

It is well known that the Fitting ideals are well behaved under change of
ring (see e.g. [27, Lemma 7.2.5]), which implies that F1(F ) ·On+1 = F1(f)
and the equality C(F ) · On = C(f) follows easily from Piene’s result (see
Proposition 6.2). Here, the · means the product in the corresponding
induced structure of modules via the standard inclusions. One could think
that after tensoring the exact sequence (7.2) with Or/mr we should obtain
the exact sequence (6.1) with Mrel(G)⊗Or/mr in the right hand side term.
This would imply that

Mrel(G)

I ·Mrel(G)
∼= Mrel(G)⊗ Or

mr
∼= M(g).

Unfortunately, we cannot use this argument, a priori, for two reasons: in
general, the quotient of modules is not well behaved under tensor product
and the tensor product functor is not exact. We need first some lemmas.

Lemma 7.2. Suppose f ∈ OS(n, n+1) is finite and generically one-to-one.
Then On+1/F1(f) is Cohen-Macaulay of dimension n− 1.

The proof is given in [55, Theorem 3.4] for mono-germs, based on the
fact that On admits a presentation with a square matrix λ = (λij) of size
(m+1)×(m+1), with respect to a system of generators 1 = h0, h1, . . . , hm
of On as On+1-module. The authors prove that F1(f) is equal to the ideal
generated by the maximal minors of the matrix λ̂ obtained by deleting the
first row of λ. Since λ̂ has size m× (m+1) and dim f(D(f)) ≤ n−1, then
On+1/F1(f) is determinantal, and hence, Cohen-Macaulay of dimension
n− 1. However, this argument does not work for multi-germs, as one can
see easily with the example of the triple point in C3. The extension for
multi-germs is found in [60].

The hypothesis of Lemma 7.2 are satisfied when f is A -finite and
F is any unfolding. In this case, On+1+r/F1(F ) is Cohen-Macaulay of
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dimension n− 1 + r. By using this fact, it can be proved that

F1(F )

Jrel(G)
⊗ Or

mr
∼=

F1(f)

J(g)
, (7.3)

(see [18, Proposition 4.4] for details). The same idea works for the right
hand side of (7.2): C(F ) is a principal ideal in On+r, so On+r/C(F ) is
also Cohen-Macaulay of dimension n− 1 + r. Hence,

C(F )

Jrel(G) · On+r
⊗ Or

mr
∼=

C(f)

J(g) · On
. (7.4)

Lemma 7.3. Suppose f ∈ OS(n, n + 1) is finite, generically one-to-one
and let F be any unfolding. Then,

Jrel(G) · On+r = J(G) · On+r.

Proof. Suppose F (x, u) = (fu(x), u), then the Jacobian matrix of F has
the form

dF =

(
dfu ∗
0 Ir

)
where dfu is the Jacobian matrix of fu with respect to the variables
x1, . . . , xn. We denote by M1, . . . ,Mn+1,M

′
1, . . . ,M

′
r the (n + r)-minors

of dF in such a way that M1, . . . ,Mn+1 are the n-minors of dfu. Then
M ′

1, . . . ,M
′
r can be generated from M1, . . . ,Mn+1, that is, for each i =

1, . . . , r, we can write

M ′
i =

n+1∑
j=1

aijMj ,

for some aij ∈ On+r. Now we use Piene’s Proposition 6.2:

∂G

∂ui
◦ F = ΛM ′

i ,
∂G

∂yj
◦ F = ΛM ′

j ,

where Λ is the generator of the conductor ideal C(F ). We get

∂G

∂ui
◦ F =

n+1∑
j=1

aij
∂G

∂yj
.

Theorem 7.4. Suppose f ∈ OS(n, n + 1) is A -finite with n ≥ 2 and let
F be any unfolding. Then,

Mrel(G)

I ·Mrel(G)
∼= M(g),

where I = (u1, . . . , ur) is the ideal in On+1+r generated by the parameters.
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Proof. The short exact sequence (7.2) induces a long exact Tor-sequence
as follows (see e.g. [27, Proposition 7.1.2]):

. . . TorOr
1

(
C(F )

Jrel(G) · On+r
,
Or
mr

)

Mrel(G)⊗ Or
mr

F1(f)

J(g)

C(f)

J(g) · On
0.

We claim that C(F )/Jrel(G) · On+r is Or-flat. In fact, by 7.3

C(F )

Jrel(G) · On+r
=

C(F )

J(G) · On+r
∼=

On+r
R(F )

,

where R(F ) is the ramification ideal of F , that is, the ideal generated by
the maximal minors of the Jacobian matrix of F and the isomorphism
in the right hand side is induced by the multiplication by λ in Piene’s
Proposition 6.2.

The zero locus of R(F ) is precisely the set of non-immersive points,
which has dimension ≤ n − 2 + r (because f is A -finite and n ≥ 2).
Since the Jacobian matrix has size (n + 1 + r) × (n + r), it follows that
On+r/R(F ) is determinantal, and hence, Cohen-Macaulay of dimension
n− 2 + r. Moreover, Or is regular and

On+r
R(F )

⊗ Or
mr

∼=
On
R(f)

has dimension n− 2, hence On+r/R(F ) is Or-flat by [27, Theorem 7.8.2].
Now, by [27, Theorem 7.4.2] the Or-flatness of C(F )/Jrel(G) · On+r

implies

TorOr
1

(
C(F )

Jrel(G) · On+r
,
Or
mr

)
= 0,

and from the exact sequence we get

Mrel(G)

I ·Mrel(G)
∼= Mrel(G)⊗ Or

mr
∼= M(g).



Chapter 8

The image Milnor number
as a multiplicity

We proved in Corollary 6.7 that if either (n, n + 1) are nice dimensions
or f has corank one, then dimC M(g) < ∞ when f is A -finite. In this
situation, we have from Theorem 7.4 that

dimC
Mrel(G)

I ·Mrel(G)
= dimC M(g) < ∞, (8.1)

and thus, Mrel(G) is finitely generated over Or by Nakayama’s lemma. It
makes sense to consider its Samuel multiplicity with respect to the maximal
ideal mr, denoted by e(mr;Mrel(G)). We refer to [45, §14] for the definition
and basic properties of the Samuel multiplicity e(q;M) of a finitely gener-
ated module M over a local ring R with respect to an m-primary ideal q.
We use such a multiplicity to state the main theorem of this chapter:

Theorem 8.1. Suppose f ∈ OS(n, n+ 1) is A -finite with n ≥ 2 and that
either (n, n + 1) are nice dimensions or f has corank one. Let F be any
r-parameter unfolding of f with bifurcation set B(F ) ⊊ (Cr, 0). Then,

e(mr;Mrel(G)) = µI(f).

Proof. Since B(F ) ⊊ (Cr, 0), there exists a line L in Cr such that B(F )∩
L = {0}. This is one of the consequences of the Noether normalisation
theorem (see e.g. [14, Corollary 3.3.19]). We choose any u0 ∈ L \ {0}. If
F (x, u) = (fu(x), u), now we construct a stabilisation F ′ just by taking
F ′(x, t) = (ftu0(x), t). We also take 0 < η ≪ ϵ ≪ 1 as in Theorem 5.4, so
µI(f) = βn(Xu ∩Bϵ), for u = tu0 and 0 < |t| < η.

104



Chapter 8. The image Milnor number as a multiplicity 105

On the other hand, because of (8.1) we have conservation of multiplicity
(see [53, Corollary E.5]), that is,

e(mr;Mrel(G)) =
∑
y∈Bϵ

e
(
mCr,u;Mrel(G)(y,u)

)
,

where Mrel(G)(y,u) is the relative Jacobian module of the multi-germ of F
at (y, u). Of course, the sum on the right hand side is finite, since we only
consider points y ∈ Bϵ such that Mrel(G)(y,u) ̸= 0 and this is a finite set
by (8.1).

When y ∈ Xu ∩ Bϵ, fu is stable at y, so M (gu)y = 0, where gu is the
function gu(−) = G(−, u). By Theorem 7.4,

Mrel(G)(y,u)

mCr,u · Mrel(G)(y,u)
= M (gu)y = 0,

and hence e
(
mCr,u;Mrel(G)(y,u)

)
= 0, by [53, Proposition C.15].

Otherwise, if y ∈ Bϵ \ Xu, then the right hand side of (7.2) is 0 at
(y, u), since such a module is supported only at the points in the image of
F . Moreover, the zero locus of F1(F ) is also contained in the image of F .
Therefore,

Mrel(G)(y,u) ∼=
(

F1(F )

Jrel(G)

)
(y,u)

=
OCn+1×Cr,(y,u)

Jrel(G)(y,u)
. (8.2)

But Jrel(G)(y,u) is generated by n + 1 elements and (8.2) has dimension
≤ r. Hence, (8.2) is a complete intersection and thus, Cohen-Macaulay of
dimension r. By [53, Proposition C.15],

e
(
mCr,u;Mrel(G)(y,u)

)
= dimC

Mrel(G)(y,u)

mCr,u · Mrel(G)(y,u)

= dimC
OCn+1×Cr,(y,u)

Jrel(G)(y,u) +mCr,u

= dimC
OCn+1

J(gu)y

= µ(gu; y),

the Milnor number of gu at y. Finally, Siersma’s Theorem 5.3 implies

e(mr;Mrel(G)) =
∑

y∈Bϵ\Xu

µ(gu; y) = βn(Xu ∩Bϵ) = µI(f).

In the proof of the theorem we have used a well known property of the
multiplicity, namely that

e(m;M) ≤ dimC
M

m ·M
,
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with equality if and only if M is Cohen-Macaulay (see [53, Proposition
C.15]). This gives the following consequence:

Corollary 8.2. With the hypothesis of Theorem 8.1, we have

µI(f) ≤ dimC M(g),

with equality if and only if Mrel(G) is Cohen-Macaulay.

It follows that the fact that Mrel(G) is Cohen-Macaulay is independent
of the choice of the unfolding F such that B(F ) ⊊ (Cr, 0) and only depends
on the map germ f and the defining equation g of its image. This also
suggests to state the following strong version of Mond conjecture:

Conjecture 8.3 (Strong Mond conjecture). Let f ∈ OS(n, n+ 1) be
with isolated instability and suppose that either (n, n+ 1) are nice dimen-
sions or f has corank one. Then,

µI(f) = codimAe(f) + dimC K(g),

where g is a reduced equation of the image of f .

Obviously, this strong version implies the Mond conjecture. Moreover,
the strong version is equivalent to the fact that µI(f) = dimC M(g) or
that Mrel(G) is Cohen-Macaulay, for some (and hence for any) unfolding
F such that B(F ) ⊊ (Cr, 0), by Proposition 6.5 and Corollary 8.2.

In the case that (X, 0) is a hypersurface with isolated singularity and
g is a reduced equation, the Milnor number is given by

µ(X, 0) = dimC On+1/J(g),

so the dimension of the C-vector space On+1/J(g) is independent of the
choice of the equation g. Such statement is not true in general if we remove
the isolated singularity condition. If we had a positive answer to the strong
Mond conjecture, then we could also claim that the dimension of the C-
vector space M(g) is independent of the choice of the equation g of the
image of f when it has isolated instabillity.



Chapter 9

Proof of the Mond
conjecture for surfaces

In this chapter we explain how to prove the Mond conjecture for A -finite
map germs f ∈ OS(2, 3). As we mention in Chapter 2, the first proof of
this result was found by de Jong and Pellikaan (unpublished), but the first
published proofs are due to Jong and van Straten [15] and, independently,
Mond [50]. Here we propose a different argument, based on the fact that
the relative Jacobian module Mrel(G) is Cohen-Macaulay. Our proof uses
an argument due to Pellikaan [64] which shows that certain modules of the
form I/J , for ideals J ⊆ I are Cohen-Macaulay. A more general version
of our proof which also works for mappings on ICIS can be found in the
recent paper [19] (see Chapter 10).

We first present a lemma which is valid also for any n ≥ 2.

Lemma 9.1. Let f ∈ OS(n, n+1) be such that dimC M(g) < ∞ with n ≥ 2
and let F be an r-parameter unfolding. If depth(F1(F )/Jrel(G)) ≥ r, then
Mrel(G) is Cohen-Macaulay of dimension r.

Proof. This is based on the depth lemma [17, Corollary 18.6], applied to
the short exact sequence (7.2). We get

depthMrel(G) ≥ min

{
depth

(
F1(F )

Jrel(G)

)
,depth

(
C(F )

Jrel(G) · On+r

)
+ 1

}
.

But, as we saw in the proof of Theorem 7.4, C(F )/(Jrel(G) · On+r) is
isomorphic to On+r/R(F ) and hence, is Cohen-Macaulay of dimension
n− 2 + r. Hence,

depth

(
C(F )

Jrel(G) · On+r

)
= dim

(
C(F )

Jrel(G) · On+r

)
= n− 2 + r ≥ r.

107
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We deduce that Mrel(G) has also depth ≥ r. On the other hand, dimC M(g) <
∞ implies that depthMrel(G) ≤ dimMrel(G) ≤ r, so necessarily

depthMrel(G) = dimMrel(G) = r

and Mrel(G) is Cohen-Macaulay.

Theorem 9.2. Let f ∈ OS(2, 3) be A -finite and let F be an r-parameter
unfolding. Then Mrel(G) is Cohen-Macaulay of dimension r.

Proof. By Lemma 9.1, we only need to prove that depth(F1(F )/Jrel(G)) ≥ r.
We follow the argument of [64, Proposition 3.4] to show that F1(F )/Jrel(G)
is in fact Cohen-Macaulay of dimension r.

We know by Lemma 7.2 that O3+r/F1(F ) is Cohen-Macaulay of codi-
mension 2. By the Hilbert-Burch theorem [17, Theorem 20.15], it has a
free resolution of length 2 as follows:

0 Om
3+r Om+1

3+r O3+r O3+r/F1(F ) 0.
A2 A1

This implies that F1(F ) admits a presentation

Om
3+r Om+1

3+r F1(F ) 0.
A2 A1 (9.1)

Now we only have to add the generators of Jrel(G) as relations in (9.1)
in order to obtain a presentation of the quotient F1(F )/Jrel(G). In other
words, let α1, . . . , am+1 be the generators of F1(F ) given by the compo-
nents of A1. Since Jrel(G) ⊆ F1(F ) we have

∂G

∂yi
=

m+1∑
j=1

bijaj , i = 1, 2, 3,

for some matrix B = (bij) with entries in O3+r. Then,

Om
3+r ⊕ O3

3+r Om+1
3+r F1(F )/Jrel(G) 0,

A2+B A1 (9.2)

provides a presentation of F1(F )/Jrel(G).
We use now a theorem by Buchsbaum-Rim [7] which says that if a

module M admits a presentation over a Cohen-Macaulay ring with a ma-
trix of size p× q, with q ≥ p, and it has codimension ≥ q − p+ 1, then M
is Cohen-Macaulay of codimension q− p+ 1. In our case the presentation
matrix has size (m+ 1)× (m+ 3), so m+ 3− (m+ 1) + 1 = 3.

From the A -finiteness of f we have that M(g) and C(f)/(J(g) · On)
both have finite C-dimension. The exact sequence (6.1) implies that
F1(f)/J(g) also has finite C-dimension. Now, by (7.3), F1(F )/Jrel(G)
has (Krull) dimension ≤ r, and hence codimension ≥ 3 in O3+r. By the
Buchsbaum-Rim theorem, F1(F )/Jrel(G) is Cohen-Macaulay of codimen-
sion 3, that is, of dimension r.
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Remark 9.3. When n ≥ 3, F1(F )/Jrel(G) is never Cohen-Macaulay. In
fact, the same argument with the depth lemma used in the proof of Lemma
9.1 gives that

depthMrel(G) ≥ depth(F1(F )/Jrel(G)).

But we know that depthMrel(G) ≤ dimMrel(G) ≤ r, hence F1(F )/Jrel(G)
has depth ≤ r. On the other hand, F1(F )/Jrel(G) has codimension 3 and
hence, dimension n− 2+ r > r, if n ≥ 3. In particular, the argument used
in the proof of Theorem 9.2 does not work for n ≥ 3.

Now the strong version of the Mond conjecture (and hence the Mond
conjecture) follows for map germs f ∈ OS(2, 3).

Corollary 9.4. Let f ∈ OS(2, 3) be A -finite. Then,

µI(f) = codimAe
(f) + dimC K(g),

where g is a reduced equation of the image of f . In particular, we have

µI(f) ≥ codimAe
(f),

with equality if f is weighted homogeneous.



Chapter 10

Additional comments

10.1 µ = τ implies weighted homogeneity

A celebrated theorem of Saito [67] says that if (X, 0) is a hypersurface
with isolated singularity, then the equality τ(X, 0) = µ(X, 0) implies that
(X, 0) is weighted homogeneous, up to a coordinate change in (Cn+1, 0).
It seems natural to investigate the analogous question for A -finite map
germs f ∈ OS(n, n+ 1): Does the equality

µI(f) = codimAe(f) (10.1)

imply that f is weighted homogeneous, up to A -equivalence?
The case n = 1 is easy, since the image is a curve with isolated singu-

larity, so Saito’s theorem can be applied in this situation. However, this
question is open in higher dimensions, even for n = 2, as far as we know.
A positive answer to the strong Mond conjecture would imply that the
equality (10.1) is equivalent to that g ∈ J(g). So, another natural ques-
tion, independent of the strong Mond conjecture, is: Does g ∈ J(g) imply
that f is weighted homogeneous, up to A -equivalence?

10.2 Mappings on ICIS

The Thom-Mather theory of singularities of mappings was generalised by
Mond and Montaldi in [52] for map germs of the form f : (X, 0) → (Cp, 0),
where (X, 0) is an isolated complete intersection singularity (ICIS) of di-
mension n. They decide to denote such map germs as a pair (X, f). This
notation may seem a bit redundant, since the ICIS (X, 0) is actually the
domain of the mapping f , but they do this in order to highlight the fact
that both the ICIS and the mapping contribute to the singularity. In
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fact, the unfoldings are defined is such a way that we deform (X, 0) and f
simultaneously.

According to [52], an unfolding of (X, f) is a map germ F : (X , 0) →
(Cp × Cr, 0) together with a flat projection π : (X , 0) → (Cr, 0) and an
isomorphism j : (X, 0) →

(
π−1(0), 0

)
such that the following diagram com-

mutes
(X, 0)

(π−1(0), 0)
(
Cp × {0} , 0

)
(X , 0) (Cp × Cr, 0)

(Cr, 0)

f×{0}j

F

π π2

,

where π2 : Cp × Cr → Cr is the Cartesian projection. The unfolding is
denoted by the pair (X , F ) and, for each u in a neighbourhood of 0 in
Cr, we have a pair (Xu, fu), where Xu = π−1(u) and fu : Xu → Cp is the
restriction of π1 ◦ F .

The Ae-codimension of (X, f) is defined as the number of parameters
of a miniversal unfolding. The starting point used by Mond and Montaldi
is the fact that

codimAe
(X, f) = codimKD,e

g,

where g induces (X, f) from a stable unfolding (CN , F ) of (X, f) by fibre
product, as described by Damon in [12]. Then, Mond and Montaldi proved
that

codimAe
(X, f) = dimC

θ(f)

tf(θX,0) + ωf(θp)
+ τ(X, 0), (10.2)

where θX,0 is the module of tangent vector fields on (X, 0), θ(f) is module
of vector fields along f and the morphisms tf and ωf are defined in an
analogous way to the smooth case. The term τ(X, 0) is the Tjurina number
of the ICIS, which can be seen as the number of parameters of a miniversal
deformation of (X, 0). In particular, (X, f) is stable in this setting if and
only if (X, 0) is smooth and f is stable in the usual sense.

As in the smooth case, a stabilisation of (X, f) is a 1-parameter un-
folding with the property that (Xt, ft) is stable if t ̸= 0. This means that
Xt is a smoothing of (X, 0) and ft : Xt → V is a locally stable mapping,
for some open neighbourhood V of 0 in Cp. Since (X, 0) is an ICIS, the
smoothing Xt is obtained as a Milnor fibre of (X, 0) and the mapping f can
be approximated by a stable mapping ft on Xt if (n, p) are nice dimensions
and (X, f) has isolated instability.
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Following the same script as in the smooth case, they also showed in
[52] that if (n, p) are nice dimensions, with n ≥ p, and (Xt, ft) is a stable
perturbation, then ∆(ft) ∩ Bϵ has the homotopy type of a bouquet of
(p− 1)-spheres, where ∆(ft) is the discriminant. The discriminant Milnor
number is well defined as the number of such spheres, i.e.,

µ∆(X, f) = βp−1(∆(ft) ∩Bϵ).

Then, they generalised the theorem of Damon and Mond [13] for mappings
on ICIS with dimX ≥ p, as expected:

codimAe
(X, f) ≤ µ∆(X, f),

with equality when (X, f) is weighted homogeneous.
In the case (n, n + 1), the definition of the image Milnor number

µI(X, f) appears in the paper [22] and is given in the obvious way by
taking the image instead of the discriminant, i.e.,

µI(X, f) = βn(ft(Xt) ∩Bϵ)

and is well defined provided that (n, n + 1) are nice dimensions or f has
corank one. Now it makes sense to consider a generalised version of the
Mond conjecture in this setting:

codimAe(X, f) ≤ µI(X, f), (10.3)

with equality when (X, f) is weighted homogeneous.
An important reason to consider the generalised Mond conjecture for

mappings on ICIS is that it also generalises the µ ≥ τ -inequality in the
classical case of a hypersurface with isolated singularity, as the following
example shows:

Example 10.1. We consider the pair (X, i), where (X, 0) is a hypersurface
with isolated singularity in (Cn+1, 0) and i : (X, 0) ↪→ (Cn+1, 0) is the
inclusion. By construction, any vector field along i is the restriction to
(X, 0) of a vector field on (Cn+1, 0) and thus, ωi(θn+1) = θ(i). Hence,
(10.2) gives

codimAe(X, i) = τ(X, 0).

On the other hand, let g ∈ On+1 be a reduced equation of (X, 0). A stabili-
sation of (X, i) is given by the pair (Cn+1, F ), where F = (id, g) : (Cn+1, 0) →
(Cn+1 × C, 0) and g : (Cn+1, 0) → (C, 0) is the flat projection. For each t
in a neighborhood of 0 in C, Xt = g−1(t), which is smooth if t ̸= 0 and
ft : Xt → Cn+1 is the inclusion, which is locally stable, also for t ̸= 0. By
definition, the image Milnor number is

µI(X, i) = βn(Xt ∩Bϵ) = µ(X, 0).
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The conjecture (10.3) has been proved when n = 1 in the particular
cases that either (X, 0) is a plane curve (see [3]) or (X, 0) is irreducible
and (X, f) is weighted homogeneous (see [4]).

Example 10.2. [3] Let (X, 0) be the plane curve given by x5+y6+x2y2 = 0
and let f : (X, 0) → (C2, 0) be the map germ f(x, y) = (x, y3). The image
can be obtained easily with the aid of Singular and gives the plane curve
(Y, 0) with equation

u15 + 3u10v2 + 3u5v4 + u6v2 + v6 = 0.

It follows that µ(Y, 0) = 46 and τ(Y, 0) = 41. The Ae-codimension and
the image Milnor number are computed in [3] and give:

codimAe
(X, f) = 24, µI(X, f) = 29.

We see that (X, f) is not weighted homogeneous, up to A -equivalence.
The difference between the two invariants coincides with µ(Y, 0)− τ(Y, 0).

In a recent paper [19], the authors generalise the construction of the
Jacobian module M(g) for mappings on ICIS. They show that the conjec-
ture (10.3) follows for n ≥ 2, provided that the relative Jacobian module
Mrel(G) is Cohen-Macaulay, as it happens in the smooth case. Moreover,
they also obtain a proof of the conjecture for the case n = 2, following
similar arguments to those of the proof given in Chapter 9 for the smooth
case.

Example 10.3. [19] We consider the pair (X, f), where (X, 0) is the surface
in (C3, 0) with equation x3 + y3 − z2 = 0 and f : (X, 0) → (C3, 0) is the
mapping f(x, y, z) = (x, y, z3 + xz + y2). With the results of [19] and the
aid of Singular, we can see that codimAe

(X, f) = µI(X, f) = 6.

10.3 Frontals
In [56], the authors propose a µ ≥ τ -conjecture analogous to the Mond
conjecture, but for frontals. We recall that a map germ f ∈ OS(n, n+1) is
called a frontal if it admits a lifting to a Legendrian mapping f̃ : (Cn, S) →
PT ∗Cn+1, where π : PT ∗Cn+1 → Cn+1 is the projectivised cotangent bun-
dle, together with the standard contact structure given by the standard
contact form α on PT ∗Cn+1. The fact that f̃ is Legendrian means that
f̃∗α = 0. In other words, f̃ = (f, [ν]), where ν : (Cn, S) → T ∗Cn+1 is a
holomorphic, everywhere non-zero 1-form along f such that ν(df ◦ ξ) = 0,
for all ξ ∈ θn. If ν is given in coordinates by ν =

∑n+1
i=1 νidyi, this is also

equivalent to
n+1∑
i=1

νi
∂fi
∂xj

= 0, ∀j = 1, . . . , n. (10.4)
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Geometrically, a frontal can be understood as a mapping whose image has
a well defined tangent hyperplane at every point. The notion of frontal
was introduced for the first time by Fujimori, Saji, Umehara and Yamada
in [20] (see also the paper of Zakalyukin and Kurbatskĭı [74]) as a natural
extension of the notion of wavefront, which is the particular case where
the lifting f̃ is an immersion.
Example 10.4. It is easy to check that any plane curve f ∈ OS(1, 2) is
a frontal. The swallowtail and the folded Whitney umbrella are two ex-
amples of map germs in OS(2, 3) which are frontals. They are defined
as

f(x, y) =
(
x, y3 + xy, 3y4 + 2xy2

)
, f ′(x, y) =

(
x, y2, xy3

)
,

respectively (see Figure 10.1). We have

∂f

∂x
∧ ∂f

∂y
= (x+ 3y2)(2y2,−4y, 1),

∂f ′

∂x
∧ ∂f ′

∂y
= y(2y3,−3xy, 2).

In both cases, we can take (2y2,−4y, 1) or (2y3,−3xy, 2) respectively, as
the coordinates of a 1-form ν which is everywhere non-zero and satisfies
(10.4). Hence, f and f ′ are frontals. The Whitney umbrella, given by
(x, y) 7→ (x, y2, xy), is not a frontal, as the reader can check easily.

We remark that the frontals are not A -finite when n ≥ 2, so the classi-
cal theory of singularities of mappings cannot be used directly. The Thom-
Mather theory of frontals has been developed in the recent paper [57],
based on the previous work of Ishikawa [33] on Legendrian singularities.
An important point is that the frontality is preserved under A -equivalence,
so we do not need to change the equivalence relation. However, we have to
restrict ourselves to deformations which preserve the frontal structure. By
definition, a frontal unfolding of f is an unfolding F which is also a frontal
as a map germ. This ensures that its lifting F̃ induces a Legendrian de-
formation of f̃ . And conversely, any Legendrian deformation of f̃ induces
a frontal unfolding F of f . The notions of frontal stability or versality can
be adapted easily in this setting.

For technical reasons, in order to use Ishikawa’s result on infinitesimal
deformations, we have to consider only frontals whose Legendrian lifting
has corank 1. The frontal codimension of f is defined as

codimFe
(f) = dimC

F (f)

tf(θn) + ωf(θn+1)
,

where F (f) is the subspace of frontal infinitesimal deformations, that is,

F (f) =

{
dft
dt

∣∣∣∣
t=0

: (ft, t) is frontal, f0 = f

}
.

Then, it follows that codimFe(f) is the number of parameters of a miniver-
sal frontal unfolding (see [57, Theorem 3.21]). In particular codimFe

(f) =
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Figure 10.1: The swallowtail and the folded Whitney umbrella

0 if and only if f is frontal stable. We also deduce a frontal version of the
Mather-Gaffney criterion: f is F -finite (i.e., it has finite frontal codimen-
sion) if and only if it has isolated frontal instability.

The classification of stable frontal singularities is known up to dimen-
sion n ≤ 3 (see [57, Theorem 6.10]). The stable mono-germs are:

• n = 1, the regular point and the cusp;

• n = 2, the regular point, the cuspidal edge, the swallowtail and the
folded Whitney umbrella;

• n = 3, apart from the singularities coming from trivial unfoldings of
singularities in dimensions n = 1, 2, we have two new mono-germs
A3,1 and A4,0 in Ishikawa’s notation [33].

All stable multi-germs are obtained by taking transverse combinations of
the mono-germs. The classification in higher dimensions is open, as far as
we know.

As in the case of A -finite germs, if f is F -finite and either (n, n+1) are
“frontal nice dimensions” or f has corank one, then f can be approximated
by a frontal stable mapping. It follows that f admits a frontal stabilisation,
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that is, a 1-parameter unfolding F (x, t) = (ft(x), t) such that ft is locally
frontal stable, for t ̸= 0. Let Xt be the image of such ft. Then, Xt ∩ Bϵ
has the homotopy type of a bouquet of n-spheres and the number of such
spheres is called the frontal Milnor number :

µF (f) = βn(Xt ∩Bϵ),

(see [56, Definition 5.2]). The frontal version of the Mond conjecture is
now natural:

codimFe(f) ≤ µF (f),

with equality if f is weighted homogeneous [56, Conjecture 5.1]. The
frontal Mond conjecture has been proved for n = 1 in [57, Corollary 5.13]),
but the case n ≥ 2 is still open.
Example 10.5. Consider the plane curve E6, f ∈ O(1, 2) given by f(x) =
(x3, x4). We know that the image has Milnor number µ(X, 0) = 6. Now
we compare the stable perturbation (Figure 10.2, left)

ft(x) = (x3 + tx, x4 + (4/3)tx2),

with the frontal stable perturbation (Figure 10.2, right)

f ′
t(x) = (x3 + tx, x4 + (2/3)tx2).

Figure 10.2: Stable and frontal stable perturbations of E6

We remark that the pictures in Figure 10.2 are real representations
of the corresponding complex curves. Nevertheless, they are real good
pictures, in the sense that they present the expected homotopy type of its
complex model.

In the left hand side, the curve has three 1-cycles, which is compatible
with µI(f) = 3. In the right hand side, in order to preserve the frontal
structure, two of the 1-cycles have collapsed to cusps, which are frontal
stable and must be preserved. Thus, only one 1-cycle survives, as it should
be expected, since µF (f) = 1. By the way, we can observe that the frontal
stabilisation F ′(x, t) = (f ′

t(x), t) is the swallowtail (see Example 10.4).
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10.4 The far side of Mond
For isolated hypersurface singularities, the usual µ ≥ τ inequality can be
expressed as 1 ≤ µ

τ . In [35], Liu showed that this quotient can also be
bounded above.

Theorem 10.6. Let (X, 0) ⊂ (Cn+1, 0) be an isolated hypersurface singu-
larity. Then,

1 ≤ µ

τ
≤ n+ 1.

The proof is not hard, and is based on the fact that any equation h of
(X, 0) satisfies hn ⊆ Jh [70]. This bound is not meant to be sharp, the
relevance of the result is the existence of a bound. For curves, we know a
sharp bound due to Almirón [1], and can be summarised as follows:

Theorem 10.7. Let (X, 0) be a reduced plane curve singularity. Then,

1 ≤ µ

τ
<

4

3
.

The fact that the bound is sharp follows from the existence of a family
of singularities, found by Dimca and Greuel [16, Example 4.1], whose µ/τ
values converge to 3/4. Now we shall show that something similar applies
to curve map-germs. The following result is an improved version for multi-
germs of a result found in [5].

Theorem 10.8. All A -finite germs f : (C, S) → (C2, 0) satisfy

1 ≤ µI
codimAe

(f)
<

5

2
.

For mono-germs, a sharp upper bound is
µI

codimAe(f)
< 2.

Proof. The lower bound corresponds to the Mond conjecture and, as we
explained in Chapter 2, Section 2.1, it is a trivial consequence of the equal-
ities

µ = µI(f) + δ, τ = codimAe
(f) + δ,

where µ, τ and δ are the corresponding invariants of the image of f . For
the upper bound we use Hironaka’s formula

µ = 2δ − r + 1,

where r stands for the number of branches. Together with the µ
τ < 4

3
inequality, this gives

codimAe
(f) = τ − µ+ r − 1

2
>

3

4
µ− µ+ r − 1

2
=

µ− 2r − 2

4
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and
µI = µ− δ =

µ− 2r − 2

2
+

r − 1

2
.

Therefore,
µI

codimAe
(f)

< 2 +
r − 1

2 codimAe
(f)

.

This gives the stated bound for mono-germs. To see that it is sharp just
observe that, for the parametrizations of the family of Dimca and Greuel,
the µI/ codimAe

(f) quotient converges to 2.
For multi-germs, observe that if f is unstable, then

codimAe
(f) > codimAe

(f ′), (10.5)

where f ′ is the multi-germ of r−1 branches obtained after eliminating one
of the branches of f (this inequality can be deduced, for instance, from
the exact sequence that appears in the proof of [62, Theorem 4.3]).

When r = 4, the simplest case is when we consider 4 distinct lines,
which has Ae-codimension 3. Moreover, it is 4-determined and hence, any
other given by 4 smooth branches which are pairwise transverse has also
Ae-codimension 3. In the general case, any f with 4 branches can be
deformed to such singularity, so codimAe

(f) ≥ 3, by the upper semiconti-
nuity. From (10.5) we deduce, by induction on r, that codimAe(f) ≥ r−1,
if r ≥ 4.

The same inequality codimAe
(f) ≥ r−1 holds obviously when r = 2 or

when r = 3 and codimAe
(f) ≥ 2. Thus, the only remaining case is r = 3

and codimAe
(f) = 1. But this implies that f is an ordinary triple point,

which is weighted homogeneous and hence,

µI
codimAe

(f)
= 1

This bound for multi-germs is not meant to be sharp. Based on Liu’s
Theorem 10.6, we propose what follows:

Conjecture 10.9. Let f ∈ OS(n, n + 1) be with isolated instability and
suppose that either (n, n + 1) are nice dimensions or f has corank one.
Then,

µI(f)

codimAe(f)
≤ n+ 1.
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