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1 Introduction
Dedicated to Errico Presutti on the occasion of his 80th birthday;

an always generous friend, mathematically and otherwise.

In this paper we introduce a stochastic process of ‘household’ type, with
a two level infection scenario, which leads to an age-structured SIR model
of the type introduced by A.G. McKendrick in 1926 [11]. In mathematical
terms the large N limit of the many body process is an independent evolu-
tion of the ‘household’ driven by a deterministic equation. This is similar
to [4]. In our case the deterministic equation is a kinetic equation instead
of an ordinary differential equation.

The special feature of our model is that the mixing process are contacts
in randomly chosen groups of finite size m2. That leads to a Kermack-
McKendrick type of equation [5] in a state space of dimension m1, the
size of the households, with a nonlinearity of degree m2, the size of the
meeting places. This state space is the space of the times ai elapsed since
the time of infection of the individual of type i in the household. The
rate of infection for the individuals is no longer linear in the percentage of
infections in the population, but has an independent term for the infections
in the household and a nonlinear term, a polynomial of degree m2 − 1 in
the percentage of the infectious individuals for the random contact. Its
coefficients can be calculated from a dose response curve, linking the rate
of infection to the viral load at the contact.

The type of mixing we are looking at here is special, adapted e.g. to
a metro filling up during the rush hour. Other mixing processes could be
considered too, and also intermediate scalings for the size of the meeting
places. This article presents the stochastic process and deals with the prob-
lem of determining its ‘hydrodynamic limit’. Other aspects, e.g. the long
time behavior of the limiting McKendrick system, are not discussed here.
Analytic aspects of McKendrick systems in multidimensional state spaces
were discussed in [9] and [8]. The model presented in [8] and the model
presented here share two features with relevance for the Covid epidemics,
namely:

• Separating the effect of infections in the household and the one of the
random contacts, it becomes possible to explain why lockdowns have very
limited effects. They certainly decrease random contacts, but increase the
ones in the households.

We have data from a study of infection in public transport conducted
in the Frankfurt region at the beginning of the epidemic wave caused by
the UK-variant of the virus in Germany. These data clearly show that the
vast majority of infections were reinfections. So in spite of the lockdown,
the majority of the active population in that region had been infected
(asymptomatically).
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• The other effect, that a Kermack-McKendrick model with infection
rate depending linearly on the relative percentage of infected in the popu-
lation cannot explain, is what we call deterministic metastability. A small
number of imported infections in the population does not start an epi-
demic.

For this compare the situation in march and april 2020 in the two
swiss cantons of Zurich and Geneva. Zurich had a minimal number of
Covid cases, whereas Geneva had 1% of the population according to data
of BAG, [1]. Taking into account asymptomatic cases in Geneva, more
than 10% of the active population was infected in spring 2020 [13]. So a
population may be in the state of ‘herd immunity’ with respect to a level
of import of infections of the amount of 10−4 of the population per week,
but not if the level is 10−3 of the population per week, one might roughly
estimate.

Our claim is that modeling the Covid epidemics, the models have to
include the possibility to separate the effects of deterministic or reoccuring
contacts and those of random contacts. Further, the rate of infection for
an individual, sometimes called the force of infection, should not depend in
a linear but in a nonlinear way on the percentage of infectious individuals
in the population. For a more a detailed discussion see [8]

2 Discussion on data from a study of the in-
fection risk in public transport in Germany

We include this discussion of the data of the study here, since it is not a
publication in the classical sense, but a link to a web page of the ministry
of transport of the state (Land) of Baden-Württemberg, [3]. And it is
crucial for our claim of the ineffectiveness of the lockdown in Germany
in winter 2022/21. The authors of the study were from CRO (Charité
research organization). The relevant data for us are the following:

At the beginning of the study in calendar week 7, 2021 ca. 700 peo-
ple were enrolled, unvaccinated and not having been previously diagnosed
with Covid. Initially, 3 of them had a positive PCR-test, one among these
3 individuals also a positive specific IgG test (Euroimmun). 35 more indi-
viduals had only a positive IgG test.

Among the participants who had tested negative at the beginning of
the study, ca. 660 completed the study (in calendar week 12 of 2021).
During the study questionnaires about symptoms were regularly sent out.
And in this way 3 individuals among the 660 were found who tested PCR
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positive. At the end of the study everyone else among the 660 was tested
again by PCR and IgG test. Only one more (presymptomatic) case was
found by the PCR tests, but 23 (newly) positive cases were found be IgG
test.

Already the fact that one discovers an asymptomatic carrier with a
positive specific IgG antibody response and a positive PCR test is a clear
hint that this was a reinfection of an individual, who had already been in-
fected with the wild type previously and consequently had already specific
IgG antibodies or at least B memory cells. A reinfection with the wild
type can practically be excluded [2]. Most probably it was the UK type
which became dominant in Germany around that time. Secondly, that by
the end of the study so many newly positive IgG tests were found, but all
in all only 4 people with positive PCR tests, proves that PCR visibility on
an average had decreased to a very short time.

We can compare these data, an infection rate of 4% over 5 weeks,
with the official data of the RKI (Robert Koch Institute) on the number
of recorded Covid cases per week and population in the Frankfurt region,
where the study was conducted. The so-called 7 day incidence was increas-
ing during the study, and it came to an overall infection rate of 0, 2%−0, 3%
of the population for the 5 weeks covered by the study. It was 0, 4%−0, 5%
for the 5 weeks before. So firstly we can safely conclude that in order to
determine the complete number of infections, the RKI numbers have to be
multiplied with a factor of 15-20 (not every asymptomatic carrier develops
a specific IgG response).

One can also conclude that the positive IgG tests corresponds to not
more than to the number of infections 5-6 weeks before. And one can
conclude that among the 23 seropositive (IgG positive) individuals in the
study, 10 or more had been infected in the last week before the final test.
So probably the average PCR visibility was one to two days, due to the
effectiveness of the antibody response developed by the previous infection
with the wild type.

For us this is important, because we obtain two independent confirma-
tions from this study, that the vast majority of the active population in
the Frankfurt region has been infected and immunized by calendar week
7 in 2021; but of course immunized against the wild type not against the
UK type of the virus.

If we assume that the seroconversion rate among the infected is about
80%, then this means for a bit less than 90% of the infected, that they
were infectious themselves for not more than 2 days and had no chance to
develop symptoms. But for the rest their previous infection did not make
any difference.
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3 A household type contagion process, mod-
eling Covid-19

The process we consider in this paper has two stages, the first one mod-
eling in group infection, the second one models aerosol infection in public
transport, supermarkets, University lectures, etc. Specifically we have M1

groups of m1 distinguishable individuals of different types. N = M1m1

is the populations size. Moreover we have meeting places of size m2,
for simplicity a fixed multiple of m1, numbered l = 1, . . . ,M2, where
M2m2 = M1m1.

The process consists of independent evolutions in the time intervals
(t2ν , t2ν+1) and (t2ν+1, t2ν+2). The first is an infection process within the
groups, the second an infection process at the meeting places. At time
t2ν+1, consecutively and with equal probability individuals are assigned to
the meeting places. This is the only mixing in the process. The meeting
place l assigned to individual n at time t2ν+1 will be denoted by l(ν, n).

Each individual can get infected only once, at time tn. Here tn is ex-
ponentially distributed with rates siX, and si, i = 1, . . . ,m1 are constants
representing the different susceptibilities of the different types. X, the
force of infection, depends nonlinearly on the amount of virus spread by
the infected individuals at the meeting places and in the groups respec-
tively. If αi denotes this amount as a function of time for an individual of
type i, and tn the time of infection, we assume an i.i.d. distribution Pi for
the function αi(· + ti+m1r), r = 0, . . . ,M1 − 1, in L∞, with in addition a
Fréchet Kolmogoroff condition:

E

(∫ ∞

0

|αi ∗ φε − αi|
)

< ω(ε)

for a Dirac sequence φε = ε−1φ( 1ε ) ∈ C∞
0 , and the modulus of continuitiy

ω with ω(0) = 0, and ω being continuous. Moreover we assume |αi|∞ < C,
and spt(αi) ⊂ [tn + δ, tn + L̄]. So there is a delay between the time an
individual gets infected and the time it gets infectious. The assumption
on Pi means that the evolution of the virus production α ((t− t̄)+) in an
individual infected at time t̄, depends only on the type, and is independent
of t̄ and the environment.

With this notation the formula for X, the ‘force of infection’, is

Xr(t) = f

(
m1∑
i=1

αm1(r−1)+i((t− tm1(r−1)+i)+)

)
(3.1)
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for t ∈ (t2ν , t2ν+1) in the groups, and

Xl(t) = f̄

 ∑
l(ν,n)=l

αn((t− tn)+)

 (3.2)

for t ∈ (t2ν+1, t2ν+2) at the meeting places.

Here f is the dose response curve for the in group infection, and f̄ is
the dose response curve for the infection at the meeting places.

The process is one with a delay bounded from below. For Covid this
delay is approximately 2 days, the time between infection and the first
positive PCR test. And this delay is more or less deterministic [7]. Covid
also does not have reinfections (with the same virus variant and at least up
to 7 months after recovery). Covid has though competing virus variants.
So after a short period of crossimmunization, approx. 2 months, a new
variant can spread among the recovered. The data from which one can
infer this, are the Covid deaths in London compared to West Midlands in
the fall/winter 2020/2021. As can be seen in Figure 1 up to calendar week
50/2020 the Covid death rates in London as opposed to West Midlands do
not show any epidemic increase. But after calendar week 52 both curves
look very similar. The delay between infection and demise is about 3 weeks.
So that would mean that in London up to calendar week 49 approximately,
the population was in a state of herd immunity. But immunization against
the wild type of Covid-19 did not give any protection against the then new
UK or alpha virus variant. Variants will be discussed in the next chapter.

Our process has two features which simplify the treatment a lot. The
selection process is easily seen to produce just a permutation in {1, . . . , N}
and more precisely the Haar measure on the symmetric group

∑
N . And

the bound on the delay from below means that the infection process defined
by (3.1), respectively (3.2) in the time interval (t, t+ δ/2) is independent
from the infection process in the time interval (t−δ/2, t). So the correlation
the process of selection produces can be estimated. First, if we have w.l.o.g.
that

σ(n) = 1, σ ∈ ΣN ,

the other m2 − 1 individuals at the meeting place will be σ−1(2), . . . ,
σ−1(m2), where σ is a random element of

∑
N−1. Each permutation

σ−1(2), . . . , σ−1(m2) of {2, . . . ,m2} into {1, . . . , N} \ {n} will occur with
equal probability. If one replaces that by all maps in {1, . . . , N}m2−1 that
increases the cardinality by a factor N

N−1 · . . . ·
N

N−m2+1 , so 1+O( 1
N ). More
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Figure 1: shows the Covid deaths per calendar week (cw) and 1000 in-
habitants for the two English regions, London and West Midlands in the
winter 2020/21. Up to the beginning of december 2020 the wild type was
still dominant among infections. For the death toll a delay of ca. 3 weeks
has to be taken into account. (Source: daily Covid deaths per region, NHS
England [12].)

precisely if ν : {1, . . . ,m2 − 1} → {1, . . . , N} denotes multiindices∑
ν∈{1,...,N}m2−1

∣∣∣P ({l(ν1) = l(ν2) = · · · = l(νm2−1) = l(n) , νi ̸= νj ̸= n})

−N1−m2

∣∣∣
=

[
(N −m2)!

(N − 1)!
−N1−m2

]
(N − 1)!

(N −m2)!
+

[
Nm2−1 − (N − 1)!

(N −m2)!

]
N1−m2

=O

(
1

N

)
This means that in the large N -limit the infection force at the meeting
places visited by a susceptible individual under the actual mixing process
can be replaced by one choosing the other m2−1 individuals independently
from all N − 1 individuals.
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For the modified process the rate of infection for a susceptible individual
n = m1(r − 1) + i of type i is given by siX̄j⃗(t), where

X̄j⃗(t) = f̄

(
m2−1∑
k=1

αj(k)((t− tj(k))+)

)
(3.3)

for t ∈ (t2ν+1, t2ν+2), and where j⃗ is any multiindex in Nm2−1. X̄j⃗(t) is the
force of infection in the randomly chosen group for the individual n, up to
the time when the individual n gets infected. It also defines an evolution
in the group without the individual and therefore a transition probability
in state space from time t2ν+1 to time t, where t ∈ (t2ν+1, t2ν+2).

From now on we will discuss the modified process. But let us first
discuss the structure of this process (in the spirit of A.G. McKendrick,
who introduced the concept of the kinetic theory in a continuous state
space for the life sciences in 1914 [10]). The individual moves in a state
space

{1, . . . ,m} × R+ × {0, 1} × L1(δ, C̄) =: Y × L1(δ, C̄),

where the second coordinate is (t − tn)+, the third is χt>tn , a phase pa-
rameter, and the last is the choice αn, the virus production as a function
of t − tn for the individual. The first coordinate is the number i(n) = n
mod (m1).

Finally it should be noted that the whole process is unchanged whether
one assigns αm1(r−1)+i randomly at t = t0 or at t = tm1(r−1)+i + δ/2 and
the probability distribution Pi(α) is stationary under that process, by our
assumption.

To calculate the transition probability is equivalent to let the process
run N̄ times independently and let N̄ → ∞, with a fixed initial datum.

It is convenient for the ‘household’ as well as for the meeting places,
to partition the sets Ω =

(
R+

0

)m, m = m1 or m2 − 1, into ‘barycentric’
subdivisions of their facets. These are

ΩΠ,k =
{
a⃗ ∈ Ω | aΠ(1) > . . . > aΠ(k) > aΠ(k+1) = . . . = aΠ(m) = 0

}
,

where Π is any permutation of {1, . . . ,m}. The process defines an empirical
measure with a density ρ as the large N limit. For ρ we have the equation

∂tρ+

k∑
j=1

∂aΠ(j)
ρ = −

m∑
j=k+1

si(Π(j))f

 m∑
j=1

αj(aj)

 ρ on ΩΠ,k

and at the influx boundary ΩΠ,k of ΩΠ,k+1 we have

d(ρ|ΩΠ,k+1
)

daΠ(k+1)
= si(Π(k+1))f

 m∑
j=1

αj(aj)

 ρ .



A two level contagion process for Covid 351

Here d
daΠ(k+1)

denotes the Radon-Nikodym derivative. If the latency period
δ is larger than t2ν+1−t2ν and t2ν+2−t2ν+1, then f(

∑m
j=1 αj(aj)) depends

only on aj at the starting time, and there is no need to calculate transition
probabilities in this step. The equations are reformulated in the following
Lemma. Here we assume the evolution αj(a) to be given. So the only
random variable is a = (t− tj)+ or the tj equivalents. Since Pj(α) is tight
and independent of the infection time, this poses no restriction.

Lemma 3.1. Suppose m functions αj, j = 1, . . . ,m are given in L1(R),
with 0 ≤ αj ≤ χ[δ,C̄]. Define a process on the state space (R+

0 )
m ×{0, 1}m

∂taj = σj , where σj(t) = H(t− tj)

and H is the Heaviside function. Further let

lim
ε→0

1

ε
P
(
σj(t) = 1

∣∣∣ σj(t− ε) = 0
)
= sjX(t),

X(t) = f

∑
j

αj(aj(t))

 .

Then the transition probability ρ(⃗a, σ⃗, α⃗, a⃗0, σ⃗0, t) satisfies the kinetic equa-
tion

∂tρ+ div(σ⃗ρ) = 0 , ρ(·, ·, ·, a⃗0, σ⃗0, 0) = δa⃗0,σ⃗0
,

and for each Π ∈
∑

m, the symmetric group on {1, . . . ,m}, k ∈ {1, . . . ,m},

ΩΠ,k :=
{
a ∈ (R+

0 )
m | aΠ(1) > aΠ(2) > . . . > aΠ(k+1) = . . . = aΠ(m) = 0

}
we have the influx boundary condition

d(ρ
∣∣
ΩΠ,k

)

daΠ(k)
= si(Π(k))f

 m∑
j=1

αj(aj)

 · ρ, on ΩΠ,k−1.

The equations are to be understood in the weak sense. ρ remains
singular with respect to {aj , σ0(j) = 1} and remains zero on the faces
{aj = 0 | σ0(j) = 1}.

The kinetic equation for the transition probability ρ is just a convenient
notation for the generator of the process on the test functions - which
are of course random variables. They are solved using the method of
characteristics. The solutions of the resulting delay differential equations
have a continuous dependence on the data. That means if a⃗0,1, a⃗0,2 are
initial data in the same ΩΠ,k then we have the following norm inequality

∥ρ(·, ·, ·, a⃗0,1, σ⃗0,1, ·)− ρ(·+ a⃗0,1 − a⃗0,2, ·, ·, a⃗0,2, σ⃗0,2, ·)∥
≤ C (|⃗a0,1 − a⃗0,2|+ |σ⃗0,1 − σ⃗0,2|) .
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Similarly if αj and α̃j are different functions, then

∥ρ(·, ·, α⃗, a⃗0,1, σ⃗0,1, ·)− ρ(·, ·, ⃗̃α, a⃗0,1, σ⃗0,1, ·)∥ ≤ C
∑∫

|αj − α̃j | .

The dependence on σ⃗0 is important only for non-generic data with σj = 1,
aj = 0. These estimates also hold for the transition probability in path
space, since the value of a⃗ at a time t determines the times when σ⃗ has
jumped and so the path in state space, up to time t.

I.e. if ρ(⃗a, σ⃗, t, ⃗̃a, ⃗̃σ, t̃) gives the transition probability for the process
starting at ⃗̃a in t̃ and reaching a⃗ at time t, then the distribution of X(s)

is the distribution of f
(∑m

j=1 αj(aj)
)

under ρ(⃗a, σ⃗, s, ·, ·, ·).
The empirical distribution of the mean of M1 copies of the process

running independently as mentioned before, converges in the large M1

limit to ρ(⃗a, σ⃗, t, ⃗̃a, ⃗̃σ, t̃). So if the empirical measure on initial data at time
t̃ converges weakly to a measure µ, then in the large M1 limit the empirical
distribution of X(s) will converge to the value

E (X(s)) =

∫
f

 m∑
j=1

αj(aj)

 dρ(⃗a, σ⃗, s, ⃗̃a, ⃗̃σ, τ) dµ(⃗ã, ⃗̃σ, τ) .

Lemma 3.1 can be applied with m = m1 and m = m2−1 respectively, and
allows to conclude the following theorem

Theorem 3.2. Let the infection process be given by 3 consecutive steps for
a population consisting of M1 groups of m1 individuals of different types,
numbered i = 1, . . . ,m1. Individuals get infected only once, at times tn,
and afterwards produce the infectious agent at rate αn((t − tn)+). The
processes αn are independent and identically distributed for each type of
individual with a law Pi(n)(dα), i(n) = n mod (m1), satisfying 0 ≤ α ≤
Cχ[δ,C̄] and a Fréchet Kolmogoroff condition

E

(∫ ∞

0

|α ∗ φε − α|
)

< ω(ε)

for a Dirac sequence φε and a modulus of continuity ω.
• The first step of the process is an independent infection process in the

groups, numbered by r = 1, . . . ,M1 with rates siXr(t), si the susceptibility
of type i and Xr(t) the force of infection

Xr(t) = f

(
m1∑
i=1

αm1(r−1)+i((t− tm1(r−1)+i)+)

)
for t2ν ≤ t ≤ t2ν+1. f is monotone bounded Lipschitz, describing a dose
response curve for in group infections.
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• The second step is a consecutive filling up of M2 meeting places of
capacity m2, numbered l = 1, . . . ,M2, where M2m2 = M1m1, with equal
probability for each individual.

• The third step is again an independent process of infection at the
meeting places with rates si(n)X̄l(n,ν)(t), where l(n, ν) is the number l as-
signed to individual n at time t2ν+1.

X̄l(t) = f̄

 ∑
l(n,ν)=l

αn((t− tn)+)


for t2ν+1 ≦ t ≦ t2ν+2 where f̄ , monotone bounded Lipschitz, is the dose
response curve at the meeting places.

In the large M1 limit the law of infection of a susceptible individual of
type i in a group is given by the rates

siX(t) = sif

m1∑
j=1

αj((t− tj)+)

 for t2ν < t < t2ν+1

and αj is distributed according to Pj(α) and

siX̄(t) = sif̄

m2−1∑
j=1

αj((t− tj)+)

 for t2ν+1 < t < t2ν

where αj and (t2ν+1 − tj)+ =: aj,ν and i are independently chosen ac-
cording to the equal distribution of types, the distribution of α according
to Pi and the distribution of ai given as the marginal of a distribution in
(a1, . . . , am1

) with densities ρΠ,k on ΩΠ,k the barycentric subdivision of the
facets on (R+

0 )
m.

ΩΠ,k := {a⃗ | aΠ(1) > . . . > aΠ(k+1) = aΠ(k+2) = . . . = 0}

ρΠ,k satisfies the (deterministic) kinetic system

∂tρ+ div(σ⃗ρ) = 0 , σ⃗ = (χai>0)
m1−1
i=1

with the influx boundary conditions

d(ρ|ΩΠ,k+1
)

daΠ(k+1)
=si(Π(k+1))

∫
A(⃗a, t) dρ(⃗a, t2ν) for t2ν < t < t2ν+1 in ΩΠ,k

d(ρ|ΩΠ,k+1
)

daΠ(k+1)
=si(Π(k+1)) ·m1−m2

1

∑
I∈{1,...,m1}m2−1

∫
BI(a1, . . . , am2−1, t− t2ν+1)

·
m2−1∏
j=1

dρI(j)(aj , t2ν+1) for t2ν+1 < t < t2ν+2 in ΩΠ,k.
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The functions A and B are given by

A(a1, . . . , am1
, t) =

∫
f

(
m1∑
i=1

αi(bi)

)
dρ(⃗b, α⃗, a⃗, t)

m1∏
i=1

dPi(αi)

BI(a1, . . . , am2−1, t) =

∫
f̄

m2−1∑
j=1

αj(bj)

 dρ(⃗b, α⃗, a⃗, t)

m2−1∏
j=1

dPi(I(j))(αj)

with the transition probabilities ρ(⃗b, α⃗, a⃗, t) given by Lemma 3.1.

Here we assume that the empirical distribution of the initial data in α
and a converge to the product measure of dPi(α) and ρ(⃗a)

∏m1

i=1 dai. The
dependence of the transition probability on σ⃗ can be dropped since the
probability of tn = 0 is assumed to be zero.

4 Modeling competition between virus vari-
ants

Here we modify the model to take different variants of the virus, and
therefore reinfection into account.

If competition between different, here two, variants of the virus have to
be modeled, each individual can be infected twice, tn,ε denoting the time of
infection of variant ε = 1, 2. Also in this case a temporary reduction of the
susceptibility, sε,i has to be taken into account. Denote the susceptibility
of an individual with respect to the variants as sε,n. We assume that

s1,n(t) = s1,i(n) (1− δ1((t− tn,2)+))

s2,n(t) = s2,i(n) (1− δ2((t− tn,1)+))

where χ(0,L] ≤ δ1, δ2 ≤ χ(0,L̄]. Further we will assume L̄ > C̄ so that there
is no simultaneously active infection with both variants. The state space
for the individual will become

Y0 ×
(
L1(δ, C̄)

)2 × (L1(0, L̄))
2

with Y0 = {1, . . . ,m1} × (R+
0 )

2 × ({0, 1})2. In the groups as well as in the
meeting places we will number the individuals by {1, . . . ,m} × {1, 2}. As
before we will partition (R+

0 )
2m into sets

ΩΠ,k =
{
a⃗ ∈ (R+

0 )
2m | aΠ(1) > aΠ(2) > . . . > aΠ(k+1) = . . . = aΠ(2m) = 0

}
,

where Π is any bijective map from {1, . . . , 2m} into {1, . . . ,m} × {1, 2}.
We will denote by Π̄ = (Id× τ) ◦Π the interchange of 1 and 2 in the ‘per-
mutation’. So sΠ(l) will depend on aΠ̄(l) and the formula for the transition
probability for the two competing virus variants will become
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Lemma 4.1. Let the functions αj,1, sj,1, αj,2, sj,2, j = 1, . . . ,m be given
and let the infection rates for the susceptible individuals for variants ε =
1, 2 be given by

Xj,ε = sj,ε(aj,τ(ε))f

 m∑
j=1

αj,ε(aj,ε)

 ,

where aj,ε = (t − tj,ε)+ and where tj,ε is the time of infection of an indi-
vidual j with virus variant ε. Then the transition probability of the process
in (R+

0 )
2m satisfies the kinetic equation

∂tρ+ div(σ⃗ρ) = 0 , σ⃗ = χ(aj,ε>0) in Ω = (R+
0 )

2m

with influx boundary condition

d(ρ|ΩΠ,k+1
)

daΠ(k+1)
= sΠ(k+1)(aΠ̄(k+1))f(Π(k+1))2

 m∑
j=1

αj,(Π(k+1))2(aj,(Π(k+1))2)

 ρ

in ΩΠ,k where ΩΠ,k is defined as above, d
da denotes the Radon-Nikodym

derivative, and (Π(k + 1))2 is the second component of Π(k + 1). The
initial condition is ρ(0) = δa⃗0,σ⃗0

, a⃗0 ∈ (R+
0 )

2m, σ⃗0 ∈ {0, 1}2m.

For the process defined as in Lemma 4.1 for M1 independent groups
in the time intervals (t2ν , t2ν+1), a consecutive random filling up of M2

meeting places of capacity m2, M2m2 = M1m1, at times t2ν+1, and again
an independent infection process at the meeting places in the time intervals
(t2ν+1, t2ν+2), in the large M1 limit, the density in the phase space will
satisfy

Theorem 4.2. The limit of the empirical density 1
M1

∑M1

l=1 δa⃗l(t) in (R+
0 )

2m

will satisfy the kinetic equation

∂tρ+ div(σ⃗ρ) = 0 , σ⃗(⃗a) = (χaj>0)j∈{1,...,m1}×{1,2}

and

d(ρ|ΩΠ,k+1
)

daΠ(k+1)
=AΠ,k+1(t− t2ν , a⃗)ρ in (t2ν , t2ν+1)× ΩΠ,k

d(ρ|ΩΠ,k+1
)

daΠ(k+1)
=m1−m2

1

∑
I∈{1,...,m1}m2−1

[∫
(R+

0 )2m2−1

BI(t− t2ν+1, aΠ̄(k+1), b⃗)

·
m2−1∏
j=1

ρi(I(j))(bj,1, bj,2, t2ν+1) dbj,1 dbj,2

]
ρ

in (t2ν+1, t2ν+2)× ΩΠ,k
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AΠ,k+1(τ, a⃗) =

E

(
sΠ(k+1)(aΠ̄(k+1))

∫
fΠ(k+1)

(
m1∑
i=1

αi,(Π(k+1))2(βi,(Π(k+1))2)

)
dρ(β⃗, τ, a⃗, s⃗, α⃗)

)
,

where the expected value is taken w.r.t. the product measure of
dPi(s1, s2, α1, α2), and ρ(β⃗, τ, a⃗, s⃗, α⃗) is the transition probability calcu-
lated in Lemma 4.1.

BI(τ, aΠ̄(k+1), b⃗) =

E

s0(aΠ̄(k+1))

∫
f̄(Π(k+1))2

m2∑
j=1

αj,(Π(k+1))2

(
βj,(Π(k+1))2

) dρ(β⃗, τ, b⃗, s⃗, α⃗)

 ,

where ρ(β⃗, τ, b⃗, s⃗, α⃗) is the transition probability calculated in Lemma 4.1
and the expectation in s0, (sj,1, sj,2, αj,1, αj,2)

m2−1
j=1 is taken w.r.t. the prod-

uct measure dPi(Π(k+1)) ×
∏m2−1

j=1 dPi(I(j)) .

Here we assumed that the empirical measure for the initial data s1, s2,
α1, α2 for the individuals of type i with one or two infections before the
initial time converges to the product measure

∏
i dPi(s1, s2, α1, α2), and

the limit of the empirical measure of the time since infection at time zero
has a density

5 Discussion
The type of convergence in the large N limit we prove is very much akin
to two scale convergence in homogenization, or for that matter in lattice
Hamiltonians [6]. The local process is itself a kinetic or Boltzmann type
process as was shown in the lemmata, driven by the population evolution.
In that respect the result is very similar to [4] only that for the McKendrick
processes the driver is not an ODE but a PDE.

We formulated conditions on the virus production of infected individ-
uals, which are in fact conditions on the large N limit of the empirical
distribution. The independence assumption is very natural. It is also re-
alistic not to assume the virus production α to be itself a process in R.
α is just a random variable depending on a hidden Markov process about
which we have basically no data. But it is of course quite possible that
our distribution Pi of α depends on t or even the virus exposition at the
infection time. In principle that can be checked and the model be modified
accordingly.

The shape of the nonlinearity - a concave polynomial of degree m2 - is
a consequence of the limited capacity m2 of the meeting places. Roughly
speaking this is the evaluation of the dose response curve w.r.t. to a multi-
nomial distribution, see [7], Chapter 5. For large meeting places other lim-
its, e.g. m2 ≈ Nβ would be appropriate. And then Ī := m−1

2

∑m2

j=1 α(aj)
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itself would become deterministic. This would lead to a nonlinearity of
type ρf̄(m−1

1

∑m1

i=1 αi(ai)ρ) for the kinetic equation discussed e.g. in [8]
for groups of two individuals.

The mixing process we have been looking at here, is a very particular
example adapted e.g. to a metro filling up during the rush hour. Other
processes have to be considered. The shape of the nonlinearity should
remain the same [8].

The modification of the standard Kermack-McKendrick model we have
proposed in this paper allows to separate the contagion mechanism in
groups with reoccuring contacts from the one at random encounters. Fur-
ther it allows for other infection laws than the standard mass action type
of law. Both, we think, are necessary to realistically model not only Covid,
but also other aerosol transmitted diseases.

For Covid we have data which allow to estimate the true extent of
(asymptomatic) infection in the affected populations. And here we can
see how limited the effect of lockdown measures has been. We also see,
that stability w.r.t. the introduction of a small percentage of infections
does not mean stability w.r.t. to a moderate percentage of imported in-
fections. Both phenomena can be modeled with the type of system we
have introduced here. And this system naturally arises from a stochastic
model.
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