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An overview: structure and
goals

In the present overview we focus on interacting particle systems on random
graphs. This is a relatively new research area in which progress is rapid,
problems are challenging, and new panoramas unfold. It lies at the interface
between probability theory, combinatorics, statistical physics and network
science, and as such is captivating.

The overview is structured as follows:

▶ Chapter 1 (Lecture 1): Background and motivation for Interacting
Particle Systems (IPS) on Zd, d ≥ 1. Key questions and core tools.
Phase transitions.

▶ Chapter 2 (Lecture 2): The stochastic Ising model (SIM) on random
graphs.

▶ Chapter 3 (Lecture 3): The voter model (VM) on random graphs.

▶ Chapter 4 (Lecture 4): The contact process (CP) on random graphs.

In Chapters 2–4, IPS on four classes of random graphs will be considered:

• Homogeneous Erdős-Rényi random graph (HER).

• Inhomogeneous Erdős-Rényi random graph (IER).

• Configuration model (CM).

• Preferential attachment model (PAM).

The goal of the overview is to:

– Sketch what is known and not known about IPS on random graphs.

– Highlight the role of sparse versus dense graphs.

– Exhibit the relevant time scales for critical phenomena and identify
how these depend on the size of the graph.
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An overview: structure and goals 121

– List some open problems and indicate some lines of future research.

Standard references for IPS on Zd are Liggett [42, 43]. Standard references
for random graphs are van der Hofstad [38, 39]. In what follows, proofs of
theorems are sometimes included but often not. For details the reader is
referred to the relevant references that are given.

An extensive revision in progress (Durrett [33]) of the monograph Dur-
rett [32] offers a broad panorama on the topic of IPS on RG.

Acknowledgements. The authors are supported by the Netherlands Or-
ganisation for Scientific Research (NWO) through Gravitation Grant NET-
WORKS-024.002.003. FC is also supported by the European Union’s Hori-
zon 2020 research and innovation programme under the Marie Skłodowska-
Curie grant agreement no. 945045.



Chapter 1 (Lecture 1)

Interacting particle systems
on Zd, d ≥ 1. General
properties and three
examples

As an area of research, IPS started in the 1970s, with pioneers Spitzer,
Dobrushin, Harris, Holley, Stroock, Liggett, Griffeath, Durrett. Over the
years, IPS has turned out to be a fertile breeding ground for the develop-
ment of new ideas and techniques in mathematical statistical physics, in-
cluding graphical representation, coupling, duality and correlation inequal-
ities.

1.1 Spin-flip systems

We start by defining what an IPS is. We focus on spin-flip systems, which
constitute a particularly tractable class. Within this class we focus on three
examples:

Stochastic Ising model (SIM)
Voter model (VM)
Contact process (CP)

Standard references for IPS on Zd are Liggett [42, 43]. For most of the
results to be described in this section, references can be found in these
monographs.
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Chapter 1. Interacting particle systems on Zd, d ≥ 1 123

Definition. An Interacting Particle System (IPS) is a Markov process
ξ = (ξt)t≥0 on the state space

Ω = {0, 1}Z
d

, d ≥ 1,

where
ξt = {ξt(x) : x ∈ Zd}

denotes the configuration at time t, with ξt(x) = 1 or 0 meaning that
there is a ‘particle’ or a ‘hole’ at site x at time t, respectively. Alternative
interpretations are:

1 = spin-up/democrat/infected
0 = spin-down/republican/healthy.

The configuration changes over time, which models how:

• magnetic atoms flip up and down as a result of noise,
• two political parties evolve in an election campaign,
• a virus spreads through a population.

The evolution is specified via a set of local transition rates

c(x, η), x ∈ Zd, η ∈ Ω,

playing the role of the rate at which the state at site x changes in the
configuration η, i.e.,

η → ηx

with ηx the configuration obtained from η by changing the state at site x
(either 0 → 1 or 1 → 0). Since there are only two possible states at each
site, the IPS is called a spin-flip system.

If c(x, η) depends on η only via η(x), the value of the spin at site x, then
ξ consists of independent spin-flips. In general, however, the rate to flip the
spin at x depends on the spins located in the neighbourhood of x (possibly
even on all spins). This dependence models an interaction between the
spins at different sites.

In order for ξ to be well-defined, some restrictions must be placed on
the local transition rates: c(x, η) must depend only weakly on the states at
far away sites (formally, η 7→ c(x, η) is continuous in the product topology)
and must be not too large (formally, bounded away from infinity in some
appropriate sense). See Liggett [42, Chapter I] for details.

1.2 Shift-invariant attractive systems
A typical assumption is that

c(x, η) = c(x+ y, τyη), y ∈ Zd,
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with τy the shift of space over y, i.e.,

(τyη)(x) = η(x− y), x ∈ Zd.

This property says that the flip rate at x only depends on the configuration
η seen relative to x, which is natural when the interaction between spins
is homogeneous in space. Spin-flip systems with this property are called
shift-invariant.

Another useful assumption is that the interaction favours spins that
are alike, i.e.,

η ⪯ η′ →
{

c(x, η) ≤ c(x, η′) if η(x) = η′(x) = 0,
c(x, η) ≥ c(x, η′) if η(x) = η′(x) = 1,

where ⪯ denotes the partial order in Ω. This property says that, when η′

is everywhere larger than η, the spin at x flips up faster in η′ than in η
and flips down slower. In other words, the dynamics preserves ⪯. Spin-flip
systems with this property are called attractive.

1.3 Three examples

Example 1: Stochastic Ising model (SIM). This model is defined
on Ω = {−1, 1}Zd

with rates

c(x, η) = exp

[
−βη(x)

∑
y∼x

η(y)

]
, β ≥ 0,

which means that spins prefer to align with the majority of the neighbour-
ing spins as soon as β > 0.

Example 2: Voter model (VM). This model is defined on Ω = {0, 1}Zd

with rates
c(x, η) =

1

2d

∑
y∼x

1{η(y)̸=η(x)},

which means that sites choose a random neighbour at rate 1 and adopt
the opinion of that neighbour.

Example 3: Contact process (CP). This model is defined on Ω =

{0, 1}Zd

with rates

c(x, η) =

{
λ
∑
y∼x

η(y), if η(x) = 0,

1, if η(x) = 1,
λ ≥ 0,
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which means that infected sites become healthy at rate 1 and healthy sites
become infected at rate λ times the number of infected neighbours.

It is easy to check that all three models are shift-invariant and attrac-
tive. Below we will discuss each model in some detail. We will see that
the properties of shift-invariance and attractiveness allow for a number of
interesting conclusions concerning their equilibrium, as well as their con-
vergence to equilibrium.

1.4 Partial ordering and coupling

Given two probability measures P, P ′ on Ω = {0, 1}Zd

with Borel σ-algebra
B, we say that P ′ stochastically dominates P , and write P ⪯ P ′, if

P (A) ≤ P ′(A) for all A ⊆ B non-decreasing,

where A non-decreasing means

x ∈ A =⇒ A ⊇ {y ∈ Ω: x ⪯ y},

and ⪯ is a partial ordering on Ω (in our case the natural partial ordering
induced by the ordering of the components at each site). Equivalently, P ′
stochastically dominates P if∫

Ω

f dP ≤
∫
Ω

f dP ′ for all f : Ω → R measurable, bounded
and non-decreasing,

where f non-decreasing means

x ⪯ y =⇒ f(x) ≤ f(y).

A coupling of P, P ′ on Ω is any joint probability measure P̂ on Ω× Ω
with marginals P, P ′. Strassen’s theorem (see Lindvall [44]) says that if
P ⪯ P ′, then there exists a coupling P̂ of (P, P ′) such that

P̂{(x, x′) ∈ Ω× Ω: x ⪯ x′} = 1.

In fact, on a partially ordered space Ω the following three statements are
equivalent:

1. P ⪯ P ′,

2.
∫
Ω
f dP ≤

∫
Ω
f dP ′ for all f measurable, bounded and non-decreasing,

3. ∃ P̂ : P̂ (X̂ ⪯ X̂ ′) = 1,

where X,X ′ have marginal laws P, P ′ and (X̂, X̂ ′) has joint law P̂ .
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1.5 Convergence to equilibrium

Write [0] and [1] to denote the configurations η ≡ 0 and η ≡ 1, respec-
tively. These are the smallest, respectively, the largest configurations in
the natural partial order on Ω, and hence

[0] ⪯ η ⪯ [1], η ∈ Ω.

Since the dynamics preserves the partial order (see Lemma 1.1 below), we
obtain information about what happens when the system starts from any
η ∈ Ω by comparing with what happens when it starts from [0] or [1].

An IPS can be described by a semigroup of transition kernels

(Pt)t≥0.

Formally, Pt is an operator acting on Cb(Ω), the space of bounded contin-
uous functions on Ω, as

(Ptf)(η) = Eη[f(ξt)], η ∈ Ω, f ∈ Cb(Ω).

If this definition holds on a dense subset of Cb(Ω), then it uniquely de-
termines Pt. Note that P0 is the identity and that Pt+s = Pt ◦ Ps for all
s, t ≥ 0 (where ◦ denotes composition). To see the latter, note that

(P0f)(η) = Eη[f(ξ0)] = f(η),

where Pη is the law of ξ with initial position η:

Pη(ξ(·) ∈ D([0,∞)) : ξ0 = η) = 1,

where D([0,∞)) is the space of càdlàg functions from [0,∞) to Ω. More-
over, for t ≥ 0 let Ft be the σ-algebra generated by (ξs)0≤s≤t. Then

(Pt+sf)(η) = Eη[f(ξt+s)]

= Eη
[
Eη[f(ξt+s) | Ft]

]
= Eη[Eξt [f(ξs)]]

= Eη[(Psf)(ξt)]

= ((Pt ◦ Ps)f)(η) ,

where the third equality uses the Markov property of ξ.
Formally, we can write Pt = etL with L the generator of the IPS:

(Lf)(η) =
∑
x∈Zd

c(x, η)[f(ηx)− f(η)].
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Alternatively, the semigroup can be viewed as acting on the space of prob-
ability measures µ on Ω via the duality relation∫

Ω

f d(µPt) =

∫
Ω

(Ptf) dµ, f ∈ Cb(Ω),

where µPt is the law of ξt when µ is the law of ξ0, i.e., µPt is the time-t
evolution of µ.

Lemma 1.1. Let (Pt)t≥0 denote the semigroup of transition kernels that is
associated with ξ = (ξt)t≥0. Write δηPt to denote the law of ξt conditional
on ξ0 = η (which is a probability distribution on Ω). Then

t 7→ δ[0]Pt is stochastically increasing,
t 7→ δ[1]Pt is stochastically decreasing.

Proof. Recall that we assume shift-invariance and attractiveness. For t,h≥0

δ[0]Pt+h = (δ[0]Ph)Pt ⪰ δ[0]Pt,
δ[1]Pt+h = (δ[1]Ph)Pt ⪯ δ[1]Pt,

where we use that

δ[0]Ph ⪰ δ[0], δ[1]Ph ⪯ δ[1], h ≥ 0,

and we use Strassen’s theorem in combination with the coupling rep-
resentation that goes with the partial order. (Strassen’s theorem says
that stochastic ordering is equivalent to the existence of an ordered cou-
pling.)

Corollary 1.2. Both

ν = lim
t→∞

δ[0]Pt = lower stationary law,

ν = lim
t→∞

δ[1]Pt = upper stationary law,

exist as probability distributions on Ω and are equilibria for the dynamics,
i.e., are invariant under the evolution. Any other equilibrium π satisfies
ν ⪯ π ⪯ ν.

Proof. This is immediate from Lemma 1.1 and the sandwich

δ[0]Pt ⪯ δηPt ⪯ δ[1]Pt, η ∈ Ω, t ≥ 0.

The class of all equilibria for the dynamics is a convex set in the space
of signed bounded measures on Ω. An element of this set is called extremal
when it is not a proper linear combination of any two distinct elements in
the set, i.e., is not of the form

pν1 + (1− p)ν2, p ∈ (0, 1), ν1 ̸= ν2.
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Lemma 1.3. Both ν and ν are extremal.

Proof. We give the proof for ν only. Suppose that

ν = pν1 + (1− p)ν2, ν1 ̸= ν2, p ∈ (0, 1).

Since ν1 and ν2 are equilibria, Corollary 1.2 gives∫
Ω

fdν1 ≤
∫
Ω

fdν,

∫
Ω

fdν2 ≤
∫
Ω

fdν,

for any f non-decreasing. Since∫
Ω

f dν = p

∫
Ω

f dν1 + (1− p)

∫
Ω

f dν2

and p ∈ (0, 1), both inequalities must be equalities. Integrals of non-
decreasing functions determine the measure that is being integrated, and
so it follows that ν1 = ν = ν2.

To see why the family {
∫
Ω
f dν : f : Ω → R non-decreasing} deter-

mines the measure ν, it suffices to consider functions of the form f(η) =
1η⪰ξ, with ξ running over Ω. For such functions

∫
Ω
f dν = ν(Aξ) with

Aξ = {η ∈ Ω: η ⪰ ξ} a non-decreasing subset of Ω, and so the claim fol-
lows from the monotone class theorem, which says that the sigma-algebra
of all events is the same as the sigma-algebra of monotone events.

Corollary 1.4. The following three properties are equivalent (for shift-
invariant and attractive spin-flip systems):

1. ξ is ergodic (i.e., δηPt has the same limiting distribution as t → ∞
for all η).

2. There is a unique stationary distribution.

3. ν = ν.

Proof. The claim is obvious in view of the sandwich of the configurations
between [0] and [1].

Remark. If ν ̸= ν, then there is no guarantee that limt→∞ µPt = ν
exists for arbitrary µ. In fact, stronger assumptions than attractiveness are
needed to make that happen. However, we do know that any convergent
subsequence has a limit ν such that ν ⪯ ν ⪯ ν.
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1.6 Properties of the three examples
Example 1: Stochastic Ising model. For β = 0 , c(x, η) = 1 for all
x and η, in which case the dynamics consists of independent spin-flips, up
and down at rate 1. In that case ν = ν = ( 12δ−1 +

1
2δ+1)

⊗Zd

. For β > 0,
the dynamics has a tendency to align the spins. For small β this tendency
is weak, for large β it is strong. It turns out that in d ≥ 2 there is a critical
value βd ∈ (0,∞) such that

β ≤ βd : ν = ν,
β > βd : ν ̸= ν.

The proof uses the so-called Peierls argument. In the first case there is a
unique ergodic equilibrium, which depends on β and is denoted by νβ . In
the second case there are two extremal equilibria, both of which depend on
β and are denoted by

ν+β = plus state with m+
β =

∫
Ω
η(0)ν+β ( dη) > 0,

ν−β = minus-state with m−β =
∫
Ω
η(0)ν−β ( dη) < 0,

which are called the magnetised states. Note that ν+β and ν−β are images of
each other under the swapping of +1’s and −1’s and so m+

β = −m−β = mβ .
It can be shown that in d = 2 all equilibria are a convex combination

of ν+β and ν−β , while in d ≥ 3 other equilibria are possible as well (e.g. not
shift-invariant) when β is large enough. It turns out that β1 = ∞, i.e., in
d = 1 the SIM is ergodic for all β > 0. It is known that β2 = 1

2 log(1+
√
2).

See Duminil-Copin for an overview [29].

Example 2: Voter model. Note that [0] and [1] are both traps for the
dynamics (if all sites have the same opinion, then no change of opinion
occurs), and so

ν = δ[0], ν = δ[1].

It turns out that in d = 1, 2 these are the only extremal equilibria, while
in d ≥ 3 there is a 1-parameter family of extremal equilibria

(νρ)ρ∈[0,1]

with ρ the density of 1’s, i.e., νρ(η(0) = 1) = ρ. This fact is remarkable
because the VM has no parameter. For ρ = 0 and ρ = 1 these equilibria
coincide with δ[0] and δ[1], respectively.

Remark. The dichotomy d = 1, 2 versus d ≥ 3 is directly related to
simple random walk being recurrent in d = 1, 2 and transient in d ≥ 3.
This property has to do with the fact that the VM is dual to a system of
coalescing random walks.
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Example 3: Contact process. Note that [0] is a trap for the dynamics
(if all sites are healthy, then no infection will ever occur), and so

ν = δ[0].

For small λ infection is transmitted slowly, for large λ rapidly. It turns out
that in d ≥ 1 there is a critical value λd ∈ (0,∞) such that

λ ≤ λd : ν = δ[0] = extinction, no epidemic,
λ > λd : ν ̸= δ[0] = survival, epidemic.

Lemma 1.5 (Liggett [42], Durrett [31]).

(i) 2dλd ≥ 1.

(ii) dλd ≤ λ1.

(iii) λ1 < ∞.

Note that (i–iii) combine to yield that 0 < λd < ∞ for all d ≥ 1, so
that the phase transition occurs at a non-trivial value of the infection rate
parameter. Here is a proof of (i) and (ii).

Proof. (i) Pick A0 finite and consider the CP in dimension d with parame-
ter λ starting from the set A0 as the set of infected sites. Let A = (At)t≥0
with At the set of infected sites at time t. Then

|At| decreases by 1 at rate |At|,
|At| increases by 1 at rate ≤ 2dλ|At|,

where the latter holds because each site in At has at most 2d non-infected
neighbours. Now consider the two random processes X = (Xt)t≥0 with
Xt = |At| and Y = (Yt)t≥0 given by the birth-death process on N0 that
moves at rate n from n to n−1 (death) and at rate (2dλ)n from n to n+1
(birth), both starting from n0 = |A0|. Then X and Y can be coupled such
that

P̂ (Xt ≤ Yt ∀ t ≥ 0) = 1,

where P̂ denotes the coupling measure. Note that n = 0 is a trap for both
X and Y . If 2dλ < 1, then this trap is hit with probability 1 by Y , i.e.,
limt→∞ Yt = 0 a.s., and hence also by X, i.e., limt→∞Xt = 0 a.s. Therefore
ν̄λ = δ0 when 2dλ < 1, with ν̄λ the upper invariant measure at infection
rate λ. Consequently, 2dλd ≥ 1.

(ii) The idea is to couple two CP’s that live in dimensions 1 and d. Again,
let A = (At)t≥0 with At the set of infected sites at time t of CPd(λ), the
CP in dimension d with parameter λ, this time starting from A0 = {0}.
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Let B = (Bt)t≥0 be the same as A, but for CP1(λd), the CP in dimension
1 with parameter λd, starting from B0 = {0}.

Define the projection πd : Zd → Z as

πd(x1, . . . , xd) = x1 + · · ·+ xd.

We will construct a coupling P̂ of A and B such that

P̂ (Bt ⊆ πd(At) ∀ t ≥ 0) = 1.

From this we get

P (At ̸= ∅ | A0 = {0})=P
(
πd(At) ̸= ∅ | A0 = {0})≥P (Bt ̸= ∅ | B0 = {0}

)
,

which implies that if A dies out, then also B dies out. In other words,
if λ ≤ λd, then λd ≤ λ1, which implies that dλd ≤ λ1 as claimed. The
construction of the coupling is as follows. Fix t ≥ 0. Suppose that Bt ⊆
πd(At). For each y ∈ Bt there is at least one x ∈ At with y = πd(x). Pick
one such x for every y (e.g. choose the closest up or the closest down).
Now couple:

• If x becomes healthy, then y becomes healthy too.

• If x infects any of the d sites x− ei with i = 1, . . . , d, then y infects
y − 1.

• If x infects any of the d sites x+ ei with i = 1, . . . , d, then y infects
y + 1.

It is much harder to prove (iii). One way is to compare the CP with
directed percolation in two dimensions (= space × time). See Durrett [31]
for details.

Remark. Sharp estimates are available for λ1, but these require heavy
machinery. Numerically, λ1 ≈ 1.6494. A series expansion of λd in powers of
1/2d is known up to several orders, but again the proof is very technical.

1.7 The Cox-Greven finite systems scheme
As a prelude to Chapters 2–4, in which we take a closer look at SIM,
VM, CP on finite random graphs, we describe what is known about these
processes on a large finite torus in Zd,

ΛN = [0, N)d ∩ Zd, N ∈ N,

endowed with periodic boundary conditions. The behaviour on ΛN is differ-
ent from that on Zd. In particular, there is an N -dependent characteristic
time scale αN on which the process notices that ΛN differs from Zd, result-
ing in different behaviour for short, moderate and long times. A systematic
study was initiated in Cox, Greven [24], Cox, Greven, Shiga [25, 26].
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Warning. The text in the remainder of this section is technical.

SIM on the torus. Since |ΛN | < ∞, we have

νN = νN = νNβ with
∫
Ω

η(0)νNβ (dη) = 0 ∀β ∈ (0,∞),

i.e., on any finite lattice eventually the average magnetisation vanishes.
An interesting question is: How long does it take the SIM to loose its
magnetisation and what does it do along the way?

Let
MN

t =
1

|ΛN |
∑

x∈ΛN

ξNt (x)

denote the magnetisation at time t. Suppose that the law of ξN0 is the
restriction to ΛN of the equilibrium measure ν−β on Zd, which has mag-
netisation m−β .

Theorem 1.6 (Cox, Greven [24], Bovier, Eckhoff, Gayrard, Klein
[10]).

(a) For β < βd and any TN → ∞,

lim
N→∞

L
[
MN

TN

]
= δ0.

(b) For β > βd,

lim
N→∞

L
[
MN

sαN

]
= mZs

β , Z0 = −,

where (Zs)s≥0 is the Markov chain on {−,+} jumping at rate 1,
and αN is the average crossover time between the magnetisations
associated with ν−β and ν+β on Zd restricted to ΛN .

For β > βd it can further be shown that (ξNsαN
)s≥0 converges in distri-

bution to νZs

β as N → ∞ .
The computation of αN is hard and belongs to the area of metastability.

It is expected that

αN = exp
[
κd(β)N

d−1(1 + o(1))
]

with κd(β) the free energy of the so-called Wulff droplet of volume 1
2 in Rd

representing the barrier between ν−β , ν+β . The proof remains a challenge.
See Schonmann, Shlosman [57] and Bovier, den Hollander [12, Chapter 22]
for more background.
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VM on the torus. In this geometry, we have

νN = [0]N , νN = [1]N ,

as the states [0]N and [1]N are absorbing. Moreover, since |ΛN | < ∞ and
|ΛN | is connected, it follows that on any finite lattice eventually consensus
is reached in finite time. An interesting question is: How long does it take
the VM to reach consensus and what does it do along the way?

Let
ON

t =
1

|ΛN |
∑

x∈ΛN

ξNt (x)

denote the fraction of 1-opinions at time t. Suppose that the law of ξN0 is
the restriction to ΛN of a shift-invariant and ergodic probability measure
on Zd with mean θ ∈ [0, 1].

Theorem 1.7 (Cox, Greven [24]).

(a) For d = 1, 2 and any TN → ∞,

lim
N→∞

L
[
ON

TN

]
= (1− θ)δ0 + θδ1.

(b) For d ≥ 3,
lim

N→∞
L
[
ON

sαN

]
= Zs, Z0 = θ,

where αN = |ΛN | and (Zs)s≥0 is the Fisher-Wright diffusion on [0, 1]
with diffusion constant 1/Gd, the inverse of the average number of
visits to 0 of simple random walk on Zd.

A heuristic explanation of Theorem 1.7 is as follows. The VM is dual
to a system of coalescing random walks, in the sense that the evolution of
the genealogy of the opinions in the fomer is the time reversal of the latter.
Since simple random walk is recurrent on Zd for d = 1, 2 and transient for
d ≥ 3, the dichotomy between (a) and (b) is plausible. For duality and its
relation to graphical representations of IPS, see Liggett [42, Chapter I].

CP on the torus. Since |ΛN | < ∞, we have

νN = νN = [0]N ∀λ ∈ (0,∞),

i.e., on a finite lattice every infection eventually becomes extinct, irrespec-
tive of the infection rate. An interesting question is the following: Starting
from [1]N , how long does it take the CP to reach [0]N? In particular, we
want to know the extinction time

τ[0]N = inf{t ≥ 0: ξNt = [0]N}.
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We expect this time to grow slowly with N when λ < λd and rapidly with
N when λ > λd, where λd is the critical infection threshold for the infinite
lattice Zd .

Let
IN
t =

1

|ΛN |
∑

x∈ΛN

ξNt (x)

denote the fraction of infected vertices at time t. Suppose that ξN0 = [1]N .

Theorem 1.8 (Cox, Greven [24]).

(a) For λ < λd and any TN → ∞,

lim
N→∞

L
[
IN
TN

]
= δ0.

(b) For λ > λd,
lim

N→∞
L
[
IN
sαN

]
= Zs, Z0 = 1,

where αN = E[1]N (τ[0]N ) and (Zs)s≥0 is the Markov chain on {0, 1}
that jumps from 1 to 0 at rate 1 and is absorbed in 0.

Theorem 1.9 (Durrett, Liu [34], Durrett, Schonmann [35],
Mountford [47, 48]). There exist C−(λ), C+(λ) ∈ (0,∞) such that

λ < λd : lim
N→∞

αN

log |ΛN |
= C−(λ),

λ > λd : lim
N→∞

logαN

|ΛN |
= C+(λ).

In the subcritical phase the extinction time grows logarithmically fast with
the volume of ΛN , while in the supercritical phase it grows exponentially
fast. This is a rather dramatic dichotomy. Here is a heuristic explanation.

• Subcritical phase: When λ < λc, the infection cannot sustain itself in
the long run. Each infected site has a higher tendency of becoming
healthy than of becoming infected. Hence, the number of infected
sites decreases over time, and the extinction time scales logarithmi-
cally with the system size because the infection dies out only when
the last infected site has disappeared.

• Supercritical phase: When λ > λc, the infection can sustain itself
and even grow. Each infected site has a higher tendency of becoming
infected than of becoming healthy. Hence, the infection can create
a large cluster of infected sites that persists for a long time. The
extinction time scales exponentially with the system size because
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the infection dies out only after all sites become healthy in a short
straight run. Many attempts are required to achieve this run, all of
which have a small success probability. This implies the memoryless
property of the extinction time, from which the exponential scaling
follows.

Rough polynomial bounds on αN are available in d = 1 at λ = λ1

(Duminil-Copin, Tassion, Teixeira [30]).



Chapter 2 (Lecture 2)

The stochastic Ising model
(SIM)

2.1 SIM on graphs
Let G = (V,E) be a finite connected non-oriented graph. Ising spins are
attached to the vertices V and interact with each other along the edges E
(see Figure 2.1).

Figure 2.1: A finite connected non-oriented graph.

1. The energy associated with the configuration σ = (σi)i∈V ∈ Ω =
{−1,+1}V is given by the Hamiltonian

H(σ) = −J
∑

(i,j)∈E

σiσj − h
∑
i∈V

σi

where J > 0 is the ferromagnetic interaction strength and h > 0 is the
external magnetic field.

2. Spins flip according to Glauber dynamics (σG
t )t≥0,

∀σ ∈ Ω ∀ j ∈ V : σ → σj at rate e−β[H(σj)−H(σ)]+

where σj is the configuration obtained from σ by flipping the spin at vertex
j, and β > 0 is the inverse temperature.

136
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3. The Gibbs measure

µ(σ) =
1

Ξ
e−βH(σ), σ ∈ Ω,

is the reversible equilibrium of this dynamics.

4. Three sets of configurations play a central role (see Figure 2.2):

m = metastable state
c = crossover state
s = stable state.

metastable
crossover

m c s
state

free energy

t
t

t•

•

•

Figure 2.2: Caricature picture of the free energy landscape [free energy = energy
− entropy]. The valley around s is the deepest, the valley around m is the next
deepest.

Definition.

(a) The stable state is the set of configurations having minimal energy:

s =
{
σ ∈ Ω: H(σ) = min

ζ∈Ω
H(ζ)

}
.

(b) The metastable state is the set of configurations not in s that lie at
the bottom of the next deepest valley:

m =
{
σ ∈ Ω \ s : Vσ = max

ζ∈Ω\s
Vζ

}
with Vζ the minimal amount a path from ζ needs to climb in energy
in order to reach an energy < H(ζ).

(c) The crossover state c is the set of configurations realising the min-
max for paths connecting m and s, i.e., the set of configurations with
lowest energy that every such path has to go through.
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2.2 SIM on the complete graph
Let us see what happens on the complete graph with N vertices. For more
background on metastability, see Olivieri and Vares [53] and Bovier and
den Hollander [12]. This is a mean-field setting.

The ferromagnetic interaction strength is chosen to be J = N−1. It can
be shown that the empirical magnetisation

mN
t =

1

N

∑
i∈[N ]

(σN
t )i

performs a continuous-time random walk on the 2N−1-grid in [−1,+1], in
a potential that is given by the finite-volume free energy per vertex

fN
β,h(m) = − 1

2m
2 − hm+ β−1IN (m)

with an entropy term

IN (m) = − 1

N
log

(
N

1+m
2 N

)
.

In the limit N → ∞, the empirical magnetisation performs a Brownian
motion on [−1,+1], in a potential that is given by the infinite-volume free
energy per vertex

fβ,h(m) = − 1
2m

2 − hm+ β−1I(m)

with
I(m) = 1

2 (1 +m) log(1 +m) + 1
2 (1−m) log(1−m),

where a redundant shift by − log 2 is dropped. The above formulas describe
what is called the Curie-Weiss model with Glauber dynamics.

m

fβ,h(m)

m∗− m∗+

m∗

−h

1−1

•

•
•

Figure 2.3: The free energy per vertex fβ,h(m) at magnetisation m (caricature
picture with m = m∗

−, c = m∗, s = m∗
+).
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Theorem 2.1 (Bovier, Eckhoff, Gayrard, Klein [10]). If β > 1 and
h ∈ (0, χ(β)), then

ECW
m−

N

(τm+
N
) = K eNΓ[1 + o(1)], N → ∞,

where m−N ,m+
N are the sets of configurations for which the discrete mag-

netisation tends to the continuum magnetisation m∗−,m
∗
+, respectively,

τm+
N

is the first hitting time of the set m+
N ,

Γ = β [fβ,h(m
∗)− fβ,h(m

∗
−)]

K = πβ−1
√

1 +m∗

1−m∗
1

1−m∗2−

1

[−f ′′β,h(m
∗)]f ′′β,h(m

∗
−)

with m∗ the magnetisation of the saddle point, and

χ(β) =
√
1− 1

β − 1
2β log

[
β
(
1 +

√
1− 1

β

)2]
.

Note that to leading order the crossover time from m∗− to m∗+ does not
depend on m∗+: it takes much longer to go from m∗− to m∗ than to go from
m∗ to m∗+.

The conditions on β, h guarantee that fβ,h has a double-well shape
(see Figure 2.3) and represents the parameter regime for which metastable
behaviour occurs (see Figure 2.4).

β

χ(β)

0

1

1

•

metastable regime

Figure 2.4: Metastable regime for the parameters β, h.

The expression for the average crossover time in Theorem 2.1 is called the
Kramers formula.

2.3 SIM on random graphs
We want to investigate what can be said when the complete graph is
replaced by a random graph. Our target will be to derive Arrhenius laws,
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i.e.,
Em[τs] = K eNΓ[1 + o(1)], N → ∞, β fixed,

Em[τs] = K eβΓ[1 + o(1)], β → ∞, N fixed,

where τs is the first hitting time of the set s, and Γ,K depend on which
of the two limits is being considered. In general Γ,K are random and are
hard to identify. In fact, in what follows we will mostly have to content
ourselves with bounds on these quantities and with convergence in prob-
ability under the law of the random graph. In Sections 2.4–2.5 we focus
on dense homogeneous and inhomogeneous Erdős-Rényi random graphs,
and derive an Arrhenius law of the first type. In Sections 2.6–2.7 we focus
on sparse graphs, both deterministic and random, and on configuration
models, and derive an Arrhenius law of the second type.

2.4 SIM on the Erdős-Rényi random graph
Theorem 2.2 (den Hollander, Jovanovski [40]). On the Erdős-Rényi
random graph with N vertices, for J = 1/pN , β > 1 and h ∈ (0, χ(β)),

EER
m−

N

(τm+
N
) = NEN ECW

m−
N

(τm+
N
), N → ∞,

where EN is a random exponent that satisfies

lim
N→∞

PERN(p)

(
|EN | ≤ 11

6
β
p (m

∗ −m−)
)
= 1,

with PERN(p) the law of the random graph.

Figure 2.5: Erdős-Rényi random graph (ERRG): take the complete graph with
N vertices and retain edges with probability p ∈ (0, 1).

Apart from a polynomial error term, the crossover time is the same
on the Erdős-Rényi random graph (see Figure 2.5) as on the complete
graph, after the change of interaction from J = 1/N to J = 1/pN . The
asymptotic estimate of the crossover time is uniform in the starting con-
figuration drawn from the set m−N . Note that J needs to be scaled up
by a factor 1/p in order to allow for a comparison with the Curie-Weiss
model: in the Erdős-Rényi model every spin interacts with ∼ pN spins
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rather than N spins. The critical value in equilibrium changes from 1 to
1/p (Bovier, Gayrard [11]). On the complete graph the prefactor is con-
stant and computable. On the Erdős-Rényi random graph it is random
and more involved.

The proof of Theorem 2.2 follows the pathwise approach to metastabil-
ity (see Bovier, den Hollander [12]). In particular, the empirical magnetisa-
tion (mN

t )t≥0 is monitored on a mesoscopic space-time scale. The difficulty
is that the lumping technique typical for mean-field settings is no longer
available: after projection the Markov property is lost. The way around
this problem is via coupling: sandwich (mN

t )t≥0 between two Curie-Weiss
models with a perturbed magnetic field hN , tending to h as N → ∞. The
computations are rather elaborate and are beyond the scope of the present
overview.

The following theorem provides a refinement of the prefactor.

Theorem 2.3 (Bovier, Marello, Pulvirenti [14]). For β > 1, h > 0
small enough and s > 0,

lim
N→∞

PERN (p)

C1e
−s ≤

EER
m−

N

(τm+
N
)

ECW
m−

N

(τm+
N
)
≤ C2e

s

 ≥ 1− k1e
−k2s

2

,

where k1, k2 > 0 are absolute constants, and C1 = C1(p, β) and C2 =
C2(p, β, h).

This theorem shows that the prefactor is a tight random variable, and
hence constitutes a considerable sharpening of Theorem 2.2. The proof of
Theorem 2.3 uses the potential-theoretic approach to metastability.

The local homogeneity of the Erdős-Rényi random graph again plays a
crucial role: it turns out that the exact same test functions and test flows
that are employed in relevant variational estimates work for the Curie-
Weiss model and can be used to give sharp upper and lower bounds on
the average crossover time. The better control on the prefactor comes at a
price: the magnetic field has to be taken small enough; the dynamics starts
from the last-exit biased distribution on m−N for the transition from m−N
to m+

N , rather than from an arbitrary configuration in m−N .

Proofs rely on elaborate techniques: isoperimetric inequalities, concen-
tration estimates, capacity estimates, coupling techniques, coarse-graining
techniques. These techniques exploit the fact that in the dense regime the
Erdős-Rényi random graph is locally homogeneous.
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2.5 SIM on the inhomogeneous Erdős-Rényi
random graph

Theorem 2.3 can be extended to the inhomogeneous ERRG. The Hamil-
tonian becomes

H(σ) = −
∑

(i,j)∈E

Jijσiσj − h
∑
i∈V

σi

with Jij > 0 independent random variables. An example is Bernoulli with
probability r( i

N , j
N ), where

r(x, y), x, y ∈ [0, 1],

is a continuous reference graphon. A special case is the rank-1 choice
r(x, y) = v(x)v(y) for some weight function v(x), x ∈ [0, 1], which corre-
sponds to the Chung-Lu random graph. See Bovier, den Hollander, Marello,
Pulvirenti, Slowik [13] for further details.

2.6 SIM on sparse graphs
The ERRG is a dense graph. We next consider sparse graphs. Given a
finite connected non-oriented multigraph

G = (V,E),

the Hamiltonian is

H(σ) = −J

2

∑
(i,j)∈E

σiσj −
h

2

∑
i∈V

σi, σ ∈ Ω,

where J > 0 is the ferromagnetic pair potential and h > 0 is the magnetic
field. We write PG,β

σ to denote the law of (σG
t )t≥0 given σG

0 = σ. The upper
indices G, β exhibit the dependence on the underlying graph G and the
interaction strength β between neighbouring spins.

Let ⊞,⊟ denote the configurations where all the spins are up, respec-
tively, all the spins are down. It is easy to check that s = {⊞} for all G
because J, h > 0. For general G, however, m is not a singleton, but we will
be interested in those G for which the following hypothesis is satisfied (see
Figure 2.6):

(H) m = {⊟}.
The energy barrier between ⊟ and ⊞ is

Γ⋆ = H(C⋆)−H(⊟),

where C⋆ = c is the set of critical configurations realising the min-max for
the crossover from ⊟ to ⊞, all of which have the same energy.
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⊟ C⋆ ⊞
ξ

H(ξ)

Γ⋆
{

s
s

s

Figure 2.6: Schematic picture of H and ⊟,⊞ and Γ⋆, C⋆.

Theorem 2.4 (Bovier, den Hollander [12]). Under Hypothesis (H),
there exists a K⋆ ∈ (0,∞), called prefactor, such that

lim
β→∞

e−βΓ
⋆

EG,β
⊟ (τ⊞) = K⋆.

The validity of Theorem 2.4 does not rely on the details of the graph
G, provided it is finite, connected and non-oriented. For concrete choices
of G, the task is to identify the critical triplet (see Figure 2.6)

(C⋆,Γ⋆,K⋆).

For deterministic graphs this task has been successfully carried out for
a large number of examples. However, for random graphs the triplet is
random, and identification represents a very serious challenge. In what
follows we focus on the CM.

2.7 SIM on the configuration model
The CM is a sparse graph that can be generated via a simple pairing
algorithm (see Figure 2.7).

Warning. The text in the remainder of this section is technical. We go
over it in leaps to sketch the main picture.

In order to state our main theorems, we need some notations and def-
initions.

1. Fix N ∈ N. With each vertex i ∈ [N ] we associate a random degree di,
in such a way that

(di)i∈[N ]
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Figure 2.7: Configuration model with 6 vertices and degrees (1, 3, 1, 3, 2, 4) after
randomly pair half-edges.

are i.i.d. with probability distribution f conditional on the event {
∑

i∈[N ] di
= even}. Consider a uniform matching of the half-edges, leading to a multi-
graph CMN satisfying the requirement that the degree of vertex i is di for
i ∈ [N ]. The total number of edges is 1

2

∑
i∈[N ] di.

2. Throughout the sequel we write PN to denote the law of the random
multi-graph CMN generated by the configuration model.

3. To avoid degeneracies we assume that

dmin = min{k ∈ N : f(k) > 0} ≥ 3,

dave =
∑
k∈N

kf(k) < ∞,

i.e., all degrees are at least three and the average degree is finite. In this
case CMN is connected with high probability (whp), i.e., with probability
tending to 1 as N → ∞.

4. Along the way we need a technical function that allows us to quantify
certain properties of the energy landscape, which we introduce next. Later
we provide the underlying heuristics. For x ∈ (0, 1

2 ] and δ ∈ (1,∞), define
(see Figure 2.8)

Iδ (x) = inf
{
y ∈ (0, x] : 1 < xx(1−1/δ) (1− x)

(1−x)(1−1/δ)

× (1− x− y)
−(1−x−y)/2

(x− y)
−(x−y)/2

y−y
}
.

Main theorems

The following results are taken from Dommers, den Hollander, Jovanovski,
Nardi [28]. We want to prove Hypothesis (H) and also to identify the
critical triplet for CMN , which we henceforth denote by (C⋆

N ,Γ⋆
N ,K⋆

N ), in
the limit as N → ∞.

Our first theorem settles Hypothesis (H) for small h/J .
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x

Iδ(x)

Figure 2.8: Plot of the function x 7→ Iδ(x) for δ = 6.

Theorem 2.5. If

h

J
<

2Idave

(
1
2

)
− 1

2

(
1− 4Idmin

(
1
2

))2 (
1− 2Idmin

(
1
2

))−1(
1

dave
+ 1

2

) ,

then
lim

N→∞
PN

(
CMN satisfies (H)

)
= 1.

Our second and third theorems provide upper and lower bounds on Γ⋆
N .

Label the vertices of the graph in order of increasing degree. Let γ : ⊟ → ⊞
be the path that successively flips the vertices 1, . . . , N (in that order), and
for M ∈ [N ] = {1, . . . , N} let ℓM =

∑
i∈[M ] di.

Theorem 2.6. Define

M̄=M̄

(
h

J

)
=min

{
M ∈ [N ] :

h

J
≥ ℓM+1

(
1−ℓM+1

ℓN

)
− ℓM

(
1−ℓM

ℓN

)}
.

Then M̄ < N/2 and, with high probability,

Γ⋆
N ≤ Γ+

N , Γ+
N = JℓM̄

(
1− ℓM̄

ℓN

)
− hM̄ ±O

(
ℓ
3/4
N

)
.

Theorem 2.7. Define

M̃ = min
{
M ∈ [N ] : ℓM ≥ 1

2ℓN
}
.

Then with high probability

Γ⋆
N ≥ Γ−N , Γ−N = J dave Idave

(
1
2

)
N − hM̃ − o(N).

Corollary 2.8. Under Hypothesis (H), Theorems 2.6–2.7 yield

lim
β→∞

PG,β
⊟

(
eβ(Γ

−
N−ε) ≤ τ⊞ ≤ eβ(Γ

+
N+ε)

)
= 1 ∀ ε > 0.



146 F. Capannoli and F. den Hollander

Remark. For simple degree distributions, like Dirac or power law, the
quantities M̄ , ℓM̄ , M̃ can be computed explicitly (see Dommers, den Hol-
lander, Jovanovski, Nardi [28]).

The bounds in Theorems 2.6–2.7 are tight in the limit of large degrees.
Indeed, by the law of large numbers we have that

ℓN
ℓM̄
ℓN

(
1− ℓM̄

ℓN

)
≤ 1

4ℓN = 1
4dave N [1 + o(1)] .

Hence
Γ+
N

Γ−N
=

1
4dave [1 + o (1)]− h

J
M̄
N + o(1)

daveIdave

(
1
2

)
− h

J
M̃
N − o(1)

.

In the limit as dave → ∞ we have Idave(
1
2 ) →

1
4 , in which case the above

ratio tends to 1.

Discussion.

1. The integer M̄ has the following interpretation. The path γ : ⊟ → ⊞ is
obtained by flipping (−1)-valued vertices to (+1)-valued vertices in order
of increasing degree. Up to fluctuations of size o(N), the energy along γ
increases for the first M̄ steps and decreases for the remaining N − M̄
steps.

2. The integer M̃ has the following interpretation. To obtain our lower
bound on Γ⋆

N we consider configurations whose (+1)-valued vertices have
total degree at most 1

2ℓN . The total number of (+1)-valued vertices in such
type of configurations is at most M̃ .

3. If we consider all sets on CMN that are of total degree xℓN and share
yℓN edges with their complement, then Iδ(x) represents (a lower bound on)
the least value for y such that the average number of such sets is at least 1.
In particular, for smaller values of y this average number is exponentially
small.

4. We believe that Hypothesis (H) holds as soon as

0 < h < (dmin − 1)J,

i.e., we believe that in the limit as β → ∞ followed by N → ∞ this choice
of parameters corresponds to the metastable regime of our dynamics, i.e.,
the regime where (⊟,⊞) is a metastable pair.

5. The scaling behaviour of Γ⋆
N ,K⋆

N as N → ∞, as well as the geometry
of C⋆

N , are hard to capture. Here are some conjectures put forward in
Dommers, den Hollander, Jovanovski, Nardi [28].
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Conjecture 2.9. There exists a γ⋆ ∈ (0,∞) such that

lim
N→∞

PN

(∣∣N−1Γ⋆
N − γ⋆

∣∣ > δ
)
= 0 ∀ δ > 0.

Conjecture 2.10. There exists a c⋆ ∈ (0, 1) such that

lim
N→∞

PN

(∣∣N−1 log |C⋆
N | − c⋆

∣∣ > δ
)
= 0 ∀ δ > 0.

Conjecture 2.11. There exists a κ⋆ ∈ (1,∞) such that

lim
N→∞

PN

(∣∣|C⋆
N |K⋆

N − κ⋆
∣∣ > δ

)
= 0 ∀ δ > 0.

6. It is shown in Dommers [27] that for a random regular graph with degree
r ≥ 3, there exist constants 0 < γ⋆

−(r) < γ⋆
+(r) < ∞ such that

lim
N→∞

lim
β→∞

EN

(
PCMN

⊟

(
eβNγ⋆

−(r) ≤ τ⊞ ≤ eβNγ⋆
+(r)

))
= 1

when h
J ∈ (0, C0

√
r) for some constant C0 ∈ (0,∞) that is small enough.

Moreover, there exist constants C1 ∈ (0, 1
4

√
3) and C2 ∈ (0,∞) (depending

on C0) such that

γ⋆
−(r) ≥ 1

4Jr − C1J
√
r, γ⋆

+(r) ≤ 1
4Jr + C2J

√
r.

These results are derived without Hypothesis (H), but it is shown that
Hypothesis (H) holds as soon as r ≥ 6 .



Chapter 3 (Lecture 3)

The voter model (VM)

In this chapter we focus on the VM on the regular random graph. We
analyse how the fraction of discordant edges evolves over time, in the
limit as the size of the graph tends to infinity, on three time scales: short,
moderate, and long. We also analyse what happens when the edges of the
random regular graph are randomly rewired while the VM is running. It
will turn out that the graph dynamics has several interesting consequences.
Most of what is written below is taken from Avena, Baldasso, Hazra, den
Hollander, Quattropani [2, 3].

Given a connected graph G = (V,E), the voter model is the Markov
process (ξt)t≥0 on state space {0, 1}V where each vertex carries opinion 0
or 1, at rate 1 selects one of the neighbouring vertices uniformly at random,
and adopts its opinion. Write ξt = {ξt(i) : i ∈ V } with ξt(i) the opinion at
time t of vertex i. We analyse the evolution of the fraction of discordant
edges

DN
t =

|DN
t |

M
, DN

t =
{
(i, j) ∈ E : ξt(i) ̸= ξt(j)

}
,

where N = |V | and M = |E|. This is an interesting quantity because it
monitors the size of the boundary between the two opinions.

The consensus time is defined as

τcons = inf{t ≥ 0: ξt(i) = ξt(j)∀ i, j ∈ V }.

For finite graphs we know that τcons < ∞ with probability 1, either at
[0]N or at [1]N . The interest lies in determining the relevant time scale on
which consensus is reached, and how it is reached. Via time reversal, the
voter model is dual to a system of coalescing random walks, describing the
genealogy of the opinions, as shown in the next section. This section is an
intermezzo, after which we will return to the random regular graph.

148
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3.1 VM duality and graphical representation

In this section we give the graphical representation of the VM and indi-
cate how duality is obtained via time reversal. One of the reasons why
voter models have been studied intensively is the fact that they represent
a class of interacting particle systems for which the dual is simple, namely,
a system of coalescing random walks. This allows for a rephrasing of prob-
lems regarding voter models as problems regarding systems of coalescing
random walks, which are often easier to deal with.

There are two ways to define a duality relation between two Markov
processes X = (Xt)t≥0 and Y = (Yt)t≥0 with state space X and Y, respec-
tively: analytically or graphically. The latter considers the time reversal of
the graphical representation of the process and deduces information of the
original process by using the evolution of the reversed process (which is
often easier to study). The former needs the identification of a bounded
measurable function H : X × Y → R such that

Ex[H(Xt, y)] = Ey[H(x, Yt)], x ∈ X , y ∈ Y, t ≥ 0.

If this is the case, then we say that X and Y are dual to one another
with respect to the duality function H. Below we give a summary of both
forms of duality. An important reference for interacting particle systems on
graphs, particularly for the duality between the voter model and coalescing
random walks on graphs, is [1, Chapter 14].

Definition of the general voter model. Let us first recall the defi-
nition of the voter model in terms of its transition rates. We consider the
continuous-time voter model (ηt)t≥0 with state space X = WV , where
V = [n] = {1, . . . , n}, n ∈ N, is the vertex set of a finite graph G, while
W is a finite alphabet of admissible opinions with |W | = o ∈ {2, . . . , n}.
We will be mainly interested in the case o = 2, with a given initial con-
figuration of opinions η0 ∈ X , and in the case o = n, which corresponds
to the setting in which every site has initially a different opinion. For each
current state η ∈ X , the only allowed transitions are the ones to the states
ηx←y ∈ X defined as

ηx←y(z) =

{
η(y) if z = x,

η(z) if z ̸= x,

for some x, y ∈ [n] such that η(y) ̸= η(x). These transitions describe the
events in which, starting from a configuration η, the voter at site x adopts
the opinion of the voter at site y, while all other sites retain their opinions.
We can write the generator L of the process as follows: for any f ∈ D(X )
(= the set of Lipschitz functions on X ) and η ∈ X ,
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(Lf)(η) =
∑
η′∈X

ω(η, η′) [f(η′)− f(η)]

=
∑
x∈[n]

∑
y∈[n]

cy(x, η) [f(η
x←y)− f(η)] ,

where the values ω(η, η′) ≥ 0 represent the rates at which transitions
η → η′ occur for η, η′ ∈ X . Again, the only possible transitions are those
of the type η → ηx←y for some sites x, y with different opinions. Thus,
we renamed the sum over the configurations η′ of ω(η, η′) as the sum over
the sites and opinions of the rates cy(x, η), emphasising the dependence
on the parameters x, y, η. Since we want that, for every pair of sites x, y,
transitions η → ηx←y occur with a rate proportional to the number of
neighbours y of x having opinion η(y), we set

cy(x, η) =
∑
z∈[n]

p(x, z) 1{η(z)=η(y),η(x)̸=η(y)},

where p(·, ·) are the jump probabilities of an irreducible continuous-time
random walk on [n], in particular, p(x, y) ≥ 0 for all x, y ∈ [n] and∑

y∈[n] p(x, y) = 1 for all x ∈ [n]. In other words, a site x waits an ex-
ponential time of parameter 1, after which it adopts the value of the voter
seen at a site z that is chosen with probability p(x, z). It follows immedi-
ately that the underlying random walk structure given by p(·, ·) uniquely
determines the process. We mention that in the case where W = {0, 1},
due to the invariance under relabelling of the two opinions, the rates can
be written as c(x, η) =

∑
y : η(x)̸=η(y) p(x, y), and represent the rate of the

transition η → ηx, where ηx(z) = 1 − η(x) if z = x and ηx(z) = η(z)
otherwise.

Analitic duality. In order to state the duality relation analytically, let
us for the moment consider the case in which W = {0, 1}, i.e., the voter
model over X = W [n] is a spin-flip system. Once the duality relation
is stated in this setting, the natural generalisation to a finite number of
opinions o will be straightforward. For a detailed discussion of duality for
spin-flip systems, we refer the reader to Liggett [42, 43]. Let us denote by
(At)t≥0 the dual Markov process with respect to the voter model (ηt)t≥0
with state space X. Since we are considering a spin-flip system, the state
space of the dual (At)t≥0 is taken to be

Y = {A : A finite subset of [n]},

which is finite for every n ∈ N. Therefore the dual process (At)t≥0 is
actually a Markov chain on Y , and can be interpreted as the locations in
time of a collection of independent continuous-time random walks on [n]
that coalesce every time two of them meet at the same site. It follows that



Chapter 3. The voter model (VM) 151

|At| can only decrease as t increases. The duality function H that will take
this into account is

H(η,A) = 1{η(x)=1 ∀x∈A}, η ∈ X, A ∈ Y.

The chief reason for this choice is related to the fact that we want to look
at consensus states, i.e., η’s such that η(x) = η(y) for all x, y ∈ [n]. It is
not difficult to see that, by using the latter duality function in combination
with the generator and the coefficients for k = 2, we get that the rates of
(At)t≥0 for the transitions A → B, A,B ∈ Y , are

q(A,B) =
∑
x∈A

∑
y∈[n]:

(A\{x})∪{y}=B

p(x, y).

The interpretation is the following. Each x ∈ A is removed from A at rate
1 and is replaced by y with probability p(x, y). Moreover, when an attempt
is made to place a point y at a site that is already occupied, then the two
points coalesce into one. In our system of coalescing random walks, this
means that each random walk independently has an exponential waiting
time of parameter 1, moves according to p(x, y), and when moving to an
occupied site coalesces with the occupier. Thus, the semigroup of each
random walk is given by

P t(x, y) = e−t
∑
n∈N0

tn

n!
pn(x, y), x, y ∈ [n], t ≥ 0.

All the previous statements can be generalised to a setting with k
opinions with k ∈ {2, . . . , n} in the following way. The dual state space is
taken to be Y (k) = Y k−1, the product of k − 1 copies of Y . Consequently,
the dual process is of the form A

(k)
t = (A1, . . . , Ak−1)t. A good reference

for an analytical description of duality for interacting particle systems is
López and Sanz [46]. Here, the interpretation is slightly different from the
case k = 2. In the latter, A ∈ Y represents the set of sites at which there
were particles, while A(k) = (A1, . . . , Ak−1) ∈ Y (k) represents the positions
Ai of the particles that trace back to opinion i (this will become clear in the
graphical representation), possibly with Ai = ∅ for some i ∈ {1, . . . , k−1}.
The dual function H : X × Y (k) → R now reads

H(η,A(k)) = 1{η(x)=i ∀ x∈Ai ∀ i∈{1,...,k−1}},

and the duality relation becomes

Pη
(
ηt(x) = i ∀x ∈ Ai ∀ i ∈ {1, . . . , k − 1}

)
= PA(k)(

η(xt) = i ∀xt ∈ (Ai)t ∀ i ∈ {1, . . . , k − 1}
)

for every initial configuration η ∈ X and every initial state A(k) ∈ Y (k).
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Let us consider the case in which k = n, and take A(k) such that
Ai = {i} for all sites, i.e., we place a continuous-time random walk at
every site. Fix η = η0 ∈ X to be the configuration in which each site has
its personal opinion, say vertex i ∈ [n] has opinion i, for which |[n]| = |W |.
If one considers the configuration η̂t defined as

η̂t(i) = η0((Ai)t), i ∈ [n], t > 0,

where (An)t = [n] \ ∪i≤n−1(Ai)t ,

then the duality relation says that η̂t has the same distribution as the
state ηt of the voter model at time t with initial configuration η0. Define
the consensus time as

τcons = inf{t ≥ 0: ηt(x) = ηt(y) ∀x, y ∈ V }

and the coalescence time as

τcoal,n = inf{t ≥ 0: all n particles have coalesced into one}.

In particular, it follows that the consensus time has the same law of the
coalescence time, i.e.,

E[τcons] = E[τcoal,n].

It follows that if we consider the same model with 2 ≤ k < n opinions
and any given initial configuration η0 of them among [k] = {1, . . . , k},
then the distribution of τcons,k will be stochastically dominated by the
distribution of τcoal,n because {τcons,k > t} ⊇ {τcons > t}, so Pη0(τcons,k ≤
t) ≤ P(τcons ≤ t) for all t ≥ 0. (With τcons,k we mean the consensus time of
the voter model with k opinions, with the convention that τcons,n = τcons.)
Thus, for any η0 ∈ [k][n],

Eη0 [τcons,k] ≤ E[τcoal,n], 2 ≤ k < n.

Moreover, it can be proved (see e.g. Fernley and Ortgiese [37]) that, in the
case where k = 2 and the initial distribution µu is given by the product
measure of parameter u ∈ (0, 1) Bernoulli random variables,

2u(1− u)E[τcoal,n] ≤ Eµu [τcons,2] ≤ E[τcoal,n], u ∈ (0, 1).

Graphical representation of the dual process. We conclude this
section by giving the duality principle using the graphical representa-
tion. Start with the same setting as above: voter model with state space
X = W [n], |W | = k, defined by its generator and its rates. Consider the
graph {(j, t) : j ∈ [n], t ≥ 0} and independent rate-1 Poisson processes
(Ni(t))t≥0, i ∈ [n]. The dynamics is the following: if t̄ is an event of the
clock Ni for some i ∈ [n], then draw an arrow from (t̄, j) to (t̄, i), where
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j ∈ [n] is chosen with probability p(i, j). These transition probabilities
coincide with the ones given above. In other words, an event represented
by an arrow j → i means that at time t̄ the voter at site i decides to adopt
the opinion of the voter at site j.

Given any initial configuration η0 ∈ X, we let the opinions flow up-
wards, starting at time t = 0, and any time they encounter the base of an
arrow they follow its direction, changing the opinion that is at the tip of
the arrow. In the case of two-opinions (0 and 1), this construction can be
seen as a percolation process where a fluid is placed at t = 0 in the 1-sites
of η0 and flowing up the structure: the arrows are the pipes and the tips are
the dams (see Durrett [31]). An example of this graphical representation
is given in Figure 3.1 for the 8-cycle graph with k = n.

Figure 3.1: Realisation of the voter model on the 8-cycle graph where the initial
configuration is given by a different opinion for each site: site i ∈ [n] has opinion
i. Times flows vertically up to a finite horizon t0 > 0, and the black horizon-
tal arrows represent the events of the independent Poisson processes (Ni(t))t≥0

described above. In this picture we highlight the evolution of opinion 4 that at
time t0 is shared among the sites {4, 5, 6, 7}.

Let us now fix a time horizon t0 > 0 and position a walk in (i, t0) for
all sites i ∈ [n]. We let these walks evolve independently as follows: they
move downwards through the graph {(j, t0 − t) : j ∈ [n], t ∈ [0, t0]}, and
any time they encounter the tip of an arrow they follow it in the opposite
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direction. Furthermore, if one of them moves to a site already occupied
by another walk, then the two walks coalesce into a single (independent)
one. Alternatively, the process can be described as follows: each of the
walks waits an exponential time of parameter 1 and, given the current
position x ∈ [n], moves to y ∈ [n] with probability p(x, y). The same for the
coalescing condition, i.e., each time at least two walks meet at the same site
they coalesce into a single particle. Denote now by A

(n),t0
t = (At0

1 , . . . , At0
n )t

the resulting system of n coalescing random walks (CRWs) evolving as
above, where, for each i ∈ [n], (Ai)

t0
t is the position of the walk starting

in (i, t0) at time t, in particular, A
(n),t0
0 = [n]. Following the previous

example, Figure 3.2 gives a realisation of the CRWs system in the same
8-cycle graph shown in Figure 3.1.

Given this construction it is immediate to see that the opinion held by
a vertex i at time t0 can be derived by tracing back in time the path of
the random walkers up to time t = 0. Thus,

ηt0(i) = η0((Ai)
t0
t0) ∀ i ∈ [n], ∀ t0 > 0.

With the latter we derived the same result obtained using the duality
relation. All the other results regarding the equivalence in distribution
between the coalescing time and the consensus time with k = n opinions,
i.e. η0 = [n], follow directly.

3.2 VM on the complete graph

As a prelude we look at the VM on the complete graph, for which compu-
tations can be carried through explicitly. Indeed, the number of 1-opinions
at time t, given by

ON
t =

∑
i∈V

ξt(i),

performs a continuous-time nearest-neighbour random walk on the set
{0, . . . , N} with transition rates

n → n+ 1 at rate n(N − n) 1
N−1 ,

n → n− 1 at rate (N − n)n 1
N−1 .

This is the same as the Moran model from population genetics. Put ON
t =

1
NON

t for the fraction of 1-opinions at time t. The following is a well-known
fact.
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Figure 3.2: Realisation of a coalescing random walk system, starting at t = t0,
as dual process of the voter model in Figure 3.1. In the figure the large dots in
the graph at t0 represent the initial positions of the walkers, the blue dots are
the ones for which we derived the whole trajectory up to time t = 0, and coincide
with the sites in which we had a local consensus with respect to opinion 4 in the
voter model. The blue dots in all the other positions describe the evolution of
the position of the (blue) walks, while the blue diamonds ⋄ mean that in such
a time-space location a clustering occurred, i.e., two walks coalesced into one.
Moreover, the red horizontal arrows shows the direction to be followed by the
walks, which are the opposite w.r.t. the direction of the original (black) arrows
of the voter model. Note that by time t̄ all walks started in {4, 5, 6, 7} coalesced
into one, meaning that the opinion of each vertex in the latter set at time t = t0
is the same of the one held by vertex 4 at time t = 0.

Lemma 3.1. The process
(ON

sN )s≥0

converges in law as N → ∞ to the Fisher-Wright diffusion (χs)s≥0 on
[0, 1] given by

dχs =
√
2χs(1− χs) dWs,

where (Ws)s≥0 is standard Brownian motion.

The number of discordant edges equals

DN
t =

ON
t (N −ON

t )

2
.
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Recall that DN
t = 1

MDN
t denotes the fraction of discordant edges at time

t, with M =
(
N
2

)
for the complete graph. Since

DN
t =

ON
t (N −ON

t )

N(N − 1)
=

N

N − 1
ON

t (1−ON
t ),

it follows that
(DN

sN )s≥0

converges in law as N → ∞ to the process(
χs(1− χs)

)
s≥0.

In the mean-field setting of the complete graph, the fraction of discordant
edges is the product of the fractions of the two opinions. The latter property
fails on non-complete graphs, in particular, on random graphs.

We close this section with a proof of Lemma 3.1. The proof is instructive
because it shows how computations with generators can be useful.

Proof. It is enough to prove convergence of generators (see Ethier, Kurtz
[36, Chapter 10]). The rescaled voter model on the complete graph is the
birth-death process with state space {0, 1

N , . . . , 1− 1
N , 1} and infinitesimal

generator L̂N given by

(L̂Nf)
(

i
N

)
= N i

N (N −1)
[
f
(
i+1
N

)
+f

(
i−1
N

)
−2f

(
i
N

) ]
, i ∈ {0, . . . , N}.

This can be seen by conditioning on the number of steps by the non-
rescaled process and using the definition of generator. We have to prove
that L̂N converges as N → ∞ to the generator of the FW-diffusion given
by

(Lf)(y) = y(1− y) f ′′(y), y ∈ [0, 1],

i.e.,

lim
N→∞

(L̂Nf)
(

i
N

)
= (Lf)(y) when lim

N→∞

i

N
= lim

N→∞

iN
N

= y.

We have to specify which set of test functions f we consider. Let C([0, 1])
be the set of R-valued continuous functions on the unit interval, and define

C0([0, 1]) = {f ∈ C([0, 1]) : f(0) = f(1) = 0}.

Since the ‘local speed’ of the FW-diffusion is given by the diffusion function
gFW : [0, 1] → [0,∞) with gFW (y) = y(1 − y), it is possible to show that
the domain D(L) of the generator L of the FW-diffusion is a subset of
C0([0, 1]). For general Markov processes it is not easy to characterise D(L),
but it suffices to consider the action of L on a subset K(L) ⊂ D(L) that is
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large enough to maintain the generality of the argument. We refer to K(L)
as a core of the generator and require that K(L) is dense in C0([0, 1]) with
respect to the supremum norm. Then the required generality is obtained
via continuous extension. In our case it suffices to choose

K(L) = {f ∈ C0([0, 1]) : f is infinitely differentiable}.

This choice enables us to use the Taylor expansion of any test function up
to any order. Using the Taylor expansion of f around i/N up to second
order in the generator, we get

f
(
i+1
N

)
+ f

(
i−1
N

)
− 2f

(
i
N

)
=
(
i+1
N − i

N

)
f ′
(

i
N

)
+
(
i−1
N − i

N

)
f ′
(

i
N

)
+N−2f ′′

(
i
N

)
+O(N−3)

= N−2f ′′
(

i
N

)
+O(N−3).

Therefore

(L̂Nf)
(

i
N

)
= N2 i

N

(
1− i

N

) [
N−2f ′′

(
i
N

)
+O(N−3)

]
, i ∈ {0, . . . , N}.

Hence, when limN→∞
i
N = limN→∞

iN
N = y, thanks to the continuity of

f ∈ K(L), we get
lim

N→∞
(L̂Nf)

(
i
N

)
= (Lf)(y).

3.3 VM on the random regular graph

Consider the regular random graph Gd,N = (V,E) of degree d ≥ 3, con-
sisting of

|V | = N vertices,

|E| = M =
dN

2
edges.

Such a graph ensemble can be realised as follows. Fix N vertices and attach
to each of them d stubs (half-edges). Pair uniformly at random the stubs,
creating the edges of the graph sequentially. See [38] for more details.
Denote the law of Gd,N by P. Chen, Choi, Cox [21] consider the fraction
of 1-opinions at time t,

ON
t =

1

N

∑
i∈V

ξt(i),

and show that
(ON

sN )s≥0
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converges in law as N → ∞ to the Fisher-Wright diffusion (χs)s≥0 given
by

dχs =
√

2θdχs(1− χs) dWs,

where (Ws)s≥0 is standard Brownian motion, and

θd =
d− 2

d− 1
.

plays the role of a diffusion constant.

Main theorems. For u ∈ (0, 1), let Pu be the law of (DN
t )t≥0 starting

from [Bern(u)]N . For η ∈ {0, 1}V , let P be the law of (DN
t )t≥0 starting

from η.

Theorem 3.2 (Avena, Baldasso, Hazra, den Hollander, Quattropani
[2]). Fix u ∈ (0, 1). Then, for any tN ∈ [0,∞),∣∣∣Eu

[
DN

tN

]
− 2u(1− u) fd(tN ) e−2θd

tN
N

∣∣∣ P−→ 0,

where
fd(t) = PTd(τmeet > t),

with PTd the law of two independent random walks on the infinite d-regular
tree Td starting from the endpoints of an edge, and τmeet their first meeting
time.

The profile function fd is given by

fd(t) =

∞∑
k=0

e−2t
(2t)k

k!

∑
l>⌊ k−1

2 ⌋

(
2l

l

)
1

l + 1

(1
d

)l+1(d− 1

d

)l
,

and satisfies fd(0) = 1 and fd(∞) = θd. Note that Theorem 3.2 shows four
times scales (see Figures 3.3–3.4):

short: tN = O(1),
moderate: 1 ≪ tN ≪ N ,
long: tN = sN, s > 0,
consensus: tN ≫ N .

On the short time scale, the exponential factor does not play any role and
the leading term is given by the function 2u(1−u)fN (t). On the moderate
time scale, tN diverges slowly and the density of discordant edges stabilises
around 2u(1 − u)θd. On the long time scale, i.e., the same order as the
consensus time, the exponential factor becomes relevant and the fraction
of discordances exits the metastable state of the moderate tine scale and
tends to zero. On the consensus time scale, the expression vanishes because
consensus has been reached.
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Furthermore, the following heuristics on the study of two random walks
on the random regular geometry are relevant:

1. On time scales o(logN), below the typical distance between two vertices,
the analysis proceeds by coupling two random walks on the d-regular ran-
dom graph with two random walks on the d-regular tree, both starting
from adjacent vertices. Because the tree is regular, the distance of the two
random walks can be viewed as the distance to the origin of a single bi-
ased random walk on N0 starting from 1. Note that the same does not hold
when the tree is not regular.

2. On time scale Θ(logN), the scale of the typical distance between two
vertices, the coupling argument is combined with a finer control of the two
random walks on the d-regular random graph.

0 1000 2000 3000 4000 5000

0.1

0.2

0.3

0.4

0.5

Figure 3.3: A single simulation for N = 1000, d = 3, u = 0.5. Left : In blue the
fraction of discordant edges up to t = 5, in red the function t 7→ 2u(1− u) fd(t).
Right : In blue the fraction of 1-opinions up to consensus, in orange the fraction
of discordant edges up to consensus.

Figure 3.4: Scatter plot for the same simulation: the fraction of discordant edges
versus the fraction of the minority opinion. The piece sticking out corresponds
to short times. The curve in red is x 7→ x(1− x), which says that the fraction of
discordant edges is close to the product of the fractions of the two opinions.

Theorem 3.3 (Avena, Baldasso, Hazra, den Hollander, Quattropani
[2]). The following concentration properties hold:
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(i) Let tN be such that tN/N → 0. Then, for every ε > 0,

sup
η∈{0,1}V

Pη

(∣∣DN
tN −Eη[DN

tN ]
∣∣ > ε

) P−→ 0.

(ii) Let tN be such that tN/N → s ∈ (0,∞). Then, for every u ∈ (0, 1),

sup
x∈[0,1]

∣∣Pu

(
DN

tN ≤ x
)
−Pu (χs(1− χs) ≤ x)

∣∣ P−→ 0.

Theorem 3.4 (Avena, Baldasso, Hazra, den Hollander, Quattropani
[2]). Fix u ∈ (0, 1). Then, for every δ, ϵ > 0,

Pu

(
sup

0≤t≤N1−δ

∣∣DN
t −Eu[DN

t ]
∣∣ > ε

)
P−→ 0.

The proofs of Theorems 3.2–3.4 are based on the classical notion of
duality between the voter model and a collection of coalescent random
walks. A crucial role is played by properties of coalescing random walks
that hold in mean-field geometries. In particular, in Oliveira [52] it is shown
that

lim
N→∞

E[τcoal]

E[τπ⊗πmeet ]
= 2,

where τcoal is the coalescence time of N random walks each starting from
a different vertex, E is expectation w.r.t. these random walks, while τπ⊗πmeet

is the meeting time of two random walks independently starting from the
stationary distribution π. A further discussion of this result is postponed
to Section 3.4.

Lemma 3.5. There is a sequence of random variables (θd,N )N∈N converg-
ing to θd such that

lim
N→∞

sup
t≥0

∣∣∣∣ P(τπ⊗πmeet > t)

exp[−2θd,N (t/N)]
− 1

∣∣∣∣ = 0 in probability.

Lemma 3.5, together with a first-moment argument, is enough to compute
the evolution of the expected number of discordant edges on every time
scale.

In order to obtain concentration, a much deeper analysis is required.
Roughly, in order to have proper control on the correlations between the
discordant edges, we must analyse a dual system of random walks whose
number grows with N . An upper bound is derived for the number of meet-
ings of a poly-logarithmic number of independent random walks evolving
on the random graph for a time N1−o(1). This is exploited to derive an
upper bound for the deviation from the mean that is exponentially small
in N and uniform in time. This upper bound can be translated into a
concentration estimate by taking a union bound.
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Open Problems.

• We expect that Theorems 3.2–3.3 can be extended to non-regular
sparse random graphs. We do not have a conjecture on how the
function fd and the diffusion constant θd modify in this more general
setting.

• We expect that Theorem 3.3(i) can be strengthened to the statement
that, for every u ∈ (0, 1), every tN such that tN/N → 0 and every
CN → ∞,

Pu

( ∣∣Dn
tN −Eu[DN

tN ]
∣∣ > CN

√
tN/N

) P−→ 0.

Directed graphs. For directed sparse random graphs more can be said.
The setting is the directed configuration model with prescribed in-degees
din = (dini )Ni=1 and out-degees dout = (douti )Ni=1 in which directed half-edges
are matched randomly.

Theorem 3.6 (Avena, Capannoli, Hazra, Quattropani [4], Capan-
noli [18]). Under mild conditions on the in-degrees din and the out-degrees
dout, the same scaling applies for Eu[DN

tN ]. Moreover, an explicit formula
can be derived both for the profile function fdin,dout and for the diffusion
constant θdin,dout .

For instance, if din = dout (= Eulerian graph), then

θdin,dout =
(

m2

m2
1
− 1 +

√
1− 1

m1

)−1
with m1,m2 the first and the second moment of the limit of the empirical
degree distribution.

From the fact that θdin,dout is an explicit function of din and dout, it is
possible to analyse its behaviour as a function of both. Relevant questions
are: Does the consensus time speed up or slow down when, in the setting
of constant out-degrees (or in-degrees), the variability of the in-degrees
(or out-degrees) is increased? What is the effect of positive or negative
correlation between the in-degrees and out-degrees? If certain features of
the degree sequences are constrained, then is it possible to find the guiding
principles to minimise or maximise the consensus time?

3.4 VM meeting times and coalescence times
Discordance and meeting times. As shown in Section 3.1, the graph-
ical representation allows us to write the probability that a fixed edge is
discordant at time t in terms of the meeting time of random walks. Let
Dt = {e = (x, y) ∈ E : ηt(x) ̸= ηt(y)} be the set of discordant edges at
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time t for the voter model with initial distribution of opinions given by the
product measure of independent Bern(u), u ∈ (0, 1). Moreover, define

τ
(x,y)
meet = inf{t ≥ 0: Xx

t = Y y
t }

to be the first meeting time of two independent random walks X,Y having
initial position (X0, Y0) = (x, y), x, y ∈ V . Then, by duality,

Pu(e ∈ Dt) = P
(
Xx

s ̸= Y y
s ∀ 0 ≤ s ≤ t

)
×Pu

(
η0(X

x
t ) ̸= η0(Y

y
t )
)

= P
(
τ
(x,y)
meet > t

)
× 2u(1− u).

(See Figure 3.5.)

Discordances & 1st Meeting time

! Set of Discordant Edges: Dt := {e = (x, y) ∈ E : ηt(x) ̸= ηt(y)}.
! Discordant edge probability: by graphical constuction if e = (x, y):

Pu(e ∈ Dt) = Pcrw(Xx
s ̸= Y y

s , ∀s ≤ t) × Pu(η0(Xx
t ) ̸= η0(Y y

t ))

= Pcrw(τx,y
meet ≥ t) × 2u(1 − u)

ηt

η0

(Xx
s )s≥0

(Y y
s )s≥0

y

η0(Y y
t )

x

η0(Xx
t )

τx,y
meet := inf{t ≥ 0: Xx

t = Y y
t } = 1st meeting of 2 RWs from x and y

Discover the world at Leiden University 15 / 28

Figure 3.5: The event in which the edge (x, y) is discordant at time t coincides
with the event that the corresponding random walks do not meet and their
respective initial states are different.

Coalescence times. Recall the remarks below Theorems 3.2–3.4. Let
m(G) = E[τπ×πmeet ] be the expected first meeting time of two independent
random walks starting from their stationary distribution π over a finite
connected graph G = (V,E). Recall that τcoal is the first time such that a
system of n random walks coalesce into a single one, where n = |V |. On
the complete graph with n vertices it can be proved (see Aldous and Filll
[1, Chapter 14]) that

τcoal
m(G)

=
τcoal

(n− 1)/2

d
=

n∑
i=2

Zi,

where (Zi)i∈N\{1} are independent random variables with law

Zi
d
= Exp

( 1(
i
2

)), i ∈ N \ {1}.
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In particular,

Law

(
τcoal
m(G)

)
−→
n→∞

Law

( ∑
i∈N\{1}

Zi

)

and
E[τcoal]
m(G)

−→
n→∞

2.

As explained in Oliveira [52], Zi is the time it takes for a system with
i random walks to evolve to a system with i − 1 random walks, rescaled
by the expected meeting time of two random walks. For i = 2, this is
just the (rescaled) meeting time of a pair of random walks, which is an
exponential random variable with mean 1. For i > 2, we are looking at
the first meeting time among

(
i
2

)
pairs of random walks. It turns out that

these pairwise meeting times are independent. Since the minimum of k
independent exponential random variables with mean µ is an exponential
random variable with mean µ/k, we deduce that Zi is exponential with
mean 1/

(
i
2

)
. Such an interpretation comes from the Kingman coalescent

[41]: a pure death process taking values in the collection of partitions of [n]
such that if the partition has j sets, then at rate

(
j
2

)
two randomly chosen

sets in the partition are joined together.
The aim of Oliveira [52] was to find a large class of graphs such that

the latter asymptotics hold. The class of graphs for which this mean-field-
type behaviour had been proved earlier are: the discrete tori (Z/mZ)d
with d ≥ 2 fixed and m ≫ 1 (see Cox [23]), and large random d-regular
graphs (see Cooper, Frieze and Radzik [22]). Oliveira [52] showed that the
equations are satisfied for any finite, transitive and irreducible graph such
that the mixing time of a single random walk occurs much faster than
m(G). Heuristically, in a short amount of time all but two random walks
coalesce, and by that time the two remaining random walks have mixed
well and will have to meet from stationarity.

Meeting times on random geometries. We aim to compare the meet-
ing times on random regular graphs and inhomogeneous random graphs via
the so-called annealed random walk. On the d-regular random graph one
can exploit the locally-tree-like nature of the environment, which leads one
to study the observable on a deterministic d-regular tree. Therefore, the
problem is reduced to the study of a biased random walk on Z, representing
the graph distance of the two random walks, with jump probabilities 1/d
and (d − 1)/d. Random walks on locally tree-like random graphs, includ-
ing the configuration model, Erdős-Rényi random graph, and Chung–Lu
random graph (see, e.g., van der Hofstad [38], Bollobás [7]), often involve
studying key observables like the first meeting time on corresponding Gal-
ton–Watson trees.
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Fix n ∈ N, and let G = ([n], E) be a locally-tree-like random graph
with vertex set V = [n] = {1, . . . , n}. As we will see later in this sec-
tion, studying τmeet on a Galton-Watson tree with a non-trivial offspring
distribution—generated in our case by the local exploration of G—is signif-
icantly more challenging, as τmeet becomes a random variable with respect
to the realisation of the tree. For this reason, we cannot rewrite the prob-
lem in terms of a single biased walk on N0. One of the ways to deal with the
two very dependent sources of randomness (the random graph given by the
Galton-Watson tree and the stochastic process given by two independent
random walks) is to average out over the environment. More precisely, let
P = PG be the quenched law of the two random walks, i.e., the random
measure that depends on the realisation of the random graph G, and let
P be the law of G. Let

E[P(·)] =
∑

G∈Gn

PG(·)P(G = G)

be the annealed law of two random walks on G, where Gn is the collection
of all possible graphs with n vertices. Typically, in this setting, one can
attempt to compute the annealed law of τmeet, i.e., E[P(τmeet ≤ t)], t ∈ N0,
and then try to recover the quenched result by a concentration argument.

Consider the CM G with degree sequence d = (d1, . . . , dn). It consists
in a random graph with fixed vertex set [n] and each vertex x ∈ [n] has a
pre-assigned degree dx. We will assume that the degree sequence d satisfies
some regularity conditions (see van der Hofstad [38]). It can be shown that,
under these assumptions on the degree sequence, the resulting graph local
limit is a unimodular Galton-Watson tree To, whose root o has offspring
distribution p = (pk)k∈N given by

pk = P(Dn = k) =
1

n

∑
x∈[n]

1dx=k,

where Dn is the degree of an uniformly chosen vertex, while the other sites
have offspring distribution given by the size-biased law

µ(k) =
(k + 1) pk+1

E[Dn]
, k ∈ N.

Consider now two discrete-time, asynchronous , i.e. at each step the
moving one is chosen with probability 1/2, independent random walks
X,Y with initial position o. We want to compute E[P(τmeet ≤ t)]. There is
one key observation that makes the above computation possible explicitly:
τmeet is a local observable depending only on the neighbours of the two
walks at each step. This obvious, but crucial, fact brings two consequences:

1. We can exploit the local weak limit of the CM.
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2. We can make an explicit description of the annealed law in terms of
a non-Markovian process

Pan(·) = E[P(·)]

that at each step simultaneously explores the random graph and lets
the walks move. This equivalent description is only based on the fact
that in the definition the description of the meeting time is given by
a local exploration of the graph structure, not a global exploration.
For a precise description, see Bordenave et al. [8, 9], Cai et al. [15]
and Avena et al. [4].

Suppose that t is uniformly bounded in n, i.e., t = tn = O(1) as
n → ∞. In order to compute Pan(τmeet ≤ t), we initialise G having n
vertices equipped with {di}i∈[n] half-edges and without any formed edge
(empty matching). We set both the walks X and Y such that X0 = Y0 =
o ∼ Unif([n]). Since the walks are asynchronous, we select which of the two
moves first with probability (w.p.) 1

2 , say X moves first. Then it selects
uniformly at random a half-edge e of X0 = o ∈ [n] and selects another half-
edge f among the unmatched ones, say that f is incident to some vertex
z ∈ [n]. Finally, we create the edge (o, z) by matching the half-edges e
and f , and we move the walk X to z, i.e., X1 = z, while Y1 = Y0 = o.
We iterate this procedure until the walks meet at some time t, with the
difference that if a walk selects a half-edge that is already matched, then
we do not sample a half-edge uniformly at random and we just let the walk
move to the other end of the edge.

Since t = O(1), we can perform a local exploration of a Galton-Watson
tree rooted at o ∼ Unif([n]) with offspring distribution µ as above, in place
of a local exploration of the whole graph G. In order to exhibit an explicit
example of Pan(τmeet ≤ t), let us try to compute Pan(τmeet = 4). Suppose
that the walks are non-backtracking.

• One of the walks, say X, moves to a neighbour z1 of X0 = o. This
event happens w.p. 1

2 .

• Since the first meeting happens at time 4, Y cannot follow immedi-
ately X, and so X must move again as in Step 1 to some vertex z2.
This event happens w.p. 1

2 .

• Now Y must follow the unique path connecting X to Y for two steps,
from o to z1 and from z1 to z2. This happens with probability(

1
2

)2 1

do

1

dz1
.

The offspring distribution of o is pk as above, while the degree of z1
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is distributed according to µ. It follows that

Pan(τmeet = 4) =
(
1
2

)4∑
k∈N

1

k
pk
∑
k∈N

1

k
µ(k).

Remark. It is unclear what to do when the random walk is backtracking,
like simple random walk.

3.5 VM on the random regular graph with
random rewiring

What happens when the graph itself evolves over time, e.g. the edges are
randomly rewired?

Suppose that every pair of edges swaps endpoints at rate ν/2M with
ν ∈ (0,∞), where we recall that M = dN

2 is the number of edges in the d-
regular graph with N vertices. With this choice of parametrisation, the rate
at which a given edge is involved in a rewiring converges to ν as N → ∞.
The voter model on this dynamic random graph evolves as before: at rate
1 opinions are adopted along the edges that are currently present.

In a work in progress we show that Theorems 3.2–3.4 carry over with
θd replaced by θd,ν given by a continued fraction.

Theorem 3.7 (Avena, Hazra, den Hollander, Quattropani [3]). Let
βd =

√
d− 1 and ρd = 2

d

√
d− 1. Then

θd,ν = 1− ∆d,ν

βd

with
∆d,ν =

1 |
| 2+ν

ρd

− 1 |
| 2+2ν

ρd

− 1 |
| 2+3ν

ρd

− . . .

1. Since the d-regular random graph locally looks like a d-regular tree, the
proof proceeds by analysing the meeting time of two random walks on a
d-regular tree. On short to modest time scales the two random walks do
not notice the difference. Work is needed to show that on longer time scales
the approximation is still good.

2. We replace rewiring of edges on the d-regular random graph by dis-
appearance of edges on the d-regular tree. This is a good approximation
because, as soon as one random walk moves along a rewired edge in the
d-regular random graph, it is thrown far away from the other random walk
and meeting becomes difficult.

Key Observation. Because ν 7→ θd,ν is strictly increasing, the dynamics
speeds up consensus.



Chapter 4 (Lecture 4)

The contact process (CP)

4.1 CP on graphs
Given a connected graph G = (V,E), the contact process is the Markov
process (ξt)t≥0 on state space {0, 1}V where each vertex is either healthy
(0) or infected (1). Each infected vertex becomes healthy at rate 1, in-
dependently of the state of the other vertices, while each healthy vertex
becomes infected at rate λ times the number of infected neighbours, with
λ ∈ (0,∞) the infection rate.

The configuration at time t is ξt = {ξt(i) : i ∈ V }, with ξt(i) the state
at time t of vertex i. In what follows we will analyse the behaviour of the
CP on various classes of graphs, both random and deterministic. Our focus
will be on understanding how the extinction time

τ[0]N = inf{t ≥ 0 : ξt(i) = 0 ∀ i ∈ V }

behaves as |V | = N → ∞, depending on the value of λ and the properties
of the graph. We will mostly zoom in on

E[1]N (τ[0]N ),

the average extinction time starting from the configuration where every
vertex is infected. We will see that it is hard to get control on this quantity,
so we will have to content ourselves with rough bounds.

4.2 CP on the complete graph
As a prelude we look at the CP on the complete graph, for which compu-
tations can be carried through explicitly. Indeed, the number of infections
at time t, given by

INt =
∑
i∈V

ξt(i),

167
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evolves as a continuous-time nearest-neighbour random walk on the set
{0, . . . , N} with transition rates

n → n+ 1 at rate λn(N − n),
n → n− 1 at rate n.

Put IN
t = 1

N INt for the fraction of infected vertices at time t. This process
is a continuous-time nearest-neighbour random walk on the set{

0, 1
N , . . . , N−1

N , 1
}

with transition rates

x → x+N−1 at rate λx(1− x)N2,
x → x−N−1 at rate xN.

This process has a strong drift upward, which becomes zero when the rates
balance, i.e., λx(1− x)N2 = xN . The latter occurs at x = 1− 1

λN , which
is very close to full infection when λN ≫ 1.

Theorem 4.1. Let τ[0]N = inf{t ≥ 0: ξt = [0]N} be the extinction time.
Then

logE[1]N (τ[0]N ) = N [1 + log(λN)] + o(N), N → ∞.

Thus, the CP on the complete graph is supercritical for all λ > 0 as
N → ∞.

Theorem 4.2 (Schapira, Valesin [55]). For every λ ∈ (0,∞),

lim
N→∞

P[1]N

(
τ[0]N

E[1]N (τ[0]N )
> t

)
= e−t ∀ t > 0.

As described above, in the mean-field setting of the complete graph the
fraction of infected vertices performs a random walk. The latter property
fails on non-complete graphs, in particular, on random graphs: (IN

t )t≥0
loses the Markov property. The CP is harder than the VM because it does
not have a tractable dual. In fact, it is self-dual.

Remark. A natural way to redefine the CP on the complete graph is to
replace the infection rate λ by λ∗/N with λ∗ ∈ (0,∞). Then the total rate
at which an infection spreads from a vertex to its neighbours is λ∗(N −
1)/N , which tends to λ∗ as N → ∞. With this change of parameter, the
transition rates on {0, 1

N , . . . , N−1
N , 1} become λ∗x(1 − x)N , respectively,

xN , which balance when x = λ∗−1
λ∗ . In the limit as N → ∞, the density of

infected sites evolves according to an ODE with a drift towards this value.
Thus, λ∗ = 1 is the critical threshold for survival of the infection as N →
∞. The average extinction times for large N becomes logE[1]N (τ[0]N ) =
N [1 + log λ∗] + o(N).
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4.3 CP on the configuration model

Consider CP on CM with an empirical degree distribution fN satisfying
limN→∞ ∥fN − f∥∞ = 0 with

f(k) = k−τ+o(1), k → ∞,

where τ ∈ (1,∞) is the tail exponent.

Theorem 4.3 (Chatterjee, Durrett [20], Mountford, Mourrat,
Valesin, Yao [49]). If τ ∈ (2,∞), then for every λ ∈ (0,∞) the av-
erage time to extinction grows exponentially fast with N whp.

Thus, CP on CM with a power law degree distribution is supercritical
regardless of the value of λ. Apparently, vertices with large degree, called
hubs, easily transmit the infection. For empirical degree distributions with
a polynomial tail such hubs are abundant.

Theorem 4.4 (Can, Schapira [17]). The same is true for τ ∈ (1, 2],
even though local convergence of CP breaks down.

For the CP on the CM with a power law degree distribution there is
anomalous scaling of the density of infections ρ(λ) as λ ↓ 0, namely,

ρ(λ) ≍


λ1/(3−τ), τ ∈ (2, 5

2 ],

λ2τ−3 [log(1/λ)]−(τ−2), τ ∈ ( 52 , 3],

λ2τ−3 [log(1/λ)]−2(τ−2), τ ∈ (3,∞).

(Mountford, Valesin, Yao [50], Linker, Mitsche, Schapira, Valesin [45].)
The three regimes reflect different optimal strategies to survive extinction
for small infection rates: the infection survives close to hubs.

Sharp estimates of the extinction time have been obtained for the CP on
the CM with i.i.d. degrees (Di)

N
i=1 taking values in N0. When E[D1] < ∞

we expect a strictly positive critical threshold.

Theorem 4.5 (Cator, Don [19]). Suppose that E[D1] < ∞ and E[2−D1/2] <
1
4 . Then there exists a constant α ∈ (0,E[D1]] such that if λ > 1/α, then
there exists a constant c > 0 such that

E[1]N (τ[0]N ) ≥ ecN whp.

For the random regular graph with degree d ≥ 3, the claim holds with
α = d− 2.
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4.4 CP on the Erdős-Rényi random graph
Let p = pN be the edge retention probability of the Erdős-Rényi random
graph, and let λ = λN be the infection rate of the CP on this graph.

Theorem 4.6 (Cator, Don [19]).

(a) If limN→∞NpN = ∞, then

E[1]N (τ[0]N ) ≥ ecNN whp

for cN < log(NpNλN )− 1
NpNλN

+ 1 and N large enough.

(b) If limN→∞NpN = σ ∈ (4 log 2,∞), then

E[1]N (τ[0]N ) ≥ ecN whp

for λ > 1/σ and c < log(σλ)− 1
σλ + 1 and N large enough.

Thus, the extinction time of the CP starting from full infection on the
Erdős-Rényi random graph of size N is exponentially large in N for typical
realisations of the graph, with explicit bounds on the constants.

4.5 CP on the preferential attachment model
The preferential attachment model is a growing graph where at each unit
of time a new vertex comes in that attaches itself to an old vertex already
present in the graph with a probability that is proportional to the degree
of that vertex. It is known that, for large n, such graphs have hubs, i.e.,
vertices with large degrees, such that empirical degree distribution has a
power tail (see e.g. van der Hofstad [38, 39]).

Theorem 4.7 (Berger, Borgs, Chayes, Saberi [6], Can [16]). There
exists a c > 0 such that

logE[1]N (τ[0]N ) ≥ c
λ2N

(logN)
1+γ
1−γ

for λ > 0 small enough and N large enough, with γ ∈ [0, 1) a parameter
that controls the attachment probabilities of newly incoming vertices.

4.6 CP on tree-like random graphs
Many sparse random graphs are locally tree-like, and hence it is interesting
to study the extinction time of the CP on regular trees. Let

0 < λd < ∞

be the critical threshold for survival on the d-regular tree.
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Theorem 4.8 (Mourrat, Valesin [51]). Let Gd,N be the class of con-
nected graphs with N vertices and maximal degree d.Then, for λ < λd,

lim
N→∞

sup
G∈Gd,N

P[1]G(τ[0]G > c logN) = 0 for some c = c(λ, d).

Theorem 4.9 (Mourrat, Valesin [51]). On the d-regular random graph
with d ≥ 3, the crossover from logarithmic to exponential extinction time
occurs at λd.

Theorem 4.10 (Baptista da Silva, Oliveira, Valesin [5], Schapira,
Valesin [56]). On the dynamic d-regular random graph with d ≥ 3 and
rewiring rate ν > 0, the crossover occurs at a strictly smaller value than λd.

The rewiring helps the infection spread more easily, a phenomenon
similar to what we saw for the spread of opinions in the VM on the random
regular graph subject to random rewiring.

4.7 CP on general finite graphs
What can be said about the extinction time for the CP on general finite
graphs?

Theorem 4.11 (Mountford, Mourrat, Valesin, Yao [49]). For any
λ > λ1, any D ∈ N and any connected graph G whose degrees are bounded
by D,

E[1]G(τ[0]G) ≥ exp
[
c|V |

]
for some c = c(λ,D) > 0.

Theorem 4.12 (Schapira, Valesin [54]). For any λ > λ1, any ϵ > 0
and any connected graph G,

E[1]G(τ[0]G) ≥ exp

[
c|V |

(log |V |)1+ϵ

]
for some c = c(ϵ) > 0.

Conclusion. For the CP it is hard to get sharp control on the extinction
time, and many questions remain open.
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